1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #ifdef CONFIG_DCB 45 #include <net/dcbnl.h> 46 #endif 47 #include <net/netprio_cgroup.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_switch_tree; 60 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct bpf_prog; 69 struct xdp_buff; 70 71 void netdev_set_default_ethtool_ops(struct net_device *dev, 72 const struct ethtool_ops *ops); 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously; in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 92 * others are propagated to higher layers. 93 */ 94 95 /* qdisc ->enqueue() return codes. */ 96 #define NET_XMIT_SUCCESS 0x00 97 #define NET_XMIT_DROP 0x01 /* skb dropped */ 98 #define NET_XMIT_CN 0x02 /* congestion notification */ 99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107 /* Driver transmit return codes */ 108 #define NETDEV_TX_MASK 0xf0 109 110 enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 }; 115 typedef enum netdev_tx netdev_tx_t; 116 117 /* 118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 120 */ 121 static inline bool dev_xmit_complete(int rc) 122 { 123 /* 124 * Positive cases with an skb consumed by a driver: 125 * - successful transmission (rc == NETDEV_TX_OK) 126 * - error while transmitting (rc < 0) 127 * - error while queueing to a different device (rc & NET_XMIT_MASK) 128 */ 129 if (likely(rc < NET_XMIT_MASK)) 130 return true; 131 132 return false; 133 } 134 135 /* 136 * Compute the worst-case header length according to the protocols 137 * used. 138 */ 139 140 #if defined(CONFIG_HYPERV_NET) 141 # define LL_MAX_HEADER 128 142 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 143 # if defined(CONFIG_MAC80211_MESH) 144 # define LL_MAX_HEADER 128 145 # else 146 # define LL_MAX_HEADER 96 147 # endif 148 #else 149 # define LL_MAX_HEADER 32 150 #endif 151 152 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 153 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 154 #define MAX_HEADER LL_MAX_HEADER 155 #else 156 #define MAX_HEADER (LL_MAX_HEADER + 48) 157 #endif 158 159 /* 160 * Old network device statistics. Fields are native words 161 * (unsigned long) so they can be read and written atomically. 162 */ 163 164 struct net_device_stats { 165 unsigned long rx_packets; 166 unsigned long tx_packets; 167 unsigned long rx_bytes; 168 unsigned long tx_bytes; 169 unsigned long rx_errors; 170 unsigned long tx_errors; 171 unsigned long rx_dropped; 172 unsigned long tx_dropped; 173 unsigned long multicast; 174 unsigned long collisions; 175 unsigned long rx_length_errors; 176 unsigned long rx_over_errors; 177 unsigned long rx_crc_errors; 178 unsigned long rx_frame_errors; 179 unsigned long rx_fifo_errors; 180 unsigned long rx_missed_errors; 181 unsigned long tx_aborted_errors; 182 unsigned long tx_carrier_errors; 183 unsigned long tx_fifo_errors; 184 unsigned long tx_heartbeat_errors; 185 unsigned long tx_window_errors; 186 unsigned long rx_compressed; 187 unsigned long tx_compressed; 188 }; 189 190 191 #include <linux/cache.h> 192 #include <linux/skbuff.h> 193 194 #ifdef CONFIG_RPS 195 #include <linux/static_key.h> 196 extern struct static_key rps_needed; 197 extern struct static_key rfs_needed; 198 #endif 199 200 struct neighbour; 201 struct neigh_parms; 202 struct sk_buff; 203 204 struct netdev_hw_addr { 205 struct list_head list; 206 unsigned char addr[MAX_ADDR_LEN]; 207 unsigned char type; 208 #define NETDEV_HW_ADDR_T_LAN 1 209 #define NETDEV_HW_ADDR_T_SAN 2 210 #define NETDEV_HW_ADDR_T_SLAVE 3 211 #define NETDEV_HW_ADDR_T_UNICAST 4 212 #define NETDEV_HW_ADDR_T_MULTICAST 5 213 bool global_use; 214 int sync_cnt; 215 int refcount; 216 int synced; 217 struct rcu_head rcu_head; 218 }; 219 220 struct netdev_hw_addr_list { 221 struct list_head list; 222 int count; 223 }; 224 225 #define netdev_hw_addr_list_count(l) ((l)->count) 226 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 227 #define netdev_hw_addr_list_for_each(ha, l) \ 228 list_for_each_entry(ha, &(l)->list, list) 229 230 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 231 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 232 #define netdev_for_each_uc_addr(ha, dev) \ 233 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 234 235 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 236 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 237 #define netdev_for_each_mc_addr(ha, dev) \ 238 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 239 240 struct hh_cache { 241 unsigned int hh_len; 242 seqlock_t hh_lock; 243 244 /* cached hardware header; allow for machine alignment needs. */ 245 #define HH_DATA_MOD 16 246 #define HH_DATA_OFF(__len) \ 247 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 248 #define HH_DATA_ALIGN(__len) \ 249 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 250 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 251 }; 252 253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 254 * Alternative is: 255 * dev->hard_header_len ? (dev->hard_header_len + 256 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 257 * 258 * We could use other alignment values, but we must maintain the 259 * relationship HH alignment <= LL alignment. 260 */ 261 #define LL_RESERVED_SPACE(dev) \ 262 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 264 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 265 266 struct header_ops { 267 int (*create) (struct sk_buff *skb, struct net_device *dev, 268 unsigned short type, const void *daddr, 269 const void *saddr, unsigned int len); 270 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 272 void (*cache_update)(struct hh_cache *hh, 273 const struct net_device *dev, 274 const unsigned char *haddr); 275 bool (*validate)(const char *ll_header, unsigned int len); 276 }; 277 278 /* These flag bits are private to the generic network queueing 279 * layer; they may not be explicitly referenced by any other 280 * code. 281 */ 282 283 enum netdev_state_t { 284 __LINK_STATE_START, 285 __LINK_STATE_PRESENT, 286 __LINK_STATE_NOCARRIER, 287 __LINK_STATE_LINKWATCH_PENDING, 288 __LINK_STATE_DORMANT, 289 }; 290 291 292 /* 293 * This structure holds boot-time configured netdevice settings. They 294 * are then used in the device probing. 295 */ 296 struct netdev_boot_setup { 297 char name[IFNAMSIZ]; 298 struct ifmap map; 299 }; 300 #define NETDEV_BOOT_SETUP_MAX 8 301 302 int __init netdev_boot_setup(char *str); 303 304 /* 305 * Structure for NAPI scheduling similar to tasklet but with weighting 306 */ 307 struct napi_struct { 308 /* The poll_list must only be managed by the entity which 309 * changes the state of the NAPI_STATE_SCHED bit. This means 310 * whoever atomically sets that bit can add this napi_struct 311 * to the per-CPU poll_list, and whoever clears that bit 312 * can remove from the list right before clearing the bit. 313 */ 314 struct list_head poll_list; 315 316 unsigned long state; 317 int weight; 318 unsigned int gro_count; 319 int (*poll)(struct napi_struct *, int); 320 #ifdef CONFIG_NETPOLL 321 int poll_owner; 322 #endif 323 struct net_device *dev; 324 struct sk_buff *gro_list; 325 struct sk_buff *skb; 326 struct hrtimer timer; 327 struct list_head dev_list; 328 struct hlist_node napi_hash_node; 329 unsigned int napi_id; 330 }; 331 332 enum { 333 NAPI_STATE_SCHED, /* Poll is scheduled */ 334 NAPI_STATE_MISSED, /* reschedule a napi */ 335 NAPI_STATE_DISABLE, /* Disable pending */ 336 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 337 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 338 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 339 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 340 }; 341 342 enum { 343 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 344 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 345 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 346 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 347 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 348 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 349 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 350 }; 351 352 enum gro_result { 353 GRO_MERGED, 354 GRO_MERGED_FREE, 355 GRO_HELD, 356 GRO_NORMAL, 357 GRO_DROP, 358 GRO_CONSUMED, 359 }; 360 typedef enum gro_result gro_result_t; 361 362 /* 363 * enum rx_handler_result - Possible return values for rx_handlers. 364 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 365 * further. 366 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 367 * case skb->dev was changed by rx_handler. 368 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 369 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 370 * 371 * rx_handlers are functions called from inside __netif_receive_skb(), to do 372 * special processing of the skb, prior to delivery to protocol handlers. 373 * 374 * Currently, a net_device can only have a single rx_handler registered. Trying 375 * to register a second rx_handler will return -EBUSY. 376 * 377 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 378 * To unregister a rx_handler on a net_device, use 379 * netdev_rx_handler_unregister(). 380 * 381 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 382 * do with the skb. 383 * 384 * If the rx_handler consumed the skb in some way, it should return 385 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 386 * the skb to be delivered in some other way. 387 * 388 * If the rx_handler changed skb->dev, to divert the skb to another 389 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 390 * new device will be called if it exists. 391 * 392 * If the rx_handler decides the skb should be ignored, it should return 393 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 394 * are registered on exact device (ptype->dev == skb->dev). 395 * 396 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 397 * delivered, it should return RX_HANDLER_PASS. 398 * 399 * A device without a registered rx_handler will behave as if rx_handler 400 * returned RX_HANDLER_PASS. 401 */ 402 403 enum rx_handler_result { 404 RX_HANDLER_CONSUMED, 405 RX_HANDLER_ANOTHER, 406 RX_HANDLER_EXACT, 407 RX_HANDLER_PASS, 408 }; 409 typedef enum rx_handler_result rx_handler_result_t; 410 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 411 412 void __napi_schedule(struct napi_struct *n); 413 void __napi_schedule_irqoff(struct napi_struct *n); 414 415 static inline bool napi_disable_pending(struct napi_struct *n) 416 { 417 return test_bit(NAPI_STATE_DISABLE, &n->state); 418 } 419 420 bool napi_schedule_prep(struct napi_struct *n); 421 422 /** 423 * napi_schedule - schedule NAPI poll 424 * @n: NAPI context 425 * 426 * Schedule NAPI poll routine to be called if it is not already 427 * running. 428 */ 429 static inline void napi_schedule(struct napi_struct *n) 430 { 431 if (napi_schedule_prep(n)) 432 __napi_schedule(n); 433 } 434 435 /** 436 * napi_schedule_irqoff - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Variant of napi_schedule(), assuming hard irqs are masked. 440 */ 441 static inline void napi_schedule_irqoff(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule_irqoff(n); 445 } 446 447 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 448 static inline bool napi_reschedule(struct napi_struct *napi) 449 { 450 if (napi_schedule_prep(napi)) { 451 __napi_schedule(napi); 452 return true; 453 } 454 return false; 455 } 456 457 bool napi_complete_done(struct napi_struct *n, int work_done); 458 /** 459 * napi_complete - NAPI processing complete 460 * @n: NAPI context 461 * 462 * Mark NAPI processing as complete. 463 * Consider using napi_complete_done() instead. 464 * Return false if device should avoid rearming interrupts. 465 */ 466 static inline bool napi_complete(struct napi_struct *n) 467 { 468 return napi_complete_done(n, 0); 469 } 470 471 /** 472 * napi_hash_del - remove a NAPI from global table 473 * @napi: NAPI context 474 * 475 * Warning: caller must observe RCU grace period 476 * before freeing memory containing @napi, if 477 * this function returns true. 478 * Note: core networking stack automatically calls it 479 * from netif_napi_del(). 480 * Drivers might want to call this helper to combine all 481 * the needed RCU grace periods into a single one. 482 */ 483 bool napi_hash_del(struct napi_struct *napi); 484 485 /** 486 * napi_disable - prevent NAPI from scheduling 487 * @n: NAPI context 488 * 489 * Stop NAPI from being scheduled on this context. 490 * Waits till any outstanding processing completes. 491 */ 492 void napi_disable(struct napi_struct *n); 493 494 /** 495 * napi_enable - enable NAPI scheduling 496 * @n: NAPI context 497 * 498 * Resume NAPI from being scheduled on this context. 499 * Must be paired with napi_disable. 500 */ 501 static inline void napi_enable(struct napi_struct *n) 502 { 503 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 504 smp_mb__before_atomic(); 505 clear_bit(NAPI_STATE_SCHED, &n->state); 506 clear_bit(NAPI_STATE_NPSVC, &n->state); 507 } 508 509 /** 510 * napi_synchronize - wait until NAPI is not running 511 * @n: NAPI context 512 * 513 * Wait until NAPI is done being scheduled on this context. 514 * Waits till any outstanding processing completes but 515 * does not disable future activations. 516 */ 517 static inline void napi_synchronize(const struct napi_struct *n) 518 { 519 if (IS_ENABLED(CONFIG_SMP)) 520 while (test_bit(NAPI_STATE_SCHED, &n->state)) 521 msleep(1); 522 else 523 barrier(); 524 } 525 526 enum netdev_queue_state_t { 527 __QUEUE_STATE_DRV_XOFF, 528 __QUEUE_STATE_STACK_XOFF, 529 __QUEUE_STATE_FROZEN, 530 }; 531 532 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 533 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 534 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 535 536 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 537 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 538 QUEUE_STATE_FROZEN) 539 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 540 QUEUE_STATE_FROZEN) 541 542 /* 543 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 544 * netif_tx_* functions below are used to manipulate this flag. The 545 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 546 * queue independently. The netif_xmit_*stopped functions below are called 547 * to check if the queue has been stopped by the driver or stack (either 548 * of the XOFF bits are set in the state). Drivers should not need to call 549 * netif_xmit*stopped functions, they should only be using netif_tx_*. 550 */ 551 552 struct netdev_queue { 553 /* 554 * read-mostly part 555 */ 556 struct net_device *dev; 557 struct Qdisc __rcu *qdisc; 558 struct Qdisc *qdisc_sleeping; 559 #ifdef CONFIG_SYSFS 560 struct kobject kobj; 561 #endif 562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 int numa_node; 564 #endif 565 unsigned long tx_maxrate; 566 /* 567 * Number of TX timeouts for this queue 568 * (/sys/class/net/DEV/Q/trans_timeout) 569 */ 570 unsigned long trans_timeout; 571 /* 572 * write-mostly part 573 */ 574 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 575 int xmit_lock_owner; 576 /* 577 * Time (in jiffies) of last Tx 578 */ 579 unsigned long trans_start; 580 581 unsigned long state; 582 583 #ifdef CONFIG_BQL 584 struct dql dql; 585 #endif 586 } ____cacheline_aligned_in_smp; 587 588 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 589 { 590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 591 return q->numa_node; 592 #else 593 return NUMA_NO_NODE; 594 #endif 595 } 596 597 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 598 { 599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 q->numa_node = node; 601 #endif 602 } 603 604 #ifdef CONFIG_RPS 605 /* 606 * This structure holds an RPS map which can be of variable length. The 607 * map is an array of CPUs. 608 */ 609 struct rps_map { 610 unsigned int len; 611 struct rcu_head rcu; 612 u16 cpus[0]; 613 }; 614 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 615 616 /* 617 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 618 * tail pointer for that CPU's input queue at the time of last enqueue, and 619 * a hardware filter index. 620 */ 621 struct rps_dev_flow { 622 u16 cpu; 623 u16 filter; 624 unsigned int last_qtail; 625 }; 626 #define RPS_NO_FILTER 0xffff 627 628 /* 629 * The rps_dev_flow_table structure contains a table of flow mappings. 630 */ 631 struct rps_dev_flow_table { 632 unsigned int mask; 633 struct rcu_head rcu; 634 struct rps_dev_flow flows[0]; 635 }; 636 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 637 ((_num) * sizeof(struct rps_dev_flow))) 638 639 /* 640 * The rps_sock_flow_table contains mappings of flows to the last CPU 641 * on which they were processed by the application (set in recvmsg). 642 * Each entry is a 32bit value. Upper part is the high-order bits 643 * of flow hash, lower part is CPU number. 644 * rps_cpu_mask is used to partition the space, depending on number of 645 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 646 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 647 * meaning we use 32-6=26 bits for the hash. 648 */ 649 struct rps_sock_flow_table { 650 u32 mask; 651 652 u32 ents[0] ____cacheline_aligned_in_smp; 653 }; 654 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 655 656 #define RPS_NO_CPU 0xffff 657 658 extern u32 rps_cpu_mask; 659 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 660 661 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 662 u32 hash) 663 { 664 if (table && hash) { 665 unsigned int index = hash & table->mask; 666 u32 val = hash & ~rps_cpu_mask; 667 668 /* We only give a hint, preemption can change CPU under us */ 669 val |= raw_smp_processor_id(); 670 671 if (table->ents[index] != val) 672 table->ents[index] = val; 673 } 674 } 675 676 #ifdef CONFIG_RFS_ACCEL 677 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 678 u16 filter_id); 679 #endif 680 #endif /* CONFIG_RPS */ 681 682 /* This structure contains an instance of an RX queue. */ 683 struct netdev_rx_queue { 684 #ifdef CONFIG_RPS 685 struct rps_map __rcu *rps_map; 686 struct rps_dev_flow_table __rcu *rps_flow_table; 687 #endif 688 struct kobject kobj; 689 struct net_device *dev; 690 } ____cacheline_aligned_in_smp; 691 692 /* 693 * RX queue sysfs structures and functions. 