xref: /linux-6.15/include/linux/netdevice.h (revision fe810b50)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct macsec_context;
57 struct macsec_ops;
58 
59 struct sfp_bus;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69 
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 				    const struct ethtool_ops *ops);
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 #define MAX_NEST_DEV 8
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key_false rps_needed;
198 extern struct static_key_false rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 	__be16	(*parse_protocol)(const struct sk_buff *skb);
278 };
279 
280 /* These flag bits are private to the generic network queueing
281  * layer; they may not be explicitly referenced by any other
282  * code.
283  */
284 
285 enum netdev_state_t {
286 	__LINK_STATE_START,
287 	__LINK_STATE_PRESENT,
288 	__LINK_STATE_NOCARRIER,
289 	__LINK_STATE_LINKWATCH_PENDING,
290 	__LINK_STATE_DORMANT,
291 };
292 
293 
294 /*
295  * This structure holds boot-time configured netdevice settings. They
296  * are then used in the device probing.
297  */
298 struct netdev_boot_setup {
299 	char name[IFNAMSIZ];
300 	struct ifmap map;
301 };
302 #define NETDEV_BOOT_SETUP_MAX 8
303 
304 int __init netdev_boot_setup(char *str);
305 
306 struct gro_list {
307 	struct list_head	list;
308 	int			count;
309 };
310 
311 /*
312  * size of gro hash buckets, must less than bit number of
313  * napi_struct::gro_bitmask
314  */
315 #define GRO_HASH_BUCKETS	8
316 
317 /*
318  * Structure for NAPI scheduling similar to tasklet but with weighting
319  */
320 struct napi_struct {
321 	/* The poll_list must only be managed by the entity which
322 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
323 	 * whoever atomically sets that bit can add this napi_struct
324 	 * to the per-CPU poll_list, and whoever clears that bit
325 	 * can remove from the list right before clearing the bit.
326 	 */
327 	struct list_head	poll_list;
328 
329 	unsigned long		state;
330 	int			weight;
331 	unsigned long		gro_bitmask;
332 	int			(*poll)(struct napi_struct *, int);
333 #ifdef CONFIG_NETPOLL
334 	int			poll_owner;
335 #endif
336 	struct net_device	*dev;
337 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
338 	struct sk_buff		*skb;
339 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
340 	int			rx_count; /* length of rx_list */
341 	struct hrtimer		timer;
342 	struct list_head	dev_list;
343 	struct hlist_node	napi_hash_node;
344 	unsigned int		napi_id;
345 };
346 
347 enum {
348 	NAPI_STATE_SCHED,	/* Poll is scheduled */
349 	NAPI_STATE_MISSED,	/* reschedule a napi */
350 	NAPI_STATE_DISABLE,	/* Disable pending */
351 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
352 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
353 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
354 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
355 };
356 
357 enum {
358 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
359 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
360 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
361 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
362 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
363 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
364 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
365 };
366 
367 enum gro_result {
368 	GRO_MERGED,
369 	GRO_MERGED_FREE,
370 	GRO_HELD,
371 	GRO_NORMAL,
372 	GRO_DROP,
373 	GRO_CONSUMED,
374 };
375 typedef enum gro_result gro_result_t;
376 
377 /*
378  * enum rx_handler_result - Possible return values for rx_handlers.
379  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
380  * further.
381  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
382  * case skb->dev was changed by rx_handler.
383  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
384  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
385  *
386  * rx_handlers are functions called from inside __netif_receive_skb(), to do
387  * special processing of the skb, prior to delivery to protocol handlers.
388  *
389  * Currently, a net_device can only have a single rx_handler registered. Trying
390  * to register a second rx_handler will return -EBUSY.
391  *
392  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
393  * To unregister a rx_handler on a net_device, use
394  * netdev_rx_handler_unregister().
395  *
396  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
397  * do with the skb.
398  *
399  * If the rx_handler consumed the skb in some way, it should return
400  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
401  * the skb to be delivered in some other way.
402  *
403  * If the rx_handler changed skb->dev, to divert the skb to another
404  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
405  * new device will be called if it exists.
406  *
407  * If the rx_handler decides the skb should be ignored, it should return
408  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
409  * are registered on exact device (ptype->dev == skb->dev).
410  *
411  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
412  * delivered, it should return RX_HANDLER_PASS.
413  *
414  * A device without a registered rx_handler will behave as if rx_handler
415  * returned RX_HANDLER_PASS.
416  */
417 
418 enum rx_handler_result {
419 	RX_HANDLER_CONSUMED,
420 	RX_HANDLER_ANOTHER,
421 	RX_HANDLER_EXACT,
422 	RX_HANDLER_PASS,
423 };
424 typedef enum rx_handler_result rx_handler_result_t;
425 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
426 
427 void __napi_schedule(struct napi_struct *n);
428 void __napi_schedule_irqoff(struct napi_struct *n);
429 
430 static inline bool napi_disable_pending(struct napi_struct *n)
431 {
432 	return test_bit(NAPI_STATE_DISABLE, &n->state);
433 }
434 
435 bool napi_schedule_prep(struct napi_struct *n);
436 
437 /**
438  *	napi_schedule - schedule NAPI poll
439  *	@n: NAPI context
440  *
441  * Schedule NAPI poll routine to be called if it is not already
442  * running.
443  */
444 static inline void napi_schedule(struct napi_struct *n)
445 {
446 	if (napi_schedule_prep(n))
447 		__napi_schedule(n);
448 }
449 
450 /**
451  *	napi_schedule_irqoff - schedule NAPI poll
452  *	@n: NAPI context
453  *
454  * Variant of napi_schedule(), assuming hard irqs are masked.
455  */
456 static inline void napi_schedule_irqoff(struct napi_struct *n)
457 {
458 	if (napi_schedule_prep(n))
459 		__napi_schedule_irqoff(n);
460 }
461 
462 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
463 static inline bool napi_reschedule(struct napi_struct *napi)
464 {
465 	if (napi_schedule_prep(napi)) {
466 		__napi_schedule(napi);
467 		return true;
468 	}
469 	return false;
470 }
471 
472 bool napi_complete_done(struct napi_struct *n, int work_done);
473 /**
474  *	napi_complete - NAPI processing complete
475  *	@n: NAPI context
476  *
477  * Mark NAPI processing as complete.
478  * Consider using napi_complete_done() instead.
479  * Return false if device should avoid rearming interrupts.
480  */
481 static inline bool napi_complete(struct napi_struct *n)
482 {
483 	return napi_complete_done(n, 0);
484 }
485 
486 /**
487  *	napi_hash_del - remove a NAPI from global table
488  *	@napi: NAPI context
489  *
490  * Warning: caller must observe RCU grace period
491  * before freeing memory containing @napi, if
492  * this function returns true.
493  * Note: core networking stack automatically calls it
494  * from netif_napi_del().
495  * Drivers might want to call this helper to combine all
496  * the needed RCU grace periods into a single one.
497  */
498 bool napi_hash_del(struct napi_struct *napi);
499 
500 /**
501  *	napi_disable - prevent NAPI from scheduling
502  *	@n: NAPI context
503  *
504  * Stop NAPI from being scheduled on this context.
505  * Waits till any outstanding processing completes.
506  */
507 void napi_disable(struct napi_struct *n);
508 
509 /**
510  *	napi_enable - enable NAPI scheduling
511  *	@n: NAPI context
512  *
513  * Resume NAPI from being scheduled on this context.
514  * Must be paired with napi_disable.
515  */
516 static inline void napi_enable(struct napi_struct *n)
517 {
518 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
519 	smp_mb__before_atomic();
520 	clear_bit(NAPI_STATE_SCHED, &n->state);
521 	clear_bit(NAPI_STATE_NPSVC, &n->state);
522 }
523 
524 /**
525  *	napi_synchronize - wait until NAPI is not running
526  *	@n: NAPI context
527  *
528  * Wait until NAPI is done being scheduled on this context.
529  * Waits till any outstanding processing completes but
530  * does not disable future activations.
531  */
532 static inline void napi_synchronize(const struct napi_struct *n)
533 {
534 	if (IS_ENABLED(CONFIG_SMP))
535 		while (test_bit(NAPI_STATE_SCHED, &n->state))
536 			msleep(1);
537 	else
538 		barrier();
539 }
540 
541 /**
542  *	napi_if_scheduled_mark_missed - if napi is running, set the
543  *	NAPIF_STATE_MISSED
544  *	@n: NAPI context
545  *
546  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
547  * NAPI is scheduled.
548  **/
549 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
550 {
551 	unsigned long val, new;
552 
553 	do {
554 		val = READ_ONCE(n->state);
555 		if (val & NAPIF_STATE_DISABLE)
556 			return true;
557 
558 		if (!(val & NAPIF_STATE_SCHED))
559 			return false;
560 
561 		new = val | NAPIF_STATE_MISSED;
562 	} while (cmpxchg(&n->state, val, new) != val);
563 
564 	return true;
565 }
566 
567 enum netdev_queue_state_t {
568 	__QUEUE_STATE_DRV_XOFF,
569 	__QUEUE_STATE_STACK_XOFF,
570 	__QUEUE_STATE_FROZEN,
571 };
572 
573 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
574 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
576 
577 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
578 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 
583 /*
584  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
585  * netif_tx_* functions below are used to manipulate this flag.  The
586  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
587  * queue independently.  The netif_xmit_*stopped functions below are called
588  * to check if the queue has been stopped by the driver or stack (either
589  * of the XOFF bits are set in the state).  Drivers should not need to call
590  * netif_xmit*stopped functions, they should only be using netif_tx_*.
591  */
592 
593 struct netdev_queue {
594 /*
595  * read-mostly part
596  */
597 	struct net_device	*dev;
598 	struct Qdisc __rcu	*qdisc;
599 	struct Qdisc		*qdisc_sleeping;
600 #ifdef CONFIG_SYSFS
601 	struct kobject		kobj;
602 #endif
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 	int			numa_node;
605 #endif
606 	unsigned long		tx_maxrate;
607 	/*
608 	 * Number of TX timeouts for this queue
609 	 * (/sys/class/net/DEV/Q/trans_timeout)
610 	 */
611 	unsigned long		trans_timeout;
612 
613 	/* Subordinate device that the queue has been assigned to */
614 	struct net_device	*sb_dev;
615 #ifdef CONFIG_XDP_SOCKETS
616 	struct xdp_umem         *umem;
617 #endif
618 /*
619  * write-mostly part
620  */
621 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
622 	int			xmit_lock_owner;
623 	/*
624 	 * Time (in jiffies) of last Tx
625 	 */
626 	unsigned long		trans_start;
627 
628 	unsigned long		state;
629 
630 #ifdef CONFIG_BQL
631 	struct dql		dql;
632 #endif
633 } ____cacheline_aligned_in_smp;
634 
635 extern int sysctl_fb_tunnels_only_for_init_net;
636 extern int sysctl_devconf_inherit_init_net;
637 
638 static inline bool net_has_fallback_tunnels(const struct net *net)
639 {
640 	return net == &init_net ||
641 	       !IS_ENABLED(CONFIG_SYSCTL) ||
642 	       !sysctl_fb_tunnels_only_for_init_net;
643 }
644 
645 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
646 {
647 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 	return q->numa_node;
649 #else
650 	return NUMA_NO_NODE;
651 #endif
652 }
653 
654 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
655 {
656 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
657 	q->numa_node = node;
658 #endif
659 }
660 
661 #ifdef CONFIG_RPS
662 /*
663  * This structure holds an RPS map which can be of variable length.  The
664  * map is an array of CPUs.
665  */
666 struct rps_map {
667 	unsigned int len;
668 	struct rcu_head rcu;
669 	u16 cpus[];
670 };
671 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
672 
673 /*
674  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
675  * tail pointer for that CPU's input queue at the time of last enqueue, and
676  * a hardware filter index.
677  */
678 struct rps_dev_flow {
679 	u16 cpu;
680 	u16 filter;
681 	unsigned int last_qtail;
682 };
683 #define RPS_NO_FILTER 0xffff
684 
685 /*
686  * The rps_dev_flow_table structure contains a table of flow mappings.
687  */
688 struct rps_dev_flow_table {
689 	unsigned int mask;
690 	struct rcu_head rcu;
691 	struct rps_dev_flow flows[];
692 };
693 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
694     ((_num) * sizeof(struct rps_dev_flow)))
695 
696 /*
697  * The rps_sock_flow_table contains mappings of flows to the last CPU
698  * on which they were processed by the application (set in recvmsg).
699  * Each entry is a 32bit value. Upper part is the high-order bits
700  * of flow hash, lower part is CPU number.
701  * rps_cpu_mask is used to partition the space, depending on number of
702  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
703  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
704  * meaning we use 32-6=26 bits for the hash.
705  */
706 struct rps_sock_flow_table {
707 	u32	mask;
708 
709 	u32	ents[] ____cacheline_aligned_in_smp;
710 };
711 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
712 
713 #define RPS_NO_CPU 0xffff
714 
715 extern u32 rps_cpu_mask;
716 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
717 
718 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
719 					u32 hash)
720 {
721 	if (table && hash) {
722 		unsigned int index = hash & table->mask;
723 		u32 val = hash & ~rps_cpu_mask;
724 
725 		/* We only give a hint, preemption can change CPU under us */
726 		val |= raw_smp_processor_id();
727 
728 		if (table->ents[index] != val)
729 			table->ents[index] = val;
730 	}
731 }
732 
733 #ifdef CONFIG_RFS_ACCEL
734 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
735 			 u16 filter_id);
736 #endif
737 #endif /* CONFIG_RPS */
738 
739 /* This structure contains an instance of an RX queue. */
740 struct netdev_rx_queue {
741 #ifdef CONFIG_RPS
742 	struct rps_map __rcu		*rps_map;
743 	struct rps_dev_flow_table __rcu	*rps_flow_table;
744 #endif
745 	struct kobject			kobj;
746 	struct net_device		*dev;
747 	struct xdp_rxq_info		xdp_rxq;
748 #ifdef CONFIG_XDP_SOCKETS
749 	struct xdp_umem                 *umem;
750 #endif
751 } ____cacheline_aligned_in_smp;
752 
753 /*
754  * RX queue sysfs structures and functions.
755  */
756 struct rx_queue_attribute {
757 	struct attribute attr;
758 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
759 	ssize_t (*store)(struct netdev_rx_queue *queue,
760 			 const char *buf, size_t len);
761 };
762 
763 #ifdef CONFIG_XPS
764 /*
765  * This structure holds an XPS map which can be of variable length.  The
766  * map is an array of queues.
767  */
768 struct xps_map {
769 	unsigned int len;
770 	unsigned int alloc_len;
771 	struct rcu_head rcu;
772 	u16 queues[];
773 };
774 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776        - sizeof(struct xps_map)) / sizeof(u16))
777 
778 /*
779  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
780  */
781 struct xps_dev_maps {
782 	struct rcu_head rcu;
783 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
784 };
785 
786 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
787 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
788 
789 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
790 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
791 
792 #endif /* CONFIG_XPS */
793 
794 #define TC_MAX_QUEUE	16
795 #define TC_BITMASK	15
796 /* HW offloaded queuing disciplines txq count and offset maps */
797 struct netdev_tc_txq {
798 	u16 count;
799 	u16 offset;
800 };
801 
802 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
803 /*
804  * This structure is to hold information about the device
805  * configured to run FCoE protocol stack.
806  */
807 struct netdev_fcoe_hbainfo {
808 	char	manufacturer[64];
809 	char	serial_number[64];
810 	char	hardware_version[64];
811 	char	driver_version[64];
812 	char	optionrom_version[64];
813 	char	firmware_version[64];
814 	char	model[256];
815 	char	model_description[256];
816 };
817 #endif
818 
819 #define MAX_PHYS_ITEM_ID_LEN 32
820 
821 /* This structure holds a unique identifier to identify some
822  * physical item (port for example) used by a netdevice.
823  */
824 struct netdev_phys_item_id {
825 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
826 	unsigned char id_len;
827 };
828 
829 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
830 					    struct netdev_phys_item_id *b)
831 {
832 	return a->id_len == b->id_len &&
833 	       memcmp(a->id, b->id, a->id_len) == 0;
834 }
835 
836 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
837 				       struct sk_buff *skb,
838 				       struct net_device *sb_dev);
839 
840 enum tc_setup_type {
841 	TC_SETUP_QDISC_MQPRIO,
842 	TC_SETUP_CLSU32,
843 	TC_SETUP_CLSFLOWER,
844 	TC_SETUP_CLSMATCHALL,
845 	TC_SETUP_CLSBPF,
846 	TC_SETUP_BLOCK,
847 	TC_SETUP_QDISC_CBS,
848 	TC_SETUP_QDISC_RED,
849 	TC_SETUP_QDISC_PRIO,
850 	TC_SETUP_QDISC_MQ,
851 	TC_SETUP_QDISC_ETF,
852 	TC_SETUP_ROOT_QDISC,
853 	TC_SETUP_QDISC_GRED,
854 	TC_SETUP_QDISC_TAPRIO,
855 	TC_SETUP_FT,
856 	TC_SETUP_QDISC_ETS,
857 	TC_SETUP_QDISC_TBF,
858 	TC_SETUP_QDISC_FIFO,
859 };
860 
861 /* These structures hold the attributes of bpf state that are being passed
862  * to the netdevice through the bpf op.
863  */
864 enum bpf_netdev_command {
865 	/* Set or clear a bpf program used in the earliest stages of packet
866 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
867 	 * is responsible for calling bpf_prog_put on any old progs that are
868 	 * stored. In case of error, the callee need not release the new prog
869 	 * reference, but on success it takes ownership and must bpf_prog_put
870 	 * when it is no longer used.
