xref: /linux-6.15/include/linux/netdevice.h (revision f2cab25b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 /* DPLL specific */
83 struct dpll_pin;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 #ifdef CONFIG_RPS
231 #include <linux/static_key.h>
232 extern struct static_key_false rps_needed;
233 extern struct static_key_false rfs_needed;
234 #endif
235 
236 struct neighbour;
237 struct neigh_parms;
238 struct sk_buff;
239 
240 struct netdev_hw_addr {
241 	struct list_head	list;
242 	struct rb_node		node;
243 	unsigned char		addr[MAX_ADDR_LEN];
244 	unsigned char		type;
245 #define NETDEV_HW_ADDR_T_LAN		1
246 #define NETDEV_HW_ADDR_T_SAN		2
247 #define NETDEV_HW_ADDR_T_UNICAST	3
248 #define NETDEV_HW_ADDR_T_MULTICAST	4
249 	bool			global_use;
250 	int			sync_cnt;
251 	int			refcount;
252 	int			synced;
253 	struct rcu_head		rcu_head;
254 };
255 
256 struct netdev_hw_addr_list {
257 	struct list_head	list;
258 	int			count;
259 
260 	/* Auxiliary tree for faster lookup on addition and deletion */
261 	struct rb_root		tree;
262 };
263 
264 #define netdev_hw_addr_list_count(l) ((l)->count)
265 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
266 #define netdev_hw_addr_list_for_each(ha, l) \
267 	list_for_each_entry(ha, &(l)->list, list)
268 
269 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
270 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
271 #define netdev_for_each_uc_addr(ha, dev) \
272 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
273 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
274 	netdev_for_each_uc_addr((_ha), (_dev)) \
275 		if ((_ha)->sync_cnt)
276 
277 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
278 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
279 #define netdev_for_each_mc_addr(ha, dev) \
280 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
281 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
282 	netdev_for_each_mc_addr((_ha), (_dev)) \
283 		if ((_ha)->sync_cnt)
284 
285 struct hh_cache {
286 	unsigned int	hh_len;
287 	seqlock_t	hh_lock;
288 
289 	/* cached hardware header; allow for machine alignment needs.        */
290 #define HH_DATA_MOD	16
291 #define HH_DATA_OFF(__len) \
292 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
293 #define HH_DATA_ALIGN(__len) \
294 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
295 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
296 };
297 
298 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
299  * Alternative is:
300  *   dev->hard_header_len ? (dev->hard_header_len +
301  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
302  *
303  * We could use other alignment values, but we must maintain the
304  * relationship HH alignment <= LL alignment.
305  */
306 #define LL_RESERVED_SPACE(dev) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
310 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
311 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
312 
313 struct header_ops {
314 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
315 			   unsigned short type, const void *daddr,
316 			   const void *saddr, unsigned int len);
317 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
318 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
319 	void	(*cache_update)(struct hh_cache *hh,
320 				const struct net_device *dev,
321 				const unsigned char *haddr);
322 	bool	(*validate)(const char *ll_header, unsigned int len);
323 	__be16	(*parse_protocol)(const struct sk_buff *skb);
324 };
325 
326 /* These flag bits are private to the generic network queueing
327  * layer; they may not be explicitly referenced by any other
328  * code.
329  */
330 
331 enum netdev_state_t {
332 	__LINK_STATE_START,
333 	__LINK_STATE_PRESENT,
334 	__LINK_STATE_NOCARRIER,
335 	__LINK_STATE_LINKWATCH_PENDING,
336 	__LINK_STATE_DORMANT,
337 	__LINK_STATE_TESTING,
338 };
339 
340 struct gro_list {
341 	struct list_head	list;
342 	int			count;
343 };
344 
345 /*
346  * size of gro hash buckets, must less than bit number of
347  * napi_struct::gro_bitmask
348  */
349 #define GRO_HASH_BUCKETS	8
350 
351 /*
352  * Structure for NAPI scheduling similar to tasklet but with weighting
353  */
354 struct napi_struct {
355 	/* The poll_list must only be managed by the entity which
356 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
357 	 * whoever atomically sets that bit can add this napi_struct
358 	 * to the per-CPU poll_list, and whoever clears that bit
359 	 * can remove from the list right before clearing the bit.
360 	 */
361 	struct list_head	poll_list;
362 
363 	unsigned long		state;
364 	int			weight;
365 	int			defer_hard_irqs_count;
366 	unsigned long		gro_bitmask;
367 	int			(*poll)(struct napi_struct *, int);
368 #ifdef CONFIG_NETPOLL
369 	/* CPU actively polling if netpoll is configured */
370 	int			poll_owner;
371 #endif
372 	/* CPU on which NAPI has been scheduled for processing */
373 	int			list_owner;
374 	struct net_device	*dev;
375 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
376 	struct sk_buff		*skb;
377 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
378 	int			rx_count; /* length of rx_list */
379 	unsigned int		napi_id;
380 	struct hrtimer		timer;
381 	struct task_struct	*thread;
382 	/* control-path-only fields follow */
383 	struct list_head	dev_list;
384 	struct hlist_node	napi_hash_node;
385 };
386 
387 enum {
388 	NAPI_STATE_SCHED,		/* Poll is scheduled */
389 	NAPI_STATE_MISSED,		/* reschedule a napi */
390 	NAPI_STATE_DISABLE,		/* Disable pending */
391 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
392 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
393 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
394 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
395 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
396 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
397 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
398 };
399 
400 enum {
401 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
402 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
403 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
404 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
405 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
406 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
407 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
408 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
409 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
410 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
411 };
412 
413 enum gro_result {
414 	GRO_MERGED,
415 	GRO_MERGED_FREE,
416 	GRO_HELD,
417 	GRO_NORMAL,
418 	GRO_CONSUMED,
419 };
420 typedef enum gro_result gro_result_t;
421 
422 /*
423  * enum rx_handler_result - Possible return values for rx_handlers.
424  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
425  * further.
426  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
427  * case skb->dev was changed by rx_handler.
428  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
429  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
430  *
431  * rx_handlers are functions called from inside __netif_receive_skb(), to do
432  * special processing of the skb, prior to delivery to protocol handlers.
433  *
434  * Currently, a net_device can only have a single rx_handler registered. Trying
435  * to register a second rx_handler will return -EBUSY.
436  *
437  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
438  * To unregister a rx_handler on a net_device, use
439  * netdev_rx_handler_unregister().
440  *
441  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
442  * do with the skb.
443  *
444  * If the rx_handler consumed the skb in some way, it should return
445  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
446  * the skb to be delivered in some other way.
447  *
448  * If the rx_handler changed skb->dev, to divert the skb to another
449  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
450  * new device will be called if it exists.
451  *
452  * If the rx_handler decides the skb should be ignored, it should return
453  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
454  * are registered on exact device (ptype->dev == skb->dev).
455  *
456  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
457  * delivered, it should return RX_HANDLER_PASS.
458  *
459  * A device without a registered rx_handler will behave as if rx_handler
460  * returned RX_HANDLER_PASS.
461  */
462 
463 enum rx_handler_result {
464 	RX_HANDLER_CONSUMED,
465 	RX_HANDLER_ANOTHER,
466 	RX_HANDLER_EXACT,
467 	RX_HANDLER_PASS,
468 };
469 typedef enum rx_handler_result rx_handler_result_t;
470 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
471 
472 void __napi_schedule(struct napi_struct *n);
473 void __napi_schedule_irqoff(struct napi_struct *n);
474 
475 static inline bool napi_disable_pending(struct napi_struct *n)
476 {
477 	return test_bit(NAPI_STATE_DISABLE, &n->state);
478 }
479 
480 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
481 {
482 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
483 }
484 
485 /**
486  * napi_is_scheduled - test if NAPI is scheduled
487  * @n: NAPI context
488  *
489  * This check is "best-effort". With no locking implemented,
490  * a NAPI can be scheduled or terminate right after this check
491  * and produce not precise results.
492  *
493  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
494  * should not be used normally and napi_schedule should be
495  * used instead.
496  *
497  * Use only if the driver really needs to check if a NAPI
498  * is scheduled for example in the context of delayed timer
499  * that can be skipped if a NAPI is already scheduled.
500  *
501  * Return True if NAPI is scheduled, False otherwise.
502  */
503 static inline bool napi_is_scheduled(struct napi_struct *n)
504 {
505 	return test_bit(NAPI_STATE_SCHED, &n->state);
506 }
507 
508 bool napi_schedule_prep(struct napi_struct *n);
509 
510 /**
511  *	napi_schedule - schedule NAPI poll
512  *	@n: NAPI context
513  *
514  * Schedule NAPI poll routine to be called if it is not already
515  * running.
516  * Return true if we schedule a NAPI or false if not.
517  * Refer to napi_schedule_prep() for additional reason on why
518  * a NAPI might not be scheduled.
519  */
520 static inline bool napi_schedule(struct napi_struct *n)
521 {
522 	if (napi_schedule_prep(n)) {
523 		__napi_schedule(n);
524 		return true;
525 	}
526 
527 	return false;
528 }
529 
530 /**
531  *	napi_schedule_irqoff - schedule NAPI poll
532  *	@n: NAPI context
533  *
534  * Variant of napi_schedule(), assuming hard irqs are masked.
535  */
536 static inline void napi_schedule_irqoff(struct napi_struct *n)
537 {
538 	if (napi_schedule_prep(n))
539 		__napi_schedule_irqoff(n);
540 }
541 
542 /**
543  * napi_complete_done - NAPI processing complete
544  * @n: NAPI context
545  * @work_done: number of packets processed
546  *
547  * Mark NAPI processing as complete. Should only be called if poll budget
548  * has not been completely consumed.
549  * Prefer over napi_complete().
550  * Return false if device should avoid rearming interrupts.
551  */
552 bool napi_complete_done(struct napi_struct *n, int work_done);
553 
554 static inline bool napi_complete(struct napi_struct *n)
555 {
556 	return napi_complete_done(n, 0);
557 }
558 
559 int dev_set_threaded(struct net_device *dev, bool threaded);
560 
561 /**
562  *	napi_disable - prevent NAPI from scheduling
563  *	@n: NAPI context
564  *
565  * Stop NAPI from being scheduled on this context.
566  * Waits till any outstanding processing completes.
567  */
568 void napi_disable(struct napi_struct *n);
569 
570 void napi_enable(struct napi_struct *n);
571 
572 /**
573  *	napi_synchronize - wait until NAPI is not running
574  *	@n: NAPI context
575  *
576  * Wait until NAPI is done being scheduled on this context.
577  * Waits till any outstanding processing completes but
578  * does not disable future activations.
579  */
580 static inline void napi_synchronize(const struct napi_struct *n)
581 {
582 	if (IS_ENABLED(CONFIG_SMP))
583 		while (test_bit(NAPI_STATE_SCHED, &n->state))
584 			msleep(1);
585 	else
586 		barrier();
587 }
588 
589 /**
590  *	napi_if_scheduled_mark_missed - if napi is running, set the
591  *	NAPIF_STATE_MISSED
592  *	@n: NAPI context
593  *
594  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
595  * NAPI is scheduled.
596  **/
597 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
598 {
599 	unsigned long val, new;
600 
601 	val = READ_ONCE(n->state);
602 	do {
603 		if (val & NAPIF_STATE_DISABLE)
604 			return true;
605 
606 		if (!(val & NAPIF_STATE_SCHED))
607 			return false;
608 
609 		new = val | NAPIF_STATE_MISSED;
610 	} while (!try_cmpxchg(&n->state, &val, new));
611 
612 	return true;
613 }
614 
615 enum netdev_queue_state_t {
616 	__QUEUE_STATE_DRV_XOFF,
617 	__QUEUE_STATE_STACK_XOFF,
618 	__QUEUE_STATE_FROZEN,
619 };
620 
621 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
622 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
623 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
624 
625 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
626 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
627 					QUEUE_STATE_FROZEN)
628 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
629 					QUEUE_STATE_FROZEN)
630 
631 /*
632  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
633  * netif_tx_* functions below are used to manipulate this flag.  The
634  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
635  * queue independently.  The netif_xmit_*stopped functions below are called
636  * to check if the queue has been stopped by the driver or stack (either
637  * of the XOFF bits are set in the state).  Drivers should not need to call
638  * netif_xmit*stopped functions, they should only be using netif_tx_*.
639  */
640 
641 struct netdev_queue {
642 /*
643  * read-mostly part
644  */
645 	struct net_device	*dev;
646 	netdevice_tracker	dev_tracker;
647 
648 	struct Qdisc __rcu	*qdisc;
649 	struct Qdisc __rcu	*qdisc_sleeping;
650 #ifdef CONFIG_SYSFS
651 	struct kobject		kobj;
652 #endif
653 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
654 	int			numa_node;
655 #endif
656 	unsigned long		tx_maxrate;
657 	/*
658 	 * Number of TX timeouts for this queue
659 	 * (/sys/class/net/DEV/Q/trans_timeout)
660 	 */
661 	atomic_long_t		trans_timeout;
662 
663 	/* Subordinate device that the queue has been assigned to */
664 	struct net_device	*sb_dev;
665 #ifdef CONFIG_XDP_SOCKETS
666 	struct xsk_buff_pool    *pool;
667 #endif
668 /*
669  * write-mostly part
670  */
671 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
672 	int			xmit_lock_owner;
673 	/*
674 	 * Time (in jiffies) of last Tx
675 	 */
676 	unsigned long		trans_start;
677 
678 	unsigned long		state;
679 
680 #ifdef CONFIG_BQL
681 	struct dql		dql;
682 #endif
683 } ____cacheline_aligned_in_smp;
684 
685 extern int sysctl_fb_tunnels_only_for_init_net;
686 extern int sysctl_devconf_inherit_init_net;
687 
688 /*
689  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
690  *                                     == 1 : For initns only
691  *                                     == 2 : For none.
692  */
693 static inline bool net_has_fallback_tunnels(const struct net *net)
694 {
695 #if IS_ENABLED(CONFIG_SYSCTL)
696 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
697 
698 	return !fb_tunnels_only_for_init_net ||
699 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
700 #else
701 	return true;
702 #endif
703 }
704 
705 static inline int net_inherit_devconf(void)
706 {
707 #if IS_ENABLED(CONFIG_SYSCTL)
708 	return READ_ONCE(sysctl_devconf_inherit_init_net);
709 #else
710 	return 0;
711 #endif
712 }
713 
714 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
715 {
716 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
717 	return q->numa_node;
718 #else
719 	return NUMA_NO_NODE;
720 #endif
721 }
722 
723 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
724 {
725 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
726 	q->numa_node = node;
727 #endif
728 }
729 
730 #ifdef CONFIG_RPS
731 /*
732  * This structure holds an RPS map which can be of variable length.  The
733  * map is an array of CPUs.
734  */
735 struct rps_map {
736 	unsigned int len;
737 	struct rcu_head rcu;
738 	u16 cpus[];
739 };
740 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
741 
742 /*
743  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
744  * tail pointer for that CPU's input queue at the time of last enqueue, and
745  * a hardware filter index.
746  */
747 struct rps_dev_flow {
748 	u16 cpu;
749 	u16 filter;
750 	unsigned int last_qtail;
751 };
752 #define RPS_NO_FILTER 0xffff
753 
754 /*
755  * The rps_dev_flow_table structure contains a table of flow mappings.
756  */
757 struct rps_dev_flow_table {
758 	unsigned int mask;
759 	struct rcu_head rcu;
760 	struct rps_dev_flow flows[];
761 };
762 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
763     ((_num) * sizeof(struct rps_dev_flow)))
764 
765 /*
766  * The rps_sock_flow_table contains mappings of flows to the last CPU
767  * on which they were processed by the application (set in recvmsg).
768  * Each entry is a 32bit value. Upper part is the high-order bits
769  * of flow hash, lower part is CPU number.
770  * rps_cpu_mask is used to partition the space, depending on number of
771  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
772  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
773  * meaning we use 32-6=26 bits for the hash.
774  */
775 struct rps_sock_flow_table {
776 	u32	mask;
777 
778 	u32	ents[] ____cacheline_aligned_in_smp;
779 };
780 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
781 
782 #define RPS_NO_CPU 0xffff
783 
784 extern u32 rps_cpu_mask;
785 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
786 
787 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
788 					u32 hash)
789 {
790 	if (table && hash) {
791 		unsigned int index = hash & table->mask;
792 		u32 val = hash & ~rps_cpu_mask;
793 
794 		/* We only give a hint, preemption can change CPU under us */
795 		val |= raw_smp_processor_id();
796 
797 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
798 		 * here, and another one in get_rps_cpu().
799 		 */
800 		if (READ_ONCE(table->ents[index]) != val)
801 			WRITE_ONCE(table->ents[index], val);
802 	}
803 }
804 
805 #ifdef CONFIG_RFS_ACCEL
806 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
807 			 u16 filter_id);
808 #endif
809 #endif /* CONFIG_RPS */
810 
811 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
812 enum xps_map_type {
813 	XPS_CPUS = 0,
814 	XPS_RXQS,
815 	XPS_MAPS_MAX,
816 };
817 
818 #ifdef CONFIG_XPS
819 /*
820  * This structure holds an XPS map which can be of variable length.  The
821  * map is an array of queues.
822  */
823 struct xps_map {
824 	unsigned int len;
825 	unsigned int alloc_len;
826 	struct rcu_head rcu;
827 	u16 queues[];
828 };
829 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
830 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
831        - sizeof(struct xps_map)) / sizeof(u16))
832 
833 /*
834  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
835  *
836  * We keep track of the number of cpus/rxqs used when the struct is allocated,
837  * in nr_ids. This will help not accessing out-of-bound memory.
838  *
839  * We keep track of the number of traffic classes used when the struct is
840  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
841  * not crossing its upper bound, as the original dev->num_tc can be updated in
842  * the meantime.
843  */
844 struct xps_dev_maps {
845 	struct rcu_head rcu;
846 	unsigned int nr_ids;
847 	s16 num_tc;
848 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
849 };
850 
851 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
852 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
853 
854 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
855 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
856 
857 #endif /* CONFIG_XPS */
858 
859 #define TC_MAX_QUEUE	16
860 #define TC_BITMASK	15
861 /* HW offloaded queuing disciplines txq count and offset maps */
862 struct netdev_tc_txq {
863 	u16 count;
864 	u16 offset;
865 };
866 
867 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
868 /*
869  * This structure is to hold information about the device
870  * configured to run FCoE protocol stack.
871  */
872 struct netdev_fcoe_hbainfo {
873 	char	manufacturer[64];
874 	char	serial_number[64];
875 	char	hardware_version[64];
876 	char	driver_version[64];
877 	char	optionrom_version[64];
878 	char	firmware_version[64];
879 	char	model[256];
880 	char	model_description[256];
881 };
882 #endif
883 
884 #define MAX_PHYS_ITEM_ID_LEN 32
885 
886 /* This structure holds a unique identifier to identify some
887  * physical item (port for example) used by a netdevice.