694 */ 695 struct rx_queue_attribute { 696 struct attribute attr; 697 ssize_t (*show)(struct netdev_rx_queue *queue, 698 struct rx_queue_attribute *attr, char *buf); 699 ssize_t (*store)(struct netdev_rx_queue *queue, 700 struct rx_queue_attribute *attr, const char *buf, size_t len); 701 }; 702 703 #ifdef CONFIG_XPS 704 /* 705 * This structure holds an XPS map which can be of variable length. The 706 * map is an array of queues. 707 */ 708 struct xps_map { 709 unsigned int len; 710 unsigned int alloc_len; 711 struct rcu_head rcu; 712 u16 queues[0]; 713 }; 714 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 715 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 716 - sizeof(struct xps_map)) / sizeof(u16)) 717 718 /* 719 * This structure holds all XPS maps for device. Maps are indexed by CPU. 720 */ 721 struct xps_dev_maps { 722 struct rcu_head rcu; 723 struct xps_map __rcu *cpu_map[0]; 724 }; 725 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 726 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 727 #endif /* CONFIG_XPS */ 728 729 #define TC_MAX_QUEUE 16 730 #define TC_BITMASK 15 731 /* HW offloaded queuing disciplines txq count and offset maps */ 732 struct netdev_tc_txq { 733 u16 count; 734 u16 offset; 735 }; 736 737 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 738 /* 739 * This structure is to hold information about the device 740 * configured to run FCoE protocol stack. 741 */ 742 struct netdev_fcoe_hbainfo { 743 char manufacturer[64]; 744 char serial_number[64]; 745 char hardware_version[64]; 746 char driver_version[64]; 747 char optionrom_version[64]; 748 char firmware_version[64]; 749 char model[256]; 750 char model_description[256]; 751 }; 752 #endif 753 754 #define MAX_PHYS_ITEM_ID_LEN 32 755 756 /* This structure holds a unique identifier to identify some 757 * physical item (port for example) used by a netdevice. 758 */ 759 struct netdev_phys_item_id { 760 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 761 unsigned char id_len; 762 }; 763 764 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 765 struct netdev_phys_item_id *b) 766 { 767 return a->id_len == b->id_len && 768 memcmp(a->id, b->id, a->id_len) == 0; 769 } 770 771 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 772 struct sk_buff *skb); 773 774 enum tc_setup_type { 775 TC_SETUP_MQPRIO, 776 TC_SETUP_CLSU32, 777 TC_SETUP_CLSFLOWER, 778 TC_SETUP_CLSMATCHALL, 779 TC_SETUP_CLSBPF, 780 }; 781 782 /* These structures hold the attributes of xdp state that are being passed 783 * to the netdevice through the xdp op. 784 */ 785 enum xdp_netdev_command { 786 /* Set or clear a bpf program used in the earliest stages of packet 787 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 788 * is responsible for calling bpf_prog_put on any old progs that are 789 * stored. In case of error, the callee need not release the new prog 790 * reference, but on success it takes ownership and must bpf_prog_put 791 * when it is no longer used. 792 */ 793 XDP_SETUP_PROG, 794 XDP_SETUP_PROG_HW, 795 /* Check if a bpf program is set on the device. The callee should 796 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 797 * is equivalent to XDP_ATTACHED_DRV. 798 */ 799 XDP_QUERY_PROG, 800 }; 801 802 struct netlink_ext_ack; 803 804 struct netdev_xdp { 805 enum xdp_netdev_command command; 806 union { 807 /* XDP_SETUP_PROG */ 808 struct { 809 u32 flags; 810 struct bpf_prog *prog; 811 struct netlink_ext_ack *extack; 812 }; 813 /* XDP_QUERY_PROG */ 814 struct { 815 u8 prog_attached; 816 u32 prog_id; 817 }; 818 }; 819 }; 820 821 #ifdef CONFIG_XFRM_OFFLOAD 822 struct xfrmdev_ops { 823 int (*xdo_dev_state_add) (struct xfrm_state *x); 824 void (*xdo_dev_state_delete) (struct xfrm_state *x); 825 void (*xdo_dev_state_free) (struct xfrm_state *x); 826 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 827 struct xfrm_state *x); 828 }; 829 #endif 830 831 /* 832 * This structure defines the management hooks for network devices. 833 * The following hooks can be defined; unless noted otherwise, they are 834 * optional and can be filled with a null pointer. 835 * 836 * int (*ndo_init)(struct net_device *dev); 837 * This function is called once when a network device is registered. 838 * The network device can use this for any late stage initialization 839 * or semantic validation. It can fail with an error code which will 840 * be propagated back to register_netdev. 841 * 842 * void (*ndo_uninit)(struct net_device *dev); 843 * This function is called when device is unregistered or when registration 844 * fails. It is not called if init fails. 845 * 846 * int (*ndo_open)(struct net_device *dev); 847 * This function is called when a network device transitions to the up 848 * state. 849 * 850 * int (*ndo_stop)(struct net_device *dev); 851 * This function is called when a network device transitions to the down 852 * state. 853 * 854 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 855 * struct net_device *dev); 856 * Called when a packet needs to be transmitted. 857 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 858 * the queue before that can happen; it's for obsolete devices and weird 859 * corner cases, but the stack really does a non-trivial amount 860 * of useless work if you return NETDEV_TX_BUSY. 861 * Required; cannot be NULL. 862 * 863 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 864 * struct net_device *dev 865 * netdev_features_t features); 866 * Called by core transmit path to determine if device is capable of 867 * performing offload operations on a given packet. This is to give 868 * the device an opportunity to implement any restrictions that cannot 869 * be otherwise expressed by feature flags. The check is called with 870 * the set of features that the stack has calculated and it returns 871 * those the driver believes to be appropriate. 872 * 873 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 874 * void *accel_priv, select_queue_fallback_t fallback); 875 * Called to decide which queue to use when device supports multiple 876 * transmit queues. 877 * 878 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 879 * This function is called to allow device receiver to make 880 * changes to configuration when multicast or promiscuous is enabled. 881 * 882 * void (*ndo_set_rx_mode)(struct net_device *dev); 883 * This function is called device changes address list filtering. 884 * If driver handles unicast address filtering, it should set 885 * IFF_UNICAST_FLT in its priv_flags. 886 * 887 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 888 * This function is called when the Media Access Control address 889 * needs to be changed. If this interface is not defined, the 890 * MAC address can not be changed. 891 * 892 * int (*ndo_validate_addr)(struct net_device *dev); 893 * Test if Media Access Control address is valid for the device. 894 * 895 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 896 * Called when a user requests an ioctl which can't be handled by 897 * the generic interface code. If not defined ioctls return 898 * not supported error code. 899 * 900 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 901 * Used to set network devices bus interface parameters. This interface 902 * is retained for legacy reasons; new devices should use the bus 903 * interface (PCI) for low level management. 904 * 905 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 906 * Called when a user wants to change the Maximum Transfer Unit 907 * of a device. 908 * 909 * void (*ndo_tx_timeout)(struct net_device *dev); 910 * Callback used when the transmitter has not made any progress 911 * for dev->watchdog ticks. 912 * 913 * void (*ndo_get_stats64)(struct net_device *dev, 914 * struct rtnl_link_stats64 *storage); 915 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 916 * Called when a user wants to get the network device usage 917 * statistics. Drivers must do one of the following: 918 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 919 * rtnl_link_stats64 structure passed by the caller. 920 * 2. Define @ndo_get_stats to update a net_device_stats structure 921 * (which should normally be dev->stats) and return a pointer to 922 * it. The structure may be changed asynchronously only if each 923 * field is written atomically. 924 * 3. Update dev->stats asynchronously and atomically, and define 925 * neither operation. 926 * 927 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 928 * Return true if this device supports offload stats of this attr_id. 929 * 930 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 931 * void *attr_data) 932 * Get statistics for offload operations by attr_id. Write it into the 933 * attr_data pointer. 934 * 935 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 936 * If device supports VLAN filtering this function is called when a 937 * VLAN id is registered. 938 * 939 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 940 * If device supports VLAN filtering this function is called when a 941 * VLAN id is unregistered. 942 * 943 * void (*ndo_poll_controller)(struct net_device *dev); 944 * 945 * SR-IOV management functions. 946 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 947 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 948 * u8 qos, __be16 proto); 949 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 950 * int max_tx_rate); 951 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 952 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 953 * int (*ndo_get_vf_config)(struct net_device *dev, 954 * int vf, struct ifla_vf_info *ivf); 955 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 956 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 957 * struct nlattr *port[]); 958 * 959 * Enable or disable the VF ability to query its RSS Redirection Table and 960 * Hash Key. This is needed since on some devices VF share this information 961 * with PF and querying it may introduce a theoretical security risk. 962 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 963 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 964 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 965 * void *type_data); 966 * Called to setup any 'tc' scheduler, classifier or action on @dev. 967 * This is always called from the stack with the rtnl lock held and netif 968 * tx queues stopped. This allows the netdevice to perform queue 969 * management safely. 970 * 971 * Fiber Channel over Ethernet (FCoE) offload functions. 972 * int (*ndo_fcoe_enable)(struct net_device *dev); 973 * Called when the FCoE protocol stack wants to start using LLD for FCoE 974 * so the underlying device can perform whatever needed configuration or 975 * initialization to support acceleration of FCoE traffic. 976 * 977 * int (*ndo_fcoe_disable)(struct net_device *dev); 978 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 979 * so the underlying device can perform whatever needed clean-ups to 980 * stop supporting acceleration of FCoE traffic. 981 * 982 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 983 * struct scatterlist *sgl, unsigned int sgc); 984 * Called when the FCoE Initiator wants to initialize an I/O that 985 * is a possible candidate for Direct Data Placement (DDP). The LLD can 986 * perform necessary setup and returns 1 to indicate the device is set up 987 * successfully to perform DDP on this I/O, otherwise this returns 0. 988 * 989 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 990 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 991 * indicated by the FC exchange id 'xid', so the underlying device can 992 * clean up and reuse resources for later DDP requests. 993 * 994 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 995 * struct scatterlist *sgl, unsigned int sgc); 996 * Called when the FCoE Target wants to initialize an I/O that 997 * is a possible candidate for Direct Data Placement (DDP). The LLD can 998 * perform necessary setup and returns 1 to indicate the device is set up 999 * successfully to perform DDP on this I/O, otherwise this returns 0. 1000 * 1001 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1002 * struct netdev_fcoe_hbainfo *hbainfo); 1003 * Called when the FCoE Protocol stack wants information on the underlying 1004 * device. This information is utilized by the FCoE protocol stack to 1005 * register attributes with Fiber Channel management service as per the 1006 * FC-GS Fabric Device Management Information(FDMI) specification. 1007 * 1008 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1009 * Called when the underlying device wants to override default World Wide 1010 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1011 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1012 * protocol stack to use. 1013 * 1014 * RFS acceleration. 1015 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1016 * u16 rxq_index, u32 flow_id); 1017 * Set hardware filter for RFS. rxq_index is the target queue index; 1018 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1019 * Return the filter ID on success, or a negative error code. 1020 * 1021 * Slave management functions (for bridge, bonding, etc). 1022 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1023 * Called to make another netdev an underling. 1024 * 1025 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1026 * Called to release previously enslaved netdev. 1027 * 1028 * Feature/offload setting functions. 1029 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1030 * netdev_features_t features); 1031 * Adjusts the requested feature flags according to device-specific 1032 * constraints, and returns the resulting flags. Must not modify 1033 * the device state. 1034 * 1035 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1036 * Called to update device configuration to new features. Passed 1037 * feature set might be less than what was returned by ndo_fix_features()). 1038 * Must return >0 or -errno if it changed dev->features itself. 1039 * 1040 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1041 * struct net_device *dev, 1042 * const unsigned char *addr, u16 vid, u16 flags) 1043 * Adds an FDB entry to dev for addr. 1044 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1045 * struct net_device *dev, 1046 * const unsigned char *addr, u16 vid) 1047 * Deletes the FDB entry from dev coresponding to addr. 1048 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1049 * struct net_device *dev, struct net_device *filter_dev, 1050 * int *idx) 1051 * Used to add FDB entries to dump requests. Implementers should add 1052 * entries to skb and update idx with the number of entries. 1053 * 1054 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1055 * u16 flags) 1056 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1057 * struct net_device *dev, u32 filter_mask, 1058 * int nlflags) 1059 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1060 * u16 flags); 1061 * 1062 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1063 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1064 * which do not represent real hardware may define this to allow their 1065 * userspace components to manage their virtual carrier state. Devices 1066 * that determine carrier state from physical hardware properties (eg 1067 * network cables) or protocol-dependent mechanisms (eg 1068 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1069 * 1070 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1071 * struct netdev_phys_item_id *ppid); 1072 * Called to get ID of physical port of this device. If driver does 1073 * not implement this, it is assumed that the hw is not able to have 1074 * multiple net devices on single physical port. 1075 * 1076 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1077 * struct udp_tunnel_info *ti); 1078 * Called by UDP tunnel to notify a driver about the UDP port and socket 1079 * address family that a UDP tunnel is listnening to. It is called only 1080 * when a new port starts listening. The operation is protected by the 1081 * RTNL. 1082 * 1083 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1084 * struct udp_tunnel_info *ti); 1085 * Called by UDP tunnel to notify the driver about a UDP port and socket 1086 * address family that the UDP tunnel is not listening to anymore. The 1087 * operation is protected by the RTNL. 1088 * 1089 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1090 * struct net_device *dev) 1091 * Called by upper layer devices to accelerate switching or other 1092 * station functionality into hardware. 'pdev is the lowerdev 1093 * to use for the offload and 'dev' is the net device that will 1094 * back the offload. Returns a pointer to the private structure 1095 * the upper layer will maintain. 1096 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1097 * Called by upper layer device to delete the station created 1098 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1099 * the station and priv is the structure returned by the add 1100 * operation. 1101 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1102 * int queue_index, u32 maxrate); 1103 * Called when a user wants to set a max-rate limitation of specific 1104 * TX queue. 1105 * int (*ndo_get_iflink)(const struct net_device *dev); 1106 * Called to get the iflink value of this device. 1107 * void (*ndo_change_proto_down)(struct net_device *dev, 1108 * bool proto_down); 1109 * This function is used to pass protocol port error state information 1110 * to the switch driver. The switch driver can react to the proto_down 1111 * by doing a phys down on the associated switch port. 1112 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1113 * This function is used to get egress tunnel information for given skb. 1114 * This is useful for retrieving outer tunnel header parameters while 1115 * sampling packet. 