xref: /linux-6.15/include/linux/netdevice.h (revision ec7ac6af)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64 				    const struct ethtool_ops *ops);
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 #define NET_ADDR_SET		3	/* address is set using
71 					 * dev_set_mac_address() */
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203 	struct list_head	list;
204 	unsigned char		addr[MAX_ADDR_LEN];
205 	unsigned char		type;
206 #define NETDEV_HW_ADDR_T_LAN		1
207 #define NETDEV_HW_ADDR_T_SAN		2
208 #define NETDEV_HW_ADDR_T_SLAVE		3
209 #define NETDEV_HW_ADDR_T_UNICAST	4
210 #define NETDEV_HW_ADDR_T_MULTICAST	5
211 	bool			global_use;
212 	int			sync_cnt;
213 	int			refcount;
214 	int			synced;
215 	struct rcu_head		rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219 	struct list_head	list;
220 	int			count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 	list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239 	u16		hh_len;
240 	u16		__pad;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*rebuild)(struct sk_buff *skb);
271 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 	void	(*cache_update)(struct hh_cache *hh,
273 				const struct net_device *dev,
274 				const unsigned char *haddr);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer, they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds at boot time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-cpu poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	spinlock_t		poll_lock;
321 	int			poll_owner;
322 #endif
323 	struct net_device	*dev;
324 	struct sk_buff		*gro_list;
325 	struct sk_buff		*skb;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_DISABLE,	/* Disable pending */
334 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
335 	NAPI_STATE_HASHED,	/* In NAPI hash */
336 };
337 
338 enum gro_result {
339 	GRO_MERGED,
340 	GRO_MERGED_FREE,
341 	GRO_HELD,
342 	GRO_NORMAL,
343 	GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346 
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed to skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other ways.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler consider the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387 
388 enum rx_handler_result {
389 	RX_HANDLER_CONSUMED,
390 	RX_HANDLER_ANOTHER,
391 	RX_HANDLER_EXACT,
392 	RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396 
397 void __napi_schedule(struct napi_struct *n);
398 
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 	return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403 
404 /**
405  *	napi_schedule_prep - check if napi can be scheduled
406  *	@n: napi context
407  *
408  * Test if NAPI routine is already running, and if not mark
409  * it as running.  This is used as a condition variable
410  * insure only one NAPI poll instance runs.  We also make
411  * sure there is no pending NAPI disable.
412  */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 	return !napi_disable_pending(n) &&
416 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418 
419 /**
420  *	napi_schedule - schedule NAPI poll
421  *	@n: napi context
422  *
423  * Schedule NAPI poll routine to be called if it is not already
424  * running.
425  */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 	if (napi_schedule_prep(n))
429 		__napi_schedule(n);
430 }
431 
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435 	if (napi_schedule_prep(napi)) {
436 		__napi_schedule(napi);
437 		return true;
438 	}
439 	return false;
440 }
441 
442 /**
443  *	napi_complete - NAPI processing complete
444  *	@n: napi context
445  *
446  * Mark NAPI processing as complete.
447  */
448 void __napi_complete(struct napi_struct *n);
449 void napi_complete(struct napi_struct *n);
450 
451 /**
452  *	napi_by_id - lookup a NAPI by napi_id
453  *	@napi_id: hashed napi_id
454  *
455  * lookup @napi_id in napi_hash table
456  * must be called under rcu_read_lock()
457  */
458 struct napi_struct *napi_by_id(unsigned int napi_id);
459 
460 /**
461  *	napi_hash_add - add a NAPI to global hashtable
462  *	@napi: napi context
463  *
464  * generate a new napi_id and store a @napi under it in napi_hash
465  */
466 void napi_hash_add(struct napi_struct *napi);
467 
468 /**
469  *	napi_hash_del - remove a NAPI from global table
470  *	@napi: napi context
471  *
472  * Warning: caller must observe rcu grace period
473  * before freeing memory containing @napi
474  */
475 void napi_hash_del(struct napi_struct *napi);
476 
477 /**
478  *	napi_disable - prevent NAPI from scheduling
479  *	@n: napi context
480  *
481  * Stop NAPI from being scheduled on this context.
482  * Waits till any outstanding processing completes.
483  */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486 	might_sleep();
487 	set_bit(NAPI_STATE_DISABLE, &n->state);
488 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
489 		msleep(1);
490 	clear_bit(NAPI_STATE_DISABLE, &n->state);
491 }
492 
493 /**
494  *	napi_enable - enable NAPI scheduling
495  *	@n: napi context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 	smp_mb__before_clear_bit();
504 	clear_bit(NAPI_STATE_SCHED, &n->state);
505 }
506 
507 #ifdef CONFIG_SMP
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: napi context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	while (test_bit(NAPI_STATE_SCHED, &n->state))
519 		msleep(1);
520 }
521 #else
522 # define napi_synchronize(n)	barrier()
523 #endif
524 
525 enum netdev_queue_state_t {
526 	__QUEUE_STATE_DRV_XOFF,
527 	__QUEUE_STATE_STACK_XOFF,
528 	__QUEUE_STATE_FROZEN,
529 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
530 			      (1 << __QUEUE_STATE_STACK_XOFF))
531 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
532 					(1 << __QUEUE_STATE_FROZEN))
533 };
534 /*
535  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
536  * netif_tx_* functions below are used to manipulate this flag.  The
537  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538  * queue independently.  The netif_xmit_*stopped functions below are called
539  * to check if the queue has been stopped by the driver or stack (either
540  * of the XOFF bits are set in the state).  Drivers should not need to call
541  * netif_xmit*stopped functions, they should only be using netif_tx_*.
542  */
543 
544 struct netdev_queue {
545 /*
546  * read mostly part
547  */
548 	struct net_device	*dev;
549 	struct Qdisc		*qdisc;
550 	struct Qdisc		*qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552 	struct kobject		kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555 	int			numa_node;
556 #endif
557 /*
558  * write mostly part
559  */
560 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
561 	int			xmit_lock_owner;
562 	/*
563 	 * please use this field instead of dev->trans_start
564 	 */
565 	unsigned long		trans_start;
566 
567 	/*
568 	 * Number of TX timeouts for this queue
569 	 * (/sys/class/net/DEV/Q/trans_timeout)
570 	 */
571 	unsigned long		trans_timeout;
572 
573 	unsigned long		state;
574 
575 #ifdef CONFIG_BQL
576 	struct dql		dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579 
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583 	return q->numa_node;
584 #else
585 	return NUMA_NO_NODE;
586 #endif
587 }
588 
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592 	q->numa_node = node;
593 #endif
594 }
595 
596 #ifdef CONFIG_RPS
597 /*
598  * This structure holds an RPS map which can be of variable length.  The
599  * map is an array of CPUs.
600  */
601 struct rps_map {
602 	unsigned int len;
603 	struct rcu_head rcu;
604 	u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607 
608 /*
609  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610  * tail pointer for that CPU's input queue at the time of last enqueue, and
611  * a hardware filter index.
612  */
613 struct rps_dev_flow {
614 	u16 cpu;
615 	u16 filter;
616 	unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619 
620 /*
621  * The rps_dev_flow_table structure contains a table of flow mappings.
622  */
623 struct rps_dev_flow_table {
624 	unsigned int mask;
625 	struct rcu_head rcu;
626 	struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629     ((_num) * sizeof(struct rps_dev_flow)))
630 
631 /*
632  * The rps_sock_flow_table contains mappings of flows to the last CPU
633  * on which they were processed by the application (set in recvmsg).
634  */
635 struct rps_sock_flow_table {
636 	unsigned int mask;
637 	u16 ents[0];
638 };
639 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640     ((_num) * sizeof(u16)))
641 
642 #define RPS_NO_CPU 0xffff
643 
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645 					u32 hash)
646 {
647 	if (table && hash) {
648 		unsigned int cpu, index = hash & table->mask;
649 
650 		/* We only give a hint, preemption can change cpu under us */
651 		cpu = raw_smp_processor_id();
652 
653 		if (table->ents[index] != cpu)
654 			table->ents[index] = cpu;
655 	}
656 }
657 
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659 				       u32 hash)
660 {
661 	if (table && hash)
662 		table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664 
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669 			 u16 filter_id);
670 #endif
671 #endif /* CONFIG_RPS */
672 
673 /* This structure contains an instance of an RX queue. */
674 struct netdev_rx_queue {
675 #ifdef CONFIG_RPS
676 	struct rps_map __rcu		*rps_map;
677 	struct rps_dev_flow_table __rcu	*rps_flow_table;
678 #endif
679 	struct kobject			kobj;
680 	struct net_device		*dev;
681 } ____cacheline_aligned_in_smp;
682 
683 /*
684  * RX queue sysfs structures and functions.
685  */
686 struct rx_queue_attribute {
687 	struct attribute attr;
688 	ssize_t (*show)(struct netdev_rx_queue *queue,
689 	    struct rx_queue_attribute *attr, char *buf);
690 	ssize_t (*store)(struct netdev_rx_queue *queue,
691 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
692 };
693 
694 #ifdef CONFIG_XPS
695 /*
696  * This structure holds an XPS map which can be of variable length.  The
697  * map is an array of queues.