888  */
889 struct netdev_phys_item_id {
890 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
891 	unsigned char id_len;
892 };
893 
894 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
895 					    struct netdev_phys_item_id *b)
896 {
897 	return a->id_len == b->id_len &&
898 	       memcmp(a->id, b->id, a->id_len) == 0;
899 }
900 
901 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
902 				       struct sk_buff *skb,
903 				       struct net_device *sb_dev);
904 
905 enum net_device_path_type {
906 	DEV_PATH_ETHERNET = 0,
907 	DEV_PATH_VLAN,
908 	DEV_PATH_BRIDGE,
909 	DEV_PATH_PPPOE,
910 	DEV_PATH_DSA,
911 	DEV_PATH_MTK_WDMA,
912 };
913 
914 struct net_device_path {
915 	enum net_device_path_type	type;
916 	const struct net_device		*dev;
917 	union {
918 		struct {
919 			u16		id;
920 			__be16		proto;
921 			u8		h_dest[ETH_ALEN];
922 		} encap;
923 		struct {
924 			enum {
925 				DEV_PATH_BR_VLAN_KEEP,
926 				DEV_PATH_BR_VLAN_TAG,
927 				DEV_PATH_BR_VLAN_UNTAG,
928 				DEV_PATH_BR_VLAN_UNTAG_HW,
929 			}		vlan_mode;
930 			u16		vlan_id;
931 			__be16		vlan_proto;
932 		} bridge;
933 		struct {
934 			int port;
935 			u16 proto;
936 		} dsa;
937 		struct {
938 			u8 wdma_idx;
939 			u8 queue;
940 			u16 wcid;
941 			u8 bss;
942 			u8 amsdu;
943 		} mtk_wdma;
944 	};
945 };
946 
947 #define NET_DEVICE_PATH_STACK_MAX	5
948 #define NET_DEVICE_PATH_VLAN_MAX	2
949 
950 struct net_device_path_stack {
951 	int			num_paths;
952 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
953 };
954 
955 struct net_device_path_ctx {
956 	const struct net_device *dev;
957 	u8			daddr[ETH_ALEN];
958 
959 	int			num_vlans;
960 	struct {
961 		u16		id;
962 		__be16		proto;
963 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
964 };
965 
966 enum tc_setup_type {
967 	TC_QUERY_CAPS,
968 	TC_SETUP_QDISC_MQPRIO,
969 	TC_SETUP_CLSU32,
970 	TC_SETUP_CLSFLOWER,
971 	TC_SETUP_CLSMATCHALL,
972 	TC_SETUP_CLSBPF,
973 	TC_SETUP_BLOCK,
974 	TC_SETUP_QDISC_CBS,
975 	TC_SETUP_QDISC_RED,
976 	TC_SETUP_QDISC_PRIO,
977 	TC_SETUP_QDISC_MQ,
978 	TC_SETUP_QDISC_ETF,
979 	TC_SETUP_ROOT_QDISC,
980 	TC_SETUP_QDISC_GRED,
981 	TC_SETUP_QDISC_TAPRIO,
982 	TC_SETUP_FT,
983 	TC_SETUP_QDISC_ETS,
984 	TC_SETUP_QDISC_TBF,
985 	TC_SETUP_QDISC_FIFO,
986 	TC_SETUP_QDISC_HTB,
987 	TC_SETUP_ACT,
988 };
989 
990 /* These structures hold the attributes of bpf state that are being passed
991  * to the netdevice through the bpf op.
992  */
993 enum bpf_netdev_command {
994 	/* Set or clear a bpf program used in the earliest stages of packet
995 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
996 	 * is responsible for calling bpf_prog_put on any old progs that are
997 	 * stored. In case of error, the callee need not release the new prog
998 	 * reference, but on success it takes ownership and must bpf_prog_put
999 	 * when it is no longer used.
1000 	 */
1001 	XDP_SETUP_PROG,
1002 	XDP_SETUP_PROG_HW,
1003 	/* BPF program for offload callbacks, invoked at program load time. */
1004 	BPF_OFFLOAD_MAP_ALLOC,
1005 	BPF_OFFLOAD_MAP_FREE,
1006 	XDP_SETUP_XSK_POOL,
1007 };
1008 
1009 struct bpf_prog_offload_ops;
1010 struct netlink_ext_ack;
1011 struct xdp_umem;
1012 struct xdp_dev_bulk_queue;
1013 struct bpf_xdp_link;
1014 
1015 enum bpf_xdp_mode {
1016 	XDP_MODE_SKB = 0,
1017 	XDP_MODE_DRV = 1,
1018 	XDP_MODE_HW = 2,
1019 	__MAX_XDP_MODE
1020 };
1021 
1022 struct bpf_xdp_entity {
1023 	struct bpf_prog *prog;
1024 	struct bpf_xdp_link *link;
1025 };
1026 
1027 struct netdev_bpf {
1028 	enum bpf_netdev_command command;
1029 	union {
1030 		/* XDP_SETUP_PROG */
1031 		struct {
1032 			u32 flags;
1033 			struct bpf_prog *prog;
1034 			struct netlink_ext_ack *extack;
1035 		};
1036 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1037 		struct {
1038 			struct bpf_offloaded_map *offmap;
1039 		};
1040 		/* XDP_SETUP_XSK_POOL */
1041 		struct {
1042 			struct xsk_buff_pool *pool;
1043 			u16 queue_id;
1044 		} xsk;
1045 	};
1046 };
1047 
1048 /* Flags for ndo_xsk_wakeup. */
1049 #define XDP_WAKEUP_RX (1 << 0)
1050 #define XDP_WAKEUP_TX (1 << 1)
1051 
1052 #ifdef CONFIG_XFRM_OFFLOAD
1053 struct xfrmdev_ops {
1054 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1055 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1056 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1057 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1058 				       struct xfrm_state *x);
1059 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1060 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1061 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1062 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1063 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1064 };
1065 #endif
1066 
1067 struct dev_ifalias {
1068 	struct rcu_head rcuhead;
1069 	char ifalias[];
1070 };
1071 
1072 struct devlink;
1073 struct tlsdev_ops;
1074 
1075 struct netdev_net_notifier {
1076 	struct list_head list;
1077 	struct notifier_block *nb;
1078 };
1079 
1080 /*
1081  * This structure defines the management hooks for network devices.
1082  * The following hooks can be defined; unless noted otherwise, they are
1083  * optional and can be filled with a null pointer.
1084  *
1085  * int (*ndo_init)(struct net_device *dev);
1086  *     This function is called once when a network device is registered.
1087  *     The network device can use this for any late stage initialization
1088  *     or semantic validation. It can fail with an error code which will
1089  *     be propagated back to register_netdev.
1090  *
1091  * void (*ndo_uninit)(struct net_device *dev);
1092  *     This function is called when device is unregistered or when registration
1093  *     fails. It is not called if init fails.
1094  *
1095  * int (*ndo_open)(struct net_device *dev);
1096  *     This function is called when a network device transitions to the up
1097  *     state.
1098  *
1099  * int (*ndo_stop)(struct net_device *dev);
1100  *     This function is called when a network device transitions to the down
1101  *     state.
1102  *
1103  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1104  *                               struct net_device *dev);
1105  *	Called when a packet needs to be transmitted.
1106  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1107  *	the queue before that can happen; it's for obsolete devices and weird
1108  *	corner cases, but the stack really does a non-trivial amount
1109  *	of useless work if you return NETDEV_TX_BUSY.
1110  *	Required; cannot be NULL.
1111  *
1112  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1113  *					   struct net_device *dev
1114  *					   netdev_features_t features);
1115  *	Called by core transmit path to determine if device is capable of
1116  *	performing offload operations on a given packet. This is to give
1117  *	the device an opportunity to implement any restrictions that cannot
1118  *	be otherwise expressed by feature flags. The check is called with
1119  *	the set of features that the stack has calculated and it returns
1120  *	those the driver believes to be appropriate.
1121  *
1122  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1123  *                         struct net_device *sb_dev);
1124  *	Called to decide which queue to use when device supports multiple
1125  *	transmit queues.
1126  *
1127  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1128  *	This function is called to allow device receiver to make
1129  *	changes to configuration when multicast or promiscuous is enabled.
1130  *
1131  * void (*ndo_set_rx_mode)(struct net_device *dev);
1132  *	This function is called device changes address list filtering.
1133  *	If driver handles unicast address filtering, it should set
1134  *	IFF_UNICAST_FLT in its priv_flags.
1135  *
1136  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1137  *	This function  is called when the Media Access Control address
1138  *	needs to be changed. If this interface is not defined, the
1139  *	MAC address can not be changed.
1140  *
1141  * int (*ndo_validate_addr)(struct net_device *dev);
1142  *	Test if Media Access Control address is valid for the device.
1143  *
1144  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1145  *	Old-style ioctl entry point. This is used internally by the
1146  *	appletalk and ieee802154 subsystems but is no longer called by
1147  *	the device ioctl handler.
1148  *
1149  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1150  *	Used by the bonding driver for its device specific ioctls:
1151  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1152  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1153  *
1154  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1155  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1156  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1157  *
1158  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1159  *	Used to set network devices bus interface parameters. This interface
1160  *	is retained for legacy reasons; new devices should use the bus
1161  *	interface (PCI) for low level management.
1162  *
1163  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1164  *	Called when a user wants to change the Maximum Transfer Unit
1165  *	of a device.
1166  *
1167  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1168  *	Callback used when the transmitter has not made any progress
1169  *	for dev->watchdog ticks.
1170  *
1171  * void (*ndo_get_stats64)(struct net_device *dev,
1172  *                         struct rtnl_link_stats64 *storage);
1173  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1174  *	Called when a user wants to get the network device usage
1175  *	statistics. Drivers must do one of the following:
1176  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1177  *	   rtnl_link_stats64 structure passed by the caller.
1178  *	2. Define @ndo_get_stats to update a net_device_stats structure
1179  *	   (which should normally be dev->stats) and return a pointer to
1180  *	   it. The structure may be changed asynchronously only if each
1181  *	   field is written atomically.
1182  *	3. Update dev->stats asynchronously and atomically, and define
1183  *	   neither operation.
1184  *
1185  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1186  *	Return true if this device supports offload stats of this attr_id.
1187  *
1188  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1189  *	void *attr_data)
1190  *	Get statistics for offload operations by attr_id. Write it into the
1191  *	attr_data pointer.
1192  *
1193  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1194  *	If device supports VLAN filtering this function is called when a
1195  *	VLAN id is registered.
1196  *
1197  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1198  *	If device supports VLAN filtering this function is called when a
1199  *	VLAN id is unregistered.
1200  *
1201  * void (*ndo_poll_controller)(struct net_device *dev);
1202  *
1203  *	SR-IOV management functions.
1204  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1205  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1206  *			  u8 qos, __be16 proto);
1207  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1208  *			  int max_tx_rate);
1209  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1210  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1211  * int (*ndo_get_vf_config)(struct net_device *dev,
1212  *			    int vf, struct ifla_vf_info *ivf);
1213  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1214  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1215  *			  struct nlattr *port[]);
1216  *
1217  *      Enable or disable the VF ability to query its RSS Redirection Table and
1218  *      Hash Key. This is needed since on some devices VF share this information
1219  *      with PF and querying it may introduce a theoretical security risk.
1220  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1221  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1222  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1223  *		       void *type_data);
1224  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1225  *	This is always called from the stack with the rtnl lock held and netif
1226  *	tx queues stopped. This allows the netdevice to perform queue
1227  *	management safely.
1228  *
1229  *	Fiber Channel over Ethernet (FCoE) offload functions.
1230  * int (*ndo_fcoe_enable)(struct net_device *dev);
1231  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1232  *	so the underlying device can perform whatever needed configuration or
1233  *	initialization to support acceleration of FCoE traffic.
1234  *
1235  * int (*ndo_fcoe_disable)(struct net_device *dev);
1236  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1237  *	so the underlying device can perform whatever needed clean-ups to
1238  *	stop supporting acceleration of FCoE traffic.
1239  *
1240  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1241  *			     struct scatterlist *sgl, unsigned int sgc);
1242  *	Called when the FCoE Initiator wants to initialize an I/O that
1243  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1244  *	perform necessary setup and returns 1 to indicate the device is set up
1245  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1246  *
1247  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1248  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1249  *	indicated by the FC exchange id 'xid', so the underlying device can
1250  *	clean up and reuse resources for later DDP requests.
1251  *
1252  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1253  *			      struct scatterlist *sgl, unsigned int sgc);
1254  *	Called when the FCoE Target wants to initialize an I/O that
1255  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1256  *	perform necessary setup and returns 1 to indicate the device is set up
1257  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1258  *
1259  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1260  *			       struct netdev_fcoe_hbainfo *hbainfo);
1261  *	Called when the FCoE Protocol stack wants information on the underlying
1262  *	device. This information is utilized by the FCoE protocol stack to
1263  *	register attributes with Fiber Channel management service as per the
1264  *	FC-GS Fabric Device Management Information(FDMI) specification.
1265  *
1266  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1267  *	Called when the underlying device wants to override default World Wide
1268  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1269  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1270  *	protocol stack to use.
1271  *
1272  *	RFS acceleration.
1273  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1274  *			    u16 rxq_index, u32 flow_id);
1275  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1276  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1277  *	Return the filter ID on success, or a negative error code.
1278  *
1279  *	Slave management functions (for bridge, bonding, etc).
1280  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1281  *	Called to make another netdev an underling.
1282  *
1283  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1284  *	Called to release previously enslaved netdev.
1285  *
1286  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1287  *					    struct sk_buff *skb,
1288  *					    bool all_slaves);
1289  *	Get the xmit slave of master device. If all_slaves is true, function
1290  *	assume all the slaves can transmit.
1291  *
1292  *      Feature/offload setting functions.
1293  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1294  *		netdev_features_t features);
1295  *	Adjusts the requested feature flags according to device-specific
1296  *	constraints, and returns the resulting flags. Must not modify
1297  *	the device state.
1298  *
1299  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1300  *	Called to update device configuration to new features. Passed
1301  *	feature set might be less than what was returned by ndo_fix_features()).
1302  *	Must return >0 or -errno if it changed dev->features itself.
1303  *
1304  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1305  *		      struct net_device *dev,
1306  *		      const unsigned char *addr, u16 vid, u16 flags,
1307  *		      struct netlink_ext_ack *extack);
1308  *	Adds an FDB entry to dev for addr.
1309  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1310  *		      struct net_device *dev,
1311  *		      const unsigned char *addr, u16 vid)
1312  *	Deletes the FDB entry from dev coresponding to addr.
1313  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1314  *			   struct netlink_ext_ack *extack);
1315  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1316  *		       struct net_device *dev, struct net_device *filter_dev,
1317  *		       int *idx)
1318  *	Used to add FDB entries to dump requests. Implementers should add
1319  *	entries to skb and update idx with the number of entries.
1320  *
1321  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1322  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1323  *	Adds an MDB entry to dev.
1324  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1325  *		      struct netlink_ext_ack *extack);
1326  *	Deletes the MDB entry from dev.
1327  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1328  *		       struct netlink_callback *cb);
1329  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1330  *	callback is used by core rtnetlink code.
1331  *
1332  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1333  *			     u16 flags, struct netlink_ext_ack *extack)
1334  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1335  *			     struct net_device *dev, u32 filter_mask,
1336  *			     int nlflags)
1337  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1338  *			     u16 flags);
1339  *
1340  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1341  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1342  *	which do not represent real hardware may define this to allow their
1343  *	userspace components to manage their virtual carrier state. Devices
1344  *	that determine carrier state from physical hardware properties (eg
1345  *	network cables) or protocol-dependent mechanisms (eg
1346  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1347  *
1348  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1349  *			       struct netdev_phys_item_id *ppid);
1350  *	Called to get ID of physical port of this device. If driver does
1351  *	not implement this, it is assumed that the hw is not able to have
1352  *	multiple net devices on single physical port.
1353  *
1354  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1355  *				 struct netdev_phys_item_id *ppid)
1356  *	Called to get the parent ID of the physical port of this device.
1357  *
1358  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1359  *				 struct net_device *dev)
1360  *	Called by upper layer devices to accelerate switching or other
1361  *	station functionality into hardware. 'pdev is the lowerdev
1362  *	to use for the offload and 'dev' is the net device that will
1363  *	back the offload. Returns a pointer to the private structure
1364  *	the upper layer will maintain.
1365  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1366  *	Called by upper layer device to delete the station created
1367  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1368  *	the station and priv is the structure returned by the add
1369  *	operation.
1370  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1371  *			     int queue_index, u32 maxrate);
1372  *	Called when a user wants to set a max-rate limitation of specific
1373  *	TX queue.
1374  * int (*ndo_get_iflink)(const struct net_device *dev);
1375  *	Called to get the iflink value of this device.
1376  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1377  *	This function is used to get egress tunnel information for given skb.
1378  *	This is useful for retrieving outer tunnel header parameters while
1379  *	sampling packet.
1380  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1381  *	This function is used to specify the headroom that the skb must
1382  *	consider when allocation skb during packet reception. Setting
1383  *	appropriate rx headroom value allows avoiding skb head copy on
1384  *	forward. Setting a negative value resets the rx headroom to the
1385  *	default value.
1386  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1387  *	This function is used to set or query state related to XDP on the
1388  *	netdevice and manage BPF offload. See definition of
1389  *	enum bpf_netdev_command for details.
1390  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1391  *			u32 flags);
1392  *	This function is used to submit @n XDP packets for transmit on a
1393  *	netdevice. Returns number of frames successfully transmitted, frames
1394  *	that got dropped are freed/returned via xdp_return_frame().
1395  *	Returns negative number, means general error invoking ndo, meaning
1396  *	no frames were xmit'ed and core-caller will free all frames.
1397  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1398  *					        struct xdp_buff *xdp);
1399  *      Get the xmit slave of master device based on the xdp_buff.
1400  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1401  *      This function is used to wake up the softirq, ksoftirqd or kthread
1402  *	responsible for sending and/or receiving packets on a specific
1403  *	queue id bound to an AF_XDP socket. The flags field specifies if
1404  *	only RX, only Tx, or both should be woken up using the flags
1405  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1406  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1407  *			 int cmd);
1408  *	Add, change, delete or get information on an IPv4 tunnel.
1409  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1410  *	If a device is paired with a peer device, return the peer instance.
1411  *	The caller must be under RCU read context.
1412  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1413  *     Get the forwarding path to reach the real device from the HW destination address
1414  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1415  *			     const struct skb_shared_hwtstamps *hwtstamps,
1416  *			     bool cycles);
1417  *	Get hardware timestamp based on normal/adjustable time or free running
1418  *	cycle counter. This function is required if physical clock supports a
1419  *	free running cycle counter.
1420  *
1421  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1422  *			   struct kernel_hwtstamp_config *kernel_config);
1423  *	Get the currently configured hardware timestamping parameters for the
1424  *	NIC device.
1425  *
1426  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1427  *			   struct kernel_hwtstamp_config *kernel_config,
1428  *			   struct netlink_ext_ack *extack);
1429  *	Change the hardware timestamping parameters for NIC device.