1116 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1117 * This function is used to specify the headroom that the skb must 1118 * consider when allocation skb during packet reception. Setting 1119 * appropriate rx headroom value allows avoiding skb head copy on 1120 * forward. Setting a negative value resets the rx headroom to the 1121 * default value. 1122 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1123 * This function is used to set or query state related to XDP on the 1124 * netdevice. See definition of enum xdp_netdev_command for details. 1125 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp); 1126 * This function is used to submit a XDP packet for transmit on a 1127 * netdevice. 1128 * void (*ndo_xdp_flush)(struct net_device *dev); 1129 * This function is used to inform the driver to flush a paticular 1130 * xpd tx queue. Must be called on same CPU as xdp_xmit. 1131 */ 1132 struct net_device_ops { 1133 int (*ndo_init)(struct net_device *dev); 1134 void (*ndo_uninit)(struct net_device *dev); 1135 int (*ndo_open)(struct net_device *dev); 1136 int (*ndo_stop)(struct net_device *dev); 1137 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1138 struct net_device *dev); 1139 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1140 struct net_device *dev, 1141 netdev_features_t features); 1142 u16 (*ndo_select_queue)(struct net_device *dev, 1143 struct sk_buff *skb, 1144 void *accel_priv, 1145 select_queue_fallback_t fallback); 1146 void (*ndo_change_rx_flags)(struct net_device *dev, 1147 int flags); 1148 void (*ndo_set_rx_mode)(struct net_device *dev); 1149 int (*ndo_set_mac_address)(struct net_device *dev, 1150 void *addr); 1151 int (*ndo_validate_addr)(struct net_device *dev); 1152 int (*ndo_do_ioctl)(struct net_device *dev, 1153 struct ifreq *ifr, int cmd); 1154 int (*ndo_set_config)(struct net_device *dev, 1155 struct ifmap *map); 1156 int (*ndo_change_mtu)(struct net_device *dev, 1157 int new_mtu); 1158 int (*ndo_neigh_setup)(struct net_device *dev, 1159 struct neigh_parms *); 1160 void (*ndo_tx_timeout) (struct net_device *dev); 1161 1162 void (*ndo_get_stats64)(struct net_device *dev, 1163 struct rtnl_link_stats64 *storage); 1164 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1165 int (*ndo_get_offload_stats)(int attr_id, 1166 const struct net_device *dev, 1167 void *attr_data); 1168 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1169 1170 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1171 __be16 proto, u16 vid); 1172 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1173 __be16 proto, u16 vid); 1174 #ifdef CONFIG_NET_POLL_CONTROLLER 1175 void (*ndo_poll_controller)(struct net_device *dev); 1176 int (*ndo_netpoll_setup)(struct net_device *dev, 1177 struct netpoll_info *info); 1178 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1179 #endif 1180 int (*ndo_set_vf_mac)(struct net_device *dev, 1181 int queue, u8 *mac); 1182 int (*ndo_set_vf_vlan)(struct net_device *dev, 1183 int queue, u16 vlan, 1184 u8 qos, __be16 proto); 1185 int (*ndo_set_vf_rate)(struct net_device *dev, 1186 int vf, int min_tx_rate, 1187 int max_tx_rate); 1188 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1189 int vf, bool setting); 1190 int (*ndo_set_vf_trust)(struct net_device *dev, 1191 int vf, bool setting); 1192 int (*ndo_get_vf_config)(struct net_device *dev, 1193 int vf, 1194 struct ifla_vf_info *ivf); 1195 int (*ndo_set_vf_link_state)(struct net_device *dev, 1196 int vf, int link_state); 1197 int (*ndo_get_vf_stats)(struct net_device *dev, 1198 int vf, 1199 struct ifla_vf_stats 1200 *vf_stats); 1201 int (*ndo_set_vf_port)(struct net_device *dev, 1202 int vf, 1203 struct nlattr *port[]); 1204 int (*ndo_get_vf_port)(struct net_device *dev, 1205 int vf, struct sk_buff *skb); 1206 int (*ndo_set_vf_guid)(struct net_device *dev, 1207 int vf, u64 guid, 1208 int guid_type); 1209 int (*ndo_set_vf_rss_query_en)( 1210 struct net_device *dev, 1211 int vf, bool setting); 1212 int (*ndo_setup_tc)(struct net_device *dev, 1213 enum tc_setup_type type, 1214 void *type_data); 1215 #if IS_ENABLED(CONFIG_FCOE) 1216 int (*ndo_fcoe_enable)(struct net_device *dev); 1217 int (*ndo_fcoe_disable)(struct net_device *dev); 1218 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1219 u16 xid, 1220 struct scatterlist *sgl, 1221 unsigned int sgc); 1222 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1223 u16 xid); 1224 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1225 u16 xid, 1226 struct scatterlist *sgl, 1227 unsigned int sgc); 1228 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1229 struct netdev_fcoe_hbainfo *hbainfo); 1230 #endif 1231 1232 #if IS_ENABLED(CONFIG_LIBFCOE) 1233 #define NETDEV_FCOE_WWNN 0 1234 #define NETDEV_FCOE_WWPN 1 1235 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1236 u64 *wwn, int type); 1237 #endif 1238 1239 #ifdef CONFIG_RFS_ACCEL 1240 int (*ndo_rx_flow_steer)(struct net_device *dev, 1241 const struct sk_buff *skb, 1242 u16 rxq_index, 1243 u32 flow_id); 1244 #endif 1245 int (*ndo_add_slave)(struct net_device *dev, 1246 struct net_device *slave_dev); 1247 int (*ndo_del_slave)(struct net_device *dev, 1248 struct net_device *slave_dev); 1249 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1250 netdev_features_t features); 1251 int (*ndo_set_features)(struct net_device *dev, 1252 netdev_features_t features); 1253 int (*ndo_neigh_construct)(struct net_device *dev, 1254 struct neighbour *n); 1255 void (*ndo_neigh_destroy)(struct net_device *dev, 1256 struct neighbour *n); 1257 1258 int (*ndo_fdb_add)(struct ndmsg *ndm, 1259 struct nlattr *tb[], 1260 struct net_device *dev, 1261 const unsigned char *addr, 1262 u16 vid, 1263 u16 flags); 1264 int (*ndo_fdb_del)(struct ndmsg *ndm, 1265 struct nlattr *tb[], 1266 struct net_device *dev, 1267 const unsigned char *addr, 1268 u16 vid); 1269 int (*ndo_fdb_dump)(struct sk_buff *skb, 1270 struct netlink_callback *cb, 1271 struct net_device *dev, 1272 struct net_device *filter_dev, 1273 int *idx); 1274 1275 int (*ndo_bridge_setlink)(struct net_device *dev, 1276 struct nlmsghdr *nlh, 1277 u16 flags); 1278 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1279 u32 pid, u32 seq, 1280 struct net_device *dev, 1281 u32 filter_mask, 1282 int nlflags); 1283 int (*ndo_bridge_dellink)(struct net_device *dev, 1284 struct nlmsghdr *nlh, 1285 u16 flags); 1286 int (*ndo_change_carrier)(struct net_device *dev, 1287 bool new_carrier); 1288 int (*ndo_get_phys_port_id)(struct net_device *dev, 1289 struct netdev_phys_item_id *ppid); 1290 int (*ndo_get_phys_port_name)(struct net_device *dev, 1291 char *name, size_t len); 1292 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1293 struct udp_tunnel_info *ti); 1294 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1295 struct udp_tunnel_info *ti); 1296 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1297 struct net_device *dev); 1298 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1299 void *priv); 1300 1301 int (*ndo_get_lock_subclass)(struct net_device *dev); 1302 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1303 int queue_index, 1304 u32 maxrate); 1305 int (*ndo_get_iflink)(const struct net_device *dev); 1306 int (*ndo_change_proto_down)(struct net_device *dev, 1307 bool proto_down); 1308 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1309 struct sk_buff *skb); 1310 void (*ndo_set_rx_headroom)(struct net_device *dev, 1311 int needed_headroom); 1312 int (*ndo_xdp)(struct net_device *dev, 1313 struct netdev_xdp *xdp); 1314 int (*ndo_xdp_xmit)(struct net_device *dev, 1315 struct xdp_buff *xdp); 1316 void (*ndo_xdp_flush)(struct net_device *dev); 1317 }; 1318 1319 /** 1320 * enum net_device_priv_flags - &struct net_device priv_flags 1321 * 1322 * These are the &struct net_device, they are only set internally 1323 * by drivers and used in the kernel. These flags are invisible to 1324 * userspace; this means that the order of these flags can change 1325 * during any kernel release. 1326 * 1327 * You should have a pretty good reason to be extending these flags. 1328 * 1329 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1330 * @IFF_EBRIDGE: Ethernet bridging device 1331 * @IFF_BONDING: bonding master or slave 1332 * @IFF_ISATAP: ISATAP interface (RFC4214) 1333 * @IFF_WAN_HDLC: WAN HDLC device 1334 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1335 * release skb->dst 1336 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1337 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1338 * @IFF_MACVLAN_PORT: device used as macvlan port 1339 * @IFF_BRIDGE_PORT: device used as bridge port 1340 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1341 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1342 * @IFF_UNICAST_FLT: Supports unicast filtering 1343 * @IFF_TEAM_PORT: device used as team port 1344 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1345 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1346 * change when it's running 1347 * @IFF_MACVLAN: Macvlan device 1348 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1349 * underlying stacked devices 1350 * @IFF_IPVLAN_MASTER: IPvlan master device 1351 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1352 * @IFF_L3MDEV_MASTER: device is an L3 master device 1353 * @IFF_NO_QUEUE: device can run without qdisc attached 1354 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1355 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1356 * @IFF_TEAM: device is a team device 1357 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1358 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1359 * entity (i.e. the master device for bridged veth) 1360 * @IFF_MACSEC: device is a MACsec device 1361 */ 1362 enum netdev_priv_flags { 1363 IFF_802_1Q_VLAN = 1<<0, 1364 IFF_EBRIDGE = 1<<1, 1365 IFF_BONDING = 1<<2, 1366 IFF_ISATAP = 1<<3, 1367 IFF_WAN_HDLC = 1<<4, 1368 IFF_XMIT_DST_RELEASE = 1<<5, 1369 IFF_DONT_BRIDGE = 1<<6, 1370 IFF_DISABLE_NETPOLL = 1<<7, 1371 IFF_MACVLAN_PORT = 1<<8, 1372 IFF_BRIDGE_PORT = 1<<9, 1373 IFF_OVS_DATAPATH = 1<<10, 1374 IFF_TX_SKB_SHARING = 1<<11, 1375 IFF_UNICAST_FLT = 1<<12, 1376 IFF_TEAM_PORT = 1<<13, 1377 IFF_SUPP_NOFCS = 1<<14, 1378 IFF_LIVE_ADDR_CHANGE = 1<<15, 1379 IFF_MACVLAN = 1<<16, 1380 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1381 IFF_IPVLAN_MASTER = 1<<18, 1382 IFF_IPVLAN_SLAVE = 1<<19, 1383 IFF_L3MDEV_MASTER = 1<<20, 1384 IFF_NO_QUEUE = 1<<21, 1385 IFF_OPENVSWITCH = 1<<22, 1386 IFF_L3MDEV_SLAVE = 1<<23, 1387 IFF_TEAM = 1<<24, 1388 IFF_RXFH_CONFIGURED = 1<<25, 1389 IFF_PHONY_HEADROOM = 1<<26, 1390 IFF_MACSEC = 1<<27, 1391 }; 1392 1393 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1394 #define IFF_EBRIDGE IFF_EBRIDGE 1395 #define IFF_BONDING IFF_BONDING 1396 #define IFF_ISATAP IFF_ISATAP 1397 #define IFF_WAN_HDLC IFF_WAN_HDLC 1398 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1399 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1400 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1401 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1402 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1403 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1404 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1405 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1406 #define IFF_TEAM_PORT IFF_TEAM_PORT 1407 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1408 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1409 #define IFF_MACVLAN IFF_MACVLAN 1410 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1411 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1412 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1413 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1414 #define IFF_NO_QUEUE IFF_NO_QUEUE 1415 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1416 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1417 #define IFF_TEAM IFF_TEAM 1418 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1419 #define IFF_MACSEC IFF_MACSEC 1420 1421 /** 1422 * struct net_device - The DEVICE structure. 1423 * 1424 * Actually, this whole structure is a big mistake. It mixes I/O 1425 * data with strictly "high-level" data, and it has to know about 1426 * almost every data structure used in the INET module. 1427 * 1428 * @name: This is the first field of the "visible" part of this structure 1429 * (i.e. as seen by users in the "Space.c" file). It is the name 1430 * of the interface. 1431 * 1432 * @name_hlist: Device name hash chain, please keep it close to name[] 1433 * @ifalias: SNMP alias 1434 * @mem_end: Shared memory end 1435 * @mem_start: Shared memory start 1436 * @base_addr: Device I/O address 1437 * @irq: Device IRQ number 1438 * 1439 * @carrier_changes: Stats to monitor carrier on<->off transitions 1440 * 1441 * @state: Generic network queuing layer state, see netdev_state_t 1442 * @dev_list: The global list of network devices 1443 * @napi_list: List entry used for polling NAPI devices 1444 * @unreg_list: List entry when we are unregistering the 1445 * device; see the function unregister_netdev 1446 * @close_list: List entry used when we are closing the device 1447 * @ptype_all: Device-specific packet handlers for all protocols 1448 * @ptype_specific: Device-specific, protocol-specific packet handlers 1449 * 1450 * @adj_list: Directly linked devices, like slaves for bonding 1451 * @features: Currently active device features 1452 * @hw_features: User-changeable features 1453 * 1454 * @wanted_features: User-requested features 1455 * @vlan_features: Mask of features inheritable by VLAN devices 1456 * 1457 * @hw_enc_features: Mask of features inherited by encapsulating devices 1458 * This field indicates what encapsulation 1459 * offloads the hardware is capable of doing, 1460 * and drivers will need to set them appropriately. 1461 * 1462 * @mpls_features: Mask of features inheritable by MPLS 1463 * 1464 * @ifindex: interface index 1465 * @group: The group the device belongs to 1466 * 1467 * @stats: Statistics struct, which was left as a legacy, use 1468 * rtnl_link_stats64 instead 1469 * 1470 * @rx_dropped: Dropped packets by core network, 1471 * do not use this in drivers 1472 * @tx_dropped: Dropped packets by core network, 1473 * do not use this in drivers 1474 * @rx_nohandler: nohandler dropped packets by core network on 1475 * inactive devices, do not use this in drivers 1476 * 1477 * @wireless_handlers: List of functions to handle Wireless Extensions, 1478 * instead of ioctl, 1479 * see <net/iw_handler.h> for details. 1480 * @wireless_data: Instance data managed by the core of wireless extensions 1481 * 1482 * @netdev_ops: Includes several pointers to callbacks, 1483 * if one wants to override the ndo_*() functions 1484 * @ethtool_ops: Management operations 1485 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1486 * discovery handling. Necessary for e.g. 6LoWPAN. 1487 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1488 * of Layer 2 headers. 1489 * 1490 * @flags: Interface flags (a la BSD) 1491 * @priv_flags: Like 'flags' but invisible to userspace, 1492 * see if.h for the definitions 1493 * @gflags: Global flags ( kept as legacy ) 1494 * @padded: How much padding added by alloc_netdev() 1495 * @operstate: RFC2863 operstate 1496 * @link_mode: Mapping policy to operstate 1497 * @if_port: Selectable AUI, TP, ... 1498 * @dma: DMA channel 1499 * @mtu: Interface MTU value 1500 * @min_mtu: Interface Minimum MTU value 1501 * @max_mtu: Interface Maximum MTU value 1502 * @type: Interface hardware type 1503 * @hard_header_len: Maximum hardware header length. 1504 * @min_header_len: Minimum hardware header length 1505 * 1506 * @needed_headroom: Extra headroom the hardware may need, but not in all 1507 * cases can this be guaranteed 1508 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1509 * cases can this be guaranteed. Some cases also use 1510 * LL_MAX_HEADER instead to allocate the skb 1511 * 1512 * interface address info: 1513 * 1514 * @perm_addr: Permanent hw address 1515 * @addr_assign_type: Hw address assignment type 1516 * @addr_len: Hardware address length 1517 * @neigh_priv_len: Used in neigh_alloc() 1518 * @dev_id: Used to differentiate devices that share 1519 * the same link layer address 1520 * @dev_port: Used to differentiate devices that share 1521 * the same function 1522 * @addr_list_lock: XXX: need comments on this one 1523 * @uc_promisc: Counter that indicates promiscuous mode 1524 * has been enabled due to the need to listen to 1525 * additional unicast addresses in a device that 1526 * does not implement ndo_set_rx_mode() 1527 * @uc: unicast mac addresses 1528 * @mc: multicast mac addresses 1529 * @dev_addrs: list of device hw addresses 1530 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1531 * @promiscuity: Number of times the NIC is told to work in 1532 * promiscuous mode; if it becomes 0 the NIC will 1533 * exit promiscuous mode 1534 * @allmulti: Counter, enables or disables allmulticast mode 1535 * 1536 * @vlan_info: VLAN info 1537 * @dsa_ptr: dsa specific data 1538 * @tipc_ptr: TIPC specific data 1539 * @atalk_ptr: AppleTalk link 1540 * @ip_ptr: IPv4 specific data 1541 * @dn_ptr: DECnet specific data 1542 * @ip6_ptr: IPv6 specific data 1543 * @ax25_ptr: AX.25 specific data 1544 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1545 * 1546 * @dev_addr: Hw address (before bcast, 1547 * because most packets are unicast) 1548 * 1549 * @_rx: Array of RX queues 1550 * @num_rx_queues: Number of RX queues 1551 * allocated at register_netdev() time 1552 * @real_num_rx_queues: Number of RX queues currently active in device 1553 * 1554 * @rx_handler: handler for received packets 1555 * @rx_handler_data: XXX: need comments on this one 1556 * @ingress_queue: XXX: need comments on this one 1557 * @broadcast: hw bcast address 1558 * 1559 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1560 * indexed by RX queue number. Assigned by driver. 