871 	 */
872 	XDP_SETUP_PROG,
873 	XDP_SETUP_PROG_HW,
874 	XDP_QUERY_PROG,
875 	XDP_QUERY_PROG_HW,
876 	/* BPF program for offload callbacks, invoked at program load time. */
877 	BPF_OFFLOAD_MAP_ALLOC,
878 	BPF_OFFLOAD_MAP_FREE,
879 	XDP_SETUP_XSK_UMEM,
880 };
881 
882 struct bpf_prog_offload_ops;
883 struct netlink_ext_ack;
884 struct xdp_umem;
885 struct xdp_dev_bulk_queue;
886 
887 struct netdev_bpf {
888 	enum bpf_netdev_command command;
889 	union {
890 		/* XDP_SETUP_PROG */
891 		struct {
892 			u32 flags;
893 			struct bpf_prog *prog;
894 			struct netlink_ext_ack *extack;
895 		};
896 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
897 		struct {
898 			u32 prog_id;
899 			/* flags with which program was installed */
900 			u32 prog_flags;
901 		};
902 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
903 		struct {
904 			struct bpf_offloaded_map *offmap;
905 		};
906 		/* XDP_SETUP_XSK_UMEM */
907 		struct {
908 			struct xdp_umem *umem;
909 			u16 queue_id;
910 		} xsk;
911 	};
912 };
913 
914 /* Flags for ndo_xsk_wakeup. */
915 #define XDP_WAKEUP_RX (1 << 0)
916 #define XDP_WAKEUP_TX (1 << 1)
917 
918 #ifdef CONFIG_XFRM_OFFLOAD
919 struct xfrmdev_ops {
920 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
921 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
922 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
923 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
924 				       struct xfrm_state *x);
925 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
926 };
927 #endif
928 
929 struct dev_ifalias {
930 	struct rcu_head rcuhead;
931 	char ifalias[];
932 };
933 
934 struct devlink;
935 struct tlsdev_ops;
936 
937 struct netdev_name_node {
938 	struct hlist_node hlist;
939 	struct list_head list;
940 	struct net_device *dev;
941 	const char *name;
942 };
943 
944 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
945 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
946 
947 struct netdev_net_notifier {
948 	struct list_head list;
949 	struct notifier_block *nb;
950 };
951 
952 /*
953  * This structure defines the management hooks for network devices.
954  * The following hooks can be defined; unless noted otherwise, they are
955  * optional and can be filled with a null pointer.
956  *
957  * int (*ndo_init)(struct net_device *dev);
958  *     This function is called once when a network device is registered.
959  *     The network device can use this for any late stage initialization
960  *     or semantic validation. It can fail with an error code which will
961  *     be propagated back to register_netdev.
962  *
963  * void (*ndo_uninit)(struct net_device *dev);
964  *     This function is called when device is unregistered or when registration
965  *     fails. It is not called if init fails.
966  *
967  * int (*ndo_open)(struct net_device *dev);
968  *     This function is called when a network device transitions to the up
969  *     state.
970  *
971  * int (*ndo_stop)(struct net_device *dev);
972  *     This function is called when a network device transitions to the down
973  *     state.
974  *
975  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
976  *                               struct net_device *dev);
977  *	Called when a packet needs to be transmitted.
978  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
979  *	the queue before that can happen; it's for obsolete devices and weird
980  *	corner cases, but the stack really does a non-trivial amount
981  *	of useless work if you return NETDEV_TX_BUSY.
982  *	Required; cannot be NULL.
983  *
984  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
985  *					   struct net_device *dev
986  *					   netdev_features_t features);
987  *	Called by core transmit path to determine if device is capable of
988  *	performing offload operations on a given packet. This is to give
989  *	the device an opportunity to implement any restrictions that cannot
990  *	be otherwise expressed by feature flags. The check is called with
991  *	the set of features that the stack has calculated and it returns
992  *	those the driver believes to be appropriate.
993  *
994  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
995  *                         struct net_device *sb_dev);
996  *	Called to decide which queue to use when device supports multiple
997  *	transmit queues.
998  *
999  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1000  *	This function is called to allow device receiver to make
1001  *	changes to configuration when multicast or promiscuous is enabled.
1002  *
1003  * void (*ndo_set_rx_mode)(struct net_device *dev);
1004  *	This function is called device changes address list filtering.
1005  *	If driver handles unicast address filtering, it should set
1006  *	IFF_UNICAST_FLT in its priv_flags.
1007  *
1008  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1009  *	This function  is called when the Media Access Control address
1010  *	needs to be changed. If this interface is not defined, the
1011  *	MAC address can not be changed.
1012  *
1013  * int (*ndo_validate_addr)(struct net_device *dev);
1014  *	Test if Media Access Control address is valid for the device.
1015  *
1016  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1017  *	Called when a user requests an ioctl which can't be handled by
1018  *	the generic interface code. If not defined ioctls return
1019  *	not supported error code.
1020  *
1021  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1022  *	Used to set network devices bus interface parameters. This interface
1023  *	is retained for legacy reasons; new devices should use the bus
1024  *	interface (PCI) for low level management.
1025  *
1026  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1027  *	Called when a user wants to change the Maximum Transfer Unit
1028  *	of a device.
1029  *
1030  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1031  *	Callback used when the transmitter has not made any progress
1032  *	for dev->watchdog ticks.
1033  *
1034  * void (*ndo_get_stats64)(struct net_device *dev,
1035  *                         struct rtnl_link_stats64 *storage);
1036  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1037  *	Called when a user wants to get the network device usage
1038  *	statistics. Drivers must do one of the following:
1039  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1040  *	   rtnl_link_stats64 structure passed by the caller.
1041  *	2. Define @ndo_get_stats to update a net_device_stats structure
1042  *	   (which should normally be dev->stats) and return a pointer to
1043  *	   it. The structure may be changed asynchronously only if each
1044  *	   field is written atomically.
1045  *	3. Update dev->stats asynchronously and atomically, and define
1046  *	   neither operation.
1047  *
1048  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1049  *	Return true if this device supports offload stats of this attr_id.
1050  *
1051  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1052  *	void *attr_data)
1053  *	Get statistics for offload operations by attr_id. Write it into the
1054  *	attr_data pointer.
1055  *
1056  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1057  *	If device supports VLAN filtering this function is called when a
1058  *	VLAN id is registered.
1059  *
1060  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1061  *	If device supports VLAN filtering this function is called when a
1062  *	VLAN id is unregistered.
1063  *
1064  * void (*ndo_poll_controller)(struct net_device *dev);
1065  *
1066  *	SR-IOV management functions.
1067  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1068  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1069  *			  u8 qos, __be16 proto);
1070  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1071  *			  int max_tx_rate);
1072  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1073  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1074  * int (*ndo_get_vf_config)(struct net_device *dev,
1075  *			    int vf, struct ifla_vf_info *ivf);
1076  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1077  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1078  *			  struct nlattr *port[]);
1079  *
1080  *      Enable or disable the VF ability to query its RSS Redirection Table and
1081  *      Hash Key. This is needed since on some devices VF share this information
1082  *      with PF and querying it may introduce a theoretical security risk.
1083  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1084  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1085  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1086  *		       void *type_data);
1087  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1088  *	This is always called from the stack with the rtnl lock held and netif
1089  *	tx queues stopped. This allows the netdevice to perform queue
1090  *	management safely.
1091  *
1092  *	Fiber Channel over Ethernet (FCoE) offload functions.
1093  * int (*ndo_fcoe_enable)(struct net_device *dev);
1094  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1095  *	so the underlying device can perform whatever needed configuration or
1096  *	initialization to support acceleration of FCoE traffic.
1097  *
1098  * int (*ndo_fcoe_disable)(struct net_device *dev);
1099  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1100  *	so the underlying device can perform whatever needed clean-ups to
1101  *	stop supporting acceleration of FCoE traffic.
1102  *
1103  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1104  *			     struct scatterlist *sgl, unsigned int sgc);
1105  *	Called when the FCoE Initiator wants to initialize an I/O that
1106  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1107  *	perform necessary setup and returns 1 to indicate the device is set up
1108  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1109  *
1110  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1111  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1112  *	indicated by the FC exchange id 'xid', so the underlying device can
1113  *	clean up and reuse resources for later DDP requests.
1114  *
1115  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1116  *			      struct scatterlist *sgl, unsigned int sgc);
1117  *	Called when the FCoE Target wants to initialize an I/O that
1118  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1119  *	perform necessary setup and returns 1 to indicate the device is set up
1120  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1121  *
1122  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1123  *			       struct netdev_fcoe_hbainfo *hbainfo);
1124  *	Called when the FCoE Protocol stack wants information on the underlying
1125  *	device. This information is utilized by the FCoE protocol stack to
1126  *	register attributes with Fiber Channel management service as per the
1127  *	FC-GS Fabric Device Management Information(FDMI) specification.
1128  *
1129  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1130  *	Called when the underlying device wants to override default World Wide
1131  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1132  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1133  *	protocol stack to use.
1134  *
1135  *	RFS acceleration.
1136  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1137  *			    u16 rxq_index, u32 flow_id);
1138  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1139  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1140  *	Return the filter ID on success, or a negative error code.
1141  *
1142  *	Slave management functions (for bridge, bonding, etc).
1143  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1144  *	Called to make another netdev an underling.
1145  *
1146  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1147  *	Called to release previously enslaved netdev.
1148  *
1149  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1150  *					    struct sk_buff *skb,
1151  *					    bool all_slaves);
1152  *	Get the xmit slave of master device. If all_slaves is true, function
1153  *	assume all the slaves can transmit.
1154  *
1155  *      Feature/offload setting functions.
1156  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1157  *		netdev_features_t features);
1158  *	Adjusts the requested feature flags according to device-specific
1159  *	constraints, and returns the resulting flags. Must not modify
1160  *	the device state.
1161  *
1162  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1163  *	Called to update device configuration to new features. Passed
1164  *	feature set might be less than what was returned by ndo_fix_features()).
1165  *	Must return >0 or -errno if it changed dev->features itself.
1166  *
1167  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1168  *		      struct net_device *dev,
1169  *		      const unsigned char *addr, u16 vid, u16 flags,
1170  *		      struct netlink_ext_ack *extack);
1171  *	Adds an FDB entry to dev for addr.
1172  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1173  *		      struct net_device *dev,
1174  *		      const unsigned char *addr, u16 vid)
1175  *	Deletes the FDB entry from dev coresponding to addr.
1176  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1177  *		       struct net_device *dev, struct net_device *filter_dev,
1178  *		       int *idx)
1179  *	Used to add FDB entries to dump requests. Implementers should add
1180  *	entries to skb and update idx with the number of entries.
1181  *
1182  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1183  *			     u16 flags, struct netlink_ext_ack *extack)
1184  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1185  *			     struct net_device *dev, u32 filter_mask,
1186  *			     int nlflags)
1187  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1188  *			     u16 flags);
1189  *
1190  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1191  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1192  *	which do not represent real hardware may define this to allow their
1193  *	userspace components to manage their virtual carrier state. Devices
1194  *	that determine carrier state from physical hardware properties (eg
1195  *	network cables) or protocol-dependent mechanisms (eg
1196  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1197  *
1198  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1199  *			       struct netdev_phys_item_id *ppid);
1200  *	Called to get ID of physical port of this device. If driver does
1201  *	not implement this, it is assumed that the hw is not able to have
1202  *	multiple net devices on single physical port.
1203  *
1204  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1205  *				 struct netdev_phys_item_id *ppid)
1206  *	Called to get the parent ID of the physical port of this device.
1207  *
1208  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1209  *			      struct udp_tunnel_info *ti);
1210  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1211  *	address family that a UDP tunnel is listnening to. It is called only
1212  *	when a new port starts listening. The operation is protected by the
1213  *	RTNL.
1214  *
1215  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1216  *			      struct udp_tunnel_info *ti);
1217  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1218  *	address family that the UDP tunnel is not listening to anymore. The
1219  *	operation is protected by the RTNL.
1220  *
1221  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1222  *				 struct net_device *dev)
1223  *	Called by upper layer devices to accelerate switching or other
1224  *	station functionality into hardware. 'pdev is the lowerdev
1225  *	to use for the offload and 'dev' is the net device that will
1226  *	back the offload. Returns a pointer to the private structure
1227  *	the upper layer will maintain.
1228  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1229  *	Called by upper layer device to delete the station created
1230  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1231  *	the station and priv is the structure returned by the add
1232  *	operation.
1233  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1234  *			     int queue_index, u32 maxrate);
1235  *	Called when a user wants to set a max-rate limitation of specific
1236  *	TX queue.
1237  * int (*ndo_get_iflink)(const struct net_device *dev);
1238  *	Called to get the iflink value of this device.
1239  * void (*ndo_change_proto_down)(struct net_device *dev,
1240  *				 bool proto_down);
1241  *	This function is used to pass protocol port error state information
1242  *	to the switch driver. The switch driver can react to the proto_down
1243  *      by doing a phys down on the associated switch port.
1244  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1245  *	This function is used to get egress tunnel information for given skb.
1246  *	This is useful for retrieving outer tunnel header parameters while
1247  *	sampling packet.
1248  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1249  *	This function is used to specify the headroom that the skb must
1250  *	consider when allocation skb during packet reception. Setting
1251  *	appropriate rx headroom value allows avoiding skb head copy on
1252  *	forward. Setting a negative value resets the rx headroom to the
1253  *	default value.
1254  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1255  *	This function is used to set or query state related to XDP on the
1256  *	netdevice and manage BPF offload. See definition of
1257  *	enum bpf_netdev_command for details.
1258  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1259  *			u32 flags);
1260  *	This function is used to submit @n XDP packets for transmit on a
1261  *	netdevice. Returns number of frames successfully transmitted, frames
1262  *	that got dropped are freed/returned via xdp_return_frame().
1263  *	Returns negative number, means general error invoking ndo, meaning
1264  *	no frames were xmit'ed and core-caller will free all frames.
1265  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1266  *      This function is used to wake up the softirq, ksoftirqd or kthread
1267  *	responsible for sending and/or receiving packets on a specific
1268  *	queue id bound to an AF_XDP socket. The flags field specifies if
1269  *	only RX, only Tx, or both should be woken up using the flags
1270  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1271  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1272  *	Get devlink port instance associated with a given netdev.
1273  *	Called with a reference on the netdevice and devlink locks only,
1274  *	rtnl_lock is not held.
1275  */
1276 struct net_device_ops {
1277 	int			(*ndo_init)(struct net_device *dev);
1278 	void			(*ndo_uninit)(struct net_device *dev);
1279 	int			(*ndo_open)(struct net_device *dev);
1280 	int			(*ndo_stop)(struct net_device *dev);
1281 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1282 						  struct net_device *dev);
1283 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1284 						      struct net_device *dev,
1285 						      netdev_features_t features);
1286 	u16			(*ndo_select_queue)(struct net_device *dev,
1287 						    struct sk_buff *skb,
1288 						    struct net_device *sb_dev);
1289 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1290 						       int flags);
1291 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1292 	int			(*ndo_set_mac_address)(struct net_device *dev,
1293 						       void *addr);
1294 	int			(*ndo_validate_addr)(struct net_device *dev);
1295 	int			(*ndo_do_ioctl)(struct net_device *dev,
1296 					        struct ifreq *ifr, int cmd);
1297 	int			(*ndo_set_config)(struct net_device *dev,
1298 					          struct ifmap *map);
1299 	int			(*ndo_change_mtu)(struct net_device *dev,
1300 						  int new_mtu);
1301 	int			(*ndo_neigh_setup)(struct net_device *dev,
1302 						   struct neigh_parms *);
1303 	void			(*ndo_tx_timeout) (struct net_device *dev,
1304 						   unsigned int txqueue);
1305 
1306 	void			(*ndo_get_stats64)(struct net_device *dev,
1307 						   struct rtnl_link_stats64 *storage);
1308 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1309 	int			(*ndo_get_offload_stats)(int attr_id,
1310 							 const struct net_device *dev,
1311 							 void *attr_data);
1312 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1313 
1314 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1315 						       __be16 proto, u16 vid);
1316 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1317 						        __be16 proto, u16 vid);
1318 #ifdef CONFIG_NET_POLL_CONTROLLER
1319 	void                    (*ndo_poll_controller)(struct net_device *dev);
1320 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1321 						     struct netpoll_info *info);
1322 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1323 #endif
1324 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1325 						  int queue, u8 *mac);
1326 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1327 						   int queue, u16 vlan,
1328 						   u8 qos, __be16 proto);
1329 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1330 						   int vf, int min_tx_rate,
1331 						   int max_tx_rate);
1332 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1333 						       int vf, bool setting);
1334 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1335 						    int vf, bool setting);
1336 	int			(*ndo_get_vf_config)(struct net_device *dev,
1337 						     int vf,
1338 						     struct ifla_vf_info *ivf);
1339 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1340 							 int vf, int link_state);
1341 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1342 						    int vf,
1343 						    struct ifla_vf_stats
1344 						    *vf_stats);
1345 	int			(*ndo_set_vf_port)(struct net_device *dev,
1346 						   int vf,
1347 						   struct nlattr *port[]);
1348 	int			(*ndo_get_vf_port)(struct net_device *dev,
1349 						   int vf, struct sk_buff *skb);
1350 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1351 						   int vf,
1352 						   struct ifla_vf_guid *node_guid,
1353 						   struct ifla_vf_guid *port_guid);
1354 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1355 						   int vf, u64 guid,
1356 						   int guid_type);
1357 	int			(*ndo_set_vf_rss_query_en)(
1358 						   struct net_device *dev,
1359 						   int vf, bool setting);
1360 	int			(*ndo_setup_tc)(struct net_device *dev,
1361 						enum tc_setup_type type,
1362 						void *type_data);
1363 #if IS_ENABLED(CONFIG_FCOE)
1364 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1365 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1366 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1367 						      u16 xid,
1368 						      struct scatterlist *sgl,
1369 						      unsigned int sgc);
1370 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1371 						     u16 xid);
1372 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1373 						       u16 xid,
1374 						       struct scatterlist *sgl,
1375 						       unsigned int sgc);
1376 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1377 							struct netdev_fcoe_hbainfo *hbainfo);
1378 #endif
1379 
1380 #if IS_ENABLED(CONFIG_LIBFCOE)
1381 #define NETDEV_FCOE_WWNN 0
1382 #define NETDEV_FCOE_WWPN 1
1383 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1384 						    u64 *wwn, int type);
1385 #endif
1386 
1387 #ifdef CONFIG_RFS_ACCEL
1388 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1389 						     const struct sk_buff *skb,
1390 						     u16 rxq_index,
1391 						     u32 flow_id);
1392 #endif
1393 	int			(*ndo_add_slave)(struct net_device *dev,
1394 						 struct net_device *slave_dev,
1395 						 struct netlink_ext_ack *extack);
1396 	int			(*ndo_del_slave)(struct net_device *dev,
1397 						 struct net_device *slave_dev);
1398 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1399 						      struct sk_buff *skb,
1400 						      bool all_slaves);
1401 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1402 						    netdev_features_t features);
1403 	int			(*ndo_set_features)(struct net_device *dev,
1404 						    netdev_features_t features);
1405 	int			(*ndo_neigh_construct)(struct net_device *dev,
1406 						       struct neighbour *n);
1407 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1408 						     struct neighbour *n);
1409 
1410 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1411 					       struct nlattr *tb[],
1412 					       struct net_device *dev,
1413 					       const unsigned char *addr,
1414 					       u16 vid,
1415 					       u16 flags,
1416 					       struct netlink_ext_ack *extack);
1417 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1418 					       struct nlattr *tb[],
1419 					       struct net_device *dev,
1420 					       const unsigned char *addr,
1421 					       u16 vid);
1422 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1423 						struct netlink_callback *cb,
1424 						struct net_device *dev,
1425 						struct net_device *filter_dev,
1426 						int *idx);
1427 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1428 					       struct nlattr *tb[],
1429 					       struct net_device *dev,
1430 					       const unsigned char *addr,
1431 					       u16 vid, u32 portid, u32 seq,
1432 					       struct netlink_ext_ack *extack);
1433 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1434 						      struct nlmsghdr *nlh,
1435 						      u16 flags,
1436 						      struct netlink_ext_ack *extack);
1437 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1438 						      u32 pid, u32 seq,
1439 						      struct net_device *dev,
1440 						      u32 filter_mask,
1441 						      int nlflags);
1442 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1443 						      struct nlmsghdr *nlh,
1444 						      u16 flags);
1445 	int			(*ndo_change_carrier)(struct net_device *dev,
1446 						      bool new_carrier);
1447 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1448 							struct netdev_phys_item_id *ppid);
1449 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1450 							  struct netdev_phys_item_id *ppid);
1451 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1452 							  char *name, size_t len);
1453 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1454 						      struct udp_tunnel_info *ti);
1455 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1456 						      struct udp_tunnel_info *ti);
1457 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1458 							struct net_device *dev);
1459 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1460 							void *priv);
1461 
1462 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1463 						      int queue_index,
1464 						      u32 maxrate);
1465 	int			(*ndo_get_iflink)(const struct net_device *dev);
1466 	int			(*ndo_change_proto_down)(struct net_device *dev,
1467 							 bool proto_down);
1468 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1469 						       struct sk_buff *skb);
1470 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1471 						       int needed_headroom);
1472 	int			(*ndo_bpf)(struct net_device *dev,
1473 					   struct netdev_bpf *bpf);
1474 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1475 						struct xdp_frame **xdp,
1476 						u32 flags);
1477 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1478 						  u32 queue_id, u32 flags);
1479 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1480 };
1481 
1482 /**
1483  * enum net_device_priv_flags - &struct net_device priv_flags
1484  *
1485  * These are the &struct net_device, they are only set internally
1486  * by drivers and used in the kernel. These flags are invisible to
1487  * userspace; this means that the order of these flags can change
1488  * during any kernel release.