1430  */
1431 struct net_device_ops {
1432 	int			(*ndo_init)(struct net_device *dev);
1433 	void			(*ndo_uninit)(struct net_device *dev);
1434 	int			(*ndo_open)(struct net_device *dev);
1435 	int			(*ndo_stop)(struct net_device *dev);
1436 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1437 						  struct net_device *dev);
1438 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1439 						      struct net_device *dev,
1440 						      netdev_features_t features);
1441 	u16			(*ndo_select_queue)(struct net_device *dev,
1442 						    struct sk_buff *skb,
1443 						    struct net_device *sb_dev);
1444 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1445 						       int flags);
1446 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1447 	int			(*ndo_set_mac_address)(struct net_device *dev,
1448 						       void *addr);
1449 	int			(*ndo_validate_addr)(struct net_device *dev);
1450 	int			(*ndo_do_ioctl)(struct net_device *dev,
1451 					        struct ifreq *ifr, int cmd);
1452 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1453 						 struct ifreq *ifr, int cmd);
1454 	int			(*ndo_siocbond)(struct net_device *dev,
1455 						struct ifreq *ifr, int cmd);
1456 	int			(*ndo_siocwandev)(struct net_device *dev,
1457 						  struct if_settings *ifs);
1458 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1459 						      struct ifreq *ifr,
1460 						      void __user *data, int cmd);
1461 	int			(*ndo_set_config)(struct net_device *dev,
1462 					          struct ifmap *map);
1463 	int			(*ndo_change_mtu)(struct net_device *dev,
1464 						  int new_mtu);
1465 	int			(*ndo_neigh_setup)(struct net_device *dev,
1466 						   struct neigh_parms *);
1467 	void			(*ndo_tx_timeout) (struct net_device *dev,
1468 						   unsigned int txqueue);
1469 
1470 	void			(*ndo_get_stats64)(struct net_device *dev,
1471 						   struct rtnl_link_stats64 *storage);
1472 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1473 	int			(*ndo_get_offload_stats)(int attr_id,
1474 							 const struct net_device *dev,
1475 							 void *attr_data);
1476 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1477 
1478 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1479 						       __be16 proto, u16 vid);
1480 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1481 						        __be16 proto, u16 vid);
1482 #ifdef CONFIG_NET_POLL_CONTROLLER
1483 	void                    (*ndo_poll_controller)(struct net_device *dev);
1484 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1485 						     struct netpoll_info *info);
1486 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1487 #endif
1488 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1489 						  int queue, u8 *mac);
1490 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1491 						   int queue, u16 vlan,
1492 						   u8 qos, __be16 proto);
1493 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1494 						   int vf, int min_tx_rate,
1495 						   int max_tx_rate);
1496 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1497 						       int vf, bool setting);
1498 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1499 						    int vf, bool setting);
1500 	int			(*ndo_get_vf_config)(struct net_device *dev,
1501 						     int vf,
1502 						     struct ifla_vf_info *ivf);
1503 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1504 							 int vf, int link_state);
1505 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1506 						    int vf,
1507 						    struct ifla_vf_stats
1508 						    *vf_stats);
1509 	int			(*ndo_set_vf_port)(struct net_device *dev,
1510 						   int vf,
1511 						   struct nlattr *port[]);
1512 	int			(*ndo_get_vf_port)(struct net_device *dev,
1513 						   int vf, struct sk_buff *skb);
1514 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1515 						   int vf,
1516 						   struct ifla_vf_guid *node_guid,
1517 						   struct ifla_vf_guid *port_guid);
1518 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1519 						   int vf, u64 guid,
1520 						   int guid_type);
1521 	int			(*ndo_set_vf_rss_query_en)(
1522 						   struct net_device *dev,
1523 						   int vf, bool setting);
1524 	int			(*ndo_setup_tc)(struct net_device *dev,
1525 						enum tc_setup_type type,
1526 						void *type_data);
1527 #if IS_ENABLED(CONFIG_FCOE)
1528 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1529 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1530 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1531 						      u16 xid,
1532 						      struct scatterlist *sgl,
1533 						      unsigned int sgc);
1534 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1535 						     u16 xid);
1536 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1537 						       u16 xid,
1538 						       struct scatterlist *sgl,
1539 						       unsigned int sgc);
1540 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1541 							struct netdev_fcoe_hbainfo *hbainfo);
1542 #endif
1543 
1544 #if IS_ENABLED(CONFIG_LIBFCOE)
1545 #define NETDEV_FCOE_WWNN 0
1546 #define NETDEV_FCOE_WWPN 1
1547 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1548 						    u64 *wwn, int type);
1549 #endif
1550 
1551 #ifdef CONFIG_RFS_ACCEL
1552 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1553 						     const struct sk_buff *skb,
1554 						     u16 rxq_index,
1555 						     u32 flow_id);
1556 #endif
1557 	int			(*ndo_add_slave)(struct net_device *dev,
1558 						 struct net_device *slave_dev,
1559 						 struct netlink_ext_ack *extack);
1560 	int			(*ndo_del_slave)(struct net_device *dev,
1561 						 struct net_device *slave_dev);
1562 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1563 						      struct sk_buff *skb,
1564 						      bool all_slaves);
1565 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1566 							struct sock *sk);
1567 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1568 						    netdev_features_t features);
1569 	int			(*ndo_set_features)(struct net_device *dev,
1570 						    netdev_features_t features);
1571 	int			(*ndo_neigh_construct)(struct net_device *dev,
1572 						       struct neighbour *n);
1573 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1574 						     struct neighbour *n);
1575 
1576 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1577 					       struct nlattr *tb[],
1578 					       struct net_device *dev,
1579 					       const unsigned char *addr,
1580 					       u16 vid,
1581 					       u16 flags,
1582 					       struct netlink_ext_ack *extack);
1583 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1584 					       struct nlattr *tb[],
1585 					       struct net_device *dev,
1586 					       const unsigned char *addr,
1587 					       u16 vid, struct netlink_ext_ack *extack);
1588 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1589 						    struct net_device *dev,
1590 						    struct netlink_ext_ack *extack);
1591 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1592 						struct netlink_callback *cb,
1593 						struct net_device *dev,
1594 						struct net_device *filter_dev,
1595 						int *idx);
1596 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1597 					       struct nlattr *tb[],
1598 					       struct net_device *dev,
1599 					       const unsigned char *addr,
1600 					       u16 vid, u32 portid, u32 seq,
1601 					       struct netlink_ext_ack *extack);
1602 	int			(*ndo_mdb_add)(struct net_device *dev,
1603 					       struct nlattr *tb[],
1604 					       u16 nlmsg_flags,
1605 					       struct netlink_ext_ack *extack);
1606 	int			(*ndo_mdb_del)(struct net_device *dev,
1607 					       struct nlattr *tb[],
1608 					       struct netlink_ext_ack *extack);
1609 	int			(*ndo_mdb_dump)(struct net_device *dev,
1610 						struct sk_buff *skb,
1611 						struct netlink_callback *cb);
1612 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1613 						      struct nlmsghdr *nlh,
1614 						      u16 flags,
1615 						      struct netlink_ext_ack *extack);
1616 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1617 						      u32 pid, u32 seq,
1618 						      struct net_device *dev,
1619 						      u32 filter_mask,
1620 						      int nlflags);
1621 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1622 						      struct nlmsghdr *nlh,
1623 						      u16 flags);
1624 	int			(*ndo_change_carrier)(struct net_device *dev,
1625 						      bool new_carrier);
1626 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1627 							struct netdev_phys_item_id *ppid);
1628 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1629 							  struct netdev_phys_item_id *ppid);
1630 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1631 							  char *name, size_t len);
1632 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1633 							struct net_device *dev);
1634 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1635 							void *priv);
1636 
1637 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1638 						      int queue_index,
1639 						      u32 maxrate);
1640 	int			(*ndo_get_iflink)(const struct net_device *dev);
1641 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1642 						       struct sk_buff *skb);
1643 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1644 						       int needed_headroom);
1645 	int			(*ndo_bpf)(struct net_device *dev,
1646 					   struct netdev_bpf *bpf);
1647 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1648 						struct xdp_frame **xdp,
1649 						u32 flags);
1650 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1651 							  struct xdp_buff *xdp);
1652 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1653 						  u32 queue_id, u32 flags);
1654 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1655 						  struct ip_tunnel_parm *p, int cmd);
1656 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1657 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1658                                                          struct net_device_path *path);
1659 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1660 						  const struct skb_shared_hwtstamps *hwtstamps,
1661 						  bool cycles);
1662 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1663 						    struct kernel_hwtstamp_config *kernel_config);
1664 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1665 						    struct kernel_hwtstamp_config *kernel_config,
1666 						    struct netlink_ext_ack *extack);
1667 };
1668 
1669 /**
1670  * enum netdev_priv_flags - &struct net_device priv_flags
1671  *
1672  * These are the &struct net_device, they are only set internally
1673  * by drivers and used in the kernel. These flags are invisible to
1674  * userspace; this means that the order of these flags can change
1675  * during any kernel release.
1676  *
1677  * You should have a pretty good reason to be extending these flags.
1678  *
1679  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1680  * @IFF_EBRIDGE: Ethernet bridging device
1681  * @IFF_BONDING: bonding master or slave
1682  * @IFF_ISATAP: ISATAP interface (RFC4214)
1683  * @IFF_WAN_HDLC: WAN HDLC device
1684  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1685  *	release skb->dst
1686  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1687  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1688  * @IFF_MACVLAN_PORT: device used as macvlan port
1689  * @IFF_BRIDGE_PORT: device used as bridge port
1690  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1691  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1692  * @IFF_UNICAST_FLT: Supports unicast filtering
1693  * @IFF_TEAM_PORT: device used as team port
1694  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1695  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1696  *	change when it's running
1697  * @IFF_MACVLAN: Macvlan device
1698  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1699  *	underlying stacked devices
1700  * @IFF_L3MDEV_MASTER: device is an L3 master device
1701  * @IFF_NO_QUEUE: device can run without qdisc attached
1702  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1703  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1704  * @IFF_TEAM: device is a team device
1705  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1706  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1707  *	entity (i.e. the master device for bridged veth)
1708  * @IFF_MACSEC: device is a MACsec device
1709  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1710  * @IFF_FAILOVER: device is a failover master device
1711  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1712  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1713  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1714  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1715  *	skb_headlen(skb) == 0 (data starts from frag0)
1716  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1717  * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1718  *	ndo_hwtstamp_set() for all timestamp requests regardless of source,
1719  *	even if those aren't HWTSTAMP_SOURCE_NETDEV.
1720  */
1721 enum netdev_priv_flags {
1722 	IFF_802_1Q_VLAN			= 1<<0,
1723 	IFF_EBRIDGE			= 1<<1,
1724 	IFF_BONDING			= 1<<2,
1725 	IFF_ISATAP			= 1<<3,
1726 	IFF_WAN_HDLC			= 1<<4,
1727 	IFF_XMIT_DST_RELEASE		= 1<<5,
1728 	IFF_DONT_BRIDGE			= 1<<6,
1729 	IFF_DISABLE_NETPOLL		= 1<<7,
1730 	IFF_MACVLAN_PORT		= 1<<8,
1731 	IFF_BRIDGE_PORT			= 1<<9,
1732 	IFF_OVS_DATAPATH		= 1<<10,
1733 	IFF_TX_SKB_SHARING		= 1<<11,
1734 	IFF_UNICAST_FLT			= 1<<12,
1735 	IFF_TEAM_PORT			= 1<<13,
1736 	IFF_SUPP_NOFCS			= 1<<14,
1737 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1738 	IFF_MACVLAN			= 1<<16,
1739 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1740 	IFF_L3MDEV_MASTER		= 1<<18,
1741 	IFF_NO_QUEUE			= 1<<19,
1742 	IFF_OPENVSWITCH			= 1<<20,
1743 	IFF_L3MDEV_SLAVE		= 1<<21,
1744 	IFF_TEAM			= 1<<22,
1745 	IFF_RXFH_CONFIGURED		= 1<<23,
1746 	IFF_PHONY_HEADROOM		= 1<<24,
1747 	IFF_MACSEC			= 1<<25,
1748 	IFF_NO_RX_HANDLER		= 1<<26,
1749 	IFF_FAILOVER			= 1<<27,
1750 	IFF_FAILOVER_SLAVE		= 1<<28,
1751 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1752 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1753 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1754 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1755 	IFF_SEE_ALL_HWTSTAMP_REQUESTS	= BIT_ULL(33),
1756 };
1757 
1758 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1759 #define IFF_EBRIDGE			IFF_EBRIDGE
1760 #define IFF_BONDING			IFF_BONDING
1761 #define IFF_ISATAP			IFF_ISATAP
1762 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1763 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1764 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1765 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1766 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1767 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1768 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1769 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1770 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1771 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1772 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1773 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1774 #define IFF_MACVLAN			IFF_MACVLAN
1775 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1776 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1777 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1778 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1779 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1780 #define IFF_TEAM			IFF_TEAM
1781 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1782 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1783 #define IFF_MACSEC			IFF_MACSEC
1784 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1785 #define IFF_FAILOVER			IFF_FAILOVER
1786 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1787 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1788 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1789 
1790 /* Specifies the type of the struct net_device::ml_priv pointer */
1791 enum netdev_ml_priv_type {
1792 	ML_PRIV_NONE,
1793 	ML_PRIV_CAN,
1794 };
1795 
1796 /**
1797  *	struct net_device - The DEVICE structure.
1798  *
1799  *	Actually, this whole structure is a big mistake.  It mixes I/O
1800  *	data with strictly "high-level" data, and it has to know about
1801  *	almost every data structure used in the INET module.
1802  *
1803  *	@name:	This is the first field of the "visible" part of this structure
1804  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1805  *		of the interface.
1806  *
1807  *	@name_node:	Name hashlist node
1808  *	@ifalias:	SNMP alias
1809  *	@mem_end:	Shared memory end
1810  *	@mem_start:	Shared memory start
1811  *	@base_addr:	Device I/O address
1812  *	@irq:		Device IRQ number
1813  *
1814  *	@state:		Generic network queuing layer state, see netdev_state_t
1815  *	@dev_list:	The global list of network devices
1816  *	@napi_list:	List entry used for polling NAPI devices
1817  *	@unreg_list:	List entry  when we are unregistering the
1818  *			device; see the function unregister_netdev
1819  *	@close_list:	List entry used when we are closing the device
1820  *	@ptype_all:     Device-specific packet handlers for all protocols
1821  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1822  *
1823  *	@adj_list:	Directly linked devices, like slaves for bonding
1824  *	@features:	Currently active device features
1825  *	@hw_features:	User-changeable features
1826  *
1827  *	@wanted_features:	User-requested features
1828  *	@vlan_features:		Mask of features inheritable by VLAN devices
1829  *
1830  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1831  *				This field indicates what encapsulation
1832  *				offloads the hardware is capable of doing,
1833  *				and drivers will need to set them appropriately.
1834  *
1835  *	@mpls_features:	Mask of features inheritable by MPLS
1836  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1837  *
1838  *	@ifindex:	interface index
1839  *	@group:		The group the device belongs to
1840  *
1841  *	@stats:		Statistics struct, which was left as a legacy, use
1842  *			rtnl_link_stats64 instead
1843  *
1844  *	@core_stats:	core networking counters,
1845  *			do not use this in drivers
1846  *	@carrier_up_count:	Number of times the carrier has been up
1847  *	@carrier_down_count:	Number of times the carrier has been down
1848  *
1849  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1850  *				instead of ioctl,
1851  *				see <net/iw_handler.h> for details.
1852  *	@wireless_data:	Instance data managed by the core of wireless extensions
1853  *
1854  *	@netdev_ops:	Includes several pointers to callbacks,
1855  *			if one wants to override the ndo_*() functions
1856  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1857  *	@ethtool_ops:	Management operations
1858  *	@l3mdev_ops:	Layer 3 master device operations
1859  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1860  *			discovery handling. Necessary for e.g. 6LoWPAN.
1861  *	@xfrmdev_ops:	Transformation offload operations
1862  *	@tlsdev_ops:	Transport Layer Security offload operations
1863  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1864  *			of Layer 2 headers.
1865  *
1866  *	@flags:		Interface flags (a la BSD)
1867  *	@xdp_features:	XDP capability supported by the device
1868  *	@priv_flags:	Like 'flags' but invisible to userspace,
1869  *			see if.h for the definitions
1870  *	@gflags:	Global flags ( kept as legacy )
1871  *	@padded:	How much padding added by alloc_netdev()
1872  *	@operstate:	RFC2863 operstate
1873  *	@link_mode:	Mapping policy to operstate
1874  *	@if_port:	Selectable AUI, TP, ...
1875  *	@dma:		DMA channel
1876  *	@mtu:		Interface MTU value
1877  *	@min_mtu:	Interface Minimum MTU value
1878  *	@max_mtu:	Interface Maximum MTU value
1879  *	@type:		Interface hardware type
1880  *	@hard_header_len: Maximum hardware header length.
1881  *	@min_header_len:  Minimum hardware header length
1882  *
1883  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1884  *			  cases can this be guaranteed
1885  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1886  *			  cases can this be guaranteed. Some cases also use
1887  *			  LL_MAX_HEADER instead to allocate the skb
1888  *
1889  *	interface address info:
1890  *
1891  * 	@perm_addr:		Permanent hw address
1892  * 	@addr_assign_type:	Hw address assignment type
1893  * 	@addr_len:		Hardware address length
1894  *	@upper_level:		Maximum depth level of upper devices.
1895  *	@lower_level:		Maximum depth level of lower devices.
1896  *	@neigh_priv_len:	Used in neigh_alloc()
1897  * 	@dev_id:		Used to differentiate devices that share
1898  * 				the same link layer address
1899  * 	@dev_port:		Used to differentiate devices that share
1900  * 				the same function
1901  *	@addr_list_lock:	XXX: need comments on this one
1902  *	@name_assign_type:	network interface name assignment type
1903  *	@uc_promisc:		Counter that indicates promiscuous mode
1904  *				has been enabled due to the need to listen to
1905  *				additional unicast addresses in a device that
1906  *				does not implement ndo_set_rx_mode()
1907  *	@uc:			unicast mac addresses
1908  *	@mc:			multicast mac addresses
1909  *	@dev_addrs:		list of device hw addresses
1910  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1911  *	@promiscuity:		Number of times the NIC is told to work in
1912  *				promiscuous mode; if it becomes 0 the NIC will
1913  *				exit promiscuous mode
1914  *	@allmulti:		Counter, enables or disables allmulticast mode
1915  *
1916  *	@vlan_info:	VLAN info
1917  *	@dsa_ptr:	dsa specific data
1918  *	@tipc_ptr:	TIPC specific data
1919  *	@atalk_ptr:	AppleTalk link
1920  *	@ip_ptr:	IPv4 specific data
1921  *	@ip6_ptr:	IPv6 specific data
1922  *	@ax25_ptr:	AX.25 specific data
1923  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1924  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1925  *			 device struct
1926  *	@mpls_ptr:	mpls_dev struct pointer
1927  *	@mctp_ptr:	MCTP specific data
1928  *
1929  *	@dev_addr:	Hw address (before bcast,
1930  *			because most packets are unicast)
1931  *
1932  *	@_rx:			Array of RX queues
1933  *	@num_rx_queues:		Number of RX queues
1934  *				allocated at register_netdev() time
1935  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1936  *	@xdp_prog:		XDP sockets filter program pointer
1937  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1938  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1939  *				allow to avoid NIC hard IRQ, on busy queues.
1940  *
1941  *	@rx_handler:		handler for received packets
1942  *	@rx_handler_data: 	XXX: need comments on this one
1943  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1944  *	@ingress_queue:		XXX: need comments on this one
1945  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1946  *	@broadcast:		hw bcast address
1947  *
1948  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1949  *			indexed by RX queue number. Assigned by driver.
1950  *			This must only be set if the ndo_rx_flow_steer
1951  *			operation is defined
1952  *	@index_hlist:		Device index hash chain
1953  *
1954  *	@_tx:			Array of TX queues
1955  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1956  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1957  *	@qdisc:			Root qdisc from userspace point of view
1958  *	@tx_queue_len:		Max frames per queue allowed
1959  *	@tx_global_lock: 	XXX: need comments on this one
1960  *	@xdp_bulkq:		XDP device bulk queue
1961  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1962  *
1963  *	@xps_maps:	XXX: need comments on this one
1964  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1965  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1966  *	@qdisc_hash:		qdisc hash table
1967  *	@watchdog_timeo:	Represents the timeout that is used by
1968  *				the watchdog (see dev_watchdog())
1969  *	@watchdog_timer:	List of timers
1970  *
1971  *	@proto_down_reason:	reason a netdev interface is held down
1972  *	@pcpu_refcnt:		Number of references to this device
1973  *	@dev_refcnt:		Number of references to this device
1974  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1975  *	@todo_list:		Delayed register/unregister
1976  *	@link_watch_list:	XXX: need comments on this one
1977  *
1978  *	@reg_state:		Register/unregister state machine
1979  *	@dismantle:		Device is going to be freed
1980  *	@rtnl_link_state:	This enum represents the phases of creating
1981  *				a new link
1982  *
1983  *	@needs_free_netdev:	Should unregister perform free_netdev?