1561 * This must only be set if the ndo_rx_flow_steer 1562 * operation is defined 1563 * @index_hlist: Device index hash chain 1564 * 1565 * @_tx: Array of TX queues 1566 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1567 * @real_num_tx_queues: Number of TX queues currently active in device 1568 * @qdisc: Root qdisc from userspace point of view 1569 * @tx_queue_len: Max frames per queue allowed 1570 * @tx_global_lock: XXX: need comments on this one 1571 * 1572 * @xps_maps: XXX: need comments on this one 1573 * 1574 * @watchdog_timeo: Represents the timeout that is used by 1575 * the watchdog (see dev_watchdog()) 1576 * @watchdog_timer: List of timers 1577 * 1578 * @pcpu_refcnt: Number of references to this device 1579 * @todo_list: Delayed register/unregister 1580 * @link_watch_list: XXX: need comments on this one 1581 * 1582 * @reg_state: Register/unregister state machine 1583 * @dismantle: Device is going to be freed 1584 * @rtnl_link_state: This enum represents the phases of creating 1585 * a new link 1586 * 1587 * @needs_free_netdev: Should unregister perform free_netdev? 1588 * @priv_destructor: Called from unregister 1589 * @npinfo: XXX: need comments on this one 1590 * @nd_net: Network namespace this network device is inside 1591 * 1592 * @ml_priv: Mid-layer private 1593 * @lstats: Loopback statistics 1594 * @tstats: Tunnel statistics 1595 * @dstats: Dummy statistics 1596 * @vstats: Virtual ethernet statistics 1597 * 1598 * @garp_port: GARP 1599 * @mrp_port: MRP 1600 * 1601 * @dev: Class/net/name entry 1602 * @sysfs_groups: Space for optional device, statistics and wireless 1603 * sysfs groups 1604 * 1605 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1606 * @rtnl_link_ops: Rtnl_link_ops 1607 * 1608 * @gso_max_size: Maximum size of generic segmentation offload 1609 * @gso_max_segs: Maximum number of segments that can be passed to the 1610 * NIC for GSO 1611 * 1612 * @dcbnl_ops: Data Center Bridging netlink ops 1613 * @num_tc: Number of traffic classes in the net device 1614 * @tc_to_txq: XXX: need comments on this one 1615 * @prio_tc_map: XXX: need comments on this one 1616 * 1617 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1618 * 1619 * @priomap: XXX: need comments on this one 1620 * @phydev: Physical device may attach itself 1621 * for hardware timestamping 1622 * 1623 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1624 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1625 * 1626 * @proto_down: protocol port state information can be sent to the 1627 * switch driver and used to set the phys state of the 1628 * switch port. 1629 * 1630 * FIXME: cleanup struct net_device such that network protocol info 1631 * moves out. 1632 */ 1633 1634 struct net_device { 1635 char name[IFNAMSIZ]; 1636 struct hlist_node name_hlist; 1637 char *ifalias; 1638 /* 1639 * I/O specific fields 1640 * FIXME: Merge these and struct ifmap into one 1641 */ 1642 unsigned long mem_end; 1643 unsigned long mem_start; 1644 unsigned long base_addr; 1645 int irq; 1646 1647 atomic_t carrier_changes; 1648 1649 /* 1650 * Some hardware also needs these fields (state,dev_list, 1651 * napi_list,unreg_list,close_list) but they are not 1652 * part of the usual set specified in Space.c. 1653 */ 1654 1655 unsigned long state; 1656 1657 struct list_head dev_list; 1658 struct list_head napi_list; 1659 struct list_head unreg_list; 1660 struct list_head close_list; 1661 struct list_head ptype_all; 1662 struct list_head ptype_specific; 1663 1664 struct { 1665 struct list_head upper; 1666 struct list_head lower; 1667 } adj_list; 1668 1669 netdev_features_t features; 1670 netdev_features_t hw_features; 1671 netdev_features_t wanted_features; 1672 netdev_features_t vlan_features; 1673 netdev_features_t hw_enc_features; 1674 netdev_features_t mpls_features; 1675 netdev_features_t gso_partial_features; 1676 1677 int ifindex; 1678 int group; 1679 1680 struct net_device_stats stats; 1681 1682 atomic_long_t rx_dropped; 1683 atomic_long_t tx_dropped; 1684 atomic_long_t rx_nohandler; 1685 1686 #ifdef CONFIG_WIRELESS_EXT 1687 const struct iw_handler_def *wireless_handlers; 1688 struct iw_public_data *wireless_data; 1689 #endif 1690 const struct net_device_ops *netdev_ops; 1691 const struct ethtool_ops *ethtool_ops; 1692 #ifdef CONFIG_NET_SWITCHDEV 1693 const struct switchdev_ops *switchdev_ops; 1694 #endif 1695 #ifdef CONFIG_NET_L3_MASTER_DEV 1696 const struct l3mdev_ops *l3mdev_ops; 1697 #endif 1698 #if IS_ENABLED(CONFIG_IPV6) 1699 const struct ndisc_ops *ndisc_ops; 1700 #endif 1701 1702 #ifdef CONFIG_XFRM 1703 const struct xfrmdev_ops *xfrmdev_ops; 1704 #endif 1705 1706 const struct header_ops *header_ops; 1707 1708 unsigned int flags; 1709 unsigned int priv_flags; 1710 1711 unsigned short gflags; 1712 unsigned short padded; 1713 1714 unsigned char operstate; 1715 unsigned char link_mode; 1716 1717 unsigned char if_port; 1718 unsigned char dma; 1719 1720 unsigned int mtu; 1721 unsigned int min_mtu; 1722 unsigned int max_mtu; 1723 unsigned short type; 1724 unsigned short hard_header_len; 1725 unsigned char min_header_len; 1726 1727 unsigned short needed_headroom; 1728 unsigned short needed_tailroom; 1729 1730 /* Interface address info. */ 1731 unsigned char perm_addr[MAX_ADDR_LEN]; 1732 unsigned char addr_assign_type; 1733 unsigned char addr_len; 1734 unsigned short neigh_priv_len; 1735 unsigned short dev_id; 1736 unsigned short dev_port; 1737 spinlock_t addr_list_lock; 1738 unsigned char name_assign_type; 1739 bool uc_promisc; 1740 struct netdev_hw_addr_list uc; 1741 struct netdev_hw_addr_list mc; 1742 struct netdev_hw_addr_list dev_addrs; 1743 1744 #ifdef CONFIG_SYSFS 1745 struct kset *queues_kset; 1746 #endif 1747 unsigned int promiscuity; 1748 unsigned int allmulti; 1749 1750 1751 /* Protocol-specific pointers */ 1752 1753 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1754 struct vlan_info __rcu *vlan_info; 1755 #endif 1756 #if IS_ENABLED(CONFIG_NET_DSA) 1757 struct dsa_switch_tree *dsa_ptr; 1758 #endif 1759 #if IS_ENABLED(CONFIG_TIPC) 1760 struct tipc_bearer __rcu *tipc_ptr; 1761 #endif 1762 void *atalk_ptr; 1763 struct in_device __rcu *ip_ptr; 1764 struct dn_dev __rcu *dn_ptr; 1765 struct inet6_dev __rcu *ip6_ptr; 1766 void *ax25_ptr; 1767 struct wireless_dev *ieee80211_ptr; 1768 struct wpan_dev *ieee802154_ptr; 1769 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1770 struct mpls_dev __rcu *mpls_ptr; 1771 #endif 1772 1773 /* 1774 * Cache lines mostly used on receive path (including eth_type_trans()) 1775 */ 1776 /* Interface address info used in eth_type_trans() */ 1777 unsigned char *dev_addr; 1778 1779 #ifdef CONFIG_SYSFS 1780 struct netdev_rx_queue *_rx; 1781 1782 unsigned int num_rx_queues; 1783 unsigned int real_num_rx_queues; 1784 #endif 1785 1786 struct bpf_prog __rcu *xdp_prog; 1787 unsigned long gro_flush_timeout; 1788 rx_handler_func_t __rcu *rx_handler; 1789 void __rcu *rx_handler_data; 1790 1791 #ifdef CONFIG_NET_CLS_ACT 1792 struct tcf_proto __rcu *ingress_cl_list; 1793 #endif 1794 struct netdev_queue __rcu *ingress_queue; 1795 #ifdef CONFIG_NETFILTER_INGRESS 1796 struct nf_hook_entry __rcu *nf_hooks_ingress; 1797 #endif 1798 1799 unsigned char broadcast[MAX_ADDR_LEN]; 1800 #ifdef CONFIG_RFS_ACCEL 1801 struct cpu_rmap *rx_cpu_rmap; 1802 #endif 1803 struct hlist_node index_hlist; 1804 1805 /* 1806 * Cache lines mostly used on transmit path 1807 */ 1808 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1809 unsigned int num_tx_queues; 1810 unsigned int real_num_tx_queues; 1811 struct Qdisc *qdisc; 1812 #ifdef CONFIG_NET_SCHED 1813 DECLARE_HASHTABLE (qdisc_hash, 4); 1814 #endif 1815 unsigned int tx_queue_len; 1816 spinlock_t tx_global_lock; 1817 int watchdog_timeo; 1818 1819 #ifdef CONFIG_XPS 1820 struct xps_dev_maps __rcu *xps_maps; 1821 #endif 1822 #ifdef CONFIG_NET_CLS_ACT 1823 struct tcf_proto __rcu *egress_cl_list; 1824 #endif 1825 1826 /* These may be needed for future network-power-down code. */ 1827 struct timer_list watchdog_timer; 1828 1829 int __percpu *pcpu_refcnt; 1830 struct list_head todo_list; 1831 1832 struct list_head link_watch_list; 1833 1834 enum { NETREG_UNINITIALIZED=0, 1835 NETREG_REGISTERED, /* completed register_netdevice */ 1836 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1837 NETREG_UNREGISTERED, /* completed unregister todo */ 1838 NETREG_RELEASED, /* called free_netdev */ 1839 NETREG_DUMMY, /* dummy device for NAPI poll */ 1840 } reg_state:8; 1841 1842 bool dismantle; 1843 1844 enum { 1845 RTNL_LINK_INITIALIZED, 1846 RTNL_LINK_INITIALIZING, 1847 } rtnl_link_state:16; 1848 1849 bool needs_free_netdev; 1850 void (*priv_destructor)(struct net_device *dev); 1851 1852 #ifdef CONFIG_NETPOLL 1853 struct netpoll_info __rcu *npinfo; 1854 #endif 1855 1856 possible_net_t nd_net; 1857 1858 /* mid-layer private */ 1859 union { 1860 void *ml_priv; 1861 struct pcpu_lstats __percpu *lstats; 1862 struct pcpu_sw_netstats __percpu *tstats; 1863 struct pcpu_dstats __percpu *dstats; 1864 struct pcpu_vstats __percpu *vstats; 1865 }; 1866 1867 #if IS_ENABLED(CONFIG_GARP) 1868 struct garp_port __rcu *garp_port; 1869 #endif 1870 #if IS_ENABLED(CONFIG_MRP) 1871 struct mrp_port __rcu *mrp_port; 1872 #endif 1873 1874 struct device dev; 1875 const struct attribute_group *sysfs_groups[4]; 1876 const struct attribute_group *sysfs_rx_queue_group; 1877 1878 const struct rtnl_link_ops *rtnl_link_ops; 1879 1880 /* for setting kernel sock attribute on TCP connection setup */ 1881 #define GSO_MAX_SIZE 65536 1882 unsigned int gso_max_size; 1883 #define GSO_MAX_SEGS 65535 1884 u16 gso_max_segs; 1885 1886 #ifdef CONFIG_DCB 1887 const struct dcbnl_rtnl_ops *dcbnl_ops; 1888 #endif 1889 u8 num_tc; 1890 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1891 u8 prio_tc_map[TC_BITMASK + 1]; 1892 1893 #if IS_ENABLED(CONFIG_FCOE) 1894 unsigned int fcoe_ddp_xid; 1895 #endif 1896 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1897 struct netprio_map __rcu *priomap; 1898 #endif 1899 struct phy_device *phydev; 1900 struct lock_class_key *qdisc_tx_busylock; 1901 struct lock_class_key *qdisc_running_key; 1902 bool proto_down; 1903 }; 1904 #define to_net_dev(d) container_of(d, struct net_device, dev) 1905 1906 static inline bool netif_elide_gro(const struct net_device *dev) 1907 { 1908 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1909 return true; 1910 return false; 1911 } 1912 1913 #define NETDEV_ALIGN 32 1914 1915 static inline 1916 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1917 { 1918 return dev->prio_tc_map[prio & TC_BITMASK]; 1919 } 1920 1921 static inline 1922 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1923 { 1924 if (tc >= dev->num_tc) 1925 return -EINVAL; 1926 1927 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1928 return 0; 1929 } 1930 1931 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1932 void netdev_reset_tc(struct net_device *dev); 1933 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1934 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1935 1936 static inline 1937 int netdev_get_num_tc(struct net_device *dev) 1938 { 1939 return dev->num_tc; 1940 } 1941 1942 static inline 1943 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1944 unsigned int index) 1945 { 1946 return &dev->_tx[index]; 1947 } 1948 1949 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1950 const struct sk_buff *skb) 1951 { 1952 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1953 } 1954 1955 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1956 void (*f)(struct net_device *, 1957 struct netdev_queue *, 1958 void *), 1959 void *arg) 1960 { 1961 unsigned int i; 1962 1963 for (i = 0; i < dev->num_tx_queues; i++) 1964 f(dev, &dev->_tx[i], arg); 1965 } 1966 1967 #define netdev_lockdep_set_classes(dev) \ 1968 { \ 1969 static struct lock_class_key qdisc_tx_busylock_key; \ 1970 static struct lock_class_key qdisc_running_key; \ 1971 static struct lock_class_key qdisc_xmit_lock_key; \ 1972 static struct lock_class_key dev_addr_list_lock_key; \ 1973 unsigned int i; \ 1974 \ 1975 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1976 (dev)->qdisc_running_key = &qdisc_running_key; \ 1977 lockdep_set_class(&(dev)->addr_list_lock, \ 1978 &dev_addr_list_lock_key); \ 1979 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1980 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1981 &qdisc_xmit_lock_key); \ 1982 } 1983 1984 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1985 struct sk_buff *skb, 1986 void *accel_priv); 1987 1988 /* returns the headroom that the master device needs to take in account 1989 * when forwarding to this dev 1990 */ 1991 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1992 { 1993 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1994 } 1995 1996 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1997 { 1998 if (dev->netdev_ops->ndo_set_rx_headroom) 1999 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2000 } 2001 2002 /* set the device rx headroom to the dev's default */ 2003 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2004 { 2005 netdev_set_rx_headroom(dev, -1); 2006 } 2007 2008 /* 2009 * Net namespace inlines 2010 */ 2011 static inline 2012 struct net *dev_net(const struct net_device *dev) 2013 { 2014 return read_pnet(&dev->nd_net); 2015 } 2016 2017 static inline 2018 void dev_net_set(struct net_device *dev, struct net *net) 2019 { 2020 write_pnet(&dev->nd_net, net); 2021 } 2022 2023 /** 2024 * netdev_priv - access network device private data 2025 * @dev: network device 2026 * 2027 * Get network device private data 2028 */ 2029 static inline void *netdev_priv(const struct net_device *dev) 2030 { 2031 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2032 } 2033 2034 /* Set the sysfs physical device reference for the network logical device 2035 * if set prior to registration will cause a symlink during initialization. 2036 */ 2037 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2038 2039 /* Set the sysfs device type for the network logical device to allow 2040 * fine-grained identification of different network device types. For 2041 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2042 */ 2043 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2044 2045 /* Default NAPI poll() weight 2046 * Device drivers are strongly advised to not use bigger value 2047 */ 2048 #define NAPI_POLL_WEIGHT 64 2049 2050 /** 2051 * netif_napi_add - initialize a NAPI context 2052 * @dev: network device 2053 * @napi: NAPI context 2054 * @poll: polling function 2055 * @weight: default weight 2056 * 2057 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2058 * *any* of the other NAPI-related functions. 2059 */ 2060 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2061 int (*poll)(struct napi_struct *, int), int weight); 2062 2063 /** 2064 * netif_tx_napi_add - initialize a NAPI context 2065 * @dev: network device 2066 * @napi: NAPI context 2067 * @poll: polling function 2068 * @weight: default weight 2069 * 2070 * This variant of netif_napi_add() should be used from drivers using NAPI 2071 * to exclusively poll a TX queue. 2072 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2073 */ 2074 static inline void netif_tx_napi_add(struct net_device *dev, 2075 struct napi_struct *napi, 2076 int (*poll)(struct napi_struct *, int), 2077 int weight) 2078 { 2079 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2080 netif_napi_add(dev, napi, poll, weight); 2081 } 2082 2083 /** 2084 * netif_napi_del - remove a NAPI context 2085 * @napi: NAPI context 2086 * 2087 * netif_napi_del() removes a NAPI context from the network device NAPI list 2088 */ 2089 void netif_napi_del(struct napi_struct *napi); 2090 2091 struct napi_gro_cb { 2092 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2093 void *frag0; 2094 2095 /* Length of frag0. */ 2096 unsigned int frag0_len; 2097 2098 /* This indicates where we are processing relative to skb->data. */ 2099 int data_offset; 2100 2101 /* This is non-zero if the packet cannot be merged with the new skb. */ 2102 u16 flush; 2103 2104 /* Save the IP ID here and check when we get to the transport layer */ 2105 u16 flush_id; 2106 2107 /* Number of segments aggregated. */ 2108 u16 count; 2109 2110 /* Start offset for remote checksum offload */ 2111 u16 gro_remcsum_start; 2112 2113 /* jiffies when first packet was created/queued */ 2114 unsigned long age; 2115 2116 /* Used in ipv6_gro_receive() and foo-over-udp */ 2117 u16 proto; 2118 2119 /* This is non-zero if the packet may be of the same flow. */ 2120 u8 same_flow:1; 2121 2122 /* Used in tunnel GRO receive */ 2123 u8 encap_mark:1; 2124 2125 /* GRO checksum is valid */ 2126 u8 csum_valid:1; 2127 2128 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2129 u8 csum_cnt:3; 2130 2131 /* Free the skb? */ 2132 u8 free:2; 2133 #define NAPI_GRO_FREE 1 2134 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2135 2136 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2137 u8 is_ipv6:1; 2138 2139 /* Used in GRE, set in fou/gue_gro_receive */ 2140 u8 is_fou:1; 2141 2142 /* Used to determine if flush_id can be ignored */ 2143 u8 is_atomic:1; 2144 2145 /* Number of gro_receive callbacks this packet already went through */ 2146 u8 recursion_counter:4; 2147 2148 /* 1 bit hole */ 2149 2150 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2151 __wsum csum; 2152 2153 /* used in skb_gro_receive() slow path */ 2154 struct sk_buff *last; 2155 }; 2156 2157 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2158 2159 #define GRO_RECURSION_LIMIT 15 2160 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2161 { 2162 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2163 } 2164 2165 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2166 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2167 struct sk_buff **head, 2168 struct sk_buff *skb) 2169 { 2170 if (unlikely(gro_recursion_inc_test(skb))) { 2171 NAPI_GRO_CB(skb)->flush |= 1; 2172 return NULL; 2173 } 2174 2175 return cb(head, skb); 2176 } 2177 2178 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2179 struct sk_buff *); 2180 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2181 struct sock *sk, 2182 struct sk_buff **head, 2183 struct sk_buff *skb) 2184 { 2185 if (unlikely(gro_recursion_inc_test(skb))) { 2186 NAPI_GRO_CB(skb)->flush |= 1; 2187 return NULL; 2188 } 2189 2190 return cb(sk, head, skb); 2191 } 2192 2193 struct packet_type { 2194 __be16 type; /* This is really htons(ether_type). */ 2195 struct net_device *dev; /* NULL is wildcarded here */ 2196 int (*func) (struct sk_buff *, 2197 struct net_device *, 2198 struct packet_type *, 2199 struct net_device *); 2200 bool (*id_match)(struct packet_type *ptype, 2201 struct sock *sk); 2202 void *af_packet_priv; 2203 struct list_head list; 2204 }; 2205 2206 struct offload_callbacks { 2207 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2208 netdev_features_t features); 2209 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2210 struct sk_buff *skb); 2211 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2212 }; 2213 2214 struct packet_offload { 2215 __be16 type; /* This is really htons(ether_type). */ 2216 u16 priority; 2217 struct offload_callbacks callbacks; 2218 struct list_head list; 2219 }; 2220 2221 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2222 struct pcpu_sw_netstats { 2223 u64 rx_packets; 2224 u64 rx_bytes; 2225 u64 tx_packets; 2226 u64 tx_bytes; 2227 struct u64_stats_sync syncp; 2228 }; 2229 2230 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2231 ({ \ 2232 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2233 if (pcpu_stats) { \ 2234 int __cpu; \ 2235 for_each_possible_cpu(__cpu) { \ 2236 typeof(type) *stat; \ 2237 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2238 u64_stats_init(&stat->syncp); \ 2239 } \ 2240 } \ 2241 pcpu_stats; \ 2242 }) 2243 2244 #define netdev_alloc_pcpu_stats(type) \ 2245 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2246 2247 enum netdev_lag_tx_type { 2248 NETDEV_LAG_TX_TYPE_UNKNOWN, 2249 NETDEV_LAG_TX_TYPE_RANDOM, 2250 NETDEV_LAG_TX_TYPE_BROADCAST, 2251 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2252 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2253 NETDEV_LAG_TX_TYPE_HASH, 2254 }; 2255 2256 struct netdev_lag_upper_info { 2257 enum netdev_lag_tx_type tx_type; 2258 }; 2259 2260 struct netdev_lag_lower_state_info { 2261 u8 link_up : 1, 2262 tx_enabled : 1; 2263 }; 2264 2265 #include <linux/notifier.h> 2266 2267 /* netdevice notifier chain. Please remember to update the rtnetlink 2268 * notification exclusion list in rtnetlink_event() when adding new 2269 * types. 