1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos_params.h> 35 #include <linux/timer.h> 36 #include <linux/delay.h> 37 #include <linux/mm.h> 38 #include <asm/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/device.h> 43 #include <linux/percpu.h> 44 #include <linux/rculist.h> 45 #include <linux/dmaengine.h> 46 #include <linux/workqueue.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 55 struct vlan_group; 56 struct netpoll_info; 57 struct phy_device; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* source back-compat hooks */ 61 #define SET_ETHTOOL_OPS(netdev,ops) \ 62 ( (netdev)->ethtool_ops = (ops) ) 63 64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev 65 functions are available. */ 66 #define HAVE_FREE_NETDEV /* free_netdev() */ 67 #define HAVE_NETDEV_PRIV /* netdev_priv() */ 68 69 /* hardware address assignment types */ 70 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously, in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), all 92 * others are propagated to higher layers. 93 */ 94 95 /* qdisc ->enqueue() return codes. */ 96 #define NET_XMIT_SUCCESS 0x00 97 #define NET_XMIT_DROP 0x01 /* skb dropped */ 98 #define NET_XMIT_CN 0x02 /* congestion notification */ 99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 116 }; 117 typedef enum netdev_tx netdev_tx_t; 118 119 /* 120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 122 */ 123 static inline bool dev_xmit_complete(int rc) 124 { 125 /* 126 * Positive cases with an skb consumed by a driver: 127 * - successful transmission (rc == NETDEV_TX_OK) 128 * - error while transmitting (rc < 0) 129 * - error while queueing to a different device (rc & NET_XMIT_MASK) 130 */ 131 if (likely(rc < NET_XMIT_MASK)) 132 return true; 133 134 return false; 135 } 136 137 #endif 138 139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 140 141 /* Initial net device group. All devices belong to group 0 by default. */ 142 #define INIT_NETDEV_GROUP 0 143 144 #ifdef __KERNEL__ 145 /* 146 * Compute the worst case header length according to the protocols 147 * used. 148 */ 149 150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 151 # if defined(CONFIG_MAC80211_MESH) 152 # define LL_MAX_HEADER 128 153 # else 154 # define LL_MAX_HEADER 96 155 # endif 156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 157 # define LL_MAX_HEADER 48 158 #else 159 # define LL_MAX_HEADER 32 160 #endif 161 162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 166 #define MAX_HEADER LL_MAX_HEADER 167 #else 168 #define MAX_HEADER (LL_MAX_HEADER + 48) 169 #endif 170 171 /* 172 * Old network device statistics. Fields are native words 173 * (unsigned long) so they can be read and written atomically. 174 */ 175 176 struct net_device_stats { 177 unsigned long rx_packets; 178 unsigned long tx_packets; 179 unsigned long rx_bytes; 180 unsigned long tx_bytes; 181 unsigned long rx_errors; 182 unsigned long tx_errors; 183 unsigned long rx_dropped; 184 unsigned long tx_dropped; 185 unsigned long multicast; 186 unsigned long collisions; 187 unsigned long rx_length_errors; 188 unsigned long rx_over_errors; 189 unsigned long rx_crc_errors; 190 unsigned long rx_frame_errors; 191 unsigned long rx_fifo_errors; 192 unsigned long rx_missed_errors; 193 unsigned long tx_aborted_errors; 194 unsigned long tx_carrier_errors; 195 unsigned long tx_fifo_errors; 196 unsigned long tx_heartbeat_errors; 197 unsigned long tx_window_errors; 198 unsigned long rx_compressed; 199 unsigned long tx_compressed; 200 }; 201 202 #endif /* __KERNEL__ */ 203 204 205 /* Media selection options. */ 206 enum { 207 IF_PORT_UNKNOWN = 0, 208 IF_PORT_10BASE2, 209 IF_PORT_10BASET, 210 IF_PORT_AUI, 211 IF_PORT_100BASET, 212 IF_PORT_100BASETX, 213 IF_PORT_100BASEFX 214 }; 215 216 #ifdef __KERNEL__ 217 218 #include <linux/cache.h> 219 #include <linux/skbuff.h> 220 221 struct neighbour; 222 struct neigh_parms; 223 struct sk_buff; 224 225 struct netdev_hw_addr { 226 struct list_head list; 227 unsigned char addr[MAX_ADDR_LEN]; 228 unsigned char type; 229 #define NETDEV_HW_ADDR_T_LAN 1 230 #define NETDEV_HW_ADDR_T_SAN 2 231 #define NETDEV_HW_ADDR_T_SLAVE 3 232 #define NETDEV_HW_ADDR_T_UNICAST 4 233 #define NETDEV_HW_ADDR_T_MULTICAST 5 234 bool synced; 235 bool global_use; 236 int refcount; 237 struct rcu_head rcu_head; 238 }; 239 240 struct netdev_hw_addr_list { 241 struct list_head list; 242 int count; 243 }; 244 245 #define netdev_hw_addr_list_count(l) ((l)->count) 246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 247 #define netdev_hw_addr_list_for_each(ha, l) \ 248 list_for_each_entry(ha, &(l)->list, list) 249 250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 252 #define netdev_for_each_uc_addr(ha, dev) \ 253 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 254 255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 257 #define netdev_for_each_mc_addr(ha, dev) \ 258 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 259 260 struct hh_cache { 261 struct hh_cache *hh_next; /* Next entry */ 262 atomic_t hh_refcnt; /* number of users */ 263 /* 264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate 265 * cache line on SMP. 266 * They are mostly read, but hh_refcnt may be changed quite frequently, 267 * incurring cache line ping pongs. 268 */ 269 __be16 hh_type ____cacheline_aligned_in_smp; 270 /* protocol identifier, f.e ETH_P_IP 271 * NOTE: For VLANs, this will be the 272 * encapuslated type. --BLG 273 */ 274 u16 hh_len; /* length of header */ 275 int (*hh_output)(struct sk_buff *skb); 276 seqlock_t hh_lock; 277 278 /* cached hardware header; allow for machine alignment needs. */ 279 #define HH_DATA_MOD 16 280 #define HH_DATA_OFF(__len) \ 281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 282 #define HH_DATA_ALIGN(__len) \ 283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 285 }; 286 287 static inline void hh_cache_put(struct hh_cache *hh) 288 { 289 if (atomic_dec_and_test(&hh->hh_refcnt)) 290 kfree(hh); 291 } 292 293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 294 * Alternative is: 295 * dev->hard_header_len ? (dev->hard_header_len + 296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 297 * 298 * We could use other alignment values, but we must maintain the 299 * relationship HH alignment <= LL alignment. 300 * 301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 302 * may need. 303 */ 304 #define LL_RESERVED_SPACE(dev) \ 305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 308 #define LL_ALLOCATED_SPACE(dev) \ 309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 311 struct header_ops { 312 int (*create) (struct sk_buff *skb, struct net_device *dev, 313 unsigned short type, const void *daddr, 314 const void *saddr, unsigned len); 315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 316 int (*rebuild)(struct sk_buff *skb); 317 #define HAVE_HEADER_CACHE 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 }; 323 324 /* These flag bits are private to the generic network queueing 325 * layer, they may not be explicitly referenced by any other 326 * code. 327 */ 328 329 enum netdev_state_t { 330 __LINK_STATE_START, 331 __LINK_STATE_PRESENT, 332 __LINK_STATE_NOCARRIER, 333 __LINK_STATE_LINKWATCH_PENDING, 334 __LINK_STATE_DORMANT, 335 }; 336 337 338 /* 339 * This structure holds at boot time configured netdevice settings. They 340 * are then used in the device probing. 341 */ 342 struct netdev_boot_setup { 343 char name[IFNAMSIZ]; 344 struct ifmap map; 345 }; 346 #define NETDEV_BOOT_SETUP_MAX 8 347 348 extern int __init netdev_boot_setup(char *str); 349 350 /* 351 * Structure for NAPI scheduling similar to tasklet but with weighting 352 */ 353 struct napi_struct { 354 /* The poll_list must only be managed by the entity which 355 * changes the state of the NAPI_STATE_SCHED bit. This means 356 * whoever atomically sets that bit can add this napi_struct 357 * to the per-cpu poll_list, and whoever clears that bit 358 * can remove from the list right before clearing the bit. 359 */ 360 struct list_head poll_list; 361 362 unsigned long state; 363 int weight; 364 int (*poll)(struct napi_struct *, int); 365 #ifdef CONFIG_NETPOLL 366 spinlock_t poll_lock; 367 int poll_owner; 368 #endif 369 370 unsigned int gro_count; 371 372 struct net_device *dev; 373 struct list_head dev_list; 374 struct sk_buff *gro_list; 375 struct sk_buff *skb; 376 }; 377 378 enum { 379 NAPI_STATE_SCHED, /* Poll is scheduled */ 380 NAPI_STATE_DISABLE, /* Disable pending */ 381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 382 }; 383 384 enum gro_result { 385 GRO_MERGED, 386 GRO_MERGED_FREE, 387 GRO_HELD, 388 GRO_NORMAL, 389 GRO_DROP, 390 }; 391 typedef enum gro_result gro_result_t; 392 393 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb); 394 395 extern void __napi_schedule(struct napi_struct *n); 396 397 static inline int napi_disable_pending(struct napi_struct *n) 398 { 399 return test_bit(NAPI_STATE_DISABLE, &n->state); 400 } 401 402 /** 403 * napi_schedule_prep - check if napi can be scheduled 404 * @n: napi context 405 * 406 * Test if NAPI routine is already running, and if not mark 407 * it as running. This is used as a condition variable 408 * insure only one NAPI poll instance runs. We also make 409 * sure there is no pending NAPI disable. 410 */ 411 static inline int napi_schedule_prep(struct napi_struct *n) 412 { 413 return !napi_disable_pending(n) && 414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 415 } 416 417 /** 418 * napi_schedule - schedule NAPI poll 419 * @n: napi context 420 * 421 * Schedule NAPI poll routine to be called if it is not already 422 * running. 423 */ 424 static inline void napi_schedule(struct napi_struct *n) 425 { 426 if (napi_schedule_prep(n)) 427 __napi_schedule(n); 428 } 429 430 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 431 static inline int napi_reschedule(struct napi_struct *napi) 432 { 433 if (napi_schedule_prep(napi)) { 434 __napi_schedule(napi); 435 return 1; 436 } 437 return 0; 438 } 439 440 /** 441 * napi_complete - NAPI processing complete 442 * @n: napi context 443 * 444 * Mark NAPI processing as complete. 445 */ 446 extern void __napi_complete(struct napi_struct *n); 447 extern void napi_complete(struct napi_struct *n); 448 449 /** 450 * napi_disable - prevent NAPI from scheduling 451 * @n: napi context 452 * 453 * Stop NAPI from being scheduled on this context. 