xref: /linux-6.15/include/linux/netdevice.h (revision fc22b34e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_config;
67 struct netdev_name_node;
68 struct sd_flow_limit;
69 struct sfp_bus;
70 /* 802.11 specific */
71 struct wireless_dev;
72 /* 802.15.4 specific */
73 struct wpan_dev;
74 struct mpls_dev;
75 /* UDP Tunnel offloads */
76 struct udp_tunnel_info;
77 struct udp_tunnel_nic_info;
78 struct udp_tunnel_nic;
79 struct bpf_prog;
80 struct xdp_buff;
81 struct xdp_frame;
82 struct xdp_metadata_ops;
83 struct xdp_md;
84 struct ethtool_netdev_state;
85 struct phy_link_topology;
86 struct hwtstamp_provider;
87 
88 typedef u32 xdp_features_t;
89 
90 void synchronize_net(void);
91 void netdev_set_default_ethtool_ops(struct net_device *dev,
92 				    const struct ethtool_ops *ops);
93 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
94 
95 /* Backlog congestion levels */
96 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
97 #define NET_RX_DROP		1	/* packet dropped */
98 
99 #define MAX_NEST_DEV 8
100 
101 /*
102  * Transmit return codes: transmit return codes originate from three different
103  * namespaces:
104  *
105  * - qdisc return codes
106  * - driver transmit return codes
107  * - errno values
108  *
109  * Drivers are allowed to return any one of those in their hard_start_xmit()
110  * function. Real network devices commonly used with qdiscs should only return
111  * the driver transmit return codes though - when qdiscs are used, the actual
112  * transmission happens asynchronously, so the value is not propagated to
113  * higher layers. Virtual network devices transmit synchronously; in this case
114  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
115  * others are propagated to higher layers.
116  */
117 
118 /* qdisc ->enqueue() return codes. */
119 #define NET_XMIT_SUCCESS	0x00
120 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
121 #define NET_XMIT_CN		0x02	/* congestion notification	*/
122 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
123 
124 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
125  * indicates that the device will soon be dropping packets, or already drops
126  * some packets of the same priority; prompting us to send less aggressively. */
127 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
128 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
129 
130 /* Driver transmit return codes */
131 #define NETDEV_TX_MASK		0xf0
132 
133 enum netdev_tx {
134 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
135 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
136 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
137 };
138 typedef enum netdev_tx netdev_tx_t;
139 
140 /*
141  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
142  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
143  */
144 static inline bool dev_xmit_complete(int rc)
145 {
146 	/*
147 	 * Positive cases with an skb consumed by a driver:
148 	 * - successful transmission (rc == NETDEV_TX_OK)
149 	 * - error while transmitting (rc < 0)
150 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
151 	 */
152 	if (likely(rc < NET_XMIT_MASK))
153 		return true;
154 
155 	return false;
156 }
157 
158 /*
159  *	Compute the worst-case header length according to the protocols
160  *	used.
161  */
162 
163 #if defined(CONFIG_HYPERV_NET)
164 # define LL_MAX_HEADER 128
165 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
166 # if defined(CONFIG_MAC80211_MESH)
167 #  define LL_MAX_HEADER 128
168 # else
169 #  define LL_MAX_HEADER 96
170 # endif
171 #else
172 # define LL_MAX_HEADER 32
173 #endif
174 
175 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
176     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
177 #define MAX_HEADER LL_MAX_HEADER
178 #else
179 #define MAX_HEADER (LL_MAX_HEADER + 48)
180 #endif
181 
182 /*
183  *	Old network device statistics. Fields are native words
184  *	(unsigned long) so they can be read and written atomically.
185  */
186 
187 #define NET_DEV_STAT(FIELD)			\
188 	union {					\
189 		unsigned long FIELD;		\
190 		atomic_long_t __##FIELD;	\
191 	}
192 
193 struct net_device_stats {
194 	NET_DEV_STAT(rx_packets);
195 	NET_DEV_STAT(tx_packets);
196 	NET_DEV_STAT(rx_bytes);
197 	NET_DEV_STAT(tx_bytes);
198 	NET_DEV_STAT(rx_errors);
199 	NET_DEV_STAT(tx_errors);
200 	NET_DEV_STAT(rx_dropped);
201 	NET_DEV_STAT(tx_dropped);
202 	NET_DEV_STAT(multicast);
203 	NET_DEV_STAT(collisions);
204 	NET_DEV_STAT(rx_length_errors);
205 	NET_DEV_STAT(rx_over_errors);
206 	NET_DEV_STAT(rx_crc_errors);
207 	NET_DEV_STAT(rx_frame_errors);
208 	NET_DEV_STAT(rx_fifo_errors);
209 	NET_DEV_STAT(rx_missed_errors);
210 	NET_DEV_STAT(tx_aborted_errors);
211 	NET_DEV_STAT(tx_carrier_errors);
212 	NET_DEV_STAT(tx_fifo_errors);
213 	NET_DEV_STAT(tx_heartbeat_errors);
214 	NET_DEV_STAT(tx_window_errors);
215 	NET_DEV_STAT(rx_compressed);
216 	NET_DEV_STAT(tx_compressed);
217 };
218 #undef NET_DEV_STAT
219 
220 /* per-cpu stats, allocated on demand.
221  * Try to fit them in a single cache line, for dev_get_stats() sake.
222  */
223 struct net_device_core_stats {
224 	unsigned long	rx_dropped;
225 	unsigned long	tx_dropped;
226 	unsigned long	rx_nohandler;
227 	unsigned long	rx_otherhost_dropped;
228 } __aligned(4 * sizeof(unsigned long));
229 
230 #include <linux/cache.h>
231 #include <linux/skbuff.h>
232 
233 struct neighbour;
234 struct neigh_parms;
235 struct sk_buff;
236 
237 struct netdev_hw_addr {
238 	struct list_head	list;
239 	struct rb_node		node;
240 	unsigned char		addr[MAX_ADDR_LEN];
241 	unsigned char		type;
242 #define NETDEV_HW_ADDR_T_LAN		1
243 #define NETDEV_HW_ADDR_T_SAN		2
244 #define NETDEV_HW_ADDR_T_UNICAST	3
245 #define NETDEV_HW_ADDR_T_MULTICAST	4
246 	bool			global_use;
247 	int			sync_cnt;
248 	int			refcount;
249 	int			synced;
250 	struct rcu_head		rcu_head;
251 };
252 
253 struct netdev_hw_addr_list {
254 	struct list_head	list;
255 	int			count;
256 
257 	/* Auxiliary tree for faster lookup on addition and deletion */
258 	struct rb_root		tree;
259 };
260 
261 #define netdev_hw_addr_list_count(l) ((l)->count)
262 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
263 #define netdev_hw_addr_list_for_each(ha, l) \
264 	list_for_each_entry(ha, &(l)->list, list)
265 
266 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
267 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
268 #define netdev_for_each_uc_addr(ha, dev) \
269 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
270 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
271 	netdev_for_each_uc_addr((_ha), (_dev)) \
272 		if ((_ha)->sync_cnt)
273 
274 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
275 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
276 #define netdev_for_each_mc_addr(ha, dev) \
277 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
278 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
279 	netdev_for_each_mc_addr((_ha), (_dev)) \
280 		if ((_ha)->sync_cnt)
281 
282 struct hh_cache {
283 	unsigned int	hh_len;
284 	seqlock_t	hh_lock;
285 
286 	/* cached hardware header; allow for machine alignment needs.        */
287 #define HH_DATA_MOD	16
288 #define HH_DATA_OFF(__len) \
289 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
290 #define HH_DATA_ALIGN(__len) \
291 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
292 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
293 };
294 
295 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
296  * Alternative is:
297  *   dev->hard_header_len ? (dev->hard_header_len +
298  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
299  *
300  * We could use other alignment values, but we must maintain the
301  * relationship HH alignment <= LL alignment.
302  */
303 #define LL_RESERVED_SPACE(dev) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 
310 struct header_ops {
311 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
312 			   unsigned short type, const void *daddr,
313 			   const void *saddr, unsigned int len);
314 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
315 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
316 	void	(*cache_update)(struct hh_cache *hh,
317 				const struct net_device *dev,
318 				const unsigned char *haddr);
319 	bool	(*validate)(const char *ll_header, unsigned int len);
320 	__be16	(*parse_protocol)(const struct sk_buff *skb);
321 };
322 
323 /* These flag bits are private to the generic network queueing
324  * layer; they may not be explicitly referenced by any other
325  * code.
326  */
327 
328 enum netdev_state_t {
329 	__LINK_STATE_START,
330 	__LINK_STATE_PRESENT,
331 	__LINK_STATE_NOCARRIER,
332 	__LINK_STATE_LINKWATCH_PENDING,
333 	__LINK_STATE_DORMANT,
334 	__LINK_STATE_TESTING,
335 };
336 
337 struct gro_list {
338 	struct list_head	list;
339 	int			count;
340 };
341 
342 /*
343  * size of gro hash buckets, must less than bit number of
344  * napi_struct::gro_bitmask
345  */
346 #define GRO_HASH_BUCKETS	8
347 
348 /*
349  * Structure for per-NAPI config
350  */
351 struct napi_config {
352 	u64 gro_flush_timeout;
353 	u64 irq_suspend_timeout;
354 	u32 defer_hard_irqs;
355 	unsigned int napi_id;
356 };
357 
358 /*
359  * Structure for NAPI scheduling similar to tasklet but with weighting
360  */
361 struct napi_struct {
362 	/* The poll_list must only be managed by the entity which
363 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
364 	 * whoever atomically sets that bit can add this napi_struct
365 	 * to the per-CPU poll_list, and whoever clears that bit
366 	 * can remove from the list right before clearing the bit.
367 	 */
368 	struct list_head	poll_list;
369 
370 	unsigned long		state;
371 	int			weight;
372 	u32			defer_hard_irqs_count;
373 	unsigned long		gro_bitmask;
374 	int			(*poll)(struct napi_struct *, int);
375 #ifdef CONFIG_NETPOLL
376 	/* CPU actively polling if netpoll is configured */
377 	int			poll_owner;
378 #endif
379 	/* CPU on which NAPI has been scheduled for processing */
380 	int			list_owner;
381 	struct net_device	*dev;
382 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
383 	struct sk_buff		*skb;
384 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
385 	int			rx_count; /* length of rx_list */
386 	unsigned int		napi_id; /* protected by netdev_lock */
387 	struct hrtimer		timer;
388 	/* all fields past this point are write-protected by netdev_lock */
389 	struct task_struct	*thread;
390 	unsigned long		gro_flush_timeout;
391 	unsigned long		irq_suspend_timeout;
392 	u32			defer_hard_irqs;
393 	/* control-path-only fields follow */
394 	struct list_head	dev_list;
395 	struct hlist_node	napi_hash_node;
396 	int			irq;
397 	int			index;
398 	struct napi_config	*config;
399 };
400 
401 enum {
402 	NAPI_STATE_SCHED,		/* Poll is scheduled */
403 	NAPI_STATE_MISSED,		/* reschedule a napi */
404 	NAPI_STATE_DISABLE,		/* Disable pending */
405 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
406 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
407 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
408 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
409 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
410 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
411 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
412 };
413 
414 enum {
415 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
416 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
417 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
418 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
419 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
420 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
421 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
422 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
423 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
424 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
425 };
426 
427 enum gro_result {
428 	GRO_MERGED,
429 	GRO_MERGED_FREE,
430 	GRO_HELD,
431 	GRO_NORMAL,
432 	GRO_CONSUMED,
433 };
434 typedef enum gro_result gro_result_t;
435 
436 /*
437  * enum rx_handler_result - Possible return values for rx_handlers.
438  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
439  * further.
440  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
441  * case skb->dev was changed by rx_handler.
442  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
443  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
444  *
445  * rx_handlers are functions called from inside __netif_receive_skb(), to do
446  * special processing of the skb, prior to delivery to protocol handlers.
447  *
448  * Currently, a net_device can only have a single rx_handler registered. Trying
449  * to register a second rx_handler will return -EBUSY.
450  *
451  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
452  * To unregister a rx_handler on a net_device, use
453  * netdev_rx_handler_unregister().
454  *
455  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
456  * do with the skb.
457  *
458  * If the rx_handler consumed the skb in some way, it should return
459  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
460  * the skb to be delivered in some other way.
461  *
462  * If the rx_handler changed skb->dev, to divert the skb to another
463  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
464  * new device will be called if it exists.
465  *
466  * If the rx_handler decides the skb should be ignored, it should return
467  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
468  * are registered on exact device (ptype->dev == skb->dev).
469  *
470  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
471  * delivered, it should return RX_HANDLER_PASS.
472  *
473  * A device without a registered rx_handler will behave as if rx_handler
474  * returned RX_HANDLER_PASS.
475  */
476 
477 enum rx_handler_result {
478 	RX_HANDLER_CONSUMED,
479 	RX_HANDLER_ANOTHER,
480 	RX_HANDLER_EXACT,
481 	RX_HANDLER_PASS,
482 };
483 typedef enum rx_handler_result rx_handler_result_t;
484 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
485 
486 void __napi_schedule(struct napi_struct *n);
487 void __napi_schedule_irqoff(struct napi_struct *n);
488 
489 static inline bool napi_disable_pending(struct napi_struct *n)
490 {
491 	return test_bit(NAPI_STATE_DISABLE, &n->state);
492 }
493 
494 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
495 {
496 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
497 }
498 
499 /**
500  * napi_is_scheduled - test if NAPI is scheduled
501  * @n: NAPI context
502  *
503  * This check is "best-effort". With no locking implemented,
504  * a NAPI can be scheduled or terminate right after this check
505  * and produce not precise results.
506  *
507  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
508  * should not be used normally and napi_schedule should be
509  * used instead.
510  *
511  * Use only if the driver really needs to check if a NAPI
512  * is scheduled for example in the context of delayed timer
513  * that can be skipped if a NAPI is already scheduled.
514  *
515  * Return: True if NAPI is scheduled, False otherwise.
516  */
517 static inline bool napi_is_scheduled(struct napi_struct *n)
518 {
519 	return test_bit(NAPI_STATE_SCHED, &n->state);
520 }
521 
522 bool napi_schedule_prep(struct napi_struct *n);
523 
524 /**
525  *	napi_schedule - schedule NAPI poll
526  *	@n: NAPI context
527  *
528  * Schedule NAPI poll routine to be called if it is not already
529  * running.
530  * Return: true if we schedule a NAPI or false if not.
531  * Refer to napi_schedule_prep() for additional reason on why
532  * a NAPI might not be scheduled.
533  */
534 static inline bool napi_schedule(struct napi_struct *n)
535 {
536 	if (napi_schedule_prep(n)) {
537 		__napi_schedule(n);
538 		return true;
539 	}
540 
541 	return false;
542 }
543 
544 /**
545  *	napi_schedule_irqoff - schedule NAPI poll
546  *	@n: NAPI context
547  *
548  * Variant of napi_schedule(), assuming hard irqs are masked.
549  */
550 static inline void napi_schedule_irqoff(struct napi_struct *n)
551 {
552 	if (napi_schedule_prep(n))
553 		__napi_schedule_irqoff(n);
554 }
555 
556 /**
557  * napi_complete_done - NAPI processing complete
558  * @n: NAPI context
559  * @work_done: number of packets processed
560  *
561  * Mark NAPI processing as complete. Should only be called if poll budget
562  * has not been completely consumed.
563  * Prefer over napi_complete().
564  * Return: false if device should avoid rearming interrupts.
565  */
566 bool napi_complete_done(struct napi_struct *n, int work_done);
567 
568 static inline bool napi_complete(struct napi_struct *n)
569 {
570 	return napi_complete_done(n, 0);
571 }
572 
573 int dev_set_threaded(struct net_device *dev, bool threaded);
574 
575 void napi_disable(struct napi_struct *n);
576 void napi_disable_locked(struct napi_struct *n);
577 
578 void napi_enable(struct napi_struct *n);
579 void napi_enable_locked(struct napi_struct *n);
580 
581 /**
582  *	napi_synchronize - wait until NAPI is not running
583  *	@n: NAPI context
584  *
585  * Wait until NAPI is done being scheduled on this context.
586  * Waits till any outstanding processing completes but
587  * does not disable future activations.
588  */
589 static inline void napi_synchronize(const struct napi_struct *n)
590 {
591 	if (IS_ENABLED(CONFIG_SMP))
592 		while (test_bit(NAPI_STATE_SCHED, &n->state))
593 			msleep(1);
594 	else
595 		barrier();
596 }
597 
598 /**
599  *	napi_if_scheduled_mark_missed - if napi is running, set the
600  *	NAPIF_STATE_MISSED
601  *	@n: NAPI context
602  *
603  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
604  * NAPI is scheduled.
605  **/
606 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
607 {
608 	unsigned long val, new;
609 
610 	val = READ_ONCE(n->state);
611 	do {
612 		if (val & NAPIF_STATE_DISABLE)
613 			return true;
614 
615 		if (!(val & NAPIF_STATE_SCHED))
616 			return false;
617 
618 		new = val | NAPIF_STATE_MISSED;
619 	} while (!try_cmpxchg(&n->state, &val, new));
620 
621 	return true;
622 }
623 
624 enum netdev_queue_state_t {
625 	__QUEUE_STATE_DRV_XOFF,
626 	__QUEUE_STATE_STACK_XOFF,
627 	__QUEUE_STATE_FROZEN,
628 };
629 
630 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
631 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
632 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
633 
634 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
635 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
636 					QUEUE_STATE_FROZEN)
637 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
638 					QUEUE_STATE_FROZEN)
639 
640 /*
641  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
642  * netif_tx_* functions below are used to manipulate this flag.  The
643  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
644  * queue independently.  The netif_xmit_*stopped functions below are called
645  * to check if the queue has been stopped by the driver or stack (either
646  * of the XOFF bits are set in the state).  Drivers should not need to call
647  * netif_xmit*stopped functions, they should only be using netif_tx_*.
648  */
649 
650 struct netdev_queue {
651 /*
652  * read-mostly part
653  */
654 	struct net_device	*dev;
655 	netdevice_tracker	dev_tracker;
656 
657 	struct Qdisc __rcu	*qdisc;
658 	struct Qdisc __rcu	*qdisc_sleeping;
659 #ifdef CONFIG_SYSFS
660 	struct kobject		kobj;
661 #endif
662 	unsigned long		tx_maxrate;
663 	/*
664 	 * Number of TX timeouts for this queue
665 	 * (/sys/class/net/DEV/Q/trans_timeout)
666 	 */
667 	atomic_long_t		trans_timeout;
668 
669 	/* Subordinate device that the queue has been assigned to */
670 	struct net_device	*sb_dev;
671 #ifdef CONFIG_XDP_SOCKETS
672 	struct xsk_buff_pool    *pool;
673 #endif
674 
675 /*
676  * write-mostly part
677  */
678 #ifdef CONFIG_BQL
679 	struct dql		dql;
680 #endif
681 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
682 	int			xmit_lock_owner;
683 	/*
684 	 * Time (in jiffies) of last Tx
685 	 */
686 	unsigned long		trans_start;
687 
688 	unsigned long		state;
689 
690 /*
691  * slow- / control-path part
692  */
693 	/* NAPI instance for the queue
694 	 * Readers and writers must hold RTNL
695 	 */
696 	struct napi_struct	*napi;
697 
698 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
699 	int			numa_node;
700 #endif
701 } ____cacheline_aligned_in_smp;
702 
703 extern int sysctl_fb_tunnels_only_for_init_net;
704 extern int sysctl_devconf_inherit_init_net;
705 
706 /*
707  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
708  *                                     == 1 : For initns only
709  *                                     == 2 : For none.
710  */
711 static inline bool net_has_fallback_tunnels(const struct net *net)
712 {
713 #if IS_ENABLED(CONFIG_SYSCTL)
714 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
715 
716 	return !fb_tunnels_only_for_init_net ||
717 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
718 #else
719 	return true;
720 #endif
721 }
722 
723 static inline int net_inherit_devconf(void)
724 {
725 #if IS_ENABLED(CONFIG_SYSCTL)
726 	return READ_ONCE(sysctl_devconf_inherit_init_net);
727 #else
728 	return 0;
729 #endif
730 }
731 
732 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
733 {
734 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
735 	return q->numa_node;
736 #else
737 	return NUMA_NO_NODE;
738 #endif
739 }
740 
741 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
742 {
743 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
744 	q->numa_node = node;
745 #endif
746 }
747 
748 #ifdef CONFIG_RFS_ACCEL
749 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
750 			 u16 filter_id);
751 #endif
752 
753 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
754 enum xps_map_type {
755 	XPS_CPUS = 0,
756 	XPS_RXQS,
757 	XPS_MAPS_MAX,
758 };
759 
760 #ifdef CONFIG_XPS
761 /*
762  * This structure holds an XPS map which can be of variable length.  The
763  * map is an array of queues.
764  */
765 struct xps_map {
766 	unsigned int len;
767 	unsigned int alloc_len;
768 	struct rcu_head rcu;
769 	u16 queues[];
770 };
771 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
772 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
773        - sizeof(struct xps_map)) / sizeof(u16))
774 
775 /*
776  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
777  *
778  * We keep track of the number of cpus/rxqs used when the struct is allocated,
779  * in nr_ids. This will help not accessing out-of-bound memory.
780  *
781  * We keep track of the number of traffic classes used when the struct is
782  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
783  * not crossing its upper bound, as the original dev->num_tc can be updated in
784  * the meantime.