2270 */ 2271 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2272 #define NETDEV_DOWN 0x0002 2273 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2274 detected a hardware crash and restarted 2275 - we can use this eg to kick tcp sessions 2276 once done */ 2277 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2278 #define NETDEV_REGISTER 0x0005 2279 #define NETDEV_UNREGISTER 0x0006 2280 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2281 #define NETDEV_CHANGEADDR 0x0008 2282 #define NETDEV_GOING_DOWN 0x0009 2283 #define NETDEV_CHANGENAME 0x000A 2284 #define NETDEV_FEAT_CHANGE 0x000B 2285 #define NETDEV_BONDING_FAILOVER 0x000C 2286 #define NETDEV_PRE_UP 0x000D 2287 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2288 #define NETDEV_POST_TYPE_CHANGE 0x000F 2289 #define NETDEV_POST_INIT 0x0010 2290 #define NETDEV_UNREGISTER_FINAL 0x0011 2291 #define NETDEV_RELEASE 0x0012 2292 #define NETDEV_NOTIFY_PEERS 0x0013 2293 #define NETDEV_JOIN 0x0014 2294 #define NETDEV_CHANGEUPPER 0x0015 2295 #define NETDEV_RESEND_IGMP 0x0016 2296 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2297 #define NETDEV_CHANGEINFODATA 0x0018 2298 #define NETDEV_BONDING_INFO 0x0019 2299 #define NETDEV_PRECHANGEUPPER 0x001A 2300 #define NETDEV_CHANGELOWERSTATE 0x001B 2301 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2302 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D 2303 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2304 2305 int register_netdevice_notifier(struct notifier_block *nb); 2306 int unregister_netdevice_notifier(struct notifier_block *nb); 2307 2308 struct netdev_notifier_info { 2309 struct net_device *dev; 2310 }; 2311 2312 struct netdev_notifier_change_info { 2313 struct netdev_notifier_info info; /* must be first */ 2314 unsigned int flags_changed; 2315 }; 2316 2317 struct netdev_notifier_changeupper_info { 2318 struct netdev_notifier_info info; /* must be first */ 2319 struct net_device *upper_dev; /* new upper dev */ 2320 bool master; /* is upper dev master */ 2321 bool linking; /* is the notification for link or unlink */ 2322 void *upper_info; /* upper dev info */ 2323 }; 2324 2325 struct netdev_notifier_changelowerstate_info { 2326 struct netdev_notifier_info info; /* must be first */ 2327 void *lower_state_info; /* is lower dev state */ 2328 }; 2329 2330 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2331 struct net_device *dev) 2332 { 2333 info->dev = dev; 2334 } 2335 2336 static inline struct net_device * 2337 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2338 { 2339 return info->dev; 2340 } 2341 2342 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2343 2344 2345 extern rwlock_t dev_base_lock; /* Device list lock */ 2346 2347 #define for_each_netdev(net, d) \ 2348 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2349 #define for_each_netdev_reverse(net, d) \ 2350 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2351 #define for_each_netdev_rcu(net, d) \ 2352 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2353 #define for_each_netdev_safe(net, d, n) \ 2354 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2355 #define for_each_netdev_continue(net, d) \ 2356 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2357 #define for_each_netdev_continue_rcu(net, d) \ 2358 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2359 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2360 for_each_netdev_rcu(&init_net, slave) \ 2361 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2362 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2363 2364 static inline struct net_device *next_net_device(struct net_device *dev) 2365 { 2366 struct list_head *lh; 2367 struct net *net; 2368 2369 net = dev_net(dev); 2370 lh = dev->dev_list.next; 2371 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2372 } 2373 2374 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2375 { 2376 struct list_head *lh; 2377 struct net *net; 2378 2379 net = dev_net(dev); 2380 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2381 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2382 } 2383 2384 static inline struct net_device *first_net_device(struct net *net) 2385 { 2386 return list_empty(&net->dev_base_head) ? NULL : 2387 net_device_entry(net->dev_base_head.next); 2388 } 2389 2390 static inline struct net_device *first_net_device_rcu(struct net *net) 2391 { 2392 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2393 2394 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2395 } 2396 2397 int netdev_boot_setup_check(struct net_device *dev); 2398 unsigned long netdev_boot_base(const char *prefix, int unit); 2399 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2400 const char *hwaddr); 2401 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2402 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2403 void dev_add_pack(struct packet_type *pt); 2404 void dev_remove_pack(struct packet_type *pt); 2405 void __dev_remove_pack(struct packet_type *pt); 2406 void dev_add_offload(struct packet_offload *po); 2407 void dev_remove_offload(struct packet_offload *po); 2408 2409 int dev_get_iflink(const struct net_device *dev); 2410 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2411 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2412 unsigned short mask); 2413 struct net_device *dev_get_by_name(struct net *net, const char *name); 2414 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2415 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2416 int dev_alloc_name(struct net_device *dev, const char *name); 2417 int dev_open(struct net_device *dev); 2418 void dev_close(struct net_device *dev); 2419 void dev_close_many(struct list_head *head, bool unlink); 2420 void dev_disable_lro(struct net_device *dev); 2421 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2422 int dev_queue_xmit(struct sk_buff *skb); 2423 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2424 int register_netdevice(struct net_device *dev); 2425 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2426 void unregister_netdevice_many(struct list_head *head); 2427 static inline void unregister_netdevice(struct net_device *dev) 2428 { 2429 unregister_netdevice_queue(dev, NULL); 2430 } 2431 2432 int netdev_refcnt_read(const struct net_device *dev); 2433 void free_netdev(struct net_device *dev); 2434 void netdev_freemem(struct net_device *dev); 2435 void synchronize_net(void); 2436 int init_dummy_netdev(struct net_device *dev); 2437 2438 DECLARE_PER_CPU(int, xmit_recursion); 2439 #define XMIT_RECURSION_LIMIT 10 2440 2441 static inline int dev_recursion_level(void) 2442 { 2443 return this_cpu_read(xmit_recursion); 2444 } 2445 2446 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2447 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2448 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2449 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2450 int netdev_get_name(struct net *net, char *name, int ifindex); 2451 int dev_restart(struct net_device *dev); 2452 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2453 2454 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2455 { 2456 return NAPI_GRO_CB(skb)->data_offset; 2457 } 2458 2459 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2460 { 2461 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2462 } 2463 2464 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2465 { 2466 NAPI_GRO_CB(skb)->data_offset += len; 2467 } 2468 2469 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2470 unsigned int offset) 2471 { 2472 return NAPI_GRO_CB(skb)->frag0 + offset; 2473 } 2474 2475 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2476 { 2477 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2478 } 2479 2480 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2481 { 2482 NAPI_GRO_CB(skb)->frag0 = NULL; 2483 NAPI_GRO_CB(skb)->frag0_len = 0; 2484 } 2485 2486 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2487 unsigned int offset) 2488 { 2489 if (!pskb_may_pull(skb, hlen)) 2490 return NULL; 2491 2492 skb_gro_frag0_invalidate(skb); 2493 return skb->data + offset; 2494 } 2495 2496 static inline void *skb_gro_network_header(struct sk_buff *skb) 2497 { 2498 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2499 skb_network_offset(skb); 2500 } 2501 2502 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2503 const void *start, unsigned int len) 2504 { 2505 if (NAPI_GRO_CB(skb)->csum_valid) 2506 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2507 csum_partial(start, len, 0)); 2508 } 2509 2510 /* GRO checksum functions. These are logical equivalents of the normal 2511 * checksum functions (in skbuff.h) except that they operate on the GRO 2512 * offsets and fields in sk_buff. 2513 */ 2514 2515 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2516 2517 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2518 { 2519 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2520 } 2521 2522 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2523 bool zero_okay, 2524 __sum16 check) 2525 { 2526 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2527 skb_checksum_start_offset(skb) < 2528 skb_gro_offset(skb)) && 2529 !skb_at_gro_remcsum_start(skb) && 2530 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2531 (!zero_okay || check)); 2532 } 2533 2534 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2535 __wsum psum) 2536 { 2537 if (NAPI_GRO_CB(skb)->csum_valid && 2538 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2539 return 0; 2540 2541 NAPI_GRO_CB(skb)->csum = psum; 2542 2543 return __skb_gro_checksum_complete(skb); 2544 } 2545 2546 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2547 { 2548 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2549 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2550 NAPI_GRO_CB(skb)->csum_cnt--; 2551 } else { 2552 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2553 * verified a new top level checksum or an encapsulated one 2554 * during GRO. This saves work if we fallback to normal path. 2555 */ 2556 __skb_incr_checksum_unnecessary(skb); 2557 } 2558 } 2559 2560 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2561 compute_pseudo) \ 2562 ({ \ 2563 __sum16 __ret = 0; \ 2564 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2565 __ret = __skb_gro_checksum_validate_complete(skb, \ 2566 compute_pseudo(skb, proto)); \ 2567 if (!__ret) \ 2568 skb_gro_incr_csum_unnecessary(skb); \ 2569 __ret; \ 2570 }) 2571 2572 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2573 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2574 2575 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2576 compute_pseudo) \ 2577 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2578 2579 #define skb_gro_checksum_simple_validate(skb) \ 2580 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2581 2582 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2583 { 2584 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2585 !NAPI_GRO_CB(skb)->csum_valid); 2586 } 2587 2588 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2589 __sum16 check, __wsum pseudo) 2590 { 2591 NAPI_GRO_CB(skb)->csum = ~pseudo; 2592 NAPI_GRO_CB(skb)->csum_valid = 1; 2593 } 2594 2595 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2596 do { \ 2597 if (__skb_gro_checksum_convert_check(skb)) \ 2598 __skb_gro_checksum_convert(skb, check, \ 2599 compute_pseudo(skb, proto)); \ 2600 } while (0) 2601 2602 struct gro_remcsum { 2603 int offset; 2604 __wsum delta; 2605 }; 2606 2607 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2608 { 2609 grc->offset = 0; 2610 grc->delta = 0; 2611 } 2612 2613 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2614 unsigned int off, size_t hdrlen, 2615 int start, int offset, 2616 struct gro_remcsum *grc, 2617 bool nopartial) 2618 { 2619 __wsum delta; 2620 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2621 2622 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2623 2624 if (!nopartial) { 2625 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2626 return ptr; 2627 } 2628 2629 ptr = skb_gro_header_fast(skb, off); 2630 if (skb_gro_header_hard(skb, off + plen)) { 2631 ptr = skb_gro_header_slow(skb, off + plen, off); 2632 if (!ptr) 2633 return NULL; 2634 } 2635 2636 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2637 start, offset); 2638 2639 /* Adjust skb->csum since we changed the packet */ 2640 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2641 2642 grc->offset = off + hdrlen + offset; 2643 grc->delta = delta; 2644 2645 return ptr; 2646 } 2647 2648 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2649 struct gro_remcsum *grc) 2650 { 2651 void *ptr; 2652 size_t plen = grc->offset + sizeof(u16); 2653 2654 if (!grc->delta) 2655 return; 2656 2657 ptr = skb_gro_header_fast(skb, grc->offset); 2658 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2659 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2660 if (!ptr) 2661 return; 2662 } 2663 2664 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2665 } 2666 2667 #ifdef CONFIG_XFRM_OFFLOAD 2668 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2669 { 2670 if (PTR_ERR(pp) != -EINPROGRESS) 2671 NAPI_GRO_CB(skb)->flush |= flush; 2672 } 2673 #else 2674 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2675 { 2676 NAPI_GRO_CB(skb)->flush |= flush; 2677 } 2678 #endif 2679 2680 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2681 unsigned short type, 2682 const void *daddr, const void *saddr, 2683 unsigned int len) 2684 { 2685 if (!dev->header_ops || !dev->header_ops->create) 2686 return 0; 2687 2688 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2689 } 2690 2691 static inline int dev_parse_header(const struct sk_buff *skb, 2692 unsigned char *haddr) 2693 { 2694 const struct net_device *dev = skb->dev; 2695 2696 if (!dev->header_ops || !dev->header_ops->parse) 2697 return 0; 2698 return dev->header_ops->parse(skb, haddr); 2699 } 2700 2701 /* ll_header must have at least hard_header_len allocated */ 2702 static inline bool dev_validate_header(const struct net_device *dev, 2703 char *ll_header, int len) 2704 { 2705 if (likely(len >= dev->hard_header_len)) 2706 return true; 2707 if (len < dev->min_header_len) 2708 return false; 2709 2710 if (capable(CAP_SYS_RAWIO)) { 2711 memset(ll_header + len, 0, dev->hard_header_len - len); 2712 return true; 2713 } 2714 2715 if (dev->header_ops && dev->header_ops->validate) 2716 return dev->header_ops->validate(ll_header, len); 2717 2718 return false; 2719 } 2720 2721 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2722 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2723 static inline int unregister_gifconf(unsigned int family) 2724 { 2725 return register_gifconf(family, NULL); 2726 } 2727 2728 #ifdef CONFIG_NET_FLOW_LIMIT 2729 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2730 struct sd_flow_limit { 2731 u64 count; 2732 unsigned int num_buckets; 2733 unsigned int history_head; 2734 u16 history[FLOW_LIMIT_HISTORY]; 2735 u8 buckets[]; 2736 }; 2737 2738 extern int netdev_flow_limit_table_len; 2739 #endif /* CONFIG_NET_FLOW_LIMIT */ 2740 2741 /* 2742 * Incoming packets are placed on per-CPU queues 2743 */ 2744 struct softnet_data { 2745 struct list_head poll_list; 2746 struct sk_buff_head process_queue; 2747 2748 /* stats */ 2749 unsigned int processed; 2750 unsigned int time_squeeze; 2751 unsigned int received_rps; 2752 #ifdef CONFIG_RPS 2753 struct softnet_data *rps_ipi_list; 2754 #endif 2755 #ifdef CONFIG_NET_FLOW_LIMIT 2756 struct sd_flow_limit __rcu *flow_limit; 2757 #endif 2758 struct Qdisc *output_queue; 2759 struct Qdisc **output_queue_tailp; 2760 struct sk_buff *completion_queue; 2761 2762 #ifdef CONFIG_RPS 2763 /* input_queue_head should be written by cpu owning this struct, 2764 * and only read by other cpus. Worth using a cache line. 2765 */ 2766 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2767 2768 /* Elements below can be accessed between CPUs for RPS/RFS */ 2769 struct call_single_data csd ____cacheline_aligned_in_smp; 2770 struct softnet_data *rps_ipi_next; 2771 unsigned int cpu; 2772 unsigned int input_queue_tail; 2773 #endif 2774 unsigned int dropped; 2775 struct sk_buff_head input_pkt_queue; 2776 struct napi_struct backlog; 2777 2778 }; 2779 2780 static inline void input_queue_head_incr(struct softnet_data *sd) 2781 { 2782 #ifdef CONFIG_RPS 2783 sd->input_queue_head++; 2784 #endif 2785 } 2786 2787 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2788 unsigned int *qtail) 2789 { 2790 #ifdef CONFIG_RPS 2791 *qtail = ++sd->input_queue_tail; 2792 #endif 2793 } 2794 2795 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2796 2797 void __netif_schedule(struct Qdisc *q); 2798 void netif_schedule_queue(struct netdev_queue *txq); 2799 2800 static inline void netif_tx_schedule_all(struct net_device *dev) 2801 { 2802 unsigned int i; 2803 2804 for (i = 0; i < dev->num_tx_queues; i++) 2805 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2806 } 2807 2808 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2809 { 2810 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2811 } 2812 2813 /** 2814 * netif_start_queue - allow transmit 2815 * @dev: network device 2816 * 2817 * Allow upper layers to call the device hard_start_xmit routine. 