xref: /linux-6.15/include/linux/netdevice.h (revision f26de110)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #ifdef CONFIG_DCB
45 #include <net/dcbnl.h>
46 #endif
47 #include <net/netprio_cgroup.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_switch_tree;
60 
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69 struct xdp_buff;
70 
71 void netdev_set_default_ethtool_ops(struct net_device *dev,
72 				    const struct ethtool_ops *ops);
73 
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
76 #define NET_RX_DROP		1	/* packet dropped */
77 
78 /*
79  * Transmit return codes: transmit return codes originate from three different
80  * namespaces:
81  *
82  * - qdisc return codes
83  * - driver transmit return codes
84  * - errno values
85  *
86  * Drivers are allowed to return any one of those in their hard_start_xmit()
87  * function. Real network devices commonly used with qdiscs should only return
88  * the driver transmit return codes though - when qdiscs are used, the actual
89  * transmission happens asynchronously, so the value is not propagated to
90  * higher layers. Virtual network devices transmit synchronously; in this case
91  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
92  * others are propagated to higher layers.
93  */
94 
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS	0x00
97 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
98 #define NET_XMIT_CN		0x02	/* congestion notification	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 };
115 typedef enum netdev_tx netdev_tx_t;
116 
117 /*
118  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
119  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
120  */
121 static inline bool dev_xmit_complete(int rc)
122 {
123 	/*
124 	 * Positive cases with an skb consumed by a driver:
125 	 * - successful transmission (rc == NETDEV_TX_OK)
126 	 * - error while transmitting (rc < 0)
127 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
128 	 */
129 	if (likely(rc < NET_XMIT_MASK))
130 		return true;
131 
132 	return false;
133 }
134 
135 /*
136  *	Compute the worst-case header length according to the protocols
137  *	used.
138  */
139 
140 #if defined(CONFIG_HYPERV_NET)
141 # define LL_MAX_HEADER 128
142 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
143 # if defined(CONFIG_MAC80211_MESH)
144 #  define LL_MAX_HEADER 128
145 # else
146 #  define LL_MAX_HEADER 96
147 # endif
148 #else
149 # define LL_MAX_HEADER 32
150 #endif
151 
152 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
153     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
154 #define MAX_HEADER LL_MAX_HEADER
155 #else
156 #define MAX_HEADER (LL_MAX_HEADER + 48)
157 #endif
158 
159 /*
160  *	Old network device statistics. Fields are native words
161  *	(unsigned long) so they can be read and written atomically.
162  */
163 
164 struct net_device_stats {
165 	unsigned long	rx_packets;
166 	unsigned long	tx_packets;
167 	unsigned long	rx_bytes;
168 	unsigned long	tx_bytes;
169 	unsigned long	rx_errors;
170 	unsigned long	tx_errors;
171 	unsigned long	rx_dropped;
172 	unsigned long	tx_dropped;
173 	unsigned long	multicast;
174 	unsigned long	collisions;
175 	unsigned long	rx_length_errors;
176 	unsigned long	rx_over_errors;
177 	unsigned long	rx_crc_errors;
178 	unsigned long	rx_frame_errors;
179 	unsigned long	rx_fifo_errors;
180 	unsigned long	rx_missed_errors;
181 	unsigned long	tx_aborted_errors;
182 	unsigned long	tx_carrier_errors;
183 	unsigned long	tx_fifo_errors;
184 	unsigned long	tx_heartbeat_errors;
185 	unsigned long	tx_window_errors;
186 	unsigned long	rx_compressed;
187 	unsigned long	tx_compressed;
188 };
189 
190 
191 #include <linux/cache.h>
192 #include <linux/skbuff.h>
193 
194 #ifdef CONFIG_RPS
195 #include <linux/static_key.h>
196 extern struct static_key rps_needed;
197 extern struct static_key rfs_needed;
198 #endif
199 
200 struct neighbour;
201 struct neigh_parms;
202 struct sk_buff;
203 
204 struct netdev_hw_addr {
205 	struct list_head	list;
206 	unsigned char		addr[MAX_ADDR_LEN];
207 	unsigned char		type;
208 #define NETDEV_HW_ADDR_T_LAN		1
209 #define NETDEV_HW_ADDR_T_SAN		2
210 #define NETDEV_HW_ADDR_T_SLAVE		3
211 #define NETDEV_HW_ADDR_T_UNICAST	4
212 #define NETDEV_HW_ADDR_T_MULTICAST	5
213 	bool			global_use;
214 	int			sync_cnt;
215 	int			refcount;
216 	int			synced;
217 	struct rcu_head		rcu_head;
218 };
219 
220 struct netdev_hw_addr_list {
221 	struct list_head	list;
222 	int			count;
223 };
224 
225 #define netdev_hw_addr_list_count(l) ((l)->count)
226 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
227 #define netdev_hw_addr_list_for_each(ha, l) \
228 	list_for_each_entry(ha, &(l)->list, list)
229 
230 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
231 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
232 #define netdev_for_each_uc_addr(ha, dev) \
233 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
234 
235 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
236 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
237 #define netdev_for_each_mc_addr(ha, dev) \
238 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
239 
240 struct hh_cache {
241 	unsigned int	hh_len;
242 	seqlock_t	hh_lock;
243 
244 	/* cached hardware header; allow for machine alignment needs.        */
245 #define HH_DATA_MOD	16
246 #define HH_DATA_OFF(__len) \
247 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
248 #define HH_DATA_ALIGN(__len) \
249 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
250 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
251 };
252 
253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
254  * Alternative is:
255  *   dev->hard_header_len ? (dev->hard_header_len +
256  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
257  *
258  * We could use other alignment values, but we must maintain the
259  * relationship HH alignment <= LL alignment.
260  */
261 #define LL_RESERVED_SPACE(dev) \
262 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
264 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
265 
266 struct header_ops {
267 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
268 			   unsigned short type, const void *daddr,
269 			   const void *saddr, unsigned int len);
270 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
271 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 	void	(*cache_update)(struct hh_cache *hh,
273 				const struct net_device *dev,
274 				const unsigned char *haddr);
275 	bool	(*validate)(const char *ll_header, unsigned int len);
276 };
277 
278 /* These flag bits are private to the generic network queueing
279  * layer; they may not be explicitly referenced by any other
280  * code.
281  */
282 
283 enum netdev_state_t {
284 	__LINK_STATE_START,
285 	__LINK_STATE_PRESENT,
286 	__LINK_STATE_NOCARRIER,
287 	__LINK_STATE_LINKWATCH_PENDING,
288 	__LINK_STATE_DORMANT,
289 };
290 
291 
292 /*
293  * This structure holds boot-time configured netdevice settings. They
294  * are then used in the device probing.
295  */
296 struct netdev_boot_setup {
297 	char name[IFNAMSIZ];
298 	struct ifmap map;
299 };
300 #define NETDEV_BOOT_SETUP_MAX 8
301 
302 int __init netdev_boot_setup(char *str);
303 
304 /*
305  * Structure for NAPI scheduling similar to tasklet but with weighting
306  */
307 struct napi_struct {
308 	/* The poll_list must only be managed by the entity which
309 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
310 	 * whoever atomically sets that bit can add this napi_struct
311 	 * to the per-CPU poll_list, and whoever clears that bit
312 	 * can remove from the list right before clearing the bit.
313 	 */
314 	struct list_head	poll_list;
315 
316 	unsigned long		state;
317 	int			weight;
318 	unsigned int		gro_count;
319 	int			(*poll)(struct napi_struct *, int);
320 #ifdef CONFIG_NETPOLL
321 	int			poll_owner;
322 #endif
323 	struct net_device	*dev;
324 	struct sk_buff		*gro_list;
325 	struct sk_buff		*skb;
326 	struct hrtimer		timer;
327 	struct list_head	dev_list;
328 	struct hlist_node	napi_hash_node;
329 	unsigned int		napi_id;
330 };
331 
332 enum {
333 	NAPI_STATE_SCHED,	/* Poll is scheduled */
334 	NAPI_STATE_MISSED,	/* reschedule a napi */
335 	NAPI_STATE_DISABLE,	/* Disable pending */
336 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
337 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
338 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
339 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
340 };
341 
342 enum {
343 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
344 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
345 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
346 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
347 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
348 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
349 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
350 };
351 
352 enum gro_result {
353 	GRO_MERGED,
354 	GRO_MERGED_FREE,
355 	GRO_HELD,
356 	GRO_NORMAL,
357 	GRO_DROP,
358 	GRO_CONSUMED,
359 };
360 typedef enum gro_result gro_result_t;
361 
362 /*
363  * enum rx_handler_result - Possible return values for rx_handlers.
364  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
365  * further.
366  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
367  * case skb->dev was changed by rx_handler.
368  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
369  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
370  *
371  * rx_handlers are functions called from inside __netif_receive_skb(), to do
372  * special processing of the skb, prior to delivery to protocol handlers.
373  *
374  * Currently, a net_device can only have a single rx_handler registered. Trying
375  * to register a second rx_handler will return -EBUSY.
376  *
377  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
378  * To unregister a rx_handler on a net_device, use
379  * netdev_rx_handler_unregister().
380  *
381  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
382  * do with the skb.
383  *
384  * If the rx_handler consumed the skb in some way, it should return
385  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
386  * the skb to be delivered in some other way.
387  *
388  * If the rx_handler changed skb->dev, to divert the skb to another
389  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
390  * new device will be called if it exists.
391  *
392  * If the rx_handler decides the skb should be ignored, it should return
393  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
394  * are registered on exact device (ptype->dev == skb->dev).
395  *
396  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
397  * delivered, it should return RX_HANDLER_PASS.
398  *
399  * A device without a registered rx_handler will behave as if rx_handler
400  * returned RX_HANDLER_PASS.
401  */
402 
403 enum rx_handler_result {
404 	RX_HANDLER_CONSUMED,
405 	RX_HANDLER_ANOTHER,
406 	RX_HANDLER_EXACT,
407 	RX_HANDLER_PASS,
408 };
409 typedef enum rx_handler_result rx_handler_result_t;
410 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
411 
412 void __napi_schedule(struct napi_struct *n);
413 void __napi_schedule_irqoff(struct napi_struct *n);
414 
415 static inline bool napi_disable_pending(struct napi_struct *n)
416 {
417 	return test_bit(NAPI_STATE_DISABLE, &n->state);
418 }
419 
420 bool napi_schedule_prep(struct napi_struct *n);
421 
422 /**
423  *	napi_schedule - schedule NAPI poll
424  *	@n: NAPI context
425  *
426  * Schedule NAPI poll routine to be called if it is not already
427  * running.
428  */
429 static inline void napi_schedule(struct napi_struct *n)
430 {
431 	if (napi_schedule_prep(n))
432 		__napi_schedule(n);
433 }
434 
435 /**
436  *	napi_schedule_irqoff - schedule NAPI poll
437  *	@n: NAPI context
438  *
439  * Variant of napi_schedule(), assuming hard irqs are masked.
440  */
441 static inline void napi_schedule_irqoff(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule_irqoff(n);
445 }
446 
447 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
448 static inline bool napi_reschedule(struct napi_struct *napi)
449 {
450 	if (napi_schedule_prep(napi)) {
451 		__napi_schedule(napi);
452 		return true;
453 	}
454 	return false;
455 }
456 
457 bool napi_complete_done(struct napi_struct *n, int work_done);
458 /**
459  *	napi_complete - NAPI processing complete
460  *	@n: NAPI context
461  *
462  * Mark NAPI processing as complete.
463  * Consider using napi_complete_done() instead.
464  * Return false if device should avoid rearming interrupts.
465  */
466 static inline bool napi_complete(struct napi_struct *n)
467 {
468 	return napi_complete_done(n, 0);
469 }
470 
471 /**
472  *	napi_hash_del - remove a NAPI from global table
473  *	@napi: NAPI context
474  *
475  * Warning: caller must observe RCU grace period
476  * before freeing memory containing @napi, if
477  * this function returns true.
478  * Note: core networking stack automatically calls it
479  * from netif_napi_del().
480  * Drivers might want to call this helper to combine all
481  * the needed RCU grace periods into a single one.
482  */
483 bool napi_hash_del(struct napi_struct *napi);
484 
485 /**
486  *	napi_disable - prevent NAPI from scheduling
487  *	@n: NAPI context
488  *
489  * Stop NAPI from being scheduled on this context.
490  * Waits till any outstanding processing completes.
491  */
492 void napi_disable(struct napi_struct *n);
493 
494 /**
495  *	napi_enable - enable NAPI scheduling
496  *	@n: NAPI context
497  *
498  * Resume NAPI from being scheduled on this context.
499  * Must be paired with napi_disable.
500  */
501 static inline void napi_enable(struct napi_struct *n)
502 {
503 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
504 	smp_mb__before_atomic();
505 	clear_bit(NAPI_STATE_SCHED, &n->state);
506 	clear_bit(NAPI_STATE_NPSVC, &n->state);
507 }
508 
509 /**
510  *	napi_synchronize - wait until NAPI is not running
511  *	@n: NAPI context
512  *
513  * Wait until NAPI is done being scheduled on this context.
514  * Waits till any outstanding processing completes but
515  * does not disable future activations.
516  */
517 static inline void napi_synchronize(const struct napi_struct *n)
518 {
519 	if (IS_ENABLED(CONFIG_SMP))
520 		while (test_bit(NAPI_STATE_SCHED, &n->state))
521 			msleep(1);
522 	else
523 		barrier();
524 }
525 
526 enum netdev_queue_state_t {
527 	__QUEUE_STATE_DRV_XOFF,
528 	__QUEUE_STATE_STACK_XOFF,
529 	__QUEUE_STATE_FROZEN,
530 };
531 
532 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
533 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
534 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
535 
536 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
537 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
538 					QUEUE_STATE_FROZEN)
539 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
540 					QUEUE_STATE_FROZEN)
541 
542 /*
543  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
544  * netif_tx_* functions below are used to manipulate this flag.  The
545  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
546  * queue independently.  The netif_xmit_*stopped functions below are called
547  * to check if the queue has been stopped by the driver or stack (either
548  * of the XOFF bits are set in the state).  Drivers should not need to call
549  * netif_xmit*stopped functions, they should only be using netif_tx_*.
550  */
551 
552 struct netdev_queue {
553 /*
554  * read-mostly part
555  */
556 	struct net_device	*dev;
557 	struct Qdisc __rcu	*qdisc;
558 	struct Qdisc		*qdisc_sleeping;
559 #ifdef CONFIG_SYSFS
560 	struct kobject		kobj;
561 #endif
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 	int			numa_node;
564 #endif
565 	unsigned long		tx_maxrate;
566 	/*
567 	 * Number of TX timeouts for this queue
568 	 * (/sys/class/net/DEV/Q/trans_timeout)
569 	 */
570 	unsigned long		trans_timeout;
571 /*
572  * write-mostly part
573  */
574 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
575 	int			xmit_lock_owner;
576 	/*
577 	 * Time (in jiffies) of last Tx
578 	 */
579 	unsigned long		trans_start;
580 
581 	unsigned long		state;
582 
583 #ifdef CONFIG_BQL
584 	struct dql		dql;
585 #endif
586 } ____cacheline_aligned_in_smp;
587 
588 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
589 {
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 	return q->numa_node;
592 #else
593 	return NUMA_NO_NODE;
594 #endif
595 }
596 
597 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	q->numa_node = node;
601 #endif
602 }
603 
604 #ifdef CONFIG_RPS
605 /*
606  * This structure holds an RPS map which can be of variable length.  The
607  * map is an array of CPUs.
608  */
609 struct rps_map {
610 	unsigned int len;
611 	struct rcu_head rcu;
612 	u16 cpus[0];
613 };
614 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
615 
616 /*
617  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
618  * tail pointer for that CPU's input queue at the time of last enqueue, and
619  * a hardware filter index.
620  */
621 struct rps_dev_flow {
622 	u16 cpu;
623 	u16 filter;
624 	unsigned int last_qtail;
625 };
626 #define RPS_NO_FILTER 0xffff
627 
628 /*
629  * The rps_dev_flow_table structure contains a table of flow mappings.
630  */
631 struct rps_dev_flow_table {
632 	unsigned int mask;
633 	struct rcu_head rcu;
634 	struct rps_dev_flow flows[0];
635 };
636 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
637     ((_num) * sizeof(struct rps_dev_flow)))
638 
639 /*
640  * The rps_sock_flow_table contains mappings of flows to the last CPU
641  * on which they were processed by the application (set in recvmsg).
642  * Each entry is a 32bit value. Upper part is the high-order bits
643  * of flow hash, lower part is CPU number.
644  * rps_cpu_mask is used to partition the space, depending on number of
645  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
646  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
647  * meaning we use 32-6=26 bits for the hash.