1984  *	@priv_destructor:	Called from unregister
1985  *	@npinfo:		XXX: need comments on this one
1986  * 	@nd_net:		Network namespace this network device is inside
1987  *
1988  * 	@ml_priv:	Mid-layer private
1989  *	@ml_priv_type:  Mid-layer private type
1990  * 	@lstats:	Loopback statistics
1991  * 	@tstats:	Tunnel statistics
1992  * 	@dstats:	Dummy statistics
1993  * 	@vstats:	Virtual ethernet statistics
1994  *
1995  *	@garp_port:	GARP
1996  *	@mrp_port:	MRP
1997  *
1998  *	@dm_private:	Drop monitor private
1999  *
2000  *	@dev:		Class/net/name entry
2001  *	@sysfs_groups:	Space for optional device, statistics and wireless
2002  *			sysfs groups
2003  *
2004  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
2005  *	@rtnl_link_ops:	Rtnl_link_ops
2006  *
2007  *	@gso_max_size:	Maximum size of generic segmentation offload
2008  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
2009  *	@gso_max_segs:	Maximum number of segments that can be passed to the
2010  *			NIC for GSO
2011  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2012  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2013  * 				for IPv4.
2014  *
2015  *	@dcbnl_ops:	Data Center Bridging netlink ops
2016  *	@num_tc:	Number of traffic classes in the net device
2017  *	@tc_to_txq:	XXX: need comments on this one
2018  *	@prio_tc_map:	XXX: need comments on this one
2019  *
2020  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2021  *
2022  *	@priomap:	XXX: need comments on this one
2023  *	@phydev:	Physical device may attach itself
2024  *			for hardware timestamping
2025  *	@sfp_bus:	attached &struct sfp_bus structure.
2026  *
2027  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2028  *
2029  *	@proto_down:	protocol port state information can be sent to the
2030  *			switch driver and used to set the phys state of the
2031  *			switch port.
2032  *
2033  *	@wol_enabled:	Wake-on-LAN is enabled
2034  *
2035  *	@threaded:	napi threaded mode is enabled
2036  *
2037  *	@net_notifier_list:	List of per-net netdev notifier block
2038  *				that follow this device when it is moved
2039  *				to another network namespace.
2040  *
2041  *	@macsec_ops:    MACsec offloading ops
2042  *
2043  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2044  *				offload capabilities of the device
2045  *	@udp_tunnel_nic:	UDP tunnel offload state
2046  *	@xdp_state:		stores info on attached XDP BPF programs
2047  *
2048  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2049  *			dev->addr_list_lock.
2050  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2051  *			keep a list of interfaces to be deleted.
2052  *	@gro_max_size:	Maximum size of aggregated packet in generic
2053  *			receive offload (GRO)
2054  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2055  * 				receive offload (GRO), for IPv4.
2056  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2057  *				zero copy driver
2058  *
2059  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2060  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2061  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2062  *	@dev_registered_tracker:	tracker for reference held while
2063  *					registered
2064  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2065  *
2066  *	@devlink_port:	Pointer to related devlink port structure.
2067  *			Assigned by a driver before netdev registration using
2068  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2069  *			during the time netdevice is registered.
2070  *
2071  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2072  *		   where the clock is recovered.
2073  *
2074  *	FIXME: cleanup struct net_device such that network protocol info
2075  *	moves out.
2076  */
2077 
2078 struct net_device {
2079 	char			name[IFNAMSIZ];
2080 	struct netdev_name_node	*name_node;
2081 	struct dev_ifalias	__rcu *ifalias;
2082 	/*
2083 	 *	I/O specific fields
2084 	 *	FIXME: Merge these and struct ifmap into one
2085 	 */
2086 	unsigned long		mem_end;
2087 	unsigned long		mem_start;
2088 	unsigned long		base_addr;
2089 
2090 	/*
2091 	 *	Some hardware also needs these fields (state,dev_list,
2092 	 *	napi_list,unreg_list,close_list) but they are not
2093 	 *	part of the usual set specified in Space.c.
2094 	 */
2095 
2096 	unsigned long		state;
2097 
2098 	struct list_head	dev_list;
2099 	struct list_head	napi_list;
2100 	struct list_head	unreg_list;
2101 	struct list_head	close_list;
2102 	struct list_head	ptype_all;
2103 	struct list_head	ptype_specific;
2104 
2105 	struct {
2106 		struct list_head upper;
2107 		struct list_head lower;
2108 	} adj_list;
2109 
2110 	/* Read-mostly cache-line for fast-path access */
2111 	unsigned int		flags;
2112 	xdp_features_t		xdp_features;
2113 	unsigned long long	priv_flags;
2114 	const struct net_device_ops *netdev_ops;
2115 	const struct xdp_metadata_ops *xdp_metadata_ops;
2116 	int			ifindex;
2117 	unsigned short		gflags;
2118 	unsigned short		hard_header_len;
2119 
2120 	/* Note : dev->mtu is often read without holding a lock.
2121 	 * Writers usually hold RTNL.
2122 	 * It is recommended to use READ_ONCE() to annotate the reads,
2123 	 * and to use WRITE_ONCE() to annotate the writes.
2124 	 */
2125 	unsigned int		mtu;
2126 	unsigned short		needed_headroom;
2127 	unsigned short		needed_tailroom;
2128 
2129 	netdev_features_t	features;
2130 	netdev_features_t	hw_features;
2131 	netdev_features_t	wanted_features;
2132 	netdev_features_t	vlan_features;
2133 	netdev_features_t	hw_enc_features;
2134 	netdev_features_t	mpls_features;
2135 	netdev_features_t	gso_partial_features;
2136 
2137 	unsigned int		min_mtu;
2138 	unsigned int		max_mtu;
2139 	unsigned short		type;
2140 	unsigned char		min_header_len;
2141 	unsigned char		name_assign_type;
2142 
2143 	int			group;
2144 
2145 	struct net_device_stats	stats; /* not used by modern drivers */
2146 
2147 	struct net_device_core_stats __percpu *core_stats;
2148 
2149 	/* Stats to monitor link on/off, flapping */
2150 	atomic_t		carrier_up_count;
2151 	atomic_t		carrier_down_count;
2152 
2153 #ifdef CONFIG_WIRELESS_EXT
2154 	const struct iw_handler_def *wireless_handlers;
2155 	struct iw_public_data	*wireless_data;
2156 #endif
2157 	const struct ethtool_ops *ethtool_ops;
2158 #ifdef CONFIG_NET_L3_MASTER_DEV
2159 	const struct l3mdev_ops	*l3mdev_ops;
2160 #endif
2161 #if IS_ENABLED(CONFIG_IPV6)
2162 	const struct ndisc_ops *ndisc_ops;
2163 #endif
2164 
2165 #ifdef CONFIG_XFRM_OFFLOAD
2166 	const struct xfrmdev_ops *xfrmdev_ops;
2167 #endif
2168 
2169 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2170 	const struct tlsdev_ops *tlsdev_ops;
2171 #endif
2172 
2173 	const struct header_ops *header_ops;
2174 
2175 	unsigned char		operstate;
2176 	unsigned char		link_mode;
2177 
2178 	unsigned char		if_port;
2179 	unsigned char		dma;
2180 
2181 	/* Interface address info. */
2182 	unsigned char		perm_addr[MAX_ADDR_LEN];
2183 	unsigned char		addr_assign_type;
2184 	unsigned char		addr_len;
2185 	unsigned char		upper_level;
2186 	unsigned char		lower_level;
2187 
2188 	unsigned short		neigh_priv_len;
2189 	unsigned short          dev_id;
2190 	unsigned short          dev_port;
2191 	unsigned short		padded;
2192 
2193 	spinlock_t		addr_list_lock;
2194 	int			irq;
2195 
2196 	struct netdev_hw_addr_list	uc;
2197 	struct netdev_hw_addr_list	mc;
2198 	struct netdev_hw_addr_list	dev_addrs;
2199 
2200 #ifdef CONFIG_SYSFS
2201 	struct kset		*queues_kset;
2202 #endif
2203 #ifdef CONFIG_LOCKDEP
2204 	struct list_head	unlink_list;
2205 #endif
2206 	unsigned int		promiscuity;
2207 	unsigned int		allmulti;
2208 	bool			uc_promisc;
2209 #ifdef CONFIG_LOCKDEP
2210 	unsigned char		nested_level;
2211 #endif
2212 
2213 
2214 	/* Protocol-specific pointers */
2215 
2216 	struct in_device __rcu	*ip_ptr;
2217 	struct inet6_dev __rcu	*ip6_ptr;
2218 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2219 	struct vlan_info __rcu	*vlan_info;
2220 #endif
2221 #if IS_ENABLED(CONFIG_NET_DSA)
2222 	struct dsa_port		*dsa_ptr;
2223 #endif
2224 #if IS_ENABLED(CONFIG_TIPC)
2225 	struct tipc_bearer __rcu *tipc_ptr;
2226 #endif
2227 #if IS_ENABLED(CONFIG_ATALK)
2228 	void 			*atalk_ptr;
2229 #endif
2230 #if IS_ENABLED(CONFIG_AX25)
2231 	void			*ax25_ptr;
2232 #endif
2233 #if IS_ENABLED(CONFIG_CFG80211)
2234 	struct wireless_dev	*ieee80211_ptr;
2235 #endif
2236 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2237 	struct wpan_dev		*ieee802154_ptr;
2238 #endif
2239 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2240 	struct mpls_dev __rcu	*mpls_ptr;
2241 #endif
2242 #if IS_ENABLED(CONFIG_MCTP)
2243 	struct mctp_dev __rcu	*mctp_ptr;
2244 #endif
2245 
2246 /*
2247  * Cache lines mostly used on receive path (including eth_type_trans())
2248  */
2249 	/* Interface address info used in eth_type_trans() */
2250 	const unsigned char	*dev_addr;
2251 
2252 	struct netdev_rx_queue	*_rx;
2253 	unsigned int		num_rx_queues;
2254 	unsigned int		real_num_rx_queues;
2255 
2256 	struct bpf_prog __rcu	*xdp_prog;
2257 	unsigned long		gro_flush_timeout;
2258 	int			napi_defer_hard_irqs;
2259 #define GRO_LEGACY_MAX_SIZE	65536u
2260 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2261  * and shinfo->gso_segs is a 16bit field.
2262  */
2263 #define GRO_MAX_SIZE		(8 * 65535u)
2264 	unsigned int		gro_max_size;
2265 	unsigned int		gro_ipv4_max_size;
2266 	unsigned int		xdp_zc_max_segs;
2267 	rx_handler_func_t __rcu	*rx_handler;
2268 	void __rcu		*rx_handler_data;
2269 #ifdef CONFIG_NET_XGRESS
2270 	struct bpf_mprog_entry __rcu *tcx_ingress;
2271 #endif
2272 	struct netdev_queue __rcu *ingress_queue;
2273 #ifdef CONFIG_NETFILTER_INGRESS
2274 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2275 #endif
2276 
2277 	unsigned char		broadcast[MAX_ADDR_LEN];
2278 #ifdef CONFIG_RFS_ACCEL
2279 	struct cpu_rmap		*rx_cpu_rmap;
2280 #endif
2281 	struct hlist_node	index_hlist;
2282 
2283 /*
2284  * Cache lines mostly used on transmit path
2285  */
2286 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2287 	unsigned int		num_tx_queues;
2288 	unsigned int		real_num_tx_queues;
2289 	struct Qdisc __rcu	*qdisc;
2290 	unsigned int		tx_queue_len;
2291 	spinlock_t		tx_global_lock;
2292 
2293 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2294 
2295 #ifdef CONFIG_XPS
2296 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2297 #endif
2298 #ifdef CONFIG_NET_XGRESS
2299 	struct bpf_mprog_entry __rcu *tcx_egress;
2300 #endif
2301 #ifdef CONFIG_NETFILTER_EGRESS
2302 	struct nf_hook_entries __rcu *nf_hooks_egress;
2303 #endif
2304 
2305 #ifdef CONFIG_NET_SCHED
2306 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2307 #endif
2308 	/* These may be needed for future network-power-down code. */
2309 	struct timer_list	watchdog_timer;
2310 	int			watchdog_timeo;
2311 
2312 	u32                     proto_down_reason;
2313 
2314 	struct list_head	todo_list;
2315 
2316 #ifdef CONFIG_PCPU_DEV_REFCNT
2317 	int __percpu		*pcpu_refcnt;
2318 #else
2319 	refcount_t		dev_refcnt;
2320 #endif
2321 	struct ref_tracker_dir	refcnt_tracker;
2322 
2323 	struct list_head	link_watch_list;
2324 
2325 	enum { NETREG_UNINITIALIZED=0,
2326 	       NETREG_REGISTERED,	/* completed register_netdevice */
2327 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2328 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2329 	       NETREG_RELEASED,		/* called free_netdev */
2330 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2331 	} reg_state:8;
2332 
2333 	bool dismantle;
2334 
2335 	enum {
2336 		RTNL_LINK_INITIALIZED,
2337 		RTNL_LINK_INITIALIZING,
2338 	} rtnl_link_state:16;
2339 
2340 	bool needs_free_netdev;
2341 	void (*priv_destructor)(struct net_device *dev);
2342 
2343 #ifdef CONFIG_NETPOLL
2344 	struct netpoll_info __rcu	*npinfo;
2345 #endif
2346 
2347 	possible_net_t			nd_net;
2348 
2349 	/* mid-layer private */
2350 	void				*ml_priv;
2351 	enum netdev_ml_priv_type	ml_priv_type;
2352 
2353 	union {
2354 		struct pcpu_lstats __percpu		*lstats;
2355 		struct pcpu_sw_netstats __percpu	*tstats;
2356 		struct pcpu_dstats __percpu		*dstats;
2357 	};
2358 
2359 #if IS_ENABLED(CONFIG_GARP)
2360 	struct garp_port __rcu	*garp_port;
2361 #endif
2362 #if IS_ENABLED(CONFIG_MRP)
2363 	struct mrp_port __rcu	*mrp_port;
2364 #endif
2365 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2366 	struct dm_hw_stat_delta __rcu *dm_private;
2367 #endif
2368 	struct device		dev;
2369 	const struct attribute_group *sysfs_groups[4];
2370 	const struct attribute_group *sysfs_rx_queue_group;
2371 
2372 	const struct rtnl_link_ops *rtnl_link_ops;
2373 
2374 	/* for setting kernel sock attribute on TCP connection setup */
2375 #define GSO_MAX_SEGS		65535u
2376 #define GSO_LEGACY_MAX_SIZE	65536u
2377 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2378  * and shinfo->gso_segs is a 16bit field.
2379  */
2380 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2381 
2382 	unsigned int		gso_max_size;
2383 #define TSO_LEGACY_MAX_SIZE	65536
2384 #define TSO_MAX_SIZE		UINT_MAX
2385 	unsigned int		tso_max_size;
2386 	u16			gso_max_segs;
2387 #define TSO_MAX_SEGS		U16_MAX
2388 	u16			tso_max_segs;
2389 	unsigned int		gso_ipv4_max_size;
2390 
2391 #ifdef CONFIG_DCB
2392 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2393 #endif
2394 	s16			num_tc;
2395 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2396 	u8			prio_tc_map[TC_BITMASK + 1];
2397 
2398 #if IS_ENABLED(CONFIG_FCOE)
2399 	unsigned int		fcoe_ddp_xid;
2400 #endif
2401 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2402 	struct netprio_map __rcu *priomap;
2403 #endif
2404 	struct phy_device	*phydev;
2405 	struct sfp_bus		*sfp_bus;
2406 	struct lock_class_key	*qdisc_tx_busylock;
2407 	bool			proto_down;
2408 	unsigned		wol_enabled:1;
2409 	unsigned		threaded:1;
2410 
2411 	struct list_head	net_notifier_list;
2412 
2413 #if IS_ENABLED(CONFIG_MACSEC)
2414 	/* MACsec management functions */
2415 	const struct macsec_ops *macsec_ops;
2416 #endif
2417 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2418 	struct udp_tunnel_nic	*udp_tunnel_nic;
2419 
2420 	/* protected by rtnl_lock */
2421 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2422 
2423 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2424 	netdevice_tracker	linkwatch_dev_tracker;
2425 	netdevice_tracker	watchdog_dev_tracker;
2426 	netdevice_tracker	dev_registered_tracker;
2427 	struct rtnl_hw_stats64	*offload_xstats_l3;
2428 
2429 	struct devlink_port	*devlink_port;
2430 
2431 #if IS_ENABLED(CONFIG_DPLL)
2432 	struct dpll_pin		*dpll_pin;
2433 #endif
2434 };
2435 #define to_net_dev(d) container_of(d, struct net_device, dev)
2436 
2437 /*
2438  * Driver should use this to assign devlink port instance to a netdevice
2439  * before it registers the netdevice. Therefore devlink_port is static
2440  * during the netdev lifetime after it is registered.
2441  */
2442 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2443 ({								\
2444 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2445 	((dev)->devlink_port = (port));				\
2446 })
2447 
2448 static inline bool netif_elide_gro(const struct net_device *dev)
2449 {
2450 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2451 		return true;
2452 	return false;
2453 }
2454 
2455 #define	NETDEV_ALIGN		32
2456 
2457 static inline
2458 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2459 {
2460 	return dev->prio_tc_map[prio & TC_BITMASK];
2461 }
2462 
2463 static inline
2464 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2465 {
2466 	if (tc >= dev->num_tc)
2467 		return -EINVAL;
2468 
2469 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2470 	return 0;
2471 }
2472 
2473 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2474 void netdev_reset_tc(struct net_device *dev);
2475 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2476 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2477 
2478 static inline
2479 int netdev_get_num_tc(struct net_device *dev)
2480 {
2481 	return dev->num_tc;
2482 }
2483 
2484 static inline void net_prefetch(void *p)
2485 {
2486 	prefetch(p);
2487 #if L1_CACHE_BYTES < 128
2488 	prefetch((u8 *)p + L1_CACHE_BYTES);
2489 #endif
2490 }
2491 
2492 static inline void net_prefetchw(void *p)
2493 {
2494 	prefetchw(p);
2495 #if L1_CACHE_BYTES < 128
2496 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2497 #endif
2498 }
2499 
2500 void netdev_unbind_sb_channel(struct net_device *dev,
2501 			      struct net_device *sb_dev);
2502 int netdev_bind_sb_channel_queue(struct net_device *dev,
2503 				 struct net_device *sb_dev,
2504 				 u8 tc, u16 count, u16 offset);
2505 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2506 static inline int netdev_get_sb_channel(struct net_device *dev)
2507 {
2508 	return max_t(int, -dev->num_tc, 0);
2509 }
2510 
2511 static inline
2512 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2513 					 unsigned int index)
2514 {
2515 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2516 	return &dev->_tx[index];
2517 }
2518 
2519 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2520 						    const struct sk_buff *skb)
2521 {
2522 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2523 }
2524 
2525 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2526 					    void (*f)(struct net_device *,
2527 						      struct netdev_queue *,
2528 						      void *),
2529 					    void *arg)
2530 {
2531 	unsigned int i;
2532 
2533 	for (i = 0; i < dev->num_tx_queues; i++)
2534 		f(dev, &dev->_tx[i], arg);
2535 }
2536 
2537 #define netdev_lockdep_set_classes(dev)				\
2538 {								\
2539 	static struct lock_class_key qdisc_tx_busylock_key;	\
2540 	static struct lock_class_key qdisc_xmit_lock_key;	\
2541 	static struct lock_class_key dev_addr_list_lock_key;	\
2542 	unsigned int i;						\
2543 								\
2544 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2545 	lockdep_set_class(&(dev)->addr_list_lock,		\
2546 			  &dev_addr_list_lock_key);		\
2547 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2548 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2549 				  &qdisc_xmit_lock_key);	\
2550 }
2551 
2552 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2553 		     struct net_device *sb_dev);
2554 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2555 					 struct sk_buff *skb,
2556 					 struct net_device *sb_dev);
2557 
2558 /* returns the headroom that the master device needs to take in account
2559  * when forwarding to this dev
2560  */
2561 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2562 {
2563 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2564 }
2565 
2566 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2567 {
2568 	if (dev->netdev_ops->ndo_set_rx_headroom)
2569 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2570 }
2571 
2572 /* set the device rx headroom to the dev's default */
2573 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2574 {
2575 	netdev_set_rx_headroom(dev, -1);
2576 }
2577 
2578 static inline void *netdev_get_ml_priv(struct net_device *dev,
2579 				       enum netdev_ml_priv_type type)
2580 {
2581 	if (dev->ml_priv_type != type)
2582 		return NULL;
2583 
2584 	return dev->ml_priv;
2585 }
2586 
2587 static inline void netdev_set_ml_priv(struct net_device *dev,
2588 				      void *ml_priv,
2589 				      enum netdev_ml_priv_type type)
2590 {
2591 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2592 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2593 	     dev->ml_priv_type, type);
2594 	WARN(!dev->ml_priv_type && dev->ml_priv,
2595 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2596 
2597 	dev->ml_priv = ml_priv;
2598 	dev->ml_priv_type = type;
2599 }
2600 
2601 /*
2602  * Net namespace inlines
2603  */
2604 static inline
2605 struct net *dev_net(const struct net_device *dev)
2606 {
2607 	return read_pnet(&dev->nd_net);
2608 }
2609 
2610 static inline
2611 void dev_net_set(struct net_device *dev, struct net *net)
2612 {
2613 	write_pnet(&dev->nd_net, net);
2614 }
2615 
2616 /**
2617  *	netdev_priv - access network device private data
2618  *	@dev: network device
2619  *
2620  * Get network device private data
2621  */
2622 static inline void *netdev_priv(const struct net_device *dev)
2623 {
2624 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2625 }
2626 
2627 /* Set the sysfs physical device reference for the network logical device
2628  * if set prior to registration will cause a symlink during initialization.