454 * Waits till any outstanding processing completes. 455 */ 456 static inline void napi_disable(struct napi_struct *n) 457 { 458 set_bit(NAPI_STATE_DISABLE, &n->state); 459 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 460 msleep(1); 461 clear_bit(NAPI_STATE_DISABLE, &n->state); 462 } 463 464 /** 465 * napi_enable - enable NAPI scheduling 466 * @n: napi context 467 * 468 * Resume NAPI from being scheduled on this context. 469 * Must be paired with napi_disable. 470 */ 471 static inline void napi_enable(struct napi_struct *n) 472 { 473 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 474 smp_mb__before_clear_bit(); 475 clear_bit(NAPI_STATE_SCHED, &n->state); 476 } 477 478 #ifdef CONFIG_SMP 479 /** 480 * napi_synchronize - wait until NAPI is not running 481 * @n: napi context 482 * 483 * Wait until NAPI is done being scheduled on this context. 484 * Waits till any outstanding processing completes but 485 * does not disable future activations. 486 */ 487 static inline void napi_synchronize(const struct napi_struct *n) 488 { 489 while (test_bit(NAPI_STATE_SCHED, &n->state)) 490 msleep(1); 491 } 492 #else 493 # define napi_synchronize(n) barrier() 494 #endif 495 496 enum netdev_queue_state_t { 497 __QUEUE_STATE_XOFF, 498 __QUEUE_STATE_FROZEN, 499 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \ 500 (1 << __QUEUE_STATE_FROZEN)) 501 }; 502 503 struct netdev_queue { 504 /* 505 * read mostly part 506 */ 507 struct net_device *dev; 508 struct Qdisc *qdisc; 509 unsigned long state; 510 struct Qdisc *qdisc_sleeping; 511 #ifdef CONFIG_RPS 512 struct kobject kobj; 513 #endif 514 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 515 int numa_node; 516 #endif 517 /* 518 * write mostly part 519 */ 520 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 521 int xmit_lock_owner; 522 /* 523 * please use this field instead of dev->trans_start 524 */ 525 unsigned long trans_start; 526 } ____cacheline_aligned_in_smp; 527 528 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 529 { 530 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 531 return q->numa_node; 532 #else 533 return NUMA_NO_NODE; 534 #endif 535 } 536 537 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 538 { 539 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 540 q->numa_node = node; 541 #endif 542 } 543 544 #ifdef CONFIG_RPS 545 /* 546 * This structure holds an RPS map which can be of variable length. The 547 * map is an array of CPUs. 548 */ 549 struct rps_map { 550 unsigned int len; 551 struct rcu_head rcu; 552 u16 cpus[0]; 553 }; 554 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) 555 556 /* 557 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 558 * tail pointer for that CPU's input queue at the time of last enqueue, and 559 * a hardware filter index. 560 */ 561 struct rps_dev_flow { 562 u16 cpu; 563 u16 filter; 564 unsigned int last_qtail; 565 }; 566 #define RPS_NO_FILTER 0xffff 567 568 /* 569 * The rps_dev_flow_table structure contains a table of flow mappings. 570 */ 571 struct rps_dev_flow_table { 572 unsigned int mask; 573 struct rcu_head rcu; 574 struct work_struct free_work; 575 struct rps_dev_flow flows[0]; 576 }; 577 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 578 (_num * sizeof(struct rps_dev_flow))) 579 580 /* 581 * The rps_sock_flow_table contains mappings of flows to the last CPU 582 * on which they were processed by the application (set in recvmsg). 583 */ 584 struct rps_sock_flow_table { 585 unsigned int mask; 586 u16 ents[0]; 587 }; 588 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 589 (_num * sizeof(u16))) 590 591 #define RPS_NO_CPU 0xffff 592 593 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 594 u32 hash) 595 { 596 if (table && hash) { 597 unsigned int cpu, index = hash & table->mask; 598 599 /* We only give a hint, preemption can change cpu under us */ 600 cpu = raw_smp_processor_id(); 601 602 if (table->ents[index] != cpu) 603 table->ents[index] = cpu; 604 } 605 } 606 607 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 608 u32 hash) 609 { 610 if (table && hash) 611 table->ents[hash & table->mask] = RPS_NO_CPU; 612 } 613 614 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 615 616 #ifdef CONFIG_RFS_ACCEL 617 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 618 u32 flow_id, u16 filter_id); 619 #endif 620 621 /* This structure contains an instance of an RX queue. */ 622 struct netdev_rx_queue { 623 struct rps_map __rcu *rps_map; 624 struct rps_dev_flow_table __rcu *rps_flow_table; 625 struct kobject kobj; 626 struct net_device *dev; 627 } ____cacheline_aligned_in_smp; 628 #endif /* CONFIG_RPS */ 629 630 #ifdef CONFIG_XPS 631 /* 632 * This structure holds an XPS map which can be of variable length. The 633 * map is an array of queues. 634 */ 635 struct xps_map { 636 unsigned int len; 637 unsigned int alloc_len; 638 struct rcu_head rcu; 639 u16 queues[0]; 640 }; 641 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16))) 642 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 643 / sizeof(u16)) 644 645 /* 646 * This structure holds all XPS maps for device. Maps are indexed by CPU. 647 */ 648 struct xps_dev_maps { 649 struct rcu_head rcu; 650 struct xps_map __rcu *cpu_map[0]; 651 }; 652 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 653 (nr_cpu_ids * sizeof(struct xps_map *))) 654 #endif /* CONFIG_XPS */ 655 656 #define TC_MAX_QUEUE 16 657 #define TC_BITMASK 15 658 /* HW offloaded queuing disciplines txq count and offset maps */ 659 struct netdev_tc_txq { 660 u16 count; 661 u16 offset; 662 }; 663 664 /* 665 * This structure defines the management hooks for network devices. 666 * The following hooks can be defined; unless noted otherwise, they are 667 * optional and can be filled with a null pointer. 668 * 669 * int (*ndo_init)(struct net_device *dev); 670 * This function is called once when network device is registered. 671 * The network device can use this to any late stage initializaton 672 * or semantic validattion. It can fail with an error code which will 673 * be propogated back to register_netdev 674 * 675 * void (*ndo_uninit)(struct net_device *dev); 676 * This function is called when device is unregistered or when registration 677 * fails. It is not called if init fails. 678 * 679 * int (*ndo_open)(struct net_device *dev); 680 * This function is called when network device transistions to the up 681 * state. 682 * 683 * int (*ndo_stop)(struct net_device *dev); 684 * This function is called when network device transistions to the down 685 * state. 686 * 687 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 688 * struct net_device *dev); 689 * Called when a packet needs to be transmitted. 690 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 691 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 692 * Required can not be NULL. 693 * 694 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 695 * Called to decide which queue to when device supports multiple 696 * transmit queues. 697 * 698 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 699 * This function is called to allow device receiver to make 700 * changes to configuration when multicast or promiscious is enabled. 701 * 702 * void (*ndo_set_rx_mode)(struct net_device *dev); 703 * This function is called device changes address list filtering. 704 * 705 * void (*ndo_set_multicast_list)(struct net_device *dev); 706 * This function is called when the multicast address list changes. 707 * 708 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 709 * This function is called when the Media Access Control address 710 * needs to be changed. If this interface is not defined, the 711 * mac address can not be changed. 712 * 713 * int (*ndo_validate_addr)(struct net_device *dev); 714 * Test if Media Access Control address is valid for the device. 715 * 716 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 717 * Called when a user request an ioctl which can't be handled by 718 * the generic interface code. If not defined ioctl's return 719 * not supported error code. 720 * 721 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 722 * Used to set network devices bus interface parameters. This interface 723 * is retained for legacy reason, new devices should use the bus 724 * interface (PCI) for low level management. 725 * 726 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 727 * Called when a user wants to change the Maximum Transfer Unit 728 * of a device. If not defined, any request to change MTU will 729 * will return an error. 730 * 731 * void (*ndo_tx_timeout)(struct net_device *dev); 732 * Callback uses when the transmitter has not made any progress 733 * for dev->watchdog ticks. 734 * 735 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 736 * struct rtnl_link_stats64 *storage); 737 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 738 * Called when a user wants to get the network device usage 739 * statistics. Drivers must do one of the following: 740 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 741 * rtnl_link_stats64 structure passed by the caller. 742 * 2. Define @ndo_get_stats to update a net_device_stats structure 743 * (which should normally be dev->stats) and return a pointer to 744 * it. The structure may be changed asynchronously only if each 745 * field is written atomically. 746 * 3. Update dev->stats asynchronously and atomically, and define 747 * neither operation. 748 * 749 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); 750 * If device support VLAN receive acceleration 751 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called 752 * when vlan groups for the device changes. Note: grp is NULL 753 * if no vlan's groups are being used. 754 * 755 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 756 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 757 * this function is called when a VLAN id is registered. 758 * 759 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 760 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 761 * this function is called when a VLAN id is unregistered. 762 * 763 * void (*ndo_poll_controller)(struct net_device *dev); 764 * 765 * SR-IOV management functions. 