698  */
699 struct xps_map {
700 	unsigned int len;
701 	unsigned int alloc_len;
702 	struct rcu_head rcu;
703 	u16 queues[0];
704 };
705 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
706 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
707     / sizeof(u16))
708 
709 /*
710  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
711  */
712 struct xps_dev_maps {
713 	struct rcu_head rcu;
714 	struct xps_map __rcu *cpu_map[0];
715 };
716 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
717     (nr_cpu_ids * sizeof(struct xps_map *)))
718 #endif /* CONFIG_XPS */
719 
720 #define TC_MAX_QUEUE	16
721 #define TC_BITMASK	15
722 /* HW offloaded queuing disciplines txq count and offset maps */
723 struct netdev_tc_txq {
724 	u16 count;
725 	u16 offset;
726 };
727 
728 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
729 /*
730  * This structure is to hold information about the device
731  * configured to run FCoE protocol stack.
732  */
733 struct netdev_fcoe_hbainfo {
734 	char	manufacturer[64];
735 	char	serial_number[64];
736 	char	hardware_version[64];
737 	char	driver_version[64];
738 	char	optionrom_version[64];
739 	char	firmware_version[64];
740 	char	model[256];
741 	char	model_description[256];
742 };
743 #endif
744 
745 #define MAX_PHYS_PORT_ID_LEN 32
746 
747 /* This structure holds a unique identifier to identify the
748  * physical port used by a netdevice.
749  */
750 struct netdev_phys_port_id {
751 	unsigned char id[MAX_PHYS_PORT_ID_LEN];
752 	unsigned char id_len;
753 };
754 
755 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
756 				       struct sk_buff *skb);
757 
758 /*
759  * This structure defines the management hooks for network devices.
760  * The following hooks can be defined; unless noted otherwise, they are
761  * optional and can be filled with a null pointer.
762  *
763  * int (*ndo_init)(struct net_device *dev);
764  *     This function is called once when network device is registered.
765  *     The network device can use this to any late stage initializaton
766  *     or semantic validattion. It can fail with an error code which will
767  *     be propogated back to register_netdev
768  *
769  * void (*ndo_uninit)(struct net_device *dev);
770  *     This function is called when device is unregistered or when registration
771  *     fails. It is not called if init fails.
772  *
773  * int (*ndo_open)(struct net_device *dev);
774  *     This function is called when network device transistions to the up
775  *     state.
776  *
777  * int (*ndo_stop)(struct net_device *dev);
778  *     This function is called when network device transistions to the down
779  *     state.
780  *
781  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
782  *                               struct net_device *dev);
783  *	Called when a packet needs to be transmitted.
784  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
785  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
786  *	Required can not be NULL.
787  *
788  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
789  *                         void *accel_priv, select_queue_fallback_t fallback);
790  *	Called to decide which queue to when device supports multiple
791  *	transmit queues.
792  *
793  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
794  *	This function is called to allow device receiver to make
795  *	changes to configuration when multicast or promiscious is enabled.
796  *
797  * void (*ndo_set_rx_mode)(struct net_device *dev);
798  *	This function is called device changes address list filtering.
799  *	If driver handles unicast address filtering, it should set
800  *	IFF_UNICAST_FLT to its priv_flags.
801  *
802  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
803  *	This function  is called when the Media Access Control address
804  *	needs to be changed. If this interface is not defined, the
805  *	mac address can not be changed.
806  *
807  * int (*ndo_validate_addr)(struct net_device *dev);
808  *	Test if Media Access Control address is valid for the device.
809  *
810  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
811  *	Called when a user request an ioctl which can't be handled by
812  *	the generic interface code. If not defined ioctl's return
813  *	not supported error code.
814  *
815  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
816  *	Used to set network devices bus interface parameters. This interface
817  *	is retained for legacy reason, new devices should use the bus
818  *	interface (PCI) for low level management.
819  *
820  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
821  *	Called when a user wants to change the Maximum Transfer Unit
822  *	of a device. If not defined, any request to change MTU will
823  *	will return an error.
824  *
825  * void (*ndo_tx_timeout)(struct net_device *dev);
826  *	Callback uses when the transmitter has not made any progress
827  *	for dev->watchdog ticks.
828  *
829  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
830  *                      struct rtnl_link_stats64 *storage);
831  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
832  *	Called when a user wants to get the network device usage
833  *	statistics. Drivers must do one of the following:
834  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
835  *	   rtnl_link_stats64 structure passed by the caller.
836  *	2. Define @ndo_get_stats to update a net_device_stats structure
837  *	   (which should normally be dev->stats) and return a pointer to
838  *	   it. The structure may be changed asynchronously only if each
839  *	   field is written atomically.
840  *	3. Update dev->stats asynchronously and atomically, and define
841  *	   neither operation.
842  *
843  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
844  *	If device support VLAN filtering this function is called when a
845  *	VLAN id is registered.
846  *
847  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
848  *	If device support VLAN filtering this function is called when a
849  *	VLAN id is unregistered.
850  *
851  * void (*ndo_poll_controller)(struct net_device *dev);
852  *
853  *	SR-IOV management functions.
854  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
855  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
856  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
857  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
858  * int (*ndo_get_vf_config)(struct net_device *dev,
859  *			    int vf, struct ifla_vf_info *ivf);
860  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
861  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
862  *			  struct nlattr *port[]);
863  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
864  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
865  * 	Called to setup 'tc' number of traffic classes in the net device. This
866  * 	is always called from the stack with the rtnl lock held and netif tx
867  * 	queues stopped. This allows the netdevice to perform queue management
868  * 	safely.
869  *
870  *	Fiber Channel over Ethernet (FCoE) offload functions.
871  * int (*ndo_fcoe_enable)(struct net_device *dev);
872  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
873  *	so the underlying device can perform whatever needed configuration or
874  *	initialization to support acceleration of FCoE traffic.
875  *
876  * int (*ndo_fcoe_disable)(struct net_device *dev);
877  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
878  *	so the underlying device can perform whatever needed clean-ups to
879  *	stop supporting acceleration of FCoE traffic.
880  *
881  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
882  *			     struct scatterlist *sgl, unsigned int sgc);
883  *	Called when the FCoE Initiator wants to initialize an I/O that
884  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
885  *	perform necessary setup and returns 1 to indicate the device is set up
886  *	successfully to perform DDP on this I/O, otherwise this returns 0.
887  *
888  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
889  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
890  *	indicated by the FC exchange id 'xid', so the underlying device can
891  *	clean up and reuse resources for later DDP requests.
892  *
893  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
894  *			      struct scatterlist *sgl, unsigned int sgc);
895  *	Called when the FCoE Target wants to initialize an I/O that
896  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
897  *	perform necessary setup and returns 1 to indicate the device is set up
898  *	successfully to perform DDP on this I/O, otherwise this returns 0.
899  *
900  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
901  *			       struct netdev_fcoe_hbainfo *hbainfo);
902  *	Called when the FCoE Protocol stack wants information on the underlying
903  *	device. This information is utilized by the FCoE protocol stack to
904  *	register attributes with Fiber Channel management service as per the
905  *	FC-GS Fabric Device Management Information(FDMI) specification.
906  *
907  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
908  *	Called when the underlying device wants to override default World Wide
909  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
910  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
911  *	protocol stack to use.
912  *
913  *	RFS acceleration.
914  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
915  *			    u16 rxq_index, u32 flow_id);
916  *	Set hardware filter for RFS.  rxq_index is the target queue index;
917  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
918  *	Return the filter ID on success, or a negative error code.
919  *
920  *	Slave management functions (for bridge, bonding, etc).
921  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
922  *	Called to make another netdev an underling.
923  *
924  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
925  *	Called to release previously enslaved netdev.
926  *
927  *      Feature/offload setting functions.
928  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
929  *		netdev_features_t features);
930  *	Adjusts the requested feature flags according to device-specific
931  *	constraints, and returns the resulting flags. Must not modify
932  *	the device state.
933  *
934  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
935  *	Called to update device configuration to new features. Passed
936  *	feature set might be less than what was returned by ndo_fix_features()).
937  *	Must return >0 or -errno if it changed dev->features itself.
938  *
939  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
940  *		      struct net_device *dev,
941  *		      const unsigned char *addr, u16 flags)
942  *	Adds an FDB entry to dev for addr.
943  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
944  *		      struct net_device *dev,
945  *		      const unsigned char *addr)
946  *	Deletes the FDB entry from dev coresponding to addr.
947  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
948  *		       struct net_device *dev, int idx)
949  *	Used to add FDB entries to dump requests. Implementers should add
950  *	entries to skb and update idx with the number of entries.
951  *
952  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954  *			     struct net_device *dev, u32 filter_mask)
955  *
956  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
958  *	which do not represent real hardware may define this to allow their
959  *	userspace components to manage their virtual carrier state. Devices
960  *	that determine carrier state from physical hardware properties (eg
961  *	network cables) or protocol-dependent mechanisms (eg
962  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963  *
964  * int (*ndo_get_phys_port_id)(struct net_device *dev,
965  *			       struct netdev_phys_port_id *ppid);
966  *	Called to get ID of physical port of this device. If driver does
967  *	not implement this, it is assumed that the hw is not able to have
968  *	multiple net devices on single physical port.
969  *
970  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
971  *			      sa_family_t sa_family, __be16 port);
972  *	Called by vxlan to notiy a driver about the UDP port and socket
973  *	address family that vxlan is listnening to. It is called only when
974  *	a new port starts listening. The operation is protected by the
975  *	vxlan_net->sock_lock.