2818 */ 2819 static inline void netif_start_queue(struct net_device *dev) 2820 { 2821 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2822 } 2823 2824 static inline void netif_tx_start_all_queues(struct net_device *dev) 2825 { 2826 unsigned int i; 2827 2828 for (i = 0; i < dev->num_tx_queues; i++) { 2829 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2830 netif_tx_start_queue(txq); 2831 } 2832 } 2833 2834 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2835 2836 /** 2837 * netif_wake_queue - restart transmit 2838 * @dev: network device 2839 * 2840 * Allow upper layers to call the device hard_start_xmit routine. 2841 * Used for flow control when transmit resources are available. 2842 */ 2843 static inline void netif_wake_queue(struct net_device *dev) 2844 { 2845 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2846 } 2847 2848 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2849 { 2850 unsigned int i; 2851 2852 for (i = 0; i < dev->num_tx_queues; i++) { 2853 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2854 netif_tx_wake_queue(txq); 2855 } 2856 } 2857 2858 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2859 { 2860 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2861 } 2862 2863 /** 2864 * netif_stop_queue - stop transmitted packets 2865 * @dev: network device 2866 * 2867 * Stop upper layers calling the device hard_start_xmit routine. 2868 * Used for flow control when transmit resources are unavailable. 2869 */ 2870 static inline void netif_stop_queue(struct net_device *dev) 2871 { 2872 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2873 } 2874 2875 void netif_tx_stop_all_queues(struct net_device *dev); 2876 2877 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2878 { 2879 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2880 } 2881 2882 /** 2883 * netif_queue_stopped - test if transmit queue is flowblocked 2884 * @dev: network device 2885 * 2886 * Test if transmit queue on device is currently unable to send. 2887 */ 2888 static inline bool netif_queue_stopped(const struct net_device *dev) 2889 { 2890 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2891 } 2892 2893 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2894 { 2895 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2896 } 2897 2898 static inline bool 2899 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2900 { 2901 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2902 } 2903 2904 static inline bool 2905 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2906 { 2907 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2908 } 2909 2910 /** 2911 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2912 * @dev_queue: pointer to transmit queue 2913 * 2914 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2915 * to give appropriate hint to the CPU. 2916 */ 2917 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2918 { 2919 #ifdef CONFIG_BQL 2920 prefetchw(&dev_queue->dql.num_queued); 2921 #endif 2922 } 2923 2924 /** 2925 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2926 * @dev_queue: pointer to transmit queue 2927 * 2928 * BQL enabled drivers might use this helper in their TX completion path, 2929 * to give appropriate hint to the CPU. 2930 */ 2931 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2932 { 2933 #ifdef CONFIG_BQL 2934 prefetchw(&dev_queue->dql.limit); 2935 #endif 2936 } 2937 2938 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2939 unsigned int bytes) 2940 { 2941 #ifdef CONFIG_BQL 2942 dql_queued(&dev_queue->dql, bytes); 2943 2944 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2945 return; 2946 2947 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2948 2949 /* 2950 * The XOFF flag must be set before checking the dql_avail below, 2951 * because in netdev_tx_completed_queue we update the dql_completed 2952 * before checking the XOFF flag. 2953 */ 2954 smp_mb(); 2955 2956 /* check again in case another CPU has just made room avail */ 2957 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2958 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2959 #endif 2960 } 2961 2962 /** 2963 * netdev_sent_queue - report the number of bytes queued to hardware 2964 * @dev: network device 2965 * @bytes: number of bytes queued to the hardware device queue 2966 * 2967 * Report the number of bytes queued for sending/completion to the network 2968 * device hardware queue. @bytes should be a good approximation and should 2969 * exactly match netdev_completed_queue() @bytes 2970 */ 2971 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2972 { 2973 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2974 } 2975 2976 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2977 unsigned int pkts, unsigned int bytes) 2978 { 2979 #ifdef CONFIG_BQL 2980 if (unlikely(!bytes)) 2981 return; 2982 2983 dql_completed(&dev_queue->dql, bytes); 2984 2985 /* 2986 * Without the memory barrier there is a small possiblity that 2987 * netdev_tx_sent_queue will miss the update and cause the queue to 2988 * be stopped forever 2989 */ 2990 smp_mb(); 2991 2992 if (dql_avail(&dev_queue->dql) < 0) 2993 return; 2994 2995 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2996 netif_schedule_queue(dev_queue); 2997 #endif 2998 } 2999 3000 /** 3001 * netdev_completed_queue - report bytes and packets completed by device 3002 * @dev: network device 3003 * @pkts: actual number of packets sent over the medium 3004 * @bytes: actual number of bytes sent over the medium 3005 * 3006 * Report the number of bytes and packets transmitted by the network device 3007 * hardware queue over the physical medium, @bytes must exactly match the 3008 * @bytes amount passed to netdev_sent_queue() 3009 */ 3010 static inline void netdev_completed_queue(struct net_device *dev, 3011 unsigned int pkts, unsigned int bytes) 3012 { 3013 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3014 } 3015 3016 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3017 { 3018 #ifdef CONFIG_BQL 3019 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3020 dql_reset(&q->dql); 3021 #endif 3022 } 3023 3024 /** 3025 * netdev_reset_queue - reset the packets and bytes count of a network device 3026 * @dev_queue: network device 3027 * 3028 * Reset the bytes and packet count of a network device and clear the 3029 * software flow control OFF bit for this network device 3030 */ 3031 static inline void netdev_reset_queue(struct net_device *dev_queue) 3032 { 3033 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3034 } 3035 3036 /** 3037 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3038 * @dev: network device 3039 * @queue_index: given tx queue index 3040 * 3041 * Returns 0 if given tx queue index >= number of device tx queues, 3042 * otherwise returns the originally passed tx queue index. 3043 */ 3044 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3045 { 3046 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3047 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3048 dev->name, queue_index, 3049 dev->real_num_tx_queues); 3050 return 0; 3051 } 3052 3053 return queue_index; 3054 } 3055 3056 /** 3057 * netif_running - test if up 3058 * @dev: network device 3059 * 3060 * Test if the device has been brought up. 3061 */ 3062 static inline bool netif_running(const struct net_device *dev) 3063 { 3064 return test_bit(__LINK_STATE_START, &dev->state); 3065 } 3066 3067 /* 3068 * Routines to manage the subqueues on a device. We only need start, 3069 * stop, and a check if it's stopped. All other device management is 3070 * done at the overall netdevice level. 3071 * Also test the device if we're multiqueue. 3072 */ 3073 3074 /** 3075 * netif_start_subqueue - allow sending packets on subqueue 3076 * @dev: network device 3077 * @queue_index: sub queue index 3078 * 3079 * Start individual transmit queue of a device with multiple transmit queues. 3080 */ 3081 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3082 { 3083 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3084 3085 netif_tx_start_queue(txq); 3086 } 3087 3088 /** 3089 * netif_stop_subqueue - stop sending packets on subqueue 3090 * @dev: network device 3091 * @queue_index: sub queue index 3092 * 3093 * Stop individual transmit queue of a device with multiple transmit queues. 3094 */ 3095 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3096 { 3097 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3098 netif_tx_stop_queue(txq); 3099 } 3100 3101 /** 3102 * netif_subqueue_stopped - test status of subqueue 3103 * @dev: network device 3104 * @queue_index: sub queue index 3105 * 3106 * Check individual transmit queue of a device with multiple transmit queues. 3107 */ 3108 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3109 u16 queue_index) 3110 { 3111 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3112 3113 return netif_tx_queue_stopped(txq); 3114 } 3115 3116 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3117 struct sk_buff *skb) 3118 { 3119 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3120 } 3121 3122 /** 3123 * netif_wake_subqueue - allow sending packets on subqueue 3124 * @dev: network device 3125 * @queue_index: sub queue index 3126 * 3127 * Resume individual transmit queue of a device with multiple transmit queues. 3128 */ 3129 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3130 { 3131 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3132 3133 netif_tx_wake_queue(txq); 3134 } 3135 3136 #ifdef CONFIG_XPS 3137 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3138 u16 index); 3139 #else 3140 static inline int netif_set_xps_queue(struct net_device *dev, 3141 const struct cpumask *mask, 3142 u16 index) 3143 { 3144 return 0; 3145 } 3146 #endif 3147 3148 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3149 unsigned int num_tx_queues); 3150 3151 /* 3152 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3153 * as a distribution range limit for the returned value. 3154 */ 3155 static inline u16 skb_tx_hash(const struct net_device *dev, 3156 struct sk_buff *skb) 3157 { 3158 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3159 } 3160 3161 /** 3162 * netif_is_multiqueue - test if device has multiple transmit queues 3163 * @dev: network device 3164 * 3165 * Check if device has multiple transmit queues 3166 */ 3167 static inline bool netif_is_multiqueue(const struct net_device *dev) 3168 { 3169 return dev->num_tx_queues > 1; 3170 } 3171 3172 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3173 3174 #ifdef CONFIG_SYSFS 3175 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3176 #else 3177 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3178 unsigned int rxq) 3179 { 3180 return 0; 3181 } 3182 #endif 3183 3184 #ifdef CONFIG_SYSFS 3185 static inline unsigned int get_netdev_rx_queue_index( 3186 struct netdev_rx_queue *queue) 3187 { 3188 struct net_device *dev = queue->dev; 3189 int index = queue - dev->_rx; 3190 3191 BUG_ON(index >= dev->num_rx_queues); 3192 return index; 3193 } 3194 #endif 3195 3196 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3197 int netif_get_num_default_rss_queues(void); 3198 3199 enum skb_free_reason { 3200 SKB_REASON_CONSUMED, 3201 SKB_REASON_DROPPED, 3202 }; 3203 3204 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3205 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3206 3207 /* 3208 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3209 * interrupt context or with hardware interrupts being disabled. 3210 * (in_irq() || irqs_disabled()) 3211 * 3212 * We provide four helpers that can be used in following contexts : 3213 * 3214 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3215 * replacing kfree_skb(skb) 3216 * 3217 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3218 * Typically used in place of consume_skb(skb) in TX completion path 3219 * 3220 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3221 * replacing kfree_skb(skb) 3222 * 3223 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3224 * and consumed a packet. Used in place of consume_skb(skb) 3225 */ 3226 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3227 { 3228 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3229 } 3230 3231 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3232 { 3233 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3234 } 3235 3236 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3237 { 3238 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3239 } 3240 3241 static inline void dev_consume_skb_any(struct sk_buff *skb) 3242 { 3243 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3244 } 3245 3246 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3247 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3248 int netif_rx(struct sk_buff *skb); 3249 int netif_rx_ni(struct sk_buff *skb); 3250 int netif_receive_skb(struct sk_buff *skb); 3251 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3252 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3253 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3254 gro_result_t napi_gro_frags(struct napi_struct *napi); 3255 struct packet_offload *gro_find_receive_by_type(__be16 type); 3256 struct packet_offload *gro_find_complete_by_type(__be16 type); 3257 3258 static inline void napi_free_frags(struct napi_struct *napi) 3259 { 3260 kfree_skb(napi->skb); 3261 napi->skb = NULL; 3262 } 3263 3264 bool netdev_is_rx_handler_busy(struct net_device *dev); 3265 int netdev_rx_handler_register(struct net_device *dev, 3266 rx_handler_func_t *rx_handler, 3267 void *rx_handler_data); 3268 void netdev_rx_handler_unregister(struct net_device *dev); 3269 3270 bool dev_valid_name(const char *name); 3271 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3272 int dev_ethtool(struct net *net, struct ifreq *); 3273 unsigned int dev_get_flags(const struct net_device *); 3274 int __dev_change_flags(struct net_device *, unsigned int flags); 3275 int dev_change_flags(struct net_device *, unsigned int); 3276 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3277 unsigned int gchanges); 3278 int dev_change_name(struct net_device *, const char *); 3279 int dev_set_alias(struct net_device *, const char *, size_t); 3280 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3281 int __dev_set_mtu(struct net_device *, int); 3282 int dev_set_mtu(struct net_device *, int); 3283 void dev_set_group(struct net_device *, int); 3284 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3285 int dev_change_carrier(struct net_device *, bool new_carrier); 3286 int dev_get_phys_port_id(struct net_device *dev, 3287 struct netdev_phys_item_id *ppid); 3288 int dev_get_phys_port_name(struct net_device *dev, 3289 char *name, size_t len); 3290 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3291 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3292 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3293 struct netdev_queue *txq, int *ret); 3294 3295 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp); 3296 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3297 int fd, u32 flags); 3298 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id); 3299 3300 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3301 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3302 bool is_skb_forwardable(const struct net_device *dev, 3303 const struct sk_buff *skb); 3304 3305 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3306 struct sk_buff *skb) 3307 { 3308 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3309 unlikely(!is_skb_forwardable(dev, skb))) { 3310 atomic_long_inc(&dev->rx_dropped); 3311 kfree_skb(skb); 3312 return NET_RX_DROP; 3313 } 3314 3315 skb_scrub_packet(skb, true); 3316 skb->priority = 0; 3317 return 0; 3318 } 3319 3320 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3321 3322 extern int netdev_budget; 3323 extern unsigned int netdev_budget_usecs; 3324 3325 /* Called by rtnetlink.c:rtnl_unlock() */ 3326 void netdev_run_todo(void); 3327 3328 /** 3329 * dev_put - release reference to device 3330 * @dev: network device 3331 * 3332 * Release reference to device to allow it to be freed. 