1489  *
1490  * You should have a pretty good reason to be extending these flags.
1491  *
1492  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1493  * @IFF_EBRIDGE: Ethernet bridging device
1494  * @IFF_BONDING: bonding master or slave
1495  * @IFF_ISATAP: ISATAP interface (RFC4214)
1496  * @IFF_WAN_HDLC: WAN HDLC device
1497  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1498  *	release skb->dst
1499  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1500  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1501  * @IFF_MACVLAN_PORT: device used as macvlan port
1502  * @IFF_BRIDGE_PORT: device used as bridge port
1503  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1504  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1505  * @IFF_UNICAST_FLT: Supports unicast filtering
1506  * @IFF_TEAM_PORT: device used as team port
1507  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1508  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1509  *	change when it's running
1510  * @IFF_MACVLAN: Macvlan device
1511  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1512  *	underlying stacked devices
1513  * @IFF_L3MDEV_MASTER: device is an L3 master device
1514  * @IFF_NO_QUEUE: device can run without qdisc attached
1515  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1516  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1517  * @IFF_TEAM: device is a team device
1518  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1519  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1520  *	entity (i.e. the master device for bridged veth)
1521  * @IFF_MACSEC: device is a MACsec device
1522  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1523  * @IFF_FAILOVER: device is a failover master device
1524  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1525  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1526  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1527  */
1528 enum netdev_priv_flags {
1529 	IFF_802_1Q_VLAN			= 1<<0,
1530 	IFF_EBRIDGE			= 1<<1,
1531 	IFF_BONDING			= 1<<2,
1532 	IFF_ISATAP			= 1<<3,
1533 	IFF_WAN_HDLC			= 1<<4,
1534 	IFF_XMIT_DST_RELEASE		= 1<<5,
1535 	IFF_DONT_BRIDGE			= 1<<6,
1536 	IFF_DISABLE_NETPOLL		= 1<<7,
1537 	IFF_MACVLAN_PORT		= 1<<8,
1538 	IFF_BRIDGE_PORT			= 1<<9,
1539 	IFF_OVS_DATAPATH		= 1<<10,
1540 	IFF_TX_SKB_SHARING		= 1<<11,
1541 	IFF_UNICAST_FLT			= 1<<12,
1542 	IFF_TEAM_PORT			= 1<<13,
1543 	IFF_SUPP_NOFCS			= 1<<14,
1544 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1545 	IFF_MACVLAN			= 1<<16,
1546 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1547 	IFF_L3MDEV_MASTER		= 1<<18,
1548 	IFF_NO_QUEUE			= 1<<19,
1549 	IFF_OPENVSWITCH			= 1<<20,
1550 	IFF_L3MDEV_SLAVE		= 1<<21,
1551 	IFF_TEAM			= 1<<22,
1552 	IFF_RXFH_CONFIGURED		= 1<<23,
1553 	IFF_PHONY_HEADROOM		= 1<<24,
1554 	IFF_MACSEC			= 1<<25,
1555 	IFF_NO_RX_HANDLER		= 1<<26,
1556 	IFF_FAILOVER			= 1<<27,
1557 	IFF_FAILOVER_SLAVE		= 1<<28,
1558 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1559 	IFF_LIVE_RENAME_OK		= 1<<30,
1560 };
1561 
1562 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1563 #define IFF_EBRIDGE			IFF_EBRIDGE
1564 #define IFF_BONDING			IFF_BONDING
1565 #define IFF_ISATAP			IFF_ISATAP
1566 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1567 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1568 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1569 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1570 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1571 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1572 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1573 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1574 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1575 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1576 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1577 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1578 #define IFF_MACVLAN			IFF_MACVLAN
1579 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1580 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1581 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1582 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1583 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1584 #define IFF_TEAM			IFF_TEAM
1585 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1586 #define IFF_MACSEC			IFF_MACSEC
1587 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1588 #define IFF_FAILOVER			IFF_FAILOVER
1589 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1590 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1591 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1592 
1593 /**
1594  *	struct net_device - The DEVICE structure.
1595  *
1596  *	Actually, this whole structure is a big mistake.  It mixes I/O
1597  *	data with strictly "high-level" data, and it has to know about
1598  *	almost every data structure used in the INET module.
1599  *
1600  *	@name:	This is the first field of the "visible" part of this structure
1601  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1602  *		of the interface.
1603  *
1604  *	@name_node:	Name hashlist node
1605  *	@ifalias:	SNMP alias
1606  *	@mem_end:	Shared memory end
1607  *	@mem_start:	Shared memory start
1608  *	@base_addr:	Device I/O address
1609  *	@irq:		Device IRQ number
1610  *
1611  *	@state:		Generic network queuing layer state, see netdev_state_t
1612  *	@dev_list:	The global list of network devices
1613  *	@napi_list:	List entry used for polling NAPI devices
1614  *	@unreg_list:	List entry  when we are unregistering the
1615  *			device; see the function unregister_netdev
1616  *	@close_list:	List entry used when we are closing the device
1617  *	@ptype_all:     Device-specific packet handlers for all protocols
1618  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1619  *
1620  *	@adj_list:	Directly linked devices, like slaves for bonding
1621  *	@features:	Currently active device features
1622  *	@hw_features:	User-changeable features
1623  *
1624  *	@wanted_features:	User-requested features
1625  *	@vlan_features:		Mask of features inheritable by VLAN devices
1626  *
1627  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1628  *				This field indicates what encapsulation
1629  *				offloads the hardware is capable of doing,
1630  *				and drivers will need to set them appropriately.
1631  *
1632  *	@mpls_features:	Mask of features inheritable by MPLS
1633  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1634  *
1635  *	@ifindex:	interface index
1636  *	@group:		The group the device belongs to
1637  *
1638  *	@stats:		Statistics struct, which was left as a legacy, use
1639  *			rtnl_link_stats64 instead
1640  *
1641  *	@rx_dropped:	Dropped packets by core network,
1642  *			do not use this in drivers
1643  *	@tx_dropped:	Dropped packets by core network,
1644  *			do not use this in drivers
1645  *	@rx_nohandler:	nohandler dropped packets by core network on
1646  *			inactive devices, do not use this in drivers
1647  *	@carrier_up_count:	Number of times the carrier has been up
1648  *	@carrier_down_count:	Number of times the carrier has been down
1649  *
1650  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1651  *				instead of ioctl,
1652  *				see <net/iw_handler.h> for details.
1653  *	@wireless_data:	Instance data managed by the core of wireless extensions
1654  *
1655  *	@netdev_ops:	Includes several pointers to callbacks,
1656  *			if one wants to override the ndo_*() functions
1657  *	@ethtool_ops:	Management operations
1658  *	@l3mdev_ops:	Layer 3 master device operations
1659  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1660  *			discovery handling. Necessary for e.g. 6LoWPAN.
1661  *	@xfrmdev_ops:	Transformation offload operations
1662  *	@tlsdev_ops:	Transport Layer Security offload operations
1663  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1664  *			of Layer 2 headers.
1665  *
1666  *	@flags:		Interface flags (a la BSD)
1667  *	@priv_flags:	Like 'flags' but invisible to userspace,
1668  *			see if.h for the definitions
1669  *	@gflags:	Global flags ( kept as legacy )
1670  *	@padded:	How much padding added by alloc_netdev()
1671  *	@operstate:	RFC2863 operstate
1672  *	@link_mode:	Mapping policy to operstate
1673  *	@if_port:	Selectable AUI, TP, ...
1674  *	@dma:		DMA channel
1675  *	@mtu:		Interface MTU value
1676  *	@min_mtu:	Interface Minimum MTU value
1677  *	@max_mtu:	Interface Maximum MTU value
1678  *	@type:		Interface hardware type
1679  *	@hard_header_len: Maximum hardware header length.
1680  *	@min_header_len:  Minimum hardware header length
1681  *
1682  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1683  *			  cases can this be guaranteed
1684  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1685  *			  cases can this be guaranteed. Some cases also use
1686  *			  LL_MAX_HEADER instead to allocate the skb
1687  *
1688  *	interface address info:
1689  *
1690  * 	@perm_addr:		Permanent hw address
1691  * 	@addr_assign_type:	Hw address assignment type
1692  * 	@addr_len:		Hardware address length
1693  *	@upper_level:		Maximum depth level of upper devices.
1694  *	@lower_level:		Maximum depth level of lower devices.
1695  *	@neigh_priv_len:	Used in neigh_alloc()
1696  * 	@dev_id:		Used to differentiate devices that share
1697  * 				the same link layer address
1698  * 	@dev_port:		Used to differentiate devices that share
1699  * 				the same function
1700  *	@addr_list_lock:	XXX: need comments on this one
1701  *	@name_assign_type:	network interface name assignment type
1702  *	@uc_promisc:		Counter that indicates promiscuous mode
1703  *				has been enabled due to the need to listen to
1704  *				additional unicast addresses in a device that
1705  *				does not implement ndo_set_rx_mode()
1706  *	@uc:			unicast mac addresses
1707  *	@mc:			multicast mac addresses
1708  *	@dev_addrs:		list of device hw addresses
1709  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1710  *	@promiscuity:		Number of times the NIC is told to work in
1711  *				promiscuous mode; if it becomes 0 the NIC will
1712  *				exit promiscuous mode
1713  *	@allmulti:		Counter, enables or disables allmulticast mode
1714  *
1715  *	@vlan_info:	VLAN info
1716  *	@dsa_ptr:	dsa specific data
1717  *	@tipc_ptr:	TIPC specific data
1718  *	@atalk_ptr:	AppleTalk link
1719  *	@ip_ptr:	IPv4 specific data
1720  *	@dn_ptr:	DECnet specific data
1721  *	@ip6_ptr:	IPv6 specific data
1722  *	@ax25_ptr:	AX.25 specific data
1723  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1724  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1725  *			 device struct
1726  *	@mpls_ptr:	mpls_dev struct pointer
1727  *
1728  *	@dev_addr:	Hw address (before bcast,
1729  *			because most packets are unicast)
1730  *
1731  *	@_rx:			Array of RX queues
1732  *	@num_rx_queues:		Number of RX queues
1733  *				allocated at register_netdev() time
1734  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1735  *	@xdp_prog:		XDP sockets filter program pointer
1736  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1737  *
1738  *	@rx_handler:		handler for received packets
1739  *	@rx_handler_data: 	XXX: need comments on this one
1740  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1741  *				ingress processing
1742  *	@ingress_queue:		XXX: need comments on this one
1743  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1744  *	@broadcast:		hw bcast address
1745  *
1746  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1747  *			indexed by RX queue number. Assigned by driver.
1748  *			This must only be set if the ndo_rx_flow_steer
1749  *			operation is defined
1750  *	@index_hlist:		Device index hash chain
1751  *
1752  *	@_tx:			Array of TX queues
1753  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1754  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1755  *	@qdisc:			Root qdisc from userspace point of view
1756  *	@tx_queue_len:		Max frames per queue allowed
1757  *	@tx_global_lock: 	XXX: need comments on this one
1758  *	@xdp_bulkq:		XDP device bulk queue
1759  *	@xps_cpus_map:		all CPUs map for XPS device
1760  *	@xps_rxqs_map:		all RXQs map for XPS device
1761  *
1762  *	@xps_maps:	XXX: need comments on this one
1763  *	@miniq_egress:		clsact qdisc specific data for
1764  *				egress processing
1765  *	@qdisc_hash:		qdisc hash table
1766  *	@watchdog_timeo:	Represents the timeout that is used by
1767  *				the watchdog (see dev_watchdog())
1768  *	@watchdog_timer:	List of timers
1769  *
1770  *	@pcpu_refcnt:		Number of references to this device
1771  *	@todo_list:		Delayed register/unregister
1772  *	@link_watch_list:	XXX: need comments on this one
1773  *
1774  *	@reg_state:		Register/unregister state machine
1775  *	@dismantle:		Device is going to be freed
1776  *	@rtnl_link_state:	This enum represents the phases of creating
1777  *				a new link
1778  *
1779  *	@needs_free_netdev:	Should unregister perform free_netdev?
1780  *	@priv_destructor:	Called from unregister
1781  *	@npinfo:		XXX: need comments on this one
1782  * 	@nd_net:		Network namespace this network device is inside
1783  *
1784  * 	@ml_priv:	Mid-layer private
1785  * 	@lstats:	Loopback statistics
1786  * 	@tstats:	Tunnel statistics
1787  * 	@dstats:	Dummy statistics
1788  * 	@vstats:	Virtual ethernet statistics
1789  *
1790  *	@garp_port:	GARP
1791  *	@mrp_port:	MRP
1792  *
1793  *	@dev:		Class/net/name entry
1794  *	@sysfs_groups:	Space for optional device, statistics and wireless
1795  *			sysfs groups
1796  *
1797  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1798  *	@rtnl_link_ops:	Rtnl_link_ops
1799  *
1800  *	@gso_max_size:	Maximum size of generic segmentation offload
1801  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1802  *			NIC for GSO
1803  *
1804  *	@dcbnl_ops:	Data Center Bridging netlink ops
1805  *	@num_tc:	Number of traffic classes in the net device
1806  *	@tc_to_txq:	XXX: need comments on this one
1807  *	@prio_tc_map:	XXX: need comments on this one
1808  *
1809  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1810  *
1811  *	@priomap:	XXX: need comments on this one
1812  *	@phydev:	Physical device may attach itself
1813  *			for hardware timestamping
1814  *	@sfp_bus:	attached &struct sfp_bus structure.
1815  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1816  *				spinlock
1817  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1818  *	@qdisc_xmit_lock_key:	lockdep class annotating
1819  *				netdev_queue->_xmit_lock spinlock
1820  *	@addr_list_lock_key:	lockdep class annotating
1821  *				net_device->addr_list_lock spinlock
1822  *
1823  *	@proto_down:	protocol port state information can be sent to the
1824  *			switch driver and used to set the phys state of the
1825  *			switch port.
1826  *
1827  *	@wol_enabled:	Wake-on-LAN is enabled
1828  *
1829  *	@net_notifier_list:	List of per-net netdev notifier block
1830  *				that follow this device when it is moved
1831  *				to another network namespace.
1832  *
1833  *	@macsec_ops:    MACsec offloading ops
1834  *
1835  *	FIXME: cleanup struct net_device such that network protocol info
1836  *	moves out.
1837  */
1838 
1839 struct net_device {
1840 	char			name[IFNAMSIZ];
1841 	struct netdev_name_node	*name_node;
1842 	struct dev_ifalias	__rcu *ifalias;
1843 	/*
1844 	 *	I/O specific fields
1845 	 *	FIXME: Merge these and struct ifmap into one
1846 	 */
1847 	unsigned long		mem_end;
1848 	unsigned long		mem_start;
1849 	unsigned long		base_addr;
1850 	int			irq;
1851 
1852 	/*
1853 	 *	Some hardware also needs these fields (state,dev_list,
1854 	 *	napi_list,unreg_list,close_list) but they are not
1855 	 *	part of the usual set specified in Space.c.
1856 	 */
1857 
1858 	unsigned long		state;
1859 
1860 	struct list_head	dev_list;
1861 	struct list_head	napi_list;
1862 	struct list_head	unreg_list;
1863 	struct list_head	close_list;
1864 	struct list_head	ptype_all;
1865 	struct list_head	ptype_specific;
1866 
1867 	struct {
1868 		struct list_head upper;
1869 		struct list_head lower;
1870 	} adj_list;
1871 
1872 	netdev_features_t	features;
1873 	netdev_features_t	hw_features;
1874 	netdev_features_t	wanted_features;
1875 	netdev_features_t	vlan_features;
1876 	netdev_features_t	hw_enc_features;
1877 	netdev_features_t	mpls_features;
1878 	netdev_features_t	gso_partial_features;
1879 
1880 	int			ifindex;
1881 	int			group;
1882 
1883 	struct net_device_stats	stats;
1884 
1885 	atomic_long_t		rx_dropped;
1886 	atomic_long_t		tx_dropped;
1887 	atomic_long_t		rx_nohandler;
1888 
1889 	/* Stats to monitor link on/off, flapping */
1890 	atomic_t		carrier_up_count;
1891 	atomic_t		carrier_down_count;
1892 
1893 #ifdef CONFIG_WIRELESS_EXT
1894 	const struct iw_handler_def *wireless_handlers;
1895 	struct iw_public_data	*wireless_data;
1896 #endif
1897 	const struct net_device_ops *netdev_ops;
1898 	const struct ethtool_ops *ethtool_ops;
1899 #ifdef CONFIG_NET_L3_MASTER_DEV
1900 	const struct l3mdev_ops	*l3mdev_ops;
1901 #endif
1902 #if IS_ENABLED(CONFIG_IPV6)
1903 	const struct ndisc_ops *ndisc_ops;
1904 #endif
1905 
1906 #ifdef CONFIG_XFRM_OFFLOAD
1907 	const struct xfrmdev_ops *xfrmdev_ops;
1908 #endif
1909 
1910 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1911 	const struct tlsdev_ops *tlsdev_ops;
1912 #endif
1913 
1914 	const struct header_ops *header_ops;
1915 
1916 	unsigned int		flags;
1917 	unsigned int		priv_flags;
1918 
1919 	unsigned short		gflags;
1920 	unsigned short		padded;
1921 
1922 	unsigned char		operstate;
1923 	unsigned char		link_mode;
1924 
1925 	unsigned char		if_port;
1926 	unsigned char		dma;
1927 
1928 	/* Note : dev->mtu is often read without holding a lock.