976  *
977  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
978  *			      sa_family_t sa_family, __be16 port);
979  *	Called by vxlan to notify the driver about a UDP port and socket
980  *	address family that vxlan is not listening to anymore. The operation
981  *	is protected by the vxlan_net->sock_lock.
982  *
983  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984  *				 struct net_device *dev)
985  *	Called by upper layer devices to accelerate switching or other
986  *	station functionality into hardware. 'pdev is the lowerdev
987  *	to use for the offload and 'dev' is the net device that will
988  *	back the offload. Returns a pointer to the private structure
989  *	the upper layer will maintain.
990  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991  *	Called by upper layer device to delete the station created
992  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993  *	the station and priv is the structure returned by the add
994  *	operation.
995  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996  *				      struct net_device *dev,
997  *				      void *priv);
998  *	Callback to use for xmit over the accelerated station. This
999  *	is used in place of ndo_start_xmit on accelerated net
1000  *	devices.
1001  */
1002 struct net_device_ops {
1003 	int			(*ndo_init)(struct net_device *dev);
1004 	void			(*ndo_uninit)(struct net_device *dev);
1005 	int			(*ndo_open)(struct net_device *dev);
1006 	int			(*ndo_stop)(struct net_device *dev);
1007 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1008 						   struct net_device *dev);
1009 	u16			(*ndo_select_queue)(struct net_device *dev,
1010 						    struct sk_buff *skb,
1011 						    void *accel_priv,
1012 						    select_queue_fallback_t fallback);
1013 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1014 						       int flags);
1015 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1016 	int			(*ndo_set_mac_address)(struct net_device *dev,
1017 						       void *addr);
1018 	int			(*ndo_validate_addr)(struct net_device *dev);
1019 	int			(*ndo_do_ioctl)(struct net_device *dev,
1020 					        struct ifreq *ifr, int cmd);
1021 	int			(*ndo_set_config)(struct net_device *dev,
1022 					          struct ifmap *map);
1023 	int			(*ndo_change_mtu)(struct net_device *dev,
1024 						  int new_mtu);
1025 	int			(*ndo_neigh_setup)(struct net_device *dev,
1026 						   struct neigh_parms *);
1027 	void			(*ndo_tx_timeout) (struct net_device *dev);
1028 
1029 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1030 						     struct rtnl_link_stats64 *storage);
1031 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032 
1033 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1034 						       __be16 proto, u16 vid);
1035 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1036 						        __be16 proto, u16 vid);
1037 #ifdef CONFIG_NET_POLL_CONTROLLER
1038 	void                    (*ndo_poll_controller)(struct net_device *dev);
1039 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1040 						     struct netpoll_info *info,
1041 						     gfp_t gfp);
1042 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1043 #endif
1044 #ifdef CONFIG_NET_RX_BUSY_POLL
1045 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1046 #endif
1047 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1048 						  int queue, u8 *mac);
1049 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1050 						   int queue, u16 vlan, u8 qos);
1051 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
1052 						      int vf, int rate);
1053 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1054 						       int vf, bool setting);
1055 	int			(*ndo_get_vf_config)(struct net_device *dev,
1056 						     int vf,
1057 						     struct ifla_vf_info *ivf);
1058 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1059 							 int vf, int link_state);
1060 	int			(*ndo_set_vf_port)(struct net_device *dev,
1061 						   int vf,
1062 						   struct nlattr *port[]);
1063 	int			(*ndo_get_vf_port)(struct net_device *dev,
1064 						   int vf, struct sk_buff *skb);
1065 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1066 #if IS_ENABLED(CONFIG_FCOE)
1067 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1068 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1069 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1070 						      u16 xid,
1071 						      struct scatterlist *sgl,
1072 						      unsigned int sgc);
1073 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1074 						     u16 xid);
1075 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1076 						       u16 xid,
1077 						       struct scatterlist *sgl,
1078 						       unsigned int sgc);
1079 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1080 							struct netdev_fcoe_hbainfo *hbainfo);
1081 #endif
1082 
1083 #if IS_ENABLED(CONFIG_LIBFCOE)
1084 #define NETDEV_FCOE_WWNN 0
1085 #define NETDEV_FCOE_WWPN 1
1086 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1087 						    u64 *wwn, int type);
1088 #endif
1089 
1090 #ifdef CONFIG_RFS_ACCEL
1091 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1092 						     const struct sk_buff *skb,
1093 						     u16 rxq_index,
1094 						     u32 flow_id);
1095 #endif
1096 	int			(*ndo_add_slave)(struct net_device *dev,
1097 						 struct net_device *slave_dev);
1098 	int			(*ndo_del_slave)(struct net_device *dev,
1099 						 struct net_device *slave_dev);
1100 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1101 						    netdev_features_t features);
1102 	int			(*ndo_set_features)(struct net_device *dev,
1103 						    netdev_features_t features);
1104 	int			(*ndo_neigh_construct)(struct neighbour *n);
1105 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1106 
1107 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1108 					       struct nlattr *tb[],
1109 					       struct net_device *dev,
1110 					       const unsigned char *addr,
1111 					       u16 flags);
1112 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1113 					       struct nlattr *tb[],
1114 					       struct net_device *dev,
1115 					       const unsigned char *addr);
1116 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1117 						struct netlink_callback *cb,
1118 						struct net_device *dev,
1119 						int idx);
1120 
1121 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1122 						      struct nlmsghdr *nlh);
1123 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1124 						      u32 pid, u32 seq,
1125 						      struct net_device *dev,
1126 						      u32 filter_mask);
1127 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1128 						      struct nlmsghdr *nlh);
1129 	int			(*ndo_change_carrier)(struct net_device *dev,
1130 						      bool new_carrier);
1131 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1132 							struct netdev_phys_port_id *ppid);
1133 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1134 						      sa_family_t sa_family,
1135 						      __be16 port);
1136 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1137 						      sa_family_t sa_family,
1138 						      __be16 port);
1139 
1140 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1141 							struct net_device *dev);
1142 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1143 							void *priv);
1144 
1145 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1146 							struct net_device *dev,
1147 							void *priv);
1148 };
1149 
1150 /*
1151  *	The DEVICE structure.
1152  *	Actually, this whole structure is a big mistake.  It mixes I/O
1153  *	data with strictly "high-level" data, and it has to know about
1154  *	almost every data structure used in the INET module.
1155  *
1156  *	FIXME: cleanup struct net_device such that network protocol info
1157  *	moves out.
1158  */
1159 
1160 struct net_device {
1161 
1162 	/*
1163 	 * This is the first field of the "visible" part of this structure
1164 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1165 	 * of the interface.
1166 	 */
1167 	char			name[IFNAMSIZ];
1168 
1169 	/* device name hash chain, please keep it close to name[] */
1170 	struct hlist_node	name_hlist;
1171 
1172 	/* snmp alias */
1173 	char 			*ifalias;
1174 
1175 	/*
1176 	 *	I/O specific fields
1177 	 *	FIXME: Merge these and struct ifmap into one
1178 	 */
1179 	unsigned long		mem_end;	/* shared mem end	*/
1180 	unsigned long		mem_start;	/* shared mem start	*/
1181 	unsigned long		base_addr;	/* device I/O address	*/
1182 	int			irq;		/* device IRQ number	*/
1183 
1184 	/*
1185 	 *	Some hardware also needs these fields, but they are not
1186 	 *	part of the usual set specified in Space.c.
1187 	 */
1188 
1189 	unsigned long		state;
1190 
1191 	struct list_head	dev_list;
1192 	struct list_head	napi_list;
1193 	struct list_head	unreg_list;
1194 	struct list_head	close_list;
1195 
1196 	/* directly linked devices, like slaves for bonding */
1197 	struct {
1198 		struct list_head upper;
1199 		struct list_head lower;
1200 	} adj_list;
1201 
1202 	/* all linked devices, *including* neighbours */
1203 	struct {
1204 		struct list_head upper;
1205 		struct list_head lower;
1206 	} all_adj_list;
1207 
1208 
1209 	/* currently active device features */
1210 	netdev_features_t	features;
1211 	/* user-changeable features */
1212 	netdev_features_t	hw_features;
1213 	/* user-requested features */
1214 	netdev_features_t	wanted_features;
1215 	/* mask of features inheritable by VLAN devices */
1216 	netdev_features_t	vlan_features;
1217 	/* mask of features inherited by encapsulating devices
1218 	 * This field indicates what encapsulation offloads
1219 	 * the hardware is capable of doing, and drivers will
1220 	 * need to set them appropriately.
1221 	 */
1222 	netdev_features_t	hw_enc_features;
1223 	/* mask of fetures inheritable by MPLS */
1224 	netdev_features_t	mpls_features;
1225 
1226 	/* Interface index. Unique device identifier	*/
1227 	int			ifindex;
1228 	int			iflink;
1229 
1230 	struct net_device_stats	stats;
1231 	atomic_long_t		rx_dropped; /* dropped packets by core network
1232 					     * Do not use this in drivers.