2629  */
2630 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2631 
2632 /* Set the sysfs device type for the network logical device to allow
2633  * fine-grained identification of different network device types. For
2634  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2635  */
2636 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2637 
2638 /* Default NAPI poll() weight
2639  * Device drivers are strongly advised to not use bigger value
2640  */
2641 #define NAPI_POLL_WEIGHT 64
2642 
2643 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2644 			   int (*poll)(struct napi_struct *, int), int weight);
2645 
2646 /**
2647  * netif_napi_add() - initialize a NAPI context
2648  * @dev:  network device
2649  * @napi: NAPI context
2650  * @poll: polling function
2651  *
2652  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2653  * *any* of the other NAPI-related functions.
2654  */
2655 static inline void
2656 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2657 	       int (*poll)(struct napi_struct *, int))
2658 {
2659 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2660 }
2661 
2662 static inline void
2663 netif_napi_add_tx_weight(struct net_device *dev,
2664 			 struct napi_struct *napi,
2665 			 int (*poll)(struct napi_struct *, int),
2666 			 int weight)
2667 {
2668 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2669 	netif_napi_add_weight(dev, napi, poll, weight);
2670 }
2671 
2672 /**
2673  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2674  * @dev:  network device
2675  * @napi: NAPI context
2676  * @poll: polling function
2677  *
2678  * This variant of netif_napi_add() should be used from drivers using NAPI
2679  * to exclusively poll a TX queue.
2680  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2681  */
2682 static inline void netif_napi_add_tx(struct net_device *dev,
2683 				     struct napi_struct *napi,
2684 				     int (*poll)(struct napi_struct *, int))
2685 {
2686 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2687 }
2688 
2689 /**
2690  *  __netif_napi_del - remove a NAPI context
2691  *  @napi: NAPI context
2692  *
2693  * Warning: caller must observe RCU grace period before freeing memory
2694  * containing @napi. Drivers might want to call this helper to combine
2695  * all the needed RCU grace periods into a single one.
2696  */
2697 void __netif_napi_del(struct napi_struct *napi);
2698 
2699 /**
2700  *  netif_napi_del - remove a NAPI context
2701  *  @napi: NAPI context
2702  *
2703  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2704  */
2705 static inline void netif_napi_del(struct napi_struct *napi)
2706 {
2707 	__netif_napi_del(napi);
2708 	synchronize_net();
2709 }
2710 
2711 struct packet_type {
2712 	__be16			type;	/* This is really htons(ether_type). */
2713 	bool			ignore_outgoing;
2714 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2715 	netdevice_tracker	dev_tracker;
2716 	int			(*func) (struct sk_buff *,
2717 					 struct net_device *,
2718 					 struct packet_type *,
2719 					 struct net_device *);
2720 	void			(*list_func) (struct list_head *,
2721 					      struct packet_type *,
2722 					      struct net_device *);
2723 	bool			(*id_match)(struct packet_type *ptype,
2724 					    struct sock *sk);
2725 	struct net		*af_packet_net;
2726 	void			*af_packet_priv;
2727 	struct list_head	list;
2728 };
2729 
2730 struct offload_callbacks {
2731 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2732 						netdev_features_t features);
2733 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2734 						struct sk_buff *skb);
2735 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2736 };
2737 
2738 struct packet_offload {
2739 	__be16			 type;	/* This is really htons(ether_type). */
2740 	u16			 priority;
2741 	struct offload_callbacks callbacks;
2742 	struct list_head	 list;
2743 };
2744 
2745 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2746 struct pcpu_sw_netstats {
2747 	u64_stats_t		rx_packets;
2748 	u64_stats_t		rx_bytes;
2749 	u64_stats_t		tx_packets;
2750 	u64_stats_t		tx_bytes;
2751 	struct u64_stats_sync   syncp;
2752 } __aligned(4 * sizeof(u64));
2753 
2754 struct pcpu_lstats {
2755 	u64_stats_t packets;
2756 	u64_stats_t bytes;
2757 	struct u64_stats_sync syncp;
2758 } __aligned(2 * sizeof(u64));
2759 
2760 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2761 
2762 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2763 {
2764 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2765 
2766 	u64_stats_update_begin(&tstats->syncp);
2767 	u64_stats_add(&tstats->rx_bytes, len);
2768 	u64_stats_inc(&tstats->rx_packets);
2769 	u64_stats_update_end(&tstats->syncp);
2770 }
2771 
2772 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2773 					  unsigned int packets,
2774 					  unsigned int len)
2775 {
2776 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2777 
2778 	u64_stats_update_begin(&tstats->syncp);
2779 	u64_stats_add(&tstats->tx_bytes, len);
2780 	u64_stats_add(&tstats->tx_packets, packets);
2781 	u64_stats_update_end(&tstats->syncp);
2782 }
2783 
2784 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2785 {
2786 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2787 
2788 	u64_stats_update_begin(&lstats->syncp);
2789 	u64_stats_add(&lstats->bytes, len);
2790 	u64_stats_inc(&lstats->packets);
2791 	u64_stats_update_end(&lstats->syncp);
2792 }
2793 
2794 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2795 ({									\
2796 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2797 	if (pcpu_stats)	{						\
2798 		int __cpu;						\
2799 		for_each_possible_cpu(__cpu) {				\
2800 			typeof(type) *stat;				\
2801 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2802 			u64_stats_init(&stat->syncp);			\
2803 		}							\
2804 	}								\
2805 	pcpu_stats;							\
2806 })
2807 
2808 #define netdev_alloc_pcpu_stats(type)					\
2809 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2810 
2811 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2812 ({									\
2813 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2814 	if (pcpu_stats) {						\
2815 		int __cpu;						\
2816 		for_each_possible_cpu(__cpu) {				\
2817 			typeof(type) *stat;				\
2818 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2819 			u64_stats_init(&stat->syncp);			\
2820 		}							\
2821 	}								\
2822 	pcpu_stats;							\
2823 })
2824 
2825 enum netdev_lag_tx_type {
2826 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2827 	NETDEV_LAG_TX_TYPE_RANDOM,
2828 	NETDEV_LAG_TX_TYPE_BROADCAST,
2829 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2830 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2831 	NETDEV_LAG_TX_TYPE_HASH,
2832 };
2833 
2834 enum netdev_lag_hash {
2835 	NETDEV_LAG_HASH_NONE,
2836 	NETDEV_LAG_HASH_L2,
2837 	NETDEV_LAG_HASH_L34,
2838 	NETDEV_LAG_HASH_L23,
2839 	NETDEV_LAG_HASH_E23,
2840 	NETDEV_LAG_HASH_E34,
2841 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2842 	NETDEV_LAG_HASH_UNKNOWN,
2843 };
2844 
2845 struct netdev_lag_upper_info {
2846 	enum netdev_lag_tx_type tx_type;
2847 	enum netdev_lag_hash hash_type;
2848 };
2849 
2850 struct netdev_lag_lower_state_info {
2851 	u8 link_up : 1,
2852 	   tx_enabled : 1;
2853 };
2854 
2855 #include <linux/notifier.h>
2856 
2857 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2858  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2859  * adding new types.
2860  */
2861 enum netdev_cmd {
2862 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2863 	NETDEV_DOWN,
2864 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2865 				   detected a hardware crash and restarted
2866 				   - we can use this eg to kick tcp sessions
2867 				   once done */
2868 	NETDEV_CHANGE,		/* Notify device state change */
2869 	NETDEV_REGISTER,
2870 	NETDEV_UNREGISTER,
2871 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2872 	NETDEV_CHANGEADDR,	/* notify after the address change */
2873 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2874 	NETDEV_GOING_DOWN,
2875 	NETDEV_CHANGENAME,
2876 	NETDEV_FEAT_CHANGE,
2877 	NETDEV_BONDING_FAILOVER,
2878 	NETDEV_PRE_UP,
2879 	NETDEV_PRE_TYPE_CHANGE,
2880 	NETDEV_POST_TYPE_CHANGE,
2881 	NETDEV_POST_INIT,
2882 	NETDEV_PRE_UNINIT,
2883 	NETDEV_RELEASE,
2884 	NETDEV_NOTIFY_PEERS,
2885 	NETDEV_JOIN,
2886 	NETDEV_CHANGEUPPER,
2887 	NETDEV_RESEND_IGMP,
2888 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2889 	NETDEV_CHANGEINFODATA,
2890 	NETDEV_BONDING_INFO,
2891 	NETDEV_PRECHANGEUPPER,
2892 	NETDEV_CHANGELOWERSTATE,
2893 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2894 	NETDEV_UDP_TUNNEL_DROP_INFO,
2895 	NETDEV_CHANGE_TX_QUEUE_LEN,
2896 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2897 	NETDEV_CVLAN_FILTER_DROP_INFO,
2898 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2899 	NETDEV_SVLAN_FILTER_DROP_INFO,
2900 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2901 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2902 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2903 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2904 	NETDEV_XDP_FEAT_CHANGE,
2905 };
2906 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2907 
2908 int register_netdevice_notifier(struct notifier_block *nb);
2909 int unregister_netdevice_notifier(struct notifier_block *nb);
2910 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2911 int unregister_netdevice_notifier_net(struct net *net,
2912 				      struct notifier_block *nb);
2913 int register_netdevice_notifier_dev_net(struct net_device *dev,
2914 					struct notifier_block *nb,
2915 					struct netdev_net_notifier *nn);
2916 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2917 					  struct notifier_block *nb,
2918 					  struct netdev_net_notifier *nn);
2919 
2920 struct netdev_notifier_info {
2921 	struct net_device	*dev;
2922 	struct netlink_ext_ack	*extack;
2923 };
2924 
2925 struct netdev_notifier_info_ext {
2926 	struct netdev_notifier_info info; /* must be first */
2927 	union {
2928 		u32 mtu;
2929 	} ext;
2930 };
2931 
2932 struct netdev_notifier_change_info {
2933 	struct netdev_notifier_info info; /* must be first */
2934 	unsigned int flags_changed;
2935 };
2936 
2937 struct netdev_notifier_changeupper_info {
2938 	struct netdev_notifier_info info; /* must be first */
2939 	struct net_device *upper_dev; /* new upper dev */
2940 	bool master; /* is upper dev master */
2941 	bool linking; /* is the notification for link or unlink */
2942 	void *upper_info; /* upper dev info */
2943 };
2944 
2945 struct netdev_notifier_changelowerstate_info {
2946 	struct netdev_notifier_info info; /* must be first */
2947 	void *lower_state_info; /* is lower dev state */
2948 };
2949 
2950 struct netdev_notifier_pre_changeaddr_info {
2951 	struct netdev_notifier_info info; /* must be first */
2952 	const unsigned char *dev_addr;
2953 };
2954 
2955 enum netdev_offload_xstats_type {
2956 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2957 };
2958 
2959 struct netdev_notifier_offload_xstats_info {
2960 	struct netdev_notifier_info info; /* must be first */
2961 	enum netdev_offload_xstats_type type;
2962 
2963 	union {
2964 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2965 		struct netdev_notifier_offload_xstats_rd *report_delta;
2966 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2967 		struct netdev_notifier_offload_xstats_ru *report_used;
2968 	};
2969 };
2970 
2971 int netdev_offload_xstats_enable(struct net_device *dev,
2972 				 enum netdev_offload_xstats_type type,
2973 				 struct netlink_ext_ack *extack);
2974 int netdev_offload_xstats_disable(struct net_device *dev,
2975 				  enum netdev_offload_xstats_type type);
2976 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2977 				   enum netdev_offload_xstats_type type);
2978 int netdev_offload_xstats_get(struct net_device *dev,
2979 			      enum netdev_offload_xstats_type type,
2980 			      struct rtnl_hw_stats64 *stats, bool *used,
2981 			      struct netlink_ext_ack *extack);
2982 void
2983 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2984 				   const struct rtnl_hw_stats64 *stats);
2985 void
2986 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2987 void netdev_offload_xstats_push_delta(struct net_device *dev,
2988 				      enum netdev_offload_xstats_type type,
2989 				      const struct rtnl_hw_stats64 *stats);
2990 
2991 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2992 					     struct net_device *dev)
2993 {
2994 	info->dev = dev;
2995 	info->extack = NULL;
2996 }
2997 
2998 static inline struct net_device *
2999 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3000 {
3001 	return info->dev;
3002 }
3003 
3004 static inline struct netlink_ext_ack *
3005 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3006 {
3007 	return info->extack;
3008 }
3009 
3010 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3011 int call_netdevice_notifiers_info(unsigned long val,
3012 				  struct netdev_notifier_info *info);
3013 
3014 extern rwlock_t				dev_base_lock;		/* Device list lock */
3015 
3016 #define for_each_netdev(net, d)		\
3017 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3018 #define for_each_netdev_reverse(net, d)	\
3019 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3020 #define for_each_netdev_rcu(net, d)		\
3021 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3022 #define for_each_netdev_safe(net, d, n)	\
3023 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3024 #define for_each_netdev_continue(net, d)		\
3025 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3026 #define for_each_netdev_continue_reverse(net, d)		\
3027 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3028 						     dev_list)
3029 #define for_each_netdev_continue_rcu(net, d)		\
3030 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3031 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3032 		for_each_netdev_rcu(&init_net, slave)	\
3033 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3034 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3035 
3036 #define for_each_netdev_dump(net, d, ifindex)				\
3037 	xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3038 
3039 static inline struct net_device *next_net_device(struct net_device *dev)
3040 {
3041 	struct list_head *lh;
3042 	struct net *net;
3043 
3044 	net = dev_net(dev);
3045 	lh = dev->dev_list.next;
3046 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3047 }
3048 
3049 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3050 {
3051 	struct list_head *lh;
3052 	struct net *net;
3053 
3054 	net = dev_net(dev);
3055 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3056 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3057 }
3058 
3059 static inline struct net_device *first_net_device(struct net *net)
3060 {
3061 	return list_empty(&net->dev_base_head) ? NULL :
3062 		net_device_entry(net->dev_base_head.next);
3063 }
3064 
3065 static inline struct net_device *first_net_device_rcu(struct net *net)
3066 {
3067 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3068 
3069 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3070 }
3071 
3072 int netdev_boot_setup_check(struct net_device *dev);
3073 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3074 				       const char *hwaddr);
3075 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3076 void dev_add_pack(struct packet_type *pt);
3077 void dev_remove_pack(struct packet_type *pt);
3078 void __dev_remove_pack(struct packet_type *pt);
3079 void dev_add_offload(struct packet_offload *po);
3080 void dev_remove_offload(struct packet_offload *po);
3081 
3082 int dev_get_iflink(const struct net_device *dev);
3083 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3084 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3085 			  struct net_device_path_stack *stack);
3086 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3087 				      unsigned short mask);
3088 struct net_device *dev_get_by_name(struct net *net, const char *name);
3089 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3090 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3091 bool netdev_name_in_use(struct net *net, const char *name);
3092 int dev_alloc_name(struct net_device *dev, const char *name);
3093 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3094 void dev_close(struct net_device *dev);
3095 void dev_close_many(struct list_head *head, bool unlink);
3096 void dev_disable_lro(struct net_device *dev);
3097 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3098 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3099 		     struct net_device *sb_dev);
3100 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3101 		       struct net_device *sb_dev);
3102 
3103 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3104 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3105 
3106 static inline int dev_queue_xmit(struct sk_buff *skb)
3107 {
3108 	return __dev_queue_xmit(skb, NULL);
3109 }
3110 
3111 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3112 				       struct net_device *sb_dev)
3113 {
3114 	return __dev_queue_xmit(skb, sb_dev);
3115 }
3116 
3117 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3118 {
3119 	int ret;
3120 
3121 	ret = __dev_direct_xmit(skb, queue_id);
3122 	if (!dev_xmit_complete(ret))
3123 		kfree_skb(skb);
3124 	return ret;
3125 }
3126 
3127 int register_netdevice(struct net_device *dev);
3128 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3129 void unregister_netdevice_many(struct list_head *head);
3130 static inline void unregister_netdevice(struct net_device *dev)
3131 {
3132 	unregister_netdevice_queue(dev, NULL);
3133 }
3134 
3135 int netdev_refcnt_read(const struct net_device *dev);
3136 void free_netdev(struct net_device *dev);
3137 void netdev_freemem(struct net_device *dev);
3138 int init_dummy_netdev(struct net_device *dev);
3139 
3140 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3141 					 struct sk_buff *skb,
3142 					 bool all_slaves);
3143 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3144 					    struct sock *sk);
3145 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3146 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3147 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3148 				       netdevice_tracker *tracker, gfp_t gfp);
3149 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3150 				      netdevice_tracker *tracker, gfp_t gfp);
3151 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3152 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3153 
3154 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3155 				  unsigned short type,
3156 				  const void *daddr, const void *saddr,
3157 				  unsigned int len)
3158 {
3159 	if (!dev->header_ops || !dev->header_ops->create)
3160 		return 0;
3161 
3162 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3163 }
3164 
3165 static inline int dev_parse_header(const struct sk_buff *skb,
3166 				   unsigned char *haddr)
3167 {
3168 	const struct net_device *dev = skb->dev;
3169 
3170 	if (!dev->header_ops || !dev->header_ops->parse)
3171 		return 0;
3172 	return dev->header_ops->parse(skb, haddr);
3173 }
3174 
3175 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3176 {
3177 	const struct net_device *dev = skb->dev;
3178 
3179 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3180 		return 0;
3181 	return dev->header_ops->parse_protocol(skb);
3182 }
3183 
3184 /* ll_header must have at least hard_header_len allocated */
3185 static inline bool dev_validate_header(const struct net_device *dev,
3186 				       char *ll_header, int len)
3187 {
3188 	if (likely(len >= dev->hard_header_len))
3189 		return true;
3190 	if (len < dev->min_header_len)
3191 		return false;
3192 
3193 	if (capable(CAP_SYS_RAWIO)) {
3194 		memset(ll_header + len, 0, dev->hard_header_len - len);
3195 		return true;
3196 	}
3197 
3198 	if (dev->header_ops && dev->header_ops->validate)
3199 		return dev->header_ops->validate(ll_header, len);
3200 
3201 	return false;
3202 }
3203 
3204 static inline bool dev_has_header(const struct net_device *dev)
3205 {
3206 	return dev->header_ops && dev->header_ops->create;
3207 }
3208 
3209 /*
3210  * Incoming packets are placed on per-CPU queues
3211  */
3212 struct softnet_data {
3213 	struct list_head	poll_list;
3214 	struct sk_buff_head	process_queue;
3215 
3216 	/* stats */
3217 	unsigned int		processed;
3218 	unsigned int		time_squeeze;
3219 #ifdef CONFIG_RPS
3220 	struct softnet_data	*rps_ipi_list;
3221 #endif
3222 
3223 	bool			in_net_rx_action;
3224 	bool			in_napi_threaded_poll;
3225 
3226 #ifdef CONFIG_NET_FLOW_LIMIT
3227 	struct sd_flow_limit __rcu *flow_limit;
3228 #endif
3229 	struct Qdisc		*output_queue;
3230 	struct Qdisc		**output_queue_tailp;
3231 	struct sk_buff		*completion_queue;
3232 #ifdef CONFIG_XFRM_OFFLOAD
3233 	struct sk_buff_head	xfrm_backlog;
3234 #endif
3235 	/* written and read only by owning cpu: */
3236 	struct {
3237 		u16 recursion;
3238 		u8  more;
3239 #ifdef CONFIG_NET_EGRESS
3240 		u8  skip_txqueue;
3241 #endif
3242 	} xmit;
3243 #ifdef CONFIG_RPS
3244 	/* input_queue_head should be written by cpu owning this struct,
3245 	 * and only read by other cpus. Worth using a cache line.