648  */
649 struct rps_sock_flow_table {
650 	u32	mask;
651 
652 	u32	ents[0] ____cacheline_aligned_in_smp;
653 };
654 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
655 
656 #define RPS_NO_CPU 0xffff
657 
658 extern u32 rps_cpu_mask;
659 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
660 
661 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
662 					u32 hash)
663 {
664 	if (table && hash) {
665 		unsigned int index = hash & table->mask;
666 		u32 val = hash & ~rps_cpu_mask;
667 
668 		/* We only give a hint, preemption can change CPU under us */
669 		val |= raw_smp_processor_id();
670 
671 		if (table->ents[index] != val)
672 			table->ents[index] = val;
673 	}
674 }
675 
676 #ifdef CONFIG_RFS_ACCEL
677 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
678 			 u16 filter_id);
679 #endif
680 #endif /* CONFIG_RPS */
681 
682 /* This structure contains an instance of an RX queue. */
683 struct netdev_rx_queue {
684 #ifdef CONFIG_RPS
685 	struct rps_map __rcu		*rps_map;
686 	struct rps_dev_flow_table __rcu	*rps_flow_table;
687 #endif
688 	struct kobject			kobj;
689 	struct net_device		*dev;
690 } ____cacheline_aligned_in_smp;
691 
692 /*
693  * RX queue sysfs structures and functions.
694  */
695 struct rx_queue_attribute {
696 	struct attribute attr;
697 	ssize_t (*show)(struct netdev_rx_queue *queue,
698 	    struct rx_queue_attribute *attr, char *buf);
699 	ssize_t (*store)(struct netdev_rx_queue *queue,
700 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
701 };
702 
703 #ifdef CONFIG_XPS
704 /*
705  * This structure holds an XPS map which can be of variable length.  The
706  * map is an array of queues.
707  */
708 struct xps_map {
709 	unsigned int len;
710 	unsigned int alloc_len;
711 	struct rcu_head rcu;
712 	u16 queues[0];
713 };
714 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
715 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
716        - sizeof(struct xps_map)) / sizeof(u16))
717 
718 /*
719  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
720  */
721 struct xps_dev_maps {
722 	struct rcu_head rcu;
723 	struct xps_map __rcu *cpu_map[0];
724 };
725 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
726 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
727 #endif /* CONFIG_XPS */
728 
729 #define TC_MAX_QUEUE	16
730 #define TC_BITMASK	15
731 /* HW offloaded queuing disciplines txq count and offset maps */
732 struct netdev_tc_txq {
733 	u16 count;
734 	u16 offset;
735 };
736 
737 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
738 /*
739  * This structure is to hold information about the device
740  * configured to run FCoE protocol stack.
741  */
742 struct netdev_fcoe_hbainfo {
743 	char	manufacturer[64];
744 	char	serial_number[64];
745 	char	hardware_version[64];
746 	char	driver_version[64];
747 	char	optionrom_version[64];
748 	char	firmware_version[64];
749 	char	model[256];
750 	char	model_description[256];
751 };
752 #endif
753 
754 #define MAX_PHYS_ITEM_ID_LEN 32
755 
756 /* This structure holds a unique identifier to identify some
757  * physical item (port for example) used by a netdevice.
758  */
759 struct netdev_phys_item_id {
760 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
761 	unsigned char id_len;
762 };
763 
764 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
765 					    struct netdev_phys_item_id *b)
766 {
767 	return a->id_len == b->id_len &&
768 	       memcmp(a->id, b->id, a->id_len) == 0;
769 }
770 
771 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
772 				       struct sk_buff *skb);
773 
774 enum tc_setup_type {
775 	TC_SETUP_MQPRIO,
776 	TC_SETUP_CLSU32,
777 	TC_SETUP_CLSFLOWER,
778 	TC_SETUP_CLSMATCHALL,
779 	TC_SETUP_CLSBPF,
780 };
781 
782 /* These structures hold the attributes of xdp state that are being passed
783  * to the netdevice through the xdp op.
784  */
785 enum xdp_netdev_command {
786 	/* Set or clear a bpf program used in the earliest stages of packet
787 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
788 	 * is responsible for calling bpf_prog_put on any old progs that are
789 	 * stored. In case of error, the callee need not release the new prog
790 	 * reference, but on success it takes ownership and must bpf_prog_put
791 	 * when it is no longer used.
792 	 */
793 	XDP_SETUP_PROG,
794 	XDP_SETUP_PROG_HW,
795 	/* Check if a bpf program is set on the device.  The callee should
796 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
797 	 * is equivalent to XDP_ATTACHED_DRV.
798 	 */
799 	XDP_QUERY_PROG,
800 };
801 
802 struct netlink_ext_ack;
803 
804 struct netdev_xdp {
805 	enum xdp_netdev_command command;
806 	union {
807 		/* XDP_SETUP_PROG */
808 		struct {
809 			u32 flags;
810 			struct bpf_prog *prog;
811 			struct netlink_ext_ack *extack;
812 		};
813 		/* XDP_QUERY_PROG */
814 		struct {
815 			u8 prog_attached;
816 			u32 prog_id;
817 		};
818 	};
819 };
820 
821 #ifdef CONFIG_XFRM_OFFLOAD
822 struct xfrmdev_ops {
823 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
824 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
825 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
826 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
827 				       struct xfrm_state *x);
828 };
829 #endif
830 
831 /*
832  * This structure defines the management hooks for network devices.
833  * The following hooks can be defined; unless noted otherwise, they are
834  * optional and can be filled with a null pointer.
835  *
836  * int (*ndo_init)(struct net_device *dev);
837  *     This function is called once when a network device is registered.
838  *     The network device can use this for any late stage initialization
839  *     or semantic validation. It can fail with an error code which will
840  *     be propagated back to register_netdev.
841  *
842  * void (*ndo_uninit)(struct net_device *dev);
843  *     This function is called when device is unregistered or when registration
844  *     fails. It is not called if init fails.
845  *
846  * int (*ndo_open)(struct net_device *dev);
847  *     This function is called when a network device transitions to the up
848  *     state.
849  *
850  * int (*ndo_stop)(struct net_device *dev);
851  *     This function is called when a network device transitions to the down
852  *     state.
853  *
854  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
855  *                               struct net_device *dev);
856  *	Called when a packet needs to be transmitted.
857  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
858  *	the queue before that can happen; it's for obsolete devices and weird
859  *	corner cases, but the stack really does a non-trivial amount
860  *	of useless work if you return NETDEV_TX_BUSY.
861  *	Required; cannot be NULL.
862  *
863  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
864  *					   struct net_device *dev
865  *					   netdev_features_t features);
866  *	Called by core transmit path to determine if device is capable of
867  *	performing offload operations on a given packet. This is to give
868  *	the device an opportunity to implement any restrictions that cannot
869  *	be otherwise expressed by feature flags. The check is called with
870  *	the set of features that the stack has calculated and it returns
871  *	those the driver believes to be appropriate.
872  *
873  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
874  *                         void *accel_priv, select_queue_fallback_t fallback);
875  *	Called to decide which queue to use when device supports multiple
876  *	transmit queues.
877  *
878  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
879  *	This function is called to allow device receiver to make
880  *	changes to configuration when multicast or promiscuous is enabled.
881  *
882  * void (*ndo_set_rx_mode)(struct net_device *dev);
883  *	This function is called device changes address list filtering.
884  *	If driver handles unicast address filtering, it should set
885  *	IFF_UNICAST_FLT in its priv_flags.
886  *
887  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
888  *	This function  is called when the Media Access Control address
889  *	needs to be changed. If this interface is not defined, the
890  *	MAC address can not be changed.
891  *
892  * int (*ndo_validate_addr)(struct net_device *dev);
893  *	Test if Media Access Control address is valid for the device.
894  *
895  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
896  *	Called when a user requests an ioctl which can't be handled by
897  *	the generic interface code. If not defined ioctls return
898  *	not supported error code.
899  *
900  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
901  *	Used to set network devices bus interface parameters. This interface
902  *	is retained for legacy reasons; new devices should use the bus
903  *	interface (PCI) for low level management.
904  *
905  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
906  *	Called when a user wants to change the Maximum Transfer Unit
907  *	of a device.
908  *
909  * void (*ndo_tx_timeout)(struct net_device *dev);
910  *	Callback used when the transmitter has not made any progress
911  *	for dev->watchdog ticks.
912  *
913  * void (*ndo_get_stats64)(struct net_device *dev,
914  *                         struct rtnl_link_stats64 *storage);
915  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
916  *	Called when a user wants to get the network device usage
917  *	statistics. Drivers must do one of the following:
918  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
919  *	   rtnl_link_stats64 structure passed by the caller.
920  *	2. Define @ndo_get_stats to update a net_device_stats structure
921  *	   (which should normally be dev->stats) and return a pointer to
922  *	   it. The structure may be changed asynchronously only if each
923  *	   field is written atomically.
924  *	3. Update dev->stats asynchronously and atomically, and define
925  *	   neither operation.
926  *
927  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
928  *	Return true if this device supports offload stats of this attr_id.
929  *
930  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
931  *	void *attr_data)
932  *	Get statistics for offload operations by attr_id. Write it into the
933  *	attr_data pointer.
934  *
935  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
936  *	If device supports VLAN filtering this function is called when a
937  *	VLAN id is registered.
938  *
939  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
940  *	If device supports VLAN filtering this function is called when a
941  *	VLAN id is unregistered.
942  *
943  * void (*ndo_poll_controller)(struct net_device *dev);
944  *
945  *	SR-IOV management functions.
946  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
947  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
948  *			  u8 qos, __be16 proto);
949  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
950  *			  int max_tx_rate);
951  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
952  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
953  * int (*ndo_get_vf_config)(struct net_device *dev,
954  *			    int vf, struct ifla_vf_info *ivf);
955  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
956  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
957  *			  struct nlattr *port[]);
958  *
959  *      Enable or disable the VF ability to query its RSS Redirection Table and
960  *      Hash Key. This is needed since on some devices VF share this information
961  *      with PF and querying it may introduce a theoretical security risk.
962  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
963  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
964  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
965  *		       void *type_data);
966  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
967  *	This is always called from the stack with the rtnl lock held and netif
968  *	tx queues stopped. This allows the netdevice to perform queue
969  *	management safely.
970  *
971  *	Fiber Channel over Ethernet (FCoE) offload functions.
972  * int (*ndo_fcoe_enable)(struct net_device *dev);
973  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
974  *	so the underlying device can perform whatever needed configuration or
975  *	initialization to support acceleration of FCoE traffic.
976  *
977  * int (*ndo_fcoe_disable)(struct net_device *dev);
978  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
979  *	so the underlying device can perform whatever needed clean-ups to
980  *	stop supporting acceleration of FCoE traffic.
981  *
982  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
983  *			     struct scatterlist *sgl, unsigned int sgc);
984  *	Called when the FCoE Initiator wants to initialize an I/O that
985  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
986  *	perform necessary setup and returns 1 to indicate the device is set up
987  *	successfully to perform DDP on this I/O, otherwise this returns 0.
988  *
989  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
990  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
991  *	indicated by the FC exchange id 'xid', so the underlying device can
992  *	clean up and reuse resources for later DDP requests.
993  *
994  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
995  *			      struct scatterlist *sgl, unsigned int sgc);
996  *	Called when the FCoE Target wants to initialize an I/O that
997  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
998  *	perform necessary setup and returns 1 to indicate the device is set up
999  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1000  *
1001  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1002  *			       struct netdev_fcoe_hbainfo *hbainfo);
1003  *	Called when the FCoE Protocol stack wants information on the underlying
1004  *	device. This information is utilized by the FCoE protocol stack to
1005  *	register attributes with Fiber Channel management service as per the
1006  *	FC-GS Fabric Device Management Information(FDMI) specification.
1007  *
1008  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1009  *	Called when the underlying device wants to override default World Wide
1010  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1011  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1012  *	protocol stack to use.
1013  *
1014  *	RFS acceleration.
1015  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1016  *			    u16 rxq_index, u32 flow_id);
1017  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1018  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1019  *	Return the filter ID on success, or a negative error code.
1020  *
1021  *	Slave management functions (for bridge, bonding, etc).
1022  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1023  *	Called to make another netdev an underling.
1024  *
1025  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1026  *	Called to release previously enslaved netdev.
1027  *
1028  *      Feature/offload setting functions.
1029  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1030  *		netdev_features_t features);
1031  *	Adjusts the requested feature flags according to device-specific
1032  *	constraints, and returns the resulting flags. Must not modify
1033  *	the device state.
1034  *
1035  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1036  *	Called to update device configuration to new features. Passed
1037  *	feature set might be less than what was returned by ndo_fix_features()).
1038  *	Must return >0 or -errno if it changed dev->features itself.
1039  *
1040  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1041  *		      struct net_device *dev,
1042  *		      const unsigned char *addr, u16 vid, u16 flags)
1043  *	Adds an FDB entry to dev for addr.
1044  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1045  *		      struct net_device *dev,
1046  *		      const unsigned char *addr, u16 vid)
1047  *	Deletes the FDB entry from dev coresponding to addr.
1048  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1049  *		       struct net_device *dev, struct net_device *filter_dev,
1050  *		       int *idx)
1051  *	Used to add FDB entries to dump requests. Implementers should add
1052  *	entries to skb and update idx with the number of entries.
1053  *
1054  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1055  *			     u16 flags)
1056  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1057  *			     struct net_device *dev, u32 filter_mask,
1058  *			     int nlflags)
1059  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1060  *			     u16 flags);
1061  *
1062  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1063  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1064  *	which do not represent real hardware may define this to allow their
1065  *	userspace components to manage their virtual carrier state. Devices
1066  *	that determine carrier state from physical hardware properties (eg
1067  *	network cables) or protocol-dependent mechanisms (eg
1068  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1069  *
1070  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1071  *			       struct netdev_phys_item_id *ppid);
1072  *	Called to get ID of physical port of this device. If driver does
1073  *	not implement this, it is assumed that the hw is not able to have
1074  *	multiple net devices on single physical port.
1075  *
1076  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1077  *			      struct udp_tunnel_info *ti);
1078  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1079  *	address family that a UDP tunnel is listnening to. It is called only
1080  *	when a new port starts listening. The operation is protected by the
1081  *	RTNL.
1082  *
1083  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1084  *			      struct udp_tunnel_info *ti);
1085  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1086  *	address family that the UDP tunnel is not listening to anymore. The
1087  *	operation is protected by the RTNL.
1088  *
1089  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1090  *				 struct net_device *dev)
1091  *	Called by upper layer devices to accelerate switching or other
1092  *	station functionality into hardware. 'pdev is the lowerdev
1093  *	to use for the offload and 'dev' is the net device that will
1094  *	back the offload. Returns a pointer to the private structure
1095  *	the upper layer will maintain.
1096  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1097  *	Called by upper layer device to delete the station created
1098  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1099  *	the station and priv is the structure returned by the add
1100  *	operation.
1101  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1102  *			     int queue_index, u32 maxrate);
1103  *	Called when a user wants to set a max-rate limitation of specific
1104  *	TX queue.
1105  * int (*ndo_get_iflink)(const struct net_device *dev);
1106  *	Called to get the iflink value of this device.
1107  * void (*ndo_change_proto_down)(struct net_device *dev,
1108  *				 bool proto_down);
1109  *	This function is used to pass protocol port error state information
1110  *	to the switch driver. The switch driver can react to the proto_down
1111  *      by doing a phys down on the associated switch port.
1112  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1113  *	This function is used to get egress tunnel information for given skb.
1114  *	This is useful for retrieving outer tunnel header parameters while
1115  *	sampling packet.
1116  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1117  *	This function is used to specify the headroom that the skb must
1118  *	consider when allocation skb during packet reception. Setting
1119  *	appropriate rx headroom value allows avoiding skb head copy on
1120  *	forward. Setting a negative value resets the rx headroom to the
1121  *	default value.
1122  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1123  *	This function is used to set or query state related to XDP on the
1124  *	netdevice. See definition of enum xdp_netdev_command for details.
1125  * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1126  *	This function is used to submit a XDP packet for transmit on a
1127  *	netdevice.
1128  * void (*ndo_xdp_flush)(struct net_device *dev);
1129  *	This function is used to inform the driver to flush a paticular
1130  *	xpd tx queue. Must be called on same CPU as xdp_xmit.