3333 */ 3334 static inline void dev_put(struct net_device *dev) 3335 { 3336 this_cpu_dec(*dev->pcpu_refcnt); 3337 } 3338 3339 /** 3340 * dev_hold - get reference to device 3341 * @dev: network device 3342 * 3343 * Hold reference to device to keep it from being freed. 3344 */ 3345 static inline void dev_hold(struct net_device *dev) 3346 { 3347 this_cpu_inc(*dev->pcpu_refcnt); 3348 } 3349 3350 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3351 * and _off may be called from IRQ context, but it is caller 3352 * who is responsible for serialization of these calls. 3353 * 3354 * The name carrier is inappropriate, these functions should really be 3355 * called netif_lowerlayer_*() because they represent the state of any 3356 * kind of lower layer not just hardware media. 3357 */ 3358 3359 void linkwatch_init_dev(struct net_device *dev); 3360 void linkwatch_fire_event(struct net_device *dev); 3361 void linkwatch_forget_dev(struct net_device *dev); 3362 3363 /** 3364 * netif_carrier_ok - test if carrier present 3365 * @dev: network device 3366 * 3367 * Check if carrier is present on device 3368 */ 3369 static inline bool netif_carrier_ok(const struct net_device *dev) 3370 { 3371 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3372 } 3373 3374 unsigned long dev_trans_start(struct net_device *dev); 3375 3376 void __netdev_watchdog_up(struct net_device *dev); 3377 3378 void netif_carrier_on(struct net_device *dev); 3379 3380 void netif_carrier_off(struct net_device *dev); 3381 3382 /** 3383 * netif_dormant_on - mark device as dormant. 3384 * @dev: network device 3385 * 3386 * Mark device as dormant (as per RFC2863). 3387 * 3388 * The dormant state indicates that the relevant interface is not 3389 * actually in a condition to pass packets (i.e., it is not 'up') but is 3390 * in a "pending" state, waiting for some external event. For "on- 3391 * demand" interfaces, this new state identifies the situation where the 3392 * interface is waiting for events to place it in the up state. 3393 */ 3394 static inline void netif_dormant_on(struct net_device *dev) 3395 { 3396 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3397 linkwatch_fire_event(dev); 3398 } 3399 3400 /** 3401 * netif_dormant_off - set device as not dormant. 3402 * @dev: network device 3403 * 3404 * Device is not in dormant state. 3405 */ 3406 static inline void netif_dormant_off(struct net_device *dev) 3407 { 3408 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3409 linkwatch_fire_event(dev); 3410 } 3411 3412 /** 3413 * netif_dormant - test if device is dormant 3414 * @dev: network device 3415 * 3416 * Check if device is dormant. 3417 */ 3418 static inline bool netif_dormant(const struct net_device *dev) 3419 { 3420 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3421 } 3422 3423 3424 /** 3425 * netif_oper_up - test if device is operational 3426 * @dev: network device 3427 * 3428 * Check if carrier is operational 3429 */ 3430 static inline bool netif_oper_up(const struct net_device *dev) 3431 { 3432 return (dev->operstate == IF_OPER_UP || 3433 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3434 } 3435 3436 /** 3437 * netif_device_present - is device available or removed 3438 * @dev: network device 3439 * 3440 * Check if device has not been removed from system. 3441 */ 3442 static inline bool netif_device_present(struct net_device *dev) 3443 { 3444 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3445 } 3446 3447 void netif_device_detach(struct net_device *dev); 3448 3449 void netif_device_attach(struct net_device *dev); 3450 3451 /* 3452 * Network interface message level settings 3453 */ 3454 3455 enum { 3456 NETIF_MSG_DRV = 0x0001, 3457 NETIF_MSG_PROBE = 0x0002, 3458 NETIF_MSG_LINK = 0x0004, 3459 NETIF_MSG_TIMER = 0x0008, 3460 NETIF_MSG_IFDOWN = 0x0010, 3461 NETIF_MSG_IFUP = 0x0020, 3462 NETIF_MSG_RX_ERR = 0x0040, 3463 NETIF_MSG_TX_ERR = 0x0080, 3464 NETIF_MSG_TX_QUEUED = 0x0100, 3465 NETIF_MSG_INTR = 0x0200, 3466 NETIF_MSG_TX_DONE = 0x0400, 3467 NETIF_MSG_RX_STATUS = 0x0800, 3468 NETIF_MSG_PKTDATA = 0x1000, 3469 NETIF_MSG_HW = 0x2000, 3470 NETIF_MSG_WOL = 0x4000, 3471 }; 3472 3473 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3474 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3475 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3476 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3477 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3478 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3479 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3480 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3481 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3482 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3483 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3484 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3485 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3486 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3487 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3488 3489 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3490 { 3491 /* use default */ 3492 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3493 return default_msg_enable_bits; 3494 if (debug_value == 0) /* no output */ 3495 return 0; 3496 /* set low N bits */ 3497 return (1 << debug_value) - 1; 3498 } 3499 3500 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3501 { 3502 spin_lock(&txq->_xmit_lock); 3503 txq->xmit_lock_owner = cpu; 3504 } 3505 3506 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3507 { 3508 __acquire(&txq->_xmit_lock); 3509 return true; 3510 } 3511 3512 static inline void __netif_tx_release(struct netdev_queue *txq) 3513 { 3514 __release(&txq->_xmit_lock); 3515 } 3516 3517 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3518 { 3519 spin_lock_bh(&txq->_xmit_lock); 3520 txq->xmit_lock_owner = smp_processor_id(); 3521 } 3522 3523 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3524 { 3525 bool ok = spin_trylock(&txq->_xmit_lock); 3526 if (likely(ok)) 3527 txq->xmit_lock_owner = smp_processor_id(); 3528 return ok; 3529 } 3530 3531 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3532 { 3533 txq->xmit_lock_owner = -1; 3534 spin_unlock(&txq->_xmit_lock); 3535 } 3536 3537 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3538 { 3539 txq->xmit_lock_owner = -1; 3540 spin_unlock_bh(&txq->_xmit_lock); 3541 } 3542 3543 static inline void txq_trans_update(struct netdev_queue *txq) 3544 { 3545 if (txq->xmit_lock_owner != -1) 3546 txq->trans_start = jiffies; 3547 } 3548 3549 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3550 static inline void netif_trans_update(struct net_device *dev) 3551 { 3552 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3553 3554 if (txq->trans_start != jiffies) 3555 txq->trans_start = jiffies; 3556 } 3557 3558 /** 3559 * netif_tx_lock - grab network device transmit lock 3560 * @dev: network device 3561 * 3562 * Get network device transmit lock 3563 */ 3564 static inline void netif_tx_lock(struct net_device *dev) 3565 { 3566 unsigned int i; 3567 int cpu; 3568 3569 spin_lock(&dev->tx_global_lock); 3570 cpu = smp_processor_id(); 3571 for (i = 0; i < dev->num_tx_queues; i++) { 3572 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3573 3574 /* We are the only thread of execution doing a 3575 * freeze, but we have to grab the _xmit_lock in 3576 * order to synchronize with threads which are in 3577 * the ->hard_start_xmit() handler and already 3578 * checked the frozen bit. 3579 */ 3580 __netif_tx_lock(txq, cpu); 3581 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3582 __netif_tx_unlock(txq); 3583 } 3584 } 3585 3586 static inline void netif_tx_lock_bh(struct net_device *dev) 3587 { 3588 local_bh_disable(); 3589 netif_tx_lock(dev); 3590 } 3591 3592 static inline void netif_tx_unlock(struct net_device *dev) 3593 { 3594 unsigned int i; 3595 3596 for (i = 0; i < dev->num_tx_queues; i++) { 3597 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3598 3599 /* No need to grab the _xmit_lock here. If the 3600 * queue is not stopped for another reason, we 3601 * force a schedule. 3602 */ 3603 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3604 netif_schedule_queue(txq); 3605 } 3606 spin_unlock(&dev->tx_global_lock); 3607 } 3608 3609 static inline void netif_tx_unlock_bh(struct net_device *dev) 3610 { 3611 netif_tx_unlock(dev); 3612 local_bh_enable(); 3613 } 3614 3615 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3616 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3617 __netif_tx_lock(txq, cpu); \ 3618 } else { \ 3619 __netif_tx_acquire(txq); \ 3620 } \ 3621 } 3622 3623 #define HARD_TX_TRYLOCK(dev, txq) \ 3624 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3625 __netif_tx_trylock(txq) : \ 3626 __netif_tx_acquire(txq)) 3627 3628 #define HARD_TX_UNLOCK(dev, txq) { \ 3629 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3630 __netif_tx_unlock(txq); \ 3631 } else { \ 3632 __netif_tx_release(txq); \ 3633 } \ 3634 } 3635 3636 static inline void netif_tx_disable(struct net_device *dev) 3637 { 3638 unsigned int i; 3639 int cpu; 3640 3641 local_bh_disable(); 3642 cpu = smp_processor_id(); 3643 for (i = 0; i < dev->num_tx_queues; i++) { 3644 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3645 3646 __netif_tx_lock(txq, cpu); 3647 netif_tx_stop_queue(txq); 3648 __netif_tx_unlock(txq); 3649 } 3650 local_bh_enable(); 3651 } 3652 3653 static inline void netif_addr_lock(struct net_device *dev) 3654 { 3655 spin_lock(&dev->addr_list_lock); 3656 } 3657 3658 static inline void netif_addr_lock_nested(struct net_device *dev) 3659 { 3660 int subclass = SINGLE_DEPTH_NESTING; 3661 3662 if (dev->netdev_ops->ndo_get_lock_subclass) 3663 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3664 3665 spin_lock_nested(&dev->addr_list_lock, subclass); 3666 } 3667 3668 static inline void netif_addr_lock_bh(struct net_device *dev) 3669 { 3670 spin_lock_bh(&dev->addr_list_lock); 3671 } 3672 3673 static inline void netif_addr_unlock(struct net_device *dev) 3674 { 3675 spin_unlock(&dev->addr_list_lock); 3676 } 3677 3678 static inline void netif_addr_unlock_bh(struct net_device *dev) 3679 { 3680 spin_unlock_bh(&dev->addr_list_lock); 3681 } 3682 3683 /* 3684 * dev_addrs walker. Should be used only for read access. Call with 3685 * rcu_read_lock held. 3686 */ 3687 #define for_each_dev_addr(dev, ha) \ 3688 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3689 3690 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3691 3692 void ether_setup(struct net_device *dev); 3693 3694 /* Support for loadable net-drivers */ 3695 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3696 unsigned char name_assign_type, 3697 void (*setup)(struct net_device *), 3698 unsigned int txqs, unsigned int rxqs); 3699 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3700 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3701 3702 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3703 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3704 count) 3705 3706 int register_netdev(struct net_device *dev); 3707 void unregister_netdev(struct net_device *dev); 3708 3709 /* General hardware address lists handling functions */ 3710 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3711 struct netdev_hw_addr_list *from_list, int addr_len); 3712 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3713 struct netdev_hw_addr_list *from_list, int addr_len); 3714 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3715 struct net_device *dev, 3716 int (*sync)(struct net_device *, const unsigned char *), 3717 int (*unsync)(struct net_device *, 3718 const unsigned char *)); 3719 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3720 struct net_device *dev, 3721 int (*unsync)(struct net_device *, 3722 const unsigned char *)); 3723 void __hw_addr_init(struct netdev_hw_addr_list *list); 3724 3725 /* Functions used for device addresses handling */ 3726 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3727 unsigned char addr_type); 3728 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3729 unsigned char addr_type); 3730 void dev_addr_flush(struct net_device *dev); 3731 int dev_addr_init(struct net_device *dev); 3732 3733 /* Functions used for unicast addresses handling */ 3734 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3735 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3736 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3737 int dev_uc_sync(struct net_device *to, struct net_device *from); 3738 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3739 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3740 void dev_uc_flush(struct net_device *dev); 3741 void dev_uc_init(struct net_device *dev); 3742 3743 /** 3744 * __dev_uc_sync - Synchonize device's unicast list 3745 * @dev: device to sync 3746 * @sync: function to call if address should be added 3747 * @unsync: function to call if address should be removed 3748 * 3749 * Add newly added addresses to the interface, and release 3750 * addresses that have been deleted. 3751 */ 3752 static inline int __dev_uc_sync(struct net_device *dev, 3753 int (*sync)(struct net_device *, 3754 const unsigned char *), 3755 int (*unsync)(struct net_device *, 3756 const unsigned char *)) 3757 { 3758 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3759 } 3760 3761 /** 3762 * __dev_uc_unsync - Remove synchronized addresses from device 3763 * @dev: device to sync 3764 * @unsync: function to call if address should be removed 3765 * 3766 * Remove all addresses that were added to the device by dev_uc_sync(). 3767 */ 3768 static inline void __dev_uc_unsync(struct net_device *dev, 3769 int (*unsync)(struct net_device *, 3770 const unsigned char *)) 3771 { 3772 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3773 } 3774 3775 /* Functions used for multicast addresses handling */ 3776 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3777 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3778 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3779 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3780 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3781 int dev_mc_sync(struct net_device *to, struct net_device *from); 3782 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3783 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3784 void dev_mc_flush(struct net_device *dev); 3785 void dev_mc_init(struct net_device *dev); 3786 3787 /** 3788 * __dev_mc_sync - Synchonize device's multicast list 3789 * @dev: device to sync 3790 * @sync: function to call if address should be added 3791 * @unsync: function to call if address should be removed 3792 * 3793 * Add newly added addresses to the interface, and release 3794 * addresses that have been deleted. 3795 */ 3796 static inline int __dev_mc_sync(struct net_device *dev, 3797 int (*sync)(struct net_device *, 3798 const unsigned char *), 3799 int (*unsync)(struct net_device *, 3800 const unsigned char *)) 3801 { 3802 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3803 } 3804 3805 /** 3806 * __dev_mc_unsync - Remove synchronized addresses from device 3807 * @dev: device to sync 3808 * @unsync: function to call if address should be removed 3809 * 3810 * Remove all addresses that were added to the device by dev_mc_sync(). 