1233 					     */
1234 
1235 #ifdef CONFIG_WIRELESS_EXT
1236 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1237 	 * See <net/iw_handler.h> for details. Jean II */
1238 	const struct iw_handler_def *	wireless_handlers;
1239 	/* Instance data managed by the core of Wireless Extensions. */
1240 	struct iw_public_data *	wireless_data;
1241 #endif
1242 	/* Management operations */
1243 	const struct net_device_ops *netdev_ops;
1244 	const struct ethtool_ops *ethtool_ops;
1245 	const struct forwarding_accel_ops *fwd_ops;
1246 
1247 	/* Hardware header description */
1248 	const struct header_ops *header_ops;
1249 
1250 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1251 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1252 					     * See if.h for definitions. */
1253 	unsigned short		gflags;
1254 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1255 
1256 	unsigned char		operstate; /* RFC2863 operstate */
1257 	unsigned char		link_mode; /* mapping policy to operstate */
1258 
1259 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1260 	unsigned char		dma;		/* DMA channel		*/
1261 
1262 	unsigned int		mtu;	/* interface MTU value		*/
1263 	unsigned short		type;	/* interface hardware type	*/
1264 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1265 
1266 	/* extra head- and tailroom the hardware may need, but not in all cases
1267 	 * can this be guaranteed, especially tailroom. Some cases also use
1268 	 * LL_MAX_HEADER instead to allocate the skb.
1269 	 */
1270 	unsigned short		needed_headroom;
1271 	unsigned short		needed_tailroom;
1272 
1273 	/* Interface address info. */
1274 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1275 	unsigned char		addr_assign_type; /* hw address assignment type */
1276 	unsigned char		addr_len;	/* hardware address length	*/
1277 	unsigned short		neigh_priv_len;
1278 	unsigned short          dev_id;		/* Used to differentiate devices
1279 						 * that share the same link
1280 						 * layer address
1281 						 */
1282 	spinlock_t		addr_list_lock;
1283 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1284 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1285 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1286 						    * hw addresses
1287 						    */
1288 #ifdef CONFIG_SYSFS
1289 	struct kset		*queues_kset;
1290 #endif
1291 
1292 	bool			uc_promisc;
1293 	unsigned int		promiscuity;
1294 	unsigned int		allmulti;
1295 
1296 
1297 	/* Protocol specific pointers */
1298 
1299 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1300 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1301 #endif
1302 #if IS_ENABLED(CONFIG_NET_DSA)
1303 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1304 #endif
1305 #if IS_ENABLED(CONFIG_TIPC)
1306 	struct tipc_bearer __rcu *tipc_ptr;	/* TIPC specific data */
1307 #endif
1308 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1309 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1310 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1311 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1312 	void			*ax25_ptr;	/* AX.25 specific data */
1313 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1314 						   assign before registering */
1315 
1316 /*
1317  * Cache lines mostly used on receive path (including eth_type_trans())
1318  */
1319 	unsigned long		last_rx;	/* Time of last Rx
1320 						 * This should not be set in
1321 						 * drivers, unless really needed,
1322 						 * because network stack (bonding)
1323 						 * use it if/when necessary, to
1324 						 * avoid dirtying this cache line.
1325 						 */
1326 
1327 	/* Interface address info used in eth_type_trans() */
1328 	unsigned char		*dev_addr;	/* hw address, (before bcast
1329 						   because most packets are
1330 						   unicast) */
1331 
1332 
1333 #ifdef CONFIG_SYSFS
1334 	struct netdev_rx_queue	*_rx;
1335 
1336 	/* Number of RX queues allocated at register_netdev() time */
1337 	unsigned int		num_rx_queues;
1338 
1339 	/* Number of RX queues currently active in device */
1340 	unsigned int		real_num_rx_queues;
1341 
1342 #endif
1343 
1344 	rx_handler_func_t __rcu	*rx_handler;
1345 	void __rcu		*rx_handler_data;
1346 
1347 	struct netdev_queue __rcu *ingress_queue;
1348 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1349 
1350 
1351 /*
1352  * Cache lines mostly used on transmit path
1353  */
1354 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1355 
1356 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1357 	unsigned int		num_tx_queues;
1358 
1359 	/* Number of TX queues currently active in device  */
1360 	unsigned int		real_num_tx_queues;
1361 
1362 	/* root qdisc from userspace point of view */
1363 	struct Qdisc		*qdisc;
1364 
1365 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1366 	spinlock_t		tx_global_lock;
1367 
1368 #ifdef CONFIG_XPS
1369 	struct xps_dev_maps __rcu *xps_maps;
1370 #endif
1371 #ifdef CONFIG_RFS_ACCEL
1372 	/* CPU reverse-mapping for RX completion interrupts, indexed
1373 	 * by RX queue number.  Assigned by driver.  This must only be
1374 	 * set if the ndo_rx_flow_steer operation is defined. */
1375 	struct cpu_rmap		*rx_cpu_rmap;
1376 #endif
1377 
1378 	/* These may be needed for future network-power-down code. */
1379 
1380 	/*
1381 	 * trans_start here is expensive for high speed devices on SMP,
1382 	 * please use netdev_queue->trans_start instead.
1383 	 */
1384 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1385 
1386 	int			watchdog_timeo; /* used by dev_watchdog() */
1387 	struct timer_list	watchdog_timer;
1388 
1389 	/* Number of references to this device */
1390 	int __percpu		*pcpu_refcnt;
1391 
1392 	/* delayed register/unregister */
1393 	struct list_head	todo_list;
1394 	/* device index hash chain */
1395 	struct hlist_node	index_hlist;
1396 
1397 	struct list_head	link_watch_list;
1398 
1399 	/* register/unregister state machine */
1400 	enum { NETREG_UNINITIALIZED=0,
1401 	       NETREG_REGISTERED,	/* completed register_netdevice */
1402 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1403 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1404 	       NETREG_RELEASED,		/* called free_netdev */
1405 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1406 	} reg_state:8;
1407 
1408 	bool dismantle; /* device is going do be freed */
1409 
1410 	enum {
1411 		RTNL_LINK_INITIALIZED,
1412 		RTNL_LINK_INITIALIZING,
1413 	} rtnl_link_state:16;
1414 
1415 	/* Called from unregister, can be used to call free_netdev */
1416 	void (*destructor)(struct net_device *dev);
1417 
1418 #ifdef CONFIG_NETPOLL
1419 	struct netpoll_info __rcu	*npinfo;
1420 #endif
1421 
1422 #ifdef CONFIG_NET_NS
1423 	/* Network namespace this network device is inside */
1424 	struct net		*nd_net;
1425 #endif
1426 
1427 	/* mid-layer private */
1428 	union {
1429 		void				*ml_priv;
1430 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1431 		struct pcpu_sw_netstats __percpu	*tstats;
1432 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1433 		struct pcpu_vstats __percpu	*vstats; /* veth stats */
1434 	};
1435 	/* GARP */
1436 	struct garp_port __rcu	*garp_port;
1437 	/* MRP */
1438 	struct mrp_port __rcu	*mrp_port;
1439 
1440 	/* class/net/name entry */
1441 	struct device		dev;
1442 	/* space for optional device, statistics, and wireless sysfs groups */
1443 	const struct attribute_group *sysfs_groups[4];
1444 	/* space for optional per-rx queue attributes */
1445 	const struct attribute_group *sysfs_rx_queue_group;
1446 
1447 	/* rtnetlink link ops */
1448 	const struct rtnl_link_ops *rtnl_link_ops;
1449 
1450 	/* for setting kernel sock attribute on TCP connection setup */
1451 #define GSO_MAX_SIZE		65536
1452 	unsigned int		gso_max_size;
1453 #define GSO_MAX_SEGS		65535
1454 	u16			gso_max_segs;
1455 
1456 #ifdef CONFIG_DCB
1457 	/* Data Center Bridging netlink ops */
1458 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1459 #endif
1460 	u8 num_tc;
1461 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1462 	u8 prio_tc_map[TC_BITMASK + 1];
1463 
1464 #if IS_ENABLED(CONFIG_FCOE)
1465 	/* max exchange id for FCoE LRO by ddp */
1466 	unsigned int		fcoe_ddp_xid;
1467 #endif
1468 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1469 	struct netprio_map __rcu *priomap;
1470 #endif
1471 	/* phy device may attach itself for hardware timestamping */
1472 	struct phy_device *phydev;
1473 
1474 	struct lock_class_key *qdisc_tx_busylock;
1475 
1476 	/* group the device belongs to */
1477 	int group;
1478 
1479 	struct pm_qos_request	pm_qos_req;
1480 };
1481 #define to_net_dev(d) container_of(d, struct net_device, dev)
1482 
1483 #define	NETDEV_ALIGN		32
1484 
1485 static inline
1486 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1487 {
1488 	return dev->prio_tc_map[prio & TC_BITMASK];
1489 }
1490 
1491 static inline
1492 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1493 {
1494 	if (tc >= dev->num_tc)
1495 		return -EINVAL;
1496 
1497 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1498 	return 0;
1499 }
1500 
1501 static inline
1502 void netdev_reset_tc(struct net_device *dev)
1503 {
1504 	dev->num_tc = 0;
1505 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1506 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1507 }
1508 
1509 static inline
1510 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1511 {
1512 	if (tc >= dev->num_tc)
1513 		return -EINVAL;
1514 
1515 	dev->tc_to_txq[tc].count = count;
1516 	dev->tc_to_txq[tc].offset = offset;
1517 	return 0;
1518 }
1519 
1520 static inline
1521 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1522 {
1523 	if (num_tc > TC_MAX_QUEUE)
1524 		return -EINVAL;
1525 
1526 	dev->num_tc = num_tc;
1527 	return 0;
1528 }
1529 
1530 static inline
1531 int netdev_get_num_tc(struct net_device *dev)
1532 {
1533 	return dev->num_tc;
1534 }
1535 
1536 static inline
1537 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1538 					 unsigned int index)
1539 {
1540 	return &dev->_tx[index];
1541 }
1542 
1543 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1544 					    void (*f)(struct net_device *,
1545 						      struct netdev_queue *,
1546 						      void *),
1547 					    void *arg)
1548 {
1549 	unsigned int i;
1550 
1551 	for (i = 0; i < dev->num_tx_queues; i++)
1552 		f(dev, &dev->_tx[i], arg);
1553 }
1554 
1555 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1556 				    struct sk_buff *skb,
1557 				    void *accel_priv);
1558 
1559 /*
1560  * Net namespace inlines
1561  */
1562 static inline
1563 struct net *dev_net(const struct net_device *dev)
1564 {
1565 	return read_pnet(&dev->nd_net);
1566 }
1567 
1568 static inline
1569 void dev_net_set(struct net_device *dev, struct net *net)
1570 {
1571 #ifdef CONFIG_NET_NS
1572 	release_net(dev->nd_net);
1573 	dev->nd_net = hold_net(net);
1574 #endif
1575 }
1576 
1577 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1578 {
1579 #ifdef CONFIG_NET_DSA_TAG_DSA
1580 	if (dev->dsa_ptr != NULL)
1581 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1582 #endif
1583 
1584 	return 0;
1585 }
1586 
1587 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1588 {
1589 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1590 	if (dev->dsa_ptr != NULL)
1591 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1592 #endif
1593 
1594 	return 0;
1595 }
1596 
1597 /**
1598  *	netdev_priv - access network device private data
1599  *	@dev: network device
1600  *
1601  * Get network device private data
1602  */
1603 static inline void *netdev_priv(const struct net_device *dev)
1604 {
1605 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1606 }
1607 
1608 /* Set the sysfs physical device reference for the network logical device
1609  * if set prior to registration will cause a symlink during initialization.