1131  */
1132 struct net_device_ops {
1133 	int			(*ndo_init)(struct net_device *dev);
1134 	void			(*ndo_uninit)(struct net_device *dev);
1135 	int			(*ndo_open)(struct net_device *dev);
1136 	int			(*ndo_stop)(struct net_device *dev);
1137 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1138 						  struct net_device *dev);
1139 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1140 						      struct net_device *dev,
1141 						      netdev_features_t features);
1142 	u16			(*ndo_select_queue)(struct net_device *dev,
1143 						    struct sk_buff *skb,
1144 						    void *accel_priv,
1145 						    select_queue_fallback_t fallback);
1146 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1147 						       int flags);
1148 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1149 	int			(*ndo_set_mac_address)(struct net_device *dev,
1150 						       void *addr);
1151 	int			(*ndo_validate_addr)(struct net_device *dev);
1152 	int			(*ndo_do_ioctl)(struct net_device *dev,
1153 					        struct ifreq *ifr, int cmd);
1154 	int			(*ndo_set_config)(struct net_device *dev,
1155 					          struct ifmap *map);
1156 	int			(*ndo_change_mtu)(struct net_device *dev,
1157 						  int new_mtu);
1158 	int			(*ndo_neigh_setup)(struct net_device *dev,
1159 						   struct neigh_parms *);
1160 	void			(*ndo_tx_timeout) (struct net_device *dev);
1161 
1162 	void			(*ndo_get_stats64)(struct net_device *dev,
1163 						   struct rtnl_link_stats64 *storage);
1164 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1165 	int			(*ndo_get_offload_stats)(int attr_id,
1166 							 const struct net_device *dev,
1167 							 void *attr_data);
1168 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1169 
1170 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1171 						       __be16 proto, u16 vid);
1172 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1173 						        __be16 proto, u16 vid);
1174 #ifdef CONFIG_NET_POLL_CONTROLLER
1175 	void                    (*ndo_poll_controller)(struct net_device *dev);
1176 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1177 						     struct netpoll_info *info);
1178 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1179 #endif
1180 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1181 						  int queue, u8 *mac);
1182 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1183 						   int queue, u16 vlan,
1184 						   u8 qos, __be16 proto);
1185 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1186 						   int vf, int min_tx_rate,
1187 						   int max_tx_rate);
1188 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1189 						       int vf, bool setting);
1190 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1191 						    int vf, bool setting);
1192 	int			(*ndo_get_vf_config)(struct net_device *dev,
1193 						     int vf,
1194 						     struct ifla_vf_info *ivf);
1195 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1196 							 int vf, int link_state);
1197 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1198 						    int vf,
1199 						    struct ifla_vf_stats
1200 						    *vf_stats);
1201 	int			(*ndo_set_vf_port)(struct net_device *dev,
1202 						   int vf,
1203 						   struct nlattr *port[]);
1204 	int			(*ndo_get_vf_port)(struct net_device *dev,
1205 						   int vf, struct sk_buff *skb);
1206 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1207 						   int vf, u64 guid,
1208 						   int guid_type);
1209 	int			(*ndo_set_vf_rss_query_en)(
1210 						   struct net_device *dev,
1211 						   int vf, bool setting);
1212 	int			(*ndo_setup_tc)(struct net_device *dev,
1213 						enum tc_setup_type type,
1214 						void *type_data);
1215 #if IS_ENABLED(CONFIG_FCOE)
1216 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1217 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1218 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1219 						      u16 xid,
1220 						      struct scatterlist *sgl,
1221 						      unsigned int sgc);
1222 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1223 						     u16 xid);
1224 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1225 						       u16 xid,
1226 						       struct scatterlist *sgl,
1227 						       unsigned int sgc);
1228 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1229 							struct netdev_fcoe_hbainfo *hbainfo);
1230 #endif
1231 
1232 #if IS_ENABLED(CONFIG_LIBFCOE)
1233 #define NETDEV_FCOE_WWNN 0
1234 #define NETDEV_FCOE_WWPN 1
1235 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1236 						    u64 *wwn, int type);
1237 #endif
1238 
1239 #ifdef CONFIG_RFS_ACCEL
1240 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1241 						     const struct sk_buff *skb,
1242 						     u16 rxq_index,
1243 						     u32 flow_id);
1244 #endif
1245 	int			(*ndo_add_slave)(struct net_device *dev,
1246 						 struct net_device *slave_dev);
1247 	int			(*ndo_del_slave)(struct net_device *dev,
1248 						 struct net_device *slave_dev);
1249 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1250 						    netdev_features_t features);
1251 	int			(*ndo_set_features)(struct net_device *dev,
1252 						    netdev_features_t features);
1253 	int			(*ndo_neigh_construct)(struct net_device *dev,
1254 						       struct neighbour *n);
1255 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1256 						     struct neighbour *n);
1257 
1258 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1259 					       struct nlattr *tb[],
1260 					       struct net_device *dev,
1261 					       const unsigned char *addr,
1262 					       u16 vid,
1263 					       u16 flags);
1264 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1265 					       struct nlattr *tb[],
1266 					       struct net_device *dev,
1267 					       const unsigned char *addr,
1268 					       u16 vid);
1269 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1270 						struct netlink_callback *cb,
1271 						struct net_device *dev,
1272 						struct net_device *filter_dev,
1273 						int *idx);
1274 
1275 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1276 						      struct nlmsghdr *nlh,
1277 						      u16 flags);
1278 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1279 						      u32 pid, u32 seq,
1280 						      struct net_device *dev,
1281 						      u32 filter_mask,
1282 						      int nlflags);
1283 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1284 						      struct nlmsghdr *nlh,
1285 						      u16 flags);
1286 	int			(*ndo_change_carrier)(struct net_device *dev,
1287 						      bool new_carrier);
1288 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1289 							struct netdev_phys_item_id *ppid);
1290 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1291 							  char *name, size_t len);
1292 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1293 						      struct udp_tunnel_info *ti);
1294 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1295 						      struct udp_tunnel_info *ti);
1296 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1297 							struct net_device *dev);
1298 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1299 							void *priv);
1300 
1301 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1302 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1303 						      int queue_index,
1304 						      u32 maxrate);
1305 	int			(*ndo_get_iflink)(const struct net_device *dev);
1306 	int			(*ndo_change_proto_down)(struct net_device *dev,
1307 							 bool proto_down);
1308 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1309 						       struct sk_buff *skb);
1310 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1311 						       int needed_headroom);
1312 	int			(*ndo_xdp)(struct net_device *dev,
1313 					   struct netdev_xdp *xdp);
1314 	int			(*ndo_xdp_xmit)(struct net_device *dev,
1315 						struct xdp_buff *xdp);
1316 	void			(*ndo_xdp_flush)(struct net_device *dev);
1317 };
1318 
1319 /**
1320  * enum net_device_priv_flags - &struct net_device priv_flags
1321  *
1322  * These are the &struct net_device, they are only set internally
1323  * by drivers and used in the kernel. These flags are invisible to
1324  * userspace; this means that the order of these flags can change
1325  * during any kernel release.
1326  *
1327  * You should have a pretty good reason to be extending these flags.
1328  *
1329  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1330  * @IFF_EBRIDGE: Ethernet bridging device
1331  * @IFF_BONDING: bonding master or slave
1332  * @IFF_ISATAP: ISATAP interface (RFC4214)
1333  * @IFF_WAN_HDLC: WAN HDLC device
1334  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1335  *	release skb->dst
1336  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1337  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1338  * @IFF_MACVLAN_PORT: device used as macvlan port
1339  * @IFF_BRIDGE_PORT: device used as bridge port
1340  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1341  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1342  * @IFF_UNICAST_FLT: Supports unicast filtering
1343  * @IFF_TEAM_PORT: device used as team port
1344  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1345  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1346  *	change when it's running
1347  * @IFF_MACVLAN: Macvlan device
1348  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1349  *	underlying stacked devices
1350  * @IFF_IPVLAN_MASTER: IPvlan master device
1351  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1352  * @IFF_L3MDEV_MASTER: device is an L3 master device
1353  * @IFF_NO_QUEUE: device can run without qdisc attached
1354  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1355  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1356  * @IFF_TEAM: device is a team device
1357  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1358  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1359  *	entity (i.e. the master device for bridged veth)
1360  * @IFF_MACSEC: device is a MACsec device
1361  */
1362 enum netdev_priv_flags {
1363 	IFF_802_1Q_VLAN			= 1<<0,
1364 	IFF_EBRIDGE			= 1<<1,
1365 	IFF_BONDING			= 1<<2,
1366 	IFF_ISATAP			= 1<<3,
1367 	IFF_WAN_HDLC			= 1<<4,
1368 	IFF_XMIT_DST_RELEASE		= 1<<5,
1369 	IFF_DONT_BRIDGE			= 1<<6,
1370 	IFF_DISABLE_NETPOLL		= 1<<7,
1371 	IFF_MACVLAN_PORT		= 1<<8,
1372 	IFF_BRIDGE_PORT			= 1<<9,
1373 	IFF_OVS_DATAPATH		= 1<<10,
1374 	IFF_TX_SKB_SHARING		= 1<<11,
1375 	IFF_UNICAST_FLT			= 1<<12,
1376 	IFF_TEAM_PORT			= 1<<13,
1377 	IFF_SUPP_NOFCS			= 1<<14,
1378 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1379 	IFF_MACVLAN			= 1<<16,
1380 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1381 	IFF_IPVLAN_MASTER		= 1<<18,
1382 	IFF_IPVLAN_SLAVE		= 1<<19,
1383 	IFF_L3MDEV_MASTER		= 1<<20,
1384 	IFF_NO_QUEUE			= 1<<21,
1385 	IFF_OPENVSWITCH			= 1<<22,
1386 	IFF_L3MDEV_SLAVE		= 1<<23,
1387 	IFF_TEAM			= 1<<24,
1388 	IFF_RXFH_CONFIGURED		= 1<<25,
1389 	IFF_PHONY_HEADROOM		= 1<<26,
1390 	IFF_MACSEC			= 1<<27,
1391 };
1392 
1393 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1394 #define IFF_EBRIDGE			IFF_EBRIDGE
1395 #define IFF_BONDING			IFF_BONDING
1396 #define IFF_ISATAP			IFF_ISATAP
1397 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1398 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1399 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1400 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1401 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1402 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1403 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1404 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1405 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1406 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1407 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1408 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1409 #define IFF_MACVLAN			IFF_MACVLAN
1410 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1411 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1412 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1413 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1414 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1415 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1416 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1417 #define IFF_TEAM			IFF_TEAM
1418 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1419 #define IFF_MACSEC			IFF_MACSEC
1420 
1421 /**
1422  *	struct net_device - The DEVICE structure.
1423  *
1424  *	Actually, this whole structure is a big mistake.  It mixes I/O
1425  *	data with strictly "high-level" data, and it has to know about
1426  *	almost every data structure used in the INET module.
1427  *
1428  *	@name:	This is the first field of the "visible" part of this structure
1429  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1430  *		of the interface.
1431  *
1432  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1433  *	@ifalias:	SNMP alias
1434  *	@mem_end:	Shared memory end
1435  *	@mem_start:	Shared memory start
1436  *	@base_addr:	Device I/O address
1437  *	@irq:		Device IRQ number
1438  *
1439  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1440  *
1441  *	@state:		Generic network queuing layer state, see netdev_state_t
1442  *	@dev_list:	The global list of network devices
1443  *	@napi_list:	List entry used for polling NAPI devices
1444  *	@unreg_list:	List entry  when we are unregistering the
1445  *			device; see the function unregister_netdev
1446  *	@close_list:	List entry used when we are closing the device
1447  *	@ptype_all:     Device-specific packet handlers for all protocols
1448  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1449  *
1450  *	@adj_list:	Directly linked devices, like slaves for bonding
1451  *	@features:	Currently active device features
1452  *	@hw_features:	User-changeable features
1453  *
1454  *	@wanted_features:	User-requested features
1455  *	@vlan_features:		Mask of features inheritable by VLAN devices
1456  *
1457  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1458  *				This field indicates what encapsulation
1459  *				offloads the hardware is capable of doing,
1460  *				and drivers will need to set them appropriately.
1461  *
1462  *	@mpls_features:	Mask of features inheritable by MPLS
1463  *
1464  *	@ifindex:	interface index
1465  *	@group:		The group the device belongs to
1466  *
1467  *	@stats:		Statistics struct, which was left as a legacy, use
1468  *			rtnl_link_stats64 instead
1469  *
1470  *	@rx_dropped:	Dropped packets by core network,
1471  *			do not use this in drivers
1472  *	@tx_dropped:	Dropped packets by core network,
1473  *			do not use this in drivers
1474  *	@rx_nohandler:	nohandler dropped packets by core network on
1475  *			inactive devices, do not use this in drivers
1476  *
1477  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1478  *				instead of ioctl,
1479  *				see <net/iw_handler.h> for details.
1480  *	@wireless_data:	Instance data managed by the core of wireless extensions
1481  *
1482  *	@netdev_ops:	Includes several pointers to callbacks,
1483  *			if one wants to override the ndo_*() functions
1484  *	@ethtool_ops:	Management operations
1485  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1486  *			discovery handling. Necessary for e.g. 6LoWPAN.
1487  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1488  *			of Layer 2 headers.
1489  *
1490  *	@flags:		Interface flags (a la BSD)
1491  *	@priv_flags:	Like 'flags' but invisible to userspace,
1492  *			see if.h for the definitions
1493  *	@gflags:	Global flags ( kept as legacy )
1494  *	@padded:	How much padding added by alloc_netdev()
1495  *	@operstate:	RFC2863 operstate
1496  *	@link_mode:	Mapping policy to operstate
1497  *	@if_port:	Selectable AUI, TP, ...
1498  *	@dma:		DMA channel
1499  *	@mtu:		Interface MTU value
1500  *	@min_mtu:	Interface Minimum MTU value
1501  *	@max_mtu:	Interface Maximum MTU value
1502  *	@type:		Interface hardware type
1503  *	@hard_header_len: Maximum hardware header length.
1504  *	@min_header_len:  Minimum hardware header length
1505  *
1506  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1507  *			  cases can this be guaranteed
1508  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1509  *			  cases can this be guaranteed. Some cases also use
1510  *			  LL_MAX_HEADER instead to allocate the skb
1511  *
1512  *	interface address info:
1513  *
1514  * 	@perm_addr:		Permanent hw address
1515  * 	@addr_assign_type:	Hw address assignment type
1516  * 	@addr_len:		Hardware address length
1517  *	@neigh_priv_len:	Used in neigh_alloc()
1518  * 	@dev_id:		Used to differentiate devices that share
1519  * 				the same link layer address
1520  * 	@dev_port:		Used to differentiate devices that share
1521  * 				the same function
1522  *	@addr_list_lock:	XXX: need comments on this one
1523  *	@uc_promisc:		Counter that indicates promiscuous mode
1524  *				has been enabled due to the need to listen to
1525  *				additional unicast addresses in a device that
1526  *				does not implement ndo_set_rx_mode()
1527  *	@uc:			unicast mac addresses
1528  *	@mc:			multicast mac addresses
1529  *	@dev_addrs:		list of device hw addresses
1530  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1531  *	@promiscuity:		Number of times the NIC is told to work in
1532  *				promiscuous mode; if it becomes 0 the NIC will
1533  *				exit promiscuous mode
1534  *	@allmulti:		Counter, enables or disables allmulticast mode
1535  *
1536  *	@vlan_info:	VLAN info
1537  *	@dsa_ptr:	dsa specific data
1538  *	@tipc_ptr:	TIPC specific data
1539  *	@atalk_ptr:	AppleTalk link
1540  *	@ip_ptr:	IPv4 specific data
1541  *	@dn_ptr:	DECnet specific data
1542  *	@ip6_ptr:	IPv6 specific data
1543  *	@ax25_ptr:	AX.25 specific data
1544  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1545  *
1546  *	@dev_addr:	Hw address (before bcast,
1547  *			because most packets are unicast)
1548  *
1549  *	@_rx:			Array of RX queues
1550  *	@num_rx_queues:		Number of RX queues
1551  *				allocated at register_netdev() time
1552  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1553  *
1554  *	@rx_handler:		handler for received packets
1555  *	@rx_handler_data: 	XXX: need comments on this one
1556  *	@ingress_queue:		XXX: need comments on this one
1557  *	@broadcast:		hw bcast address
1558  *
1559  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1560  *			indexed by RX queue number. Assigned by driver.
1561  *			This must only be set if the ndo_rx_flow_steer
1562  *			operation is defined
1563  *	@index_hlist:		Device index hash chain
1564  *
1565  *	@_tx:			Array of TX queues
1566  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1567  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1568  *	@qdisc:			Root qdisc from userspace point of view
1569  *	@tx_queue_len:		Max frames per queue allowed
1570  *	@tx_global_lock: 	XXX: need comments on this one
1571  *
1572  *	@xps_maps:	XXX: need comments on this one
1573  *
1574  *	@watchdog_timeo:	Represents the timeout that is used by
1575  *				the watchdog (see dev_watchdog())
1576  *	@watchdog_timer:	List of timers
1577  *
1578  *	@pcpu_refcnt:		Number of references to this device
1579  *	@todo_list:		Delayed register/unregister
1580  *	@link_watch_list:	XXX: need comments on this one
1581  *
1582  *	@reg_state:		Register/unregister state machine
1583  *	@dismantle:		Device is going to be freed
1584  *	@rtnl_link_state:	This enum represents the phases of creating
1585  *				a new link
1586  *
1587  *	@needs_free_netdev:	Should unregister perform free_netdev?