3246 	 */
3247 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3248 
3249 	/* Elements below can be accessed between CPUs for RPS/RFS */
3250 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3251 	struct softnet_data	*rps_ipi_next;
3252 	unsigned int		cpu;
3253 	unsigned int		input_queue_tail;
3254 #endif
3255 	unsigned int		received_rps;
3256 	unsigned int		dropped;
3257 	struct sk_buff_head	input_pkt_queue;
3258 	struct napi_struct	backlog;
3259 
3260 	/* Another possibly contended cache line */
3261 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3262 	int			defer_count;
3263 	int			defer_ipi_scheduled;
3264 	struct sk_buff		*defer_list;
3265 	call_single_data_t	defer_csd;
3266 };
3267 
3268 static inline void input_queue_head_incr(struct softnet_data *sd)
3269 {
3270 #ifdef CONFIG_RPS
3271 	sd->input_queue_head++;
3272 #endif
3273 }
3274 
3275 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3276 					      unsigned int *qtail)
3277 {
3278 #ifdef CONFIG_RPS
3279 	*qtail = ++sd->input_queue_tail;
3280 #endif
3281 }
3282 
3283 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3284 
3285 static inline int dev_recursion_level(void)
3286 {
3287 	return this_cpu_read(softnet_data.xmit.recursion);
3288 }
3289 
3290 #define XMIT_RECURSION_LIMIT	8
3291 static inline bool dev_xmit_recursion(void)
3292 {
3293 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3294 			XMIT_RECURSION_LIMIT);
3295 }
3296 
3297 static inline void dev_xmit_recursion_inc(void)
3298 {
3299 	__this_cpu_inc(softnet_data.xmit.recursion);
3300 }
3301 
3302 static inline void dev_xmit_recursion_dec(void)
3303 {
3304 	__this_cpu_dec(softnet_data.xmit.recursion);
3305 }
3306 
3307 void __netif_schedule(struct Qdisc *q);
3308 void netif_schedule_queue(struct netdev_queue *txq);
3309 
3310 static inline void netif_tx_schedule_all(struct net_device *dev)
3311 {
3312 	unsigned int i;
3313 
3314 	for (i = 0; i < dev->num_tx_queues; i++)
3315 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3316 }
3317 
3318 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3319 {
3320 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3321 }
3322 
3323 /**
3324  *	netif_start_queue - allow transmit
3325  *	@dev: network device
3326  *
3327  *	Allow upper layers to call the device hard_start_xmit routine.
3328  */
3329 static inline void netif_start_queue(struct net_device *dev)
3330 {
3331 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3332 }
3333 
3334 static inline void netif_tx_start_all_queues(struct net_device *dev)
3335 {
3336 	unsigned int i;
3337 
3338 	for (i = 0; i < dev->num_tx_queues; i++) {
3339 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3340 		netif_tx_start_queue(txq);
3341 	}
3342 }
3343 
3344 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3345 
3346 /**
3347  *	netif_wake_queue - restart transmit
3348  *	@dev: network device
3349  *
3350  *	Allow upper layers to call the device hard_start_xmit routine.
3351  *	Used for flow control when transmit resources are available.
3352  */
3353 static inline void netif_wake_queue(struct net_device *dev)
3354 {
3355 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3356 }
3357 
3358 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3359 {
3360 	unsigned int i;
3361 
3362 	for (i = 0; i < dev->num_tx_queues; i++) {
3363 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3364 		netif_tx_wake_queue(txq);
3365 	}
3366 }
3367 
3368 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3369 {
3370 	/* Must be an atomic op see netif_txq_try_stop() */
3371 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3372 }
3373 
3374 /**
3375  *	netif_stop_queue - stop transmitted packets
3376  *	@dev: network device
3377  *
3378  *	Stop upper layers calling the device hard_start_xmit routine.
3379  *	Used for flow control when transmit resources are unavailable.
3380  */
3381 static inline void netif_stop_queue(struct net_device *dev)
3382 {
3383 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3384 }
3385 
3386 void netif_tx_stop_all_queues(struct net_device *dev);
3387 
3388 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3389 {
3390 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3391 }
3392 
3393 /**
3394  *	netif_queue_stopped - test if transmit queue is flowblocked
3395  *	@dev: network device
3396  *
3397  *	Test if transmit queue on device is currently unable to send.
3398  */
3399 static inline bool netif_queue_stopped(const struct net_device *dev)
3400 {
3401 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3402 }
3403 
3404 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3405 {
3406 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3407 }
3408 
3409 static inline bool
3410 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3411 {
3412 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3413 }
3414 
3415 static inline bool
3416 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3417 {
3418 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3419 }
3420 
3421 /**
3422  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3423  *	@dev_queue: pointer to transmit queue
3424  *	@min_limit: dql minimum limit
3425  *
3426  * Forces xmit_more() to return true until the minimum threshold
3427  * defined by @min_limit is reached (or until the tx queue is
3428  * empty). Warning: to be use with care, misuse will impact the
3429  * latency.
3430  */
3431 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3432 						  unsigned int min_limit)
3433 {
3434 #ifdef CONFIG_BQL
3435 	dev_queue->dql.min_limit = min_limit;
3436 #endif
3437 }
3438 
3439 /**
3440  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3441  *	@dev_queue: pointer to transmit queue
3442  *
3443  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3444  * to give appropriate hint to the CPU.
3445  */
3446 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3447 {
3448 #ifdef CONFIG_BQL
3449 	prefetchw(&dev_queue->dql.num_queued);
3450 #endif
3451 }
3452 
3453 /**
3454  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3455  *	@dev_queue: pointer to transmit queue
3456  *
3457  * BQL enabled drivers might use this helper in their TX completion path,
3458  * to give appropriate hint to the CPU.
3459  */
3460 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3461 {
3462 #ifdef CONFIG_BQL
3463 	prefetchw(&dev_queue->dql.limit);
3464 #endif
3465 }
3466 
3467 /**
3468  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3469  *	@dev_queue: network device queue
3470  *	@bytes: number of bytes queued to the device queue
3471  *
3472  *	Report the number of bytes queued for sending/completion to the network
3473  *	device hardware queue. @bytes should be a good approximation and should
3474  *	exactly match netdev_completed_queue() @bytes.
3475  *	This is typically called once per packet, from ndo_start_xmit().
3476  */
3477 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3478 					unsigned int bytes)
3479 {
3480 #ifdef CONFIG_BQL
3481 	dql_queued(&dev_queue->dql, bytes);
3482 
3483 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3484 		return;
3485 
3486 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3487 
3488 	/*
3489 	 * The XOFF flag must be set before checking the dql_avail below,
3490 	 * because in netdev_tx_completed_queue we update the dql_completed
3491 	 * before checking the XOFF flag.
3492 	 */
3493 	smp_mb();
3494 
3495 	/* check again in case another CPU has just made room avail */
3496 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3497 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3498 #endif
3499 }
3500 
3501 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3502  * that they should not test BQL status themselves.
3503  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3504  * skb of a batch.
3505  * Returns true if the doorbell must be used to kick the NIC.
3506  */
3507 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3508 					  unsigned int bytes,
3509 					  bool xmit_more)
3510 {
3511 	if (xmit_more) {
3512 #ifdef CONFIG_BQL
3513 		dql_queued(&dev_queue->dql, bytes);
3514 #endif
3515 		return netif_tx_queue_stopped(dev_queue);
3516 	}
3517 	netdev_tx_sent_queue(dev_queue, bytes);
3518 	return true;
3519 }
3520 
3521 /**
3522  *	netdev_sent_queue - report the number of bytes queued to hardware
3523  *	@dev: network device
3524  *	@bytes: number of bytes queued to the hardware device queue
3525  *
3526  *	Report the number of bytes queued for sending/completion to the network
3527  *	device hardware queue#0. @bytes should be a good approximation and should
3528  *	exactly match netdev_completed_queue() @bytes.
3529  *	This is typically called once per packet, from ndo_start_xmit().
3530  */
3531 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3532 {
3533 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3534 }
3535 
3536 static inline bool __netdev_sent_queue(struct net_device *dev,
3537 				       unsigned int bytes,
3538 				       bool xmit_more)
3539 {
3540 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3541 				      xmit_more);
3542 }
3543 
3544 /**
3545  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3546  *	@dev_queue: network device queue
3547  *	@pkts: number of packets (currently ignored)
3548  *	@bytes: number of bytes dequeued from the device queue
3549  *
3550  *	Must be called at most once per TX completion round (and not per
3551  *	individual packet), so that BQL can adjust its limits appropriately.
3552  */
3553 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3554 					     unsigned int pkts, unsigned int bytes)
3555 {
3556 #ifdef CONFIG_BQL
3557 	if (unlikely(!bytes))
3558 		return;
3559 
3560 	dql_completed(&dev_queue->dql, bytes);
3561 
3562 	/*
3563 	 * Without the memory barrier there is a small possiblity that
3564 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3565 	 * be stopped forever
3566 	 */
3567 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3568 
3569 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3570 		return;
3571 
3572 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3573 		netif_schedule_queue(dev_queue);
3574 #endif
3575 }
3576 
3577 /**
3578  * 	netdev_completed_queue - report bytes and packets completed by device
3579  * 	@dev: network device
3580  * 	@pkts: actual number of packets sent over the medium
3581  * 	@bytes: actual number of bytes sent over the medium
3582  *
3583  * 	Report the number of bytes and packets transmitted by the network device
3584  * 	hardware queue over the physical medium, @bytes must exactly match the
3585  * 	@bytes amount passed to netdev_sent_queue()
3586  */
3587 static inline void netdev_completed_queue(struct net_device *dev,
3588 					  unsigned int pkts, unsigned int bytes)
3589 {
3590 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3591 }
3592 
3593 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3594 {
3595 #ifdef CONFIG_BQL
3596 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3597 	dql_reset(&q->dql);
3598 #endif
3599 }
3600 
3601 /**
3602  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3603  * 	@dev_queue: network device
3604  *
3605  * 	Reset the bytes and packet count of a network device and clear the
3606  * 	software flow control OFF bit for this network device
3607  */
3608 static inline void netdev_reset_queue(struct net_device *dev_queue)
3609 {
3610 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3611 }
3612 
3613 /**
3614  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3615  * 	@dev: network device
3616  * 	@queue_index: given tx queue index
3617  *
3618  * 	Returns 0 if given tx queue index >= number of device tx queues,
3619  * 	otherwise returns the originally passed tx queue index.
3620  */
3621 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3622 {
3623 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3624 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3625 				     dev->name, queue_index,
3626 				     dev->real_num_tx_queues);
3627 		return 0;
3628 	}
3629 
3630 	return queue_index;
3631 }
3632 
3633 /**
3634  *	netif_running - test if up
3635  *	@dev: network device
3636  *
3637  *	Test if the device has been brought up.
3638  */
3639 static inline bool netif_running(const struct net_device *dev)
3640 {
3641 	return test_bit(__LINK_STATE_START, &dev->state);
3642 }
3643 
3644 /*
3645  * Routines to manage the subqueues on a device.  We only need start,
3646  * stop, and a check if it's stopped.  All other device management is
3647  * done at the overall netdevice level.
3648  * Also test the device if we're multiqueue.
3649  */
3650 
3651 /**
3652  *	netif_start_subqueue - allow sending packets on subqueue
3653  *	@dev: network device
3654  *	@queue_index: sub queue index
3655  *
3656  * Start individual transmit queue of a device with multiple transmit queues.
3657  */
3658 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3659 {
3660 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3661 
3662 	netif_tx_start_queue(txq);
3663 }
3664 
3665 /**
3666  *	netif_stop_subqueue - stop sending packets on subqueue
3667  *	@dev: network device
3668  *	@queue_index: sub queue index
3669  *
3670  * Stop individual transmit queue of a device with multiple transmit queues.
3671  */
3672 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3673 {
3674 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3675 	netif_tx_stop_queue(txq);
3676 }
3677 
3678 /**
3679  *	__netif_subqueue_stopped - test status of subqueue
3680  *	@dev: network device
3681  *	@queue_index: sub queue index
3682  *
3683  * Check individual transmit queue of a device with multiple transmit queues.
3684  */
3685 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3686 					    u16 queue_index)
3687 {
3688 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3689 
3690 	return netif_tx_queue_stopped(txq);
3691 }
3692 
3693 /**
3694  *	netif_subqueue_stopped - test status of subqueue
3695  *	@dev: network device
3696  *	@skb: sub queue buffer pointer
3697  *
3698  * Check individual transmit queue of a device with multiple transmit queues.
3699  */
3700 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3701 					  struct sk_buff *skb)
3702 {
3703 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3704 }
3705 
3706 /**
3707  *	netif_wake_subqueue - allow sending packets on subqueue
3708  *	@dev: network device
3709  *	@queue_index: sub queue index
3710  *
3711  * Resume individual transmit queue of a device with multiple transmit queues.
3712  */
3713 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3714 {
3715 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3716 
3717 	netif_tx_wake_queue(txq);
3718 }
3719 
3720 #ifdef CONFIG_XPS
3721 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3722 			u16 index);
3723 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3724 			  u16 index, enum xps_map_type type);
3725 
3726 /**
3727  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3728  *	@j: CPU/Rx queue index
3729  *	@mask: bitmask of all cpus/rx queues
3730  *	@nr_bits: number of bits in the bitmask
3731  *
3732  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3733  */
3734 static inline bool netif_attr_test_mask(unsigned long j,
3735 					const unsigned long *mask,
3736 					unsigned int nr_bits)
3737 {
3738 	cpu_max_bits_warn(j, nr_bits);
3739 	return test_bit(j, mask);
3740 }
3741 
3742 /**
3743  *	netif_attr_test_online - Test for online CPU/Rx queue
3744  *	@j: CPU/Rx queue index
3745  *	@online_mask: bitmask for CPUs/Rx queues that are online
3746  *	@nr_bits: number of bits in the bitmask
3747  *
3748  * Returns true if a CPU/Rx queue is online.
3749  */
3750 static inline bool netif_attr_test_online(unsigned long j,
3751 					  const unsigned long *online_mask,
3752 					  unsigned int nr_bits)
3753 {
3754 	cpu_max_bits_warn(j, nr_bits);
3755 
3756 	if (online_mask)
3757 		return test_bit(j, online_mask);
3758 
3759 	return (j < nr_bits);
3760 }
3761 
3762 /**
3763  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3764  *	@n: CPU/Rx queue index
3765  *	@srcp: the cpumask/Rx queue mask pointer
3766  *	@nr_bits: number of bits in the bitmask
3767  *
3768  * Returns >= nr_bits if no further CPUs/Rx queues set.
3769  */
3770 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3771 					       unsigned int nr_bits)
3772 {
3773 	/* -1 is a legal arg here. */
3774 	if (n != -1)
3775 		cpu_max_bits_warn(n, nr_bits);
3776 
3777 	if (srcp)
3778 		return find_next_bit(srcp, nr_bits, n + 1);
3779 
3780 	return n + 1;
3781 }
3782 
3783 /**
3784  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3785  *	@n: CPU/Rx queue index
3786  *	@src1p: the first CPUs/Rx queues mask pointer
3787  *	@src2p: the second CPUs/Rx queues mask pointer
3788  *	@nr_bits: number of bits in the bitmask
3789  *
3790  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3791  */
3792 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3793 					  const unsigned long *src2p,
3794 					  unsigned int nr_bits)
3795 {
3796 	/* -1 is a legal arg here. */
3797 	if (n != -1)
3798 		cpu_max_bits_warn(n, nr_bits);
3799 
3800 	if (src1p && src2p)
3801 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3802 	else if (src1p)
3803 		return find_next_bit(src1p, nr_bits, n + 1);
3804 	else if (src2p)
3805 		return find_next_bit(src2p, nr_bits, n + 1);
3806 
3807 	return n + 1;
3808 }
3809 #else
3810 static inline int netif_set_xps_queue(struct net_device *dev,
3811 				      const struct cpumask *mask,
3812 				      u16 index)
3813 {
3814 	return 0;
3815 }
3816 
3817 static inline int __netif_set_xps_queue(struct net_device *dev,
3818 					const unsigned long *mask,
3819 					u16 index, enum xps_map_type type)
3820 {
3821 	return 0;
3822 }
3823 #endif
3824 
3825 /**
3826  *	netif_is_multiqueue - test if device has multiple transmit queues
3827  *	@dev: network device
3828  *
3829  * Check if device has multiple transmit queues
3830  */
3831 static inline bool netif_is_multiqueue(const struct net_device *dev)
3832 {
3833 	return dev->num_tx_queues > 1;
3834 }
3835 
3836 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3837 
3838 #ifdef CONFIG_SYSFS
3839 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3840 #else
3841 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3842 						unsigned int rxqs)
3843 {
3844 	dev->real_num_rx_queues = rxqs;
3845 	return 0;
3846 }
3847 #endif
3848 int netif_set_real_num_queues(struct net_device *dev,
3849 			      unsigned int txq, unsigned int rxq);
3850 
3851 int netif_get_num_default_rss_queues(void);
3852 
3853 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3854 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3855 
3856 /*
3857  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3858  * interrupt context or with hardware interrupts being disabled.