766 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 767 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 768 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 769 * int (*ndo_get_vf_config)(struct net_device *dev, 770 * int vf, struct ifla_vf_info *ivf); 771 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 772 * struct nlattr *port[]); 773 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 774 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 775 * Called to setup 'tc' number of traffic classes in the net device. This 776 * is always called from the stack with the rtnl lock held and netif tx 777 * queues stopped. This allows the netdevice to perform queue management 778 * safely. 779 * 780 * RFS acceleration. 781 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 782 * u16 rxq_index, u32 flow_id); 783 * Set hardware filter for RFS. rxq_index is the target queue index; 784 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 785 * Return the filter ID on success, or a negative error code. 786 * 787 * Slave management functions (for bridge, bonding, etc). User should 788 * call netdev_set_master() to set dev->master properly. 789 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 790 * Called to make another netdev an underling. 791 * 792 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 793 * Called to release previously enslaved netdev. 794 * 795 * Feature/offload setting functions. 796 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features); 797 * Adjusts the requested feature flags according to device-specific 798 * constraints, and returns the resulting flags. Must not modify 799 * the device state. 800 * 801 * int (*ndo_set_features)(struct net_device *dev, u32 features); 802 * Called to update device configuration to new features. Passed 803 * feature set might be less than what was returned by ndo_fix_features()). 804 * Must return >0 or -errno if it changed dev->features itself. 805 * 806 */ 807 #define HAVE_NET_DEVICE_OPS 808 struct net_device_ops { 809 int (*ndo_init)(struct net_device *dev); 810 void (*ndo_uninit)(struct net_device *dev); 811 int (*ndo_open)(struct net_device *dev); 812 int (*ndo_stop)(struct net_device *dev); 813 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 814 struct net_device *dev); 815 u16 (*ndo_select_queue)(struct net_device *dev, 816 struct sk_buff *skb); 817 void (*ndo_change_rx_flags)(struct net_device *dev, 818 int flags); 819 void (*ndo_set_rx_mode)(struct net_device *dev); 820 void (*ndo_set_multicast_list)(struct net_device *dev); 821 int (*ndo_set_mac_address)(struct net_device *dev, 822 void *addr); 823 int (*ndo_validate_addr)(struct net_device *dev); 824 int (*ndo_do_ioctl)(struct net_device *dev, 825 struct ifreq *ifr, int cmd); 826 int (*ndo_set_config)(struct net_device *dev, 827 struct ifmap *map); 828 int (*ndo_change_mtu)(struct net_device *dev, 829 int new_mtu); 830 int (*ndo_neigh_setup)(struct net_device *dev, 831 struct neigh_parms *); 832 void (*ndo_tx_timeout) (struct net_device *dev); 833 834 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 835 struct rtnl_link_stats64 *storage); 836 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 837 838 void (*ndo_vlan_rx_register)(struct net_device *dev, 839 struct vlan_group *grp); 840 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 841 unsigned short vid); 842 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 843 unsigned short vid); 844 #ifdef CONFIG_NET_POLL_CONTROLLER 845 void (*ndo_poll_controller)(struct net_device *dev); 846 int (*ndo_netpoll_setup)(struct net_device *dev, 847 struct netpoll_info *info); 848 void (*ndo_netpoll_cleanup)(struct net_device *dev); 849 #endif 850 int (*ndo_set_vf_mac)(struct net_device *dev, 851 int queue, u8 *mac); 852 int (*ndo_set_vf_vlan)(struct net_device *dev, 853 int queue, u16 vlan, u8 qos); 854 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 855 int vf, int rate); 856 int (*ndo_get_vf_config)(struct net_device *dev, 857 int vf, 858 struct ifla_vf_info *ivf); 859 int (*ndo_set_vf_port)(struct net_device *dev, 860 int vf, 861 struct nlattr *port[]); 862 int (*ndo_get_vf_port)(struct net_device *dev, 863 int vf, struct sk_buff *skb); 864 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 865 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 866 int (*ndo_fcoe_enable)(struct net_device *dev); 867 int (*ndo_fcoe_disable)(struct net_device *dev); 868 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 869 u16 xid, 870 struct scatterlist *sgl, 871 unsigned int sgc); 872 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 873 u16 xid); 874 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 875 u16 xid, 876 struct scatterlist *sgl, 877 unsigned int sgc); 878 #define NETDEV_FCOE_WWNN 0 879 #define NETDEV_FCOE_WWPN 1 880 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 881 u64 *wwn, int type); 882 #endif 883 #ifdef CONFIG_RFS_ACCEL 884 int (*ndo_rx_flow_steer)(struct net_device *dev, 885 const struct sk_buff *skb, 886 u16 rxq_index, 887 u32 flow_id); 888 #endif 889 int (*ndo_add_slave)(struct net_device *dev, 890 struct net_device *slave_dev); 891 int (*ndo_del_slave)(struct net_device *dev, 892 struct net_device *slave_dev); 893 u32 (*ndo_fix_features)(struct net_device *dev, 894 u32 features); 895 int (*ndo_set_features)(struct net_device *dev, 896 u32 features); 897 }; 898 899 /* 900 * The DEVICE structure. 901 * Actually, this whole structure is a big mistake. It mixes I/O 902 * data with strictly "high-level" data, and it has to know about 903 * almost every data structure used in the INET module. 904 * 905 * FIXME: cleanup struct net_device such that network protocol info 906 * moves out. 907 */ 908 909 struct net_device { 910 911 /* 912 * This is the first field of the "visible" part of this structure 913 * (i.e. as seen by users in the "Space.c" file). It is the name 914 * of the interface. 915 */ 916 char name[IFNAMSIZ]; 917 918 struct pm_qos_request_list pm_qos_req; 919 920 /* device name hash chain */ 921 struct hlist_node name_hlist; 922 /* snmp alias */ 923 char *ifalias; 924 925 /* 926 * I/O specific fields 927 * FIXME: Merge these and struct ifmap into one 928 */ 929 unsigned long mem_end; /* shared mem end */ 930 unsigned long mem_start; /* shared mem start */ 931 unsigned long base_addr; /* device I/O address */ 932 unsigned int irq; /* device IRQ number */ 933 934 /* 935 * Some hardware also needs these fields, but they are not 936 * part of the usual set specified in Space.c. 937 */ 938 939 unsigned char if_port; /* Selectable AUI, TP,..*/ 940 unsigned char dma; /* DMA channel */ 941 942 unsigned long state; 943 944 struct list_head dev_list; 945 struct list_head napi_list; 946 struct list_head unreg_list; 947 948 /* currently active device features */ 949 u32 features; 950 /* user-changeable features */ 951 u32 hw_features; 952 /* user-requested features */ 953 u32 wanted_features; 954 /* VLAN feature mask */ 955 u32 vlan_features; 956 957 /* Net device feature bits; if you change something, 958 * also update netdev_features_strings[] in ethtool.c */ 959 960 #define NETIF_F_SG 1 /* Scatter/gather IO. */ 961 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 962 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 963 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 964 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 965 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 966 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 967 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 968 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 969 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 970 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 971 #define NETIF_F_GSO 2048 /* Enable software GSO. */ 972 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 973 /* do not use LLTX in new drivers */ 974 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 975 #define NETIF_F_GRO 16384 /* Generic receive offload */ 976 #define NETIF_F_LRO 32768 /* large receive offload */ 977 978 /* the GSO_MASK reserves bits 16 through 23 */ 979 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 980 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 981 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 982 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ 983 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ 984 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */ 985 986 /* Segmentation offload features */ 987 #define NETIF_F_GSO_SHIFT 16 988 #define NETIF_F_GSO_MASK 0x00ff0000 989 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 990 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 991 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 992 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 993 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 994 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 995 996 /* Features valid for ethtool to change */ 997 /* = all defined minus driver/device-class-related */ 998 #define NETIF_F_NEVER_CHANGE (NETIF_F_HIGHDMA | NETIF_F_VLAN_CHALLENGED | \ 999 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL) 1000 #define NETIF_F_ETHTOOL_BITS (0x3f3fffff & ~NETIF_F_NEVER_CHANGE) 1001 1002 /* List of features with software fallbacks. */ 1003 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ 1004 NETIF_F_TSO6 | NETIF_F_UFO) 1005 1006 1007 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 1008 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 1009 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 1010 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 1011 1012 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1013 1014 #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \ 1015 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ 1016 NETIF_F_SCTP_CSUM | NETIF_F_FCOE_CRC) 1017 1018 /* 1019 * If one device supports one of these features, then enable them 1020 * for all in netdev_increment_features. 1021 */ 1022 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 1023 NETIF_F_SG | NETIF_F_HIGHDMA | \ 1024 NETIF_F_FRAGLIST) 1025 1026 /* changeable features with no special hardware requirements */ 1027 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO) 1028 1029 /* Interface index. Unique device identifier */ 1030 int ifindex; 1031 int iflink; 1032 1033 struct net_device_stats stats; 1034 atomic_long_t rx_dropped; /* dropped packets by core network 1035 * Do not use this in drivers. 1036 */ 1037 1038 #ifdef CONFIG_WIRELESS_EXT 1039 /* List of functions to handle Wireless Extensions (instead of ioctl). 