1929 	 * Writers usually hold RTNL.
1930 	 * It is recommended to use READ_ONCE() to annotate the reads,
1931 	 * and to use WRITE_ONCE() to annotate the writes.
1932 	 */
1933 	unsigned int		mtu;
1934 	unsigned int		min_mtu;
1935 	unsigned int		max_mtu;
1936 	unsigned short		type;
1937 	unsigned short		hard_header_len;
1938 	unsigned char		min_header_len;
1939 
1940 	unsigned short		needed_headroom;
1941 	unsigned short		needed_tailroom;
1942 
1943 	/* Interface address info. */
1944 	unsigned char		perm_addr[MAX_ADDR_LEN];
1945 	unsigned char		addr_assign_type;
1946 	unsigned char		addr_len;
1947 	unsigned char		upper_level;
1948 	unsigned char		lower_level;
1949 	unsigned short		neigh_priv_len;
1950 	unsigned short          dev_id;
1951 	unsigned short          dev_port;
1952 	spinlock_t		addr_list_lock;
1953 	unsigned char		name_assign_type;
1954 	bool			uc_promisc;
1955 	struct netdev_hw_addr_list	uc;
1956 	struct netdev_hw_addr_list	mc;
1957 	struct netdev_hw_addr_list	dev_addrs;
1958 
1959 #ifdef CONFIG_SYSFS
1960 	struct kset		*queues_kset;
1961 #endif
1962 	unsigned int		promiscuity;
1963 	unsigned int		allmulti;
1964 
1965 
1966 	/* Protocol-specific pointers */
1967 
1968 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1969 	struct vlan_info __rcu	*vlan_info;
1970 #endif
1971 #if IS_ENABLED(CONFIG_NET_DSA)
1972 	struct dsa_port		*dsa_ptr;
1973 #endif
1974 #if IS_ENABLED(CONFIG_TIPC)
1975 	struct tipc_bearer __rcu *tipc_ptr;
1976 #endif
1977 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1978 	void 			*atalk_ptr;
1979 #endif
1980 	struct in_device __rcu	*ip_ptr;
1981 #if IS_ENABLED(CONFIG_DECNET)
1982 	struct dn_dev __rcu     *dn_ptr;
1983 #endif
1984 	struct inet6_dev __rcu	*ip6_ptr;
1985 #if IS_ENABLED(CONFIG_AX25)
1986 	void			*ax25_ptr;
1987 #endif
1988 	struct wireless_dev	*ieee80211_ptr;
1989 	struct wpan_dev		*ieee802154_ptr;
1990 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1991 	struct mpls_dev __rcu	*mpls_ptr;
1992 #endif
1993 
1994 /*
1995  * Cache lines mostly used on receive path (including eth_type_trans())
1996  */
1997 	/* Interface address info used in eth_type_trans() */
1998 	unsigned char		*dev_addr;
1999 
2000 	struct netdev_rx_queue	*_rx;
2001 	unsigned int		num_rx_queues;
2002 	unsigned int		real_num_rx_queues;
2003 
2004 	struct bpf_prog __rcu	*xdp_prog;
2005 	unsigned long		gro_flush_timeout;
2006 	rx_handler_func_t __rcu	*rx_handler;
2007 	void __rcu		*rx_handler_data;
2008 
2009 #ifdef CONFIG_NET_CLS_ACT
2010 	struct mini_Qdisc __rcu	*miniq_ingress;
2011 #endif
2012 	struct netdev_queue __rcu *ingress_queue;
2013 #ifdef CONFIG_NETFILTER_INGRESS
2014 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2015 #endif
2016 
2017 	unsigned char		broadcast[MAX_ADDR_LEN];
2018 #ifdef CONFIG_RFS_ACCEL
2019 	struct cpu_rmap		*rx_cpu_rmap;
2020 #endif
2021 	struct hlist_node	index_hlist;
2022 
2023 /*
2024  * Cache lines mostly used on transmit path
2025  */
2026 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2027 	unsigned int		num_tx_queues;
2028 	unsigned int		real_num_tx_queues;
2029 	struct Qdisc		*qdisc;
2030 	unsigned int		tx_queue_len;
2031 	spinlock_t		tx_global_lock;
2032 
2033 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2034 
2035 #ifdef CONFIG_XPS
2036 	struct xps_dev_maps __rcu *xps_cpus_map;
2037 	struct xps_dev_maps __rcu *xps_rxqs_map;
2038 #endif
2039 #ifdef CONFIG_NET_CLS_ACT
2040 	struct mini_Qdisc __rcu	*miniq_egress;
2041 #endif
2042 
2043 #ifdef CONFIG_NET_SCHED
2044 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2045 #endif
2046 	/* These may be needed for future network-power-down code. */
2047 	struct timer_list	watchdog_timer;
2048 	int			watchdog_timeo;
2049 
2050 	struct list_head	todo_list;
2051 	int __percpu		*pcpu_refcnt;
2052 
2053 	struct list_head	link_watch_list;
2054 
2055 	enum { NETREG_UNINITIALIZED=0,
2056 	       NETREG_REGISTERED,	/* completed register_netdevice */
2057 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2058 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2059 	       NETREG_RELEASED,		/* called free_netdev */
2060 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2061 	} reg_state:8;
2062 
2063 	bool dismantle;
2064 
2065 	enum {
2066 		RTNL_LINK_INITIALIZED,
2067 		RTNL_LINK_INITIALIZING,
2068 	} rtnl_link_state:16;
2069 
2070 	bool needs_free_netdev;
2071 	void (*priv_destructor)(struct net_device *dev);
2072 
2073 #ifdef CONFIG_NETPOLL
2074 	struct netpoll_info __rcu	*npinfo;
2075 #endif
2076 
2077 	possible_net_t			nd_net;
2078 
2079 	/* mid-layer private */
2080 	union {
2081 		void					*ml_priv;
2082 		struct pcpu_lstats __percpu		*lstats;
2083 		struct pcpu_sw_netstats __percpu	*tstats;
2084 		struct pcpu_dstats __percpu		*dstats;
2085 	};
2086 
2087 #if IS_ENABLED(CONFIG_GARP)
2088 	struct garp_port __rcu	*garp_port;
2089 #endif
2090 #if IS_ENABLED(CONFIG_MRP)
2091 	struct mrp_port __rcu	*mrp_port;
2092 #endif
2093 
2094 	struct device		dev;
2095 	const struct attribute_group *sysfs_groups[4];
2096 	const struct attribute_group *sysfs_rx_queue_group;
2097 
2098 	const struct rtnl_link_ops *rtnl_link_ops;
2099 
2100 	/* for setting kernel sock attribute on TCP connection setup */
2101 #define GSO_MAX_SIZE		65536
2102 	unsigned int		gso_max_size;
2103 #define GSO_MAX_SEGS		65535
2104 	u16			gso_max_segs;
2105 
2106 #ifdef CONFIG_DCB
2107 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2108 #endif
2109 	s16			num_tc;
2110 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2111 	u8			prio_tc_map[TC_BITMASK + 1];
2112 
2113 #if IS_ENABLED(CONFIG_FCOE)
2114 	unsigned int		fcoe_ddp_xid;
2115 #endif
2116 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2117 	struct netprio_map __rcu *priomap;
2118 #endif
2119 	struct phy_device	*phydev;
2120 	struct sfp_bus		*sfp_bus;
2121 	struct lock_class_key	qdisc_tx_busylock_key;
2122 	struct lock_class_key	qdisc_running_key;
2123 	struct lock_class_key	qdisc_xmit_lock_key;
2124 	struct lock_class_key	addr_list_lock_key;
2125 	bool			proto_down;
2126 	unsigned		wol_enabled:1;
2127 
2128 	struct list_head	net_notifier_list;
2129 
2130 #if IS_ENABLED(CONFIG_MACSEC)
2131 	/* MACsec management functions */
2132 	const struct macsec_ops *macsec_ops;
2133 #endif
2134 };
2135 #define to_net_dev(d) container_of(d, struct net_device, dev)
2136 
2137 static inline bool netif_elide_gro(const struct net_device *dev)
2138 {
2139 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2140 		return true;
2141 	return false;
2142 }
2143 
2144 #define	NETDEV_ALIGN		32
2145 
2146 static inline
2147 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2148 {
2149 	return dev->prio_tc_map[prio & TC_BITMASK];
2150 }
2151 
2152 static inline
2153 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2154 {
2155 	if (tc >= dev->num_tc)
2156 		return -EINVAL;
2157 
2158 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2159 	return 0;
2160 }
2161 
2162 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2163 void netdev_reset_tc(struct net_device *dev);
2164 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2165 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2166 
2167 static inline
2168 int netdev_get_num_tc(struct net_device *dev)
2169 {
2170 	return dev->num_tc;
2171 }
2172 
2173 void netdev_unbind_sb_channel(struct net_device *dev,
2174 			      struct net_device *sb_dev);
2175 int netdev_bind_sb_channel_queue(struct net_device *dev,
2176 				 struct net_device *sb_dev,
2177 				 u8 tc, u16 count, u16 offset);
2178 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2179 static inline int netdev_get_sb_channel(struct net_device *dev)
2180 {
2181 	return max_t(int, -dev->num_tc, 0);
2182 }
2183 
2184 static inline
2185 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2186 					 unsigned int index)
2187 {
2188 	return &dev->_tx[index];
2189 }
2190 
2191 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2192 						    const struct sk_buff *skb)
2193 {
2194 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2195 }
2196 
2197 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2198 					    void (*f)(struct net_device *,
2199 						      struct netdev_queue *,
2200 						      void *),
2201 					    void *arg)
2202 {
2203 	unsigned int i;
2204 
2205 	for (i = 0; i < dev->num_tx_queues; i++)
2206 		f(dev, &dev->_tx[i], arg);
2207 }
2208 
2209 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2210 		     struct net_device *sb_dev);
2211 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2212 					 struct sk_buff *skb,
2213 					 struct net_device *sb_dev);
2214 
2215 /* returns the headroom that the master device needs to take in account
2216  * when forwarding to this dev
2217  */
2218 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2219 {
2220 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2221 }
2222 
2223 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2224 {
2225 	if (dev->netdev_ops->ndo_set_rx_headroom)
2226 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2227 }
2228 
2229 /* set the device rx headroom to the dev's default */
2230 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2231 {
2232 	netdev_set_rx_headroom(dev, -1);
2233 }
2234 
2235 /*
2236  * Net namespace inlines
2237  */
2238 static inline
2239 struct net *dev_net(const struct net_device *dev)
2240 {
2241 	return read_pnet(&dev->nd_net);
2242 }
2243 
2244 static inline
2245 void dev_net_set(struct net_device *dev, struct net *net)
2246 {
2247 	write_pnet(&dev->nd_net, net);
2248 }
2249 
2250 /**
2251  *	netdev_priv - access network device private data
2252  *	@dev: network device
2253  *
2254  * Get network device private data
2255  */
2256 static inline void *netdev_priv(const struct net_device *dev)
2257 {
2258 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2259 }
2260 
2261 /* Set the sysfs physical device reference for the network logical device
2262  * if set prior to registration will cause a symlink during initialization.
2263  */
2264 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2265 
2266 /* Set the sysfs device type for the network logical device to allow
2267  * fine-grained identification of different network device types. For
2268  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2269  */
2270 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2271 
2272 /* Default NAPI poll() weight
2273  * Device drivers are strongly advised to not use bigger value
2274  */
2275 #define NAPI_POLL_WEIGHT 64
2276 
2277 /**
2278  *	netif_napi_add - initialize a NAPI context
2279  *	@dev:  network device
2280  *	@napi: NAPI context
2281  *	@poll: polling function
2282  *	@weight: default weight
2283  *
2284  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2285  * *any* of the other NAPI-related functions.
2286  */
2287 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2288 		    int (*poll)(struct napi_struct *, int), int weight);
2289 
2290 /**
2291  *	netif_tx_napi_add - initialize a NAPI context
2292  *	@dev:  network device
2293  *	@napi: NAPI context
2294  *	@poll: polling function
2295  *	@weight: default weight
2296  *
2297  * This variant of netif_napi_add() should be used from drivers using NAPI
2298  * to exclusively poll a TX queue.
2299  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2300  */
2301 static inline void netif_tx_napi_add(struct net_device *dev,
2302 				     struct napi_struct *napi,
2303 				     int (*poll)(struct napi_struct *, int),
2304 				     int weight)
2305 {
2306 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2307 	netif_napi_add(dev, napi, poll, weight);
2308 }
2309 
2310 /**
2311  *  netif_napi_del - remove a NAPI context
2312  *  @napi: NAPI context
2313  *
2314  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2315  */
2316 void netif_napi_del(struct napi_struct *napi);
2317 
2318 struct napi_gro_cb {
2319 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2320 	void	*frag0;
2321 
2322 	/* Length of frag0. */
2323 	unsigned int frag0_len;
2324 
2325 	/* This indicates where we are processing relative to skb->data. */
2326 	int	data_offset;
2327 
2328 	/* This is non-zero if the packet cannot be merged with the new skb. */
2329 	u16	flush;
2330 
2331 	/* Save the IP ID here and check when we get to the transport layer */
2332 	u16	flush_id;
2333 
2334 	/* Number of segments aggregated. */
2335 	u16	count;
2336 
2337 	/* Start offset for remote checksum offload */
2338 	u16	gro_remcsum_start;
2339 
2340 	/* jiffies when first packet was created/queued */
2341 	unsigned long age;
2342 
2343 	/* Used in ipv6_gro_receive() and foo-over-udp */
2344 	u16	proto;
2345 
2346 	/* This is non-zero if the packet may be of the same flow. */
2347 	u8	same_flow:1;
2348 
2349 	/* Used in tunnel GRO receive */
2350 	u8	encap_mark:1;
2351 
2352 	/* GRO checksum is valid */
2353 	u8	csum_valid:1;
2354 
2355 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2356 	u8	csum_cnt:3;
2357 
2358 	/* Free the skb? */
2359 	u8	free:2;
2360 #define NAPI_GRO_FREE		  1
2361 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2362 
2363 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2364 	u8	is_ipv6:1;
2365 
2366 	/* Used in GRE, set in fou/gue_gro_receive */
2367 	u8	is_fou:1;
2368 
2369 	/* Used to determine if flush_id can be ignored */
2370 	u8	is_atomic:1;
2371 
2372 	/* Number of gro_receive callbacks this packet already went through */
2373 	u8 recursion_counter:4;
2374 
2375 	/* GRO is done by frag_list pointer chaining. */
2376 	u8	is_flist:1;
2377 
2378 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2379 	__wsum	csum;
2380 
2381 	/* used in skb_gro_receive() slow path */
2382 	struct sk_buff *last;
2383 };
2384 
2385 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2386 
2387 #define GRO_RECURSION_LIMIT 15
2388 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2389 {
2390 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2391 }
2392 
2393 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2394 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2395 					       struct list_head *head,
2396 					       struct sk_buff *skb)
2397 {
2398 	if (unlikely(gro_recursion_inc_test(skb))) {
2399 		NAPI_GRO_CB(skb)->flush |= 1;
2400 		return NULL;
2401 	}
2402 
2403 	return cb(head, skb);
2404 }
2405 
2406 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2407 					    struct sk_buff *);
2408 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2409 						  struct sock *sk,
2410 						  struct list_head *head,
2411 						  struct sk_buff *skb)
2412 {
2413 	if (unlikely(gro_recursion_inc_test(skb))) {
2414 		NAPI_GRO_CB(skb)->flush |= 1;
2415 		return NULL;
2416 	}
2417 
2418 	return cb(sk, head, skb);
2419 }
2420 
2421 struct packet_type {
2422 	__be16			type;	/* This is really htons(ether_type). */
2423 	bool			ignore_outgoing;
2424 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2425 	int			(*func) (struct sk_buff *,
2426 					 struct net_device *,
2427 					 struct packet_type *,
2428 					 struct net_device *);
2429 	void			(*list_func) (struct list_head *,
2430 					      struct packet_type *,
2431 					      struct net_device *);
2432 	bool			(*id_match)(struct packet_type *ptype,
2433 					    struct sock *sk);
2434 	void			*af_packet_priv;
2435 	struct list_head	list;
2436 };
2437 
2438 struct offload_callbacks {
2439 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2440 						netdev_features_t features);
2441 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2442 						struct sk_buff *skb);
2443 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2444 };
2445 
2446 struct packet_offload {
2447 	__be16			 type;	/* This is really htons(ether_type). */
2448 	u16			 priority;
2449 	struct offload_callbacks callbacks;
2450 	struct list_head	 list;
2451 };
2452 
2453 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2454 struct pcpu_sw_netstats {
2455 	u64     rx_packets;
2456 	u64     rx_bytes;
2457 	u64     tx_packets;
2458 	u64     tx_bytes;
2459 	struct u64_stats_sync   syncp;
2460 } __aligned(4 * sizeof(u64));
2461 
2462 struct pcpu_lstats {
2463 	u64_stats_t packets;
2464 	u64_stats_t bytes;
2465 	struct u64_stats_sync syncp;
2466 } __aligned(2 * sizeof(u64));
2467 
2468 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2469 
2470 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2471 {
2472 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2473 
2474 	u64_stats_update_begin(&lstats->syncp);
2475 	u64_stats_add(&lstats->bytes, len);
2476 	u64_stats_inc(&lstats->packets);
2477 	u64_stats_update_end(&lstats->syncp);
2478 }
2479 
2480 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2481 ({									\
2482 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2483 	if (pcpu_stats)	{						\
2484 		int __cpu;						\
2485 		for_each_possible_cpu(__cpu) {				\
2486 			typeof(type) *stat;				\
2487 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2488 			u64_stats_init(&stat->syncp);			\
2489 		}							\
2490 	}								\
2491 	pcpu_stats;							\
2492 })
2493 
2494 #define netdev_alloc_pcpu_stats(type)					\
2495 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2496 
2497 enum netdev_lag_tx_type {
2498 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2499 	NETDEV_LAG_TX_TYPE_RANDOM,
2500 	NETDEV_LAG_TX_TYPE_BROADCAST,
2501 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2502 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2503 	NETDEV_LAG_TX_TYPE_HASH,
2504 };
2505 
2506 enum netdev_lag_hash {
2507 	NETDEV_LAG_HASH_NONE,
2508 	NETDEV_LAG_HASH_L2,
2509 	NETDEV_LAG_HASH_L34,
2510 	NETDEV_LAG_HASH_L23,
2511 	NETDEV_LAG_HASH_E23,
2512 	NETDEV_LAG_HASH_E34,
2513 	NETDEV_LAG_HASH_UNKNOWN,
2514 };
2515 
2516 struct netdev_lag_upper_info {
2517 	enum netdev_lag_tx_type tx_type;
2518 	enum netdev_lag_hash hash_type;
2519 };
2520 
2521 struct netdev_lag_lower_state_info {
2522 	u8 link_up : 1,
2523 	   tx_enabled : 1;
2524 };
2525 
2526 #include <linux/notifier.h>
2527 
2528 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2529  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2530  * adding new types.