3859  * (in_hardirq() || irqs_disabled())
3860  *
3861  * We provide four helpers that can be used in following contexts :
3862  *
3863  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3864  *  replacing kfree_skb(skb)
3865  *
3866  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3867  *  Typically used in place of consume_skb(skb) in TX completion path
3868  *
3869  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3870  *  replacing kfree_skb(skb)
3871  *
3872  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3873  *  and consumed a packet. Used in place of consume_skb(skb)
3874  */
3875 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3876 {
3877 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3878 }
3879 
3880 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3881 {
3882 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3883 }
3884 
3885 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3886 {
3887 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3888 }
3889 
3890 static inline void dev_consume_skb_any(struct sk_buff *skb)
3891 {
3892 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3893 }
3894 
3895 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3896 			     struct bpf_prog *xdp_prog);
3897 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3898 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3899 int netif_rx(struct sk_buff *skb);
3900 int __netif_rx(struct sk_buff *skb);
3901 
3902 int netif_receive_skb(struct sk_buff *skb);
3903 int netif_receive_skb_core(struct sk_buff *skb);
3904 void netif_receive_skb_list_internal(struct list_head *head);
3905 void netif_receive_skb_list(struct list_head *head);
3906 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3907 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3908 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3909 void napi_get_frags_check(struct napi_struct *napi);
3910 gro_result_t napi_gro_frags(struct napi_struct *napi);
3911 struct packet_offload *gro_find_receive_by_type(__be16 type);
3912 struct packet_offload *gro_find_complete_by_type(__be16 type);
3913 
3914 static inline void napi_free_frags(struct napi_struct *napi)
3915 {
3916 	kfree_skb(napi->skb);
3917 	napi->skb = NULL;
3918 }
3919 
3920 bool netdev_is_rx_handler_busy(struct net_device *dev);
3921 int netdev_rx_handler_register(struct net_device *dev,
3922 			       rx_handler_func_t *rx_handler,
3923 			       void *rx_handler_data);
3924 void netdev_rx_handler_unregister(struct net_device *dev);
3925 
3926 bool dev_valid_name(const char *name);
3927 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3928 {
3929 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3930 }
3931 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3932 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3933 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3934 		void __user *data, bool *need_copyout);
3935 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3936 int generic_hwtstamp_get_lower(struct net_device *dev,
3937 			       struct kernel_hwtstamp_config *kernel_cfg);
3938 int generic_hwtstamp_set_lower(struct net_device *dev,
3939 			       struct kernel_hwtstamp_config *kernel_cfg,
3940 			       struct netlink_ext_ack *extack);
3941 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3942 unsigned int dev_get_flags(const struct net_device *);
3943 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3944 		       struct netlink_ext_ack *extack);
3945 int dev_change_flags(struct net_device *dev, unsigned int flags,
3946 		     struct netlink_ext_ack *extack);
3947 int dev_set_alias(struct net_device *, const char *, size_t);
3948 int dev_get_alias(const struct net_device *, char *, size_t);
3949 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3950 			       const char *pat, int new_ifindex);
3951 static inline
3952 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3953 			     const char *pat)
3954 {
3955 	return __dev_change_net_namespace(dev, net, pat, 0);
3956 }
3957 int __dev_set_mtu(struct net_device *, int);
3958 int dev_set_mtu(struct net_device *, int);
3959 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3960 			      struct netlink_ext_ack *extack);
3961 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3962 			struct netlink_ext_ack *extack);
3963 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3964 			     struct netlink_ext_ack *extack);
3965 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3966 int dev_get_port_parent_id(struct net_device *dev,
3967 			   struct netdev_phys_item_id *ppid, bool recurse);
3968 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3969 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin);
3970 void netdev_dpll_pin_clear(struct net_device *dev);
3971 
3972 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev)
3973 {
3974 #if IS_ENABLED(CONFIG_DPLL)
3975 	return dev->dpll_pin;
3976 #else
3977 	return NULL;
3978 #endif
3979 }
3980 
3981 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3982 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3983 				    struct netdev_queue *txq, int *ret);
3984 
3985 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3986 u8 dev_xdp_prog_count(struct net_device *dev);
3987 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3988 
3989 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3990 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3991 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3992 bool is_skb_forwardable(const struct net_device *dev,
3993 			const struct sk_buff *skb);
3994 
3995 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3996 						 const struct sk_buff *skb,
3997 						 const bool check_mtu)
3998 {
3999 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4000 	unsigned int len;
4001 
4002 	if (!(dev->flags & IFF_UP))
4003 		return false;
4004 
4005 	if (!check_mtu)
4006 		return true;
4007 
4008 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4009 	if (skb->len <= len)
4010 		return true;
4011 
4012 	/* if TSO is enabled, we don't care about the length as the packet
4013 	 * could be forwarded without being segmented before
4014 	 */
4015 	if (skb_is_gso(skb))
4016 		return true;
4017 
4018 	return false;
4019 }
4020 
4021 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4022 
4023 #define DEV_CORE_STATS_INC(FIELD)						\
4024 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4025 {										\
4026 	netdev_core_stats_inc(dev,						\
4027 			offsetof(struct net_device_core_stats, FIELD));		\
4028 }
4029 DEV_CORE_STATS_INC(rx_dropped)
4030 DEV_CORE_STATS_INC(tx_dropped)
4031 DEV_CORE_STATS_INC(rx_nohandler)
4032 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4033 #undef DEV_CORE_STATS_INC
4034 
4035 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4036 					       struct sk_buff *skb,
4037 					       const bool check_mtu)
4038 {
4039 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4040 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4041 		dev_core_stats_rx_dropped_inc(dev);
4042 		kfree_skb(skb);
4043 		return NET_RX_DROP;
4044 	}
4045 
4046 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4047 	skb->priority = 0;
4048 	return 0;
4049 }
4050 
4051 bool dev_nit_active(struct net_device *dev);
4052 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4053 
4054 static inline void __dev_put(struct net_device *dev)
4055 {
4056 	if (dev) {
4057 #ifdef CONFIG_PCPU_DEV_REFCNT
4058 		this_cpu_dec(*dev->pcpu_refcnt);
4059 #else
4060 		refcount_dec(&dev->dev_refcnt);
4061 #endif
4062 	}
4063 }
4064 
4065 static inline void __dev_hold(struct net_device *dev)
4066 {
4067 	if (dev) {
4068 #ifdef CONFIG_PCPU_DEV_REFCNT
4069 		this_cpu_inc(*dev->pcpu_refcnt);
4070 #else
4071 		refcount_inc(&dev->dev_refcnt);
4072 #endif
4073 	}
4074 }
4075 
4076 static inline void __netdev_tracker_alloc(struct net_device *dev,
4077 					  netdevice_tracker *tracker,
4078 					  gfp_t gfp)
4079 {
4080 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4081 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4082 #endif
4083 }
4084 
4085 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4086  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4087  */
4088 static inline void netdev_tracker_alloc(struct net_device *dev,
4089 					netdevice_tracker *tracker, gfp_t gfp)
4090 {
4091 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4092 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4093 	__netdev_tracker_alloc(dev, tracker, gfp);
4094 #endif
4095 }
4096 
4097 static inline void netdev_tracker_free(struct net_device *dev,
4098 				       netdevice_tracker *tracker)
4099 {
4100 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4101 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4102 #endif
4103 }
4104 
4105 static inline void netdev_hold(struct net_device *dev,
4106 			       netdevice_tracker *tracker, gfp_t gfp)
4107 {
4108 	if (dev) {
4109 		__dev_hold(dev);
4110 		__netdev_tracker_alloc(dev, tracker, gfp);
4111 	}
4112 }
4113 
4114 static inline void netdev_put(struct net_device *dev,
4115 			      netdevice_tracker *tracker)
4116 {
4117 	if (dev) {
4118 		netdev_tracker_free(dev, tracker);
4119 		__dev_put(dev);
4120 	}
4121 }
4122 
4123 /**
4124  *	dev_hold - get reference to device
4125  *	@dev: network device
4126  *
4127  * Hold reference to device to keep it from being freed.
4128  * Try using netdev_hold() instead.
4129  */
4130 static inline void dev_hold(struct net_device *dev)
4131 {
4132 	netdev_hold(dev, NULL, GFP_ATOMIC);
4133 }
4134 
4135 /**
4136  *	dev_put - release reference to device
4137  *	@dev: network device
4138  *
4139  * Release reference to device to allow it to be freed.
4140  * Try using netdev_put() instead.
4141  */
4142 static inline void dev_put(struct net_device *dev)
4143 {
4144 	netdev_put(dev, NULL);
4145 }
4146 
4147 static inline void netdev_ref_replace(struct net_device *odev,
4148 				      struct net_device *ndev,
4149 				      netdevice_tracker *tracker,
4150 				      gfp_t gfp)
4151 {
4152 	if (odev)
4153 		netdev_tracker_free(odev, tracker);
4154 
4155 	__dev_hold(ndev);
4156 	__dev_put(odev);
4157 
4158 	if (ndev)
4159 		__netdev_tracker_alloc(ndev, tracker, gfp);
4160 }
4161 
4162 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4163  * and _off may be called from IRQ context, but it is caller
4164  * who is responsible for serialization of these calls.
4165  *
4166  * The name carrier is inappropriate, these functions should really be
4167  * called netif_lowerlayer_*() because they represent the state of any
4168  * kind of lower layer not just hardware media.
4169  */
4170 void linkwatch_fire_event(struct net_device *dev);
4171 
4172 /**
4173  *	netif_carrier_ok - test if carrier present
4174  *	@dev: network device
4175  *
4176  * Check if carrier is present on device
4177  */
4178 static inline bool netif_carrier_ok(const struct net_device *dev)
4179 {
4180 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4181 }
4182 
4183 unsigned long dev_trans_start(struct net_device *dev);
4184 
4185 void __netdev_watchdog_up(struct net_device *dev);
4186 
4187 void netif_carrier_on(struct net_device *dev);
4188 void netif_carrier_off(struct net_device *dev);
4189 void netif_carrier_event(struct net_device *dev);
4190 
4191 /**
4192  *	netif_dormant_on - mark device as dormant.
4193  *	@dev: network device
4194  *
4195  * Mark device as dormant (as per RFC2863).
4196  *
4197  * The dormant state indicates that the relevant interface is not
4198  * actually in a condition to pass packets (i.e., it is not 'up') but is
4199  * in a "pending" state, waiting for some external event.  For "on-
4200  * demand" interfaces, this new state identifies the situation where the
4201  * interface is waiting for events to place it in the up state.
4202  */
4203 static inline void netif_dormant_on(struct net_device *dev)
4204 {
4205 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4206 		linkwatch_fire_event(dev);
4207 }
4208 
4209 /**
4210  *	netif_dormant_off - set device as not dormant.
4211  *	@dev: network device
4212  *
4213  * Device is not in dormant state.
4214  */
4215 static inline void netif_dormant_off(struct net_device *dev)
4216 {
4217 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4218 		linkwatch_fire_event(dev);
4219 }
4220 
4221 /**
4222  *	netif_dormant - test if device is dormant
4223  *	@dev: network device
4224  *
4225  * Check if device is dormant.
4226  */
4227 static inline bool netif_dormant(const struct net_device *dev)
4228 {
4229 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4230 }
4231 
4232 
4233 /**
4234  *	netif_testing_on - mark device as under test.
4235  *	@dev: network device
4236  *
4237  * Mark device as under test (as per RFC2863).
4238  *
4239  * The testing state indicates that some test(s) must be performed on
4240  * the interface. After completion, of the test, the interface state
4241  * will change to up, dormant, or down, as appropriate.
4242  */
4243 static inline void netif_testing_on(struct net_device *dev)
4244 {
4245 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4246 		linkwatch_fire_event(dev);
4247 }
4248 
4249 /**
4250  *	netif_testing_off - set device as not under test.
4251  *	@dev: network device
4252  *
4253  * Device is not in testing state.
4254  */
4255 static inline void netif_testing_off(struct net_device *dev)
4256 {
4257 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4258 		linkwatch_fire_event(dev);
4259 }
4260 
4261 /**
4262  *	netif_testing - test if device is under test
4263  *	@dev: network device
4264  *
4265  * Check if device is under test
4266  */
4267 static inline bool netif_testing(const struct net_device *dev)
4268 {
4269 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4270 }
4271 
4272 
4273 /**
4274  *	netif_oper_up - test if device is operational
4275  *	@dev: network device
4276  *
4277  * Check if carrier is operational
4278  */
4279 static inline bool netif_oper_up(const struct net_device *dev)
4280 {
4281 	return (dev->operstate == IF_OPER_UP ||
4282 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4283 }
4284 
4285 /**
4286  *	netif_device_present - is device available or removed
4287  *	@dev: network device
4288  *
4289  * Check if device has not been removed from system.
4290  */
4291 static inline bool netif_device_present(const struct net_device *dev)
4292 {
4293 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4294 }
4295 
4296 void netif_device_detach(struct net_device *dev);
4297 
4298 void netif_device_attach(struct net_device *dev);
4299 
4300 /*
4301  * Network interface message level settings
4302  */
4303 
4304 enum {
4305 	NETIF_MSG_DRV_BIT,
4306 	NETIF_MSG_PROBE_BIT,
4307 	NETIF_MSG_LINK_BIT,
4308 	NETIF_MSG_TIMER_BIT,
4309 	NETIF_MSG_IFDOWN_BIT,
4310 	NETIF_MSG_IFUP_BIT,
4311 	NETIF_MSG_RX_ERR_BIT,
4312 	NETIF_MSG_TX_ERR_BIT,
4313 	NETIF_MSG_TX_QUEUED_BIT,
4314 	NETIF_MSG_INTR_BIT,
4315 	NETIF_MSG_TX_DONE_BIT,
4316 	NETIF_MSG_RX_STATUS_BIT,
4317 	NETIF_MSG_PKTDATA_BIT,
4318 	NETIF_MSG_HW_BIT,
4319 	NETIF_MSG_WOL_BIT,
4320 
4321 	/* When you add a new bit above, update netif_msg_class_names array
4322 	 * in net/ethtool/common.c
4323 	 */
4324 	NETIF_MSG_CLASS_COUNT,
4325 };
4326 /* Both ethtool_ops interface and internal driver implementation use u32 */
4327 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4328 
4329 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4330 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4331 
4332 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4333 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4334 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4335 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4336 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4337 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4338 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4339 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4340 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4341 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4342 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4343 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4344 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4345 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4346 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4347 
4348 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4349 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4350 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4351 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4352 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4353 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4354 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4355 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4356 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4357 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4358 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4359 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4360 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4361 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4362 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4363 
4364 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4365 {
4366 	/* use default */
4367 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4368 		return default_msg_enable_bits;
4369 	if (debug_value == 0)	/* no output */
4370 		return 0;
4371 	/* set low N bits */
4372 	return (1U << debug_value) - 1;
4373 }
4374 
4375 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4376 {
4377 	spin_lock(&txq->_xmit_lock);
4378 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4379 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4380 }
4381 
4382 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4383 {
4384 	__acquire(&txq->_xmit_lock);
4385 	return true;
4386 }
4387 
4388 static inline void __netif_tx_release(struct netdev_queue *txq)
4389 {
4390 	__release(&txq->_xmit_lock);
4391 }
4392 
4393 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4394 {
4395 	spin_lock_bh(&txq->_xmit_lock);
4396 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4397 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4398 }
4399 
4400 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4401 {
4402 	bool ok = spin_trylock(&txq->_xmit_lock);
4403 
4404 	if (likely(ok)) {
4405 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4406 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4407 	}
4408 	return ok;
4409 }
4410 
4411 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4412 {
4413 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4414 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4415 	spin_unlock(&txq->_xmit_lock);
4416 }
4417 
4418 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4419 {
4420 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4421 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4422 	spin_unlock_bh(&txq->_xmit_lock);
4423 }
4424 
4425 /*
4426  * txq->trans_start can be read locklessly from dev_watchdog()
4427  */
4428 static inline void txq_trans_update(struct netdev_queue *txq)
4429 {
4430 	if (txq->xmit_lock_owner != -1)
4431 		WRITE_ONCE(txq->trans_start, jiffies);
4432 }
4433 
4434 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4435 {
4436 	unsigned long now = jiffies;
4437 
4438 	if (READ_ONCE(txq->trans_start) != now)
4439 		WRITE_ONCE(txq->trans_start, now);
4440 }
4441 
4442 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4443 static inline void netif_trans_update(struct net_device *dev)
4444 {
4445 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4446 
4447 	txq_trans_cond_update(txq);
4448 }
4449 
4450 /**
4451  *	netif_tx_lock - grab network device transmit lock
4452  *	@dev: network device
4453  *
4454  * Get network device transmit lock
4455  */
4456 void netif_tx_lock(struct net_device *dev);
4457 
4458 static inline void netif_tx_lock_bh(struct net_device *dev)
4459 {
4460 	local_bh_disable();
4461 	netif_tx_lock(dev);
4462 }
4463 
4464 void netif_tx_unlock(struct net_device *dev);
4465 
4466 static inline void netif_tx_unlock_bh(struct net_device *dev)
4467 {
4468 	netif_tx_unlock(dev);
4469 	local_bh_enable();
4470 }
4471 
4472 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4473 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4474 		__netif_tx_lock(txq, cpu);		\
4475 	} else {					\
4476 		__netif_tx_acquire(txq);		\
4477 	}						\
4478 }
4479 
4480 #define HARD_TX_TRYLOCK(dev, txq)			\
4481 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4482 		__netif_tx_trylock(txq) :		\
4483 		__netif_tx_acquire(txq))
4484 
4485 #define HARD_TX_UNLOCK(dev, txq) {			\
4486 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4487 		__netif_tx_unlock(txq);			\
4488 	} else {					\
4489 		__netif_tx_release(txq);		\
4490 	}						\
4491 }
4492 
4493 static inline void netif_tx_disable(struct net_device *dev)
4494 {
4495 	unsigned int i;
4496 	int cpu;
4497 
4498 	local_bh_disable();
4499 	cpu = smp_processor_id();
4500 	spin_lock(&dev->tx_global_lock);
4501 	for (i = 0; i < dev->num_tx_queues; i++) {
4502 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4503 
4504 		__netif_tx_lock(txq, cpu);
4505 		netif_tx_stop_queue(txq);
4506 		__netif_tx_unlock(txq);
4507 	}
4508 	spin_unlock(&dev->tx_global_lock);
4509 	local_bh_enable();
4510 }
4511 
4512 static inline void netif_addr_lock(struct net_device *dev)
4513 {
4514 	unsigned char nest_level = 0;
4515 
4516 #ifdef CONFIG_LOCKDEP
4517 	nest_level = dev->nested_level;
4518 #endif
4519 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4520 }
4521 
4522 static inline void netif_addr_lock_bh(struct net_device *dev)
4523 {
4524 	unsigned char nest_level = 0;
4525 
4526 #ifdef CONFIG_LOCKDEP
4527 	nest_level = dev->nested_level;
4528 #endif
4529 	local_bh_disable();
4530 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4531 }
4532 
4533 static inline void netif_addr_unlock(struct net_device *dev)
4534 {
4535 	spin_unlock(&dev->addr_list_lock);
4536 }
4537 
4538 static inline void netif_addr_unlock_bh(struct net_device *dev)
4539 {
4540 	spin_unlock_bh(&dev->addr_list_lock);
4541 }
4542 
4543 /*
4544  * dev_addrs walker. Should be used only for read access. Call with
4545  * rcu_read_lock held.