1040 * See <net/iw_handler.h> for details. Jean II */ 1041 const struct iw_handler_def * wireless_handlers; 1042 /* Instance data managed by the core of Wireless Extensions. */ 1043 struct iw_public_data * wireless_data; 1044 #endif 1045 /* Management operations */ 1046 const struct net_device_ops *netdev_ops; 1047 const struct ethtool_ops *ethtool_ops; 1048 1049 /* Hardware header description */ 1050 const struct header_ops *header_ops; 1051 1052 unsigned int flags; /* interface flags (a la BSD) */ 1053 unsigned short gflags; 1054 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 1055 unsigned short padded; /* How much padding added by alloc_netdev() */ 1056 1057 unsigned char operstate; /* RFC2863 operstate */ 1058 unsigned char link_mode; /* mapping policy to operstate */ 1059 1060 unsigned int mtu; /* interface MTU value */ 1061 unsigned short type; /* interface hardware type */ 1062 unsigned short hard_header_len; /* hardware hdr length */ 1063 1064 /* extra head- and tailroom the hardware may need, but not in all cases 1065 * can this be guaranteed, especially tailroom. Some cases also use 1066 * LL_MAX_HEADER instead to allocate the skb. 1067 */ 1068 unsigned short needed_headroom; 1069 unsigned short needed_tailroom; 1070 1071 /* Interface address info. */ 1072 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1073 unsigned char addr_assign_type; /* hw address assignment type */ 1074 unsigned char addr_len; /* hardware address length */ 1075 unsigned short dev_id; /* for shared network cards */ 1076 1077 spinlock_t addr_list_lock; 1078 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1079 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1080 int uc_promisc; 1081 unsigned int promiscuity; 1082 unsigned int allmulti; 1083 1084 1085 /* Protocol specific pointers */ 1086 1087 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1088 struct vlan_group __rcu *vlgrp; /* VLAN group */ 1089 #endif 1090 #ifdef CONFIG_NET_DSA 1091 void *dsa_ptr; /* dsa specific data */ 1092 #endif 1093 void *atalk_ptr; /* AppleTalk link */ 1094 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1095 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1096 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1097 void *ec_ptr; /* Econet specific data */ 1098 void *ax25_ptr; /* AX.25 specific data */ 1099 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1100 assign before registering */ 1101 1102 /* 1103 * Cache lines mostly used on receive path (including eth_type_trans()) 1104 */ 1105 unsigned long last_rx; /* Time of last Rx 1106 * This should not be set in 1107 * drivers, unless really needed, 1108 * because network stack (bonding) 1109 * use it if/when necessary, to 1110 * avoid dirtying this cache line. 1111 */ 1112 1113 struct net_device *master; /* Pointer to master device of a group, 1114 * which this device is member of. 1115 */ 1116 1117 /* Interface address info used in eth_type_trans() */ 1118 unsigned char *dev_addr; /* hw address, (before bcast 1119 because most packets are 1120 unicast) */ 1121 1122 struct netdev_hw_addr_list dev_addrs; /* list of device 1123 hw addresses */ 1124 1125 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1126 1127 #ifdef CONFIG_RPS 1128 struct kset *queues_kset; 1129 1130 struct netdev_rx_queue *_rx; 1131 1132 /* Number of RX queues allocated at register_netdev() time */ 1133 unsigned int num_rx_queues; 1134 1135 /* Number of RX queues currently active in device */ 1136 unsigned int real_num_rx_queues; 1137 1138 #ifdef CONFIG_RFS_ACCEL 1139 /* CPU reverse-mapping for RX completion interrupts, indexed 1140 * by RX queue number. Assigned by driver. This must only be 1141 * set if the ndo_rx_flow_steer operation is defined. */ 1142 struct cpu_rmap *rx_cpu_rmap; 1143 #endif 1144 #endif 1145 1146 rx_handler_func_t __rcu *rx_handler; 1147 void __rcu *rx_handler_data; 1148 1149 struct netdev_queue __rcu *ingress_queue; 1150 1151 /* 1152 * Cache lines mostly used on transmit path 1153 */ 1154 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1155 1156 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1157 unsigned int num_tx_queues; 1158 1159 /* Number of TX queues currently active in device */ 1160 unsigned int real_num_tx_queues; 1161 1162 /* root qdisc from userspace point of view */ 1163 struct Qdisc *qdisc; 1164 1165 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1166 spinlock_t tx_global_lock; 1167 1168 #ifdef CONFIG_XPS 1169 struct xps_dev_maps __rcu *xps_maps; 1170 #endif 1171 1172 /* These may be needed for future network-power-down code. */ 1173 1174 /* 1175 * trans_start here is expensive for high speed devices on SMP, 1176 * please use netdev_queue->trans_start instead. 1177 */ 1178 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1179 1180 int watchdog_timeo; /* used by dev_watchdog() */ 1181 struct timer_list watchdog_timer; 1182 1183 /* Number of references to this device */ 1184 int __percpu *pcpu_refcnt; 1185 1186 /* delayed register/unregister */ 1187 struct list_head todo_list; 1188 /* device index hash chain */ 1189 struct hlist_node index_hlist; 1190 1191 struct list_head link_watch_list; 1192 1193 /* register/unregister state machine */ 1194 enum { NETREG_UNINITIALIZED=0, 1195 NETREG_REGISTERED, /* completed register_netdevice */ 1196 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1197 NETREG_UNREGISTERED, /* completed unregister todo */ 1198 NETREG_RELEASED, /* called free_netdev */ 1199 NETREG_DUMMY, /* dummy device for NAPI poll */ 1200 } reg_state:16; 1201 1202 enum { 1203 RTNL_LINK_INITIALIZED, 1204 RTNL_LINK_INITIALIZING, 1205 } rtnl_link_state:16; 1206 1207 /* Called from unregister, can be used to call free_netdev */ 1208 void (*destructor)(struct net_device *dev); 1209 1210 #ifdef CONFIG_NETPOLL 1211 struct netpoll_info *npinfo; 1212 #endif 1213 1214 #ifdef CONFIG_NET_NS 1215 /* Network namespace this network device is inside */ 1216 struct net *nd_net; 1217 #endif 1218 1219 /* mid-layer private */ 1220 union { 1221 void *ml_priv; 1222 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1223 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1224 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1225 }; 1226 /* GARP */ 1227 struct garp_port __rcu *garp_port; 1228 1229 /* class/net/name entry */ 1230 struct device dev; 1231 /* space for optional device, statistics, and wireless sysfs groups */ 1232 const struct attribute_group *sysfs_groups[4]; 1233 1234 /* rtnetlink link ops */ 1235 const struct rtnl_link_ops *rtnl_link_ops; 1236 1237 /* for setting kernel sock attribute on TCP connection setup */ 1238 #define GSO_MAX_SIZE 65536 1239 unsigned int gso_max_size; 1240 1241 #ifdef CONFIG_DCB 1242 /* Data Center Bridging netlink ops */ 1243 const struct dcbnl_rtnl_ops *dcbnl_ops; 1244 #endif 1245 u8 num_tc; 1246 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1247 u8 prio_tc_map[TC_BITMASK + 1]; 1248 1249 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 1250 /* max exchange id for FCoE LRO by ddp */ 1251 unsigned int fcoe_ddp_xid; 1252 #endif 1253 /* n-tuple filter list attached to this device */ 1254 struct ethtool_rx_ntuple_list ethtool_ntuple_list; 1255 1256 /* phy device may attach itself for hardware timestamping */ 1257 struct phy_device *phydev; 1258 1259 /* group the device belongs to */ 1260 int group; 1261 }; 1262 #define to_net_dev(d) container_of(d, struct net_device, dev) 1263 1264 #define NETDEV_ALIGN 32 1265 1266 static inline 1267 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1268 { 1269 return dev->prio_tc_map[prio & TC_BITMASK]; 1270 } 1271 1272 static inline 1273 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1274 { 1275 if (tc >= dev->num_tc) 1276 return -EINVAL; 1277 1278 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1279 return 0; 1280 } 1281 1282 static inline 1283 void netdev_reset_tc(struct net_device *dev) 1284 { 1285 dev->num_tc = 0; 1286 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1287 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1288 } 1289 1290 static inline 1291 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1292 { 1293 if (tc >= dev->num_tc) 1294 return -EINVAL; 1295 1296 dev->tc_to_txq[tc].count = count; 1297 dev->tc_to_txq[tc].offset = offset; 1298 return 0; 1299 } 1300 1301 static inline 1302 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1303 { 1304 if (num_tc > TC_MAX_QUEUE) 1305 return -EINVAL; 1306 1307 dev->num_tc = num_tc; 1308 return 0; 1309 } 1310 1311 static inline 1312 int netdev_get_num_tc(struct net_device *dev) 1313 { 1314 return dev->num_tc; 1315 } 1316 1317 static inline 1318 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1319 unsigned int index) 1320 { 1321 return &dev->_tx[index]; 1322 } 1323 1324 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1325 void (*f)(struct net_device *, 1326 struct netdev_queue *, 1327 void *), 1328 void *arg) 1329 { 1330 unsigned int i; 1331 1332 for (i = 0; i < dev->num_tx_queues; i++) 1333 f(dev, &dev->_tx[i], arg); 1334 } 1335 1336 /* 1337 * Net namespace inlines 1338 */ 1339 static inline 1340 struct net *dev_net(const struct net_device *dev) 1341 { 1342 return read_pnet(&dev->nd_net); 1343 } 1344 1345 static inline 1346 void dev_net_set(struct net_device *dev, struct net *net) 1347 { 1348 #ifdef CONFIG_NET_NS 1349 release_net(dev->nd_net); 1350 dev->nd_net = hold_net(net); 1351 #endif 1352 } 1353 1354 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1355 { 1356 #ifdef CONFIG_NET_DSA_TAG_DSA 1357 if (dev->dsa_ptr != NULL) 1358 return dsa_uses_dsa_tags(dev->dsa_ptr); 1359 #endif 1360 1361 return 0; 1362 } 1363 1364 #ifndef CONFIG_NET_NS 1365 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1366 { 1367 skb->dev = dev; 1368 } 1369 #else /* CONFIG_NET_NS */ 1370 void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1371 #endif 1372 1373 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1374 { 1375 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1376 if (dev->dsa_ptr != NULL) 1377 return dsa_uses_trailer_tags(dev->dsa_ptr); 1378 #endif 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * netdev_priv - access network device private data 1385 * @dev: network device 1386 * 1387 * Get network device private data 1388 */ 1389 static inline void *netdev_priv(const struct net_device *dev) 1390 { 1391 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1392 } 1393 1394 /* Set the sysfs physical device reference for the network logical device 1395 * if set prior to registration will cause a symlink during initialization. 