2531  */
2532 enum netdev_cmd {
2533 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2534 	NETDEV_DOWN,
2535 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2536 				   detected a hardware crash and restarted
2537 				   - we can use this eg to kick tcp sessions
2538 				   once done */
2539 	NETDEV_CHANGE,		/* Notify device state change */
2540 	NETDEV_REGISTER,
2541 	NETDEV_UNREGISTER,
2542 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2543 	NETDEV_CHANGEADDR,	/* notify after the address change */
2544 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2545 	NETDEV_GOING_DOWN,
2546 	NETDEV_CHANGENAME,
2547 	NETDEV_FEAT_CHANGE,
2548 	NETDEV_BONDING_FAILOVER,
2549 	NETDEV_PRE_UP,
2550 	NETDEV_PRE_TYPE_CHANGE,
2551 	NETDEV_POST_TYPE_CHANGE,
2552 	NETDEV_POST_INIT,
2553 	NETDEV_RELEASE,
2554 	NETDEV_NOTIFY_PEERS,
2555 	NETDEV_JOIN,
2556 	NETDEV_CHANGEUPPER,
2557 	NETDEV_RESEND_IGMP,
2558 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2559 	NETDEV_CHANGEINFODATA,
2560 	NETDEV_BONDING_INFO,
2561 	NETDEV_PRECHANGEUPPER,
2562 	NETDEV_CHANGELOWERSTATE,
2563 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2564 	NETDEV_UDP_TUNNEL_DROP_INFO,
2565 	NETDEV_CHANGE_TX_QUEUE_LEN,
2566 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2567 	NETDEV_CVLAN_FILTER_DROP_INFO,
2568 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2569 	NETDEV_SVLAN_FILTER_DROP_INFO,
2570 };
2571 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2572 
2573 int register_netdevice_notifier(struct notifier_block *nb);
2574 int unregister_netdevice_notifier(struct notifier_block *nb);
2575 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2576 int unregister_netdevice_notifier_net(struct net *net,
2577 				      struct notifier_block *nb);
2578 int register_netdevice_notifier_dev_net(struct net_device *dev,
2579 					struct notifier_block *nb,
2580 					struct netdev_net_notifier *nn);
2581 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2582 					  struct notifier_block *nb,
2583 					  struct netdev_net_notifier *nn);
2584 
2585 struct netdev_notifier_info {
2586 	struct net_device	*dev;
2587 	struct netlink_ext_ack	*extack;
2588 };
2589 
2590 struct netdev_notifier_info_ext {
2591 	struct netdev_notifier_info info; /* must be first */
2592 	union {
2593 		u32 mtu;
2594 	} ext;
2595 };
2596 
2597 struct netdev_notifier_change_info {
2598 	struct netdev_notifier_info info; /* must be first */
2599 	unsigned int flags_changed;
2600 };
2601 
2602 struct netdev_notifier_changeupper_info {
2603 	struct netdev_notifier_info info; /* must be first */
2604 	struct net_device *upper_dev; /* new upper dev */
2605 	bool master; /* is upper dev master */
2606 	bool linking; /* is the notification for link or unlink */
2607 	void *upper_info; /* upper dev info */
2608 };
2609 
2610 struct netdev_notifier_changelowerstate_info {
2611 	struct netdev_notifier_info info; /* must be first */
2612 	void *lower_state_info; /* is lower dev state */
2613 };
2614 
2615 struct netdev_notifier_pre_changeaddr_info {
2616 	struct netdev_notifier_info info; /* must be first */
2617 	const unsigned char *dev_addr;
2618 };
2619 
2620 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2621 					     struct net_device *dev)
2622 {
2623 	info->dev = dev;
2624 	info->extack = NULL;
2625 }
2626 
2627 static inline struct net_device *
2628 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2629 {
2630 	return info->dev;
2631 }
2632 
2633 static inline struct netlink_ext_ack *
2634 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2635 {
2636 	return info->extack;
2637 }
2638 
2639 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2640 
2641 
2642 extern rwlock_t				dev_base_lock;		/* Device list lock */
2643 
2644 #define for_each_netdev(net, d)		\
2645 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2646 #define for_each_netdev_reverse(net, d)	\
2647 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2648 #define for_each_netdev_rcu(net, d)		\
2649 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2650 #define for_each_netdev_safe(net, d, n)	\
2651 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2652 #define for_each_netdev_continue(net, d)		\
2653 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2654 #define for_each_netdev_continue_reverse(net, d)		\
2655 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2656 						     dev_list)
2657 #define for_each_netdev_continue_rcu(net, d)		\
2658 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2659 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2660 		for_each_netdev_rcu(&init_net, slave)	\
2661 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2662 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2663 
2664 static inline struct net_device *next_net_device(struct net_device *dev)
2665 {
2666 	struct list_head *lh;
2667 	struct net *net;
2668 
2669 	net = dev_net(dev);
2670 	lh = dev->dev_list.next;
2671 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2672 }
2673 
2674 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2675 {
2676 	struct list_head *lh;
2677 	struct net *net;
2678 
2679 	net = dev_net(dev);
2680 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2681 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2682 }
2683 
2684 static inline struct net_device *first_net_device(struct net *net)
2685 {
2686 	return list_empty(&net->dev_base_head) ? NULL :
2687 		net_device_entry(net->dev_base_head.next);
2688 }
2689 
2690 static inline struct net_device *first_net_device_rcu(struct net *net)
2691 {
2692 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2693 
2694 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2695 }
2696 
2697 int netdev_boot_setup_check(struct net_device *dev);
2698 unsigned long netdev_boot_base(const char *prefix, int unit);
2699 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2700 				       const char *hwaddr);
2701 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2702 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2703 void dev_add_pack(struct packet_type *pt);
2704 void dev_remove_pack(struct packet_type *pt);
2705 void __dev_remove_pack(struct packet_type *pt);
2706 void dev_add_offload(struct packet_offload *po);
2707 void dev_remove_offload(struct packet_offload *po);
2708 
2709 int dev_get_iflink(const struct net_device *dev);
2710 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2711 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2712 				      unsigned short mask);
2713 struct net_device *dev_get_by_name(struct net *net, const char *name);
2714 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2715 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2716 int dev_alloc_name(struct net_device *dev, const char *name);
2717 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2718 void dev_close(struct net_device *dev);
2719 void dev_close_many(struct list_head *head, bool unlink);
2720 void dev_disable_lro(struct net_device *dev);
2721 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2722 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2723 		     struct net_device *sb_dev);
2724 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2725 		       struct net_device *sb_dev);
2726 int dev_queue_xmit(struct sk_buff *skb);
2727 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2728 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2729 int register_netdevice(struct net_device *dev);
2730 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2731 void unregister_netdevice_many(struct list_head *head);
2732 static inline void unregister_netdevice(struct net_device *dev)
2733 {
2734 	unregister_netdevice_queue(dev, NULL);
2735 }
2736 
2737 int netdev_refcnt_read(const struct net_device *dev);
2738 void free_netdev(struct net_device *dev);
2739 void netdev_freemem(struct net_device *dev);
2740 void synchronize_net(void);
2741 int init_dummy_netdev(struct net_device *dev);
2742 
2743 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2744 					 struct sk_buff *skb,
2745 					 bool all_slaves);
2746 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2747 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2748 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2749 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2750 int netdev_get_name(struct net *net, char *name, int ifindex);
2751 int dev_restart(struct net_device *dev);
2752 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2753 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2754 
2755 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2756 {
2757 	return NAPI_GRO_CB(skb)->data_offset;
2758 }
2759 
2760 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2761 {
2762 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2763 }
2764 
2765 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2766 {
2767 	NAPI_GRO_CB(skb)->data_offset += len;
2768 }
2769 
2770 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2771 					unsigned int offset)
2772 {
2773 	return NAPI_GRO_CB(skb)->frag0 + offset;
2774 }
2775 
2776 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2777 {
2778 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2779 }
2780 
2781 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2782 {
2783 	NAPI_GRO_CB(skb)->frag0 = NULL;
2784 	NAPI_GRO_CB(skb)->frag0_len = 0;
2785 }
2786 
2787 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2788 					unsigned int offset)
2789 {
2790 	if (!pskb_may_pull(skb, hlen))
2791 		return NULL;
2792 
2793 	skb_gro_frag0_invalidate(skb);
2794 	return skb->data + offset;
2795 }
2796 
2797 static inline void *skb_gro_network_header(struct sk_buff *skb)
2798 {
2799 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2800 	       skb_network_offset(skb);
2801 }
2802 
2803 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2804 					const void *start, unsigned int len)
2805 {
2806 	if (NAPI_GRO_CB(skb)->csum_valid)
2807 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2808 						  csum_partial(start, len, 0));
2809 }
2810 
2811 /* GRO checksum functions. These are logical equivalents of the normal
2812  * checksum functions (in skbuff.h) except that they operate on the GRO
2813  * offsets and fields in sk_buff.
2814  */
2815 
2816 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2817 
2818 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2819 {
2820 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2821 }
2822 
2823 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2824 						      bool zero_okay,
2825 						      __sum16 check)
2826 {
2827 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2828 		skb_checksum_start_offset(skb) <
2829 		 skb_gro_offset(skb)) &&
2830 		!skb_at_gro_remcsum_start(skb) &&
2831 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2832 		(!zero_okay || check));
2833 }
2834 
2835 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2836 							   __wsum psum)
2837 {
2838 	if (NAPI_GRO_CB(skb)->csum_valid &&
2839 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2840 		return 0;
2841 
2842 	NAPI_GRO_CB(skb)->csum = psum;
2843 
2844 	return __skb_gro_checksum_complete(skb);
2845 }
2846 
2847 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2848 {
2849 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2850 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2851 		NAPI_GRO_CB(skb)->csum_cnt--;
2852 	} else {
2853 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2854 		 * verified a new top level checksum or an encapsulated one
2855 		 * during GRO. This saves work if we fallback to normal path.
2856 		 */
2857 		__skb_incr_checksum_unnecessary(skb);
2858 	}
2859 }
2860 
2861 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2862 				    compute_pseudo)			\
2863 ({									\
2864 	__sum16 __ret = 0;						\
2865 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2866 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2867 				compute_pseudo(skb, proto));		\
2868 	if (!__ret)							\
2869 		skb_gro_incr_csum_unnecessary(skb);			\
2870 	__ret;								\
2871 })
2872 
2873 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2874 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2875 
2876 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2877 					     compute_pseudo)		\
2878 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2879 
2880 #define skb_gro_checksum_simple_validate(skb)				\
2881 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2882 
2883 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2884 {
2885 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2886 		!NAPI_GRO_CB(skb)->csum_valid);
2887 }
2888 
2889 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2890 					      __wsum pseudo)
2891 {
2892 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2893 	NAPI_GRO_CB(skb)->csum_valid = 1;
2894 }
2895 
2896 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2897 do {									\
2898 	if (__skb_gro_checksum_convert_check(skb))			\
2899 		__skb_gro_checksum_convert(skb, 			\
2900 					   compute_pseudo(skb, proto));	\
2901 } while (0)
2902 
2903 struct gro_remcsum {
2904 	int offset;
2905 	__wsum delta;
2906 };
2907 
2908 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2909 {
2910 	grc->offset = 0;
2911 	grc->delta = 0;
2912 }
2913 
2914 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2915 					    unsigned int off, size_t hdrlen,
2916 					    int start, int offset,
2917 					    struct gro_remcsum *grc,
2918 					    bool nopartial)
2919 {
2920 	__wsum delta;
2921 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2922 
2923 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2924 
2925 	if (!nopartial) {
2926 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2927 		return ptr;
2928 	}
2929 
2930 	ptr = skb_gro_header_fast(skb, off);
2931 	if (skb_gro_header_hard(skb, off + plen)) {
2932 		ptr = skb_gro_header_slow(skb, off + plen, off);
2933 		if (!ptr)
2934 			return NULL;
2935 	}
2936 
2937 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2938 			       start, offset);
2939 
2940 	/* Adjust skb->csum since we changed the packet */
2941 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2942 
2943 	grc->offset = off + hdrlen + offset;
2944 	grc->delta = delta;
2945 
2946 	return ptr;
2947 }
2948 
2949 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2950 					   struct gro_remcsum *grc)
2951 {
2952 	void *ptr;
2953 	size_t plen = grc->offset + sizeof(u16);
2954 
2955 	if (!grc->delta)
2956 		return;
2957 
2958 	ptr = skb_gro_header_fast(skb, grc->offset);
2959 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2960 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2961 		if (!ptr)
2962 			return;
2963 	}
2964 
2965 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2966 }
2967 
2968 #ifdef CONFIG_XFRM_OFFLOAD
2969 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2970 {
2971 	if (PTR_ERR(pp) != -EINPROGRESS)
2972 		NAPI_GRO_CB(skb)->flush |= flush;
2973 }
2974 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2975 					       struct sk_buff *pp,
2976 					       int flush,
2977 					       struct gro_remcsum *grc)
2978 {
2979 	if (PTR_ERR(pp) != -EINPROGRESS) {
2980 		NAPI_GRO_CB(skb)->flush |= flush;
2981 		skb_gro_remcsum_cleanup(skb, grc);
2982 		skb->remcsum_offload = 0;
2983 	}
2984 }
2985 #else
2986 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2987 {
2988 	NAPI_GRO_CB(skb)->flush |= flush;
2989 }
2990 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2991 					       struct sk_buff *pp,
2992 					       int flush,
2993 					       struct gro_remcsum *grc)
2994 {
2995 	NAPI_GRO_CB(skb)->flush |= flush;
2996 	skb_gro_remcsum_cleanup(skb, grc);
2997 	skb->remcsum_offload = 0;
2998 }
2999 #endif
3000 
3001 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3002 				  unsigned short type,
3003 				  const void *daddr, const void *saddr,
3004 				  unsigned int len)
3005 {
3006 	if (!dev->header_ops || !dev->header_ops->create)
3007 		return 0;
3008 
3009 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3010 }
3011 
3012 static inline int dev_parse_header(const struct sk_buff *skb,
3013 				   unsigned char *haddr)
3014 {
3015 	const struct net_device *dev = skb->dev;
3016 
3017 	if (!dev->header_ops || !dev->header_ops->parse)
3018 		return 0;
3019 	return dev->header_ops->parse(skb, haddr);
3020 }
3021 
3022 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3023 {
3024 	const struct net_device *dev = skb->dev;
3025 
3026 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3027 		return 0;
3028 	return dev->header_ops->parse_protocol(skb);
3029 }
3030 
3031 /* ll_header must have at least hard_header_len allocated */
3032 static inline bool dev_validate_header(const struct net_device *dev,
3033 				       char *ll_header, int len)
3034 {
3035 	if (likely(len >= dev->hard_header_len))
3036 		return true;
3037 	if (len < dev->min_header_len)
3038 		return false;
3039 
3040 	if (capable(CAP_SYS_RAWIO)) {
3041 		memset(ll_header + len, 0, dev->hard_header_len - len);
3042 		return true;
3043 	}
3044 
3045 	if (dev->header_ops && dev->header_ops->validate)
3046 		return dev->header_ops->validate(ll_header, len);
3047 
3048 	return false;
3049 }
3050 
3051 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3052 			   int len, int size);
3053 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3054 static inline int unregister_gifconf(unsigned int family)
3055 {
3056 	return register_gifconf(family, NULL);
3057 }
3058 
3059 #ifdef CONFIG_NET_FLOW_LIMIT
3060 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3061 struct sd_flow_limit {
3062 	u64			count;
3063 	unsigned int		num_buckets;
3064 	unsigned int		history_head;
3065 	u16			history[FLOW_LIMIT_HISTORY];
3066 	u8			buckets[];
3067 };
3068 
3069 extern int netdev_flow_limit_table_len;
3070 #endif /* CONFIG_NET_FLOW_LIMIT */
3071 
3072 /*
3073  * Incoming packets are placed on per-CPU queues
3074  */
3075 struct softnet_data {
3076 	struct list_head	poll_list;
3077 	struct sk_buff_head	process_queue;
3078 
3079 	/* stats */
3080 	unsigned int		processed;
3081 	unsigned int		time_squeeze;
3082 	unsigned int		received_rps;
3083 #ifdef CONFIG_RPS
3084 	struct softnet_data	*rps_ipi_list;
3085 #endif
3086 #ifdef CONFIG_NET_FLOW_LIMIT
3087 	struct sd_flow_limit __rcu *flow_limit;
3088 #endif
3089 	struct Qdisc		*output_queue;
3090 	struct Qdisc		**output_queue_tailp;
3091 	struct sk_buff		*completion_queue;
3092 #ifdef CONFIG_XFRM_OFFLOAD
3093 	struct sk_buff_head	xfrm_backlog;
3094 #endif
3095 	/* written and read only by owning cpu: */
3096 	struct {
3097 		u16 recursion;
3098 		u8  more;
3099 	} xmit;
3100 #ifdef CONFIG_RPS
3101 	/* input_queue_head should be written by cpu owning this struct,
3102 	 * and only read by other cpus. Worth using a cache line.