1588  *	@priv_destructor:	Called from unregister
1589  *	@npinfo:		XXX: need comments on this one
1590  * 	@nd_net:		Network namespace this network device is inside
1591  *
1592  * 	@ml_priv:	Mid-layer private
1593  * 	@lstats:	Loopback statistics
1594  * 	@tstats:	Tunnel statistics
1595  * 	@dstats:	Dummy statistics
1596  * 	@vstats:	Virtual ethernet statistics
1597  *
1598  *	@garp_port:	GARP
1599  *	@mrp_port:	MRP
1600  *
1601  *	@dev:		Class/net/name entry
1602  *	@sysfs_groups:	Space for optional device, statistics and wireless
1603  *			sysfs groups
1604  *
1605  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1606  *	@rtnl_link_ops:	Rtnl_link_ops
1607  *
1608  *	@gso_max_size:	Maximum size of generic segmentation offload
1609  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1610  *			NIC for GSO
1611  *
1612  *	@dcbnl_ops:	Data Center Bridging netlink ops
1613  *	@num_tc:	Number of traffic classes in the net device
1614  *	@tc_to_txq:	XXX: need comments on this one
1615  *	@prio_tc_map:	XXX: need comments on this one
1616  *
1617  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1618  *
1619  *	@priomap:	XXX: need comments on this one
1620  *	@phydev:	Physical device may attach itself
1621  *			for hardware timestamping
1622  *
1623  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1624  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1625  *
1626  *	@proto_down:	protocol port state information can be sent to the
1627  *			switch driver and used to set the phys state of the
1628  *			switch port.
1629  *
1630  *	FIXME: cleanup struct net_device such that network protocol info
1631  *	moves out.
1632  */
1633 
1634 struct net_device {
1635 	char			name[IFNAMSIZ];
1636 	struct hlist_node	name_hlist;
1637 	char 			*ifalias;
1638 	/*
1639 	 *	I/O specific fields
1640 	 *	FIXME: Merge these and struct ifmap into one
1641 	 */
1642 	unsigned long		mem_end;
1643 	unsigned long		mem_start;
1644 	unsigned long		base_addr;
1645 	int			irq;
1646 
1647 	atomic_t		carrier_changes;
1648 
1649 	/*
1650 	 *	Some hardware also needs these fields (state,dev_list,
1651 	 *	napi_list,unreg_list,close_list) but they are not
1652 	 *	part of the usual set specified in Space.c.
1653 	 */
1654 
1655 	unsigned long		state;
1656 
1657 	struct list_head	dev_list;
1658 	struct list_head	napi_list;
1659 	struct list_head	unreg_list;
1660 	struct list_head	close_list;
1661 	struct list_head	ptype_all;
1662 	struct list_head	ptype_specific;
1663 
1664 	struct {
1665 		struct list_head upper;
1666 		struct list_head lower;
1667 	} adj_list;
1668 
1669 	netdev_features_t	features;
1670 	netdev_features_t	hw_features;
1671 	netdev_features_t	wanted_features;
1672 	netdev_features_t	vlan_features;
1673 	netdev_features_t	hw_enc_features;
1674 	netdev_features_t	mpls_features;
1675 	netdev_features_t	gso_partial_features;
1676 
1677 	int			ifindex;
1678 	int			group;
1679 
1680 	struct net_device_stats	stats;
1681 
1682 	atomic_long_t		rx_dropped;
1683 	atomic_long_t		tx_dropped;
1684 	atomic_long_t		rx_nohandler;
1685 
1686 #ifdef CONFIG_WIRELESS_EXT
1687 	const struct iw_handler_def *wireless_handlers;
1688 	struct iw_public_data	*wireless_data;
1689 #endif
1690 	const struct net_device_ops *netdev_ops;
1691 	const struct ethtool_ops *ethtool_ops;
1692 #ifdef CONFIG_NET_SWITCHDEV
1693 	const struct switchdev_ops *switchdev_ops;
1694 #endif
1695 #ifdef CONFIG_NET_L3_MASTER_DEV
1696 	const struct l3mdev_ops	*l3mdev_ops;
1697 #endif
1698 #if IS_ENABLED(CONFIG_IPV6)
1699 	const struct ndisc_ops *ndisc_ops;
1700 #endif
1701 
1702 #ifdef CONFIG_XFRM
1703 	const struct xfrmdev_ops *xfrmdev_ops;
1704 #endif
1705 
1706 	const struct header_ops *header_ops;
1707 
1708 	unsigned int		flags;
1709 	unsigned int		priv_flags;
1710 
1711 	unsigned short		gflags;
1712 	unsigned short		padded;
1713 
1714 	unsigned char		operstate;
1715 	unsigned char		link_mode;
1716 
1717 	unsigned char		if_port;
1718 	unsigned char		dma;
1719 
1720 	unsigned int		mtu;
1721 	unsigned int		min_mtu;
1722 	unsigned int		max_mtu;
1723 	unsigned short		type;
1724 	unsigned short		hard_header_len;
1725 	unsigned char		min_header_len;
1726 
1727 	unsigned short		needed_headroom;
1728 	unsigned short		needed_tailroom;
1729 
1730 	/* Interface address info. */
1731 	unsigned char		perm_addr[MAX_ADDR_LEN];
1732 	unsigned char		addr_assign_type;
1733 	unsigned char		addr_len;
1734 	unsigned short		neigh_priv_len;
1735 	unsigned short          dev_id;
1736 	unsigned short          dev_port;
1737 	spinlock_t		addr_list_lock;
1738 	unsigned char		name_assign_type;
1739 	bool			uc_promisc;
1740 	struct netdev_hw_addr_list	uc;
1741 	struct netdev_hw_addr_list	mc;
1742 	struct netdev_hw_addr_list	dev_addrs;
1743 
1744 #ifdef CONFIG_SYSFS
1745 	struct kset		*queues_kset;
1746 #endif
1747 	unsigned int		promiscuity;
1748 	unsigned int		allmulti;
1749 
1750 
1751 	/* Protocol-specific pointers */
1752 
1753 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1754 	struct vlan_info __rcu	*vlan_info;
1755 #endif
1756 #if IS_ENABLED(CONFIG_NET_DSA)
1757 	struct dsa_switch_tree	*dsa_ptr;
1758 #endif
1759 #if IS_ENABLED(CONFIG_TIPC)
1760 	struct tipc_bearer __rcu *tipc_ptr;
1761 #endif
1762 	void 			*atalk_ptr;
1763 	struct in_device __rcu	*ip_ptr;
1764 	struct dn_dev __rcu     *dn_ptr;
1765 	struct inet6_dev __rcu	*ip6_ptr;
1766 	void			*ax25_ptr;
1767 	struct wireless_dev	*ieee80211_ptr;
1768 	struct wpan_dev		*ieee802154_ptr;
1769 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1770 	struct mpls_dev __rcu	*mpls_ptr;
1771 #endif
1772 
1773 /*
1774  * Cache lines mostly used on receive path (including eth_type_trans())
1775  */
1776 	/* Interface address info used in eth_type_trans() */
1777 	unsigned char		*dev_addr;
1778 
1779 #ifdef CONFIG_SYSFS
1780 	struct netdev_rx_queue	*_rx;
1781 
1782 	unsigned int		num_rx_queues;
1783 	unsigned int		real_num_rx_queues;
1784 #endif
1785 
1786 	struct bpf_prog __rcu	*xdp_prog;
1787 	unsigned long		gro_flush_timeout;
1788 	rx_handler_func_t __rcu	*rx_handler;
1789 	void __rcu		*rx_handler_data;
1790 
1791 #ifdef CONFIG_NET_CLS_ACT
1792 	struct tcf_proto __rcu  *ingress_cl_list;
1793 #endif
1794 	struct netdev_queue __rcu *ingress_queue;
1795 #ifdef CONFIG_NETFILTER_INGRESS
1796 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1797 #endif
1798 
1799 	unsigned char		broadcast[MAX_ADDR_LEN];
1800 #ifdef CONFIG_RFS_ACCEL
1801 	struct cpu_rmap		*rx_cpu_rmap;
1802 #endif
1803 	struct hlist_node	index_hlist;
1804 
1805 /*
1806  * Cache lines mostly used on transmit path
1807  */
1808 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1809 	unsigned int		num_tx_queues;
1810 	unsigned int		real_num_tx_queues;
1811 	struct Qdisc		*qdisc;
1812 #ifdef CONFIG_NET_SCHED
1813 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1814 #endif
1815 	unsigned int		tx_queue_len;
1816 	spinlock_t		tx_global_lock;
1817 	int			watchdog_timeo;
1818 
1819 #ifdef CONFIG_XPS
1820 	struct xps_dev_maps __rcu *xps_maps;
1821 #endif
1822 #ifdef CONFIG_NET_CLS_ACT
1823 	struct tcf_proto __rcu  *egress_cl_list;
1824 #endif
1825 
1826 	/* These may be needed for future network-power-down code. */
1827 	struct timer_list	watchdog_timer;
1828 
1829 	int __percpu		*pcpu_refcnt;
1830 	struct list_head	todo_list;
1831 
1832 	struct list_head	link_watch_list;
1833 
1834 	enum { NETREG_UNINITIALIZED=0,
1835 	       NETREG_REGISTERED,	/* completed register_netdevice */
1836 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1837 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1838 	       NETREG_RELEASED,		/* called free_netdev */
1839 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1840 	} reg_state:8;
1841 
1842 	bool dismantle;
1843 
1844 	enum {
1845 		RTNL_LINK_INITIALIZED,
1846 		RTNL_LINK_INITIALIZING,
1847 	} rtnl_link_state:16;
1848 
1849 	bool needs_free_netdev;
1850 	void (*priv_destructor)(struct net_device *dev);
1851 
1852 #ifdef CONFIG_NETPOLL
1853 	struct netpoll_info __rcu	*npinfo;
1854 #endif
1855 
1856 	possible_net_t			nd_net;
1857 
1858 	/* mid-layer private */
1859 	union {
1860 		void					*ml_priv;
1861 		struct pcpu_lstats __percpu		*lstats;
1862 		struct pcpu_sw_netstats __percpu	*tstats;
1863 		struct pcpu_dstats __percpu		*dstats;
1864 		struct pcpu_vstats __percpu		*vstats;
1865 	};
1866 
1867 #if IS_ENABLED(CONFIG_GARP)
1868 	struct garp_port __rcu	*garp_port;
1869 #endif
1870 #if IS_ENABLED(CONFIG_MRP)
1871 	struct mrp_port __rcu	*mrp_port;
1872 #endif
1873 
1874 	struct device		dev;
1875 	const struct attribute_group *sysfs_groups[4];
1876 	const struct attribute_group *sysfs_rx_queue_group;
1877 
1878 	const struct rtnl_link_ops *rtnl_link_ops;
1879 
1880 	/* for setting kernel sock attribute on TCP connection setup */
1881 #define GSO_MAX_SIZE		65536
1882 	unsigned int		gso_max_size;
1883 #define GSO_MAX_SEGS		65535
1884 	u16			gso_max_segs;
1885 
1886 #ifdef CONFIG_DCB
1887 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1888 #endif
1889 	u8			num_tc;
1890 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1891 	u8			prio_tc_map[TC_BITMASK + 1];
1892 
1893 #if IS_ENABLED(CONFIG_FCOE)
1894 	unsigned int		fcoe_ddp_xid;
1895 #endif
1896 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1897 	struct netprio_map __rcu *priomap;
1898 #endif
1899 	struct phy_device	*phydev;
1900 	struct lock_class_key	*qdisc_tx_busylock;
1901 	struct lock_class_key	*qdisc_running_key;
1902 	bool			proto_down;
1903 };
1904 #define to_net_dev(d) container_of(d, struct net_device, dev)
1905 
1906 static inline bool netif_elide_gro(const struct net_device *dev)
1907 {
1908 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1909 		return true;
1910 	return false;
1911 }
1912 
1913 #define	NETDEV_ALIGN		32
1914 
1915 static inline
1916 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1917 {
1918 	return dev->prio_tc_map[prio & TC_BITMASK];
1919 }
1920 
1921 static inline
1922 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1923 {
1924 	if (tc >= dev->num_tc)
1925 		return -EINVAL;
1926 
1927 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1928 	return 0;
1929 }
1930 
1931 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1932 void netdev_reset_tc(struct net_device *dev);
1933 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1934 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1935 
1936 static inline
1937 int netdev_get_num_tc(struct net_device *dev)
1938 {
1939 	return dev->num_tc;
1940 }
1941 
1942 static inline
1943 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1944 					 unsigned int index)
1945 {
1946 	return &dev->_tx[index];
1947 }
1948 
1949 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1950 						    const struct sk_buff *skb)
1951 {
1952 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1953 }
1954 
1955 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1956 					    void (*f)(struct net_device *,
1957 						      struct netdev_queue *,
1958 						      void *),
1959 					    void *arg)
1960 {
1961 	unsigned int i;
1962 
1963 	for (i = 0; i < dev->num_tx_queues; i++)
1964 		f(dev, &dev->_tx[i], arg);
1965 }
1966 
1967 #define netdev_lockdep_set_classes(dev)				\
1968 {								\
1969 	static struct lock_class_key qdisc_tx_busylock_key;	\
1970 	static struct lock_class_key qdisc_running_key;		\
1971 	static struct lock_class_key qdisc_xmit_lock_key;	\
1972 	static struct lock_class_key dev_addr_list_lock_key;	\
1973 	unsigned int i;						\
1974 								\
1975 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1976 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1977 	lockdep_set_class(&(dev)->addr_list_lock,		\
1978 			  &dev_addr_list_lock_key); 		\
1979 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1980 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1981 				  &qdisc_xmit_lock_key);	\
1982 }
1983 
1984 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1985 				    struct sk_buff *skb,
1986 				    void *accel_priv);
1987 
1988 /* returns the headroom that the master device needs to take in account
1989  * when forwarding to this dev
1990  */
1991 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1992 {
1993 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1994 }
1995 
1996 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1997 {
1998 	if (dev->netdev_ops->ndo_set_rx_headroom)
1999 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2000 }
2001 
2002 /* set the device rx headroom to the dev's default */
2003 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2004 {
2005 	netdev_set_rx_headroom(dev, -1);
2006 }
2007 
2008 /*
2009  * Net namespace inlines
2010  */
2011 static inline
2012 struct net *dev_net(const struct net_device *dev)
2013 {
2014 	return read_pnet(&dev->nd_net);
2015 }
2016 
2017 static inline
2018 void dev_net_set(struct net_device *dev, struct net *net)
2019 {
2020 	write_pnet(&dev->nd_net, net);
2021 }
2022 
2023 /**
2024  *	netdev_priv - access network device private data
2025  *	@dev: network device
2026  *
2027  * Get network device private data
2028  */
2029 static inline void *netdev_priv(const struct net_device *dev)
2030 {
2031 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2032 }
2033 
2034 /* Set the sysfs physical device reference for the network logical device
2035  * if set prior to registration will cause a symlink during initialization.
2036  */
2037 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2038 
2039 /* Set the sysfs device type for the network logical device to allow
2040  * fine-grained identification of different network device types. For
2041  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2042  */
2043 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2044 
2045 /* Default NAPI poll() weight
2046  * Device drivers are strongly advised to not use bigger value
2047  */
2048 #define NAPI_POLL_WEIGHT 64
2049 
2050 /**
2051  *	netif_napi_add - initialize a NAPI context
2052  *	@dev:  network device
2053  *	@napi: NAPI context
2054  *	@poll: polling function
2055  *	@weight: default weight
2056  *
2057  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2058  * *any* of the other NAPI-related functions.
2059  */
2060 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2061 		    int (*poll)(struct napi_struct *, int), int weight);
2062 
2063 /**
2064  *	netif_tx_napi_add - initialize a NAPI context
2065  *	@dev:  network device
2066  *	@napi: NAPI context
2067  *	@poll: polling function
2068  *	@weight: default weight
2069  *
2070  * This variant of netif_napi_add() should be used from drivers using NAPI
2071  * to exclusively poll a TX queue.