1396 */ 1397 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1398 1399 /* Set the sysfs device type for the network logical device to allow 1400 * fin grained indentification of different network device types. For 1401 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1402 */ 1403 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1404 1405 /** 1406 * netif_napi_add - initialize a napi context 1407 * @dev: network device 1408 * @napi: napi context 1409 * @poll: polling function 1410 * @weight: default weight 1411 * 1412 * netif_napi_add() must be used to initialize a napi context prior to calling 1413 * *any* of the other napi related functions. 1414 */ 1415 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1416 int (*poll)(struct napi_struct *, int), int weight); 1417 1418 /** 1419 * netif_napi_del - remove a napi context 1420 * @napi: napi context 1421 * 1422 * netif_napi_del() removes a napi context from the network device napi list 1423 */ 1424 void netif_napi_del(struct napi_struct *napi); 1425 1426 struct napi_gro_cb { 1427 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1428 void *frag0; 1429 1430 /* Length of frag0. */ 1431 unsigned int frag0_len; 1432 1433 /* This indicates where we are processing relative to skb->data. */ 1434 int data_offset; 1435 1436 /* This is non-zero if the packet may be of the same flow. */ 1437 int same_flow; 1438 1439 /* This is non-zero if the packet cannot be merged with the new skb. */ 1440 int flush; 1441 1442 /* Number of segments aggregated. */ 1443 int count; 1444 1445 /* Free the skb? */ 1446 int free; 1447 }; 1448 1449 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1450 1451 struct packet_type { 1452 __be16 type; /* This is really htons(ether_type). */ 1453 struct net_device *dev; /* NULL is wildcarded here */ 1454 int (*func) (struct sk_buff *, 1455 struct net_device *, 1456 struct packet_type *, 1457 struct net_device *); 1458 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1459 u32 features); 1460 int (*gso_send_check)(struct sk_buff *skb); 1461 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1462 struct sk_buff *skb); 1463 int (*gro_complete)(struct sk_buff *skb); 1464 void *af_packet_priv; 1465 struct list_head list; 1466 }; 1467 1468 #include <linux/interrupt.h> 1469 #include <linux/notifier.h> 1470 1471 extern rwlock_t dev_base_lock; /* Device list lock */ 1472 1473 1474 #define for_each_netdev(net, d) \ 1475 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1476 #define for_each_netdev_reverse(net, d) \ 1477 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1478 #define for_each_netdev_rcu(net, d) \ 1479 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1480 #define for_each_netdev_safe(net, d, n) \ 1481 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1482 #define for_each_netdev_continue(net, d) \ 1483 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1484 #define for_each_netdev_continue_rcu(net, d) \ 1485 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1486 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1487 1488 static inline struct net_device *next_net_device(struct net_device *dev) 1489 { 1490 struct list_head *lh; 1491 struct net *net; 1492 1493 net = dev_net(dev); 1494 lh = dev->dev_list.next; 1495 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1496 } 1497 1498 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1499 { 1500 struct list_head *lh; 1501 struct net *net; 1502 1503 net = dev_net(dev); 1504 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1505 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1506 } 1507 1508 static inline struct net_device *first_net_device(struct net *net) 1509 { 1510 return list_empty(&net->dev_base_head) ? NULL : 1511 net_device_entry(net->dev_base_head.next); 1512 } 1513 1514 static inline struct net_device *first_net_device_rcu(struct net *net) 1515 { 1516 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1517 1518 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1519 } 1520 1521 extern int netdev_boot_setup_check(struct net_device *dev); 1522 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1523 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1524 const char *hwaddr); 1525 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1526 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1527 extern void dev_add_pack(struct packet_type *pt); 1528 extern void dev_remove_pack(struct packet_type *pt); 1529 extern void __dev_remove_pack(struct packet_type *pt); 1530 1531 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1532 unsigned short mask); 1533 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1534 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1535 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1536 extern int dev_alloc_name(struct net_device *dev, const char *name); 1537 extern int dev_open(struct net_device *dev); 1538 extern int dev_close(struct net_device *dev); 1539 extern void dev_disable_lro(struct net_device *dev); 1540 extern int dev_queue_xmit(struct sk_buff *skb); 1541 extern int register_netdevice(struct net_device *dev); 1542 extern void unregister_netdevice_queue(struct net_device *dev, 1543 struct list_head *head); 1544 extern void unregister_netdevice_many(struct list_head *head); 1545 static inline void unregister_netdevice(struct net_device *dev) 1546 { 1547 unregister_netdevice_queue(dev, NULL); 1548 } 1549 1550 extern int netdev_refcnt_read(const struct net_device *dev); 1551 extern void free_netdev(struct net_device *dev); 1552 extern void synchronize_net(void); 1553 extern int register_netdevice_notifier(struct notifier_block *nb); 1554 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1555 extern int init_dummy_netdev(struct net_device *dev); 1556 extern void netdev_resync_ops(struct net_device *dev); 1557 1558 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1559 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1560 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1561 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1562 extern int dev_restart(struct net_device *dev); 1563 #ifdef CONFIG_NETPOLL_TRAP 1564 extern int netpoll_trap(void); 1565 #endif 1566 extern int skb_gro_receive(struct sk_buff **head, 1567 struct sk_buff *skb); 1568 extern void skb_gro_reset_offset(struct sk_buff *skb); 1569 1570 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1571 { 1572 return NAPI_GRO_CB(skb)->data_offset; 1573 } 1574 1575 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1576 { 1577 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1578 } 1579 1580 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1581 { 1582 NAPI_GRO_CB(skb)->data_offset += len; 1583 } 1584 1585 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1586 unsigned int offset) 1587 { 1588 return NAPI_GRO_CB(skb)->frag0 + offset; 1589 } 1590 1591 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1592 { 1593 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1594 } 1595 1596 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1597 unsigned int offset) 1598 { 1599 NAPI_GRO_CB(skb)->frag0 = NULL; 1600 NAPI_GRO_CB(skb)->frag0_len = 0; 1601 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 1602 } 1603 1604 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1605 { 1606 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1607 } 1608 1609 static inline void *skb_gro_network_header(struct sk_buff *skb) 1610 { 1611 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1612 skb_network_offset(skb); 1613 } 1614 1615 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1616 unsigned short type, 1617 const void *daddr, const void *saddr, 1618 unsigned len) 1619 { 1620 if (!dev->header_ops || !dev->header_ops->create) 1621 return 0; 1622 1623 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1624 } 1625 1626 static inline int dev_parse_header(const struct sk_buff *skb, 1627 unsigned char *haddr) 1628 { 1629 const struct net_device *dev = skb->dev; 1630 1631 if (!dev->header_ops || !dev->header_ops->parse) 1632 return 0; 1633 return dev->header_ops->parse(skb, haddr); 1634 } 1635 1636 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1637 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1638 static inline int unregister_gifconf(unsigned int family) 1639 { 1640 return register_gifconf(family, NULL); 1641 } 1642 1643 /* 1644 * Incoming packets are placed on per-cpu queues 1645 */ 1646 struct softnet_data { 1647 struct Qdisc *output_queue; 1648 struct Qdisc **output_queue_tailp; 1649 struct list_head poll_list; 1650 struct sk_buff *completion_queue; 1651 struct sk_buff_head process_queue; 1652 1653 /* stats */ 1654 unsigned int processed; 1655 unsigned int time_squeeze; 1656 unsigned int cpu_collision; 1657 unsigned int received_rps; 1658 1659 #ifdef CONFIG_RPS 1660 struct softnet_data *rps_ipi_list; 1661 1662 /* Elements below can be accessed between CPUs for RPS */ 1663 struct call_single_data csd ____cacheline_aligned_in_smp; 1664 struct softnet_data *rps_ipi_next; 1665 unsigned int cpu; 1666 unsigned int input_queue_head; 1667 unsigned int input_queue_tail; 1668 #endif 1669 unsigned dropped; 1670 struct sk_buff_head input_pkt_queue; 1671 struct napi_struct backlog; 1672 }; 1673 1674 static inline void input_queue_head_incr(struct softnet_data *sd) 1675 { 1676 #ifdef CONFIG_RPS 1677 sd->input_queue_head++; 1678 #endif 1679 } 1680 1681 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1682 unsigned int *qtail) 1683 { 1684 #ifdef CONFIG_RPS 1685 *qtail = ++sd->input_queue_tail; 1686 #endif 1687 } 1688 1689 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1690 1691 #define HAVE_NETIF_QUEUE 1692 1693 extern void __netif_schedule(struct Qdisc *q); 1694 1695 static inline void netif_schedule_queue(struct netdev_queue *txq) 1696 { 1697 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1698 __netif_schedule(txq->qdisc); 1699 } 1700 1701 static inline void netif_tx_schedule_all(struct net_device *dev) 1702 { 1703 unsigned int i; 1704 1705 for (i = 0; i < dev->num_tx_queues; i++) 1706 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1707 } 1708 1709 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1710 { 1711 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1712 } 1713 1714 /** 1715 * netif_start_queue - allow transmit 1716 * @dev: network device 1717 * 1718 * Allow upper layers to call the device hard_start_xmit routine. 