1610  */
1611 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1612 
1613 /* Set the sysfs device type for the network logical device to allow
1614  * fine-grained identification of different network device types. For
1615  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1616  */
1617 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1618 
1619 /* Default NAPI poll() weight
1620  * Device drivers are strongly advised to not use bigger value
1621  */
1622 #define NAPI_POLL_WEIGHT 64
1623 
1624 /**
1625  *	netif_napi_add - initialize a napi context
1626  *	@dev:  network device
1627  *	@napi: napi context
1628  *	@poll: polling function
1629  *	@weight: default weight
1630  *
1631  * netif_napi_add() must be used to initialize a napi context prior to calling
1632  * *any* of the other napi related functions.
1633  */
1634 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1635 		    int (*poll)(struct napi_struct *, int), int weight);
1636 
1637 /**
1638  *  netif_napi_del - remove a napi context
1639  *  @napi: napi context
1640  *
1641  *  netif_napi_del() removes a napi context from the network device napi list
1642  */
1643 void netif_napi_del(struct napi_struct *napi);
1644 
1645 struct napi_gro_cb {
1646 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1647 	void *frag0;
1648 
1649 	/* Length of frag0. */
1650 	unsigned int frag0_len;
1651 
1652 	/* This indicates where we are processing relative to skb->data. */
1653 	int data_offset;
1654 
1655 	/* This is non-zero if the packet cannot be merged with the new skb. */
1656 	u16	flush;
1657 
1658 	/* Save the IP ID here and check when we get to the transport layer */
1659 	u16	flush_id;
1660 
1661 	/* Number of segments aggregated. */
1662 	u16	count;
1663 
1664 	/* This is non-zero if the packet may be of the same flow. */
1665 	u8	same_flow;
1666 
1667 	/* Free the skb? */
1668 	u8	free;
1669 #define NAPI_GRO_FREE		  1
1670 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1671 
1672 	/* jiffies when first packet was created/queued */
1673 	unsigned long age;
1674 
1675 	/* Used in ipv6_gro_receive() */
1676 	u16	proto;
1677 
1678 	/* Used in udp_gro_receive */
1679 	u16	udp_mark;
1680 
1681 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1682 	__wsum	csum;
1683 
1684 	/* used in skb_gro_receive() slow path */
1685 	struct sk_buff *last;
1686 };
1687 
1688 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1689 
1690 struct packet_type {
1691 	__be16			type;	/* This is really htons(ether_type). */
1692 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1693 	int			(*func) (struct sk_buff *,
1694 					 struct net_device *,
1695 					 struct packet_type *,
1696 					 struct net_device *);
1697 	bool			(*id_match)(struct packet_type *ptype,
1698 					    struct sock *sk);
1699 	void			*af_packet_priv;
1700 	struct list_head	list;
1701 };
1702 
1703 struct offload_callbacks {
1704 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1705 						netdev_features_t features);
1706 	int			(*gso_send_check)(struct sk_buff *skb);
1707 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1708 					       struct sk_buff *skb);
1709 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1710 };
1711 
1712 struct packet_offload {
1713 	__be16			 type;	/* This is really htons(ether_type). */
1714 	struct offload_callbacks callbacks;
1715 	struct list_head	 list;
1716 };
1717 
1718 struct udp_offload {
1719 	__be16			 port;
1720 	struct offload_callbacks callbacks;
1721 };
1722 
1723 /* often modified stats are per cpu, other are shared (netdev->stats) */
1724 struct pcpu_sw_netstats {
1725 	u64     rx_packets;
1726 	u64     rx_bytes;
1727 	u64     tx_packets;
1728 	u64     tx_bytes;
1729 	struct u64_stats_sync   syncp;
1730 };
1731 
1732 #include <linux/notifier.h>
1733 
1734 /* netdevice notifier chain. Please remember to update the rtnetlink
1735  * notification exclusion list in rtnetlink_event() when adding new
1736  * types.
1737  */
1738 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1739 #define NETDEV_DOWN	0x0002
1740 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1741 				   detected a hardware crash and restarted
1742 				   - we can use this eg to kick tcp sessions
1743 				   once done */
1744 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1745 #define NETDEV_REGISTER 0x0005
1746 #define NETDEV_UNREGISTER	0x0006
1747 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
1748 #define NETDEV_CHANGEADDR	0x0008
1749 #define NETDEV_GOING_DOWN	0x0009
1750 #define NETDEV_CHANGENAME	0x000A
1751 #define NETDEV_FEAT_CHANGE	0x000B
1752 #define NETDEV_BONDING_FAILOVER 0x000C
1753 #define NETDEV_PRE_UP		0x000D
1754 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1755 #define NETDEV_POST_TYPE_CHANGE	0x000F
1756 #define NETDEV_POST_INIT	0x0010
1757 #define NETDEV_UNREGISTER_FINAL 0x0011
1758 #define NETDEV_RELEASE		0x0012
1759 #define NETDEV_NOTIFY_PEERS	0x0013
1760 #define NETDEV_JOIN		0x0014
1761 #define NETDEV_CHANGEUPPER	0x0015
1762 #define NETDEV_RESEND_IGMP	0x0016
1763 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
1764 
1765 int register_netdevice_notifier(struct notifier_block *nb);
1766 int unregister_netdevice_notifier(struct notifier_block *nb);
1767 
1768 struct netdev_notifier_info {
1769 	struct net_device *dev;
1770 };
1771 
1772 struct netdev_notifier_change_info {
1773 	struct netdev_notifier_info info; /* must be first */
1774 	unsigned int flags_changed;
1775 };
1776 
1777 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1778 					     struct net_device *dev)
1779 {
1780 	info->dev = dev;
1781 }
1782 
1783 static inline struct net_device *
1784 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1785 {
1786 	return info->dev;
1787 }
1788 
1789 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1790 
1791 
1792 extern rwlock_t				dev_base_lock;		/* Device list lock */
1793 
1794 #define for_each_netdev(net, d)		\
1795 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1796 #define for_each_netdev_reverse(net, d)	\
1797 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1798 #define for_each_netdev_rcu(net, d)		\
1799 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1800 #define for_each_netdev_safe(net, d, n)	\
1801 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1802 #define for_each_netdev_continue(net, d)		\
1803 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1804 #define for_each_netdev_continue_rcu(net, d)		\
1805 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1806 #define for_each_netdev_in_bond_rcu(bond, slave)	\
1807 		for_each_netdev_rcu(&init_net, slave)	\
1808 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
1809 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1810 
1811 static inline struct net_device *next_net_device(struct net_device *dev)
1812 {
1813 	struct list_head *lh;
1814 	struct net *net;
1815 
1816 	net = dev_net(dev);
1817 	lh = dev->dev_list.next;
1818 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1819 }
1820 
1821 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1822 {
1823 	struct list_head *lh;
1824 	struct net *net;
1825 
1826 	net = dev_net(dev);
1827 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1828 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1829 }
1830 
1831 static inline struct net_device *first_net_device(struct net *net)
1832 {
1833 	return list_empty(&net->dev_base_head) ? NULL :
1834 		net_device_entry(net->dev_base_head.next);
1835 }
1836 
1837 static inline struct net_device *first_net_device_rcu(struct net *net)
1838 {
1839 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1840 
1841 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1842 }
1843 
1844 int netdev_boot_setup_check(struct net_device *dev);
1845 unsigned long netdev_boot_base(const char *prefix, int unit);
1846 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1847 				       const char *hwaddr);
1848 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1849 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1850 void dev_add_pack(struct packet_type *pt);
1851 void dev_remove_pack(struct packet_type *pt);
1852 void __dev_remove_pack(struct packet_type *pt);
1853 void dev_add_offload(struct packet_offload *po);
1854 void dev_remove_offload(struct packet_offload *po);
1855 
1856 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1857 					unsigned short mask);
1858 struct net_device *dev_get_by_name(struct net *net, const char *name);
1859 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1860 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1861 int dev_alloc_name(struct net_device *dev, const char *name);
1862 int dev_open(struct net_device *dev);
1863 int dev_close(struct net_device *dev);
1864 void dev_disable_lro(struct net_device *dev);
1865 int dev_loopback_xmit(struct sk_buff *newskb);
1866 int dev_queue_xmit(struct sk_buff *skb);