2072  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2073  */
2074 static inline void netif_tx_napi_add(struct net_device *dev,
2075 				     struct napi_struct *napi,
2076 				     int (*poll)(struct napi_struct *, int),
2077 				     int weight)
2078 {
2079 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2080 	netif_napi_add(dev, napi, poll, weight);
2081 }
2082 
2083 /**
2084  *  netif_napi_del - remove a NAPI context
2085  *  @napi: NAPI context
2086  *
2087  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2088  */
2089 void netif_napi_del(struct napi_struct *napi);
2090 
2091 struct napi_gro_cb {
2092 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2093 	void	*frag0;
2094 
2095 	/* Length of frag0. */
2096 	unsigned int frag0_len;
2097 
2098 	/* This indicates where we are processing relative to skb->data. */
2099 	int	data_offset;
2100 
2101 	/* This is non-zero if the packet cannot be merged with the new skb. */
2102 	u16	flush;
2103 
2104 	/* Save the IP ID here and check when we get to the transport layer */
2105 	u16	flush_id;
2106 
2107 	/* Number of segments aggregated. */
2108 	u16	count;
2109 
2110 	/* Start offset for remote checksum offload */
2111 	u16	gro_remcsum_start;
2112 
2113 	/* jiffies when first packet was created/queued */
2114 	unsigned long age;
2115 
2116 	/* Used in ipv6_gro_receive() and foo-over-udp */
2117 	u16	proto;
2118 
2119 	/* This is non-zero if the packet may be of the same flow. */
2120 	u8	same_flow:1;
2121 
2122 	/* Used in tunnel GRO receive */
2123 	u8	encap_mark:1;
2124 
2125 	/* GRO checksum is valid */
2126 	u8	csum_valid:1;
2127 
2128 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2129 	u8	csum_cnt:3;
2130 
2131 	/* Free the skb? */
2132 	u8	free:2;
2133 #define NAPI_GRO_FREE		  1
2134 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2135 
2136 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2137 	u8	is_ipv6:1;
2138 
2139 	/* Used in GRE, set in fou/gue_gro_receive */
2140 	u8	is_fou:1;
2141 
2142 	/* Used to determine if flush_id can be ignored */
2143 	u8	is_atomic:1;
2144 
2145 	/* Number of gro_receive callbacks this packet already went through */
2146 	u8 recursion_counter:4;
2147 
2148 	/* 1 bit hole */
2149 
2150 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2151 	__wsum	csum;
2152 
2153 	/* used in skb_gro_receive() slow path */
2154 	struct sk_buff *last;
2155 };
2156 
2157 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2158 
2159 #define GRO_RECURSION_LIMIT 15
2160 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2161 {
2162 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2163 }
2164 
2165 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2166 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2167 						struct sk_buff **head,
2168 						struct sk_buff *skb)
2169 {
2170 	if (unlikely(gro_recursion_inc_test(skb))) {
2171 		NAPI_GRO_CB(skb)->flush |= 1;
2172 		return NULL;
2173 	}
2174 
2175 	return cb(head, skb);
2176 }
2177 
2178 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2179 					     struct sk_buff *);
2180 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2181 						   struct sock *sk,
2182 						   struct sk_buff **head,
2183 						   struct sk_buff *skb)
2184 {
2185 	if (unlikely(gro_recursion_inc_test(skb))) {
2186 		NAPI_GRO_CB(skb)->flush |= 1;
2187 		return NULL;
2188 	}
2189 
2190 	return cb(sk, head, skb);
2191 }
2192 
2193 struct packet_type {
2194 	__be16			type;	/* This is really htons(ether_type). */
2195 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2196 	int			(*func) (struct sk_buff *,
2197 					 struct net_device *,
2198 					 struct packet_type *,
2199 					 struct net_device *);
2200 	bool			(*id_match)(struct packet_type *ptype,
2201 					    struct sock *sk);
2202 	void			*af_packet_priv;
2203 	struct list_head	list;
2204 };
2205 
2206 struct offload_callbacks {
2207 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2208 						netdev_features_t features);
2209 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2210 						 struct sk_buff *skb);
2211 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2212 };
2213 
2214 struct packet_offload {
2215 	__be16			 type;	/* This is really htons(ether_type). */
2216 	u16			 priority;
2217 	struct offload_callbacks callbacks;
2218 	struct list_head	 list;
2219 };
2220 
2221 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2222 struct pcpu_sw_netstats {
2223 	u64     rx_packets;
2224 	u64     rx_bytes;
2225 	u64     tx_packets;
2226 	u64     tx_bytes;
2227 	struct u64_stats_sync   syncp;
2228 };
2229 
2230 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2231 ({									\
2232 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2233 	if (pcpu_stats)	{						\
2234 		int __cpu;						\
2235 		for_each_possible_cpu(__cpu) {				\
2236 			typeof(type) *stat;				\
2237 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2238 			u64_stats_init(&stat->syncp);			\
2239 		}							\
2240 	}								\
2241 	pcpu_stats;							\
2242 })
2243 
2244 #define netdev_alloc_pcpu_stats(type)					\
2245 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2246 
2247 enum netdev_lag_tx_type {
2248 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2249 	NETDEV_LAG_TX_TYPE_RANDOM,
2250 	NETDEV_LAG_TX_TYPE_BROADCAST,
2251 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2252 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2253 	NETDEV_LAG_TX_TYPE_HASH,
2254 };
2255 
2256 struct netdev_lag_upper_info {
2257 	enum netdev_lag_tx_type tx_type;
2258 };
2259 
2260 struct netdev_lag_lower_state_info {
2261 	u8 link_up : 1,
2262 	   tx_enabled : 1;
2263 };
2264 
2265 #include <linux/notifier.h>
2266 
2267 /* netdevice notifier chain. Please remember to update the rtnetlink
2268  * notification exclusion list in rtnetlink_event() when adding new
2269  * types.
2270  */
2271 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2272 #define NETDEV_DOWN	0x0002
2273 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2274 				   detected a hardware crash and restarted
2275 				   - we can use this eg to kick tcp sessions
2276 				   once done */
2277 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2278 #define NETDEV_REGISTER 0x0005
2279 #define NETDEV_UNREGISTER	0x0006
2280 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2281 #define NETDEV_CHANGEADDR	0x0008
2282 #define NETDEV_GOING_DOWN	0x0009
2283 #define NETDEV_CHANGENAME	0x000A
2284 #define NETDEV_FEAT_CHANGE	0x000B
2285 #define NETDEV_BONDING_FAILOVER 0x000C
2286 #define NETDEV_PRE_UP		0x000D
2287 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2288 #define NETDEV_POST_TYPE_CHANGE	0x000F
2289 #define NETDEV_POST_INIT	0x0010
2290 #define NETDEV_UNREGISTER_FINAL 0x0011
2291 #define NETDEV_RELEASE		0x0012
2292 #define NETDEV_NOTIFY_PEERS	0x0013
2293 #define NETDEV_JOIN		0x0014
2294 #define NETDEV_CHANGEUPPER	0x0015
2295 #define NETDEV_RESEND_IGMP	0x0016
2296 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2297 #define NETDEV_CHANGEINFODATA	0x0018
2298 #define NETDEV_BONDING_INFO	0x0019
2299 #define NETDEV_PRECHANGEUPPER	0x001A
2300 #define NETDEV_CHANGELOWERSTATE	0x001B
2301 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2302 #define NETDEV_UDP_TUNNEL_DROP_INFO	0x001D
2303 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2304 
2305 int register_netdevice_notifier(struct notifier_block *nb);
2306 int unregister_netdevice_notifier(struct notifier_block *nb);
2307 
2308 struct netdev_notifier_info {
2309 	struct net_device *dev;
2310 };
2311 
2312 struct netdev_notifier_change_info {
2313 	struct netdev_notifier_info info; /* must be first */
2314 	unsigned int flags_changed;
2315 };
2316 
2317 struct netdev_notifier_changeupper_info {
2318 	struct netdev_notifier_info info; /* must be first */
2319 	struct net_device *upper_dev; /* new upper dev */
2320 	bool master; /* is upper dev master */
2321 	bool linking; /* is the notification for link or unlink */
2322 	void *upper_info; /* upper dev info */
2323 };
2324 
2325 struct netdev_notifier_changelowerstate_info {
2326 	struct netdev_notifier_info info; /* must be first */
2327 	void *lower_state_info; /* is lower dev state */
2328 };
2329 
2330 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2331 					     struct net_device *dev)
2332 {
2333 	info->dev = dev;
2334 }
2335 
2336 static inline struct net_device *
2337 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2338 {
2339 	return info->dev;
2340 }
2341 
2342 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2343 
2344 
2345 extern rwlock_t				dev_base_lock;		/* Device list lock */
2346 
2347 #define for_each_netdev(net, d)		\
2348 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2349 #define for_each_netdev_reverse(net, d)	\
2350 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2351 #define for_each_netdev_rcu(net, d)		\
2352 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2353 #define for_each_netdev_safe(net, d, n)	\
2354 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2355 #define for_each_netdev_continue(net, d)		\
2356 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2357 #define for_each_netdev_continue_rcu(net, d)		\
2358 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2359 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2360 		for_each_netdev_rcu(&init_net, slave)	\
2361 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2362 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2363 
2364 static inline struct net_device *next_net_device(struct net_device *dev)
2365 {
2366 	struct list_head *lh;
2367 	struct net *net;
2368 
2369 	net = dev_net(dev);
2370 	lh = dev->dev_list.next;
2371 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2372 }
2373 
2374 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2375 {
2376 	struct list_head *lh;
2377 	struct net *net;
2378 
2379 	net = dev_net(dev);
2380 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2381 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2382 }
2383 
2384 static inline struct net_device *first_net_device(struct net *net)
2385 {
2386 	return list_empty(&net->dev_base_head) ? NULL :
2387 		net_device_entry(net->dev_base_head.next);
2388 }
2389 
2390 static inline struct net_device *first_net_device_rcu(struct net *net)
2391 {
2392 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2393 
2394 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2395 }
2396 
2397 int netdev_boot_setup_check(struct net_device *dev);
2398 unsigned long netdev_boot_base(const char *prefix, int unit);
2399 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2400 				       const char *hwaddr);
2401 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2402 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2403 void dev_add_pack(struct packet_type *pt);
2404 void dev_remove_pack(struct packet_type *pt);
2405 void __dev_remove_pack(struct packet_type *pt);
2406 void dev_add_offload(struct packet_offload *po);
2407 void dev_remove_offload(struct packet_offload *po);
2408 
2409 int dev_get_iflink(const struct net_device *dev);
2410 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2411 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2412 				      unsigned short mask);
2413 struct net_device *dev_get_by_name(struct net *net, const char *name);
2414 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2415 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2416 int dev_alloc_name(struct net_device *dev, const char *name);
2417 int dev_open(struct net_device *dev);
2418 void dev_close(struct net_device *dev);
2419 void dev_close_many(struct list_head *head, bool unlink);
2420 void dev_disable_lro(struct net_device *dev);
2421 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2422 int dev_queue_xmit(struct sk_buff *skb);
2423 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2424 int register_netdevice(struct net_device *dev);
2425 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2426 void unregister_netdevice_many(struct list_head *head);
2427 static inline void unregister_netdevice(struct net_device *dev)
2428 {
2429 	unregister_netdevice_queue(dev, NULL);
2430 }
2431 
2432 int netdev_refcnt_read(const struct net_device *dev);
2433 void free_netdev(struct net_device *dev);
2434 void netdev_freemem(struct net_device *dev);
2435 void synchronize_net(void);
2436 int init_dummy_netdev(struct net_device *dev);
2437 
2438 DECLARE_PER_CPU(int, xmit_recursion);
2439 #define XMIT_RECURSION_LIMIT	10
2440 
2441 static inline int dev_recursion_level(void)
2442 {
2443 	return this_cpu_read(xmit_recursion);
2444 }
2445 
2446 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2447 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2448 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2449 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2450 int netdev_get_name(struct net *net, char *name, int ifindex);
2451 int dev_restart(struct net_device *dev);
2452 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2453 
2454 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2455 {
2456 	return NAPI_GRO_CB(skb)->data_offset;
2457 }
2458 
2459 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2460 {
2461 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2462 }
2463 
2464 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2465 {
2466 	NAPI_GRO_CB(skb)->data_offset += len;
2467 }
2468 
2469 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2470 					unsigned int offset)
2471 {
2472 	return NAPI_GRO_CB(skb)->frag0 + offset;
2473 }
2474 
2475 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2476 {
2477 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2478 }
2479 
2480 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2481 {
2482 	NAPI_GRO_CB(skb)->frag0 = NULL;
2483 	NAPI_GRO_CB(skb)->frag0_len = 0;
2484 }
2485 
2486 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2487 					unsigned int offset)
2488 {
2489 	if (!pskb_may_pull(skb, hlen))
2490 		return NULL;
2491 
2492 	skb_gro_frag0_invalidate(skb);
2493 	return skb->data + offset;
2494 }
2495 
2496 static inline void *skb_gro_network_header(struct sk_buff *skb)
2497 {
2498 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2499 	       skb_network_offset(skb);
2500 }
2501 
2502 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2503 					const void *start, unsigned int len)
2504 {
2505 	if (NAPI_GRO_CB(skb)->csum_valid)
2506 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2507 						  csum_partial(start, len, 0));
2508 }
2509 
2510 /* GRO checksum functions. These are logical equivalents of the normal
2511  * checksum functions (in skbuff.h) except that they operate on the GRO
2512  * offsets and fields in sk_buff.
2513  */
2514 
2515 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2516 
2517 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2518 {
2519 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2520 }
2521 
2522 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2523 						      bool zero_okay,
2524 						      __sum16 check)
2525 {
2526 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2527 		skb_checksum_start_offset(skb) <
2528 		 skb_gro_offset(skb)) &&
2529 		!skb_at_gro_remcsum_start(skb) &&
2530 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2531 		(!zero_okay || check));
2532 }
2533 
2534 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2535 							   __wsum psum)
2536 {
2537 	if (NAPI_GRO_CB(skb)->csum_valid &&
2538 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2539 		return 0;
2540 
2541 	NAPI_GRO_CB(skb)->csum = psum;
2542 
2543 	return __skb_gro_checksum_complete(skb);
2544 }
2545 
2546 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2547 {
2548 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2549 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2550 		NAPI_GRO_CB(skb)->csum_cnt--;
2551 	} else {
2552 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2553 		 * verified a new top level checksum or an encapsulated one
2554 		 * during GRO. This saves work if we fallback to normal path.
2555 		 */
2556 		__skb_incr_checksum_unnecessary(skb);
2557 	}
2558 }
2559 
2560 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2561 				    compute_pseudo)			\
2562 ({									\
2563 	__sum16 __ret = 0;						\
2564 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2565 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2566 				compute_pseudo(skb, proto));		\
2567 	if (!__ret)							\
2568 		skb_gro_incr_csum_unnecessary(skb);			\
2569 	__ret;								\
2570 })
2571 
2572 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2573 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2574 
2575 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2576 					     compute_pseudo)		\
2577 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2578 
2579 #define skb_gro_checksum_simple_validate(skb)				\
2580 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2581 
2582 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2583 {
2584 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2585 		!NAPI_GRO_CB(skb)->csum_valid);
2586 }
2587 
2588 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2589 					      __sum16 check, __wsum pseudo)
2590 {
2591 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2592 	NAPI_GRO_CB(skb)->csum_valid = 1;
2593 }
2594 
2595 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2596 do {									\
2597 	if (__skb_gro_checksum_convert_check(skb))			\
2598 		__skb_gro_checksum_convert(skb, check,			\
2599 					   compute_pseudo(skb, proto));	\
2600 } while (0)
2601 
2602 struct gro_remcsum {
2603 	int offset;
2604 	__wsum delta;
2605 };
2606 
2607 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2608 {
2609 	grc->offset = 0;
2610 	grc->delta = 0;
2611 }
2612 
2613 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2614 					    unsigned int off, size_t hdrlen,
2615 					    int start, int offset,
2616 					    struct gro_remcsum *grc,
2617 					    bool nopartial)
2618 {
2619 	__wsum delta;
2620 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2621 
2622 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2623 
2624 	if (!nopartial) {
2625 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2626 		return ptr;
2627 	}
2628 
2629 	ptr = skb_gro_header_fast(skb, off);
2630 	if (skb_gro_header_hard(skb, off + plen)) {
2631 		ptr = skb_gro_header_slow(skb, off + plen, off);
2632 		if (!ptr)
2633 			return NULL;
2634 	}
2635 
2636 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2637 			       start, offset);
2638 
2639 	/* Adjust skb->csum since we changed the packet */
2640 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2641 
2642 	grc->offset = off + hdrlen + offset;
2643 	grc->delta = delta;
2644 
2645 	return ptr;
2646 }
2647 
2648 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2649 					   struct gro_remcsum *grc)
2650 {
2651 	void *ptr;
2652 	size_t plen = grc->offset + sizeof(u16);
2653 
2654 	if (!grc->delta)
2655 		return;
2656 
2657 	ptr = skb_gro_header_fast(skb, grc->offset);
2658 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2659 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2660 		if (!ptr)
2661 			return;
2662 	}
2663 
2664 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2665 }
2666 
2667 #ifdef CONFIG_XFRM_OFFLOAD
2668 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2669 {
2670 	if (PTR_ERR(pp) != -EINPROGRESS)
2671 		NAPI_GRO_CB(skb)->flush |= flush;
2672 }
2673 #else
2674 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2675 {
2676 	NAPI_GRO_CB(skb)->flush |= flush;
2677 }
2678 #endif
2679 
2680 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2681 				  unsigned short type,
2682 				  const void *daddr, const void *saddr,
2683 				  unsigned int len)
2684 {
2685 	if (!dev->header_ops || !dev->header_ops->create)
2686 		return 0;
2687 
2688 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2689 }
2690 
2691 static inline int dev_parse_header(const struct sk_buff *skb,
2692 				   unsigned char *haddr)
2693 {
2694 	const struct net_device *dev = skb->dev;
2695 
2696 	if (!dev->header_ops || !dev->header_ops->parse)
2697 		return 0;
2698 	return dev->header_ops->parse(skb, haddr);
2699 }
2700 
2701 /* ll_header must have at least hard_header_len allocated */
2702 static inline bool dev_validate_header(const struct net_device *dev,
2703 				       char *ll_header, int len)
2704 {
2705 	if (likely(len >= dev->hard_header_len))
2706 		return true;
2707 	if (len < dev->min_header_len)
2708 		return false;
2709 
2710 	if (capable(CAP_SYS_RAWIO)) {
2711 		memset(ll_header + len, 0, dev->hard_header_len - len);
2712 		return true;
2713 	}
2714 
2715 	if (dev->header_ops && dev->header_ops->validate)
2716 		return dev->header_ops->validate(ll_header, len);
2717 
2718 	return false;
2719 }
2720 
2721 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2722 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2723 static inline int unregister_gifconf(unsigned int family)
2724 {
2725 	return register_gifconf(family, NULL);
2726 }
2727 
2728 #ifdef CONFIG_NET_FLOW_LIMIT
2729 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2730 struct sd_flow_limit {
2731 	u64			count;
2732 	unsigned int		num_buckets;
2733 	unsigned int		history_head;
2734 	u16			history[FLOW_LIMIT_HISTORY];
2735 	u8			buckets[];
2736 };
2737 
2738 extern int netdev_flow_limit_table_len;
2739 #endif /* CONFIG_NET_FLOW_LIMIT */
2740 
2741 /*
2742  * Incoming packets are placed on per-CPU queues
2743  */
2744 struct softnet_data {
2745 	struct list_head	poll_list;
2746 	struct sk_buff_head	process_queue;
2747 
2748 	/* stats */
2749 	unsigned int		processed;
2750 	unsigned int		time_squeeze;
2751 	unsigned int		received_rps;
2752 #ifdef CONFIG_RPS
2753 	struct softnet_data	*rps_ipi_list;
2754 #endif
2755 #ifdef CONFIG_NET_FLOW_LIMIT
2756 	struct sd_flow_limit __rcu *flow_limit;
2757 #endif
2758 	struct Qdisc		*output_queue;
2759 	struct Qdisc		**output_queue_tailp;
2760 	struct sk_buff		*completion_queue;
2761 
2762 #ifdef CONFIG_RPS
2763 	/* input_queue_head should be written by cpu owning this struct,
2764 	 * and only read by other cpus. Worth using a cache line.