4546  */
4547 #define for_each_dev_addr(dev, ha) \
4548 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4549 
4550 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4551 
4552 void ether_setup(struct net_device *dev);
4553 
4554 /* Support for loadable net-drivers */
4555 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4556 				    unsigned char name_assign_type,
4557 				    void (*setup)(struct net_device *),
4558 				    unsigned int txqs, unsigned int rxqs);
4559 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4560 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4561 
4562 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4563 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4564 			 count)
4565 
4566 int register_netdev(struct net_device *dev);
4567 void unregister_netdev(struct net_device *dev);
4568 
4569 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4570 
4571 /* General hardware address lists handling functions */
4572 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4573 		   struct netdev_hw_addr_list *from_list, int addr_len);
4574 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4575 		      struct netdev_hw_addr_list *from_list, int addr_len);
4576 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4577 		       struct net_device *dev,
4578 		       int (*sync)(struct net_device *, const unsigned char *),
4579 		       int (*unsync)(struct net_device *,
4580 				     const unsigned char *));
4581 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4582 			   struct net_device *dev,
4583 			   int (*sync)(struct net_device *,
4584 				       const unsigned char *, int),
4585 			   int (*unsync)(struct net_device *,
4586 					 const unsigned char *, int));
4587 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4588 			      struct net_device *dev,
4589 			      int (*unsync)(struct net_device *,
4590 					    const unsigned char *, int));
4591 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4592 			  struct net_device *dev,
4593 			  int (*unsync)(struct net_device *,
4594 					const unsigned char *));
4595 void __hw_addr_init(struct netdev_hw_addr_list *list);
4596 
4597 /* Functions used for device addresses handling */
4598 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4599 		  const void *addr, size_t len);
4600 
4601 static inline void
4602 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4603 {
4604 	dev_addr_mod(dev, 0, addr, len);
4605 }
4606 
4607 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4608 {
4609 	__dev_addr_set(dev, addr, dev->addr_len);
4610 }
4611 
4612 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4613 		 unsigned char addr_type);
4614 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4615 		 unsigned char addr_type);
4616 
4617 /* Functions used for unicast addresses handling */
4618 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4619 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4620 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4621 int dev_uc_sync(struct net_device *to, struct net_device *from);
4622 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4623 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4624 void dev_uc_flush(struct net_device *dev);
4625 void dev_uc_init(struct net_device *dev);
4626 
4627 /**
4628  *  __dev_uc_sync - Synchonize device's unicast list
4629  *  @dev:  device to sync
4630  *  @sync: function to call if address should be added
4631  *  @unsync: function to call if address should be removed
4632  *
4633  *  Add newly added addresses to the interface, and release
4634  *  addresses that have been deleted.
4635  */
4636 static inline int __dev_uc_sync(struct net_device *dev,
4637 				int (*sync)(struct net_device *,
4638 					    const unsigned char *),
4639 				int (*unsync)(struct net_device *,
4640 					      const unsigned char *))
4641 {
4642 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4643 }
4644 
4645 /**
4646  *  __dev_uc_unsync - Remove synchronized addresses from device
4647  *  @dev:  device to sync
4648  *  @unsync: function to call if address should be removed
4649  *
4650  *  Remove all addresses that were added to the device by dev_uc_sync().
4651  */
4652 static inline void __dev_uc_unsync(struct net_device *dev,
4653 				   int (*unsync)(struct net_device *,
4654 						 const unsigned char *))
4655 {
4656 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4657 }
4658 
4659 /* Functions used for multicast addresses handling */
4660 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4661 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4662 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4663 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4664 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4665 int dev_mc_sync(struct net_device *to, struct net_device *from);
4666 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4667 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4668 void dev_mc_flush(struct net_device *dev);
4669 void dev_mc_init(struct net_device *dev);
4670 
4671 /**
4672  *  __dev_mc_sync - Synchonize device's multicast list
4673  *  @dev:  device to sync
4674  *  @sync: function to call if address should be added
4675  *  @unsync: function to call if address should be removed
4676  *
4677  *  Add newly added addresses to the interface, and release
4678  *  addresses that have been deleted.
4679  */
4680 static inline int __dev_mc_sync(struct net_device *dev,
4681 				int (*sync)(struct net_device *,
4682 					    const unsigned char *),
4683 				int (*unsync)(struct net_device *,
4684 					      const unsigned char *))
4685 {
4686 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4687 }
4688 
4689 /**
4690  *  __dev_mc_unsync - Remove synchronized addresses from device
4691  *  @dev:  device to sync
4692  *  @unsync: function to call if address should be removed
4693  *
4694  *  Remove all addresses that were added to the device by dev_mc_sync().
4695  */
4696 static inline void __dev_mc_unsync(struct net_device *dev,
4697 				   int (*unsync)(struct net_device *,
4698 						 const unsigned char *))
4699 {
4700 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4701 }
4702 
4703 /* Functions used for secondary unicast and multicast support */
4704 void dev_set_rx_mode(struct net_device *dev);
4705 int dev_set_promiscuity(struct net_device *dev, int inc);
4706 int dev_set_allmulti(struct net_device *dev, int inc);
4707 void netdev_state_change(struct net_device *dev);
4708 void __netdev_notify_peers(struct net_device *dev);
4709 void netdev_notify_peers(struct net_device *dev);
4710 void netdev_features_change(struct net_device *dev);
4711 /* Load a device via the kmod */
4712 void dev_load(struct net *net, const char *name);
4713 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4714 					struct rtnl_link_stats64 *storage);
4715 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4716 			     const struct net_device_stats *netdev_stats);
4717 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4718 			   const struct pcpu_sw_netstats __percpu *netstats);
4719 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4720 
4721 extern int		netdev_max_backlog;
4722 extern int		dev_rx_weight;
4723 extern int		dev_tx_weight;
4724 extern int		gro_normal_batch;
4725 
4726 enum {
4727 	NESTED_SYNC_IMM_BIT,
4728 	NESTED_SYNC_TODO_BIT,
4729 };
4730 
4731 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4732 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4733 
4734 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4735 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4736 
4737 struct netdev_nested_priv {
4738 	unsigned char flags;
4739 	void *data;
4740 };
4741 
4742 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4743 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4744 						     struct list_head **iter);
4745 
4746 /* iterate through upper list, must be called under RCU read lock */
4747 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4748 	for (iter = &(dev)->adj_list.upper, \
4749 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4750 	     updev; \
4751 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4752 
4753 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4754 				  int (*fn)(struct net_device *upper_dev,
4755 					    struct netdev_nested_priv *priv),
4756 				  struct netdev_nested_priv *priv);
4757 
4758 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4759 				  struct net_device *upper_dev);
4760 
4761 bool netdev_has_any_upper_dev(struct net_device *dev);
4762 
4763 void *netdev_lower_get_next_private(struct net_device *dev,
4764 				    struct list_head **iter);
4765 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4766 					struct list_head **iter);
4767 
4768 #define netdev_for_each_lower_private(dev, priv, iter) \
4769 	for (iter = (dev)->adj_list.lower.next, \
4770 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4771 	     priv; \
4772 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4773 
4774 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4775 	for (iter = &(dev)->adj_list.lower, \
4776 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4777 	     priv; \
4778 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4779 
4780 void *netdev_lower_get_next(struct net_device *dev,
4781 				struct list_head **iter);
4782 
4783 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4784 	for (iter = (dev)->adj_list.lower.next, \
4785 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4786 	     ldev; \
4787 	     ldev = netdev_lower_get_next(dev, &(iter)))
4788 
4789 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4790 					     struct list_head **iter);
4791 int netdev_walk_all_lower_dev(struct net_device *dev,
4792 			      int (*fn)(struct net_device *lower_dev,
4793 					struct netdev_nested_priv *priv),
4794 			      struct netdev_nested_priv *priv);
4795 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4796 				  int (*fn)(struct net_device *lower_dev,
4797 					    struct netdev_nested_priv *priv),
4798 				  struct netdev_nested_priv *priv);
4799 
4800 void *netdev_adjacent_get_private(struct list_head *adj_list);
4801 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4802 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4803 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4804 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4805 			  struct netlink_ext_ack *extack);
4806 int netdev_master_upper_dev_link(struct net_device *dev,
4807 				 struct net_device *upper_dev,
4808 				 void *upper_priv, void *upper_info,
4809 				 struct netlink_ext_ack *extack);
4810 void netdev_upper_dev_unlink(struct net_device *dev,
4811 			     struct net_device *upper_dev);
4812 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4813 				   struct net_device *new_dev,
4814 				   struct net_device *dev,
4815 				   struct netlink_ext_ack *extack);
4816 void netdev_adjacent_change_commit(struct net_device *old_dev,
4817 				   struct net_device *new_dev,
4818 				   struct net_device *dev);
4819 void netdev_adjacent_change_abort(struct net_device *old_dev,
4820 				  struct net_device *new_dev,
4821 				  struct net_device *dev);
4822 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4823 void *netdev_lower_dev_get_private(struct net_device *dev,
4824 				   struct net_device *lower_dev);
4825 void netdev_lower_state_changed(struct net_device *lower_dev,
4826 				void *lower_state_info);
4827 
4828 /* RSS keys are 40 or 52 bytes long */
4829 #define NETDEV_RSS_KEY_LEN 52
4830 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4831 void netdev_rss_key_fill(void *buffer, size_t len);
4832 
4833 int skb_checksum_help(struct sk_buff *skb);
4834 int skb_crc32c_csum_help(struct sk_buff *skb);
4835 int skb_csum_hwoffload_help(struct sk_buff *skb,
4836 			    const netdev_features_t features);
4837 
4838 struct netdev_bonding_info {
4839 	ifslave	slave;
4840 	ifbond	master;
4841 };
4842 
4843 struct netdev_notifier_bonding_info {
4844 	struct netdev_notifier_info info; /* must be first */
4845 	struct netdev_bonding_info  bonding_info;
4846 };
4847 
4848 void netdev_bonding_info_change(struct net_device *dev,
4849 				struct netdev_bonding_info *bonding_info);
4850 
4851 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4852 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4853 #else
4854 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4855 				  const void *data)
4856 {
4857 }
4858 #endif
4859 
4860 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4861 
4862 static inline bool can_checksum_protocol(netdev_features_t features,
4863 					 __be16 protocol)
4864 {
4865 	if (protocol == htons(ETH_P_FCOE))
4866 		return !!(features & NETIF_F_FCOE_CRC);
4867 
4868 	/* Assume this is an IP checksum (not SCTP CRC) */
4869 
4870 	if (features & NETIF_F_HW_CSUM) {
4871 		/* Can checksum everything */
4872 		return true;
4873 	}
4874 
4875 	switch (protocol) {
4876 	case htons(ETH_P_IP):
4877 		return !!(features & NETIF_F_IP_CSUM);
4878 	case htons(ETH_P_IPV6):
4879 		return !!(features & NETIF_F_IPV6_CSUM);
4880 	default:
4881 		return false;
4882 	}
4883 }
4884 
4885 #ifdef CONFIG_BUG
4886 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4887 #else
4888 static inline void netdev_rx_csum_fault(struct net_device *dev,
4889 					struct sk_buff *skb)
4890 {
4891 }
4892 #endif
4893 /* rx skb timestamps */
4894 void net_enable_timestamp(void);
4895 void net_disable_timestamp(void);
4896 
4897 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4898 					const struct skb_shared_hwtstamps *hwtstamps,
4899 					bool cycles)
4900 {
4901 	const struct net_device_ops *ops = dev->netdev_ops;
4902 
4903 	if (ops->ndo_get_tstamp)
4904 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4905 
4906 	return hwtstamps->hwtstamp;
4907 }
4908 
4909 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4910 					      struct sk_buff *skb, struct net_device *dev,
4911 					      bool more)
4912 {
4913 	__this_cpu_write(softnet_data.xmit.more, more);
4914 	return ops->ndo_start_xmit(skb, dev);
4915 }
4916 
4917 static inline bool netdev_xmit_more(void)
4918 {
4919 	return __this_cpu_read(softnet_data.xmit.more);
4920 }
4921 
4922 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4923 					    struct netdev_queue *txq, bool more)
4924 {
4925 	const struct net_device_ops *ops = dev->netdev_ops;
4926 	netdev_tx_t rc;
4927 
4928 	rc = __netdev_start_xmit(ops, skb, dev, more);
4929 	if (rc == NETDEV_TX_OK)
4930 		txq_trans_update(txq);
4931 
4932 	return rc;
4933 }
4934 
4935 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4936 				const void *ns);
4937 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4938 				 const void *ns);
4939 
4940 extern const struct kobj_ns_type_operations net_ns_type_operations;
4941 
4942 const char *netdev_drivername(const struct net_device *dev);
4943 
4944 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4945 							  netdev_features_t f2)
4946 {
4947 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4948 		if (f1 & NETIF_F_HW_CSUM)
4949 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4950 		else
4951 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4952 	}
4953 
4954 	return f1 & f2;
4955 }
4956 
4957 static inline netdev_features_t netdev_get_wanted_features(
4958 	struct net_device *dev)
4959 {
4960 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4961 }
4962 netdev_features_t netdev_increment_features(netdev_features_t all,
4963 	netdev_features_t one, netdev_features_t mask);
4964 
4965 /* Allow TSO being used on stacked device :
4966  * Performing the GSO segmentation before last device
4967  * is a performance improvement.
4968  */
4969 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4970 							netdev_features_t mask)
4971 {
4972 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4973 }
4974 
4975 int __netdev_update_features(struct net_device *dev);
4976 void netdev_update_features(struct net_device *dev);
4977 void netdev_change_features(struct net_device *dev);
4978 
4979 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4980 					struct net_device *dev);
4981 
4982 netdev_features_t passthru_features_check(struct sk_buff *skb,
4983 					  struct net_device *dev,
4984 					  netdev_features_t features);
4985 netdev_features_t netif_skb_features(struct sk_buff *skb);
4986 void skb_warn_bad_offload(const struct sk_buff *skb);
4987 
4988 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4989 {
4990 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4991 
4992 	/* check flags correspondence */
4993 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4994 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4995 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4996 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5002 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5003 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5004 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5005 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5006 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5007 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5008 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5009 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5010 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5011 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5012 
5013 	return (features & feature) == feature;
5014 }
5015 
5016 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5017 {
5018 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5019 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5020 }
5021 
5022 static inline bool netif_needs_gso(struct sk_buff *skb,
5023 				   netdev_features_t features)
5024 {
5025 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5026 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5027 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5028 }
5029 
5030 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5031 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5032 void netif_inherit_tso_max(struct net_device *to,
5033 			   const struct net_device *from);
5034 
5035 static inline bool netif_is_macsec(const struct net_device *dev)
5036 {
5037 	return dev->priv_flags & IFF_MACSEC;
5038 }
5039 
5040 static inline bool netif_is_macvlan(const struct net_device *dev)
5041 {
5042 	return dev->priv_flags & IFF_MACVLAN;
5043 }
5044 
5045 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5046 {
5047 	return dev->priv_flags & IFF_MACVLAN_PORT;
5048 }
5049 
5050 static inline bool netif_is_bond_master(const struct net_device *dev)
5051 {
5052 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5053 }
5054 
5055 static inline bool netif_is_bond_slave(const struct net_device *dev)
5056 {
5057 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5058 }
5059 
5060 static inline bool netif_supports_nofcs(struct net_device *dev)
5061 {
5062 	return dev->priv_flags & IFF_SUPP_NOFCS;
5063 }
5064 
5065 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5066 {
5067 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5068 }
5069 
5070 static inline bool netif_is_l3_master(const struct net_device *dev)
5071 {
5072 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5073 }
5074 
5075 static inline bool netif_is_l3_slave(const struct net_device *dev)
5076 {
5077 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5078 }
5079 
5080 static inline int dev_sdif(const struct net_device *dev)
5081 {
5082 #ifdef CONFIG_NET_L3_MASTER_DEV
5083 	if (netif_is_l3_slave(dev))
5084 		return dev->ifindex;
5085 #endif
5086 	return 0;
5087 }
5088 
5089 static inline bool netif_is_bridge_master(const struct net_device *dev)
5090 {
5091 	return dev->priv_flags & IFF_EBRIDGE;
5092 }
5093 
5094 static inline bool netif_is_bridge_port(const struct net_device *dev)
5095 {
5096 	return dev->priv_flags & IFF_BRIDGE_PORT;
5097 }
5098 
5099 static inline bool netif_is_ovs_master(const struct net_device *dev)
5100 {
5101 	return dev->priv_flags & IFF_OPENVSWITCH;
5102 }
5103 
5104 static inline bool netif_is_ovs_port(const struct net_device *dev)
5105 {
5106 	return dev->priv_flags & IFF_OVS_DATAPATH;
5107 }
5108 
5109 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5110 {
5111 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5112 }
5113 
5114 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5115 {
5116 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5117 }
5118 
5119 static inline bool netif_is_team_master(const struct net_device *dev)
5120 {
5121 	return dev->priv_flags & IFF_TEAM;
5122 }
5123 
5124 static inline bool netif_is_team_port(const struct net_device *dev)
5125 {
5126 	return dev->priv_flags & IFF_TEAM_PORT;
5127 }
5128 
5129 static inline bool netif_is_lag_master(const struct net_device *dev)
5130 {
5131 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5132 }
5133 
5134 static inline bool netif_is_lag_port(const struct net_device *dev)
5135 {
5136 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5137 }
5138 
5139 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5140 {
5141 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5142 }
5143 
5144 static inline bool netif_is_failover(const struct net_device *dev)
5145 {
5146 	return dev->priv_flags & IFF_FAILOVER;
5147 }
5148 
5149 static inline bool netif_is_failover_slave(const struct net_device *dev)
5150 {
5151 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5152 }
5153 
5154 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5155 static inline void netif_keep_dst(struct net_device *dev)
5156 {
5157 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5158 }
5159 
5160 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5161 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5162 {
5163 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5164 	return netif_is_macsec(dev);
5165 }
5166 
5167 extern struct pernet_operations __net_initdata loopback_net_ops;
5168 
5169 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5170 
5171 /* netdev_printk helpers, similar to dev_printk */
5172 
5173 static inline const char *netdev_name(const struct net_device *dev)
5174 {
5175 	if (!dev->name[0] || strchr(dev->name, '%'))
5176 		return "(unnamed net_device)";
5177 	return dev->name;
5178 }
5179 
5180 static inline const char *netdev_reg_state(const struct net_device *dev)
5181 {
5182 	switch (dev->reg_state) {
5183 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5184 	case NETREG_REGISTERED: return "";
5185 	case NETREG_UNREGISTERING: return " (unregistering)";
5186 	case NETREG_UNREGISTERED: return " (unregistered)";
5187 	case NETREG_RELEASED: return " (released)";
5188 	case NETREG_DUMMY: return " (dummy)";
5189 	}
5190 
5191 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5192 	return " (unknown)";
5193 }
5194 
5195 #define MODULE_ALIAS_NETDEV(device) \
5196 	MODULE_ALIAS("netdev-" device)
5197 
5198 /*
5199  * netdev_WARN() acts like dev_printk(), but with the key difference
5200  * of using a WARN/WARN_ON to get the message out, including the
5201  * file/line information and a backtrace.
5202  */
5203 #define netdev_WARN(dev, format, args...)			\
5204 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5205 	     netdev_reg_state(dev), ##args)
5206 
5207 #define netdev_WARN_ONCE(dev, format, args...)				\
5208 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5209 		  netdev_reg_state(dev), ##args)
5210 
5211 /*
5212  *	The list of packet types we will receive (as opposed to discard)
5213  *	and the routines to invoke.
5214  *
5215  *	Why 16. Because with 16 the only overlap we get on a hash of the
5216  *	low nibble of the protocol value is RARP/SNAP/X.25.
5217  *
5218  *		0800	IP
5219  *		0001	802.3
5220  *		0002	AX.25
5221  *		0004	802.2
5222  *		8035	RARP
5223  *		0005	SNAP
5224  *		0805	X.25
5225  *		0806	ARP
5226  *		8137	IPX
5227  *		0009	Localtalk
5228  *		86DD	IPv6
5229  */
5230 #define PTYPE_HASH_SIZE	(16)
5231 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5232 
5233 extern struct list_head ptype_all __read_mostly;
5234 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5235 
5236 extern struct net_device *blackhole_netdev;
5237 
5238 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5239 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5240 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5241 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5242 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5243 
5244 #endif	/* _LINUX_NETDEVICE_H */
5245