3103 	 */
3104 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3105 
3106 	/* Elements below can be accessed between CPUs for RPS/RFS */
3107 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3108 	struct softnet_data	*rps_ipi_next;
3109 	unsigned int		cpu;
3110 	unsigned int		input_queue_tail;
3111 #endif
3112 	unsigned int		dropped;
3113 	struct sk_buff_head	input_pkt_queue;
3114 	struct napi_struct	backlog;
3115 
3116 };
3117 
3118 static inline void input_queue_head_incr(struct softnet_data *sd)
3119 {
3120 #ifdef CONFIG_RPS
3121 	sd->input_queue_head++;
3122 #endif
3123 }
3124 
3125 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3126 					      unsigned int *qtail)
3127 {
3128 #ifdef CONFIG_RPS
3129 	*qtail = ++sd->input_queue_tail;
3130 #endif
3131 }
3132 
3133 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3134 
3135 static inline int dev_recursion_level(void)
3136 {
3137 	return this_cpu_read(softnet_data.xmit.recursion);
3138 }
3139 
3140 #define XMIT_RECURSION_LIMIT	10
3141 static inline bool dev_xmit_recursion(void)
3142 {
3143 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3144 			XMIT_RECURSION_LIMIT);
3145 }
3146 
3147 static inline void dev_xmit_recursion_inc(void)
3148 {
3149 	__this_cpu_inc(softnet_data.xmit.recursion);
3150 }
3151 
3152 static inline void dev_xmit_recursion_dec(void)
3153 {
3154 	__this_cpu_dec(softnet_data.xmit.recursion);
3155 }
3156 
3157 void __netif_schedule(struct Qdisc *q);
3158 void netif_schedule_queue(struct netdev_queue *txq);
3159 
3160 static inline void netif_tx_schedule_all(struct net_device *dev)
3161 {
3162 	unsigned int i;
3163 
3164 	for (i = 0; i < dev->num_tx_queues; i++)
3165 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3166 }
3167 
3168 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3169 {
3170 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3171 }
3172 
3173 /**
3174  *	netif_start_queue - allow transmit
3175  *	@dev: network device
3176  *
3177  *	Allow upper layers to call the device hard_start_xmit routine.
3178  */
3179 static inline void netif_start_queue(struct net_device *dev)
3180 {
3181 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3182 }
3183 
3184 static inline void netif_tx_start_all_queues(struct net_device *dev)
3185 {
3186 	unsigned int i;
3187 
3188 	for (i = 0; i < dev->num_tx_queues; i++) {
3189 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3190 		netif_tx_start_queue(txq);
3191 	}
3192 }
3193 
3194 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3195 
3196 /**
3197  *	netif_wake_queue - restart transmit
3198  *	@dev: network device
3199  *
3200  *	Allow upper layers to call the device hard_start_xmit routine.
3201  *	Used for flow control when transmit resources are available.
3202  */
3203 static inline void netif_wake_queue(struct net_device *dev)
3204 {
3205 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3206 }
3207 
3208 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3209 {
3210 	unsigned int i;
3211 
3212 	for (i = 0; i < dev->num_tx_queues; i++) {
3213 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3214 		netif_tx_wake_queue(txq);
3215 	}
3216 }
3217 
3218 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3219 {
3220 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3221 }
3222 
3223 /**
3224  *	netif_stop_queue - stop transmitted packets
3225  *	@dev: network device
3226  *
3227  *	Stop upper layers calling the device hard_start_xmit routine.
3228  *	Used for flow control when transmit resources are unavailable.
3229  */
3230 static inline void netif_stop_queue(struct net_device *dev)
3231 {
3232 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3233 }
3234 
3235 void netif_tx_stop_all_queues(struct net_device *dev);
3236 void netdev_update_lockdep_key(struct net_device *dev);
3237 
3238 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3239 {
3240 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3241 }
3242 
3243 /**
3244  *	netif_queue_stopped - test if transmit queue is flowblocked
3245  *	@dev: network device
3246  *
3247  *	Test if transmit queue on device is currently unable to send.
3248  */
3249 static inline bool netif_queue_stopped(const struct net_device *dev)
3250 {
3251 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3252 }
3253 
3254 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3255 {
3256 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3257 }
3258 
3259 static inline bool
3260 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3261 {
3262 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3263 }
3264 
3265 static inline bool
3266 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3267 {
3268 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3269 }
3270 
3271 /**
3272  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3273  *	@dev_queue: pointer to transmit queue
3274  *
3275  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3276  * to give appropriate hint to the CPU.
3277  */
3278 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3279 {
3280 #ifdef CONFIG_BQL
3281 	prefetchw(&dev_queue->dql.num_queued);
3282 #endif
3283 }
3284 
3285 /**
3286  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3287  *	@dev_queue: pointer to transmit queue
3288  *
3289  * BQL enabled drivers might use this helper in their TX completion path,
3290  * to give appropriate hint to the CPU.
3291  */
3292 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3293 {
3294 #ifdef CONFIG_BQL
3295 	prefetchw(&dev_queue->dql.limit);
3296 #endif
3297 }
3298 
3299 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3300 					unsigned int bytes)
3301 {
3302 #ifdef CONFIG_BQL
3303 	dql_queued(&dev_queue->dql, bytes);
3304 
3305 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3306 		return;
3307 
3308 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3309 
3310 	/*
3311 	 * The XOFF flag must be set before checking the dql_avail below,
3312 	 * because in netdev_tx_completed_queue we update the dql_completed
3313 	 * before checking the XOFF flag.
3314 	 */
3315 	smp_mb();
3316 
3317 	/* check again in case another CPU has just made room avail */
3318 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3319 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3320 #endif
3321 }
3322 
3323 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3324  * that they should not test BQL status themselves.
3325  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3326  * skb of a batch.
3327  * Returns true if the doorbell must be used to kick the NIC.
3328  */
3329 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3330 					  unsigned int bytes,
3331 					  bool xmit_more)
3332 {
3333 	if (xmit_more) {
3334 #ifdef CONFIG_BQL
3335 		dql_queued(&dev_queue->dql, bytes);
3336 #endif
3337 		return netif_tx_queue_stopped(dev_queue);
3338 	}
3339 	netdev_tx_sent_queue(dev_queue, bytes);
3340 	return true;
3341 }
3342 
3343 /**
3344  * 	netdev_sent_queue - report the number of bytes queued to hardware
3345  * 	@dev: network device
3346  * 	@bytes: number of bytes queued to the hardware device queue
3347  *
3348  * 	Report the number of bytes queued for sending/completion to the network
3349  * 	device hardware queue. @bytes should be a good approximation and should
3350  * 	exactly match netdev_completed_queue() @bytes
3351  */
3352 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3353 {
3354 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3355 }
3356 
3357 static inline bool __netdev_sent_queue(struct net_device *dev,
3358 				       unsigned int bytes,
3359 				       bool xmit_more)
3360 {
3361 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3362 				      xmit_more);
3363 }
3364 
3365 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3366 					     unsigned int pkts, unsigned int bytes)
3367 {
3368 #ifdef CONFIG_BQL
3369 	if (unlikely(!bytes))
3370 		return;
3371 
3372 	dql_completed(&dev_queue->dql, bytes);
3373 
3374 	/*
3375 	 * Without the memory barrier there is a small possiblity that
3376 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3377 	 * be stopped forever
3378 	 */
3379 	smp_mb();
3380 
3381 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3382 		return;
3383 
3384 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3385 		netif_schedule_queue(dev_queue);
3386 #endif
3387 }
3388 
3389 /**
3390  * 	netdev_completed_queue - report bytes and packets completed by device
3391  * 	@dev: network device
3392  * 	@pkts: actual number of packets sent over the medium
3393  * 	@bytes: actual number of bytes sent over the medium
3394  *
3395  * 	Report the number of bytes and packets transmitted by the network device
3396  * 	hardware queue over the physical medium, @bytes must exactly match the
3397  * 	@bytes amount passed to netdev_sent_queue()
3398  */
3399 static inline void netdev_completed_queue(struct net_device *dev,
3400 					  unsigned int pkts, unsigned int bytes)
3401 {
3402 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3403 }
3404 
3405 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3406 {
3407 #ifdef CONFIG_BQL
3408 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3409 	dql_reset(&q->dql);
3410 #endif
3411 }
3412 
3413 /**
3414  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3415  * 	@dev_queue: network device
3416  *
3417  * 	Reset the bytes and packet count of a network device and clear the
3418  * 	software flow control OFF bit for this network device
3419  */
3420 static inline void netdev_reset_queue(struct net_device *dev_queue)
3421 {
3422 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3423 }
3424 
3425 /**
3426  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3427  * 	@dev: network device
3428  * 	@queue_index: given tx queue index
3429  *
3430  * 	Returns 0 if given tx queue index >= number of device tx queues,
3431  * 	otherwise returns the originally passed tx queue index.
3432  */
3433 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3434 {
3435 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3436 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3437 				     dev->name, queue_index,
3438 				     dev->real_num_tx_queues);
3439 		return 0;
3440 	}
3441 
3442 	return queue_index;
3443 }
3444 
3445 /**
3446  *	netif_running - test if up
3447  *	@dev: network device
3448  *
3449  *	Test if the device has been brought up.
3450  */
3451 static inline bool netif_running(const struct net_device *dev)
3452 {
3453 	return test_bit(__LINK_STATE_START, &dev->state);
3454 }
3455 
3456 /*
3457  * Routines to manage the subqueues on a device.  We only need start,
3458  * stop, and a check if it's stopped.  All other device management is
3459  * done at the overall netdevice level.
3460  * Also test the device if we're multiqueue.
3461  */
3462 
3463 /**
3464  *	netif_start_subqueue - allow sending packets on subqueue
3465  *	@dev: network device
3466  *	@queue_index: sub queue index
3467  *
3468  * Start individual transmit queue of a device with multiple transmit queues.
3469  */
3470 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3471 {
3472 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3473 
3474 	netif_tx_start_queue(txq);
3475 }
3476 
3477 /**
3478  *	netif_stop_subqueue - stop sending packets on subqueue
3479  *	@dev: network device
3480  *	@queue_index: sub queue index
3481  *
3482  * Stop individual transmit queue of a device with multiple transmit queues.
3483  */
3484 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3485 {
3486 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3487 	netif_tx_stop_queue(txq);
3488 }
3489 
3490 /**
3491  *	netif_subqueue_stopped - test status of subqueue
3492  *	@dev: network device
3493  *	@queue_index: sub queue index
3494  *
3495  * Check individual transmit queue of a device with multiple transmit queues.
3496  */
3497 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3498 					    u16 queue_index)
3499 {
3500 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3501 
3502 	return netif_tx_queue_stopped(txq);
3503 }
3504 
3505 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3506 					  struct sk_buff *skb)
3507 {
3508 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3509 }
3510 
3511 /**
3512  *	netif_wake_subqueue - allow sending packets on subqueue
3513  *	@dev: network device
3514  *	@queue_index: sub queue index
3515  *
3516  * Resume individual transmit queue of a device with multiple transmit queues.
3517  */
3518 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3519 {
3520 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3521 
3522 	netif_tx_wake_queue(txq);
3523 }
3524 
3525 #ifdef CONFIG_XPS
3526 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3527 			u16 index);
3528 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3529 			  u16 index, bool is_rxqs_map);
3530 
3531 /**
3532  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3533  *	@j: CPU/Rx queue index
3534  *	@mask: bitmask of all cpus/rx queues
3535  *	@nr_bits: number of bits in the bitmask
3536  *
3537  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3538  */
3539 static inline bool netif_attr_test_mask(unsigned long j,
3540 					const unsigned long *mask,
3541 					unsigned int nr_bits)
3542 {
3543 	cpu_max_bits_warn(j, nr_bits);
3544 	return test_bit(j, mask);
3545 }
3546 
3547 /**
3548  *	netif_attr_test_online - Test for online CPU/Rx queue
3549  *	@j: CPU/Rx queue index
3550  *	@online_mask: bitmask for CPUs/Rx queues that are online
3551  *	@nr_bits: number of bits in the bitmask
3552  *
3553  * Returns true if a CPU/Rx queue is online.
3554  */
3555 static inline bool netif_attr_test_online(unsigned long j,
3556 					  const unsigned long *online_mask,
3557 					  unsigned int nr_bits)
3558 {
3559 	cpu_max_bits_warn(j, nr_bits);
3560 
3561 	if (online_mask)
3562 		return test_bit(j, online_mask);
3563 
3564 	return (j < nr_bits);
3565 }
3566 
3567 /**
3568  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3569  *	@n: CPU/Rx queue index
3570  *	@srcp: the cpumask/Rx queue mask pointer
3571  *	@nr_bits: number of bits in the bitmask
3572  *
3573  * Returns >= nr_bits if no further CPUs/Rx queues set.
3574  */
3575 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3576 					       unsigned int nr_bits)
3577 {
3578 	/* -1 is a legal arg here. */
3579 	if (n != -1)
3580 		cpu_max_bits_warn(n, nr_bits);
3581 
3582 	if (srcp)
3583 		return find_next_bit(srcp, nr_bits, n + 1);
3584 
3585 	return n + 1;
3586 }
3587 
3588 /**
3589  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3590  *	@n: CPU/Rx queue index
3591  *	@src1p: the first CPUs/Rx queues mask pointer
3592  *	@src2p: the second CPUs/Rx queues mask pointer
3593  *	@nr_bits: number of bits in the bitmask
3594  *
3595  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3596  */
3597 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3598 					  const unsigned long *src2p,
3599 					  unsigned int nr_bits)
3600 {
3601 	/* -1 is a legal arg here. */
3602 	if (n != -1)
3603 		cpu_max_bits_warn(n, nr_bits);
3604 
3605 	if (src1p && src2p)
3606 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3607 	else if (src1p)
3608 		return find_next_bit(src1p, nr_bits, n + 1);
3609 	else if (src2p)
3610 		return find_next_bit(src2p, nr_bits, n + 1);
3611 
3612 	return n + 1;
3613 }
3614 #else
3615 static inline int netif_set_xps_queue(struct net_device *dev,
3616 				      const struct cpumask *mask,
3617 				      u16 index)
3618 {
3619 	return 0;
3620 }
3621 
3622 static inline int __netif_set_xps_queue(struct net_device *dev,
3623 					const unsigned long *mask,
3624 					u16 index, bool is_rxqs_map)
3625 {
3626 	return 0;
3627 }
3628 #endif
3629 
3630 /**
3631  *	netif_is_multiqueue - test if device has multiple transmit queues
3632  *	@dev: network device
3633  *
3634  * Check if device has multiple transmit queues
3635  */
3636 static inline bool netif_is_multiqueue(const struct net_device *dev)
3637 {
3638 	return dev->num_tx_queues > 1;
3639 }
3640 
3641 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3642 
3643 #ifdef CONFIG_SYSFS
3644 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3645 #else
3646 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3647 						unsigned int rxqs)
3648 {
3649 	dev->real_num_rx_queues = rxqs;
3650 	return 0;
3651 }
3652 #endif
3653 
3654 static inline struct netdev_rx_queue *
3655 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3656 {
3657 	return dev->_rx + rxq;
3658 }
3659 
3660 #ifdef CONFIG_SYSFS
3661 static inline unsigned int get_netdev_rx_queue_index(
3662 		struct netdev_rx_queue *queue)
3663 {
3664 	struct net_device *dev = queue->dev;
3665 	int index = queue - dev->_rx;
3666 
3667 	BUG_ON(index >= dev->num_rx_queues);
3668 	return index;
3669 }
3670 #endif
3671 
3672 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3673 int netif_get_num_default_rss_queues(void);
3674 
3675 enum skb_free_reason {
3676 	SKB_REASON_CONSUMED,
3677 	SKB_REASON_DROPPED,
3678 };
3679 
3680 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3681 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3682 
3683 /*
3684  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3685  * interrupt context or with hardware interrupts being disabled.
3686  * (in_irq() || irqs_disabled())
3687  *
3688  * We provide four helpers that can be used in following contexts :
3689  *
3690  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3691  *  replacing kfree_skb(skb)
3692  *
3693  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3694  *  Typically used in place of consume_skb(skb) in TX completion path
3695  *
3696  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3697  *  replacing kfree_skb(skb)
3698  *
3699  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3700  *  and consumed a packet. Used in place of consume_skb(skb)
3701  */
3702 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3703 {
3704 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3705 }
3706 
3707 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3708 {
3709 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3710 }
3711 
3712 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3713 {
3714 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3715 }
3716 
3717 static inline void dev_consume_skb_any(struct sk_buff *skb)
3718 {
3719 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3720 }
3721 
3722 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3723 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3724 int netif_rx(struct sk_buff *skb);
3725 int netif_rx_ni(struct sk_buff *skb);
3726 int netif_receive_skb(struct sk_buff *skb);
3727 int netif_receive_skb_core(struct sk_buff *skb);
3728 void netif_receive_skb_list(struct list_head *head);
3729 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3730 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3731 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3732 gro_result_t napi_gro_frags(struct napi_struct *napi);
3733 struct packet_offload *gro_find_receive_by_type(__be16 type);
3734 struct packet_offload *gro_find_complete_by_type(__be16 type);
3735 
3736 static inline void napi_free_frags(struct napi_struct *napi)
3737 {
3738 	kfree_skb(napi->skb);
3739 	napi->skb = NULL;
3740 }
3741 
3742 bool netdev_is_rx_handler_busy(struct net_device *dev);
3743 int netdev_rx_handler_register(struct net_device *dev,
3744 			       rx_handler_func_t *rx_handler,
3745 			       void *rx_handler_data);
3746 void netdev_rx_handler_unregister(struct net_device *dev);
3747 
3748 bool dev_valid_name(const char *name);
3749 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3750 		bool *need_copyout);
3751 int dev_ifconf(struct net *net, struct ifconf *, int);
3752 int dev_ethtool(struct net *net, struct ifreq *);
3753 unsigned int dev_get_flags(const struct net_device *);
3754 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3755 		       struct netlink_ext_ack *extack);
3756 int dev_change_flags(struct net_device *dev, unsigned int flags,
3757 		     struct netlink_ext_ack *extack);
3758 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3759 			unsigned int gchanges);
3760 int dev_change_name(struct net_device *, const char *);
3761 int dev_set_alias(struct net_device *, const char *, size_t);
3762 int dev_get_alias(const struct net_device *, char *, size_t);
3763 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3764 int __dev_set_mtu(struct net_device *, int);
3765 int dev_validate_mtu(struct net_device *dev, int mtu,
3766 		     struct netlink_ext_ack *extack);
3767 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3768 		    struct netlink_ext_ack *extack);
3769 int dev_set_mtu(struct net_device *, int);
3770 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3771 void dev_set_group(struct net_device *, int);
3772 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3773 			      struct netlink_ext_ack *extack);
3774 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3775 			struct netlink_ext_ack *extack);
3776 int dev_change_carrier(struct net_device *, bool new_carrier);
3777 int dev_get_phys_port_id(struct net_device *dev,
3778 			 struct netdev_phys_item_id *ppid);
3779 int dev_get_phys_port_name(struct net_device *dev,
3780 			   char *name, size_t len);
3781 int dev_get_port_parent_id(struct net_device *dev,
3782 			   struct netdev_phys_item_id *ppid, bool recurse);
3783 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3784 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3785 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3786 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3787 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3788 				    struct netdev_queue *txq, int *ret);
3789 
3790 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3791 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3792 		      int fd, int expected_fd, u32 flags);
3793 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3794 		    enum bpf_netdev_command cmd);
3795 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3796 
3797 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3798 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3799 bool is_skb_forwardable(const struct net_device *dev,
3800 			const struct sk_buff *skb);
3801 
3802 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3803 					       struct sk_buff *skb)
3804 {
3805 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3806 	    unlikely(!is_skb_forwardable(dev, skb))) {
3807 		atomic_long_inc(&dev->rx_dropped);
3808 		kfree_skb(skb);
3809 		return NET_RX_DROP;
3810 	}
3811 
3812 	skb_scrub_packet(skb, true);
3813 	skb->priority = 0;
3814 	return 0;
3815 }
3816 
3817 bool dev_nit_active(struct net_device *dev);
3818 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3819 
3820 extern int		netdev_budget;
3821 extern unsigned int	netdev_budget_usecs;
3822 
3823 /* Called by rtnetlink.c:rtnl_unlock() */
3824 void netdev_run_todo(void);
3825 
3826 /**
3827  *	dev_put - release reference to device
3828  *	@dev: network device
3829  *
3830  * Release reference to device to allow it to be freed.