785  */
786 struct xps_dev_maps {
787 	struct rcu_head rcu;
788 	unsigned int nr_ids;
789 	s16 num_tc;
790 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
791 };
792 
793 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
794 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
795 
796 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
797 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
798 
799 #endif /* CONFIG_XPS */
800 
801 #define TC_MAX_QUEUE	16
802 #define TC_BITMASK	15
803 /* HW offloaded queuing disciplines txq count and offset maps */
804 struct netdev_tc_txq {
805 	u16 count;
806 	u16 offset;
807 };
808 
809 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
810 /*
811  * This structure is to hold information about the device
812  * configured to run FCoE protocol stack.
813  */
814 struct netdev_fcoe_hbainfo {
815 	char	manufacturer[64];
816 	char	serial_number[64];
817 	char	hardware_version[64];
818 	char	driver_version[64];
819 	char	optionrom_version[64];
820 	char	firmware_version[64];
821 	char	model[256];
822 	char	model_description[256];
823 };
824 #endif
825 
826 #define MAX_PHYS_ITEM_ID_LEN 32
827 
828 /* This structure holds a unique identifier to identify some
829  * physical item (port for example) used by a netdevice.
830  */
831 struct netdev_phys_item_id {
832 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
833 	unsigned char id_len;
834 };
835 
836 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
837 					    struct netdev_phys_item_id *b)
838 {
839 	return a->id_len == b->id_len &&
840 	       memcmp(a->id, b->id, a->id_len) == 0;
841 }
842 
843 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
844 				       struct sk_buff *skb,
845 				       struct net_device *sb_dev);
846 
847 enum net_device_path_type {
848 	DEV_PATH_ETHERNET = 0,
849 	DEV_PATH_VLAN,
850 	DEV_PATH_BRIDGE,
851 	DEV_PATH_PPPOE,
852 	DEV_PATH_DSA,
853 	DEV_PATH_MTK_WDMA,
854 };
855 
856 struct net_device_path {
857 	enum net_device_path_type	type;
858 	const struct net_device		*dev;
859 	union {
860 		struct {
861 			u16		id;
862 			__be16		proto;
863 			u8		h_dest[ETH_ALEN];
864 		} encap;
865 		struct {
866 			enum {
867 				DEV_PATH_BR_VLAN_KEEP,
868 				DEV_PATH_BR_VLAN_TAG,
869 				DEV_PATH_BR_VLAN_UNTAG,
870 				DEV_PATH_BR_VLAN_UNTAG_HW,
871 			}		vlan_mode;
872 			u16		vlan_id;
873 			__be16		vlan_proto;
874 		} bridge;
875 		struct {
876 			int port;
877 			u16 proto;
878 		} dsa;
879 		struct {
880 			u8 wdma_idx;
881 			u8 queue;
882 			u16 wcid;
883 			u8 bss;
884 			u8 amsdu;
885 		} mtk_wdma;
886 	};
887 };
888 
889 #define NET_DEVICE_PATH_STACK_MAX	5
890 #define NET_DEVICE_PATH_VLAN_MAX	2
891 
892 struct net_device_path_stack {
893 	int			num_paths;
894 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
895 };
896 
897 struct net_device_path_ctx {
898 	const struct net_device *dev;
899 	u8			daddr[ETH_ALEN];
900 
901 	int			num_vlans;
902 	struct {
903 		u16		id;
904 		__be16		proto;
905 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
906 };
907 
908 enum tc_setup_type {
909 	TC_QUERY_CAPS,
910 	TC_SETUP_QDISC_MQPRIO,
911 	TC_SETUP_CLSU32,
912 	TC_SETUP_CLSFLOWER,
913 	TC_SETUP_CLSMATCHALL,
914 	TC_SETUP_CLSBPF,
915 	TC_SETUP_BLOCK,
916 	TC_SETUP_QDISC_CBS,
917 	TC_SETUP_QDISC_RED,
918 	TC_SETUP_QDISC_PRIO,
919 	TC_SETUP_QDISC_MQ,
920 	TC_SETUP_QDISC_ETF,
921 	TC_SETUP_ROOT_QDISC,
922 	TC_SETUP_QDISC_GRED,
923 	TC_SETUP_QDISC_TAPRIO,
924 	TC_SETUP_FT,
925 	TC_SETUP_QDISC_ETS,
926 	TC_SETUP_QDISC_TBF,
927 	TC_SETUP_QDISC_FIFO,
928 	TC_SETUP_QDISC_HTB,
929 	TC_SETUP_ACT,
930 };
931 
932 /* These structures hold the attributes of bpf state that are being passed
933  * to the netdevice through the bpf op.
934  */
935 enum bpf_netdev_command {
936 	/* Set or clear a bpf program used in the earliest stages of packet
937 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
938 	 * is responsible for calling bpf_prog_put on any old progs that are
939 	 * stored. In case of error, the callee need not release the new prog
940 	 * reference, but on success it takes ownership and must bpf_prog_put
941 	 * when it is no longer used.
942 	 */
943 	XDP_SETUP_PROG,
944 	XDP_SETUP_PROG_HW,
945 	/* BPF program for offload callbacks, invoked at program load time. */
946 	BPF_OFFLOAD_MAP_ALLOC,
947 	BPF_OFFLOAD_MAP_FREE,
948 	XDP_SETUP_XSK_POOL,
949 };
950 
951 struct bpf_prog_offload_ops;
952 struct netlink_ext_ack;
953 struct xdp_umem;
954 struct xdp_dev_bulk_queue;
955 struct bpf_xdp_link;
956 
957 enum bpf_xdp_mode {
958 	XDP_MODE_SKB = 0,
959 	XDP_MODE_DRV = 1,
960 	XDP_MODE_HW = 2,
961 	__MAX_XDP_MODE
962 };
963 
964 struct bpf_xdp_entity {
965 	struct bpf_prog *prog;
966 	struct bpf_xdp_link *link;
967 };
968 
969 struct netdev_bpf {
970 	enum bpf_netdev_command command;
971 	union {
972 		/* XDP_SETUP_PROG */
973 		struct {
974 			u32 flags;
975 			struct bpf_prog *prog;
976 			struct netlink_ext_ack *extack;
977 		};
978 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
979 		struct {
980 			struct bpf_offloaded_map *offmap;
981 		};
982 		/* XDP_SETUP_XSK_POOL */
983 		struct {
984 			struct xsk_buff_pool *pool;
985 			u16 queue_id;
986 		} xsk;
987 	};
988 };
989 
990 /* Flags for ndo_xsk_wakeup. */
991 #define XDP_WAKEUP_RX (1 << 0)
992 #define XDP_WAKEUP_TX (1 << 1)
993 
994 #ifdef CONFIG_XFRM_OFFLOAD
995 struct xfrmdev_ops {
996 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
997 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
998 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
999 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1000 				       struct xfrm_state *x);
1001 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1002 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1003 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1004 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1005 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1006 };
1007 #endif
1008 
1009 struct dev_ifalias {
1010 	struct rcu_head rcuhead;
1011 	char ifalias[];
1012 };
1013 
1014 struct devlink;
1015 struct tlsdev_ops;
1016 
1017 struct netdev_net_notifier {
1018 	struct list_head list;
1019 	struct notifier_block *nb;
1020 };
1021 
1022 /*
1023  * This structure defines the management hooks for network devices.
1024  * The following hooks can be defined; unless noted otherwise, they are
1025  * optional and can be filled with a null pointer.
1026  *
1027  * int (*ndo_init)(struct net_device *dev);
1028  *     This function is called once when a network device is registered.
1029  *     The network device can use this for any late stage initialization
1030  *     or semantic validation. It can fail with an error code which will
1031  *     be propagated back to register_netdev.
1032  *
1033  * void (*ndo_uninit)(struct net_device *dev);
1034  *     This function is called when device is unregistered or when registration
1035  *     fails. It is not called if init fails.
1036  *
1037  * int (*ndo_open)(struct net_device *dev);
1038  *     This function is called when a network device transitions to the up
1039  *     state.
1040  *
1041  * int (*ndo_stop)(struct net_device *dev);
1042  *     This function is called when a network device transitions to the down
1043  *     state.
1044  *
1045  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1046  *                               struct net_device *dev);
1047  *	Called when a packet needs to be transmitted.
1048  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1049  *	the queue before that can happen; it's for obsolete devices and weird
1050  *	corner cases, but the stack really does a non-trivial amount
1051  *	of useless work if you return NETDEV_TX_BUSY.
1052  *	Required; cannot be NULL.
1053  *
1054  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1055  *					   struct net_device *dev
1056  *					   netdev_features_t features);
1057  *	Called by core transmit path to determine if device is capable of
1058  *	performing offload operations on a given packet. This is to give
1059  *	the device an opportunity to implement any restrictions that cannot
1060  *	be otherwise expressed by feature flags. The check is called with
1061  *	the set of features that the stack has calculated and it returns
1062  *	those the driver believes to be appropriate.
1063  *
1064  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1065  *                         struct net_device *sb_dev);
1066  *	Called to decide which queue to use when device supports multiple
1067  *	transmit queues.
1068  *
1069  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1070  *	This function is called to allow device receiver to make
1071  *	changes to configuration when multicast or promiscuous is enabled.
1072  *
1073  * void (*ndo_set_rx_mode)(struct net_device *dev);
1074  *	This function is called device changes address list filtering.
1075  *	If driver handles unicast address filtering, it should set
1076  *	IFF_UNICAST_FLT in its priv_flags.
1077  *
1078  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1079  *	This function  is called when the Media Access Control address
1080  *	needs to be changed. If this interface is not defined, the
1081  *	MAC address can not be changed.
1082  *
1083  * int (*ndo_validate_addr)(struct net_device *dev);
1084  *	Test if Media Access Control address is valid for the device.
1085  *
1086  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Old-style ioctl entry point. This is used internally by the
1088  *	ieee802154 subsystem but is no longer called by the device
1089  *	ioctl handler.
1090  *
1091  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *	Used by the bonding driver for its device specific ioctls:
1093  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1094  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1095  *
1096  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1097  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1098  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1099  *
1100  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1101  *	Used to set network devices bus interface parameters. This interface
1102  *	is retained for legacy reasons; new devices should use the bus
1103  *	interface (PCI) for low level management.
1104  *
1105  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1106  *	Called when a user wants to change the Maximum Transfer Unit
1107  *	of a device.
1108  *
1109  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1110  *	Callback used when the transmitter has not made any progress
1111  *	for dev->watchdog ticks.
1112  *
1113  * void (*ndo_get_stats64)(struct net_device *dev,
1114  *                         struct rtnl_link_stats64 *storage);
1115  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1116  *	Called when a user wants to get the network device usage
1117  *	statistics. Drivers must do one of the following:
1118  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1119  *	   rtnl_link_stats64 structure passed by the caller.
1120  *	2. Define @ndo_get_stats to update a net_device_stats structure
1121  *	   (which should normally be dev->stats) and return a pointer to
1122  *	   it. The structure may be changed asynchronously only if each
1123  *	   field is written atomically.
1124  *	3. Update dev->stats asynchronously and atomically, and define
1125  *	   neither operation.
1126  *
1127  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1128  *	Return true if this device supports offload stats of this attr_id.
1129  *
1130  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1131  *	void *attr_data)
1132  *	Get statistics for offload operations by attr_id. Write it into the
1133  *	attr_data pointer.
1134  *
1135  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1136  *	If device supports VLAN filtering this function is called when a
1137  *	VLAN id is registered.
1138  *
1139  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1140  *	If device supports VLAN filtering this function is called when a
1141  *	VLAN id is unregistered.
1142  *
1143  * void (*ndo_poll_controller)(struct net_device *dev);
1144  *
1145  *	SR-IOV management functions.
1146  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1147  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1148  *			  u8 qos, __be16 proto);
1149  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1150  *			  int max_tx_rate);
1151  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1153  * int (*ndo_get_vf_config)(struct net_device *dev,
1154  *			    int vf, struct ifla_vf_info *ivf);
1155  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1156  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1157  *			  struct nlattr *port[]);
1158  *
1159  *      Enable or disable the VF ability to query its RSS Redirection Table and
1160  *      Hash Key. This is needed since on some devices VF share this information
1161  *      with PF and querying it may introduce a theoretical security risk.
1162  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1163  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1164  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1165  *		       void *type_data);
1166  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1167  *	This is always called from the stack with the rtnl lock held and netif
1168  *	tx queues stopped. This allows the netdevice to perform queue
1169  *	management safely.
1170  *
1171  *	Fiber Channel over Ethernet (FCoE) offload functions.
1172  * int (*ndo_fcoe_enable)(struct net_device *dev);
1173  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1174  *	so the underlying device can perform whatever needed configuration or
1175  *	initialization to support acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_disable)(struct net_device *dev);
1178  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1179  *	so the underlying device can perform whatever needed clean-ups to
1180  *	stop supporting acceleration of FCoE traffic.
1181  *
1182  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1183  *			     struct scatterlist *sgl, unsigned int sgc);
1184  *	Called when the FCoE Initiator wants to initialize an I/O that
1185  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1186  *	perform necessary setup and returns 1 to indicate the device is set up
1187  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1188  *
1189  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1190  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1191  *	indicated by the FC exchange id 'xid', so the underlying device can
1192  *	clean up and reuse resources for later DDP requests.
1193  *
1194  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1195  *			      struct scatterlist *sgl, unsigned int sgc);
1196  *	Called when the FCoE Target wants to initialize an I/O that
1197  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1198  *	perform necessary setup and returns 1 to indicate the device is set up
1199  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1200  *
1201  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1202  *			       struct netdev_fcoe_hbainfo *hbainfo);
1203  *	Called when the FCoE Protocol stack wants information on the underlying
1204  *	device. This information is utilized by the FCoE protocol stack to
1205  *	register attributes with Fiber Channel management service as per the
1206  *	FC-GS Fabric Device Management Information(FDMI) specification.
1207  *
1208  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1209  *	Called when the underlying device wants to override default World Wide
1210  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1211  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1212  *	protocol stack to use.
1213  *
1214  *	RFS acceleration.
1215  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1216  *			    u16 rxq_index, u32 flow_id);
1217  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1218  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1219  *	Return the filter ID on success, or a negative error code.
1220  *
1221  *	Slave management functions (for bridge, bonding, etc).
1222  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1223  *	Called to make another netdev an underling.
1224  *
1225  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1226  *	Called to release previously enslaved netdev.
1227  *
1228  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1229  *					    struct sk_buff *skb,
1230  *					    bool all_slaves);
1231  *	Get the xmit slave of master device. If all_slaves is true, function
1232  *	assume all the slaves can transmit.
1233  *
1234  *      Feature/offload setting functions.
1235  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1236  *		netdev_features_t features);
1237  *	Adjusts the requested feature flags according to device-specific
1238  *	constraints, and returns the resulting flags. Must not modify
1239  *	the device state.
1240  *
1241  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1242  *	Called to update device configuration to new features. Passed
1243  *	feature set might be less than what was returned by ndo_fix_features()).
1244  *	Must return >0 or -errno if it changed dev->features itself.
1245  *
1246  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *		      struct net_device *dev,
1248  *		      const unsigned char *addr, u16 vid, u16 flags,
1249  *		      bool *notified, struct netlink_ext_ack *extack);
1250  *	Adds an FDB entry to dev for addr.
1251  *	Callee shall set *notified to true if it sent any appropriate
1252  *	notification(s). Otherwise core will send a generic one.
1253  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1254  *		      struct net_device *dev,
1255  *		      const unsigned char *addr, u16 vid
1256  *		      bool *notified, struct netlink_ext_ack *extack);
1257  *	Deletes the FDB entry from dev corresponding to addr.
1258  *	Callee shall set *notified to true if it sent any appropriate
1259  *	notification(s). Otherwise core will send a generic one.
1260  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1261  *			   struct netlink_ext_ack *extack);
1262  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1263  *		       struct net_device *dev, struct net_device *filter_dev,
1264  *		       int *idx)
1265  *	Used to add FDB entries to dump requests. Implementers should add
1266  *	entries to skb and update idx with the number of entries.
1267  *
1268  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1269  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1270  *	Adds an MDB entry to dev.
1271  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1272  *		      struct netlink_ext_ack *extack);
1273  *	Deletes the MDB entry from dev.
1274  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1275  *			   struct netlink_ext_ack *extack);
1276  *	Bulk deletes MDB entries from dev.
1277  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1278  *		       struct netlink_callback *cb);
1279  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1280  *	callback is used by core rtnetlink code.
1281  *
1282  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1283  *			     u16 flags, struct netlink_ext_ack *extack)
1284  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1285  *			     struct net_device *dev, u32 filter_mask,
1286  *			     int nlflags)
1287  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1288  *			     u16 flags);
1289  *
1290  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1291  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1292  *	which do not represent real hardware may define this to allow their
1293  *	userspace components to manage their virtual carrier state. Devices
1294  *	that determine carrier state from physical hardware properties (eg
1295  *	network cables) or protocol-dependent mechanisms (eg
1296  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1297  *
1298  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1299  *			       struct netdev_phys_item_id *ppid);
1300  *	Called to get ID of physical port of this device. If driver does
1301  *	not implement this, it is assumed that the hw is not able to have
1302  *	multiple net devices on single physical port.
1303  *
1304  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1305  *				 struct netdev_phys_item_id *ppid)
1306  *	Called to get the parent ID of the physical port of this device.
1307  *
1308  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1309  *				 struct net_device *dev)
1310  *	Called by upper layer devices to accelerate switching or other
1311  *	station functionality into hardware. 'pdev is the lowerdev
1312  *	to use for the offload and 'dev' is the net device that will
1313  *	back the offload. Returns a pointer to the private structure
1314  *	the upper layer will maintain.
1315  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1316  *	Called by upper layer device to delete the station created
1317  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1318  *	the station and priv is the structure returned by the add
1319  *	operation.
1320  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1321  *			     int queue_index, u32 maxrate);
1322  *	Called when a user wants to set a max-rate limitation of specific
1323  *	TX queue.
1324  * int (*ndo_get_iflink)(const struct net_device *dev);
1325  *	Called to get the iflink value of this device.
1326  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1327  *	This function is used to get egress tunnel information for given skb.
1328  *	This is useful for retrieving outer tunnel header parameters while
1329  *	sampling packet.
1330  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1331  *	This function is used to specify the headroom that the skb must
1332  *	consider when allocation skb during packet reception. Setting
1333  *	appropriate rx headroom value allows avoiding skb head copy on
1334  *	forward. Setting a negative value resets the rx headroom to the
1335  *	default value.
1336  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1337  *	This function is used to set or query state related to XDP on the
1338  *	netdevice and manage BPF offload. See definition of
1339  *	enum bpf_netdev_command for details.
1340  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1341  *			u32 flags);
1342  *	This function is used to submit @n XDP packets for transmit on a
1343  *	netdevice. Returns number of frames successfully transmitted, frames
1344  *	that got dropped are freed/returned via xdp_return_frame().
1345  *	Returns negative number, means general error invoking ndo, meaning
1346  *	no frames were xmit'ed and core-caller will free all frames.
1347  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1348  *					        struct xdp_buff *xdp);
1349  *      Get the xmit slave of master device based on the xdp_buff.
1350  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1351  *      This function is used to wake up the softirq, ksoftirqd or kthread
1352  *	responsible for sending and/or receiving packets on a specific
1353  *	queue id bound to an AF_XDP socket. The flags field specifies if
1354  *	only RX, only Tx, or both should be woken up using the flags
1355  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1356  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1357  *			 int cmd);
1358  *	Add, change, delete or get information on an IPv4 tunnel.
1359  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1360  *	If a device is paired with a peer device, return the peer instance.
1361  *	The caller must be under RCU read context.
1362  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1363  *     Get the forwarding path to reach the real device from the HW destination address
1364  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1365  *			     const struct skb_shared_hwtstamps *hwtstamps,
1366  *			     bool cycles);
1367  *	Get hardware timestamp based on normal/adjustable time or free running
1368  *	cycle counter. This function is required if physical clock supports a
1369  *	free running cycle counter.
1370  *
1371  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1372  *			   struct kernel_hwtstamp_config *kernel_config);
1373  *	Get the currently configured hardware timestamping parameters for the
1374  *	NIC device.
1375  *
1376  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1377  *			   struct kernel_hwtstamp_config *kernel_config,
1378  *			   struct netlink_ext_ack *extack);
1379  *	Change the hardware timestamping parameters for NIC device.