2765 	 */
2766 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2767 
2768 	/* Elements below can be accessed between CPUs for RPS/RFS */
2769 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2770 	struct softnet_data	*rps_ipi_next;
2771 	unsigned int		cpu;
2772 	unsigned int		input_queue_tail;
2773 #endif
2774 	unsigned int		dropped;
2775 	struct sk_buff_head	input_pkt_queue;
2776 	struct napi_struct	backlog;
2777 
2778 };
2779 
2780 static inline void input_queue_head_incr(struct softnet_data *sd)
2781 {
2782 #ifdef CONFIG_RPS
2783 	sd->input_queue_head++;
2784 #endif
2785 }
2786 
2787 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2788 					      unsigned int *qtail)
2789 {
2790 #ifdef CONFIG_RPS
2791 	*qtail = ++sd->input_queue_tail;
2792 #endif
2793 }
2794 
2795 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2796 
2797 void __netif_schedule(struct Qdisc *q);
2798 void netif_schedule_queue(struct netdev_queue *txq);
2799 
2800 static inline void netif_tx_schedule_all(struct net_device *dev)
2801 {
2802 	unsigned int i;
2803 
2804 	for (i = 0; i < dev->num_tx_queues; i++)
2805 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2806 }
2807 
2808 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2809 {
2810 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2811 }
2812 
2813 /**
2814  *	netif_start_queue - allow transmit
2815  *	@dev: network device
2816  *
2817  *	Allow upper layers to call the device hard_start_xmit routine.
2818  */
2819 static inline void netif_start_queue(struct net_device *dev)
2820 {
2821 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2822 }
2823 
2824 static inline void netif_tx_start_all_queues(struct net_device *dev)
2825 {
2826 	unsigned int i;
2827 
2828 	for (i = 0; i < dev->num_tx_queues; i++) {
2829 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2830 		netif_tx_start_queue(txq);
2831 	}
2832 }
2833 
2834 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2835 
2836 /**
2837  *	netif_wake_queue - restart transmit
2838  *	@dev: network device
2839  *
2840  *	Allow upper layers to call the device hard_start_xmit routine.
2841  *	Used for flow control when transmit resources are available.
2842  */
2843 static inline void netif_wake_queue(struct net_device *dev)
2844 {
2845 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2846 }
2847 
2848 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2849 {
2850 	unsigned int i;
2851 
2852 	for (i = 0; i < dev->num_tx_queues; i++) {
2853 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2854 		netif_tx_wake_queue(txq);
2855 	}
2856 }
2857 
2858 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2859 {
2860 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2861 }
2862 
2863 /**
2864  *	netif_stop_queue - stop transmitted packets
2865  *	@dev: network device
2866  *
2867  *	Stop upper layers calling the device hard_start_xmit routine.
2868  *	Used for flow control when transmit resources are unavailable.
2869  */
2870 static inline void netif_stop_queue(struct net_device *dev)
2871 {
2872 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2873 }
2874 
2875 void netif_tx_stop_all_queues(struct net_device *dev);
2876 
2877 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2878 {
2879 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2880 }
2881 
2882 /**
2883  *	netif_queue_stopped - test if transmit queue is flowblocked
2884  *	@dev: network device
2885  *
2886  *	Test if transmit queue on device is currently unable to send.
2887  */
2888 static inline bool netif_queue_stopped(const struct net_device *dev)
2889 {
2890 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2891 }
2892 
2893 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2894 {
2895 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2896 }
2897 
2898 static inline bool
2899 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2900 {
2901 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2902 }
2903 
2904 static inline bool
2905 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2906 {
2907 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2908 }
2909 
2910 /**
2911  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2912  *	@dev_queue: pointer to transmit queue
2913  *
2914  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2915  * to give appropriate hint to the CPU.
2916  */
2917 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2918 {
2919 #ifdef CONFIG_BQL
2920 	prefetchw(&dev_queue->dql.num_queued);
2921 #endif
2922 }
2923 
2924 /**
2925  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2926  *	@dev_queue: pointer to transmit queue
2927  *
2928  * BQL enabled drivers might use this helper in their TX completion path,
2929  * to give appropriate hint to the CPU.
2930  */
2931 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2932 {
2933 #ifdef CONFIG_BQL
2934 	prefetchw(&dev_queue->dql.limit);
2935 #endif
2936 }
2937 
2938 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2939 					unsigned int bytes)
2940 {
2941 #ifdef CONFIG_BQL
2942 	dql_queued(&dev_queue->dql, bytes);
2943 
2944 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2945 		return;
2946 
2947 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2948 
2949 	/*
2950 	 * The XOFF flag must be set before checking the dql_avail below,
2951 	 * because in netdev_tx_completed_queue we update the dql_completed
2952 	 * before checking the XOFF flag.
2953 	 */
2954 	smp_mb();
2955 
2956 	/* check again in case another CPU has just made room avail */
2957 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2958 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2959 #endif
2960 }
2961 
2962 /**
2963  * 	netdev_sent_queue - report the number of bytes queued to hardware
2964  * 	@dev: network device
2965  * 	@bytes: number of bytes queued to the hardware device queue
2966  *
2967  * 	Report the number of bytes queued for sending/completion to the network
2968  * 	device hardware queue. @bytes should be a good approximation and should
2969  * 	exactly match netdev_completed_queue() @bytes
2970  */
2971 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2972 {
2973 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2974 }
2975 
2976 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2977 					     unsigned int pkts, unsigned int bytes)
2978 {
2979 #ifdef CONFIG_BQL
2980 	if (unlikely(!bytes))
2981 		return;
2982 
2983 	dql_completed(&dev_queue->dql, bytes);
2984 
2985 	/*
2986 	 * Without the memory barrier there is a small possiblity that
2987 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2988 	 * be stopped forever
2989 	 */
2990 	smp_mb();
2991 
2992 	if (dql_avail(&dev_queue->dql) < 0)
2993 		return;
2994 
2995 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2996 		netif_schedule_queue(dev_queue);
2997 #endif
2998 }
2999 
3000 /**
3001  * 	netdev_completed_queue - report bytes and packets completed by device
3002  * 	@dev: network device
3003  * 	@pkts: actual number of packets sent over the medium
3004  * 	@bytes: actual number of bytes sent over the medium
3005  *
3006  * 	Report the number of bytes and packets transmitted by the network device
3007  * 	hardware queue over the physical medium, @bytes must exactly match the
3008  * 	@bytes amount passed to netdev_sent_queue()
3009  */
3010 static inline void netdev_completed_queue(struct net_device *dev,
3011 					  unsigned int pkts, unsigned int bytes)
3012 {
3013 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3014 }
3015 
3016 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3017 {
3018 #ifdef CONFIG_BQL
3019 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3020 	dql_reset(&q->dql);
3021 #endif
3022 }
3023 
3024 /**
3025  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3026  * 	@dev_queue: network device
3027  *
3028  * 	Reset the bytes and packet count of a network device and clear the
3029  * 	software flow control OFF bit for this network device
3030  */
3031 static inline void netdev_reset_queue(struct net_device *dev_queue)
3032 {
3033 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3034 }
3035 
3036 /**
3037  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3038  * 	@dev: network device
3039  * 	@queue_index: given tx queue index
3040  *
3041  * 	Returns 0 if given tx queue index >= number of device tx queues,
3042  * 	otherwise returns the originally passed tx queue index.
3043  */
3044 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3045 {
3046 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3047 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3048 				     dev->name, queue_index,
3049 				     dev->real_num_tx_queues);
3050 		return 0;
3051 	}
3052 
3053 	return queue_index;
3054 }
3055 
3056 /**
3057  *	netif_running - test if up
3058  *	@dev: network device
3059  *
3060  *	Test if the device has been brought up.
3061  */
3062 static inline bool netif_running(const struct net_device *dev)
3063 {
3064 	return test_bit(__LINK_STATE_START, &dev->state);
3065 }
3066 
3067 /*
3068  * Routines to manage the subqueues on a device.  We only need start,
3069  * stop, and a check if it's stopped.  All other device management is
3070  * done at the overall netdevice level.
3071  * Also test the device if we're multiqueue.
3072  */
3073 
3074 /**
3075  *	netif_start_subqueue - allow sending packets on subqueue
3076  *	@dev: network device
3077  *	@queue_index: sub queue index
3078  *
3079  * Start individual transmit queue of a device with multiple transmit queues.
3080  */
3081 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3082 {
3083 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3084 
3085 	netif_tx_start_queue(txq);
3086 }
3087 
3088 /**
3089  *	netif_stop_subqueue - stop sending packets on subqueue
3090  *	@dev: network device
3091  *	@queue_index: sub queue index
3092  *
3093  * Stop individual transmit queue of a device with multiple transmit queues.
3094  */
3095 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3096 {
3097 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3098 	netif_tx_stop_queue(txq);
3099 }
3100 
3101 /**
3102  *	netif_subqueue_stopped - test status of subqueue
3103  *	@dev: network device
3104  *	@queue_index: sub queue index
3105  *
3106  * Check individual transmit queue of a device with multiple transmit queues.
3107  */
3108 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3109 					    u16 queue_index)
3110 {
3111 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3112 
3113 	return netif_tx_queue_stopped(txq);
3114 }
3115 
3116 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3117 					  struct sk_buff *skb)
3118 {
3119 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3120 }
3121 
3122 /**
3123  *	netif_wake_subqueue - allow sending packets on subqueue
3124  *	@dev: network device
3125  *	@queue_index: sub queue index
3126  *
3127  * Resume individual transmit queue of a device with multiple transmit queues.
3128  */
3129 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3130 {
3131 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3132 
3133 	netif_tx_wake_queue(txq);
3134 }
3135 
3136 #ifdef CONFIG_XPS
3137 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3138 			u16 index);
3139 #else
3140 static inline int netif_set_xps_queue(struct net_device *dev,
3141 				      const struct cpumask *mask,
3142 				      u16 index)
3143 {
3144 	return 0;
3145 }
3146 #endif
3147 
3148 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3149 		  unsigned int num_tx_queues);
3150 
3151 /*
3152  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3153  * as a distribution range limit for the returned value.
3154  */
3155 static inline u16 skb_tx_hash(const struct net_device *dev,
3156 			      struct sk_buff *skb)
3157 {
3158 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3159 }
3160 
3161 /**
3162  *	netif_is_multiqueue - test if device has multiple transmit queues
3163  *	@dev: network device
3164  *
3165  * Check if device has multiple transmit queues
3166  */
3167 static inline bool netif_is_multiqueue(const struct net_device *dev)
3168 {
3169 	return dev->num_tx_queues > 1;
3170 }
3171 
3172 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3173 
3174 #ifdef CONFIG_SYSFS
3175 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3176 #else
3177 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3178 						unsigned int rxq)
3179 {
3180 	return 0;
3181 }
3182 #endif
3183 
3184 #ifdef CONFIG_SYSFS
3185 static inline unsigned int get_netdev_rx_queue_index(
3186 		struct netdev_rx_queue *queue)
3187 {
3188 	struct net_device *dev = queue->dev;
3189 	int index = queue - dev->_rx;
3190 
3191 	BUG_ON(index >= dev->num_rx_queues);
3192 	return index;
3193 }
3194 #endif
3195 
3196 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3197 int netif_get_num_default_rss_queues(void);
3198 
3199 enum skb_free_reason {
3200 	SKB_REASON_CONSUMED,
3201 	SKB_REASON_DROPPED,
3202 };
3203 
3204 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3205 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3206 
3207 /*
3208  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3209  * interrupt context or with hardware interrupts being disabled.
3210  * (in_irq() || irqs_disabled())
3211  *
3212  * We provide four helpers that can be used in following contexts :
3213  *
3214  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3215  *  replacing kfree_skb(skb)
3216  *
3217  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3218  *  Typically used in place of consume_skb(skb) in TX completion path
3219  *
3220  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3221  *  replacing kfree_skb(skb)
3222  *
3223  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3224  *  and consumed a packet. Used in place of consume_skb(skb)
3225  */
3226 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3227 {
3228 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3229 }
3230 
3231 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3232 {
3233 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3234 }
3235 
3236 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3237 {
3238 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3239 }
3240 
3241 static inline void dev_consume_skb_any(struct sk_buff *skb)
3242 {
3243 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3244 }
3245 
3246 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3247 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3248 int netif_rx(struct sk_buff *skb);
3249 int netif_rx_ni(struct sk_buff *skb);
3250 int netif_receive_skb(struct sk_buff *skb);
3251 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3252 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3253 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3254 gro_result_t napi_gro_frags(struct napi_struct *napi);
3255 struct packet_offload *gro_find_receive_by_type(__be16 type);
3256 struct packet_offload *gro_find_complete_by_type(__be16 type);
3257 
3258 static inline void napi_free_frags(struct napi_struct *napi)
3259 {
3260 	kfree_skb(napi->skb);
3261 	napi->skb = NULL;
3262 }
3263 
3264 bool netdev_is_rx_handler_busy(struct net_device *dev);
3265 int netdev_rx_handler_register(struct net_device *dev,
3266 			       rx_handler_func_t *rx_handler,
3267 			       void *rx_handler_data);
3268 void netdev_rx_handler_unregister(struct net_device *dev);
3269 
3270 bool dev_valid_name(const char *name);
3271 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3272 int dev_ethtool(struct net *net, struct ifreq *);
3273 unsigned int dev_get_flags(const struct net_device *);
3274 int __dev_change_flags(struct net_device *, unsigned int flags);
3275 int dev_change_flags(struct net_device *, unsigned int);
3276 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3277 			unsigned int gchanges);
3278 int dev_change_name(struct net_device *, const char *);
3279 int dev_set_alias(struct net_device *, const char *, size_t);
3280 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3281 int __dev_set_mtu(struct net_device *, int);
3282 int dev_set_mtu(struct net_device *, int);
3283 void dev_set_group(struct net_device *, int);
3284 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3285 int dev_change_carrier(struct net_device *, bool new_carrier);
3286 int dev_get_phys_port_id(struct net_device *dev,
3287 			 struct netdev_phys_item_id *ppid);
3288 int dev_get_phys_port_name(struct net_device *dev,
3289 			   char *name, size_t len);
3290 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3291 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3292 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3293 				    struct netdev_queue *txq, int *ret);
3294 
3295 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3296 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3297 		      int fd, u32 flags);
3298 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3299 
3300 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3301 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3302 bool is_skb_forwardable(const struct net_device *dev,
3303 			const struct sk_buff *skb);
3304 
3305 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3306 					       struct sk_buff *skb)
3307 {
3308 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3309 	    unlikely(!is_skb_forwardable(dev, skb))) {
3310 		atomic_long_inc(&dev->rx_dropped);
3311 		kfree_skb(skb);
3312 		return NET_RX_DROP;
3313 	}
3314 
3315 	skb_scrub_packet(skb, true);
3316 	skb->priority = 0;
3317 	return 0;
3318 }
3319 
3320 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3321 
3322 extern int		netdev_budget;
3323 extern unsigned int	netdev_budget_usecs;
3324 
3325 /* Called by rtnetlink.c:rtnl_unlock() */
3326 void netdev_run_todo(void);
3327 
3328 /**
3329  *	dev_put - release reference to device
3330  *	@dev: network device
3331  *
3332  * Release reference to device to allow it to be freed.