3831  */
3832 static inline void dev_put(struct net_device *dev)
3833 {
3834 	this_cpu_dec(*dev->pcpu_refcnt);
3835 }
3836 
3837 /**
3838  *	dev_hold - get reference to device
3839  *	@dev: network device
3840  *
3841  * Hold reference to device to keep it from being freed.
3842  */
3843 static inline void dev_hold(struct net_device *dev)
3844 {
3845 	this_cpu_inc(*dev->pcpu_refcnt);
3846 }
3847 
3848 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3849  * and _off may be called from IRQ context, but it is caller
3850  * who is responsible for serialization of these calls.
3851  *
3852  * The name carrier is inappropriate, these functions should really be
3853  * called netif_lowerlayer_*() because they represent the state of any
3854  * kind of lower layer not just hardware media.
3855  */
3856 
3857 void linkwatch_init_dev(struct net_device *dev);
3858 void linkwatch_fire_event(struct net_device *dev);
3859 void linkwatch_forget_dev(struct net_device *dev);
3860 
3861 /**
3862  *	netif_carrier_ok - test if carrier present
3863  *	@dev: network device
3864  *
3865  * Check if carrier is present on device
3866  */
3867 static inline bool netif_carrier_ok(const struct net_device *dev)
3868 {
3869 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3870 }
3871 
3872 unsigned long dev_trans_start(struct net_device *dev);
3873 
3874 void __netdev_watchdog_up(struct net_device *dev);
3875 
3876 void netif_carrier_on(struct net_device *dev);
3877 
3878 void netif_carrier_off(struct net_device *dev);
3879 
3880 /**
3881  *	netif_dormant_on - mark device as dormant.
3882  *	@dev: network device
3883  *
3884  * Mark device as dormant (as per RFC2863).
3885  *
3886  * The dormant state indicates that the relevant interface is not
3887  * actually in a condition to pass packets (i.e., it is not 'up') but is
3888  * in a "pending" state, waiting for some external event.  For "on-
3889  * demand" interfaces, this new state identifies the situation where the
3890  * interface is waiting for events to place it in the up state.
3891  */
3892 static inline void netif_dormant_on(struct net_device *dev)
3893 {
3894 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3895 		linkwatch_fire_event(dev);
3896 }
3897 
3898 /**
3899  *	netif_dormant_off - set device as not dormant.
3900  *	@dev: network device
3901  *
3902  * Device is not in dormant state.
3903  */
3904 static inline void netif_dormant_off(struct net_device *dev)
3905 {
3906 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3907 		linkwatch_fire_event(dev);
3908 }
3909 
3910 /**
3911  *	netif_dormant - test if device is dormant
3912  *	@dev: network device
3913  *
3914  * Check if device is dormant.
3915  */
3916 static inline bool netif_dormant(const struct net_device *dev)
3917 {
3918 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3919 }
3920 
3921 
3922 /**
3923  *	netif_oper_up - test if device is operational
3924  *	@dev: network device
3925  *
3926  * Check if carrier is operational
3927  */
3928 static inline bool netif_oper_up(const struct net_device *dev)
3929 {
3930 	return (dev->operstate == IF_OPER_UP ||
3931 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3932 }
3933 
3934 /**
3935  *	netif_device_present - is device available or removed
3936  *	@dev: network device
3937  *
3938  * Check if device has not been removed from system.
3939  */
3940 static inline bool netif_device_present(struct net_device *dev)
3941 {
3942 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3943 }
3944 
3945 void netif_device_detach(struct net_device *dev);
3946 
3947 void netif_device_attach(struct net_device *dev);
3948 
3949 /*
3950  * Network interface message level settings
3951  */
3952 
3953 enum {
3954 	NETIF_MSG_DRV_BIT,
3955 	NETIF_MSG_PROBE_BIT,
3956 	NETIF_MSG_LINK_BIT,
3957 	NETIF_MSG_TIMER_BIT,
3958 	NETIF_MSG_IFDOWN_BIT,
3959 	NETIF_MSG_IFUP_BIT,
3960 	NETIF_MSG_RX_ERR_BIT,
3961 	NETIF_MSG_TX_ERR_BIT,
3962 	NETIF_MSG_TX_QUEUED_BIT,
3963 	NETIF_MSG_INTR_BIT,
3964 	NETIF_MSG_TX_DONE_BIT,
3965 	NETIF_MSG_RX_STATUS_BIT,
3966 	NETIF_MSG_PKTDATA_BIT,
3967 	NETIF_MSG_HW_BIT,
3968 	NETIF_MSG_WOL_BIT,
3969 
3970 	/* When you add a new bit above, update netif_msg_class_names array
3971 	 * in net/ethtool/common.c
3972 	 */
3973 	NETIF_MSG_CLASS_COUNT,
3974 };
3975 /* Both ethtool_ops interface and internal driver implementation use u32 */
3976 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
3977 
3978 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
3979 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
3980 
3981 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
3982 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
3983 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
3984 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
3985 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
3986 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
3987 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
3988 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
3989 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
3990 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
3991 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
3992 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
3993 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
3994 #define NETIF_MSG_HW		__NETIF_MSG(HW)
3995 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
3996 
3997 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3998 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3999 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4000 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4001 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4002 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4003 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4004 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4005 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4006 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4007 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4008 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4009 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4010 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4011 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4012 
4013 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4014 {
4015 	/* use default */
4016 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4017 		return default_msg_enable_bits;
4018 	if (debug_value == 0)	/* no output */
4019 		return 0;
4020 	/* set low N bits */
4021 	return (1U << debug_value) - 1;
4022 }
4023 
4024 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4025 {
4026 	spin_lock(&txq->_xmit_lock);
4027 	txq->xmit_lock_owner = cpu;
4028 }
4029 
4030 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4031 {
4032 	__acquire(&txq->_xmit_lock);
4033 	return true;
4034 }
4035 
4036 static inline void __netif_tx_release(struct netdev_queue *txq)
4037 {
4038 	__release(&txq->_xmit_lock);
4039 }
4040 
4041 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4042 {
4043 	spin_lock_bh(&txq->_xmit_lock);
4044 	txq->xmit_lock_owner = smp_processor_id();
4045 }
4046 
4047 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4048 {
4049 	bool ok = spin_trylock(&txq->_xmit_lock);
4050 	if (likely(ok))
4051 		txq->xmit_lock_owner = smp_processor_id();
4052 	return ok;
4053 }
4054 
4055 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4056 {
4057 	txq->xmit_lock_owner = -1;
4058 	spin_unlock(&txq->_xmit_lock);
4059 }
4060 
4061 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4062 {
4063 	txq->xmit_lock_owner = -1;
4064 	spin_unlock_bh(&txq->_xmit_lock);
4065 }
4066 
4067 static inline void txq_trans_update(struct netdev_queue *txq)
4068 {
4069 	if (txq->xmit_lock_owner != -1)
4070 		txq->trans_start = jiffies;
4071 }
4072 
4073 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4074 static inline void netif_trans_update(struct net_device *dev)
4075 {
4076 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4077 
4078 	if (txq->trans_start != jiffies)
4079 		txq->trans_start = jiffies;
4080 }
4081 
4082 /**
4083  *	netif_tx_lock - grab network device transmit lock
4084  *	@dev: network device
4085  *
4086  * Get network device transmit lock
4087  */
4088 static inline void netif_tx_lock(struct net_device *dev)
4089 {
4090 	unsigned int i;
4091 	int cpu;
4092 
4093 	spin_lock(&dev->tx_global_lock);
4094 	cpu = smp_processor_id();
4095 	for (i = 0; i < dev->num_tx_queues; i++) {
4096 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4097 
4098 		/* We are the only thread of execution doing a
4099 		 * freeze, but we have to grab the _xmit_lock in
4100 		 * order to synchronize with threads which are in
4101 		 * the ->hard_start_xmit() handler and already
4102 		 * checked the frozen bit.
4103 		 */
4104 		__netif_tx_lock(txq, cpu);
4105 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4106 		__netif_tx_unlock(txq);
4107 	}
4108 }
4109 
4110 static inline void netif_tx_lock_bh(struct net_device *dev)
4111 {
4112 	local_bh_disable();
4113 	netif_tx_lock(dev);
4114 }
4115 
4116 static inline void netif_tx_unlock(struct net_device *dev)
4117 {
4118 	unsigned int i;
4119 
4120 	for (i = 0; i < dev->num_tx_queues; i++) {
4121 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4122 
4123 		/* No need to grab the _xmit_lock here.  If the
4124 		 * queue is not stopped for another reason, we
4125 		 * force a schedule.
4126 		 */
4127 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4128 		netif_schedule_queue(txq);
4129 	}
4130 	spin_unlock(&dev->tx_global_lock);
4131 }
4132 
4133 static inline void netif_tx_unlock_bh(struct net_device *dev)
4134 {
4135 	netif_tx_unlock(dev);
4136 	local_bh_enable();
4137 }
4138 
4139 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4140 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4141 		__netif_tx_lock(txq, cpu);		\
4142 	} else {					\
4143 		__netif_tx_acquire(txq);		\
4144 	}						\
4145 }
4146 
4147 #define HARD_TX_TRYLOCK(dev, txq)			\
4148 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4149 		__netif_tx_trylock(txq) :		\
4150 		__netif_tx_acquire(txq))
4151 
4152 #define HARD_TX_UNLOCK(dev, txq) {			\
4153 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4154 		__netif_tx_unlock(txq);			\
4155 	} else {					\
4156 		__netif_tx_release(txq);		\
4157 	}						\
4158 }
4159 
4160 static inline void netif_tx_disable(struct net_device *dev)
4161 {
4162 	unsigned int i;
4163 	int cpu;
4164 
4165 	local_bh_disable();
4166 	cpu = smp_processor_id();
4167 	for (i = 0; i < dev->num_tx_queues; i++) {
4168 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4169 
4170 		__netif_tx_lock(txq, cpu);
4171 		netif_tx_stop_queue(txq);
4172 		__netif_tx_unlock(txq);
4173 	}
4174 	local_bh_enable();
4175 }
4176 
4177 static inline void netif_addr_lock(struct net_device *dev)
4178 {
4179 	spin_lock(&dev->addr_list_lock);
4180 }
4181 
4182 static inline void netif_addr_lock_bh(struct net_device *dev)
4183 {
4184 	spin_lock_bh(&dev->addr_list_lock);
4185 }
4186 
4187 static inline void netif_addr_unlock(struct net_device *dev)
4188 {
4189 	spin_unlock(&dev->addr_list_lock);
4190 }
4191 
4192 static inline void netif_addr_unlock_bh(struct net_device *dev)
4193 {
4194 	spin_unlock_bh(&dev->addr_list_lock);
4195 }
4196 
4197 /*
4198  * dev_addrs walker. Should be used only for read access. Call with
4199  * rcu_read_lock held.
4200  */
4201 #define for_each_dev_addr(dev, ha) \
4202 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4203 
4204 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4205 
4206 void ether_setup(struct net_device *dev);
4207 
4208 /* Support for loadable net-drivers */
4209 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4210 				    unsigned char name_assign_type,
4211 				    void (*setup)(struct net_device *),
4212 				    unsigned int txqs, unsigned int rxqs);
4213 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4214 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4215 
4216 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4217 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4218 			 count)
4219 
4220 int register_netdev(struct net_device *dev);
4221 void unregister_netdev(struct net_device *dev);
4222 
4223 /* General hardware address lists handling functions */
4224 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4225 		   struct netdev_hw_addr_list *from_list, int addr_len);
4226 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4227 		      struct netdev_hw_addr_list *from_list, int addr_len);
4228 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4229 		       struct net_device *dev,
4230 		       int (*sync)(struct net_device *, const unsigned char *),
4231 		       int (*unsync)(struct net_device *,
4232 				     const unsigned char *));
4233 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4234 			   struct net_device *dev,
4235 			   int (*sync)(struct net_device *,
4236 				       const unsigned char *, int),
4237 			   int (*unsync)(struct net_device *,
4238 					 const unsigned char *, int));
4239 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4240 			      struct net_device *dev,
4241 			      int (*unsync)(struct net_device *,
4242 					    const unsigned char *, int));
4243 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4244 			  struct net_device *dev,
4245 			  int (*unsync)(struct net_device *,
4246 					const unsigned char *));
4247 void __hw_addr_init(struct netdev_hw_addr_list *list);
4248 
4249 /* Functions used for device addresses handling */
4250 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4251 		 unsigned char addr_type);
4252 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4253 		 unsigned char addr_type);
4254 void dev_addr_flush(struct net_device *dev);
4255 int dev_addr_init(struct net_device *dev);
4256 
4257 /* Functions used for unicast addresses handling */
4258 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4259 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4260 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4261 int dev_uc_sync(struct net_device *to, struct net_device *from);
4262 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4263 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4264 void dev_uc_flush(struct net_device *dev);
4265 void dev_uc_init(struct net_device *dev);
4266 
4267 /**
4268  *  __dev_uc_sync - Synchonize device's unicast list
4269  *  @dev:  device to sync
4270  *  @sync: function to call if address should be added
4271  *  @unsync: function to call if address should be removed
4272  *
4273  *  Add newly added addresses to the interface, and release
4274  *  addresses that have been deleted.
4275  */
4276 static inline int __dev_uc_sync(struct net_device *dev,
4277 				int (*sync)(struct net_device *,
4278 					    const unsigned char *),
4279 				int (*unsync)(struct net_device *,
4280 					      const unsigned char *))
4281 {
4282 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4283 }
4284 
4285 /**
4286  *  __dev_uc_unsync - Remove synchronized addresses from device
4287  *  @dev:  device to sync
4288  *  @unsync: function to call if address should be removed
4289  *
4290  *  Remove all addresses that were added to the device by dev_uc_sync().
4291  */
4292 static inline void __dev_uc_unsync(struct net_device *dev,
4293 				   int (*unsync)(struct net_device *,
4294 						 const unsigned char *))
4295 {
4296 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4297 }
4298 
4299 /* Functions used for multicast addresses handling */
4300 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4301 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4302 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4303 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4304 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4305 int dev_mc_sync(struct net_device *to, struct net_device *from);
4306 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4307 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4308 void dev_mc_flush(struct net_device *dev);
4309 void dev_mc_init(struct net_device *dev);
4310 
4311 /**
4312  *  __dev_mc_sync - Synchonize device's multicast list
4313  *  @dev:  device to sync
4314  *  @sync: function to call if address should be added
4315  *  @unsync: function to call if address should be removed
4316  *
4317  *  Add newly added addresses to the interface, and release
4318  *  addresses that have been deleted.
4319  */
4320 static inline int __dev_mc_sync(struct net_device *dev,
4321 				int (*sync)(struct net_device *,
4322 					    const unsigned char *),
4323 				int (*unsync)(struct net_device *,
4324 					      const unsigned char *))
4325 {
4326 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4327 }
4328 
4329 /**
4330  *  __dev_mc_unsync - Remove synchronized addresses from device
4331  *  @dev:  device to sync
4332  *  @unsync: function to call if address should be removed
4333  *
4334  *  Remove all addresses that were added to the device by dev_mc_sync().