1380  */
1381 struct net_device_ops {
1382 	int			(*ndo_init)(struct net_device *dev);
1383 	void			(*ndo_uninit)(struct net_device *dev);
1384 	int			(*ndo_open)(struct net_device *dev);
1385 	int			(*ndo_stop)(struct net_device *dev);
1386 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1387 						  struct net_device *dev);
1388 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1389 						      struct net_device *dev,
1390 						      netdev_features_t features);
1391 	u16			(*ndo_select_queue)(struct net_device *dev,
1392 						    struct sk_buff *skb,
1393 						    struct net_device *sb_dev);
1394 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1395 						       int flags);
1396 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1397 	int			(*ndo_set_mac_address)(struct net_device *dev,
1398 						       void *addr);
1399 	int			(*ndo_validate_addr)(struct net_device *dev);
1400 	int			(*ndo_do_ioctl)(struct net_device *dev,
1401 					        struct ifreq *ifr, int cmd);
1402 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1403 						 struct ifreq *ifr, int cmd);
1404 	int			(*ndo_siocbond)(struct net_device *dev,
1405 						struct ifreq *ifr, int cmd);
1406 	int			(*ndo_siocwandev)(struct net_device *dev,
1407 						  struct if_settings *ifs);
1408 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1409 						      struct ifreq *ifr,
1410 						      void __user *data, int cmd);
1411 	int			(*ndo_set_config)(struct net_device *dev,
1412 					          struct ifmap *map);
1413 	int			(*ndo_change_mtu)(struct net_device *dev,
1414 						  int new_mtu);
1415 	int			(*ndo_neigh_setup)(struct net_device *dev,
1416 						   struct neigh_parms *);
1417 	void			(*ndo_tx_timeout) (struct net_device *dev,
1418 						   unsigned int txqueue);
1419 
1420 	void			(*ndo_get_stats64)(struct net_device *dev,
1421 						   struct rtnl_link_stats64 *storage);
1422 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1423 	int			(*ndo_get_offload_stats)(int attr_id,
1424 							 const struct net_device *dev,
1425 							 void *attr_data);
1426 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1427 
1428 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1429 						       __be16 proto, u16 vid);
1430 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1431 						        __be16 proto, u16 vid);
1432 #ifdef CONFIG_NET_POLL_CONTROLLER
1433 	void                    (*ndo_poll_controller)(struct net_device *dev);
1434 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1435 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1436 #endif
1437 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1438 						  int queue, u8 *mac);
1439 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1440 						   int queue, u16 vlan,
1441 						   u8 qos, __be16 proto);
1442 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1443 						   int vf, int min_tx_rate,
1444 						   int max_tx_rate);
1445 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1446 						       int vf, bool setting);
1447 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1448 						    int vf, bool setting);
1449 	int			(*ndo_get_vf_config)(struct net_device *dev,
1450 						     int vf,
1451 						     struct ifla_vf_info *ivf);
1452 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1453 							 int vf, int link_state);
1454 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1455 						    int vf,
1456 						    struct ifla_vf_stats
1457 						    *vf_stats);
1458 	int			(*ndo_set_vf_port)(struct net_device *dev,
1459 						   int vf,
1460 						   struct nlattr *port[]);
1461 	int			(*ndo_get_vf_port)(struct net_device *dev,
1462 						   int vf, struct sk_buff *skb);
1463 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1464 						   int vf,
1465 						   struct ifla_vf_guid *node_guid,
1466 						   struct ifla_vf_guid *port_guid);
1467 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1468 						   int vf, u64 guid,
1469 						   int guid_type);
1470 	int			(*ndo_set_vf_rss_query_en)(
1471 						   struct net_device *dev,
1472 						   int vf, bool setting);
1473 	int			(*ndo_setup_tc)(struct net_device *dev,
1474 						enum tc_setup_type type,
1475 						void *type_data);
1476 #if IS_ENABLED(CONFIG_FCOE)
1477 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1478 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1479 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1480 						      u16 xid,
1481 						      struct scatterlist *sgl,
1482 						      unsigned int sgc);
1483 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1484 						     u16 xid);
1485 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1486 						       u16 xid,
1487 						       struct scatterlist *sgl,
1488 						       unsigned int sgc);
1489 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1490 							struct netdev_fcoe_hbainfo *hbainfo);
1491 #endif
1492 
1493 #if IS_ENABLED(CONFIG_LIBFCOE)
1494 #define NETDEV_FCOE_WWNN 0
1495 #define NETDEV_FCOE_WWPN 1
1496 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1497 						    u64 *wwn, int type);
1498 #endif
1499 
1500 #ifdef CONFIG_RFS_ACCEL
1501 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1502 						     const struct sk_buff *skb,
1503 						     u16 rxq_index,
1504 						     u32 flow_id);
1505 #endif
1506 	int			(*ndo_add_slave)(struct net_device *dev,
1507 						 struct net_device *slave_dev,
1508 						 struct netlink_ext_ack *extack);
1509 	int			(*ndo_del_slave)(struct net_device *dev,
1510 						 struct net_device *slave_dev);
1511 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1512 						      struct sk_buff *skb,
1513 						      bool all_slaves);
1514 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1515 							struct sock *sk);
1516 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1517 						    netdev_features_t features);
1518 	int			(*ndo_set_features)(struct net_device *dev,
1519 						    netdev_features_t features);
1520 	int			(*ndo_neigh_construct)(struct net_device *dev,
1521 						       struct neighbour *n);
1522 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1523 						     struct neighbour *n);
1524 
1525 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1526 					       struct nlattr *tb[],
1527 					       struct net_device *dev,
1528 					       const unsigned char *addr,
1529 					       u16 vid,
1530 					       u16 flags,
1531 					       bool *notified,
1532 					       struct netlink_ext_ack *extack);
1533 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1534 					       struct nlattr *tb[],
1535 					       struct net_device *dev,
1536 					       const unsigned char *addr,
1537 					       u16 vid,
1538 					       bool *notified,
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1541 						    struct net_device *dev,
1542 						    struct netlink_ext_ack *extack);
1543 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1544 						struct netlink_callback *cb,
1545 						struct net_device *dev,
1546 						struct net_device *filter_dev,
1547 						int *idx);
1548 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1549 					       struct nlattr *tb[],
1550 					       struct net_device *dev,
1551 					       const unsigned char *addr,
1552 					       u16 vid, u32 portid, u32 seq,
1553 					       struct netlink_ext_ack *extack);
1554 	int			(*ndo_mdb_add)(struct net_device *dev,
1555 					       struct nlattr *tb[],
1556 					       u16 nlmsg_flags,
1557 					       struct netlink_ext_ack *extack);
1558 	int			(*ndo_mdb_del)(struct net_device *dev,
1559 					       struct nlattr *tb[],
1560 					       struct netlink_ext_ack *extack);
1561 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1562 						    struct nlattr *tb[],
1563 						    struct netlink_ext_ack *extack);
1564 	int			(*ndo_mdb_dump)(struct net_device *dev,
1565 						struct sk_buff *skb,
1566 						struct netlink_callback *cb);
1567 	int			(*ndo_mdb_get)(struct net_device *dev,
1568 					       struct nlattr *tb[], u32 portid,
1569 					       u32 seq,
1570 					       struct netlink_ext_ack *extack);
1571 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1572 						      struct nlmsghdr *nlh,
1573 						      u16 flags,
1574 						      struct netlink_ext_ack *extack);
1575 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1576 						      u32 pid, u32 seq,
1577 						      struct net_device *dev,
1578 						      u32 filter_mask,
1579 						      int nlflags);
1580 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1581 						      struct nlmsghdr *nlh,
1582 						      u16 flags);
1583 	int			(*ndo_change_carrier)(struct net_device *dev,
1584 						      bool new_carrier);
1585 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1586 							struct netdev_phys_item_id *ppid);
1587 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1588 							  struct netdev_phys_item_id *ppid);
1589 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1590 							  char *name, size_t len);
1591 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1592 							struct net_device *dev);
1593 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1594 							void *priv);
1595 
1596 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1597 						      int queue_index,
1598 						      u32 maxrate);
1599 	int			(*ndo_get_iflink)(const struct net_device *dev);
1600 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1601 						       struct sk_buff *skb);
1602 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1603 						       int needed_headroom);
1604 	int			(*ndo_bpf)(struct net_device *dev,
1605 					   struct netdev_bpf *bpf);
1606 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1607 						struct xdp_frame **xdp,
1608 						u32 flags);
1609 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1610 							  struct xdp_buff *xdp);
1611 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1612 						  u32 queue_id, u32 flags);
1613 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1614 						  struct ip_tunnel_parm_kern *p,
1615 						  int cmd);
1616 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1617 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1618                                                          struct net_device_path *path);
1619 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1620 						  const struct skb_shared_hwtstamps *hwtstamps,
1621 						  bool cycles);
1622 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1623 						    struct kernel_hwtstamp_config *kernel_config);
1624 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1625 						    struct kernel_hwtstamp_config *kernel_config,
1626 						    struct netlink_ext_ack *extack);
1627 
1628 #if IS_ENABLED(CONFIG_NET_SHAPER)
1629 	/**
1630 	 * @net_shaper_ops: Device shaping offload operations
1631 	 * see include/net/net_shapers.h
1632 	 */
1633 	const struct net_shaper_ops *net_shaper_ops;
1634 #endif
1635 };
1636 
1637 /**
1638  * enum netdev_priv_flags - &struct net_device priv_flags
1639  *
1640  * These are the &struct net_device, they are only set internally
1641  * by drivers and used in the kernel. These flags are invisible to
1642  * userspace; this means that the order of these flags can change
1643  * during any kernel release.
1644  *
1645  * You should add bitfield booleans after either net_device::priv_flags
1646  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1647  *
1648  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1649  * @IFF_EBRIDGE: Ethernet bridging device
1650  * @IFF_BONDING: bonding master or slave
1651  * @IFF_ISATAP: ISATAP interface (RFC4214)
1652  * @IFF_WAN_HDLC: WAN HDLC device
1653  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1654  *	release skb->dst
1655  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1656  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1657  * @IFF_MACVLAN_PORT: device used as macvlan port
1658  * @IFF_BRIDGE_PORT: device used as bridge port
1659  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1660  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1661  * @IFF_UNICAST_FLT: Supports unicast filtering
1662  * @IFF_TEAM_PORT: device used as team port
1663  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1664  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1665  *	change when it's running
1666  * @IFF_MACVLAN: Macvlan device
1667  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1668  *	underlying stacked devices
1669  * @IFF_L3MDEV_MASTER: device is an L3 master device
1670  * @IFF_NO_QUEUE: device can run without qdisc attached
1671  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1672  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1673  * @IFF_TEAM: device is a team device
1674  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1675  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1676  *	entity (i.e. the master device for bridged veth)
1677  * @IFF_MACSEC: device is a MACsec device
1678  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1679  * @IFF_FAILOVER: device is a failover master device
1680  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1681  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1682  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1683  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1684  *	skb_headlen(skb) == 0 (data starts from frag0)
1685  */
1686 enum netdev_priv_flags {
1687 	IFF_802_1Q_VLAN			= 1<<0,
1688 	IFF_EBRIDGE			= 1<<1,
1689 	IFF_BONDING			= 1<<2,
1690 	IFF_ISATAP			= 1<<3,
1691 	IFF_WAN_HDLC			= 1<<4,
1692 	IFF_XMIT_DST_RELEASE		= 1<<5,
1693 	IFF_DONT_BRIDGE			= 1<<6,
1694 	IFF_DISABLE_NETPOLL		= 1<<7,
1695 	IFF_MACVLAN_PORT		= 1<<8,
1696 	IFF_BRIDGE_PORT			= 1<<9,
1697 	IFF_OVS_DATAPATH		= 1<<10,
1698 	IFF_TX_SKB_SHARING		= 1<<11,
1699 	IFF_UNICAST_FLT			= 1<<12,
1700 	IFF_TEAM_PORT			= 1<<13,
1701 	IFF_SUPP_NOFCS			= 1<<14,
1702 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1703 	IFF_MACVLAN			= 1<<16,
1704 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1705 	IFF_L3MDEV_MASTER		= 1<<18,
1706 	IFF_NO_QUEUE			= 1<<19,
1707 	IFF_OPENVSWITCH			= 1<<20,
1708 	IFF_L3MDEV_SLAVE		= 1<<21,
1709 	IFF_TEAM			= 1<<22,
1710 	IFF_RXFH_CONFIGURED		= 1<<23,
1711 	IFF_PHONY_HEADROOM		= 1<<24,
1712 	IFF_MACSEC			= 1<<25,
1713 	IFF_NO_RX_HANDLER		= 1<<26,
1714 	IFF_FAILOVER			= 1<<27,
1715 	IFF_FAILOVER_SLAVE		= 1<<28,
1716 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1717 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1718 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1719 };
1720 
1721 /* Specifies the type of the struct net_device::ml_priv pointer */
1722 enum netdev_ml_priv_type {
1723 	ML_PRIV_NONE,
1724 	ML_PRIV_CAN,
1725 };
1726 
1727 enum netdev_stat_type {
1728 	NETDEV_PCPU_STAT_NONE,
1729 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1730 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1731 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1732 };
1733 
1734 enum netdev_reg_state {
1735 	NETREG_UNINITIALIZED = 0,
1736 	NETREG_REGISTERED,	/* completed register_netdevice */
1737 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1738 	NETREG_UNREGISTERED,	/* completed unregister todo */
1739 	NETREG_RELEASED,	/* called free_netdev */
1740 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1741 };
1742 
1743 /**
1744  *	struct net_device - The DEVICE structure.
1745  *
1746  *	Actually, this whole structure is a big mistake.  It mixes I/O
1747  *	data with strictly "high-level" data, and it has to know about
1748  *	almost every data structure used in the INET module.
1749  *
1750  *	@priv_flags:	flags invisible to userspace defined as bits, see
1751  *			enum netdev_priv_flags for the definitions
1752  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1753  *			drivers. Mainly used by logical interfaces, such as
1754  *			bonding and tunnels
1755  *
1756  *	@name:	This is the first field of the "visible" part of this structure
1757  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1758  *		of the interface.
1759  *
1760  *	@name_node:	Name hashlist node
1761  *	@ifalias:	SNMP alias
1762  *	@mem_end:	Shared memory end
1763  *	@mem_start:	Shared memory start
1764  *	@base_addr:	Device I/O address
1765  *	@irq:		Device IRQ number
1766  *
1767  *	@state:		Generic network queuing layer state, see netdev_state_t
1768  *	@dev_list:	The global list of network devices
1769  *	@napi_list:	List entry used for polling NAPI devices
1770  *	@unreg_list:	List entry  when we are unregistering the
1771  *			device; see the function unregister_netdev
1772  *	@close_list:	List entry used when we are closing the device
1773  *	@ptype_all:     Device-specific packet handlers for all protocols
1774  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1775  *
1776  *	@adj_list:	Directly linked devices, like slaves for bonding
1777  *	@features:	Currently active device features
1778  *	@hw_features:	User-changeable features
1779  *
1780  *	@wanted_features:	User-requested features
1781  *	@vlan_features:		Mask of features inheritable by VLAN devices
1782  *
1783  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1784  *				This field indicates what encapsulation
1785  *				offloads the hardware is capable of doing,
1786  *				and drivers will need to set them appropriately.
1787  *
1788  *	@mpls_features:	Mask of features inheritable by MPLS
1789  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1790  *
1791  *	@ifindex:	interface index
1792  *	@group:		The group the device belongs to
1793  *
1794  *	@stats:		Statistics struct, which was left as a legacy, use
1795  *			rtnl_link_stats64 instead
1796  *
1797  *	@core_stats:	core networking counters,
1798  *			do not use this in drivers
1799  *	@carrier_up_count:	Number of times the carrier has been up
1800  *	@carrier_down_count:	Number of times the carrier has been down
1801  *
1802  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1803  *				instead of ioctl,
1804  *				see <net/iw_handler.h> for details.
1805  *
1806  *	@netdev_ops:	Includes several pointers to callbacks,
1807  *			if one wants to override the ndo_*() functions
1808  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1809  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1810  *	@ethtool_ops:	Management operations
1811  *	@l3mdev_ops:	Layer 3 master device operations
1812  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1813  *			discovery handling. Necessary for e.g. 6LoWPAN.
1814  *	@xfrmdev_ops:	Transformation offload operations
1815  *	@tlsdev_ops:	Transport Layer Security offload operations
1816  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1817  *			of Layer 2 headers.
1818  *
1819  *	@flags:		Interface flags (a la BSD)
1820  *	@xdp_features:	XDP capability supported by the device
1821  *	@gflags:	Global flags ( kept as legacy )
1822  *	@priv_len:	Size of the ->priv flexible array
1823  *	@priv:		Flexible array containing private data
1824  *	@operstate:	RFC2863 operstate
1825  *	@link_mode:	Mapping policy to operstate
1826  *	@if_port:	Selectable AUI, TP, ...
1827  *	@dma:		DMA channel
1828  *	@mtu:		Interface MTU value
1829  *	@min_mtu:	Interface Minimum MTU value
1830  *	@max_mtu:	Interface Maximum MTU value
1831  *	@type:		Interface hardware type
1832  *	@hard_header_len: Maximum hardware header length.
1833  *	@min_header_len:  Minimum hardware header length
1834  *
1835  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1836  *			  cases can this be guaranteed
1837  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1838  *			  cases can this be guaranteed. Some cases also use
1839  *			  LL_MAX_HEADER instead to allocate the skb
1840  *
1841  *	interface address info:
1842  *
1843  * 	@perm_addr:		Permanent hw address
1844  * 	@addr_assign_type:	Hw address assignment type
1845  * 	@addr_len:		Hardware address length
1846  *	@upper_level:		Maximum depth level of upper devices.
1847  *	@lower_level:		Maximum depth level of lower devices.
1848  *	@neigh_priv_len:	Used in neigh_alloc()
1849  * 	@dev_id:		Used to differentiate devices that share
1850  * 				the same link layer address
1851  * 	@dev_port:		Used to differentiate devices that share
1852  * 				the same function
1853  *	@addr_list_lock:	XXX: need comments on this one
1854  *	@name_assign_type:	network interface name assignment type
1855  *	@uc_promisc:		Counter that indicates promiscuous mode
1856  *				has been enabled due to the need to listen to
1857  *				additional unicast addresses in a device that
1858  *				does not implement ndo_set_rx_mode()
1859  *	@uc:			unicast mac addresses
1860  *	@mc:			multicast mac addresses
1861  *	@dev_addrs:		list of device hw addresses
1862  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1863  *	@promiscuity:		Number of times the NIC is told to work in
1864  *				promiscuous mode; if it becomes 0 the NIC will
1865  *				exit promiscuous mode
1866  *	@allmulti:		Counter, enables or disables allmulticast mode
1867  *
1868  *	@vlan_info:	VLAN info
1869  *	@dsa_ptr:	dsa specific data
1870  *	@tipc_ptr:	TIPC specific data
1871  *	@atalk_ptr:	AppleTalk link
1872  *	@ip_ptr:	IPv4 specific data
1873  *	@ip6_ptr:	IPv6 specific data
1874  *	@ax25_ptr:	AX.25 specific data
1875  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1876  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1877  *			 device struct
1878  *	@mpls_ptr:	mpls_dev struct pointer
1879  *	@mctp_ptr:	MCTP specific data
1880  *
1881  *	@dev_addr:	Hw address (before bcast,
1882  *			because most packets are unicast)
1883  *
1884  *	@_rx:			Array of RX queues
1885  *	@num_rx_queues:		Number of RX queues
1886  *				allocated at register_netdev() time
1887  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1888  *	@xdp_prog:		XDP sockets filter program pointer
1889  *
1890  *	@rx_handler:		handler for received packets
1891  *	@rx_handler_data: 	XXX: need comments on this one
1892  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1893  *	@ingress_queue:		XXX: need comments on this one
1894  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1895  *	@broadcast:		hw bcast address
1896  *
1897  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1898  *			indexed by RX queue number. Assigned by driver.
1899  *			This must only be set if the ndo_rx_flow_steer
1900  *			operation is defined
1901  *	@index_hlist:		Device index hash chain
1902  *
1903  *	@_tx:			Array of TX queues
1904  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1905  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1906  *	@qdisc:			Root qdisc from userspace point of view
1907  *	@tx_queue_len:		Max frames per queue allowed
1908  *	@tx_global_lock: 	XXX: need comments on this one
1909  *	@xdp_bulkq:		XDP device bulk queue
1910  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1911  *
1912  *	@xps_maps:	XXX: need comments on this one
1913  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1914  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1915  *	@qdisc_hash:		qdisc hash table
1916  *	@watchdog_timeo:	Represents the timeout that is used by
1917  *				the watchdog (see dev_watchdog())
1918  *	@watchdog_timer:	List of timers
1919  *
1920  *	@proto_down_reason:	reason a netdev interface is held down
1921  *	@pcpu_refcnt:		Number of references to this device
1922  *	@dev_refcnt:		Number of references to this device
1923  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1924  *	@todo_list:		Delayed register/unregister
1925  *	@link_watch_list:	XXX: need comments on this one
1926  *
1927  *	@reg_state:		Register/unregister state machine
1928  *	@dismantle:		Device is going to be freed
1929  *	@rtnl_link_state:	This enum represents the phases of creating
1930  *				a new link
1931  *
1932  *	@needs_free_netdev:	Should unregister perform free_netdev?
1933  *	@priv_destructor:	Called from unregister
1934  *	@npinfo:		XXX: need comments on this one
1935  * 	@nd_net:		Network namespace this network device is inside
1936  *
1937  * 	@ml_priv:	Mid-layer private
1938  *	@ml_priv_type:  Mid-layer private type
1939  *
1940  *	@pcpu_stat_type:	Type of device statistics which the core should
1941  *				allocate/free: none, lstats, tstats, dstats. none
1942  *				means the driver is handling statistics allocation/
1943  *				freeing internally.
1944  *	@lstats:		Loopback statistics: packets, bytes
1945  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1946  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1947  *
1948  *	@garp_port:	GARP
1949  *	@mrp_port:	MRP
1950  *
1951  *	@dm_private:	Drop monitor private
1952  *
1953  *	@dev:		Class/net/name entry
1954  *	@sysfs_groups:	Space for optional device, statistics and wireless
1955  *			sysfs groups
1956  *
1957  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1958  *	@rtnl_link_ops:	Rtnl_link_ops
1959  *	@stat_ops:	Optional ops for queue-aware statistics
1960  *	@queue_mgmt_ops:	Optional ops for queue management
1961  *
1962  *	@gso_max_size:	Maximum size of generic segmentation offload
1963  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1964  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1965  *			NIC for GSO
1966  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1967  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1968  * 				for IPv4.
1969  *
1970  *	@dcbnl_ops:	Data Center Bridging netlink ops
1971  *	@num_tc:	Number of traffic classes in the net device
1972  *	@tc_to_txq:	XXX: need comments on this one
1973  *	@prio_tc_map:	XXX: need comments on this one
1974  *
1975  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1976  *
1977  *	@priomap:	XXX: need comments on this one
1978  *	@link_topo:	Physical link topology tracking attached PHYs
1979  *	@phydev:	Physical device may attach itself
1980  *			for hardware timestamping
1981  *	@sfp_bus:	attached &struct sfp_bus structure.