3333  */
3334 static inline void dev_put(struct net_device *dev)
3335 {
3336 	this_cpu_dec(*dev->pcpu_refcnt);
3337 }
3338 
3339 /**
3340  *	dev_hold - get reference to device
3341  *	@dev: network device
3342  *
3343  * Hold reference to device to keep it from being freed.
3344  */
3345 static inline void dev_hold(struct net_device *dev)
3346 {
3347 	this_cpu_inc(*dev->pcpu_refcnt);
3348 }
3349 
3350 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3351  * and _off may be called from IRQ context, but it is caller
3352  * who is responsible for serialization of these calls.
3353  *
3354  * The name carrier is inappropriate, these functions should really be
3355  * called netif_lowerlayer_*() because they represent the state of any
3356  * kind of lower layer not just hardware media.
3357  */
3358 
3359 void linkwatch_init_dev(struct net_device *dev);
3360 void linkwatch_fire_event(struct net_device *dev);
3361 void linkwatch_forget_dev(struct net_device *dev);
3362 
3363 /**
3364  *	netif_carrier_ok - test if carrier present
3365  *	@dev: network device
3366  *
3367  * Check if carrier is present on device
3368  */
3369 static inline bool netif_carrier_ok(const struct net_device *dev)
3370 {
3371 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3372 }
3373 
3374 unsigned long dev_trans_start(struct net_device *dev);
3375 
3376 void __netdev_watchdog_up(struct net_device *dev);
3377 
3378 void netif_carrier_on(struct net_device *dev);
3379 
3380 void netif_carrier_off(struct net_device *dev);
3381 
3382 /**
3383  *	netif_dormant_on - mark device as dormant.
3384  *	@dev: network device
3385  *
3386  * Mark device as dormant (as per RFC2863).
3387  *
3388  * The dormant state indicates that the relevant interface is not
3389  * actually in a condition to pass packets (i.e., it is not 'up') but is
3390  * in a "pending" state, waiting for some external event.  For "on-
3391  * demand" interfaces, this new state identifies the situation where the
3392  * interface is waiting for events to place it in the up state.
3393  */
3394 static inline void netif_dormant_on(struct net_device *dev)
3395 {
3396 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3397 		linkwatch_fire_event(dev);
3398 }
3399 
3400 /**
3401  *	netif_dormant_off - set device as not dormant.
3402  *	@dev: network device
3403  *
3404  * Device is not in dormant state.
3405  */
3406 static inline void netif_dormant_off(struct net_device *dev)
3407 {
3408 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3409 		linkwatch_fire_event(dev);
3410 }
3411 
3412 /**
3413  *	netif_dormant - test if device is dormant
3414  *	@dev: network device
3415  *
3416  * Check if device is dormant.
3417  */
3418 static inline bool netif_dormant(const struct net_device *dev)
3419 {
3420 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3421 }
3422 
3423 
3424 /**
3425  *	netif_oper_up - test if device is operational
3426  *	@dev: network device
3427  *
3428  * Check if carrier is operational
3429  */
3430 static inline bool netif_oper_up(const struct net_device *dev)
3431 {
3432 	return (dev->operstate == IF_OPER_UP ||
3433 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3434 }
3435 
3436 /**
3437  *	netif_device_present - is device available or removed
3438  *	@dev: network device
3439  *
3440  * Check if device has not been removed from system.
3441  */
3442 static inline bool netif_device_present(struct net_device *dev)
3443 {
3444 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3445 }
3446 
3447 void netif_device_detach(struct net_device *dev);
3448 
3449 void netif_device_attach(struct net_device *dev);
3450 
3451 /*
3452  * Network interface message level settings
3453  */
3454 
3455 enum {
3456 	NETIF_MSG_DRV		= 0x0001,
3457 	NETIF_MSG_PROBE		= 0x0002,
3458 	NETIF_MSG_LINK		= 0x0004,
3459 	NETIF_MSG_TIMER		= 0x0008,
3460 	NETIF_MSG_IFDOWN	= 0x0010,
3461 	NETIF_MSG_IFUP		= 0x0020,
3462 	NETIF_MSG_RX_ERR	= 0x0040,
3463 	NETIF_MSG_TX_ERR	= 0x0080,
3464 	NETIF_MSG_TX_QUEUED	= 0x0100,
3465 	NETIF_MSG_INTR		= 0x0200,
3466 	NETIF_MSG_TX_DONE	= 0x0400,
3467 	NETIF_MSG_RX_STATUS	= 0x0800,
3468 	NETIF_MSG_PKTDATA	= 0x1000,
3469 	NETIF_MSG_HW		= 0x2000,
3470 	NETIF_MSG_WOL		= 0x4000,
3471 };
3472 
3473 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3474 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3475 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3476 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3477 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3478 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3479 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3480 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3481 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3482 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3483 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3484 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3485 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3486 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3487 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3488 
3489 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3490 {
3491 	/* use default */
3492 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3493 		return default_msg_enable_bits;
3494 	if (debug_value == 0)	/* no output */
3495 		return 0;
3496 	/* set low N bits */
3497 	return (1 << debug_value) - 1;
3498 }
3499 
3500 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3501 {
3502 	spin_lock(&txq->_xmit_lock);
3503 	txq->xmit_lock_owner = cpu;
3504 }
3505 
3506 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3507 {
3508 	__acquire(&txq->_xmit_lock);
3509 	return true;
3510 }
3511 
3512 static inline void __netif_tx_release(struct netdev_queue *txq)
3513 {
3514 	__release(&txq->_xmit_lock);
3515 }
3516 
3517 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3518 {
3519 	spin_lock_bh(&txq->_xmit_lock);
3520 	txq->xmit_lock_owner = smp_processor_id();
3521 }
3522 
3523 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3524 {
3525 	bool ok = spin_trylock(&txq->_xmit_lock);
3526 	if (likely(ok))
3527 		txq->xmit_lock_owner = smp_processor_id();
3528 	return ok;
3529 }
3530 
3531 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3532 {
3533 	txq->xmit_lock_owner = -1;
3534 	spin_unlock(&txq->_xmit_lock);
3535 }
3536 
3537 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3538 {
3539 	txq->xmit_lock_owner = -1;
3540 	spin_unlock_bh(&txq->_xmit_lock);
3541 }
3542 
3543 static inline void txq_trans_update(struct netdev_queue *txq)
3544 {
3545 	if (txq->xmit_lock_owner != -1)
3546 		txq->trans_start = jiffies;
3547 }
3548 
3549 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3550 static inline void netif_trans_update(struct net_device *dev)
3551 {
3552 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3553 
3554 	if (txq->trans_start != jiffies)
3555 		txq->trans_start = jiffies;
3556 }
3557 
3558 /**
3559  *	netif_tx_lock - grab network device transmit lock
3560  *	@dev: network device
3561  *
3562  * Get network device transmit lock
3563  */
3564 static inline void netif_tx_lock(struct net_device *dev)
3565 {
3566 	unsigned int i;
3567 	int cpu;
3568 
3569 	spin_lock(&dev->tx_global_lock);
3570 	cpu = smp_processor_id();
3571 	for (i = 0; i < dev->num_tx_queues; i++) {
3572 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3573 
3574 		/* We are the only thread of execution doing a
3575 		 * freeze, but we have to grab the _xmit_lock in
3576 		 * order to synchronize with threads which are in
3577 		 * the ->hard_start_xmit() handler and already
3578 		 * checked the frozen bit.
3579 		 */
3580 		__netif_tx_lock(txq, cpu);
3581 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3582 		__netif_tx_unlock(txq);
3583 	}
3584 }
3585 
3586 static inline void netif_tx_lock_bh(struct net_device *dev)
3587 {
3588 	local_bh_disable();
3589 	netif_tx_lock(dev);
3590 }
3591 
3592 static inline void netif_tx_unlock(struct net_device *dev)
3593 {
3594 	unsigned int i;
3595 
3596 	for (i = 0; i < dev->num_tx_queues; i++) {
3597 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3598 
3599 		/* No need to grab the _xmit_lock here.  If the
3600 		 * queue is not stopped for another reason, we
3601 		 * force a schedule.
3602 		 */
3603 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3604 		netif_schedule_queue(txq);
3605 	}
3606 	spin_unlock(&dev->tx_global_lock);
3607 }
3608 
3609 static inline void netif_tx_unlock_bh(struct net_device *dev)
3610 {
3611 	netif_tx_unlock(dev);
3612 	local_bh_enable();
3613 }
3614 
3615 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3616 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3617 		__netif_tx_lock(txq, cpu);		\
3618 	} else {					\
3619 		__netif_tx_acquire(txq);		\
3620 	}						\
3621 }
3622 
3623 #define HARD_TX_TRYLOCK(dev, txq)			\
3624 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3625 		__netif_tx_trylock(txq) :		\
3626 		__netif_tx_acquire(txq))
3627 
3628 #define HARD_TX_UNLOCK(dev, txq) {			\
3629 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3630 		__netif_tx_unlock(txq);			\
3631 	} else {					\
3632 		__netif_tx_release(txq);		\
3633 	}						\
3634 }
3635 
3636 static inline void netif_tx_disable(struct net_device *dev)
3637 {
3638 	unsigned int i;
3639 	int cpu;
3640 
3641 	local_bh_disable();
3642 	cpu = smp_processor_id();
3643 	for (i = 0; i < dev->num_tx_queues; i++) {
3644 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3645 
3646 		__netif_tx_lock(txq, cpu);
3647 		netif_tx_stop_queue(txq);
3648 		__netif_tx_unlock(txq);
3649 	}
3650 	local_bh_enable();
3651 }
3652 
3653 static inline void netif_addr_lock(struct net_device *dev)
3654 {
3655 	spin_lock(&dev->addr_list_lock);
3656 }
3657 
3658 static inline void netif_addr_lock_nested(struct net_device *dev)
3659 {
3660 	int subclass = SINGLE_DEPTH_NESTING;
3661 
3662 	if (dev->netdev_ops->ndo_get_lock_subclass)
3663 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3664 
3665 	spin_lock_nested(&dev->addr_list_lock, subclass);
3666 }
3667 
3668 static inline void netif_addr_lock_bh(struct net_device *dev)
3669 {
3670 	spin_lock_bh(&dev->addr_list_lock);
3671 }
3672 
3673 static inline void netif_addr_unlock(struct net_device *dev)
3674 {
3675 	spin_unlock(&dev->addr_list_lock);
3676 }
3677 
3678 static inline void netif_addr_unlock_bh(struct net_device *dev)
3679 {
3680 	spin_unlock_bh(&dev->addr_list_lock);
3681 }
3682 
3683 /*
3684  * dev_addrs walker. Should be used only for read access. Call with
3685  * rcu_read_lock held.
3686  */
3687 #define for_each_dev_addr(dev, ha) \
3688 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3689 
3690 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3691 
3692 void ether_setup(struct net_device *dev);
3693 
3694 /* Support for loadable net-drivers */
3695 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3696 				    unsigned char name_assign_type,
3697 				    void (*setup)(struct net_device *),
3698 				    unsigned int txqs, unsigned int rxqs);
3699 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3700 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3701 
3702 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3703 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3704 			 count)
3705 
3706 int register_netdev(struct net_device *dev);
3707 void unregister_netdev(struct net_device *dev);
3708 
3709 /* General hardware address lists handling functions */
3710 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3711 		   struct netdev_hw_addr_list *from_list, int addr_len);
3712 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3713 		      struct netdev_hw_addr_list *from_list, int addr_len);
3714 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3715 		       struct net_device *dev,
3716 		       int (*sync)(struct net_device *, const unsigned char *),
3717 		       int (*unsync)(struct net_device *,
3718 				     const unsigned char *));
3719 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3720 			  struct net_device *dev,
3721 			  int (*unsync)(struct net_device *,
3722 					const unsigned char *));
3723 void __hw_addr_init(struct netdev_hw_addr_list *list);
3724 
3725 /* Functions used for device addresses handling */
3726 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3727 		 unsigned char addr_type);
3728 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3729 		 unsigned char addr_type);
3730 void dev_addr_flush(struct net_device *dev);
3731 int dev_addr_init(struct net_device *dev);
3732 
3733 /* Functions used for unicast addresses handling */
3734 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3735 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3736 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3737 int dev_uc_sync(struct net_device *to, struct net_device *from);
3738 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3739 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3740 void dev_uc_flush(struct net_device *dev);
3741 void dev_uc_init(struct net_device *dev);
3742 
3743 /**
3744  *  __dev_uc_sync - Synchonize device's unicast list
3745  *  @dev:  device to sync
3746  *  @sync: function to call if address should be added
3747  *  @unsync: function to call if address should be removed
3748  *
3749  *  Add newly added addresses to the interface, and release
3750  *  addresses that have been deleted.
3751  */
3752 static inline int __dev_uc_sync(struct net_device *dev,
3753 				int (*sync)(struct net_device *,
3754 					    const unsigned char *),
3755 				int (*unsync)(struct net_device *,
3756 					      const unsigned char *))
3757 {
3758 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3759 }
3760 
3761 /**
3762  *  __dev_uc_unsync - Remove synchronized addresses from device
3763  *  @dev:  device to sync
3764  *  @unsync: function to call if address should be removed
3765  *
3766  *  Remove all addresses that were added to the device by dev_uc_sync().
3767  */
3768 static inline void __dev_uc_unsync(struct net_device *dev,
3769 				   int (*unsync)(struct net_device *,
3770 						 const unsigned char *))
3771 {
3772 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3773 }
3774 
3775 /* Functions used for multicast addresses handling */
3776 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3777 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3778 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3779 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3780 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3781 int dev_mc_sync(struct net_device *to, struct net_device *from);
3782 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3783 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3784 void dev_mc_flush(struct net_device *dev);
3785 void dev_mc_init(struct net_device *dev);
3786 
3787 /**
3788  *  __dev_mc_sync - Synchonize device's multicast list
3789  *  @dev:  device to sync
3790  *  @sync: function to call if address should be added
3791  *  @unsync: function to call if address should be removed
3792  *
3793  *  Add newly added addresses to the interface, and release
3794  *  addresses that have been deleted.
3795  */
3796 static inline int __dev_mc_sync(struct net_device *dev,
3797 				int (*sync)(struct net_device *,
3798 					    const unsigned char *),
3799 				int (*unsync)(struct net_device *,
3800 					      const unsigned char *))
3801 {
3802 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3803 }
3804 
3805 /**
3806  *  __dev_mc_unsync - Remove synchronized addresses from device
3807  *  @dev:  device to sync
3808  *  @unsync: function to call if address should be removed
3809  *
3810  *  Remove all addresses that were added to the device by dev_mc_sync().