1719 */ 1720 static inline void netif_start_queue(struct net_device *dev) 1721 { 1722 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1723 } 1724 1725 static inline void netif_tx_start_all_queues(struct net_device *dev) 1726 { 1727 unsigned int i; 1728 1729 for (i = 0; i < dev->num_tx_queues; i++) { 1730 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1731 netif_tx_start_queue(txq); 1732 } 1733 } 1734 1735 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1736 { 1737 #ifdef CONFIG_NETPOLL_TRAP 1738 if (netpoll_trap()) { 1739 netif_tx_start_queue(dev_queue); 1740 return; 1741 } 1742 #endif 1743 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1744 __netif_schedule(dev_queue->qdisc); 1745 } 1746 1747 /** 1748 * netif_wake_queue - restart transmit 1749 * @dev: network device 1750 * 1751 * Allow upper layers to call the device hard_start_xmit routine. 1752 * Used for flow control when transmit resources are available. 1753 */ 1754 static inline void netif_wake_queue(struct net_device *dev) 1755 { 1756 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1757 } 1758 1759 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1760 { 1761 unsigned int i; 1762 1763 for (i = 0; i < dev->num_tx_queues; i++) { 1764 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1765 netif_tx_wake_queue(txq); 1766 } 1767 } 1768 1769 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1770 { 1771 if (WARN_ON(!dev_queue)) { 1772 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1773 return; 1774 } 1775 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1776 } 1777 1778 /** 1779 * netif_stop_queue - stop transmitted packets 1780 * @dev: network device 1781 * 1782 * Stop upper layers calling the device hard_start_xmit routine. 1783 * Used for flow control when transmit resources are unavailable. 1784 */ 1785 static inline void netif_stop_queue(struct net_device *dev) 1786 { 1787 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1788 } 1789 1790 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1791 { 1792 unsigned int i; 1793 1794 for (i = 0; i < dev->num_tx_queues; i++) { 1795 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1796 netif_tx_stop_queue(txq); 1797 } 1798 } 1799 1800 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1801 { 1802 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1803 } 1804 1805 /** 1806 * netif_queue_stopped - test if transmit queue is flowblocked 1807 * @dev: network device 1808 * 1809 * Test if transmit queue on device is currently unable to send. 1810 */ 1811 static inline int netif_queue_stopped(const struct net_device *dev) 1812 { 1813 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1814 } 1815 1816 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue) 1817 { 1818 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN; 1819 } 1820 1821 /** 1822 * netif_running - test if up 1823 * @dev: network device 1824 * 1825 * Test if the device has been brought up. 1826 */ 1827 static inline int netif_running(const struct net_device *dev) 1828 { 1829 return test_bit(__LINK_STATE_START, &dev->state); 1830 } 1831 1832 /* 1833 * Routines to manage the subqueues on a device. We only need start 1834 * stop, and a check if it's stopped. All other device management is 1835 * done at the overall netdevice level. 1836 * Also test the device if we're multiqueue. 1837 */ 1838 1839 /** 1840 * netif_start_subqueue - allow sending packets on subqueue 1841 * @dev: network device 1842 * @queue_index: sub queue index 1843 * 1844 * Start individual transmit queue of a device with multiple transmit queues. 1845 */ 1846 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1847 { 1848 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1849 1850 netif_tx_start_queue(txq); 1851 } 1852 1853 /** 1854 * netif_stop_subqueue - stop sending packets on subqueue 1855 * @dev: network device 1856 * @queue_index: sub queue index 1857 * 1858 * Stop individual transmit queue of a device with multiple transmit queues. 1859 */ 1860 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1861 { 1862 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1863 #ifdef CONFIG_NETPOLL_TRAP 1864 if (netpoll_trap()) 1865 return; 1866 #endif 1867 netif_tx_stop_queue(txq); 1868 } 1869 1870 /** 1871 * netif_subqueue_stopped - test status of subqueue 1872 * @dev: network device 1873 * @queue_index: sub queue index 1874 * 1875 * Check individual transmit queue of a device with multiple transmit queues. 1876 */ 1877 static inline int __netif_subqueue_stopped(const struct net_device *dev, 1878 u16 queue_index) 1879 { 1880 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1881 1882 return netif_tx_queue_stopped(txq); 1883 } 1884 1885 static inline int netif_subqueue_stopped(const struct net_device *dev, 1886 struct sk_buff *skb) 1887 { 1888 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1889 } 1890 1891 /** 1892 * netif_wake_subqueue - allow sending packets on subqueue 1893 * @dev: network device 1894 * @queue_index: sub queue index 1895 * 1896 * Resume individual transmit queue of a device with multiple transmit queues. 1897 */ 1898 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1899 { 1900 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1901 #ifdef CONFIG_NETPOLL_TRAP 1902 if (netpoll_trap()) 1903 return; 1904 #endif 1905 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 1906 __netif_schedule(txq->qdisc); 1907 } 1908 1909 /* 1910 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 1911 * as a distribution range limit for the returned value. 1912 */ 1913 static inline u16 skb_tx_hash(const struct net_device *dev, 1914 const struct sk_buff *skb) 1915 { 1916 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 1917 } 1918 1919 /** 1920 * netif_is_multiqueue - test if device has multiple transmit queues 1921 * @dev: network device 1922 * 1923 * Check if device has multiple transmit queues 1924 */ 1925 static inline int netif_is_multiqueue(const struct net_device *dev) 1926 { 1927 return dev->num_tx_queues > 1; 1928 } 1929 1930 extern int netif_set_real_num_tx_queues(struct net_device *dev, 1931 unsigned int txq); 1932 1933 #ifdef CONFIG_RPS 1934 extern int netif_set_real_num_rx_queues(struct net_device *dev, 1935 unsigned int rxq); 1936 #else 1937 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 1938 unsigned int rxq) 1939 { 1940 return 0; 1941 } 1942 #endif 1943 1944 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 1945 const struct net_device *from_dev) 1946 { 1947 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 1948 #ifdef CONFIG_RPS 1949 return netif_set_real_num_rx_queues(to_dev, 1950 from_dev->real_num_rx_queues); 1951 #else 1952 return 0; 1953 #endif 1954 } 1955 1956 /* Use this variant when it is known for sure that it 1957 * is executing from hardware interrupt context or with hardware interrupts 1958 * disabled. 1959 */ 1960 extern void dev_kfree_skb_irq(struct sk_buff *skb); 1961 1962 /* Use this variant in places where it could be invoked 1963 * from either hardware interrupt or other context, with hardware interrupts 1964 * either disabled or enabled. 1965 */ 1966 extern void dev_kfree_skb_any(struct sk_buff *skb); 1967 1968 #define HAVE_NETIF_RX 1 1969 extern int netif_rx(struct sk_buff *skb); 1970 extern int netif_rx_ni(struct sk_buff *skb); 1971 #define HAVE_NETIF_RECEIVE_SKB 1 1972 extern int netif_receive_skb(struct sk_buff *skb); 1973 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 1974 struct sk_buff *skb); 1975 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 1976 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 1977 struct sk_buff *skb); 1978 extern void napi_gro_flush(struct napi_struct *napi); 1979 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 1980 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 1981 struct sk_buff *skb, 1982 gro_result_t ret); 1983 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 1984 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 1985 1986 static inline void napi_free_frags(struct napi_struct *napi) 1987 { 1988 kfree_skb(napi->skb); 1989 napi->skb = NULL; 1990 } 1991 1992 extern int netdev_rx_handler_register(struct net_device *dev, 1993 rx_handler_func_t *rx_handler, 1994 void *rx_handler_data); 1995 extern void netdev_rx_handler_unregister(struct net_device *dev); 1996 1997 extern int dev_valid_name(const char *name); 1998 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 1999 extern int dev_ethtool(struct net *net, struct ifreq *); 2000 extern unsigned dev_get_flags(const struct net_device *); 2001 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2002 extern int dev_change_flags(struct net_device *, unsigned); 2003 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2004 extern int dev_change_name(struct net_device *, const char *); 2005 extern int dev_set_alias(struct net_device *, const char *, size_t); 2006 extern int dev_change_net_namespace(struct net_device *, 2007 struct net *, const char *); 2008 extern int dev_set_mtu(struct net_device *, int); 2009 extern void dev_set_group(struct net_device *, int); 2010 extern int dev_set_mac_address(struct net_device *, 2011 struct sockaddr *); 2012 extern int dev_hard_start_xmit(struct sk_buff *skb, 2013 struct net_device *dev, 2014 struct netdev_queue *txq); 2015 extern int dev_forward_skb(struct net_device *dev, 2016 struct sk_buff *skb); 2017 2018 extern int netdev_budget; 2019 2020 /* Called by rtnetlink.c:rtnl_unlock() */ 2021 extern void netdev_run_todo(void); 2022 2023 /** 2024 * dev_put - release reference to device 2025 * @dev: network device 2026 * 2027 * Release reference to device to allow it to be freed. 2028 */ 2029 static inline void dev_put(struct net_device *dev) 2030 { 2031 irqsafe_cpu_dec(*dev->pcpu_refcnt); 2032 } 2033 2034 /** 2035 * dev_hold - get reference to device 2036 * @dev: network device 2037 * 2038 * Hold reference to device to keep it from being freed. 2039 */ 2040 static inline void dev_hold(struct net_device *dev) 2041 { 2042 irqsafe_cpu_inc(*dev->pcpu_refcnt); 2043 } 2044 2045 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2046 * and _off may be called from IRQ context, but it is caller 2047 * who is responsible for serialization of these calls. 