1982  *
1983  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1984  *
1985  *	@proto_down:	protocol port state information can be sent to the
1986  *			switch driver and used to set the phys state of the
1987  *			switch port.
1988  *
1989  *	@threaded:	napi threaded mode is enabled
1990  *
1991  *	@see_all_hwtstamp_requests: device wants to see calls to
1992  *			ndo_hwtstamp_set() for all timestamp requests
1993  *			regardless of source, even if those aren't
1994  *			HWTSTAMP_SOURCE_NETDEV
1995  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1996  *	@netns_local: interface can't change network namespaces
1997  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
1998  *
1999  *	@net_notifier_list:	List of per-net netdev notifier block
2000  *				that follow this device when it is moved
2001  *				to another network namespace.
2002  *
2003  *	@macsec_ops:    MACsec offloading ops
2004  *
2005  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2006  *				offload capabilities of the device
2007  *	@udp_tunnel_nic:	UDP tunnel offload state
2008  *	@ethtool:	ethtool related state
2009  *	@xdp_state:		stores info on attached XDP BPF programs
2010  *
2011  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2012  *			dev->addr_list_lock.
2013  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2014  *			keep a list of interfaces to be deleted.
2015  *	@gro_max_size:	Maximum size of aggregated packet in generic
2016  *			receive offload (GRO)
2017  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2018  * 				receive offload (GRO), for IPv4.
2019  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2020  *				zero copy driver
2021  *
2022  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2023  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2024  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2025  *	@dev_registered_tracker:	tracker for reference held while
2026  *					registered
2027  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2028  *
2029  *	@devlink_port:	Pointer to related devlink port structure.
2030  *			Assigned by a driver before netdev registration using
2031  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2032  *			during the time netdevice is registered.
2033  *
2034  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2035  *		   where the clock is recovered.
2036  *
2037  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2038  *	@napi_config: An array of napi_config structures containing per-NAPI
2039  *		      settings.
2040  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2041  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2042  *				allow to avoid NIC hard IRQ, on busy queues.
2043  *
2044  *	@neighbours:	List heads pointing to this device's neighbours'
2045  *			dev_list, one per address-family.
2046  *	@hwprov: Tracks which PTP performs hardware packet time stamping.
2047  *
2048  *	FIXME: cleanup struct net_device such that network protocol info
2049  *	moves out.
2050  */
2051 
2052 struct net_device {
2053 	/* Cacheline organization can be found documented in
2054 	 * Documentation/networking/net_cachelines/net_device.rst.
2055 	 * Please update the document when adding new fields.
2056 	 */
2057 
2058 	/* TX read-mostly hotpath */
2059 	__cacheline_group_begin(net_device_read_tx);
2060 	struct_group(priv_flags_fast,
2061 		unsigned long		priv_flags:32;
2062 		unsigned long		lltx:1;
2063 	);
2064 	const struct net_device_ops *netdev_ops;
2065 	const struct header_ops *header_ops;
2066 	struct netdev_queue	*_tx;
2067 	netdev_features_t	gso_partial_features;
2068 	unsigned int		real_num_tx_queues;
2069 	unsigned int		gso_max_size;
2070 	unsigned int		gso_ipv4_max_size;
2071 	u16			gso_max_segs;
2072 	s16			num_tc;
2073 	/* Note : dev->mtu is often read without holding a lock.
2074 	 * Writers usually hold RTNL.
2075 	 * It is recommended to use READ_ONCE() to annotate the reads,
2076 	 * and to use WRITE_ONCE() to annotate the writes.
2077 	 */
2078 	unsigned int		mtu;
2079 	unsigned short		needed_headroom;
2080 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2081 #ifdef CONFIG_XPS
2082 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2083 #endif
2084 #ifdef CONFIG_NETFILTER_EGRESS
2085 	struct nf_hook_entries __rcu *nf_hooks_egress;
2086 #endif
2087 #ifdef CONFIG_NET_XGRESS
2088 	struct bpf_mprog_entry __rcu *tcx_egress;
2089 #endif
2090 	__cacheline_group_end(net_device_read_tx);
2091 
2092 	/* TXRX read-mostly hotpath */
2093 	__cacheline_group_begin(net_device_read_txrx);
2094 	union {
2095 		struct pcpu_lstats __percpu		*lstats;
2096 		struct pcpu_sw_netstats __percpu	*tstats;
2097 		struct pcpu_dstats __percpu		*dstats;
2098 	};
2099 	unsigned long		state;
2100 	unsigned int		flags;
2101 	unsigned short		hard_header_len;
2102 	netdev_features_t	features;
2103 	struct inet6_dev __rcu	*ip6_ptr;
2104 	__cacheline_group_end(net_device_read_txrx);
2105 
2106 	/* RX read-mostly hotpath */
2107 	__cacheline_group_begin(net_device_read_rx);
2108 	struct bpf_prog __rcu	*xdp_prog;
2109 	struct list_head	ptype_specific;
2110 	int			ifindex;
2111 	unsigned int		real_num_rx_queues;
2112 	struct netdev_rx_queue	*_rx;
2113 	unsigned int		gro_max_size;
2114 	unsigned int		gro_ipv4_max_size;
2115 	rx_handler_func_t __rcu	*rx_handler;
2116 	void __rcu		*rx_handler_data;
2117 	possible_net_t			nd_net;
2118 #ifdef CONFIG_NETPOLL
2119 	struct netpoll_info __rcu	*npinfo;
2120 #endif
2121 #ifdef CONFIG_NET_XGRESS
2122 	struct bpf_mprog_entry __rcu *tcx_ingress;
2123 #endif
2124 	__cacheline_group_end(net_device_read_rx);
2125 
2126 	char			name[IFNAMSIZ];
2127 	struct netdev_name_node	*name_node;
2128 	struct dev_ifalias	__rcu *ifalias;
2129 	/*
2130 	 *	I/O specific fields
2131 	 *	FIXME: Merge these and struct ifmap into one
2132 	 */
2133 	unsigned long		mem_end;
2134 	unsigned long		mem_start;
2135 	unsigned long		base_addr;
2136 
2137 	/*
2138 	 *	Some hardware also needs these fields (state,dev_list,
2139 	 *	napi_list,unreg_list,close_list) but they are not
2140 	 *	part of the usual set specified in Space.c.
2141 	 */
2142 
2143 
2144 	struct list_head	dev_list;
2145 	struct list_head	napi_list;
2146 	struct list_head	unreg_list;
2147 	struct list_head	close_list;
2148 	struct list_head	ptype_all;
2149 
2150 	struct {
2151 		struct list_head upper;
2152 		struct list_head lower;
2153 	} adj_list;
2154 
2155 	/* Read-mostly cache-line for fast-path access */
2156 	xdp_features_t		xdp_features;
2157 	const struct xdp_metadata_ops *xdp_metadata_ops;
2158 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2159 	unsigned short		gflags;
2160 
2161 	unsigned short		needed_tailroom;
2162 
2163 	netdev_features_t	hw_features;
2164 	netdev_features_t	wanted_features;
2165 	netdev_features_t	vlan_features;
2166 	netdev_features_t	hw_enc_features;
2167 	netdev_features_t	mpls_features;
2168 
2169 	unsigned int		min_mtu;
2170 	unsigned int		max_mtu;
2171 	unsigned short		type;
2172 	unsigned char		min_header_len;
2173 	unsigned char		name_assign_type;
2174 
2175 	int			group;
2176 
2177 	struct net_device_stats	stats; /* not used by modern drivers */
2178 
2179 	struct net_device_core_stats __percpu *core_stats;
2180 
2181 	/* Stats to monitor link on/off, flapping */
2182 	atomic_t		carrier_up_count;
2183 	atomic_t		carrier_down_count;
2184 
2185 #ifdef CONFIG_WIRELESS_EXT
2186 	const struct iw_handler_def *wireless_handlers;
2187 #endif
2188 	const struct ethtool_ops *ethtool_ops;
2189 #ifdef CONFIG_NET_L3_MASTER_DEV
2190 	const struct l3mdev_ops	*l3mdev_ops;
2191 #endif
2192 #if IS_ENABLED(CONFIG_IPV6)
2193 	const struct ndisc_ops *ndisc_ops;
2194 #endif
2195 
2196 #ifdef CONFIG_XFRM_OFFLOAD
2197 	const struct xfrmdev_ops *xfrmdev_ops;
2198 #endif
2199 
2200 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2201 	const struct tlsdev_ops *tlsdev_ops;
2202 #endif
2203 
2204 	unsigned int		operstate;
2205 	unsigned char		link_mode;
2206 
2207 	unsigned char		if_port;
2208 	unsigned char		dma;
2209 
2210 	/* Interface address info. */
2211 	unsigned char		perm_addr[MAX_ADDR_LEN];
2212 	unsigned char		addr_assign_type;
2213 	unsigned char		addr_len;
2214 	unsigned char		upper_level;
2215 	unsigned char		lower_level;
2216 
2217 	unsigned short		neigh_priv_len;
2218 	unsigned short          dev_id;
2219 	unsigned short          dev_port;
2220 	int			irq;
2221 	u32			priv_len;
2222 
2223 	spinlock_t		addr_list_lock;
2224 
2225 	struct netdev_hw_addr_list	uc;
2226 	struct netdev_hw_addr_list	mc;
2227 	struct netdev_hw_addr_list	dev_addrs;
2228 
2229 #ifdef CONFIG_SYSFS
2230 	struct kset		*queues_kset;
2231 #endif
2232 #ifdef CONFIG_LOCKDEP
2233 	struct list_head	unlink_list;
2234 #endif
2235 	unsigned int		promiscuity;
2236 	unsigned int		allmulti;
2237 	bool			uc_promisc;
2238 #ifdef CONFIG_LOCKDEP
2239 	unsigned char		nested_level;
2240 #endif
2241 
2242 
2243 	/* Protocol-specific pointers */
2244 	struct in_device __rcu	*ip_ptr;
2245 	/** @fib_nh_head: nexthops associated with this netdev */
2246 	struct hlist_head	fib_nh_head;
2247 
2248 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2249 	struct vlan_info __rcu	*vlan_info;
2250 #endif
2251 #if IS_ENABLED(CONFIG_NET_DSA)
2252 	struct dsa_port		*dsa_ptr;
2253 #endif
2254 #if IS_ENABLED(CONFIG_TIPC)
2255 	struct tipc_bearer __rcu *tipc_ptr;
2256 #endif
2257 #if IS_ENABLED(CONFIG_ATALK)
2258 	void 			*atalk_ptr;
2259 #endif
2260 #if IS_ENABLED(CONFIG_AX25)
2261 	struct ax25_dev	__rcu	*ax25_ptr;
2262 #endif
2263 #if IS_ENABLED(CONFIG_CFG80211)
2264 	struct wireless_dev	*ieee80211_ptr;
2265 #endif
2266 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2267 	struct wpan_dev		*ieee802154_ptr;
2268 #endif
2269 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2270 	struct mpls_dev __rcu	*mpls_ptr;
2271 #endif
2272 #if IS_ENABLED(CONFIG_MCTP)
2273 	struct mctp_dev __rcu	*mctp_ptr;
2274 #endif
2275 
2276 /*
2277  * Cache lines mostly used on receive path (including eth_type_trans())
2278  */
2279 	/* Interface address info used in eth_type_trans() */
2280 	const unsigned char	*dev_addr;
2281 
2282 	unsigned int		num_rx_queues;
2283 #define GRO_LEGACY_MAX_SIZE	65536u
2284 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2285  * and shinfo->gso_segs is a 16bit field.
2286  */
2287 #define GRO_MAX_SIZE		(8 * 65535u)
2288 	unsigned int		xdp_zc_max_segs;
2289 	struct netdev_queue __rcu *ingress_queue;
2290 #ifdef CONFIG_NETFILTER_INGRESS
2291 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2292 #endif
2293 
2294 	unsigned char		broadcast[MAX_ADDR_LEN];
2295 #ifdef CONFIG_RFS_ACCEL
2296 	struct cpu_rmap		*rx_cpu_rmap;
2297 #endif
2298 	struct hlist_node	index_hlist;
2299 
2300 /*
2301  * Cache lines mostly used on transmit path
2302  */
2303 	unsigned int		num_tx_queues;
2304 	struct Qdisc __rcu	*qdisc;
2305 	unsigned int		tx_queue_len;
2306 	spinlock_t		tx_global_lock;
2307 
2308 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2309 
2310 #ifdef CONFIG_NET_SCHED
2311 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2312 #endif
2313 	/* These may be needed for future network-power-down code. */
2314 	struct timer_list	watchdog_timer;
2315 	int			watchdog_timeo;
2316 
2317 	u32                     proto_down_reason;
2318 
2319 	struct list_head	todo_list;
2320 
2321 #ifdef CONFIG_PCPU_DEV_REFCNT
2322 	int __percpu		*pcpu_refcnt;
2323 #else
2324 	refcount_t		dev_refcnt;
2325 #endif
2326 	struct ref_tracker_dir	refcnt_tracker;
2327 
2328 	struct list_head	link_watch_list;
2329 
2330 	u8 reg_state;
2331 
2332 	bool dismantle;
2333 
2334 	enum {
2335 		RTNL_LINK_INITIALIZED,
2336 		RTNL_LINK_INITIALIZING,
2337 	} rtnl_link_state:16;
2338 
2339 	bool needs_free_netdev;
2340 	void (*priv_destructor)(struct net_device *dev);
2341 
2342 	/* mid-layer private */
2343 	void				*ml_priv;
2344 	enum netdev_ml_priv_type	ml_priv_type;
2345 
2346 	enum netdev_stat_type		pcpu_stat_type:8;
2347 
2348 #if IS_ENABLED(CONFIG_GARP)
2349 	struct garp_port __rcu	*garp_port;
2350 #endif
2351 #if IS_ENABLED(CONFIG_MRP)
2352 	struct mrp_port __rcu	*mrp_port;
2353 #endif
2354 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2355 	struct dm_hw_stat_delta __rcu *dm_private;
2356 #endif
2357 	struct device		dev;
2358 	const struct attribute_group *sysfs_groups[4];
2359 	const struct attribute_group *sysfs_rx_queue_group;
2360 
2361 	const struct rtnl_link_ops *rtnl_link_ops;
2362 
2363 	const struct netdev_stat_ops *stat_ops;
2364 
2365 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2366 
2367 	/* for setting kernel sock attribute on TCP connection setup */
2368 #define GSO_MAX_SEGS		65535u
2369 #define GSO_LEGACY_MAX_SIZE	65536u
2370 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2371  * and shinfo->gso_segs is a 16bit field.
2372  */
2373 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2374 
2375 #define TSO_LEGACY_MAX_SIZE	65536
2376 #define TSO_MAX_SIZE		UINT_MAX
2377 	unsigned int		tso_max_size;
2378 #define TSO_MAX_SEGS		U16_MAX
2379 	u16			tso_max_segs;
2380 
2381 #ifdef CONFIG_DCB
2382 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2383 #endif
2384 	u8			prio_tc_map[TC_BITMASK + 1];
2385 
2386 #if IS_ENABLED(CONFIG_FCOE)
2387 	unsigned int		fcoe_ddp_xid;
2388 #endif
2389 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2390 	struct netprio_map __rcu *priomap;
2391 #endif
2392 	struct phy_link_topology	*link_topo;
2393 	struct phy_device	*phydev;
2394 	struct sfp_bus		*sfp_bus;
2395 	struct lock_class_key	*qdisc_tx_busylock;
2396 	bool			proto_down;
2397 	bool			threaded;
2398 
2399 	/* priv_flags_slow, ungrouped to save space */
2400 	unsigned long		see_all_hwtstamp_requests:1;
2401 	unsigned long		change_proto_down:1;
2402 	unsigned long		netns_local:1;
2403 	unsigned long		fcoe_mtu:1;
2404 
2405 	struct list_head	net_notifier_list;
2406 
2407 #if IS_ENABLED(CONFIG_MACSEC)
2408 	/* MACsec management functions */
2409 	const struct macsec_ops *macsec_ops;
2410 #endif
2411 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2412 	struct udp_tunnel_nic	*udp_tunnel_nic;
2413 
2414 	/** @cfg: net_device queue-related configuration */
2415 	struct netdev_config	*cfg;
2416 	/**
2417 	 * @cfg_pending: same as @cfg but when device is being actively
2418 	 *	reconfigured includes any changes to the configuration
2419 	 *	requested by the user, but which may or may not be rejected.
2420 	 */
2421 	struct netdev_config	*cfg_pending;
2422 	struct ethtool_netdev_state *ethtool;
2423 
2424 	/* protected by rtnl_lock */
2425 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2426 
2427 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2428 	netdevice_tracker	linkwatch_dev_tracker;
2429 	netdevice_tracker	watchdog_dev_tracker;
2430 	netdevice_tracker	dev_registered_tracker;
2431 	struct rtnl_hw_stats64	*offload_xstats_l3;
2432 
2433 	struct devlink_port	*devlink_port;
2434 
2435 #if IS_ENABLED(CONFIG_DPLL)
2436 	struct dpll_pin	__rcu	*dpll_pin;
2437 #endif
2438 #if IS_ENABLED(CONFIG_PAGE_POOL)
2439 	/** @page_pools: page pools created for this netdevice */
2440 	struct hlist_head	page_pools;
2441 #endif
2442 
2443 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2444 	struct dim_irq_moder	*irq_moder;
2445 
2446 	u64			max_pacing_offload_horizon;
2447 	struct napi_config	*napi_config;
2448 	unsigned long		gro_flush_timeout;
2449 	u32			napi_defer_hard_irqs;
2450 
2451 	/**
2452 	 * @up: copy of @state's IFF_UP, but safe to read with just @lock.
2453 	 *	May report false negatives while the device is being opened
2454 	 *	or closed (@lock does not protect .ndo_open, or .ndo_close).
2455 	 */
2456 	bool			up;
2457 
2458 	/**
2459 	 * @lock: netdev-scope lock, protects a small selection of fields.
2460 	 * Should always be taken using netdev_lock() / netdev_unlock() helpers.
2461 	 * Drivers are free to use it for other protection.
2462 	 *
2463 	 * Protects:
2464 	 *	@gro_flush_timeout, @napi_defer_hard_irqs, @napi_list,
2465 	 *	@net_shaper_hierarchy, @reg_state, @threaded
2466 	 *
2467 	 * Partially protects (writers must hold both @lock and rtnl_lock):
2468 	 *	@up
2469 	 *
2470 	 * Also protects some fields in struct napi_struct.
2471 	 *
2472 	 * Ordering: take after rtnl_lock.
2473 	 */
2474 	struct mutex		lock;
2475 
2476 #if IS_ENABLED(CONFIG_NET_SHAPER)
2477 	/**
2478 	 * @net_shaper_hierarchy: data tracking the current shaper status
2479 	 *  see include/net/net_shapers.h
2480 	 */
2481 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2482 #endif
2483 
2484 	struct hlist_head neighbours[NEIGH_NR_TABLES];
2485 
2486 	struct hwtstamp_provider __rcu	*hwprov;
2487 
2488 	u8			priv[] ____cacheline_aligned
2489 				       __counted_by(priv_len);
2490 } ____cacheline_aligned;
2491 #define to_net_dev(d) container_of(d, struct net_device, dev)
2492 
2493 /*
2494  * Driver should use this to assign devlink port instance to a netdevice
2495  * before it registers the netdevice. Therefore devlink_port is static
2496  * during the netdev lifetime after it is registered.