1867 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1868 int register_netdevice(struct net_device *dev);
1869 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1870 void unregister_netdevice_many(struct list_head *head);
1871 static inline void unregister_netdevice(struct net_device *dev)
1872 {
1873 	unregister_netdevice_queue(dev, NULL);
1874 }
1875 
1876 int netdev_refcnt_read(const struct net_device *dev);
1877 void free_netdev(struct net_device *dev);
1878 void netdev_freemem(struct net_device *dev);
1879 void synchronize_net(void);
1880 int init_dummy_netdev(struct net_device *dev);
1881 
1882 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1883 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1884 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1885 int netdev_get_name(struct net *net, char *name, int ifindex);
1886 int dev_restart(struct net_device *dev);
1887 #ifdef CONFIG_NETPOLL_TRAP
1888 int netpoll_trap(void);
1889 #endif
1890 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1891 
1892 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1893 {
1894 	return NAPI_GRO_CB(skb)->data_offset;
1895 }
1896 
1897 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1898 {
1899 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1900 }
1901 
1902 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1903 {
1904 	NAPI_GRO_CB(skb)->data_offset += len;
1905 }
1906 
1907 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1908 					unsigned int offset)
1909 {
1910 	return NAPI_GRO_CB(skb)->frag0 + offset;
1911 }
1912 
1913 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1914 {
1915 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1916 }
1917 
1918 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1919 					unsigned int offset)
1920 {
1921 	if (!pskb_may_pull(skb, hlen))
1922 		return NULL;
1923 
1924 	NAPI_GRO_CB(skb)->frag0 = NULL;
1925 	NAPI_GRO_CB(skb)->frag0_len = 0;
1926 	return skb->data + offset;
1927 }
1928 
1929 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1930 {
1931 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1932 }
1933 
1934 static inline void *skb_gro_network_header(struct sk_buff *skb)
1935 {
1936 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1937 	       skb_network_offset(skb);
1938 }
1939 
1940 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
1941 					const void *start, unsigned int len)
1942 {
1943 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1944 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
1945 						  csum_partial(start, len, 0));
1946 }
1947 
1948 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1949 				  unsigned short type,
1950 				  const void *daddr, const void *saddr,
1951 				  unsigned int len)
1952 {
1953 	if (!dev->header_ops || !dev->header_ops->create)
1954 		return 0;
1955 
1956 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1957 }
1958 
1959 static inline int dev_parse_header(const struct sk_buff *skb,
1960 				   unsigned char *haddr)
1961 {
1962 	const struct net_device *dev = skb->dev;
1963 
1964 	if (!dev->header_ops || !dev->header_ops->parse)
1965 		return 0;
1966 	return dev->header_ops->parse(skb, haddr);
1967 }
1968 
1969 static inline int dev_rebuild_header(struct sk_buff *skb)
1970 {
1971 	const struct net_device *dev = skb->dev;
1972 
1973 	if (!dev->header_ops || !dev->header_ops->rebuild)
1974 		return 0;
1975 	return dev->header_ops->rebuild(skb);
1976 }
1977 
1978 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1979 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
1980 static inline int unregister_gifconf(unsigned int family)
1981 {
1982 	return register_gifconf(family, NULL);
1983 }
1984 
1985 #ifdef CONFIG_NET_FLOW_LIMIT
1986 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
1987 struct sd_flow_limit {
1988 	u64			count;
1989 	unsigned int		num_buckets;
1990 	unsigned int		history_head;
1991 	u16			history[FLOW_LIMIT_HISTORY];
1992 	u8			buckets[];
1993 };
1994 
1995 extern int netdev_flow_limit_table_len;
1996 #endif /* CONFIG_NET_FLOW_LIMIT */
1997 
1998 /*
1999  * Incoming packets are placed on per-cpu queues
2000  */
2001 struct softnet_data {
2002 	struct Qdisc		*output_queue;
2003 	struct Qdisc		**output_queue_tailp;
2004 	struct list_head	poll_list;
2005 	struct sk_buff		*completion_queue;
2006 	struct sk_buff_head	process_queue;
2007 
2008 	/* stats */
2009 	unsigned int		processed;
2010 	unsigned int		time_squeeze;
2011 	unsigned int		cpu_collision;
2012 	unsigned int		received_rps;
2013 
2014 #ifdef CONFIG_RPS
2015 	struct softnet_data	*rps_ipi_list;
2016 
2017 	/* Elements below can be accessed between CPUs for RPS */
2018 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2019 	struct softnet_data	*rps_ipi_next;
2020 	unsigned int		cpu;
2021 	unsigned int		input_queue_head;
2022 	unsigned int		input_queue_tail;
2023 #endif
2024 	unsigned int		dropped;
2025 	struct sk_buff_head	input_pkt_queue;
2026 	struct napi_struct	backlog;
2027 
2028 #ifdef CONFIG_NET_FLOW_LIMIT
2029 	struct sd_flow_limit __rcu *flow_limit;
2030 #endif
2031 };
2032 
2033 static inline void input_queue_head_incr(struct softnet_data *sd)
2034 {
2035 #ifdef CONFIG_RPS
2036 	sd->input_queue_head++;
2037 #endif
2038 }
2039 
2040 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2041 					      unsigned int *qtail)
2042 {
2043 #ifdef CONFIG_RPS
2044 	*qtail = ++sd->input_queue_tail;
2045 #endif
2046 }
2047 
2048 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2049 
2050 void __netif_schedule(struct Qdisc *q);
2051 
2052 static inline void netif_schedule_queue(struct netdev_queue *txq)
2053 {
2054 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2055 		__netif_schedule(txq->qdisc);
2056 }
2057 
2058 static inline void netif_tx_schedule_all(struct net_device *dev)
2059 {
2060 	unsigned int i;
2061 
2062 	for (i = 0; i < dev->num_tx_queues; i++)
2063 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2064 }
2065 
2066 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2067 {
2068 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2069 }
2070 
2071 /**
2072  *	netif_start_queue - allow transmit
2073  *	@dev: network device
2074  *
2075  *	Allow upper layers to call the device hard_start_xmit routine.
2076  */
2077 static inline void netif_start_queue(struct net_device *dev)
2078 {
2079 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2080 }
2081 
2082 static inline void netif_tx_start_all_queues(struct net_device *dev)
2083 {
2084 	unsigned int i;
2085 
2086 	for (i = 0; i < dev->num_tx_queues; i++) {
2087 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2088 		netif_tx_start_queue(txq);
2089 	}
2090 }
2091 
2092 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2093 {
2094 #ifdef CONFIG_NETPOLL_TRAP
2095 	if (netpoll_trap()) {
2096 		netif_tx_start_queue(dev_queue);
2097 		return;
2098 	}
2099 #endif
2100 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2101 		__netif_schedule(dev_queue->qdisc);
2102 }
2103 
2104 /**
2105  *	netif_wake_queue - restart transmit
2106  *	@dev: network device
2107  *
2108  *	Allow upper layers to call the device hard_start_xmit routine.
2109  *	Used for flow control when transmit resources are available.
2110  */
2111 static inline void netif_wake_queue(struct net_device *dev)
2112 {
2113 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2114 }
2115 
2116 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2117 {
2118 	unsigned int i;
2119 
2120 	for (i = 0; i < dev->num_tx_queues; i++) {
2121 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2122 		netif_tx_wake_queue(txq);
2123 	}
2124 }
2125 
2126 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2127 {
2128 	if (WARN_ON(!dev_queue)) {
2129 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2130 		return;
2131 	}
2132 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2133 }
2134 
2135 /**
2136  *	netif_stop_queue - stop transmitted packets
2137  *	@dev: network device
2138  *
2139  *	Stop upper layers calling the device hard_start_xmit routine.
2140  *	Used for flow control when transmit resources are unavailable.
2141  */
2142 static inline void netif_stop_queue(struct net_device *dev)
2143 {
2144 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2145 }
2146 
2147 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2148 {
2149 	unsigned int i;
2150 
2151 	for (i = 0; i < dev->num_tx_queues; i++) {
2152 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2153 		netif_tx_stop_queue(txq);
2154 	}
2155 }
2156 
2157 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2158 {
2159 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2160 }
2161 
2162 /**
2163  *	netif_queue_stopped - test if transmit queue is flowblocked
2164  *	@dev: network device
2165  *
2166  *	Test if transmit queue on device is currently unable to send.