2048 * 2049 * The name carrier is inappropriate, these functions should really be 2050 * called netif_lowerlayer_*() because they represent the state of any 2051 * kind of lower layer not just hardware media. 2052 */ 2053 2054 extern void linkwatch_fire_event(struct net_device *dev); 2055 extern void linkwatch_forget_dev(struct net_device *dev); 2056 2057 /** 2058 * netif_carrier_ok - test if carrier present 2059 * @dev: network device 2060 * 2061 * Check if carrier is present on device 2062 */ 2063 static inline int netif_carrier_ok(const struct net_device *dev) 2064 { 2065 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2066 } 2067 2068 extern unsigned long dev_trans_start(struct net_device *dev); 2069 2070 extern void __netdev_watchdog_up(struct net_device *dev); 2071 2072 extern void netif_carrier_on(struct net_device *dev); 2073 2074 extern void netif_carrier_off(struct net_device *dev); 2075 2076 extern void netif_notify_peers(struct net_device *dev); 2077 2078 /** 2079 * netif_dormant_on - mark device as dormant. 2080 * @dev: network device 2081 * 2082 * Mark device as dormant (as per RFC2863). 2083 * 2084 * The dormant state indicates that the relevant interface is not 2085 * actually in a condition to pass packets (i.e., it is not 'up') but is 2086 * in a "pending" state, waiting for some external event. For "on- 2087 * demand" interfaces, this new state identifies the situation where the 2088 * interface is waiting for events to place it in the up state. 2089 * 2090 */ 2091 static inline void netif_dormant_on(struct net_device *dev) 2092 { 2093 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2094 linkwatch_fire_event(dev); 2095 } 2096 2097 /** 2098 * netif_dormant_off - set device as not dormant. 2099 * @dev: network device 2100 * 2101 * Device is not in dormant state. 2102 */ 2103 static inline void netif_dormant_off(struct net_device *dev) 2104 { 2105 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2106 linkwatch_fire_event(dev); 2107 } 2108 2109 /** 2110 * netif_dormant - test if carrier present 2111 * @dev: network device 2112 * 2113 * Check if carrier is present on device 2114 */ 2115 static inline int netif_dormant(const struct net_device *dev) 2116 { 2117 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2118 } 2119 2120 2121 /** 2122 * netif_oper_up - test if device is operational 2123 * @dev: network device 2124 * 2125 * Check if carrier is operational 2126 */ 2127 static inline int netif_oper_up(const struct net_device *dev) 2128 { 2129 return (dev->operstate == IF_OPER_UP || 2130 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2131 } 2132 2133 /** 2134 * netif_device_present - is device available or removed 2135 * @dev: network device 2136 * 2137 * Check if device has not been removed from system. 2138 */ 2139 static inline int netif_device_present(struct net_device *dev) 2140 { 2141 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2142 } 2143 2144 extern void netif_device_detach(struct net_device *dev); 2145 2146 extern void netif_device_attach(struct net_device *dev); 2147 2148 /* 2149 * Network interface message level settings 2150 */ 2151 #define HAVE_NETIF_MSG 1 2152 2153 enum { 2154 NETIF_MSG_DRV = 0x0001, 2155 NETIF_MSG_PROBE = 0x0002, 2156 NETIF_MSG_LINK = 0x0004, 2157 NETIF_MSG_TIMER = 0x0008, 2158 NETIF_MSG_IFDOWN = 0x0010, 2159 NETIF_MSG_IFUP = 0x0020, 2160 NETIF_MSG_RX_ERR = 0x0040, 2161 NETIF_MSG_TX_ERR = 0x0080, 2162 NETIF_MSG_TX_QUEUED = 0x0100, 2163 NETIF_MSG_INTR = 0x0200, 2164 NETIF_MSG_TX_DONE = 0x0400, 2165 NETIF_MSG_RX_STATUS = 0x0800, 2166 NETIF_MSG_PKTDATA = 0x1000, 2167 NETIF_MSG_HW = 0x2000, 2168 NETIF_MSG_WOL = 0x4000, 2169 }; 2170 2171 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2172 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2173 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2174 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2175 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2176 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2177 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2178 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2179 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2180 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2181 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2182 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2183 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2184 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2185 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2186 2187 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2188 { 2189 /* use default */ 2190 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2191 return default_msg_enable_bits; 2192 if (debug_value == 0) /* no output */ 2193 return 0; 2194 /* set low N bits */ 2195 return (1 << debug_value) - 1; 2196 } 2197 2198 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2199 { 2200 spin_lock(&txq->_xmit_lock); 2201 txq->xmit_lock_owner = cpu; 2202 } 2203 2204 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2205 { 2206 spin_lock_bh(&txq->_xmit_lock); 2207 txq->xmit_lock_owner = smp_processor_id(); 2208 } 2209 2210 static inline int __netif_tx_trylock(struct netdev_queue *txq) 2211 { 2212 int ok = spin_trylock(&txq->_xmit_lock); 2213 if (likely(ok)) 2214 txq->xmit_lock_owner = smp_processor_id(); 2215 return ok; 2216 } 2217 2218 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2219 { 2220 txq->xmit_lock_owner = -1; 2221 spin_unlock(&txq->_xmit_lock); 2222 } 2223 2224 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2225 { 2226 txq->xmit_lock_owner = -1; 2227 spin_unlock_bh(&txq->_xmit_lock); 2228 } 2229 2230 static inline void txq_trans_update(struct netdev_queue *txq) 2231 { 2232 if (txq->xmit_lock_owner != -1) 2233 txq->trans_start = jiffies; 2234 } 2235 2236 /** 2237 * netif_tx_lock - grab network device transmit lock 2238 * @dev: network device 2239 * 2240 * Get network device transmit lock 2241 */ 2242 static inline void netif_tx_lock(struct net_device *dev) 2243 { 2244 unsigned int i; 2245 int cpu; 2246 2247 spin_lock(&dev->tx_global_lock); 2248 cpu = smp_processor_id(); 2249 for (i = 0; i < dev->num_tx_queues; i++) { 2250 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2251 2252 /* We are the only thread of execution doing a 2253 * freeze, but we have to grab the _xmit_lock in 2254 * order to synchronize with threads which are in 2255 * the ->hard_start_xmit() handler and already 2256 * checked the frozen bit. 2257 */ 2258 __netif_tx_lock(txq, cpu); 2259 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2260 __netif_tx_unlock(txq); 2261 } 2262 } 2263 2264 static inline void netif_tx_lock_bh(struct net_device *dev) 2265 { 2266 local_bh_disable(); 2267 netif_tx_lock(dev); 2268 } 2269 2270 static inline void netif_tx_unlock(struct net_device *dev) 2271 { 2272 unsigned int i; 2273 2274 for (i = 0; i < dev->num_tx_queues; i++) { 2275 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2276 2277 /* No need to grab the _xmit_lock here. If the 2278 * queue is not stopped for another reason, we 2279 * force a schedule. 2280 */ 2281 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2282 netif_schedule_queue(txq); 2283 } 2284 spin_unlock(&dev->tx_global_lock); 2285 } 2286 2287 static inline void netif_tx_unlock_bh(struct net_device *dev) 2288 { 2289 netif_tx_unlock(dev); 2290 local_bh_enable(); 2291 } 2292 2293 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2294 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2295 __netif_tx_lock(txq, cpu); \ 2296 } \ 2297 } 2298 2299 #define HARD_TX_UNLOCK(dev, txq) { \ 2300 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2301 __netif_tx_unlock(txq); \ 2302 } \ 2303 } 2304 2305 static inline void netif_tx_disable(struct net_device *dev) 2306 { 2307 unsigned int i; 2308 int cpu; 2309 2310 local_bh_disable(); 2311 cpu = smp_processor_id(); 2312 for (i = 0; i < dev->num_tx_queues; i++) { 2313 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2314 2315 __netif_tx_lock(txq, cpu); 2316 netif_tx_stop_queue(txq); 2317 __netif_tx_unlock(txq); 2318 } 2319 local_bh_enable(); 2320 } 2321 2322 static inline void netif_addr_lock(struct net_device *dev) 2323 { 2324 spin_lock(&dev->addr_list_lock); 2325 } 2326 2327 static inline void netif_addr_lock_bh(struct net_device *dev) 2328 { 2329 spin_lock_bh(&dev->addr_list_lock); 2330 } 2331 2332 static inline void netif_addr_unlock(struct net_device *dev) 2333 { 2334 spin_unlock(&dev->addr_list_lock); 2335 } 2336 2337 static inline void netif_addr_unlock_bh(struct net_device *dev) 2338 { 2339 spin_unlock_bh(&dev->addr_list_lock); 2340 } 2341 2342 /* 2343 * dev_addrs walker. Should be used only for read access. Call with 2344 * rcu_read_lock held. 2345 */ 2346 #define for_each_dev_addr(dev, ha) \ 2347 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2348 2349 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2350 2351 extern void ether_setup(struct net_device *dev); 2352 2353 /* Support for loadable net-drivers */ 2354 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2355 void (*setup)(struct net_device *), 2356 unsigned int txqs, unsigned int rxqs); 2357 #define alloc_netdev(sizeof_priv, name, setup) \ 2358 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2359 2360 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2361 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2362 2363 extern int register_netdev(struct net_device *dev); 2364 extern void unregister_netdev(struct net_device *dev); 2365 2366 /* General hardware address lists handling functions */ 2367 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2368 struct netdev_hw_addr_list *from_list, 2369 int addr_len, unsigned char addr_type); 2370 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2371 struct netdev_hw_addr_list *from_list, 2372 int addr_len, unsigned char addr_type); 2373 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2374 struct netdev_hw_addr_list *from_list, 2375 int addr_len); 2376 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2377 struct netdev_hw_addr_list *from_list, 2378 int addr_len); 2379 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2380 