2497  */
2498 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2499 ({								\
2500 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2501 	((dev)->devlink_port = (port));				\
2502 })
2503 
2504 static inline bool netif_elide_gro(const struct net_device *dev)
2505 {
2506 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2507 		return true;
2508 	return false;
2509 }
2510 
2511 #define	NETDEV_ALIGN		32
2512 
2513 static inline
2514 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2515 {
2516 	return dev->prio_tc_map[prio & TC_BITMASK];
2517 }
2518 
2519 static inline
2520 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2521 {
2522 	if (tc >= dev->num_tc)
2523 		return -EINVAL;
2524 
2525 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2526 	return 0;
2527 }
2528 
2529 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2530 void netdev_reset_tc(struct net_device *dev);
2531 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2532 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2533 
2534 static inline
2535 int netdev_get_num_tc(struct net_device *dev)
2536 {
2537 	return dev->num_tc;
2538 }
2539 
2540 static inline void net_prefetch(void *p)
2541 {
2542 	prefetch(p);
2543 #if L1_CACHE_BYTES < 128
2544 	prefetch((u8 *)p + L1_CACHE_BYTES);
2545 #endif
2546 }
2547 
2548 static inline void net_prefetchw(void *p)
2549 {
2550 	prefetchw(p);
2551 #if L1_CACHE_BYTES < 128
2552 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2553 #endif
2554 }
2555 
2556 void netdev_unbind_sb_channel(struct net_device *dev,
2557 			      struct net_device *sb_dev);
2558 int netdev_bind_sb_channel_queue(struct net_device *dev,
2559 				 struct net_device *sb_dev,
2560 				 u8 tc, u16 count, u16 offset);
2561 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2562 static inline int netdev_get_sb_channel(struct net_device *dev)
2563 {
2564 	return max_t(int, -dev->num_tc, 0);
2565 }
2566 
2567 static inline
2568 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2569 					 unsigned int index)
2570 {
2571 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2572 	return &dev->_tx[index];
2573 }
2574 
2575 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2576 						    const struct sk_buff *skb)
2577 {
2578 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2579 }
2580 
2581 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2582 					    void (*f)(struct net_device *,
2583 						      struct netdev_queue *,
2584 						      void *),
2585 					    void *arg)
2586 {
2587 	unsigned int i;
2588 
2589 	for (i = 0; i < dev->num_tx_queues; i++)
2590 		f(dev, &dev->_tx[i], arg);
2591 }
2592 
2593 #define netdev_lockdep_set_classes(dev)				\
2594 {								\
2595 	static struct lock_class_key qdisc_tx_busylock_key;	\
2596 	static struct lock_class_key qdisc_xmit_lock_key;	\
2597 	static struct lock_class_key dev_addr_list_lock_key;	\
2598 	unsigned int i;						\
2599 								\
2600 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2601 	lockdep_set_class(&(dev)->addr_list_lock,		\
2602 			  &dev_addr_list_lock_key);		\
2603 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2604 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2605 				  &qdisc_xmit_lock_key);	\
2606 }
2607 
2608 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2609 		     struct net_device *sb_dev);
2610 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2611 					 struct sk_buff *skb,
2612 					 struct net_device *sb_dev);
2613 
2614 /* returns the headroom that the master device needs to take in account
2615  * when forwarding to this dev
2616  */
2617 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2618 {
2619 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2620 }
2621 
2622 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2623 {
2624 	if (dev->netdev_ops->ndo_set_rx_headroom)
2625 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2626 }
2627 
2628 /* set the device rx headroom to the dev's default */
2629 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2630 {
2631 	netdev_set_rx_headroom(dev, -1);
2632 }
2633 
2634 static inline void *netdev_get_ml_priv(struct net_device *dev,
2635 				       enum netdev_ml_priv_type type)
2636 {
2637 	if (dev->ml_priv_type != type)
2638 		return NULL;
2639 
2640 	return dev->ml_priv;
2641 }
2642 
2643 static inline void netdev_set_ml_priv(struct net_device *dev,
2644 				      void *ml_priv,
2645 				      enum netdev_ml_priv_type type)
2646 {
2647 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2648 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2649 	     dev->ml_priv_type, type);
2650 	WARN(!dev->ml_priv_type && dev->ml_priv,
2651 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2652 
2653 	dev->ml_priv = ml_priv;
2654 	dev->ml_priv_type = type;
2655 }
2656 
2657 /*
2658  * Net namespace inlines
2659  */
2660 static inline
2661 struct net *dev_net(const struct net_device *dev)
2662 {
2663 	return read_pnet(&dev->nd_net);
2664 }
2665 
2666 static inline
2667 void dev_net_set(struct net_device *dev, struct net *net)
2668 {
2669 	write_pnet(&dev->nd_net, net);
2670 }
2671 
2672 /**
2673  *	netdev_priv - access network device private data
2674  *	@dev: network device
2675  *
2676  * Get network device private data
2677  */
2678 static inline void *netdev_priv(const struct net_device *dev)
2679 {
2680 	return (void *)dev->priv;
2681 }
2682 
2683 /* Set the sysfs physical device reference for the network logical device
2684  * if set prior to registration will cause a symlink during initialization.
2685  */
2686 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2687 
2688 /* Set the sysfs device type for the network logical device to allow
2689  * fine-grained identification of different network device types. For
2690  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2691  */
2692 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2693 
2694 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2695 			  enum netdev_queue_type type,
2696 			  struct napi_struct *napi);
2697 
2698 static inline void netdev_lock(struct net_device *dev)
2699 {
2700 	mutex_lock(&dev->lock);
2701 }
2702 
2703 static inline void netdev_unlock(struct net_device *dev)
2704 {
2705 	mutex_unlock(&dev->lock);
2706 }
2707 
2708 static inline void netdev_assert_locked(struct net_device *dev)
2709 {
2710 	lockdep_assert_held(&dev->lock);
2711 }
2712 
2713 static inline void netdev_assert_locked_or_invisible(struct net_device *dev)
2714 {
2715 	if (dev->reg_state == NETREG_REGISTERED ||
2716 	    dev->reg_state == NETREG_UNREGISTERING)
2717 		netdev_assert_locked(dev);
2718 }
2719 
2720 static inline void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
2721 {
2722 	napi->irq = irq;
2723 }
2724 
2725 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2726 {
2727 	netdev_lock(napi->dev);
2728 	netif_napi_set_irq_locked(napi, irq);
2729 	netdev_unlock(napi->dev);
2730 }
2731 
2732 /* Default NAPI poll() weight
2733  * Device drivers are strongly advised to not use bigger value
2734  */
2735 #define NAPI_POLL_WEIGHT 64
2736 
2737 void netif_napi_add_weight_locked(struct net_device *dev,
2738 				  struct napi_struct *napi,
2739 				  int (*poll)(struct napi_struct *, int),
2740 				  int weight);
2741 
2742 static inline void
2743 netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2744 		      int (*poll)(struct napi_struct *, int), int weight)
2745 {
2746 	netdev_lock(dev);
2747 	netif_napi_add_weight_locked(dev, napi, poll, weight);
2748 	netdev_unlock(dev);
2749 }
2750 
2751 /**
2752  * netif_napi_add() - initialize a NAPI context
2753  * @dev:  network device
2754  * @napi: NAPI context
2755  * @poll: polling function
2756  *
2757  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2758  * *any* of the other NAPI-related functions.
2759  */
2760 static inline void
2761 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2762 	       int (*poll)(struct napi_struct *, int))
2763 {
2764 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2765 }
2766 
2767 static inline void
2768 netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi,
2769 		      int (*poll)(struct napi_struct *, int))
2770 {
2771 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2772 }
2773 
2774 static inline void
2775 netif_napi_add_tx_weight(struct net_device *dev,
2776 			 struct napi_struct *napi,
2777 			 int (*poll)(struct napi_struct *, int),
2778 			 int weight)
2779 {
2780 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2781 	netif_napi_add_weight(dev, napi, poll, weight);
2782 }
2783 
2784 static inline void
2785 netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi,
2786 			     int (*poll)(struct napi_struct *, int), int index)
2787 {
2788 	napi->index = index;
2789 	napi->config = &dev->napi_config[index];
2790 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2791 }
2792 
2793 /**
2794  * netif_napi_add_config - initialize a NAPI context with persistent config
2795  * @dev: network device
2796  * @napi: NAPI context
2797  * @poll: polling function
2798  * @index: the NAPI index
2799  */
2800 static inline void
2801 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2802 		      int (*poll)(struct napi_struct *, int), int index)
2803 {
2804 	netdev_lock(dev);
2805 	netif_napi_add_config_locked(dev, napi, poll, index);
2806 	netdev_unlock(dev);
2807 }
2808 
2809 /**
2810  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2811  * @dev:  network device
2812  * @napi: NAPI context
2813  * @poll: polling function
2814  *
2815  * This variant of netif_napi_add() should be used from drivers using NAPI
2816  * to exclusively poll a TX queue.
2817  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2818  */
2819 static inline void netif_napi_add_tx(struct net_device *dev,
2820 				     struct napi_struct *napi,
2821 				     int (*poll)(struct napi_struct *, int))
2822 {
2823 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2824 }
2825 
2826 void __netif_napi_del_locked(struct napi_struct *napi);
2827 
2828 /**
2829  *  __netif_napi_del - remove a NAPI context
2830  *  @napi: NAPI context
2831  *
2832  * Warning: caller must observe RCU grace period before freeing memory
2833  * containing @napi. Drivers might want to call this helper to combine
2834  * all the needed RCU grace periods into a single one.
2835  */
2836 static inline void __netif_napi_del(struct napi_struct *napi)
2837 {
2838 	netdev_lock(napi->dev);
2839 	__netif_napi_del_locked(napi);
2840 	netdev_unlock(napi->dev);
2841 }
2842 
2843 static inline void netif_napi_del_locked(struct napi_struct *napi)
2844 {
2845 	__netif_napi_del_locked(napi);
2846 	synchronize_net();
2847 }
2848 
2849 /**
2850  *  netif_napi_del - remove a NAPI context
2851  *  @napi: NAPI context
2852  *
2853  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2854  */
2855 static inline void netif_napi_del(struct napi_struct *napi)
2856 {
2857 	__netif_napi_del(napi);
2858 	synchronize_net();
2859 }
2860 
2861 struct packet_type {
2862 	__be16			type;	/* This is really htons(ether_type). */
2863 	bool			ignore_outgoing;
2864 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2865 	netdevice_tracker	dev_tracker;
2866 	int			(*func) (struct sk_buff *,
2867 					 struct net_device *,
2868 					 struct packet_type *,
2869 					 struct net_device *);
2870 	void			(*list_func) (struct list_head *,
2871 					      struct packet_type *,
2872 					      struct net_device *);
2873 	bool			(*id_match)(struct packet_type *ptype,
2874 					    struct sock *sk);
2875 	struct net		*af_packet_net;
2876 	void			*af_packet_priv;
2877 	struct list_head	list;
2878 };
2879 
2880 struct offload_callbacks {
2881 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2882 						netdev_features_t features);
2883 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2884 						struct sk_buff *skb);
2885 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2886 };
2887 
2888 struct packet_offload {
2889 	__be16			 type;	/* This is really htons(ether_type). */
2890 	u16			 priority;
2891 	struct offload_callbacks callbacks;
2892 	struct list_head	 list;
2893 };
2894 
2895 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2896 struct pcpu_sw_netstats {
2897 	u64_stats_t		rx_packets;
2898 	u64_stats_t		rx_bytes;
2899 	u64_stats_t		tx_packets;
2900 	u64_stats_t		tx_bytes;
2901 	struct u64_stats_sync   syncp;
2902 } __aligned(4 * sizeof(u64));
2903 
2904 struct pcpu_dstats {
2905 	u64_stats_t		rx_packets;
2906 	u64_stats_t		rx_bytes;
2907 	u64_stats_t		tx_packets;
2908 	u64_stats_t		tx_bytes;
2909 	u64_stats_t		rx_drops;
2910 	u64_stats_t		tx_drops;
2911 	struct u64_stats_sync	syncp;
2912 } __aligned(8 * sizeof(u64));
2913 
2914 struct pcpu_lstats {
2915 	u64_stats_t packets;
2916 	u64_stats_t bytes;
2917 	struct u64_stats_sync syncp;
2918 } __aligned(2 * sizeof(u64));
2919 
2920 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2921 
2922 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2923 {
2924 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2925 
2926 	u64_stats_update_begin(&tstats->syncp);
2927 	u64_stats_add(&tstats->rx_bytes, len);
2928 	u64_stats_inc(&tstats->rx_packets);
2929 	u64_stats_update_end(&tstats->syncp);
2930 }
2931 
2932 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2933 					  unsigned int packets,
2934 					  unsigned int len)
2935 {
2936 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2937 
2938 	u64_stats_update_begin(&tstats->syncp);
2939 	u64_stats_add(&tstats->tx_bytes, len);
2940 	u64_stats_add(&tstats->tx_packets, packets);
2941 	u64_stats_update_end(&tstats->syncp);
2942 }
2943 
2944 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2945 {
2946 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2947 
2948 	u64_stats_update_begin(&lstats->syncp);
2949 	u64_stats_add(&lstats->bytes, len);
2950 	u64_stats_inc(&lstats->packets);
2951 	u64_stats_update_end(&lstats->syncp);
2952 }
2953 
2954 static inline void dev_dstats_rx_add(struct net_device *dev,
2955 				     unsigned int len)
2956 {
2957 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2958 
2959 	u64_stats_update_begin(&dstats->syncp);
2960 	u64_stats_inc(&dstats->rx_packets);
2961 	u64_stats_add(&dstats->rx_bytes, len);
2962 	u64_stats_update_end(&dstats->syncp);
2963 }
2964 
2965 static inline void dev_dstats_rx_dropped(struct net_device *dev)
2966 {
2967 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2968 
2969 	u64_stats_update_begin(&dstats->syncp);
2970 	u64_stats_inc(&dstats->rx_drops);
2971 	u64_stats_update_end(&dstats->syncp);
2972 }
2973 
2974 static inline void dev_dstats_tx_add(struct net_device *dev,
2975 				     unsigned int len)
2976 {
2977 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2978 
2979 	u64_stats_update_begin(&dstats->syncp);
2980 	u64_stats_inc(&dstats->tx_packets);
2981 	u64_stats_add(&dstats->tx_bytes, len);
2982 	u64_stats_update_end(&dstats->syncp);
2983 }
2984 
2985 static inline void dev_dstats_tx_dropped(struct net_device *dev)
2986 {
2987 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2988 
2989 	u64_stats_update_begin(&dstats->syncp);
2990 	u64_stats_inc(&dstats->tx_drops);
2991 	u64_stats_update_end(&dstats->syncp);
2992 }
2993 
2994 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2995 ({									\
2996 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2997 	if (pcpu_stats)	{						\
2998 		int __cpu;						\
2999 		for_each_possible_cpu(__cpu) {				\
3000 			typeof(type) *stat;				\
3001 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3002 			u64_stats_init(&stat->syncp);			\
3003 		}							\
3004 	}								\
3005 	pcpu_stats;							\
3006 })
3007 
3008 #define netdev_alloc_pcpu_stats(type)					\
3009 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
3010 
3011 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
3012 ({									\
3013 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
3014 	if (pcpu_stats) {						\
3015 		int __cpu;						\
3016 		for_each_possible_cpu(__cpu) {				\
3017 			typeof(type) *stat;				\
3018 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3019 			u64_stats_init(&stat->syncp);			\
3020 		}							\
3021 	}								\
3022 	pcpu_stats;							\
3023 })
3024 
3025 enum netdev_lag_tx_type {
3026 	NETDEV_LAG_TX_TYPE_UNKNOWN,
3027 	NETDEV_LAG_TX_TYPE_RANDOM,
3028 	NETDEV_LAG_TX_TYPE_BROADCAST,
3029 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
3030 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
3031 	NETDEV_LAG_TX_TYPE_HASH,
3032 };
3033 
3034 enum netdev_lag_hash {
3035 	NETDEV_LAG_HASH_NONE,
3036 	NETDEV_LAG_HASH_L2,
3037 	NETDEV_LAG_HASH_L34,
3038 	NETDEV_LAG_HASH_L23,
3039 	NETDEV_LAG_HASH_E23,
3040 	NETDEV_LAG_HASH_E34,
3041 	NETDEV_LAG_HASH_VLAN_SRCMAC,
3042 	NETDEV_LAG_HASH_UNKNOWN,
3043 };
3044 
3045 struct netdev_lag_upper_info {
3046 	enum netdev_lag_tx_type tx_type;
3047 	enum netdev_lag_hash hash_type;
3048 };
3049 
3050 struct netdev_lag_lower_state_info {
3051 	u8 link_up : 1,
3052 	   tx_enabled : 1;
3053 };
3054 
3055 #include <linux/notifier.h>
3056 
3057 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
3058  * and the rtnetlink notification exclusion list in rtnetlink_event() when
3059  * adding new types.
3060  */
3061 enum netdev_cmd {
3062 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
3063 	NETDEV_DOWN,
3064 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
3065 				   detected a hardware crash and restarted
3066 				   - we can use this eg to kick tcp sessions
3067 				   once done */
3068 	NETDEV_CHANGE,		/* Notify device state change */
3069 	NETDEV_REGISTER,
3070 	NETDEV_UNREGISTER,
3071 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
3072 	NETDEV_CHANGEADDR,	/* notify after the address change */
3073 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
3074 	NETDEV_GOING_DOWN,
3075 	NETDEV_CHANGENAME,
3076 	NETDEV_FEAT_CHANGE,
3077 	NETDEV_BONDING_FAILOVER,
3078 	NETDEV_PRE_UP,
3079 	NETDEV_PRE_TYPE_CHANGE,
3080 	NETDEV_POST_TYPE_CHANGE,
3081 	NETDEV_POST_INIT,
3082 	NETDEV_PRE_UNINIT,
3083 	NETDEV_RELEASE,
3084 	NETDEV_NOTIFY_PEERS,
3085 	NETDEV_JOIN,
3086 	NETDEV_CHANGEUPPER,
3087 	NETDEV_RESEND_IGMP,
3088 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
3089 	NETDEV_CHANGEINFODATA,
3090 	NETDEV_BONDING_INFO,
3091 	NETDEV_PRECHANGEUPPER,
3092 	NETDEV_CHANGELOWERSTATE,
3093 	NETDEV_UDP_TUNNEL_PUSH_INFO,
3094 	NETDEV_UDP_TUNNEL_DROP_INFO,
3095 	NETDEV_CHANGE_TX_QUEUE_LEN,
3096 	NETDEV_CVLAN_FILTER_PUSH_INFO,
3097 	NETDEV_CVLAN_FILTER_DROP_INFO,
3098 	NETDEV_SVLAN_FILTER_PUSH_INFO,
3099 	NETDEV_SVLAN_FILTER_DROP_INFO,
3100 	NETDEV_OFFLOAD_XSTATS_ENABLE,
3101 	NETDEV_OFFLOAD_XSTATS_DISABLE,
3102 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
3103 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
3104 	NETDEV_XDP_FEAT_CHANGE,
3105 };
3106 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
3107 
3108 int register_netdevice_notifier(struct notifier_block *nb);
3109 int unregister_netdevice_notifier(struct notifier_block *nb);
3110 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
3111 int unregister_netdevice_notifier_net(struct net *net,
3112 				      struct notifier_block *nb);
3113 int register_netdevice_notifier_dev_net(struct net_device *dev,
3114 					struct notifier_block *nb,
3115 					struct netdev_net_notifier *nn);
3116 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
3117 					  struct notifier_block *nb,
3118 					  struct netdev_net_notifier *nn);
3119 
3120 struct netdev_notifier_info {
3121 	struct net_device	*dev;
3122 	struct netlink_ext_ack	*extack;
3123 };
3124 
3125 struct netdev_notifier_info_ext {
3126 	struct netdev_notifier_info info; /* must be first */
3127 	union {
3128 		u32 mtu;
3129 	} ext;
3130 };
3131 
3132 struct netdev_notifier_change_info {
3133 	struct netdev_notifier_info info; /* must be first */
3134 	unsigned int flags_changed;
3135 };
3136 
3137 struct netdev_notifier_changeupper_info {
3138 	struct netdev_notifier_info info; /* must be first */
3139 	struct net_device *upper_dev; /* new upper dev */
3140 	bool master; /* is upper dev master */
3141 	bool linking; /* is the notification for link or unlink */
3142 	void *upper_info; /* upper dev info */
3143 };
3144 
3145 struct netdev_notifier_changelowerstate_info {
3146 	struct netdev_notifier_info info; /* must be first */
3147 	void *lower_state_info; /* is lower dev state */
3148 };
3149 
3150 struct netdev_notifier_pre_changeaddr_info {
3151 	struct netdev_notifier_info info; /* must be first */
3152 	const unsigned char *dev_addr;
3153 };
3154 
3155 enum netdev_offload_xstats_type {
3156 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3157 };
3158 
3159 struct netdev_notifier_offload_xstats_info {
3160 	struct netdev_notifier_info info; /* must be first */
3161 	enum netdev_offload_xstats_type type;
3162 
3163 	union {
3164 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3165 		struct netdev_notifier_offload_xstats_rd *report_delta;
3166 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3167 		struct netdev_notifier_offload_xstats_ru *report_used;
3168 	};
3169 };
3170 
3171 int netdev_offload_xstats_enable(struct net_device *dev,
3172 				 enum netdev_offload_xstats_type type,
3173 				 struct netlink_ext_ack *extack);
3174 int netdev_offload_xstats_disable(struct net_device *dev,
3175 				  enum netdev_offload_xstats_type type);
3176 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3177 				   enum netdev_offload_xstats_type type);
3178 int netdev_offload_xstats_get(struct net_device *dev,
3179 			      enum netdev_offload_xstats_type type,
3180 			      struct rtnl_hw_stats64 *stats, bool *used,
3181 			      struct netlink_ext_ack *extack);
3182 void
3183 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3184 				   const struct rtnl_hw_stats64 *stats);
3185 void
3186 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3187 void netdev_offload_xstats_push_delta(struct net_device *dev,
3188 				      enum netdev_offload_xstats_type type,
3189 				      const struct rtnl_hw_stats64 *stats);
3190 
3191 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3192 					     struct net_device *dev)
3193 {
3194 	info->dev = dev;
3195 	info->extack = NULL;
3196 }
3197 
3198 static inline struct net_device *
3199 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3200 {
3201 	return info->dev;
3202 }
3203 
3204 static inline struct netlink_ext_ack *
3205 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3206 {
3207 	return info->extack;
3208 }
3209 
3210 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3211 int call_netdevice_notifiers_info(unsigned long val,
3212 				  struct netdev_notifier_info *info);
3213 
3214 #define for_each_netdev(net, d)		\
3215 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3216 #define for_each_netdev_reverse(net, d)	\
3217 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3218 #define for_each_netdev_rcu(net, d)		\
3219 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3220 #define for_each_netdev_safe(net, d, n)	\
3221 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3222 #define for_each_netdev_continue(net, d)		\
3223 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3224 #define for_each_netdev_continue_reverse(net, d)		\
3225 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3226 						     dev_list)
3227 #define for_each_netdev_continue_rcu(net, d)		\
3228 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3229 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3230 		for_each_netdev_rcu(&init_net, slave)	\
3231 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3232 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3233 
3234 #define for_each_netdev_dump(net, d, ifindex)				\
3235 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3236 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3237 
3238 static inline struct net_device *next_net_device(struct net_device *dev)
3239 {
3240 	struct list_head *lh;
3241 	struct net *net;
3242 
3243 	net = dev_net(dev);
3244 	lh = dev->dev_list.next;
3245 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3246 }
3247 
3248 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3249 {
3250 	struct list_head *lh;
3251 	struct net *net;
3252 
3253 	net = dev_net(dev);
3254 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3255 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3256 }
3257 
3258 static inline struct net_device *first_net_device(struct net *net)
3259 {
3260 	return list_empty(&net->dev_base_head) ? NULL :
3261 		net_device_entry(net->dev_base_head.next);
3262 }
3263 
3264 static inline struct net_device *first_net_device_rcu(struct net *net)
3265 {
3266 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3267 
3268 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3269 }
3270 
3271 int netdev_boot_setup_check(struct net_device *dev);
3272 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3273 				       const char *hwaddr);
3274 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3275 void dev_add_pack(struct packet_type *pt);
3276 void dev_remove_pack(struct packet_type *pt);
3277 void __dev_remove_pack(struct packet_type *pt);
3278 void dev_add_offload(struct packet_offload *po);
3279 void dev_remove_offload(struct packet_offload *po);
3280 
3281 int dev_get_iflink(const struct net_device *dev);
3282 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3283 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3284 			  struct net_device_path_stack *stack);
3285 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3286 				      unsigned short mask);
3287 struct net_device *dev_get_by_name(struct net *net, const char *name);
3288 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3289 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3290 bool netdev_name_in_use(struct net *net, const char *name);
3291 int dev_alloc_name(struct net_device *dev, const char *name);
3292 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3293 void dev_close(struct net_device *dev);
3294 void dev_close_many(struct list_head *head, bool unlink);
3295 void dev_disable_lro(struct net_device *dev);
3296 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3297 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3298 		     struct net_device *sb_dev);
3299 
3300 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3301 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3302 
3303 static inline int dev_queue_xmit(struct sk_buff *skb)
3304 {
3305 	return __dev_queue_xmit(skb, NULL);
3306 }
3307 
3308 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3309 				       struct net_device *sb_dev)
3310 {
3311 	return __dev_queue_xmit(skb, sb_dev);
3312 }
3313 
3314 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3315 {
3316 	int ret;
3317 
3318 	ret = __dev_direct_xmit(skb, queue_id);
3319 	if (!dev_xmit_complete(ret))
3320 		kfree_skb(skb);
3321 	return ret;
3322 }
3323 
3324 int register_netdevice(struct net_device *dev);
3325 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3326 void unregister_netdevice_many(struct list_head *head);
3327 static inline void unregister_netdevice(struct net_device *dev)
3328 {
3329 	unregister_netdevice_queue(dev, NULL);
3330 }
3331 
3332 int netdev_refcnt_read(const struct net_device *dev);
3333 void free_netdev(struct net_device *dev);
3334 
3335 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3336 					 struct sk_buff *skb,
3337 					 bool all_slaves);
3338 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3339 					    struct sock *sk);
3340 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3341 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3342 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3343 				       netdevice_tracker *tracker, gfp_t gfp);
3344 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3345 				      netdevice_tracker *tracker, gfp_t gfp);
3346 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3347 void netdev_copy_name(struct net_device *dev, char *name);
3348 
3349 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3350 				  unsigned short type,
3351 				  const void *daddr, const void *saddr,
3352 				  unsigned int len)
3353 {
3354 	if (!dev->header_ops || !dev->header_ops->create)
3355 		return 0;
3356 
3357 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3358 }
3359 
3360 static inline int dev_parse_header(const struct sk_buff *skb,
3361 				   unsigned char *haddr)
3362 {
3363 	const struct net_device *dev = skb->dev;
3364 
3365 	if (!dev->header_ops || !dev->header_ops->parse)
3366 		return 0;
3367 	return dev->header_ops->parse(skb, haddr);
3368 }
3369 
3370 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3371 {
3372 	const struct net_device *dev = skb->dev;
3373 
3374 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3375 		return 0;
3376 	return dev->header_ops->parse_protocol(skb);
3377 }
3378 
3379 /* ll_header must have at least hard_header_len allocated */
3380 static inline bool dev_validate_header(const struct net_device *dev,
3381 				       char *ll_header, int len)
3382 {
3383 	if (likely(len >= dev->hard_header_len))
3384 		return true;
3385 	if (len < dev->min_header_len)
3386 		return false;
3387 
3388 	if (capable(CAP_SYS_RAWIO)) {
3389 		memset(ll_header + len, 0, dev->hard_header_len - len);
3390 		return true;
3391 	}
3392 
3393 	if (dev->header_ops && dev->header_ops->validate)
3394 		return dev->header_ops->validate(ll_header, len);
3395 
3396 	return false;
3397 }
3398 
3399 static inline bool dev_has_header(const struct net_device *dev)
3400 {
3401 	return dev->header_ops && dev->header_ops->create;
3402 }
3403 
3404 /*
3405  * Incoming packets are placed on per-CPU queues
3406  */
3407 struct softnet_data {
3408 	struct list_head	poll_list;
3409 	struct sk_buff_head	process_queue;
3410 	local_lock_t		process_queue_bh_lock;
3411 
3412 	/* stats */
3413 	unsigned int		processed;
3414 	unsigned int		time_squeeze;
3415 #ifdef CONFIG_RPS
3416 	struct softnet_data	*rps_ipi_list;
3417 #endif
3418 
3419 	unsigned int		received_rps;
3420 	bool			in_net_rx_action;
3421 	bool			in_napi_threaded_poll;
3422 
3423 #ifdef CONFIG_NET_FLOW_LIMIT
3424 	struct sd_flow_limit __rcu *flow_limit;
3425 #endif
3426 	struct Qdisc		*output_queue;
3427 	struct Qdisc		**output_queue_tailp;
3428 	struct sk_buff		*completion_queue;
3429 #ifdef CONFIG_XFRM_OFFLOAD
3430 	struct sk_buff_head	xfrm_backlog;
3431 #endif
3432 	/* written and read only by owning cpu: */
3433 	struct netdev_xmit xmit;
3434 #ifdef CONFIG_RPS
3435 	/* input_queue_head should be written by cpu owning this struct,
3436 	 * and only read by other cpus. Worth using a cache line.