4335  */
4336 static inline void __dev_mc_unsync(struct net_device *dev,
4337 				   int (*unsync)(struct net_device *,
4338 						 const unsigned char *))
4339 {
4340 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4341 }
4342 
4343 /* Functions used for secondary unicast and multicast support */
4344 void dev_set_rx_mode(struct net_device *dev);
4345 void __dev_set_rx_mode(struct net_device *dev);
4346 int dev_set_promiscuity(struct net_device *dev, int inc);
4347 int dev_set_allmulti(struct net_device *dev, int inc);
4348 void netdev_state_change(struct net_device *dev);
4349 void netdev_notify_peers(struct net_device *dev);
4350 void netdev_features_change(struct net_device *dev);
4351 /* Load a device via the kmod */
4352 void dev_load(struct net *net, const char *name);
4353 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4354 					struct rtnl_link_stats64 *storage);
4355 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4356 			     const struct net_device_stats *netdev_stats);
4357 
4358 extern int		netdev_max_backlog;
4359 extern int		netdev_tstamp_prequeue;
4360 extern int		weight_p;
4361 extern int		dev_weight_rx_bias;
4362 extern int		dev_weight_tx_bias;
4363 extern int		dev_rx_weight;
4364 extern int		dev_tx_weight;
4365 extern int		gro_normal_batch;
4366 
4367 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4368 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4369 						     struct list_head **iter);
4370 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4371 						     struct list_head **iter);
4372 
4373 /* iterate through upper list, must be called under RCU read lock */
4374 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4375 	for (iter = &(dev)->adj_list.upper, \
4376 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4377 	     updev; \
4378 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4379 
4380 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4381 				  int (*fn)(struct net_device *upper_dev,
4382 					    void *data),
4383 				  void *data);
4384 
4385 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4386 				  struct net_device *upper_dev);
4387 
4388 bool netdev_has_any_upper_dev(struct net_device *dev);
4389 
4390 void *netdev_lower_get_next_private(struct net_device *dev,
4391 				    struct list_head **iter);
4392 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4393 					struct list_head **iter);
4394 
4395 #define netdev_for_each_lower_private(dev, priv, iter) \
4396 	for (iter = (dev)->adj_list.lower.next, \
4397 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4398 	     priv; \
4399 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4400 
4401 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4402 	for (iter = &(dev)->adj_list.lower, \
4403 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4404 	     priv; \
4405 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4406 
4407 void *netdev_lower_get_next(struct net_device *dev,
4408 				struct list_head **iter);
4409 
4410 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4411 	for (iter = (dev)->adj_list.lower.next, \
4412 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4413 	     ldev; \
4414 	     ldev = netdev_lower_get_next(dev, &(iter)))
4415 
4416 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4417 					     struct list_head **iter);
4418 int netdev_walk_all_lower_dev(struct net_device *dev,
4419 			      int (*fn)(struct net_device *lower_dev,
4420 					void *data),
4421 			      void *data);
4422 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4423 				  int (*fn)(struct net_device *lower_dev,
4424 					    void *data),
4425 				  void *data);
4426 
4427 void *netdev_adjacent_get_private(struct list_head *adj_list);
4428 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4429 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4430 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4431 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4432 			  struct netlink_ext_ack *extack);
4433 int netdev_master_upper_dev_link(struct net_device *dev,
4434 				 struct net_device *upper_dev,
4435 				 void *upper_priv, void *upper_info,
4436 				 struct netlink_ext_ack *extack);
4437 void netdev_upper_dev_unlink(struct net_device *dev,
4438 			     struct net_device *upper_dev);
4439 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4440 				   struct net_device *new_dev,
4441 				   struct net_device *dev,
4442 				   struct netlink_ext_ack *extack);
4443 void netdev_adjacent_change_commit(struct net_device *old_dev,
4444 				   struct net_device *new_dev,
4445 				   struct net_device *dev);
4446 void netdev_adjacent_change_abort(struct net_device *old_dev,
4447 				  struct net_device *new_dev,
4448 				  struct net_device *dev);
4449 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4450 void *netdev_lower_dev_get_private(struct net_device *dev,
4451 				   struct net_device *lower_dev);
4452 void netdev_lower_state_changed(struct net_device *lower_dev,
4453 				void *lower_state_info);
4454 
4455 /* RSS keys are 40 or 52 bytes long */
4456 #define NETDEV_RSS_KEY_LEN 52
4457 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4458 void netdev_rss_key_fill(void *buffer, size_t len);
4459 
4460 int skb_checksum_help(struct sk_buff *skb);
4461 int skb_crc32c_csum_help(struct sk_buff *skb);
4462 int skb_csum_hwoffload_help(struct sk_buff *skb,
4463 			    const netdev_features_t features);
4464 
4465 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4466 				  netdev_features_t features, bool tx_path);
4467 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4468 				    netdev_features_t features);
4469 
4470 struct netdev_bonding_info {
4471 	ifslave	slave;
4472 	ifbond	master;
4473 };
4474 
4475 struct netdev_notifier_bonding_info {
4476 	struct netdev_notifier_info info; /* must be first */
4477 	struct netdev_bonding_info  bonding_info;
4478 };
4479 
4480 void netdev_bonding_info_change(struct net_device *dev,
4481 				struct netdev_bonding_info *bonding_info);
4482 
4483 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4484 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4485 #else
4486 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4487 				  const void *data)
4488 {
4489 }
4490 #endif
4491 
4492 static inline
4493 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4494 {
4495 	return __skb_gso_segment(skb, features, true);
4496 }
4497 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4498 
4499 static inline bool can_checksum_protocol(netdev_features_t features,
4500 					 __be16 protocol)
4501 {
4502 	if (protocol == htons(ETH_P_FCOE))
4503 		return !!(features & NETIF_F_FCOE_CRC);
4504 
4505 	/* Assume this is an IP checksum (not SCTP CRC) */
4506 
4507 	if (features & NETIF_F_HW_CSUM) {
4508 		/* Can checksum everything */
4509 		return true;
4510 	}
4511 
4512 	switch (protocol) {
4513 	case htons(ETH_P_IP):
4514 		return !!(features & NETIF_F_IP_CSUM);
4515 	case htons(ETH_P_IPV6):
4516 		return !!(features & NETIF_F_IPV6_CSUM);
4517 	default:
4518 		return false;
4519 	}
4520 }
4521 
4522 #ifdef CONFIG_BUG
4523 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4524 #else
4525 static inline void netdev_rx_csum_fault(struct net_device *dev,
4526 					struct sk_buff *skb)
4527 {
4528 }
4529 #endif
4530 /* rx skb timestamps */
4531 void net_enable_timestamp(void);
4532 void net_disable_timestamp(void);
4533 
4534 #ifdef CONFIG_PROC_FS
4535 int __init dev_proc_init(void);
4536 #else
4537 #define dev_proc_init() 0
4538 #endif
4539 
4540 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4541 					      struct sk_buff *skb, struct net_device *dev,
4542 					      bool more)
4543 {
4544 	__this_cpu_write(softnet_data.xmit.more, more);
4545 	return ops->ndo_start_xmit(skb, dev);
4546 }
4547 
4548 static inline bool netdev_xmit_more(void)
4549 {
4550 	return __this_cpu_read(softnet_data.xmit.more);
4551 }
4552 
4553 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4554 					    struct netdev_queue *txq, bool more)
4555 {
4556 	const struct net_device_ops *ops = dev->netdev_ops;
4557 	netdev_tx_t rc;
4558 
4559 	rc = __netdev_start_xmit(ops, skb, dev, more);
4560 	if (rc == NETDEV_TX_OK)
4561 		txq_trans_update(txq);
4562 
4563 	return rc;
4564 }
4565 
4566 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4567 				const void *ns);
4568 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4569 				 const void *ns);
4570 
4571 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4572 {
4573 	return netdev_class_create_file_ns(class_attr, NULL);
4574 }
4575 
4576 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4577 {
4578 	netdev_class_remove_file_ns(class_attr, NULL);
4579 }
4580 
4581 extern const struct kobj_ns_type_operations net_ns_type_operations;
4582 
4583 const char *netdev_drivername(const struct net_device *dev);
4584 
4585 void linkwatch_run_queue(void);
4586 
4587 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4588 							  netdev_features_t f2)
4589 {
4590 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4591 		if (f1 & NETIF_F_HW_CSUM)
4592 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4593 		else
4594 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4595 	}
4596 
4597 	return f1 & f2;
4598 }
4599 
4600 static inline netdev_features_t netdev_get_wanted_features(
4601 	struct net_device *dev)
4602 {
4603 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4604 }
4605 netdev_features_t netdev_increment_features(netdev_features_t all,
4606 	netdev_features_t one, netdev_features_t mask);
4607 
4608 /* Allow TSO being used on stacked device :
4609  * Performing the GSO segmentation before last device
4610  * is a performance improvement.
4611  */
4612 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4613 							netdev_features_t mask)
4614 {
4615 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4616 }
4617 
4618 int __netdev_update_features(struct net_device *dev);
4619 void netdev_update_features(struct net_device *dev);
4620 void netdev_change_features(struct net_device *dev);
4621 
4622 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4623 					struct net_device *dev);
4624 
4625 netdev_features_t passthru_features_check(struct sk_buff *skb,
4626 					  struct net_device *dev,
4627 					  netdev_features_t features);
4628 netdev_features_t netif_skb_features(struct sk_buff *skb);
4629 
4630 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4631 {
4632 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4633 
4634 	/* check flags correspondence */
4635 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4636 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4637 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4638 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4639 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4640 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4641 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4642 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4643 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4644 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4645 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4646 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4647 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4648 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4649 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4650 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4651 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4652 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4653 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4654 
4655 	return (features & feature) == feature;
4656 }
4657 
4658 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4659 {
4660 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4661 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4662 }
4663 
4664 static inline bool netif_needs_gso(struct sk_buff *skb,
4665 				   netdev_features_t features)
4666 {
4667 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4668 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4669 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4670 }
4671 
4672 static inline void netif_set_gso_max_size(struct net_device *dev,
4673 					  unsigned int size)
4674 {
4675 	dev->gso_max_size = size;
4676 }
4677 
4678 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4679 					int pulled_hlen, u16 mac_offset,
4680 					int mac_len)
4681 {
4682 	skb->protocol = protocol;
4683 	skb->encapsulation = 1;
4684 	skb_push(skb, pulled_hlen);
4685 	skb_reset_transport_header(skb);
4686 	skb->mac_header = mac_offset;
4687 	skb->network_header = skb->mac_header + mac_len;
4688 	skb->mac_len = mac_len;
4689 }
4690 
4691 static inline bool netif_is_macsec(const struct net_device *dev)
4692 {
4693 	return dev->priv_flags & IFF_MACSEC;
4694 }
4695 
4696 static inline bool netif_is_macvlan(const struct net_device *dev)
4697 {
4698 	return dev->priv_flags & IFF_MACVLAN;
4699 }
4700 
4701 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4702 {
4703 	return dev->priv_flags & IFF_MACVLAN_PORT;
4704 }
4705 
4706 static inline bool netif_is_bond_master(const struct net_device *dev)
4707 {
4708 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4709 }
4710 
4711 static inline bool netif_is_bond_slave(const struct net_device *dev)
4712 {
4713 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4714 }
4715 
4716 static inline bool netif_supports_nofcs(struct net_device *dev)
4717 {
4718 	return dev->priv_flags & IFF_SUPP_NOFCS;
4719 }
4720 
4721 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4722 {
4723 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4724 }
4725 
4726 static inline bool netif_is_l3_master(const struct net_device *dev)
4727 {
4728 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4729 }
4730 
4731 static inline bool netif_is_l3_slave(const struct net_device *dev)
4732 {
4733 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4734 }
4735 
4736 static inline bool netif_is_bridge_master(const struct net_device *dev)
4737 {
4738 	return dev->priv_flags & IFF_EBRIDGE;
4739 }
4740 
4741 static inline bool netif_is_bridge_port(const struct net_device *dev)
4742 {
4743 	return dev->priv_flags & IFF_BRIDGE_PORT;
4744 }
4745 
4746 static inline bool netif_is_ovs_master(const struct net_device *dev)
4747 {
4748 	return dev->priv_flags & IFF_OPENVSWITCH;
4749 }
4750 
4751 static inline bool netif_is_ovs_port(const struct net_device *dev)
4752 {
4753 	return dev->priv_flags & IFF_OVS_DATAPATH;
4754 }
4755 
4756 static inline bool netif_is_team_master(const struct net_device *dev)
4757 {
4758 	return dev->priv_flags & IFF_TEAM;
4759 }
4760 
4761 static inline bool netif_is_team_port(const struct net_device *dev)
4762 {
4763 	return dev->priv_flags & IFF_TEAM_PORT;
4764 }
4765 
4766 static inline bool netif_is_lag_master(const struct net_device *dev)
4767 {
4768 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4769 }
4770 
4771 static inline bool netif_is_lag_port(const struct net_device *dev)
4772 {
4773 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4774 }
4775 
4776 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4777 {
4778 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4779 }
4780 
4781 static inline bool netif_is_failover(const struct net_device *dev)
4782 {
4783 	return dev->priv_flags & IFF_FAILOVER;
4784 }
4785 
4786 static inline bool netif_is_failover_slave(const struct net_device *dev)
4787 {
4788 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4789 }
4790 
4791 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4792 static inline void netif_keep_dst(struct net_device *dev)
4793 {
4794 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4795 }
4796 
4797 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4798 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4799 {
4800 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4801 	return dev->priv_flags & IFF_MACSEC;
4802 }
4803 
4804 extern struct pernet_operations __net_initdata loopback_net_ops;
4805 
4806 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4807 
4808 /* netdev_printk helpers, similar to dev_printk */
4809 
4810 static inline const char *netdev_name(const struct net_device *dev)
4811 {
4812 	if (!dev->name[0] || strchr(dev->name, '%'))
4813 		return "(unnamed net_device)";
4814 	return dev->name;
4815 }
4816 
4817 static inline bool netdev_unregistering(const struct net_device *dev)
4818 {
4819 	return dev->reg_state == NETREG_UNREGISTERING;
4820 }
4821 
4822 static inline const char *netdev_reg_state(const struct net_device *dev)
4823 {
4824 	switch (dev->reg_state) {
4825 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4826 	case NETREG_REGISTERED: return "";
4827 	case NETREG_UNREGISTERING: return " (unregistering)";
4828 	case NETREG_UNREGISTERED: return " (unregistered)";
4829 	case NETREG_RELEASED: return " (released)";
4830 	case NETREG_DUMMY: return " (dummy)";
4831 	}
4832 
4833 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4834 	return " (unknown)";
4835 }
4836 
4837 __printf(3, 4) __cold
4838 void netdev_printk(const char *level, const struct net_device *dev,
4839 		   const char *format, ...);
4840 __printf(2, 3) __cold
4841 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4842 __printf(2, 3) __cold
4843 void netdev_alert(const struct net_device *dev, const char *format, ...);
4844 __printf(2, 3) __cold
4845 void netdev_crit(const struct net_device *dev, const char *format, ...);
4846 __printf(2, 3) __cold
4847 void netdev_err(const struct net_device *dev, const char *format, ...);
4848 __printf(2, 3) __cold
4849 void netdev_warn(const struct net_device *dev, const char *format, ...);
4850 __printf(2, 3) __cold
4851 void netdev_notice(const struct net_device *dev, const char *format, ...);
4852 __printf(2, 3) __cold
4853 void netdev_info(const struct net_device *dev, const char *format, ...);
4854 
4855 #define netdev_level_once(level, dev, fmt, ...)			\
4856 do {								\
4857 	static bool __print_once __read_mostly;			\
4858 								\
4859 	if (!__print_once) {					\
4860 		__print_once = true;				\
4861 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4862 	}							\
4863 } while (0)
4864 
4865 #define netdev_emerg_once(dev, fmt, ...) \
4866 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4867 #define netdev_alert_once(dev, fmt, ...) \
4868 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4869 #define netdev_crit_once(dev, fmt, ...) \
4870 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4871 #define netdev_err_once(dev, fmt, ...) \
4872 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4873 #define netdev_warn_once(dev, fmt, ...) \
4874 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4875 #define netdev_notice_once(dev, fmt, ...) \
4876 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4877 #define netdev_info_once(dev, fmt, ...) \
4878 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4879 
4880 #define MODULE_ALIAS_NETDEV(device) \
4881 	MODULE_ALIAS("netdev-" device)
4882 
4883 #if defined(CONFIG_DYNAMIC_DEBUG)
4884 #define netdev_dbg(__dev, format, args...)			\
4885 do {								\
4886 	dynamic_netdev_dbg(__dev, format, ##args);		\
4887 } while (0)
4888 #elif defined(DEBUG)
4889 #define netdev_dbg(__dev, format, args...)			\
4890 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4891 #else
4892 #define netdev_dbg(__dev, format, args...)			\
4893 ({								\
4894 	if (0)							\
4895 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4896 })
4897 #endif
4898 
4899 #if defined(VERBOSE_DEBUG)
4900 #define netdev_vdbg	netdev_dbg
4901 #else
4902 
4903 #define netdev_vdbg(dev, format, args...)			\
4904 ({								\
4905 	if (0)							\
4906 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4907 	0;							\
4908 })
4909 #endif
4910 
4911 /*
4912  * netdev_WARN() acts like dev_printk(), but with the key difference
4913  * of using a WARN/WARN_ON to get the message out, including the
4914  * file/line information and a backtrace.
4915  */
4916 #define netdev_WARN(dev, format, args...)			\
4917 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4918 	     netdev_reg_state(dev), ##args)
4919 
4920 #define netdev_WARN_ONCE(dev, format, args...)				\
4921 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4922 		  netdev_reg_state(dev), ##args)
4923 
4924 /* netif printk helpers, similar to netdev_printk */
4925 
4926 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4927 do {					  			\
4928 	if (netif_msg_##type(priv))				\
4929 		netdev_printk(level, (dev), fmt, ##args);	\
4930 } while (0)
4931 
4932 #define netif_level(level, priv, type, dev, fmt, args...)	\
4933 do {								\
4934 	if (netif_msg_##type(priv))				\
4935 		netdev_##level(dev, fmt, ##args);		\
4936 } while (0)
4937 
4938 #define netif_emerg(priv, type, dev, fmt, args...)		\
4939 	netif_level(emerg, priv, type, dev, fmt, ##args)
4940 #define netif_alert(priv, type, dev, fmt, args...)		\
4941 	netif_level(alert, priv, type, dev, fmt, ##args)
4942 #define netif_crit(priv, type, dev, fmt, args...)		\
4943 	netif_level(crit, priv, type, dev, fmt, ##args)
4944 #define netif_err(priv, type, dev, fmt, args...)		\
4945 	netif_level(err, priv, type, dev, fmt, ##args)
4946 #define netif_warn(priv, type, dev, fmt, args...)		\
4947 	netif_level(warn, priv, type, dev, fmt, ##args)
4948 #define netif_notice(priv, type, dev, fmt, args...)		\
4949 	netif_level(notice, priv, type, dev, fmt, ##args)
4950 #define netif_info(priv, type, dev, fmt, args...)		\
4951 	netif_level(info, priv, type, dev, fmt, ##args)
4952 
4953 #if defined(CONFIG_DYNAMIC_DEBUG)
4954 #define netif_dbg(priv, type, netdev, format, args...)		\
4955 do {								\
4956 	if (netif_msg_##type(priv))				\
4957 		dynamic_netdev_dbg(netdev, format, ##args);	\
4958 } while (0)
4959 #elif defined(DEBUG)
4960 #define netif_dbg(priv, type, dev, format, args...)		\
4961 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4962 #else
4963 #define netif_dbg(priv, type, dev, format, args...)			\
4964 ({									\
4965 	if (0)								\
4966 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4967 	0;								\
4968 })
4969 #endif
4970 
4971 /* if @cond then downgrade to debug, else print at @level */
4972 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4973 	do {                                                              \
4974 		if (cond)                                                 \
4975 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4976 		else                                                      \
4977 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4978 	} while (0)
4979 
4980 #if defined(VERBOSE_DEBUG)
4981 #define netif_vdbg	netif_dbg
4982 #else
4983 #define netif_vdbg(priv, type, dev, format, args...)		\
4984 ({								\
4985 	if (0)							\
4986 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4987 	0;							\
4988 })
4989 #endif
4990 
4991 /*
4992  *	The list of packet types we will receive (as opposed to discard)
4993  *	and the routines to invoke.
4994  *
4995  *	Why 16. Because with 16 the only overlap we get on a hash of the
4996  *	low nibble of the protocol value is RARP/SNAP/X.25.
4997  *
4998  *		0800	IP
4999  *		0001	802.3
5000  *		0002	AX.25
5001  *		0004	802.2
5002  *		8035	RARP
5003  *		0005	SNAP
5004  *		0805	X.25
5005  *		0806	ARP
5006  *		8137	IPX
5007  *		0009	Localtalk
5008  *		86DD	IPv6
5009  */
5010 #define PTYPE_HASH_SIZE	(16)
5011 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5012 
5013 extern struct net_device *blackhole_netdev;
5014 
5015 #endif	/* _LINUX_NETDEVICE_H */
5016