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2381 2382 /* Functions used for device addresses handling */ 2383 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2384 unsigned char addr_type); 2385 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2386 unsigned char addr_type); 2387 extern int dev_addr_add_multiple(struct net_device *to_dev, 2388 struct net_device *from_dev, 2389 unsigned char addr_type); 2390 extern int dev_addr_del_multiple(struct net_device *to_dev, 2391 struct net_device *from_dev, 2392 unsigned char addr_type); 2393 extern void dev_addr_flush(struct net_device *dev); 2394 extern int dev_addr_init(struct net_device *dev); 2395 2396 /* Functions used for unicast addresses handling */ 2397 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2398 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2399 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2400 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2401 extern void dev_uc_flush(struct net_device *dev); 2402 extern void dev_uc_init(struct net_device *dev); 2403 2404 /* Functions used for multicast addresses handling */ 2405 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2406 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2407 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2408 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2409 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2410 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2411 extern void dev_mc_flush(struct net_device *dev); 2412 extern void dev_mc_init(struct net_device *dev); 2413 2414 /* Functions used for secondary unicast and multicast support */ 2415 extern void dev_set_rx_mode(struct net_device *dev); 2416 extern void __dev_set_rx_mode(struct net_device *dev); 2417 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2418 extern int dev_set_allmulti(struct net_device *dev, int inc); 2419 extern void netdev_state_change(struct net_device *dev); 2420 extern int netdev_bonding_change(struct net_device *dev, 2421 unsigned long event); 2422 extern void netdev_features_change(struct net_device *dev); 2423 /* Load a device via the kmod */ 2424 extern void dev_load(struct net *net, const char *name); 2425 extern void dev_mcast_init(void); 2426 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2427 struct rtnl_link_stats64 *storage); 2428 2429 extern int netdev_max_backlog; 2430 extern int netdev_tstamp_prequeue; 2431 extern int weight_p; 2432 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2433 extern int netdev_set_bond_master(struct net_device *dev, 2434 struct net_device *master); 2435 extern int skb_checksum_help(struct sk_buff *skb); 2436 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features); 2437 #ifdef CONFIG_BUG 2438 extern void netdev_rx_csum_fault(struct net_device *dev); 2439 #else 2440 static inline void netdev_rx_csum_fault(struct net_device *dev) 2441 { 2442 } 2443 #endif 2444 /* rx skb timestamps */ 2445 extern void net_enable_timestamp(void); 2446 extern void net_disable_timestamp(void); 2447 2448 #ifdef CONFIG_PROC_FS 2449 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2450 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2451 extern void dev_seq_stop(struct seq_file *seq, void *v); 2452 #endif 2453 2454 extern int netdev_class_create_file(struct class_attribute *class_attr); 2455 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2456 2457 extern struct kobj_ns_type_operations net_ns_type_operations; 2458 2459 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len); 2460 2461 extern void linkwatch_run_queue(void); 2462 2463 static inline u32 netdev_get_wanted_features(struct net_device *dev) 2464 { 2465 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2466 } 2467 u32 netdev_increment_features(u32 all, u32 one, u32 mask); 2468 u32 netdev_fix_features(struct net_device *dev, u32 features); 2469 void netdev_update_features(struct net_device *dev); 2470 2471 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2472 struct net_device *dev); 2473 2474 u32 netif_skb_features(struct sk_buff *skb); 2475 2476 static inline int net_gso_ok(u32 features, int gso_type) 2477 { 2478 int feature = gso_type << NETIF_F_GSO_SHIFT; 2479 return (features & feature) == feature; 2480 } 2481 2482 static inline int skb_gso_ok(struct sk_buff *skb, u32 features) 2483 { 2484 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2485 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2486 } 2487 2488 static inline int netif_needs_gso(struct sk_buff *skb, int features) 2489 { 2490 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2491 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2492 } 2493 2494 static inline void netif_set_gso_max_size(struct net_device *dev, 2495 unsigned int size) 2496 { 2497 dev->gso_max_size = size; 2498 } 2499 2500 static inline int netif_is_bond_slave(struct net_device *dev) 2501 { 2502 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2503 } 2504 2505 extern struct pernet_operations __net_initdata loopback_net_ops; 2506 2507 static inline int dev_ethtool_get_settings(struct net_device *dev, 2508 struct ethtool_cmd *cmd) 2509 { 2510 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 2511 return -EOPNOTSUPP; 2512 return dev->ethtool_ops->get_settings(dev, cmd); 2513 } 2514 2515 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2516 { 2517 if (dev->hw_features & NETIF_F_RXCSUM) 2518 return !!(dev->features & NETIF_F_RXCSUM); 2519 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2520 return 0; 2521 return dev->ethtool_ops->get_rx_csum(dev); 2522 } 2523 2524 static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2525 { 2526 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2527 return 0; 2528 return dev->ethtool_ops->get_flags(dev); 2529 } 2530 2531 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2532 2533 /* netdev_printk helpers, similar to dev_printk */ 2534 2535 static inline const char *netdev_name(const struct net_device *dev) 2536 { 2537 if (dev->reg_state != NETREG_REGISTERED) 2538 return "(unregistered net_device)"; 2539 return dev->name; 2540 } 2541 2542 extern int netdev_printk(const char *level, const struct net_device *dev, 2543 const char *format, ...) 2544 __attribute__ ((format (printf, 3, 4))); 2545 extern int netdev_emerg(const struct net_device *dev, const char *format, ...) 2546 __attribute__ ((format (printf, 2, 3))); 2547 extern int netdev_alert(const struct net_device *dev, const char *format, ...) 2548 __attribute__ ((format (printf, 2, 3))); 2549 extern int netdev_crit(const struct net_device *dev, const char *format, ...) 2550 __attribute__ ((format (printf, 2, 3))); 2551 extern int netdev_err(const struct net_device *dev, const char *format, ...) 2552 __attribute__ ((format (printf, 2, 3))); 2553 extern int netdev_warn(const struct net_device *dev, const char *format, ...) 2554 __attribute__ ((format (printf, 2, 3))); 2555 extern int netdev_notice(const struct net_device *dev, const char *format, ...) 2556 __attribute__ ((format (printf, 2, 3))); 2557 extern int netdev_info(const struct net_device *dev, const char *format, ...) 2558 __attribute__ ((format (printf, 2, 3))); 2559 2560 #if defined(DEBUG) 2561 #define netdev_dbg(__dev, format, args...) \ 2562 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2563 #elif defined(CONFIG_DYNAMIC_DEBUG) 2564 #define netdev_dbg(__dev, format, args...) \ 2565 do { \ 2566 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ 2567 netdev_name(__dev), ##args); \ 2568 } while (0) 2569 #else 2570 #define netdev_dbg(__dev, format, args...) \ 2571 ({ \ 2572 if (0) \ 2573 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2574 0; \ 2575 }) 2576 #endif 2577 2578 #if defined(VERBOSE_DEBUG) 2579 #define netdev_vdbg netdev_dbg 2580 #else 2581 2582 #define netdev_vdbg(dev, format, args...) \ 2583 ({ \ 2584 if (0) \ 2585 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2586 0; \ 2587 }) 2588 #endif 2589 2590 /* 2591 * netdev_WARN() acts like dev_printk(), but with the key difference 2592 * of using a WARN/WARN_ON to get the message out, including the 2593 * file/line information and a backtrace. 2594 */ 2595 #define netdev_WARN(dev, format, args...) \ 2596 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2597 2598 /* netif printk helpers, similar to netdev_printk */ 2599 2600 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2601 do { \ 2602 if (netif_msg_##type(priv)) \ 2603 netdev_printk(level, (dev), fmt, ##args); \ 2604 } while (0) 2605 2606 #define netif_level(level, priv, type, dev, fmt, args...) \ 2607 do { \ 2608 if (netif_msg_##type(priv)) \ 2609 netdev_##level(dev, fmt, ##args); \ 2610 } while (0) 2611 2612 #define netif_emerg(priv, type, dev, fmt, args...) \ 2613 netif_level(emerg, priv, type, dev, fmt, ##args) 2614 #define netif_alert(priv, type, dev, fmt, args...) \ 2615 netif_level(alert, priv, type, dev, fmt, ##args) 2616 #define netif_crit(priv, type, dev, fmt, args...) \ 2617 netif_level(crit, priv, type, dev, fmt, ##args) 2618 #define netif_err(priv, type, dev, fmt, args...) \ 2619 netif_level(err, priv, type, dev, fmt, ##args) 2620 #define netif_warn(priv, type, dev, fmt, args...) \ 2621 netif_level(warn, priv, type, dev, fmt, ##args) 2622 #define netif_notice(priv, type, dev, fmt, args...) \ 2623 netif_level(notice, priv, type, dev, fmt, ##args) 2624 #define netif_info(priv, type, dev, fmt, args...) \ 2625 netif_level(info, priv, type, dev, fmt, ##args) 2626 2627 #if defined(DEBUG) 2628 #define netif_dbg(priv, type, dev, format, args...) \ 2629 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2630 #elif defined(CONFIG_DYNAMIC_DEBUG) 2631 #define netif_dbg(priv, type, netdev, format, args...) \ 2632 do { \ 2633 if (netif_msg_##type(priv)) \ 2634 dynamic_dev_dbg((netdev)->dev.parent, \ 2635 "%s: " format, \ 2636 netdev_name(netdev), ##args); \ 2637 } while (0) 2638 #else 2639 #define netif_dbg(priv, type, dev, format, args...) \ 2640 ({ \ 2641 if (0) \ 2642 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2643 0; \ 2644 }) 2645 #endif 2646 2647 #if defined(VERBOSE_DEBUG) 2648 #define netif_vdbg netif_dbg 2649 #else 2650 #define netif_vdbg(priv, type, dev, format, args...) \ 2651 ({ \ 2652 if (0) \ 2653 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2654 0; \ 2655 }) 2656 #endif 2657 2658 #endif /* __KERNEL__ */ 2659 2660 #endif /* _LINUX_NETDEVICE_H */ 2661