3437 	 */
3438 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3439 
3440 	/* Elements below can be accessed between CPUs for RPS/RFS */
3441 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3442 	struct softnet_data	*rps_ipi_next;
3443 	unsigned int		cpu;
3444 	unsigned int		input_queue_tail;
3445 #endif
3446 	struct sk_buff_head	input_pkt_queue;
3447 	struct napi_struct	backlog;
3448 
3449 	atomic_t		dropped ____cacheline_aligned_in_smp;
3450 
3451 	/* Another possibly contended cache line */
3452 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3453 	int			defer_count;
3454 	int			defer_ipi_scheduled;
3455 	struct sk_buff		*defer_list;
3456 	call_single_data_t	defer_csd;
3457 };
3458 
3459 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3460 DECLARE_PER_CPU(struct page_pool *, system_page_pool);
3461 
3462 #ifndef CONFIG_PREEMPT_RT
3463 static inline int dev_recursion_level(void)
3464 {
3465 	return this_cpu_read(softnet_data.xmit.recursion);
3466 }
3467 #else
3468 static inline int dev_recursion_level(void)
3469 {
3470 	return current->net_xmit.recursion;
3471 }
3472 
3473 #endif
3474 
3475 void __netif_schedule(struct Qdisc *q);
3476 void netif_schedule_queue(struct netdev_queue *txq);
3477 
3478 static inline void netif_tx_schedule_all(struct net_device *dev)
3479 {
3480 	unsigned int i;
3481 
3482 	for (i = 0; i < dev->num_tx_queues; i++)
3483 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3484 }
3485 
3486 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3487 {
3488 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3489 }
3490 
3491 /**
3492  *	netif_start_queue - allow transmit
3493  *	@dev: network device
3494  *
3495  *	Allow upper layers to call the device hard_start_xmit routine.
3496  */
3497 static inline void netif_start_queue(struct net_device *dev)
3498 {
3499 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3500 }
3501 
3502 static inline void netif_tx_start_all_queues(struct net_device *dev)
3503 {
3504 	unsigned int i;
3505 
3506 	for (i = 0; i < dev->num_tx_queues; i++) {
3507 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3508 		netif_tx_start_queue(txq);
3509 	}
3510 }
3511 
3512 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3513 
3514 /**
3515  *	netif_wake_queue - restart transmit
3516  *	@dev: network device
3517  *
3518  *	Allow upper layers to call the device hard_start_xmit routine.
3519  *	Used for flow control when transmit resources are available.
3520  */
3521 static inline void netif_wake_queue(struct net_device *dev)
3522 {
3523 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3524 }
3525 
3526 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3527 {
3528 	unsigned int i;
3529 
3530 	for (i = 0; i < dev->num_tx_queues; i++) {
3531 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3532 		netif_tx_wake_queue(txq);
3533 	}
3534 }
3535 
3536 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3537 {
3538 	/* Paired with READ_ONCE() from dev_watchdog() */
3539 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3540 
3541 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3542 	smp_mb__before_atomic();
3543 
3544 	/* Must be an atomic op see netif_txq_try_stop() */
3545 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3546 }
3547 
3548 /**
3549  *	netif_stop_queue - stop transmitted packets
3550  *	@dev: network device
3551  *
3552  *	Stop upper layers calling the device hard_start_xmit routine.
3553  *	Used for flow control when transmit resources are unavailable.
3554  */
3555 static inline void netif_stop_queue(struct net_device *dev)
3556 {
3557 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3558 }
3559 
3560 void netif_tx_stop_all_queues(struct net_device *dev);
3561 
3562 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3563 {
3564 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3565 }
3566 
3567 /**
3568  *	netif_queue_stopped - test if transmit queue is flowblocked
3569  *	@dev: network device
3570  *
3571  *	Test if transmit queue on device is currently unable to send.
3572  */
3573 static inline bool netif_queue_stopped(const struct net_device *dev)
3574 {
3575 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3576 }
3577 
3578 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3579 {
3580 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3581 }
3582 
3583 static inline bool
3584 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3585 {
3586 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3587 }
3588 
3589 static inline bool
3590 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3591 {
3592 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3593 }
3594 
3595 /**
3596  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3597  *	@dev_queue: pointer to transmit queue
3598  *	@min_limit: dql minimum limit
3599  *
3600  * Forces xmit_more() to return true until the minimum threshold
3601  * defined by @min_limit is reached (or until the tx queue is
3602  * empty). Warning: to be use with care, misuse will impact the
3603  * latency.
3604  */
3605 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3606 						  unsigned int min_limit)
3607 {
3608 #ifdef CONFIG_BQL
3609 	dev_queue->dql.min_limit = min_limit;
3610 #endif
3611 }
3612 
3613 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3614 {
3615 #ifdef CONFIG_BQL
3616 	/* Non-BQL migrated drivers will return 0, too. */
3617 	return dql_avail(&txq->dql);
3618 #else
3619 	return 0;
3620 #endif
3621 }
3622 
3623 /**
3624  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3625  *	@dev_queue: pointer to transmit queue
3626  *
3627  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3628  * to give appropriate hint to the CPU.
3629  */
3630 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3631 {
3632 #ifdef CONFIG_BQL
3633 	prefetchw(&dev_queue->dql.num_queued);
3634 #endif
3635 }
3636 
3637 /**
3638  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3639  *	@dev_queue: pointer to transmit queue
3640  *
3641  * BQL enabled drivers might use this helper in their TX completion path,
3642  * to give appropriate hint to the CPU.
3643  */
3644 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3645 {
3646 #ifdef CONFIG_BQL
3647 	prefetchw(&dev_queue->dql.limit);
3648 #endif
3649 }
3650 
3651 /**
3652  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3653  *	@dev_queue: network device queue
3654  *	@bytes: number of bytes queued to the device queue
3655  *
3656  *	Report the number of bytes queued for sending/completion to the network
3657  *	device hardware queue. @bytes should be a good approximation and should
3658  *	exactly match netdev_completed_queue() @bytes.
3659  *	This is typically called once per packet, from ndo_start_xmit().
3660  */
3661 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3662 					unsigned int bytes)
3663 {
3664 #ifdef CONFIG_BQL
3665 	dql_queued(&dev_queue->dql, bytes);
3666 
3667 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3668 		return;
3669 
3670 	/* Paired with READ_ONCE() from dev_watchdog() */
3671 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3672 
3673 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3674 	smp_mb__before_atomic();
3675 
3676 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3677 
3678 	/*
3679 	 * The XOFF flag must be set before checking the dql_avail below,
3680 	 * because in netdev_tx_completed_queue we update the dql_completed
3681 	 * before checking the XOFF flag.
3682 	 */
3683 	smp_mb__after_atomic();
3684 
3685 	/* check again in case another CPU has just made room avail */
3686 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3687 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3688 #endif
3689 }
3690 
3691 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3692  * that they should not test BQL status themselves.
3693  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3694  * skb of a batch.
3695  * Returns true if the doorbell must be used to kick the NIC.
3696  */
3697 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3698 					  unsigned int bytes,
3699 					  bool xmit_more)
3700 {
3701 	if (xmit_more) {
3702 #ifdef CONFIG_BQL
3703 		dql_queued(&dev_queue->dql, bytes);
3704 #endif
3705 		return netif_tx_queue_stopped(dev_queue);
3706 	}
3707 	netdev_tx_sent_queue(dev_queue, bytes);
3708 	return true;
3709 }
3710 
3711 /**
3712  *	netdev_sent_queue - report the number of bytes queued to hardware
3713  *	@dev: network device
3714  *	@bytes: number of bytes queued to the hardware device queue
3715  *
3716  *	Report the number of bytes queued for sending/completion to the network
3717  *	device hardware queue#0. @bytes should be a good approximation and should
3718  *	exactly match netdev_completed_queue() @bytes.
3719  *	This is typically called once per packet, from ndo_start_xmit().
3720  */
3721 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3722 {
3723 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3724 }
3725 
3726 static inline bool __netdev_sent_queue(struct net_device *dev,
3727 				       unsigned int bytes,
3728 				       bool xmit_more)
3729 {
3730 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3731 				      xmit_more);
3732 }
3733 
3734 /**
3735  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3736  *	@dev_queue: network device queue
3737  *	@pkts: number of packets (currently ignored)
3738  *	@bytes: number of bytes dequeued from the device queue
3739  *
3740  *	Must be called at most once per TX completion round (and not per
3741  *	individual packet), so that BQL can adjust its limits appropriately.
3742  */
3743 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3744 					     unsigned int pkts, unsigned int bytes)
3745 {
3746 #ifdef CONFIG_BQL
3747 	if (unlikely(!bytes))
3748 		return;
3749 
3750 	dql_completed(&dev_queue->dql, bytes);
3751 
3752 	/*
3753 	 * Without the memory barrier there is a small possibility that
3754 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3755 	 * be stopped forever
3756 	 */
3757 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3758 
3759 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3760 		return;
3761 
3762 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3763 		netif_schedule_queue(dev_queue);
3764 #endif
3765 }
3766 
3767 /**
3768  * 	netdev_completed_queue - report bytes and packets completed by device
3769  * 	@dev: network device
3770  * 	@pkts: actual number of packets sent over the medium
3771  * 	@bytes: actual number of bytes sent over the medium
3772  *
3773  * 	Report the number of bytes and packets transmitted by the network device
3774  * 	hardware queue over the physical medium, @bytes must exactly match the
3775  * 	@bytes amount passed to netdev_sent_queue()
3776  */
3777 static inline void netdev_completed_queue(struct net_device *dev,
3778 					  unsigned int pkts, unsigned int bytes)
3779 {
3780 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3781 }
3782 
3783 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3784 {
3785 #ifdef CONFIG_BQL
3786 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3787 	dql_reset(&q->dql);
3788 #endif
3789 }
3790 
3791 /**
3792  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3793  * @dev: network device
3794  * @qid: stack index of the queue to reset
3795  */
3796 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3797 					    u32 qid)
3798 {
3799 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3800 }
3801 
3802 /**
3803  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3804  * 	@dev_queue: network device
3805  *
3806  * 	Reset the bytes and packet count of a network device and clear the
3807  * 	software flow control OFF bit for this network device
3808  */
3809 static inline void netdev_reset_queue(struct net_device *dev_queue)
3810 {
3811 	netdev_tx_reset_subqueue(dev_queue, 0);
3812 }
3813 
3814 /**
3815  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3816  * 	@dev: network device
3817  * 	@queue_index: given tx queue index
3818  *
3819  * 	Returns 0 if given tx queue index >= number of device tx queues,
3820  * 	otherwise returns the originally passed tx queue index.
3821  */
3822 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3823 {
3824 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3825 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3826 				     dev->name, queue_index,
3827 				     dev->real_num_tx_queues);
3828 		return 0;
3829 	}
3830 
3831 	return queue_index;
3832 }
3833 
3834 /**
3835  *	netif_running - test if up
3836  *	@dev: network device
3837  *
3838  *	Test if the device has been brought up.
3839  */
3840 static inline bool netif_running(const struct net_device *dev)
3841 {
3842 	return test_bit(__LINK_STATE_START, &dev->state);
3843 }
3844 
3845 /*
3846  * Routines to manage the subqueues on a device.  We only need start,
3847  * stop, and a check if it's stopped.  All other device management is
3848  * done at the overall netdevice level.
3849  * Also test the device if we're multiqueue.
3850  */
3851 
3852 /**
3853  *	netif_start_subqueue - allow sending packets on subqueue
3854  *	@dev: network device
3855  *	@queue_index: sub queue index
3856  *
3857  * Start individual transmit queue of a device with multiple transmit queues.
3858  */
3859 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3860 {
3861 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3862 
3863 	netif_tx_start_queue(txq);
3864 }
3865 
3866 /**
3867  *	netif_stop_subqueue - stop sending packets on subqueue
3868  *	@dev: network device
3869  *	@queue_index: sub queue index
3870  *
3871  * Stop individual transmit queue of a device with multiple transmit queues.
3872  */
3873 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3874 {
3875 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3876 	netif_tx_stop_queue(txq);
3877 }
3878 
3879 /**
3880  *	__netif_subqueue_stopped - test status of subqueue
3881  *	@dev: network device
3882  *	@queue_index: sub queue index
3883  *
3884  * Check individual transmit queue of a device with multiple transmit queues.
3885  */
3886 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3887 					    u16 queue_index)
3888 {
3889 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3890 
3891 	return netif_tx_queue_stopped(txq);
3892 }
3893 
3894 /**
3895  *	netif_subqueue_stopped - test status of subqueue
3896  *	@dev: network device
3897  *	@skb: sub queue buffer pointer
3898  *
3899  * Check individual transmit queue of a device with multiple transmit queues.
3900  */
3901 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3902 					  struct sk_buff *skb)
3903 {
3904 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3905 }
3906 
3907 /**
3908  *	netif_wake_subqueue - allow sending packets on subqueue
3909  *	@dev: network device
3910  *	@queue_index: sub queue index
3911  *
3912  * Resume individual transmit queue of a device with multiple transmit queues.
3913  */
3914 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3915 {
3916 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3917 
3918 	netif_tx_wake_queue(txq);
3919 }
3920 
3921 #ifdef CONFIG_XPS
3922 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3923 			u16 index);
3924 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3925 			  u16 index, enum xps_map_type type);
3926 
3927 /**
3928  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3929  *	@j: CPU/Rx queue index
3930  *	@mask: bitmask of all cpus/rx queues
3931  *	@nr_bits: number of bits in the bitmask
3932  *
3933  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3934  */
3935 static inline bool netif_attr_test_mask(unsigned long j,
3936 					const unsigned long *mask,
3937 					unsigned int nr_bits)
3938 {
3939 	cpu_max_bits_warn(j, nr_bits);
3940 	return test_bit(j, mask);
3941 }
3942 
3943 /**
3944  *	netif_attr_test_online - Test for online CPU/Rx queue
3945  *	@j: CPU/Rx queue index
3946  *	@online_mask: bitmask for CPUs/Rx queues that are online
3947  *	@nr_bits: number of bits in the bitmask
3948  *
3949  * Returns: true if a CPU/Rx queue is online.
3950  */
3951 static inline bool netif_attr_test_online(unsigned long j,
3952 					  const unsigned long *online_mask,
3953 					  unsigned int nr_bits)
3954 {
3955 	cpu_max_bits_warn(j, nr_bits);
3956 
3957 	if (online_mask)
3958 		return test_bit(j, online_mask);
3959 
3960 	return (j < nr_bits);
3961 }
3962 
3963 /**
3964  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3965  *	@n: CPU/Rx queue index
3966  *	@srcp: the cpumask/Rx queue mask pointer
3967  *	@nr_bits: number of bits in the bitmask
3968  *
3969  * Returns: next (after n) CPU/Rx queue index in the mask;
3970  * >= nr_bits if no further CPUs/Rx queues set.
3971  */
3972 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3973 					       unsigned int nr_bits)
3974 {
3975 	/* -1 is a legal arg here. */
3976 	if (n != -1)
3977 		cpu_max_bits_warn(n, nr_bits);
3978 
3979 	if (srcp)
3980 		return find_next_bit(srcp, nr_bits, n + 1);
3981 
3982 	return n + 1;
3983 }
3984 
3985 /**
3986  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3987  *	@n: CPU/Rx queue index
3988  *	@src1p: the first CPUs/Rx queues mask pointer
3989  *	@src2p: the second CPUs/Rx queues mask pointer
3990  *	@nr_bits: number of bits in the bitmask
3991  *
3992  * Returns: next (after n) CPU/Rx queue index set in both masks;
3993  * >= nr_bits if no further CPUs/Rx queues set in both.