2167  */
2168 static inline bool netif_queue_stopped(const struct net_device *dev)
2169 {
2170 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2171 }
2172 
2173 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2174 {
2175 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2176 }
2177 
2178 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2179 {
2180 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2181 }
2182 
2183 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2184 					unsigned int bytes)
2185 {
2186 #ifdef CONFIG_BQL
2187 	dql_queued(&dev_queue->dql, bytes);
2188 
2189 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2190 		return;
2191 
2192 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2193 
2194 	/*
2195 	 * The XOFF flag must be set before checking the dql_avail below,
2196 	 * because in netdev_tx_completed_queue we update the dql_completed
2197 	 * before checking the XOFF flag.
2198 	 */
2199 	smp_mb();
2200 
2201 	/* check again in case another CPU has just made room avail */
2202 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2203 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2204 #endif
2205 }
2206 
2207 /**
2208  * 	netdev_sent_queue - report the number of bytes queued to hardware
2209  * 	@dev: network device
2210  * 	@bytes: number of bytes queued to the hardware device queue
2211  *
2212  * 	Report the number of bytes queued for sending/completion to the network
2213  * 	device hardware queue. @bytes should be a good approximation and should
2214  * 	exactly match netdev_completed_queue() @bytes
2215  */
2216 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2217 {
2218 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2219 }
2220 
2221 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2222 					     unsigned int pkts, unsigned int bytes)
2223 {
2224 #ifdef CONFIG_BQL
2225 	if (unlikely(!bytes))
2226 		return;
2227 
2228 	dql_completed(&dev_queue->dql, bytes);
2229 
2230 	/*
2231 	 * Without the memory barrier there is a small possiblity that
2232 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2233 	 * be stopped forever
2234 	 */
2235 	smp_mb();
2236 
2237 	if (dql_avail(&dev_queue->dql) < 0)
2238 		return;
2239 
2240 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2241 		netif_schedule_queue(dev_queue);
2242 #endif
2243 }
2244 
2245 /**
2246  * 	netdev_completed_queue - report bytes and packets completed by device
2247  * 	@dev: network device
2248  * 	@pkts: actual number of packets sent over the medium
2249  * 	@bytes: actual number of bytes sent over the medium
2250  *
2251  * 	Report the number of bytes and packets transmitted by the network device
2252  * 	hardware queue over the physical medium, @bytes must exactly match the
2253  * 	@bytes amount passed to netdev_sent_queue()
2254  */
2255 static inline void netdev_completed_queue(struct net_device *dev,
2256 					  unsigned int pkts, unsigned int bytes)
2257 {
2258 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2259 }
2260 
2261 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2262 {
2263 #ifdef CONFIG_BQL
2264 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2265 	dql_reset(&q->dql);
2266 #endif
2267 }
2268 
2269 /**
2270  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2271  * 	@dev_queue: network device
2272  *
2273  * 	Reset the bytes and packet count of a network device and clear the
2274  * 	software flow control OFF bit for this network device
2275  */
2276 static inline void netdev_reset_queue(struct net_device *dev_queue)
2277 {
2278 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2279 }
2280 
2281 /**
2282  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2283  * 	@dev: network device
2284  * 	@queue_index: given tx queue index
2285  *
2286  * 	Returns 0 if given tx queue index >= number of device tx queues,
2287  * 	otherwise returns the originally passed tx queue index.
2288  */
2289 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2290 {
2291 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2292 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2293 				     dev->name, queue_index,
2294 				     dev->real_num_tx_queues);
2295 		return 0;
2296 	}
2297 
2298 	return queue_index;
2299 }
2300 
2301 /**
2302  *	netif_running - test if up
2303  *	@dev: network device
2304  *
2305  *	Test if the device has been brought up.
2306  */
2307 static inline bool netif_running(const struct net_device *dev)
2308 {
2309 	return test_bit(__LINK_STATE_START, &dev->state);
2310 }
2311 
2312 /*
2313  * Routines to manage the subqueues on a device.  We only need start
2314  * stop, and a check if it's stopped.  All other device management is
2315  * done at the overall netdevice level.
2316  * Also test the device if we're multiqueue.
2317  */
2318 
2319 /**
2320  *	netif_start_subqueue - allow sending packets on subqueue
2321  *	@dev: network device
2322  *	@queue_index: sub queue index
2323  *
2324  * Start individual transmit queue of a device with multiple transmit queues.
2325  */
2326 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2327 {
2328 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2329 
2330 	netif_tx_start_queue(txq);
2331 }
2332 
2333 /**
2334  *	netif_stop_subqueue - stop sending packets on subqueue
2335  *	@dev: network device
2336  *	@queue_index: sub queue index
2337  *
2338  * Stop individual transmit queue of a device with multiple transmit queues.
2339  */
2340 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2341 {
2342 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2343 #ifdef CONFIG_NETPOLL_TRAP
2344 	if (netpoll_trap())
2345 		return;
2346 #endif
2347 	netif_tx_stop_queue(txq);
2348 }
2349 
2350 /**
2351  *	netif_subqueue_stopped - test status of subqueue
2352  *	@dev: network device
2353  *	@queue_index: sub queue index
2354  *
2355  * Check individual transmit queue of a device with multiple transmit queues.
2356  */
2357 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2358 					    u16 queue_index)
2359 {
2360 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2361 
2362 	return netif_tx_queue_stopped(txq);
2363 }
2364 
2365 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2366 					  struct sk_buff *skb)
2367 {
2368 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2369 }
2370 
2371 /**
2372  *	netif_wake_subqueue - allow sending packets on subqueue
2373  *	@dev: network device
2374  *	@queue_index: sub queue index
2375  *
2376  * Resume individual transmit queue of a device with multiple transmit queues.
2377  */
2378 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2379 {
2380 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2381 #ifdef CONFIG_NETPOLL_TRAP
2382 	if (netpoll_trap())
2383 		return;
2384 #endif
2385 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2386 		__netif_schedule(txq->qdisc);
2387 }
2388 
2389 #ifdef CONFIG_XPS
2390 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2391 			u16 index);
2392 #else
2393 static inline int netif_set_xps_queue(struct net_device *dev,
2394 				      const struct cpumask *mask,
2395 				      u16 index)
2396 {
2397 	return 0;
2398 }
2399 #endif
2400 
2401 /*
2402  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2403  * as a distribution range limit for the returned value.
2404  */
2405 static inline u16 skb_tx_hash(const struct net_device *dev,
2406 			      const struct sk_buff *skb)
2407 {
2408 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2409 }
2410 
2411 /**
2412  *	netif_is_multiqueue - test if device has multiple transmit queues
2413  *	@dev: network device
2414  *
2415  * Check if device has multiple transmit queues
2416  */
2417 static inline bool netif_is_multiqueue(const struct net_device *dev)
2418 {
2419 	return dev->num_tx_queues > 1;
2420 }
2421 
2422 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2423 
2424 #ifdef CONFIG_SYSFS
2425 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2426 #else
2427 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2428 						unsigned int rxq)
2429 {
2430 	return 0;
2431 }
2432 #endif
2433 
2434 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2435 					     const struct net_device *from_dev)
2436 {
2437 	int err;
2438 
2439 	err = netif_set_real_num_tx_queues(to_dev,
2440 					   from_dev->real_num_tx_queues);
2441 	if (err)
2442 		return err;
2443 #ifdef CONFIG_SYSFS
2444 	return netif_set_real_num_rx_queues(to_dev,
2445 					    from_dev->real_num_rx_queues);
2446 #else
2447 	return 0;
2448 #endif
2449 }
2450 
2451 #ifdef CONFIG_SYSFS
2452 static inline unsigned int get_netdev_rx_queue_index(
2453 		struct netdev_rx_queue *queue)
2454 {
2455 	struct net_device *dev = queue->dev;
2456 	int index = queue - dev->_rx;
2457 
2458 	BUG_ON(index >= dev->num_rx_queues);
2459 	return index;
2460 }
2461 #endif
2462 
2463 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2464 int netif_get_num_default_rss_queues(void);
2465 
2466 enum skb_free_reason {
2467 	SKB_REASON_CONSUMED,
2468 	SKB_REASON_DROPPED,
2469 };
2470 
2471 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2472 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2473 
2474 /*
2475  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2476  * interrupt context or with hardware interrupts being disabled.