3811 */ 3812 static inline void __dev_mc_unsync(struct net_device *dev, 3813 int (*unsync)(struct net_device *, 3814 const unsigned char *)) 3815 { 3816 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3817 } 3818 3819 /* Functions used for secondary unicast and multicast support */ 3820 void dev_set_rx_mode(struct net_device *dev); 3821 void __dev_set_rx_mode(struct net_device *dev); 3822 int dev_set_promiscuity(struct net_device *dev, int inc); 3823 int dev_set_allmulti(struct net_device *dev, int inc); 3824 void netdev_state_change(struct net_device *dev); 3825 void netdev_notify_peers(struct net_device *dev); 3826 void netdev_features_change(struct net_device *dev); 3827 /* Load a device via the kmod */ 3828 void dev_load(struct net *net, const char *name); 3829 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3830 struct rtnl_link_stats64 *storage); 3831 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3832 const struct net_device_stats *netdev_stats); 3833 3834 extern int netdev_max_backlog; 3835 extern int netdev_tstamp_prequeue; 3836 extern int weight_p; 3837 extern int dev_weight_rx_bias; 3838 extern int dev_weight_tx_bias; 3839 extern int dev_rx_weight; 3840 extern int dev_tx_weight; 3841 3842 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3843 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3844 struct list_head **iter); 3845 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3846 struct list_head **iter); 3847 3848 /* iterate through upper list, must be called under RCU read lock */ 3849 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3850 for (iter = &(dev)->adj_list.upper, \ 3851 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3852 updev; \ 3853 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3854 3855 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3856 int (*fn)(struct net_device *upper_dev, 3857 void *data), 3858 void *data); 3859 3860 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3861 struct net_device *upper_dev); 3862 3863 void *netdev_lower_get_next_private(struct net_device *dev, 3864 struct list_head **iter); 3865 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3866 struct list_head **iter); 3867 3868 #define netdev_for_each_lower_private(dev, priv, iter) \ 3869 for (iter = (dev)->adj_list.lower.next, \ 3870 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3871 priv; \ 3872 priv = netdev_lower_get_next_private(dev, &(iter))) 3873 3874 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3875 for (iter = &(dev)->adj_list.lower, \ 3876 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3877 priv; \ 3878 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3879 3880 void *netdev_lower_get_next(struct net_device *dev, 3881 struct list_head **iter); 3882 3883 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3884 for (iter = (dev)->adj_list.lower.next, \ 3885 ldev = netdev_lower_get_next(dev, &(iter)); \ 3886 ldev; \ 3887 ldev = netdev_lower_get_next(dev, &(iter))) 3888 3889 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3890 struct list_head **iter); 3891 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3892 struct list_head **iter); 3893 3894 int netdev_walk_all_lower_dev(struct net_device *dev, 3895 int (*fn)(struct net_device *lower_dev, 3896 void *data), 3897 void *data); 3898 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3899 int (*fn)(struct net_device *lower_dev, 3900 void *data), 3901 void *data); 3902 3903 void *netdev_adjacent_get_private(struct list_head *adj_list); 3904 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3905 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3906 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3907 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3908 int netdev_master_upper_dev_link(struct net_device *dev, 3909 struct net_device *upper_dev, 3910 void *upper_priv, void *upper_info); 3911 void netdev_upper_dev_unlink(struct net_device *dev, 3912 struct net_device *upper_dev); 3913 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3914 void *netdev_lower_dev_get_private(struct net_device *dev, 3915 struct net_device *lower_dev); 3916 void netdev_lower_state_changed(struct net_device *lower_dev, 3917 void *lower_state_info); 3918 3919 /* RSS keys are 40 or 52 bytes long */ 3920 #define NETDEV_RSS_KEY_LEN 52 3921 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3922 void netdev_rss_key_fill(void *buffer, size_t len); 3923 3924 int dev_get_nest_level(struct net_device *dev); 3925 int skb_checksum_help(struct sk_buff *skb); 3926 int skb_crc32c_csum_help(struct sk_buff *skb); 3927 int skb_csum_hwoffload_help(struct sk_buff *skb, 3928 const netdev_features_t features); 3929 3930 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3931 netdev_features_t features, bool tx_path); 3932 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3933 netdev_features_t features); 3934 3935 struct netdev_bonding_info { 3936 ifslave slave; 3937 ifbond master; 3938 }; 3939 3940 struct netdev_notifier_bonding_info { 3941 struct netdev_notifier_info info; /* must be first */ 3942 struct netdev_bonding_info bonding_info; 3943 }; 3944 3945 void netdev_bonding_info_change(struct net_device *dev, 3946 struct netdev_bonding_info *bonding_info); 3947 3948 static inline 3949 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3950 { 3951 return __skb_gso_segment(skb, features, true); 3952 } 3953 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3954 3955 static inline bool can_checksum_protocol(netdev_features_t features, 3956 __be16 protocol) 3957 { 3958 if (protocol == htons(ETH_P_FCOE)) 3959 return !!(features & NETIF_F_FCOE_CRC); 3960 3961 /* Assume this is an IP checksum (not SCTP CRC) */ 3962 3963 if (features & NETIF_F_HW_CSUM) { 3964 /* Can checksum everything */ 3965 return true; 3966 } 3967 3968 switch (protocol) { 3969 case htons(ETH_P_IP): 3970 return !!(features & NETIF_F_IP_CSUM); 3971 case htons(ETH_P_IPV6): 3972 return !!(features & NETIF_F_IPV6_CSUM); 3973 default: 3974 return false; 3975 } 3976 } 3977 3978 #ifdef CONFIG_BUG 3979 void netdev_rx_csum_fault(struct net_device *dev); 3980 #else 3981 static inline void netdev_rx_csum_fault(struct net_device *dev) 3982 { 3983 } 3984 #endif 3985 /* rx skb timestamps */ 3986 void net_enable_timestamp(void); 3987 void net_disable_timestamp(void); 3988 3989 #ifdef CONFIG_PROC_FS 3990 int __init dev_proc_init(void); 3991 #else 3992 #define dev_proc_init() 0 3993 #endif 3994 3995 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3996 struct sk_buff *skb, struct net_device *dev, 3997 bool more) 3998 { 3999 skb->xmit_more = more ? 1 : 0; 4000 return ops->ndo_start_xmit(skb, dev); 4001 } 4002 4003 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4004 struct netdev_queue *txq, bool more) 4005 { 4006 const struct net_device_ops *ops = dev->netdev_ops; 4007 int rc; 4008 4009 rc = __netdev_start_xmit(ops, skb, dev, more); 4010 if (rc == NETDEV_TX_OK) 4011 txq_trans_update(txq); 4012 4013 return rc; 4014 } 4015 4016 int netdev_class_create_file_ns(struct class_attribute *class_attr, 4017 const void *ns); 4018 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 4019 const void *ns); 4020 4021 static inline int netdev_class_create_file(struct class_attribute *class_attr) 4022 { 4023 return netdev_class_create_file_ns(class_attr, NULL); 4024 } 4025 4026 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 4027 { 4028 netdev_class_remove_file_ns(class_attr, NULL); 4029 } 4030 4031 extern struct kobj_ns_type_operations net_ns_type_operations; 4032 4033 const char *netdev_drivername(const struct net_device *dev); 4034 4035 void linkwatch_run_queue(void); 4036 4037 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4038 netdev_features_t f2) 4039 { 4040 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4041 if (f1 & NETIF_F_HW_CSUM) 4042 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4043 else 4044 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4045 } 4046 4047 return f1 & f2; 4048 } 4049 4050 static inline netdev_features_t netdev_get_wanted_features( 4051 struct net_device *dev) 4052 { 4053 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4054 } 4055 netdev_features_t netdev_increment_features(netdev_features_t all, 4056 netdev_features_t one, netdev_features_t mask); 4057 4058 /* Allow TSO being used on stacked device : 4059 * Performing the GSO segmentation before last device 4060 * is a performance improvement. 4061 */ 4062 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4063 netdev_features_t mask) 4064 { 4065 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4066 } 4067 4068 int __netdev_update_features(struct net_device *dev); 4069 void netdev_update_features(struct net_device *dev); 4070 void netdev_change_features(struct net_device *dev); 4071 4072 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4073 struct net_device *dev); 4074 4075 netdev_features_t passthru_features_check(struct sk_buff *skb, 4076 struct net_device *dev, 4077 netdev_features_t features); 4078 netdev_features_t netif_skb_features(struct sk_buff *skb); 4079 4080 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4081 { 4082 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4083 4084 /* check flags correspondence */ 4085 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4086 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4087 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4088 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4089 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4090 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4091 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4092 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4093 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4094 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4095 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4096 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4097 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4098 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4099 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4100 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4101 4102 return (features & feature) == feature; 4103 } 4104 4105 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4106 { 4107 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4108 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4109 } 4110 4111 static inline bool netif_needs_gso(struct sk_buff *skb, 4112 netdev_features_t features) 4113 { 4114 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4115 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4116 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4117 } 4118 4119 static inline void netif_set_gso_max_size(struct net_device *dev, 4120 unsigned int size) 4121 { 4122 dev->gso_max_size = size; 4123 } 4124 4125 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4126 int pulled_hlen, u16 mac_offset, 4127 int mac_len) 4128 { 4129 skb->protocol = protocol; 4130 skb->encapsulation = 1; 4131 skb_push(skb, pulled_hlen); 4132 skb_reset_transport_header(skb); 4133 skb->mac_header = mac_offset; 4134 skb->network_header = skb->mac_header + mac_len; 4135 skb->mac_len = mac_len; 4136 } 4137 4138 static inline bool netif_is_macsec(const struct net_device *dev) 4139 { 4140 return dev->priv_flags & IFF_MACSEC; 4141 } 4142 4143 static inline bool netif_is_macvlan(const struct net_device *dev) 4144 { 4145 return dev->priv_flags & IFF_MACVLAN; 4146 } 4147 4148 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4149 { 4150 return dev->priv_flags & IFF_MACVLAN_PORT; 4151 } 4152 4153 static inline bool netif_is_ipvlan(const struct net_device *dev) 4154 { 4155 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4156 } 4157 4158 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4159 { 4160 return dev->priv_flags & IFF_IPVLAN_MASTER; 4161 } 4162 4163 static inline bool netif_is_bond_master(const struct net_device *dev) 4164 { 4165 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4166 } 4167 4168 static inline bool netif_is_bond_slave(const struct net_device *dev) 4169 { 4170 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4171 } 4172 4173 static inline bool netif_supports_nofcs(struct net_device *dev) 4174 { 4175 return dev->priv_flags & IFF_SUPP_NOFCS; 4176 } 4177 4178 static inline bool netif_is_l3_master(const struct net_device *dev) 4179 { 4180 return dev->priv_flags & IFF_L3MDEV_MASTER; 4181 } 4182 4183 static inline bool netif_is_l3_slave(const struct net_device *dev) 4184 { 4185 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4186 } 4187 4188 static inline bool netif_is_bridge_master(const struct net_device *dev) 4189 { 4190 return dev->priv_flags & IFF_EBRIDGE; 4191 } 4192 4193 static inline bool netif_is_bridge_port(const struct net_device *dev) 4194 { 4195 return dev->priv_flags & IFF_BRIDGE_PORT; 4196 } 4197 4198 static inline bool netif_is_ovs_master(const struct net_device *dev) 4199 { 4200 return dev->priv_flags & IFF_OPENVSWITCH; 4201 } 4202 4203 static inline bool netif_is_ovs_port(const struct net_device *dev) 4204 { 4205 return dev->priv_flags & IFF_OVS_DATAPATH; 4206 } 4207 4208 static inline bool netif_is_team_master(const struct net_device *dev) 4209 { 4210 return dev->priv_flags & IFF_TEAM; 4211 } 4212 4213 static inline bool netif_is_team_port(const struct net_device *dev) 4214 { 4215 return dev->priv_flags & IFF_TEAM_PORT; 4216 } 4217 4218 static inline bool netif_is_lag_master(const struct net_device *dev) 4219 { 4220 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4221 } 4222 4223 static inline bool netif_is_lag_port(const struct net_device *dev) 4224 { 4225 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4226 } 4227 4228 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4229 { 4230 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4231 } 4232 4233 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4234 static inline void netif_keep_dst(struct net_device *dev) 4235 { 4236 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4237 } 4238 4239 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4240 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4241 { 4242 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4243 return dev->priv_flags & IFF_MACSEC; 4244 } 4245 4246 extern struct pernet_operations __net_initdata loopback_net_ops; 4247 4248 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4249 4250 /* netdev_printk helpers, similar to dev_printk */ 4251 4252 static inline const char *netdev_name(const struct net_device *dev) 4253 { 4254 if (!dev->name[0] || strchr(dev->name, '%')) 4255 return "(unnamed net_device)"; 4256 return dev->name; 4257 } 4258 4259 static inline bool netdev_unregistering(const struct net_device *dev) 4260 { 4261 return dev->reg_state == NETREG_UNREGISTERING; 4262 } 4263 4264 static inline const char *netdev_reg_state(const struct net_device *dev) 4265 { 4266 switch (dev->reg_state) { 4267 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4268 case NETREG_REGISTERED: return ""; 4269 case NETREG_UNREGISTERING: return " (unregistering)"; 4270 case NETREG_UNREGISTERED: return " (unregistered)"; 4271 case NETREG_RELEASED: return " (released)"; 4272 case NETREG_DUMMY: return " (dummy)"; 4273 } 4274 4275 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4276 return " (unknown)"; 4277 } 4278 4279 __printf(3, 4) 4280 void netdev_printk(const char *level, const struct net_device *dev, 4281 const char *format, ...); 4282 __printf(2, 3) 4283 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4284 __printf(2, 3) 4285 void netdev_alert(const struct net_device *dev, const char *format, ...); 4286 __printf(2, 3) 4287 void netdev_crit(const struct net_device *dev, const char *format, ...); 4288 __printf(2, 3) 4289 void netdev_err(const struct net_device *dev, const char *format, ...); 4290 __printf(2, 3) 4291 void netdev_warn(const struct net_device *dev, const char *format, ...); 4292 __printf(2, 3) 4293 void netdev_notice(const struct net_device *dev, const char *format, ...); 4294 __printf(2, 3) 4295 void netdev_info(const struct net_device *dev, const char *format, ...); 4296 4297 #define MODULE_ALIAS_NETDEV(device) \ 4298 MODULE_ALIAS("netdev-" device) 4299 4300 #if defined(CONFIG_DYNAMIC_DEBUG) 4301 #define netdev_dbg(__dev, format, args...) \ 4302 do { \ 4303 dynamic_netdev_dbg(__dev, format, ##args); \ 4304 } while (0) 4305 #elif defined(DEBUG) 4306 #define netdev_dbg(__dev, format, args...) \ 4307 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4308 #else 4309 #define netdev_dbg(__dev, format, args...) \ 4310 ({ \ 4311 if (0) \ 4312 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4313 }) 4314 #endif 4315 4316 #if defined(VERBOSE_DEBUG) 4317 #define netdev_vdbg netdev_dbg 4318 #else 4319 4320 #define netdev_vdbg(dev, format, args...) \ 4321 ({ \ 4322 if (0) \ 4323 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4324 0; \ 4325 }) 4326 #endif 4327 4328 /* 4329 * netdev_WARN() acts like dev_printk(), but with the key difference 4330 * of using a WARN/WARN_ON to get the message out, including the 4331 * file/line information and a backtrace. 4332 */ 4333 #define netdev_WARN(dev, format, args...) \ 4334 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4335 netdev_reg_state(dev), ##args) 4336 4337 /* netif printk helpers, similar to netdev_printk */ 4338 4339 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4340 do { \ 4341 if (netif_msg_##type(priv)) \ 4342 netdev_printk(level, (dev), fmt, ##args); \ 4343 } while (0) 4344 4345 #define netif_level(level, priv, type, dev, fmt, args...) \ 4346 do { \ 4347 if (netif_msg_##type(priv)) \ 4348 netdev_##level(dev, fmt, ##args); \ 4349 } while (0) 4350 4351 #define netif_emerg(priv, type, dev, fmt, args...) \ 4352 netif_level(emerg, priv, type, dev, fmt, ##args) 4353 #define netif_alert(priv, type, dev, fmt, args...) \ 4354 netif_level(alert, priv, type, dev, fmt, ##args) 4355 #define netif_crit(priv, type, dev, fmt, args...) \ 4356 netif_level(crit, priv, type, dev, fmt, ##args) 4357 #define netif_err(priv, type, dev, fmt, args...) \ 4358 netif_level(err, priv, type, dev, fmt, ##args) 4359 #define netif_warn(priv, type, dev, fmt, args...) \ 4360 netif_level(warn, priv, type, dev, fmt, ##args) 4361 #define netif_notice(priv, type, dev, fmt, args...) \ 4362 netif_level(notice, priv, type, dev, fmt, ##args) 4363 #define netif_info(priv, type, dev, fmt, args...) \ 4364 netif_level(info, priv, type, dev, fmt, ##args) 4365 4366 #if defined(CONFIG_DYNAMIC_DEBUG) 4367 #define netif_dbg(priv, type, netdev, format, args...) \ 4368 do { \ 4369 if (netif_msg_##type(priv)) \ 4370 dynamic_netdev_dbg(netdev, format, ##args); \ 4371 } while (0) 4372 #elif defined(DEBUG) 4373 #define netif_dbg(priv, type, dev, format, args...) \ 4374 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4375 #else 4376 #define netif_dbg(priv, type, dev, format, args...) \ 4377 ({ \ 4378 if (0) \ 4379 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4380 0; \ 4381 }) 4382 #endif 4383 4384 /* if @cond then downgrade to debug, else print at @level */ 4385 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4386 do { \ 4387 if (cond) \ 4388 netif_dbg(priv, type, netdev, fmt, ##args); \ 4389 else \ 4390 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4391 } while (0) 4392 4393 #if defined(VERBOSE_DEBUG) 4394 #define netif_vdbg netif_dbg 4395 #else 4396 #define netif_vdbg(priv, type, dev, format, args...) \ 4397 ({ \ 4398 if (0) \ 4399 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4400 0; \ 4401 }) 4402 #endif 4403 4404 /* 4405 * The list of packet types we will receive (as opposed to discard) 4406 * and the routines to invoke. 4407 * 4408 * Why 16. Because with 16 the only overlap we get on a hash of the 4409 * low nibble of the protocol value is RARP/SNAP/X.25. 4410 * 4411 * NOTE: That is no longer true with the addition of VLAN tags. Not 4412 * sure which should go first, but I bet it won't make much 4413 * difference if we are running VLANs. The good news is that 4414 * this protocol won't be in the list unless compiled in, so 4415 * the average user (w/out VLANs) will not be adversely affected. 4416 * --BLG 4417 * 4418 * 0800 IP 4419 * 8100 802.1Q VLAN 4420 * 0001 802.3 4421 * 0002 AX.25 4422 * 0004 802.2 4423 * 8035 RARP 4424 * 0005 SNAP 4425 * 0805 X.25 4426 * 0806 ARP 4427 * 8137 IPX 4428 * 0009 Localtalk 4429 * 86DD IPv6 4430 */ 4431 #define PTYPE_HASH_SIZE (16) 4432 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4433 4434 #endif /* _LINUX_NETDEVICE_H */ 4435