3994  */
3995 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3996 					  const unsigned long *src2p,
3997 					  unsigned int nr_bits)
3998 {
3999 	/* -1 is a legal arg here. */
4000 	if (n != -1)
4001 		cpu_max_bits_warn(n, nr_bits);
4002 
4003 	if (src1p && src2p)
4004 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
4005 	else if (src1p)
4006 		return find_next_bit(src1p, nr_bits, n + 1);
4007 	else if (src2p)
4008 		return find_next_bit(src2p, nr_bits, n + 1);
4009 
4010 	return n + 1;
4011 }
4012 #else
4013 static inline int netif_set_xps_queue(struct net_device *dev,
4014 				      const struct cpumask *mask,
4015 				      u16 index)
4016 {
4017 	return 0;
4018 }
4019 
4020 static inline int __netif_set_xps_queue(struct net_device *dev,
4021 					const unsigned long *mask,
4022 					u16 index, enum xps_map_type type)
4023 {
4024 	return 0;
4025 }
4026 #endif
4027 
4028 /**
4029  *	netif_is_multiqueue - test if device has multiple transmit queues
4030  *	@dev: network device
4031  *
4032  * Check if device has multiple transmit queues
4033  */
4034 static inline bool netif_is_multiqueue(const struct net_device *dev)
4035 {
4036 	return dev->num_tx_queues > 1;
4037 }
4038 
4039 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
4040 
4041 #ifdef CONFIG_SYSFS
4042 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
4043 #else
4044 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
4045 						unsigned int rxqs)
4046 {
4047 	dev->real_num_rx_queues = rxqs;
4048 	return 0;
4049 }
4050 #endif
4051 int netif_set_real_num_queues(struct net_device *dev,
4052 			      unsigned int txq, unsigned int rxq);
4053 
4054 int netif_get_num_default_rss_queues(void);
4055 
4056 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4057 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4058 
4059 /*
4060  * It is not allowed to call kfree_skb() or consume_skb() from hardware
4061  * interrupt context or with hardware interrupts being disabled.
4062  * (in_hardirq() || irqs_disabled())
4063  *
4064  * We provide four helpers that can be used in following contexts :
4065  *
4066  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
4067  *  replacing kfree_skb(skb)
4068  *
4069  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
4070  *  Typically used in place of consume_skb(skb) in TX completion path
4071  *
4072  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
4073  *  replacing kfree_skb(skb)
4074  *
4075  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
4076  *  and consumed a packet. Used in place of consume_skb(skb)
4077  */
4078 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
4079 {
4080 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4081 }
4082 
4083 static inline void dev_consume_skb_irq(struct sk_buff *skb)
4084 {
4085 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
4086 }
4087 
4088 static inline void dev_kfree_skb_any(struct sk_buff *skb)
4089 {
4090 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4091 }
4092 
4093 static inline void dev_consume_skb_any(struct sk_buff *skb)
4094 {
4095 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
4096 }
4097 
4098 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4099 			     const struct bpf_prog *xdp_prog);
4100 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog);
4101 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb);
4102 int netif_rx(struct sk_buff *skb);
4103 int __netif_rx(struct sk_buff *skb);
4104 
4105 int netif_receive_skb(struct sk_buff *skb);
4106 int netif_receive_skb_core(struct sk_buff *skb);
4107 void netif_receive_skb_list_internal(struct list_head *head);
4108 void netif_receive_skb_list(struct list_head *head);
4109 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
4110 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
4111 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4112 void napi_get_frags_check(struct napi_struct *napi);
4113 gro_result_t napi_gro_frags(struct napi_struct *napi);
4114 
4115 static inline void napi_free_frags(struct napi_struct *napi)
4116 {
4117 	kfree_skb(napi->skb);
4118 	napi->skb = NULL;
4119 }
4120 
4121 bool netdev_is_rx_handler_busy(struct net_device *dev);
4122 int netdev_rx_handler_register(struct net_device *dev,
4123 			       rx_handler_func_t *rx_handler,
4124 			       void *rx_handler_data);
4125 void netdev_rx_handler_unregister(struct net_device *dev);
4126 
4127 bool dev_valid_name(const char *name);
4128 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4129 {
4130 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4131 }
4132 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4133 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4134 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4135 		void __user *data, bool *need_copyout);
4136 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4137 int generic_hwtstamp_get_lower(struct net_device *dev,
4138 			       struct kernel_hwtstamp_config *kernel_cfg);
4139 int generic_hwtstamp_set_lower(struct net_device *dev,
4140 			       struct kernel_hwtstamp_config *kernel_cfg,
4141 			       struct netlink_ext_ack *extack);
4142 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4143 unsigned int dev_get_flags(const struct net_device *);
4144 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4145 		       struct netlink_ext_ack *extack);
4146 int dev_change_flags(struct net_device *dev, unsigned int flags,
4147 		     struct netlink_ext_ack *extack);
4148 int dev_set_alias(struct net_device *, const char *, size_t);
4149 int dev_get_alias(const struct net_device *, char *, size_t);
4150 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4151 			       const char *pat, int new_ifindex);
4152 static inline
4153 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4154 			     const char *pat)
4155 {
4156 	return __dev_change_net_namespace(dev, net, pat, 0);
4157 }
4158 int __dev_set_mtu(struct net_device *, int);
4159 int dev_set_mtu(struct net_device *, int);
4160 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4161 			      struct netlink_ext_ack *extack);
4162 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4163 			struct netlink_ext_ack *extack);
4164 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4165 			     struct netlink_ext_ack *extack);
4166 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4167 int dev_get_port_parent_id(struct net_device *dev,
4168 			   struct netdev_phys_item_id *ppid, bool recurse);
4169 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4170 
4171 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4172 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4173 				    struct netdev_queue *txq, int *ret);
4174 
4175 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4176 u8 dev_xdp_prog_count(struct net_device *dev);
4177 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4178 u8 dev_xdp_sb_prog_count(struct net_device *dev);
4179 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4180 
4181 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4182 
4183 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4184 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4185 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4186 bool is_skb_forwardable(const struct net_device *dev,
4187 			const struct sk_buff *skb);
4188 
4189 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4190 						 const struct sk_buff *skb,
4191 						 const bool check_mtu)
4192 {
4193 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4194 	unsigned int len;
4195 
4196 	if (!(dev->flags & IFF_UP))
4197 		return false;
4198 
4199 	if (!check_mtu)
4200 		return true;
4201 
4202 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4203 	if (skb->len <= len)
4204 		return true;
4205 
4206 	/* if TSO is enabled, we don't care about the length as the packet
4207 	 * could be forwarded without being segmented before
4208 	 */
4209 	if (skb_is_gso(skb))
4210 		return true;
4211 
4212 	return false;
4213 }
4214 
4215 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4216 
4217 #define DEV_CORE_STATS_INC(FIELD)						\
4218 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4219 {										\
4220 	netdev_core_stats_inc(dev,						\
4221 			offsetof(struct net_device_core_stats, FIELD));		\
4222 }
4223 DEV_CORE_STATS_INC(rx_dropped)
4224 DEV_CORE_STATS_INC(tx_dropped)
4225 DEV_CORE_STATS_INC(rx_nohandler)
4226 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4227 #undef DEV_CORE_STATS_INC
4228 
4229 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4230 					       struct sk_buff *skb,
4231 					       const bool check_mtu)
4232 {
4233 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4234 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4235 		dev_core_stats_rx_dropped_inc(dev);
4236 		kfree_skb(skb);
4237 		return NET_RX_DROP;
4238 	}
4239 
4240 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4241 	skb->priority = 0;
4242 	return 0;
4243 }
4244 
4245 bool dev_nit_active(struct net_device *dev);
4246 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4247 
4248 static inline void __dev_put(struct net_device *dev)
4249 {
4250 	if (dev) {
4251 #ifdef CONFIG_PCPU_DEV_REFCNT
4252 		this_cpu_dec(*dev->pcpu_refcnt);
4253 #else
4254 		refcount_dec(&dev->dev_refcnt);
4255 #endif
4256 	}
4257 }
4258 
4259 static inline void __dev_hold(struct net_device *dev)
4260 {
4261 	if (dev) {
4262 #ifdef CONFIG_PCPU_DEV_REFCNT
4263 		this_cpu_inc(*dev->pcpu_refcnt);
4264 #else
4265 		refcount_inc(&dev->dev_refcnt);
4266 #endif
4267 	}
4268 }
4269 
4270 static inline void __netdev_tracker_alloc(struct net_device *dev,
4271 					  netdevice_tracker *tracker,
4272 					  gfp_t gfp)
4273 {
4274 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4275 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4276 #endif
4277 }
4278 
4279 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4280  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4281  */
4282 static inline void netdev_tracker_alloc(struct net_device *dev,
4283 					netdevice_tracker *tracker, gfp_t gfp)
4284 {
4285 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4286 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4287 	__netdev_tracker_alloc(dev, tracker, gfp);
4288 #endif
4289 }
4290 
4291 static inline void netdev_tracker_free(struct net_device *dev,
4292 				       netdevice_tracker *tracker)
4293 {
4294 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4295 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4296 #endif
4297 }
4298 
4299 static inline void netdev_hold(struct net_device *dev,
4300 			       netdevice_tracker *tracker, gfp_t gfp)
4301 {
4302 	if (dev) {
4303 		__dev_hold(dev);
4304 		__netdev_tracker_alloc(dev, tracker, gfp);
4305 	}
4306 }
4307 
4308 static inline void netdev_put(struct net_device *dev,
4309 			      netdevice_tracker *tracker)
4310 {
4311 	if (dev) {
4312 		netdev_tracker_free(dev, tracker);
4313 		__dev_put(dev);
4314 	}
4315 }
4316 
4317 /**
4318  *	dev_hold - get reference to device
4319  *	@dev: network device
4320  *
4321  * Hold reference to device to keep it from being freed.
4322  * Try using netdev_hold() instead.
4323  */
4324 static inline void dev_hold(struct net_device *dev)
4325 {
4326 	netdev_hold(dev, NULL, GFP_ATOMIC);
4327 }
4328 
4329 /**
4330  *	dev_put - release reference to device
4331  *	@dev: network device
4332  *
4333  * Release reference to device to allow it to be freed.
4334  * Try using netdev_put() instead.
4335  */
4336 static inline void dev_put(struct net_device *dev)
4337 {
4338 	netdev_put(dev, NULL);
4339 }
4340 
4341 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4342 
4343 static inline void netdev_ref_replace(struct net_device *odev,
4344 				      struct net_device *ndev,
4345 				      netdevice_tracker *tracker,
4346 				      gfp_t gfp)
4347 {
4348 	if (odev)
4349 		netdev_tracker_free(odev, tracker);
4350 
4351 	__dev_hold(ndev);
4352 	__dev_put(odev);
4353 
4354 	if (ndev)
4355 		__netdev_tracker_alloc(ndev, tracker, gfp);
4356 }
4357 
4358 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4359  * and _off may be called from IRQ context, but it is caller
4360  * who is responsible for serialization of these calls.
4361  *
4362  * The name carrier is inappropriate, these functions should really be
4363  * called netif_lowerlayer_*() because they represent the state of any
4364  * kind of lower layer not just hardware media.
4365  */
4366 void linkwatch_fire_event(struct net_device *dev);
4367 
4368 /**
4369  * linkwatch_sync_dev - sync linkwatch for the given device
4370  * @dev: network device to sync linkwatch for
4371  *
4372  * Sync linkwatch for the given device, removing it from the
4373  * pending work list (if queued).
4374  */
4375 void linkwatch_sync_dev(struct net_device *dev);
4376 
4377 /**
4378  *	netif_carrier_ok - test if carrier present
4379  *	@dev: network device
4380  *
4381  * Check if carrier is present on device
4382  */
4383 static inline bool netif_carrier_ok(const struct net_device *dev)
4384 {
4385 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4386 }
4387 
4388 unsigned long dev_trans_start(struct net_device *dev);
4389 
4390 void netdev_watchdog_up(struct net_device *dev);
4391 
4392 void netif_carrier_on(struct net_device *dev);
4393 void netif_carrier_off(struct net_device *dev);
4394 void netif_carrier_event(struct net_device *dev);
4395 
4396 /**
4397  *	netif_dormant_on - mark device as dormant.
4398  *	@dev: network device
4399  *
4400  * Mark device as dormant (as per RFC2863).
4401  *
4402  * The dormant state indicates that the relevant interface is not
4403  * actually in a condition to pass packets (i.e., it is not 'up') but is
4404  * in a "pending" state, waiting for some external event.  For "on-
4405  * demand" interfaces, this new state identifies the situation where the
4406  * interface is waiting for events to place it in the up state.
4407  */
4408 static inline void netif_dormant_on(struct net_device *dev)
4409 {
4410 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4411 		linkwatch_fire_event(dev);
4412 }
4413 
4414 /**
4415  *	netif_dormant_off - set device as not dormant.
4416  *	@dev: network device
4417  *
4418  * Device is not in dormant state.
4419  */
4420 static inline void netif_dormant_off(struct net_device *dev)
4421 {
4422 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4423 		linkwatch_fire_event(dev);
4424 }
4425 
4426 /**
4427  *	netif_dormant - test if device is dormant
4428  *	@dev: network device
4429  *
4430  * Check if device is dormant.
4431  */
4432 static inline bool netif_dormant(const struct net_device *dev)
4433 {
4434 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4435 }
4436 
4437 
4438 /**
4439  *	netif_testing_on - mark device as under test.
4440  *	@dev: network device
4441  *
4442  * Mark device as under test (as per RFC2863).
4443  *
4444  * The testing state indicates that some test(s) must be performed on
4445  * the interface. After completion, of the test, the interface state
4446  * will change to up, dormant, or down, as appropriate.
4447  */
4448 static inline void netif_testing_on(struct net_device *dev)
4449 {
4450 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4451 		linkwatch_fire_event(dev);
4452 }
4453 
4454 /**
4455  *	netif_testing_off - set device as not under test.
4456  *	@dev: network device
4457  *
4458  * Device is not in testing state.
4459  */
4460 static inline void netif_testing_off(struct net_device *dev)
4461 {
4462 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4463 		linkwatch_fire_event(dev);
4464 }
4465 
4466 /**
4467  *	netif_testing - test if device is under test
4468  *	@dev: network device
4469  *
4470  * Check if device is under test
4471  */
4472 static inline bool netif_testing(const struct net_device *dev)
4473 {
4474 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4475 }
4476 
4477 
4478 /**
4479  *	netif_oper_up - test if device is operational
4480  *	@dev: network device
4481  *
4482  * Check if carrier is operational
4483  */
4484 static inline bool netif_oper_up(const struct net_device *dev)
4485 {
4486 	unsigned int operstate = READ_ONCE(dev->operstate);
4487 
4488 	return	operstate == IF_OPER_UP ||
4489 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4490 }
4491 
4492 /**
4493  *	netif_device_present - is device available or removed
4494  *	@dev: network device
4495  *
4496  * Check if device has not been removed from system.
4497  */
4498 static inline bool netif_device_present(const struct net_device *dev)
4499 {
4500 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4501 }
4502 
4503 void netif_device_detach(struct net_device *dev);
4504 
4505 void netif_device_attach(struct net_device *dev);
4506 
4507 /*
4508  * Network interface message level settings
4509  */
4510 
4511 enum {
4512 	NETIF_MSG_DRV_BIT,
4513 	NETIF_MSG_PROBE_BIT,
4514 	NETIF_MSG_LINK_BIT,
4515 	NETIF_MSG_TIMER_BIT,
4516 	NETIF_MSG_IFDOWN_BIT,
4517 	NETIF_MSG_IFUP_BIT,
4518 	NETIF_MSG_RX_ERR_BIT,
4519 	NETIF_MSG_TX_ERR_BIT,
4520 	NETIF_MSG_TX_QUEUED_BIT,
4521 	NETIF_MSG_INTR_BIT,
4522 	NETIF_MSG_TX_DONE_BIT,
4523 	NETIF_MSG_RX_STATUS_BIT,
4524 	NETIF_MSG_PKTDATA_BIT,
4525 	NETIF_MSG_HW_BIT,
4526 	NETIF_MSG_WOL_BIT,
4527 
4528 	/* When you add a new bit above, update netif_msg_class_names array
4529 	 * in net/ethtool/common.c
4530 	 */
4531 	NETIF_MSG_CLASS_COUNT,
4532 };
4533 /* Both ethtool_ops interface and internal driver implementation use u32 */
4534 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4535 
4536 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4537 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4538 
4539 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4540 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4541 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4542 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4543 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4544 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4545 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4546 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4547 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4548 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4549 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4550 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4551 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4552 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4553 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4554 
4555 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4556 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4557 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4558 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4559 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4560 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4561 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4562 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4563 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4564 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4565 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4566 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4567 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4568 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4569 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4570 
4571 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4572 {
4573 	/* use default */
4574 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4575 		return default_msg_enable_bits;
4576 	if (debug_value == 0)	/* no output */
4577 		return 0;
4578 	/* set low N bits */
4579 	return (1U << debug_value) - 1;
4580 }
4581 
4582 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4583 {
4584 	spin_lock(&txq->_xmit_lock);
4585 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4586 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4587 }
4588 
4589 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4590 {
4591 	__acquire(&txq->_xmit_lock);
4592 	return true;
4593 }
4594 
4595 static inline void __netif_tx_release(struct netdev_queue *txq)
4596 {
4597 	__release(&txq->_xmit_lock);
4598 }
4599 
4600 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4601 {
4602 	spin_lock_bh(&txq->_xmit_lock);
4603 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4604 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4605 }
4606 
4607 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4608 {
4609 	bool ok = spin_trylock(&txq->_xmit_lock);
4610 
4611 	if (likely(ok)) {
4612 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4613 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4614 	}
4615 	return ok;
4616 }
4617 
4618 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4619 {
4620 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4621 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4622 	spin_unlock(&txq->_xmit_lock);
4623 }
4624 
4625 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4626 {
4627 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4628 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4629 	spin_unlock_bh(&txq->_xmit_lock);
4630 }
4631 
4632 /*
4633  * txq->trans_start can be read locklessly from dev_watchdog()
4634  */
4635 static inline void txq_trans_update(struct netdev_queue *txq)
4636 {
4637 	if (txq->xmit_lock_owner != -1)
4638 		WRITE_ONCE(txq->trans_start, jiffies);
4639 }
4640 
4641 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4642 {
4643 	unsigned long now = jiffies;
4644 
4645 	if (READ_ONCE(txq->trans_start) != now)
4646 		WRITE_ONCE(txq->trans_start, now);
4647 }
4648 
4649 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4650 static inline void netif_trans_update(struct net_device *dev)
4651 {
4652 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4653 
4654 	txq_trans_cond_update(txq);
4655 }
4656 
4657 /**
4658  *	netif_tx_lock - grab network device transmit lock
4659  *	@dev: network device
4660  *
4661  * Get network device transmit lock
4662  */
4663 void netif_tx_lock(struct net_device *dev);
4664 
4665 static inline void netif_tx_lock_bh(struct net_device *dev)
4666 {
4667 	local_bh_disable();
4668 	netif_tx_lock(dev);
4669 }
4670 
4671 void netif_tx_unlock(struct net_device *dev);
4672 
4673 static inline void netif_tx_unlock_bh(struct net_device *dev)
4674 {
4675 	netif_tx_unlock(dev);
4676 	local_bh_enable();
4677 }
4678 
4679 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4680 	if (!(dev)->lltx) {				\
4681 		__netif_tx_lock(txq, cpu);		\
4682 	} else {					\
4683 		__netif_tx_acquire(txq);		\
4684 	}						\
4685 }
4686 
4687 #define HARD_TX_TRYLOCK(dev, txq)			\
4688 	(!(dev)->lltx ?					\
4689 		__netif_tx_trylock(txq) :		\
4690 		__netif_tx_acquire(txq))
4691 
4692 #define HARD_TX_UNLOCK(dev, txq) {			\
4693 	if (!(dev)->lltx) {				\
4694 		__netif_tx_unlock(txq);			\
4695 	} else {					\
4696 		__netif_tx_release(txq);		\
4697 	}						\
4698 }
4699 
4700 static inline void netif_tx_disable(struct net_device *dev)
4701 {
4702 	unsigned int i;
4703 	int cpu;
4704 
4705 	local_bh_disable();
4706 	cpu = smp_processor_id();
4707 	spin_lock(&dev->tx_global_lock);
4708 	for (i = 0; i < dev->num_tx_queues; i++) {
4709 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4710 
4711 		__netif_tx_lock(txq, cpu);
4712 		netif_tx_stop_queue(txq);
4713 		__netif_tx_unlock(txq);
4714 	}
4715 	spin_unlock(&dev->tx_global_lock);
4716 	local_bh_enable();
4717 }
4718 
4719 static inline void netif_addr_lock(struct net_device *dev)
4720 {
4721 	unsigned char nest_level = 0;
4722 
4723 #ifdef CONFIG_LOCKDEP
4724 	nest_level = dev->nested_level;
4725 #endif
4726 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4727 }
4728 
4729 static inline void netif_addr_lock_bh(struct net_device *dev)
4730 {
4731 	unsigned char nest_level = 0;
4732 
4733 #ifdef CONFIG_LOCKDEP
4734 	nest_level = dev->nested_level;
4735 #endif
4736 	local_bh_disable();
4737 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4738 }
4739 
4740 static inline void netif_addr_unlock(struct net_device *dev)
4741 {
4742 	spin_unlock(&dev->addr_list_lock);
4743 }
4744 
4745 static inline void netif_addr_unlock_bh(struct net_device *dev)
4746 {
4747 	spin_unlock_bh(&dev->addr_list_lock);
4748 }
4749 
4750 /*
4751  * dev_addrs walker. Should be used only for read access. Call with
4752  * rcu_read_lock held.