3811  */
3812 static inline void __dev_mc_unsync(struct net_device *dev,
3813 				   int (*unsync)(struct net_device *,
3814 						 const unsigned char *))
3815 {
3816 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3817 }
3818 
3819 /* Functions used for secondary unicast and multicast support */
3820 void dev_set_rx_mode(struct net_device *dev);
3821 void __dev_set_rx_mode(struct net_device *dev);
3822 int dev_set_promiscuity(struct net_device *dev, int inc);
3823 int dev_set_allmulti(struct net_device *dev, int inc);
3824 void netdev_state_change(struct net_device *dev);
3825 void netdev_notify_peers(struct net_device *dev);
3826 void netdev_features_change(struct net_device *dev);
3827 /* Load a device via the kmod */
3828 void dev_load(struct net *net, const char *name);
3829 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3830 					struct rtnl_link_stats64 *storage);
3831 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3832 			     const struct net_device_stats *netdev_stats);
3833 
3834 extern int		netdev_max_backlog;
3835 extern int		netdev_tstamp_prequeue;
3836 extern int		weight_p;
3837 extern int		dev_weight_rx_bias;
3838 extern int		dev_weight_tx_bias;
3839 extern int		dev_rx_weight;
3840 extern int		dev_tx_weight;
3841 
3842 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3843 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3844 						     struct list_head **iter);
3845 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3846 						     struct list_head **iter);
3847 
3848 /* iterate through upper list, must be called under RCU read lock */
3849 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3850 	for (iter = &(dev)->adj_list.upper, \
3851 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3852 	     updev; \
3853 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3854 
3855 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3856 				  int (*fn)(struct net_device *upper_dev,
3857 					    void *data),
3858 				  void *data);
3859 
3860 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3861 				  struct net_device *upper_dev);
3862 
3863 void *netdev_lower_get_next_private(struct net_device *dev,
3864 				    struct list_head **iter);
3865 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3866 					struct list_head **iter);
3867 
3868 #define netdev_for_each_lower_private(dev, priv, iter) \
3869 	for (iter = (dev)->adj_list.lower.next, \
3870 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3871 	     priv; \
3872 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3873 
3874 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3875 	for (iter = &(dev)->adj_list.lower, \
3876 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3877 	     priv; \
3878 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3879 
3880 void *netdev_lower_get_next(struct net_device *dev,
3881 				struct list_head **iter);
3882 
3883 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3884 	for (iter = (dev)->adj_list.lower.next, \
3885 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3886 	     ldev; \
3887 	     ldev = netdev_lower_get_next(dev, &(iter)))
3888 
3889 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3890 					     struct list_head **iter);
3891 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3892 						 struct list_head **iter);
3893 
3894 int netdev_walk_all_lower_dev(struct net_device *dev,
3895 			      int (*fn)(struct net_device *lower_dev,
3896 					void *data),
3897 			      void *data);
3898 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3899 				  int (*fn)(struct net_device *lower_dev,
3900 					    void *data),
3901 				  void *data);
3902 
3903 void *netdev_adjacent_get_private(struct list_head *adj_list);
3904 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3905 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3906 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3907 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3908 int netdev_master_upper_dev_link(struct net_device *dev,
3909 				 struct net_device *upper_dev,
3910 				 void *upper_priv, void *upper_info);
3911 void netdev_upper_dev_unlink(struct net_device *dev,
3912 			     struct net_device *upper_dev);
3913 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3914 void *netdev_lower_dev_get_private(struct net_device *dev,
3915 				   struct net_device *lower_dev);
3916 void netdev_lower_state_changed(struct net_device *lower_dev,
3917 				void *lower_state_info);
3918 
3919 /* RSS keys are 40 or 52 bytes long */
3920 #define NETDEV_RSS_KEY_LEN 52
3921 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3922 void netdev_rss_key_fill(void *buffer, size_t len);
3923 
3924 int dev_get_nest_level(struct net_device *dev);
3925 int skb_checksum_help(struct sk_buff *skb);
3926 int skb_crc32c_csum_help(struct sk_buff *skb);
3927 int skb_csum_hwoffload_help(struct sk_buff *skb,
3928 			    const netdev_features_t features);
3929 
3930 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3931 				  netdev_features_t features, bool tx_path);
3932 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3933 				    netdev_features_t features);
3934 
3935 struct netdev_bonding_info {
3936 	ifslave	slave;
3937 	ifbond	master;
3938 };
3939 
3940 struct netdev_notifier_bonding_info {
3941 	struct netdev_notifier_info info; /* must be first */
3942 	struct netdev_bonding_info  bonding_info;
3943 };
3944 
3945 void netdev_bonding_info_change(struct net_device *dev,
3946 				struct netdev_bonding_info *bonding_info);
3947 
3948 static inline
3949 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3950 {
3951 	return __skb_gso_segment(skb, features, true);
3952 }
3953 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3954 
3955 static inline bool can_checksum_protocol(netdev_features_t features,
3956 					 __be16 protocol)
3957 {
3958 	if (protocol == htons(ETH_P_FCOE))
3959 		return !!(features & NETIF_F_FCOE_CRC);
3960 
3961 	/* Assume this is an IP checksum (not SCTP CRC) */
3962 
3963 	if (features & NETIF_F_HW_CSUM) {
3964 		/* Can checksum everything */
3965 		return true;
3966 	}
3967 
3968 	switch (protocol) {
3969 	case htons(ETH_P_IP):
3970 		return !!(features & NETIF_F_IP_CSUM);
3971 	case htons(ETH_P_IPV6):
3972 		return !!(features & NETIF_F_IPV6_CSUM);
3973 	default:
3974 		return false;
3975 	}
3976 }
3977 
3978 #ifdef CONFIG_BUG
3979 void netdev_rx_csum_fault(struct net_device *dev);
3980 #else
3981 static inline void netdev_rx_csum_fault(struct net_device *dev)
3982 {
3983 }
3984 #endif
3985 /* rx skb timestamps */
3986 void net_enable_timestamp(void);
3987 void net_disable_timestamp(void);
3988 
3989 #ifdef CONFIG_PROC_FS
3990 int __init dev_proc_init(void);
3991 #else
3992 #define dev_proc_init() 0
3993 #endif
3994 
3995 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3996 					      struct sk_buff *skb, struct net_device *dev,
3997 					      bool more)
3998 {
3999 	skb->xmit_more = more ? 1 : 0;
4000 	return ops->ndo_start_xmit(skb, dev);
4001 }
4002 
4003 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4004 					    struct netdev_queue *txq, bool more)
4005 {
4006 	const struct net_device_ops *ops = dev->netdev_ops;
4007 	int rc;
4008 
4009 	rc = __netdev_start_xmit(ops, skb, dev, more);
4010 	if (rc == NETDEV_TX_OK)
4011 		txq_trans_update(txq);
4012 
4013 	return rc;
4014 }
4015 
4016 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4017 				const void *ns);
4018 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4019 				 const void *ns);
4020 
4021 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4022 {
4023 	return netdev_class_create_file_ns(class_attr, NULL);
4024 }
4025 
4026 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4027 {
4028 	netdev_class_remove_file_ns(class_attr, NULL);
4029 }
4030 
4031 extern struct kobj_ns_type_operations net_ns_type_operations;
4032 
4033 const char *netdev_drivername(const struct net_device *dev);
4034 
4035 void linkwatch_run_queue(void);
4036 
4037 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4038 							  netdev_features_t f2)
4039 {
4040 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4041 		if (f1 & NETIF_F_HW_CSUM)
4042 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4043 		else
4044 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4045 	}
4046 
4047 	return f1 & f2;
4048 }
4049 
4050 static inline netdev_features_t netdev_get_wanted_features(
4051 	struct net_device *dev)
4052 {
4053 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4054 }
4055 netdev_features_t netdev_increment_features(netdev_features_t all,
4056 	netdev_features_t one, netdev_features_t mask);
4057 
4058 /* Allow TSO being used on stacked device :
4059  * Performing the GSO segmentation before last device
4060  * is a performance improvement.
4061  */
4062 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4063 							netdev_features_t mask)
4064 {
4065 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4066 }
4067 
4068 int __netdev_update_features(struct net_device *dev);
4069 void netdev_update_features(struct net_device *dev);
4070 void netdev_change_features(struct net_device *dev);
4071 
4072 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4073 					struct net_device *dev);
4074 
4075 netdev_features_t passthru_features_check(struct sk_buff *skb,
4076 					  struct net_device *dev,
4077 					  netdev_features_t features);
4078 netdev_features_t netif_skb_features(struct sk_buff *skb);
4079 
4080 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4081 {
4082 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4083 
4084 	/* check flags correspondence */
4085 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4086 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4087 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4088 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4089 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4090 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4091 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4092 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4093 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4094 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4095 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4096 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4097 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4098 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4099 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4100 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4101 
4102 	return (features & feature) == feature;
4103 }
4104 
4105 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4106 {
4107 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4108 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4109 }
4110 
4111 static inline bool netif_needs_gso(struct sk_buff *skb,
4112 				   netdev_features_t features)
4113 {
4114 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4115 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4116 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4117 }
4118 
4119 static inline void netif_set_gso_max_size(struct net_device *dev,
4120 					  unsigned int size)
4121 {
4122 	dev->gso_max_size = size;
4123 }
4124 
4125 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4126 					int pulled_hlen, u16 mac_offset,
4127 					int mac_len)
4128 {
4129 	skb->protocol = protocol;
4130 	skb->encapsulation = 1;
4131 	skb_push(skb, pulled_hlen);
4132 	skb_reset_transport_header(skb);
4133 	skb->mac_header = mac_offset;
4134 	skb->network_header = skb->mac_header + mac_len;
4135 	skb->mac_len = mac_len;
4136 }
4137 
4138 static inline bool netif_is_macsec(const struct net_device *dev)
4139 {
4140 	return dev->priv_flags & IFF_MACSEC;
4141 }
4142 
4143 static inline bool netif_is_macvlan(const struct net_device *dev)
4144 {
4145 	return dev->priv_flags & IFF_MACVLAN;
4146 }
4147 
4148 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4149 {
4150 	return dev->priv_flags & IFF_MACVLAN_PORT;
4151 }
4152 
4153 static inline bool netif_is_ipvlan(const struct net_device *dev)
4154 {
4155 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4156 }
4157 
4158 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4159 {
4160 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4161 }
4162 
4163 static inline bool netif_is_bond_master(const struct net_device *dev)
4164 {
4165 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4166 }
4167 
4168 static inline bool netif_is_bond_slave(const struct net_device *dev)
4169 {
4170 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4171 }
4172 
4173 static inline bool netif_supports_nofcs(struct net_device *dev)
4174 {
4175 	return dev->priv_flags & IFF_SUPP_NOFCS;
4176 }
4177 
4178 static inline bool netif_is_l3_master(const struct net_device *dev)
4179 {
4180 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4181 }
4182 
4183 static inline bool netif_is_l3_slave(const struct net_device *dev)
4184 {
4185 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4186 }
4187 
4188 static inline bool netif_is_bridge_master(const struct net_device *dev)
4189 {
4190 	return dev->priv_flags & IFF_EBRIDGE;
4191 }
4192 
4193 static inline bool netif_is_bridge_port(const struct net_device *dev)
4194 {
4195 	return dev->priv_flags & IFF_BRIDGE_PORT;
4196 }
4197 
4198 static inline bool netif_is_ovs_master(const struct net_device *dev)
4199 {
4200 	return dev->priv_flags & IFF_OPENVSWITCH;
4201 }
4202 
4203 static inline bool netif_is_ovs_port(const struct net_device *dev)
4204 {
4205 	return dev->priv_flags & IFF_OVS_DATAPATH;
4206 }
4207 
4208 static inline bool netif_is_team_master(const struct net_device *dev)
4209 {
4210 	return dev->priv_flags & IFF_TEAM;
4211 }
4212 
4213 static inline bool netif_is_team_port(const struct net_device *dev)
4214 {
4215 	return dev->priv_flags & IFF_TEAM_PORT;
4216 }
4217 
4218 static inline bool netif_is_lag_master(const struct net_device *dev)
4219 {
4220 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4221 }
4222 
4223 static inline bool netif_is_lag_port(const struct net_device *dev)
4224 {
4225 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4226 }
4227 
4228 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4229 {
4230 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4231 }
4232 
4233 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4234 static inline void netif_keep_dst(struct net_device *dev)
4235 {
4236 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4237 }
4238 
4239 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4240 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4241 {
4242 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4243 	return dev->priv_flags & IFF_MACSEC;
4244 }
4245 
4246 extern struct pernet_operations __net_initdata loopback_net_ops;
4247 
4248 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4249 
4250 /* netdev_printk helpers, similar to dev_printk */
4251 
4252 static inline const char *netdev_name(const struct net_device *dev)
4253 {
4254 	if (!dev->name[0] || strchr(dev->name, '%'))
4255 		return "(unnamed net_device)";
4256 	return dev->name;
4257 }
4258 
4259 static inline bool netdev_unregistering(const struct net_device *dev)
4260 {
4261 	return dev->reg_state == NETREG_UNREGISTERING;
4262 }
4263 
4264 static inline const char *netdev_reg_state(const struct net_device *dev)
4265 {
4266 	switch (dev->reg_state) {
4267 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4268 	case NETREG_REGISTERED: return "";
4269 	case NETREG_UNREGISTERING: return " (unregistering)";
4270 	case NETREG_UNREGISTERED: return " (unregistered)";
4271 	case NETREG_RELEASED: return " (released)";
4272 	case NETREG_DUMMY: return " (dummy)";
4273 	}
4274 
4275 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4276 	return " (unknown)";
4277 }
4278 
4279 __printf(3, 4)
4280 void netdev_printk(const char *level, const struct net_device *dev,
4281 		   const char *format, ...);
4282 __printf(2, 3)
4283 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4284 __printf(2, 3)
4285 void netdev_alert(const struct net_device *dev, const char *format, ...);
4286 __printf(2, 3)
4287 void netdev_crit(const struct net_device *dev, const char *format, ...);
4288 __printf(2, 3)
4289 void netdev_err(const struct net_device *dev, const char *format, ...);
4290 __printf(2, 3)
4291 void netdev_warn(const struct net_device *dev, const char *format, ...);
4292 __printf(2, 3)
4293 void netdev_notice(const struct net_device *dev, const char *format, ...);
4294 __printf(2, 3)
4295 void netdev_info(const struct net_device *dev, const char *format, ...);
4296 
4297 #define MODULE_ALIAS_NETDEV(device) \
4298 	MODULE_ALIAS("netdev-" device)
4299 
4300 #if defined(CONFIG_DYNAMIC_DEBUG)
4301 #define netdev_dbg(__dev, format, args...)			\
4302 do {								\
4303 	dynamic_netdev_dbg(__dev, format, ##args);		\
4304 } while (0)
4305 #elif defined(DEBUG)
4306 #define netdev_dbg(__dev, format, args...)			\
4307 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4308 #else
4309 #define netdev_dbg(__dev, format, args...)			\
4310 ({								\
4311 	if (0)							\
4312 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4313 })
4314 #endif
4315 
4316 #if defined(VERBOSE_DEBUG)
4317 #define netdev_vdbg	netdev_dbg
4318 #else
4319 
4320 #define netdev_vdbg(dev, format, args...)			\
4321 ({								\
4322 	if (0)							\
4323 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4324 	0;							\
4325 })
4326 #endif
4327 
4328 /*
4329  * netdev_WARN() acts like dev_printk(), but with the key difference
4330  * of using a WARN/WARN_ON to get the message out, including the
4331  * file/line information and a backtrace.
4332  */
4333 #define netdev_WARN(dev, format, args...)			\
4334 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4335 	     netdev_reg_state(dev), ##args)
4336 
4337 /* netif printk helpers, similar to netdev_printk */
4338 
4339 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4340 do {					  			\
4341 	if (netif_msg_##type(priv))				\
4342 		netdev_printk(level, (dev), fmt, ##args);	\
4343 } while (0)
4344 
4345 #define netif_level(level, priv, type, dev, fmt, args...)	\
4346 do {								\
4347 	if (netif_msg_##type(priv))				\
4348 		netdev_##level(dev, fmt, ##args);		\
4349 } while (0)
4350 
4351 #define netif_emerg(priv, type, dev, fmt, args...)		\
4352 	netif_level(emerg, priv, type, dev, fmt, ##args)
4353 #define netif_alert(priv, type, dev, fmt, args...)		\
4354 	netif_level(alert, priv, type, dev, fmt, ##args)
4355 #define netif_crit(priv, type, dev, fmt, args...)		\
4356 	netif_level(crit, priv, type, dev, fmt, ##args)
4357 #define netif_err(priv, type, dev, fmt, args...)		\
4358 	netif_level(err, priv, type, dev, fmt, ##args)
4359 #define netif_warn(priv, type, dev, fmt, args...)		\
4360 	netif_level(warn, priv, type, dev, fmt, ##args)
4361 #define netif_notice(priv, type, dev, fmt, args...)		\
4362 	netif_level(notice, priv, type, dev, fmt, ##args)
4363 #define netif_info(priv, type, dev, fmt, args...)		\
4364 	netif_level(info, priv, type, dev, fmt, ##args)
4365 
4366 #if defined(CONFIG_DYNAMIC_DEBUG)
4367 #define netif_dbg(priv, type, netdev, format, args...)		\
4368 do {								\
4369 	if (netif_msg_##type(priv))				\
4370 		dynamic_netdev_dbg(netdev, format, ##args);	\
4371 } while (0)
4372 #elif defined(DEBUG)
4373 #define netif_dbg(priv, type, dev, format, args...)		\
4374 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4375 #else
4376 #define netif_dbg(priv, type, dev, format, args...)			\
4377 ({									\
4378 	if (0)								\
4379 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4380 	0;								\
4381 })
4382 #endif
4383 
4384 /* if @cond then downgrade to debug, else print at @level */
4385 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4386 	do {                                                              \
4387 		if (cond)                                                 \
4388 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4389 		else                                                      \
4390 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4391 	} while (0)
4392 
4393 #if defined(VERBOSE_DEBUG)
4394 #define netif_vdbg	netif_dbg
4395 #else
4396 #define netif_vdbg(priv, type, dev, format, args...)		\
4397 ({								\
4398 	if (0)							\
4399 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4400 	0;							\
4401 })
4402 #endif
4403 
4404 /*
4405  *	The list of packet types we will receive (as opposed to discard)
4406  *	and the routines to invoke.
4407  *
4408  *	Why 16. Because with 16 the only overlap we get on a hash of the
4409  *	low nibble of the protocol value is RARP/SNAP/X.25.
4410  *
4411  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4412  *             sure which should go first, but I bet it won't make much
4413  *             difference if we are running VLANs.  The good news is that
4414  *             this protocol won't be in the list unless compiled in, so
4415  *             the average user (w/out VLANs) will not be adversely affected.
4416  *             --BLG
4417  *
4418  *		0800	IP
4419  *		8100    802.1Q VLAN
4420  *		0001	802.3
4421  *		0002	AX.25
4422  *		0004	802.2
4423  *		8035	RARP
4424  *		0005	SNAP
4425  *		0805	X.25
4426  *		0806	ARP
4427  *		8137	IPX
4428  *		0009	Localtalk
4429  *		86DD	IPv6
4430  */
4431 #define PTYPE_HASH_SIZE	(16)
4432 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4433 
4434 #endif	/* _LINUX_NETDEVICE_H */
4435