4753  */
4754 #define for_each_dev_addr(dev, ha) \
4755 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4756 
4757 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4758 
4759 void ether_setup(struct net_device *dev);
4760 
4761 /* Allocate dummy net_device */
4762 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4763 
4764 /* Support for loadable net-drivers */
4765 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4766 				    unsigned char name_assign_type,
4767 				    void (*setup)(struct net_device *),
4768 				    unsigned int txqs, unsigned int rxqs);
4769 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4770 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4771 
4772 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4773 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4774 			 count)
4775 
4776 int register_netdev(struct net_device *dev);
4777 void unregister_netdev(struct net_device *dev);
4778 
4779 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4780 
4781 /* General hardware address lists handling functions */
4782 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4783 		   struct netdev_hw_addr_list *from_list, int addr_len);
4784 int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list,
4785 			    struct netdev_hw_addr_list *from_list,
4786 			    int addr_len);
4787 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4788 		      struct netdev_hw_addr_list *from_list, int addr_len);
4789 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4790 		       struct net_device *dev,
4791 		       int (*sync)(struct net_device *, const unsigned char *),
4792 		       int (*unsync)(struct net_device *,
4793 				     const unsigned char *));
4794 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4795 			   struct net_device *dev,
4796 			   int (*sync)(struct net_device *,
4797 				       const unsigned char *, int),
4798 			   int (*unsync)(struct net_device *,
4799 					 const unsigned char *, int));
4800 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4801 			      struct net_device *dev,
4802 			      int (*unsync)(struct net_device *,
4803 					    const unsigned char *, int));
4804 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4805 			  struct net_device *dev,
4806 			  int (*unsync)(struct net_device *,
4807 					const unsigned char *));
4808 void __hw_addr_init(struct netdev_hw_addr_list *list);
4809 
4810 /* Functions used for device addresses handling */
4811 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4812 		  const void *addr, size_t len);
4813 
4814 static inline void
4815 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4816 {
4817 	dev_addr_mod(dev, 0, addr, len);
4818 }
4819 
4820 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4821 {
4822 	__dev_addr_set(dev, addr, dev->addr_len);
4823 }
4824 
4825 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4826 		 unsigned char addr_type);
4827 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4828 		 unsigned char addr_type);
4829 
4830 /* Functions used for unicast addresses handling */
4831 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4832 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4833 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4834 int dev_uc_sync(struct net_device *to, struct net_device *from);
4835 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4836 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4837 void dev_uc_flush(struct net_device *dev);
4838 void dev_uc_init(struct net_device *dev);
4839 
4840 /**
4841  *  __dev_uc_sync - Synchronize device's unicast list
4842  *  @dev:  device to sync
4843  *  @sync: function to call if address should be added
4844  *  @unsync: function to call if address should be removed
4845  *
4846  *  Add newly added addresses to the interface, and release
4847  *  addresses that have been deleted.
4848  */
4849 static inline int __dev_uc_sync(struct net_device *dev,
4850 				int (*sync)(struct net_device *,
4851 					    const unsigned char *),
4852 				int (*unsync)(struct net_device *,
4853 					      const unsigned char *))
4854 {
4855 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4856 }
4857 
4858 /**
4859  *  __dev_uc_unsync - Remove synchronized addresses from device
4860  *  @dev:  device to sync
4861  *  @unsync: function to call if address should be removed
4862  *
4863  *  Remove all addresses that were added to the device by dev_uc_sync().
4864  */
4865 static inline void __dev_uc_unsync(struct net_device *dev,
4866 				   int (*unsync)(struct net_device *,
4867 						 const unsigned char *))
4868 {
4869 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4870 }
4871 
4872 /* Functions used for multicast addresses handling */
4873 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4874 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4875 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4876 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4877 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4878 int dev_mc_sync(struct net_device *to, struct net_device *from);
4879 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4880 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4881 void dev_mc_flush(struct net_device *dev);
4882 void dev_mc_init(struct net_device *dev);
4883 
4884 /**
4885  *  __dev_mc_sync - Synchronize device's multicast list
4886  *  @dev:  device to sync
4887  *  @sync: function to call if address should be added
4888  *  @unsync: function to call if address should be removed
4889  *
4890  *  Add newly added addresses to the interface, and release
4891  *  addresses that have been deleted.
4892  */
4893 static inline int __dev_mc_sync(struct net_device *dev,
4894 				int (*sync)(struct net_device *,
4895 					    const unsigned char *),
4896 				int (*unsync)(struct net_device *,
4897 					      const unsigned char *))
4898 {
4899 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4900 }
4901 
4902 /**
4903  *  __dev_mc_unsync - Remove synchronized addresses from device
4904  *  @dev:  device to sync
4905  *  @unsync: function to call if address should be removed
4906  *
4907  *  Remove all addresses that were added to the device by dev_mc_sync().
4908  */
4909 static inline void __dev_mc_unsync(struct net_device *dev,
4910 				   int (*unsync)(struct net_device *,
4911 						 const unsigned char *))
4912 {
4913 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4914 }
4915 
4916 /* Functions used for secondary unicast and multicast support */
4917 void dev_set_rx_mode(struct net_device *dev);
4918 int dev_set_promiscuity(struct net_device *dev, int inc);
4919 int dev_set_allmulti(struct net_device *dev, int inc);
4920 void netdev_state_change(struct net_device *dev);
4921 void __netdev_notify_peers(struct net_device *dev);
4922 void netdev_notify_peers(struct net_device *dev);
4923 void netdev_features_change(struct net_device *dev);
4924 /* Load a device via the kmod */
4925 void dev_load(struct net *net, const char *name);
4926 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4927 					struct rtnl_link_stats64 *storage);
4928 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4929 			     const struct net_device_stats *netdev_stats);
4930 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4931 			   const struct pcpu_sw_netstats __percpu *netstats);
4932 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4933 
4934 enum {
4935 	NESTED_SYNC_IMM_BIT,
4936 	NESTED_SYNC_TODO_BIT,
4937 };
4938 
4939 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4940 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4941 
4942 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4943 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4944 
4945 struct netdev_nested_priv {
4946 	unsigned char flags;
4947 	void *data;
4948 };
4949 
4950 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4951 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4952 						     struct list_head **iter);
4953 
4954 /* iterate through upper list, must be called under RCU read lock */
4955 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4956 	for (iter = &(dev)->adj_list.upper, \
4957 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4958 	     updev; \
4959 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4960 
4961 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4962 				  int (*fn)(struct net_device *upper_dev,
4963 					    struct netdev_nested_priv *priv),
4964 				  struct netdev_nested_priv *priv);
4965 
4966 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4967 				  struct net_device *upper_dev);
4968 
4969 bool netdev_has_any_upper_dev(struct net_device *dev);
4970 
4971 void *netdev_lower_get_next_private(struct net_device *dev,
4972 				    struct list_head **iter);
4973 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4974 					struct list_head **iter);
4975 
4976 #define netdev_for_each_lower_private(dev, priv, iter) \
4977 	for (iter = (dev)->adj_list.lower.next, \
4978 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4979 	     priv; \
4980 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4981 
4982 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4983 	for (iter = &(dev)->adj_list.lower, \
4984 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4985 	     priv; \
4986 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4987 
4988 void *netdev_lower_get_next(struct net_device *dev,
4989 				struct list_head **iter);
4990 
4991 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4992 	for (iter = (dev)->adj_list.lower.next, \
4993 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4994 	     ldev; \
4995 	     ldev = netdev_lower_get_next(dev, &(iter)))
4996 
4997 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4998 					     struct list_head **iter);
4999 int netdev_walk_all_lower_dev(struct net_device *dev,
5000 			      int (*fn)(struct net_device *lower_dev,
5001 					struct netdev_nested_priv *priv),
5002 			      struct netdev_nested_priv *priv);
5003 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5004 				  int (*fn)(struct net_device *lower_dev,
5005 					    struct netdev_nested_priv *priv),
5006 				  struct netdev_nested_priv *priv);
5007 
5008 void *netdev_adjacent_get_private(struct list_head *adj_list);
5009 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
5010 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
5011 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
5012 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
5013 			  struct netlink_ext_ack *extack);
5014 int netdev_master_upper_dev_link(struct net_device *dev,
5015 				 struct net_device *upper_dev,
5016 				 void *upper_priv, void *upper_info,
5017 				 struct netlink_ext_ack *extack);
5018 void netdev_upper_dev_unlink(struct net_device *dev,
5019 			     struct net_device *upper_dev);
5020 int netdev_adjacent_change_prepare(struct net_device *old_dev,
5021 				   struct net_device *new_dev,
5022 				   struct net_device *dev,
5023 				   struct netlink_ext_ack *extack);
5024 void netdev_adjacent_change_commit(struct net_device *old_dev,
5025 				   struct net_device *new_dev,
5026 				   struct net_device *dev);
5027 void netdev_adjacent_change_abort(struct net_device *old_dev,
5028 				  struct net_device *new_dev,
5029 				  struct net_device *dev);
5030 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
5031 void *netdev_lower_dev_get_private(struct net_device *dev,
5032 				   struct net_device *lower_dev);
5033 void netdev_lower_state_changed(struct net_device *lower_dev,
5034 				void *lower_state_info);
5035 
5036 /* RSS keys are 40 or 52 bytes long */
5037 #define NETDEV_RSS_KEY_LEN 52
5038 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
5039 void netdev_rss_key_fill(void *buffer, size_t len);
5040 
5041 int skb_checksum_help(struct sk_buff *skb);
5042 int skb_crc32c_csum_help(struct sk_buff *skb);
5043 int skb_csum_hwoffload_help(struct sk_buff *skb,
5044 			    const netdev_features_t features);
5045 
5046 struct netdev_bonding_info {
5047 	ifslave	slave;
5048 	ifbond	master;
5049 };
5050 
5051 struct netdev_notifier_bonding_info {
5052 	struct netdev_notifier_info info; /* must be first */
5053 	struct netdev_bonding_info  bonding_info;
5054 };
5055 
5056 void netdev_bonding_info_change(struct net_device *dev,
5057 				struct netdev_bonding_info *bonding_info);
5058 
5059 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
5060 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
5061 #else
5062 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
5063 				  const void *data)
5064 {
5065 }
5066 #endif
5067 
5068 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
5069 
5070 static inline bool can_checksum_protocol(netdev_features_t features,
5071 					 __be16 protocol)
5072 {
5073 	if (protocol == htons(ETH_P_FCOE))
5074 		return !!(features & NETIF_F_FCOE_CRC);
5075 
5076 	/* Assume this is an IP checksum (not SCTP CRC) */
5077 
5078 	if (features & NETIF_F_HW_CSUM) {
5079 		/* Can checksum everything */
5080 		return true;
5081 	}
5082 
5083 	switch (protocol) {
5084 	case htons(ETH_P_IP):
5085 		return !!(features & NETIF_F_IP_CSUM);
5086 	case htons(ETH_P_IPV6):
5087 		return !!(features & NETIF_F_IPV6_CSUM);
5088 	default:
5089 		return false;
5090 	}
5091 }
5092 
5093 #ifdef CONFIG_BUG
5094 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
5095 #else
5096 static inline void netdev_rx_csum_fault(struct net_device *dev,
5097 					struct sk_buff *skb)
5098 {
5099 }
5100 #endif
5101 /* rx skb timestamps */
5102 void net_enable_timestamp(void);
5103 void net_disable_timestamp(void);
5104 
5105 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
5106 					const struct skb_shared_hwtstamps *hwtstamps,
5107 					bool cycles)
5108 {
5109 	const struct net_device_ops *ops = dev->netdev_ops;
5110 
5111 	if (ops->ndo_get_tstamp)
5112 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
5113 
5114 	return hwtstamps->hwtstamp;
5115 }
5116 
5117 #ifndef CONFIG_PREEMPT_RT
5118 static inline void netdev_xmit_set_more(bool more)
5119 {
5120 	__this_cpu_write(softnet_data.xmit.more, more);
5121 }
5122 
5123 static inline bool netdev_xmit_more(void)
5124 {
5125 	return __this_cpu_read(softnet_data.xmit.more);
5126 }
5127 #else
5128 static inline void netdev_xmit_set_more(bool more)
5129 {
5130 	current->net_xmit.more = more;
5131 }
5132 
5133 static inline bool netdev_xmit_more(void)
5134 {
5135 	return current->net_xmit.more;
5136 }
5137 #endif
5138 
5139 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5140 					      struct sk_buff *skb, struct net_device *dev,
5141 					      bool more)
5142 {
5143 	netdev_xmit_set_more(more);
5144 	return ops->ndo_start_xmit(skb, dev);
5145 }
5146 
5147 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5148 					    struct netdev_queue *txq, bool more)
5149 {
5150 	const struct net_device_ops *ops = dev->netdev_ops;
5151 	netdev_tx_t rc;
5152 
5153 	rc = __netdev_start_xmit(ops, skb, dev, more);
5154 	if (rc == NETDEV_TX_OK)
5155 		txq_trans_update(txq);
5156 
5157 	return rc;
5158 }
5159 
5160 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5161 				const void *ns);
5162 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5163 				 const void *ns);
5164 
5165 extern const struct kobj_ns_type_operations net_ns_type_operations;
5166 
5167 const char *netdev_drivername(const struct net_device *dev);
5168 
5169 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5170 							  netdev_features_t f2)
5171 {
5172 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5173 		if (f1 & NETIF_F_HW_CSUM)
5174 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5175 		else
5176 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5177 	}
5178 
5179 	return f1 & f2;
5180 }
5181 
5182 static inline netdev_features_t netdev_get_wanted_features(
5183 	struct net_device *dev)
5184 {
5185 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5186 }
5187 netdev_features_t netdev_increment_features(netdev_features_t all,
5188 	netdev_features_t one, netdev_features_t mask);
5189 
5190 /* Allow TSO being used on stacked device :
5191  * Performing the GSO segmentation before last device
5192  * is a performance improvement.
5193  */
5194 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5195 							netdev_features_t mask)
5196 {
5197 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5198 }
5199 
5200 int __netdev_update_features(struct net_device *dev);
5201 void netdev_update_features(struct net_device *dev);
5202 void netdev_change_features(struct net_device *dev);
5203 
5204 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5205 					struct net_device *dev);
5206 
5207 netdev_features_t passthru_features_check(struct sk_buff *skb,
5208 					  struct net_device *dev,
5209 					  netdev_features_t features);
5210 netdev_features_t netif_skb_features(struct sk_buff *skb);
5211 void skb_warn_bad_offload(const struct sk_buff *skb);
5212 
5213 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5214 {
5215 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5216 
5217 	/* check flags correspondence */
5218 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5219 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5220 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5221 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5222 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5223 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5224 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5225 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5226 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5227 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5228 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5229 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5230 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5231 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5232 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5233 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5234 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5235 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5236 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5237 
5238 	return (features & feature) == feature;
5239 }
5240 
5241 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5242 {
5243 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5244 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5245 }
5246 
5247 static inline bool netif_needs_gso(struct sk_buff *skb,
5248 				   netdev_features_t features)
5249 {
5250 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5251 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5252 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5253 }
5254 
5255 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5256 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5257 void netif_inherit_tso_max(struct net_device *to,
5258 			   const struct net_device *from);
5259 
5260 static inline unsigned int
5261 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5262 {
5263 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5264 	return skb->protocol == htons(ETH_P_IPV6) ?
5265 	       READ_ONCE(dev->gro_max_size) :
5266 	       READ_ONCE(dev->gro_ipv4_max_size);
5267 }
5268 
5269 static inline unsigned int
5270 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5271 {
5272 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5273 	return skb->protocol == htons(ETH_P_IPV6) ?
5274 	       READ_ONCE(dev->gso_max_size) :
5275 	       READ_ONCE(dev->gso_ipv4_max_size);
5276 }
5277 
5278 static inline bool netif_is_macsec(const struct net_device *dev)
5279 {
5280 	return dev->priv_flags & IFF_MACSEC;
5281 }
5282 
5283 static inline bool netif_is_macvlan(const struct net_device *dev)
5284 {
5285 	return dev->priv_flags & IFF_MACVLAN;
5286 }
5287 
5288 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5289 {
5290 	return dev->priv_flags & IFF_MACVLAN_PORT;
5291 }
5292 
5293 static inline bool netif_is_bond_master(const struct net_device *dev)
5294 {
5295 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5296 }
5297 
5298 static inline bool netif_is_bond_slave(const struct net_device *dev)
5299 {
5300 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5301 }
5302 
5303 static inline bool netif_supports_nofcs(struct net_device *dev)
5304 {
5305 	return dev->priv_flags & IFF_SUPP_NOFCS;
5306 }
5307 
5308 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5309 {
5310 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5311 }
5312 
5313 static inline bool netif_is_l3_master(const struct net_device *dev)
5314 {
5315 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5316 }
5317 
5318 static inline bool netif_is_l3_slave(const struct net_device *dev)
5319 {
5320 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5321 }
5322 
5323 static inline int dev_sdif(const struct net_device *dev)
5324 {
5325 #ifdef CONFIG_NET_L3_MASTER_DEV
5326 	if (netif_is_l3_slave(dev))
5327 		return dev->ifindex;
5328 #endif
5329 	return 0;
5330 }
5331 
5332 static inline bool netif_is_bridge_master(const struct net_device *dev)
5333 {
5334 	return dev->priv_flags & IFF_EBRIDGE;
5335 }
5336 
5337 static inline bool netif_is_bridge_port(const struct net_device *dev)
5338 {
5339 	return dev->priv_flags & IFF_BRIDGE_PORT;
5340 }
5341 
5342 static inline bool netif_is_ovs_master(const struct net_device *dev)
5343 {
5344 	return dev->priv_flags & IFF_OPENVSWITCH;
5345 }
5346 
5347 static inline bool netif_is_ovs_port(const struct net_device *dev)
5348 {
5349 	return dev->priv_flags & IFF_OVS_DATAPATH;
5350 }
5351 
5352 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5353 {
5354 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5355 }
5356 
5357 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5358 {
5359 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5360 }
5361 
5362 static inline bool netif_is_team_master(const struct net_device *dev)
5363 {
5364 	return dev->priv_flags & IFF_TEAM;
5365 }
5366 
5367 static inline bool netif_is_team_port(const struct net_device *dev)
5368 {
5369 	return dev->priv_flags & IFF_TEAM_PORT;
5370 }
5371 
5372 static inline bool netif_is_lag_master(const struct net_device *dev)
5373 {
5374 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5375 }
5376 
5377 static inline bool netif_is_lag_port(const struct net_device *dev)
5378 {
5379 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5380 }
5381 
5382 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5383 {
5384 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5385 }
5386 
5387 static inline bool netif_is_failover(const struct net_device *dev)
5388 {
5389 	return dev->priv_flags & IFF_FAILOVER;
5390 }
5391 
5392 static inline bool netif_is_failover_slave(const struct net_device *dev)
5393 {
5394 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5395 }
5396 
5397 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5398 static inline void netif_keep_dst(struct net_device *dev)
5399 {
5400 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5401 }
5402 
5403 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5404 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5405 {
5406 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5407 	return netif_is_macsec(dev);
5408 }
5409 
5410 extern struct pernet_operations __net_initdata loopback_net_ops;
5411 
5412 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5413 
5414 /* netdev_printk helpers, similar to dev_printk */
5415 
5416 static inline const char *netdev_name(const struct net_device *dev)
5417 {
5418 	if (!dev->name[0] || strchr(dev->name, '%'))
5419 		return "(unnamed net_device)";
5420 	return dev->name;
5421 }
5422 
5423 static inline const char *netdev_reg_state(const struct net_device *dev)
5424 {
5425 	u8 reg_state = READ_ONCE(dev->reg_state);
5426 
5427 	switch (reg_state) {
5428 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5429 	case NETREG_REGISTERED: return "";
5430 	case NETREG_UNREGISTERING: return " (unregistering)";
5431 	case NETREG_UNREGISTERED: return " (unregistered)";
5432 	case NETREG_RELEASED: return " (released)";
5433 	case NETREG_DUMMY: return " (dummy)";
5434 	}
5435 
5436 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5437 	return " (unknown)";
5438 }
5439 
5440 #define MODULE_ALIAS_NETDEV(device) \
5441 	MODULE_ALIAS("netdev-" device)
5442 
5443 /*
5444  * netdev_WARN() acts like dev_printk(), but with the key difference
5445  * of using a WARN/WARN_ON to get the message out, including the
5446  * file/line information and a backtrace.
5447  */
5448 #define netdev_WARN(dev, format, args...)			\
5449 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5450 	     netdev_reg_state(dev), ##args)
5451 
5452 #define netdev_WARN_ONCE(dev, format, args...)				\
5453 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5454 		  netdev_reg_state(dev), ##args)
5455 
5456 /*
5457  *	The list of packet types we will receive (as opposed to discard)
5458  *	and the routines to invoke.
5459  *
5460  *	Why 16. Because with 16 the only overlap we get on a hash of the
5461  *	low nibble of the protocol value is RARP/SNAP/X.25.
5462  *
5463  *		0800	IP
5464  *		0001	802.3
5465  *		0002	AX.25
5466  *		0004	802.2
5467  *		8035	RARP
5468  *		0005	SNAP
5469  *		0805	X.25
5470  *		0806	ARP
5471  *		8137	IPX
5472  *		0009	Localtalk
5473  *		86DD	IPv6
5474  */
5475 #define PTYPE_HASH_SIZE	(16)
5476 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5477 
5478 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5479 
5480 extern struct net_device *blackhole_netdev;
5481 
5482 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5483 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5484 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5485 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5486 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5487 
5488 #endif	/* _LINUX_NETDEVICE_H */
5489