2477  * (in_irq() || irqs_disabled())
2478  *
2479  * We provide four helpers that can be used in following contexts :
2480  *
2481  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2482  *  replacing kfree_skb(skb)
2483  *
2484  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2485  *  Typically used in place of consume_skb(skb) in TX completion path
2486  *
2487  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2488  *  replacing kfree_skb(skb)
2489  *
2490  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2491  *  and consumed a packet. Used in place of consume_skb(skb)
2492  */
2493 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2494 {
2495 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2496 }
2497 
2498 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2499 {
2500 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2501 }
2502 
2503 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2504 {
2505 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2506 }
2507 
2508 static inline void dev_consume_skb_any(struct sk_buff *skb)
2509 {
2510 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2511 }
2512 
2513 int netif_rx(struct sk_buff *skb);
2514 int netif_rx_ni(struct sk_buff *skb);
2515 int netif_receive_skb(struct sk_buff *skb);
2516 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2517 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2518 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2519 gro_result_t napi_gro_frags(struct napi_struct *napi);
2520 struct packet_offload *gro_find_receive_by_type(__be16 type);
2521 struct packet_offload *gro_find_complete_by_type(__be16 type);
2522 
2523 static inline void napi_free_frags(struct napi_struct *napi)
2524 {
2525 	kfree_skb(napi->skb);
2526 	napi->skb = NULL;
2527 }
2528 
2529 int netdev_rx_handler_register(struct net_device *dev,
2530 			       rx_handler_func_t *rx_handler,
2531 			       void *rx_handler_data);
2532 void netdev_rx_handler_unregister(struct net_device *dev);
2533 
2534 bool dev_valid_name(const char *name);
2535 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2536 int dev_ethtool(struct net *net, struct ifreq *);
2537 unsigned int dev_get_flags(const struct net_device *);
2538 int __dev_change_flags(struct net_device *, unsigned int flags);
2539 int dev_change_flags(struct net_device *, unsigned int);
2540 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2541 			unsigned int gchanges);
2542 int dev_change_name(struct net_device *, const char *);
2543 int dev_set_alias(struct net_device *, const char *, size_t);
2544 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2545 int dev_set_mtu(struct net_device *, int);
2546 void dev_set_group(struct net_device *, int);
2547 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2548 int dev_change_carrier(struct net_device *, bool new_carrier);
2549 int dev_get_phys_port_id(struct net_device *dev,
2550 			 struct netdev_phys_port_id *ppid);
2551 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2552 			struct netdev_queue *txq);
2553 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2554 
2555 extern int		netdev_budget;
2556 
2557 /* Called by rtnetlink.c:rtnl_unlock() */
2558 void netdev_run_todo(void);
2559 
2560 /**
2561  *	dev_put - release reference to device
2562  *	@dev: network device
2563  *
2564  * Release reference to device to allow it to be freed.
2565  */
2566 static inline void dev_put(struct net_device *dev)
2567 {
2568 	this_cpu_dec(*dev->pcpu_refcnt);
2569 }
2570 
2571 /**
2572  *	dev_hold - get reference to device
2573  *	@dev: network device
2574  *
2575  * Hold reference to device to keep it from being freed.
2576  */
2577 static inline void dev_hold(struct net_device *dev)
2578 {
2579 	this_cpu_inc(*dev->pcpu_refcnt);
2580 }
2581 
2582 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2583  * and _off may be called from IRQ context, but it is caller
2584  * who is responsible for serialization of these calls.
2585  *
2586  * The name carrier is inappropriate, these functions should really be
2587  * called netif_lowerlayer_*() because they represent the state of any
2588  * kind of lower layer not just hardware media.
2589  */
2590 
2591 void linkwatch_init_dev(struct net_device *dev);
2592 void linkwatch_fire_event(struct net_device *dev);
2593 void linkwatch_forget_dev(struct net_device *dev);
2594 
2595 /**
2596  *	netif_carrier_ok - test if carrier present
2597  *	@dev: network device
2598  *
2599  * Check if carrier is present on device
2600  */
2601 static inline bool netif_carrier_ok(const struct net_device *dev)
2602 {
2603 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2604 }
2605 
2606 unsigned long dev_trans_start(struct net_device *dev);
2607 
2608 void __netdev_watchdog_up(struct net_device *dev);
2609 
2610 void netif_carrier_on(struct net_device *dev);
2611 
2612 void netif_carrier_off(struct net_device *dev);
2613 
2614 /**
2615  *	netif_dormant_on - mark device as dormant.
2616  *	@dev: network device
2617  *
2618  * Mark device as dormant (as per RFC2863).
2619  *
2620  * The dormant state indicates that the relevant interface is not
2621  * actually in a condition to pass packets (i.e., it is not 'up') but is
2622  * in a "pending" state, waiting for some external event.  For "on-
2623  * demand" interfaces, this new state identifies the situation where the
2624  * interface is waiting for events to place it in the up state.
2625  *
2626  */
2627 static inline void netif_dormant_on(struct net_device *dev)
2628 {
2629 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2630 		linkwatch_fire_event(dev);
2631 }
2632 
2633 /**
2634  *	netif_dormant_off - set device as not dormant.
2635  *	@dev: network device
2636  *
2637  * Device is not in dormant state.
2638  */
2639 static inline void netif_dormant_off(struct net_device *dev)
2640 {
2641 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2642 		linkwatch_fire_event(dev);
2643 }
2644 
2645 /**
2646  *	netif_dormant - test if carrier present
2647  *	@dev: network device
2648  *
2649  * Check if carrier is present on device
2650  */
2651 static inline bool netif_dormant(const struct net_device *dev)
2652 {
2653 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2654 }
2655 
2656 
2657 /**
2658  *	netif_oper_up - test if device is operational
2659  *	@dev: network device
2660  *
2661  * Check if carrier is operational
2662  */
2663 static inline bool netif_oper_up(const struct net_device *dev)
2664 {
2665 	return (dev->operstate == IF_OPER_UP ||
2666 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2667 }
2668 
2669 /**
2670  *	netif_device_present - is device available or removed
2671  *	@dev: network device
2672  *
2673  * Check if device has not been removed from system.
2674  */
2675 static inline bool netif_device_present(struct net_device *dev)
2676 {
2677 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2678 }
2679 
2680 void netif_device_detach(struct net_device *dev);
2681 
2682 void netif_device_attach(struct net_device *dev);
2683 
2684 /*
2685  * Network interface message level settings
2686  */
2687 
2688 enum {
2689 	NETIF_MSG_DRV		= 0x0001,
2690 	NETIF_MSG_PROBE		= 0x0002,
2691 	NETIF_MSG_LINK		= 0x0004,
2692 	NETIF_MSG_TIMER		= 0x0008,
2693 	NETIF_MSG_IFDOWN	= 0x0010,
2694 	NETIF_MSG_IFUP		= 0x0020,
2695 	NETIF_MSG_RX_ERR	= 0x0040,
2696 	NETIF_MSG_TX_ERR	= 0x0080,
2697 	NETIF_MSG_TX_QUEUED	= 0x0100,
2698 	NETIF_MSG_INTR		= 0x0200,
2699 	NETIF_MSG_TX_DONE	= 0x0400,
2700 	NETIF_MSG_RX_STATUS	= 0x0800,
2701 	NETIF_MSG_PKTDATA	= 0x1000,
2702 	NETIF_MSG_HW		= 0x2000,
2703 	NETIF_MSG_WOL		= 0x4000,
2704 };
2705 
2706 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2707 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2708 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2709 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2710 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2711 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2712 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2713 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2714 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2715 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2716 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2717 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2718 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2719 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2720 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2721 
2722 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2723 {
2724 	/* use default */
2725 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2726 		return default_msg_enable_bits;
2727 	if (debug_value == 0)	/* no output */
2728 		return 0;
2729 	/* set low N bits */
2730 	return (1 << debug_value) - 1;
2731 }
2732 
2733 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2734 {
2735 	spin_lock(&txq->_xmit_lock);
2736 	txq->xmit_lock_owner = cpu;
2737 }
2738 
2739 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2740 {
2741 	spin_lock_bh(&txq->_xmit_lock);
2742 	txq->xmit_lock_owner = smp_processor_id();
2743 }
2744 
2745 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2746 {
2747 	bool ok = spin_trylock(&txq->_xmit_lock);
2748 	if (likely(ok))
2749 		txq->xmit_lock_owner = smp_processor_id();
2750 	return ok;
2751 }
2752 
2753 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2754 {
2755 	txq->xmit_lock_owner = -1;
2756 	spin_unlock(&txq->_xmit_lock);
2757 }
2758 
2759 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2760 {
2761 	txq->xmit_lock_owner = -1;
2762 	spin_unlock_bh(&txq->_xmit_lock);
2763 }
2764 
2765 static inline void txq_trans_update(struct netdev_queue *txq)
2766 {
2767 	if (txq->xmit_lock_owner != -1)
2768 		txq->trans_start = jiffies;
2769 }
2770 
2771 /**
2772  *	netif_tx_lock - grab network device transmit lock
2773  *	@dev: network device
2774  *
2775  * Get network device transmit lock
2776  */
2777 static inline void netif_tx_lock(struct net_device *dev)
2778 {
2779 	unsigned int i;
2780 	int cpu;
2781 
2782 	spin_lock(&dev->tx_global_lock);
2783 	cpu = smp_processor_id();
2784 	for (i = 0; i < dev->num_tx_queues; i++) {
2785 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2786 
2787 		/* We are the only thread of execution doing a
2788 		 * freeze, but we have to grab the _xmit_lock in
2789 		 * order to synchronize with threads which are in
2790 		 * the ->hard_start_xmit() handler and already
2791 		 * checked the frozen bit.
2792 		 */
2793 		__netif_tx_lock(txq, cpu);
2794 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2795 		__netif_tx_unlock(txq);
2796 	}
2797 }
2798 
2799 static inline void netif_tx_lock_bh(struct net_device *dev)
2800 {
2801 	local_bh_disable();
2802 	netif_tx_lock(dev);
2803 }
2804 
2805 static inline void netif_tx_unlock(struct net_device *dev)
2806 {
2807 	unsigned int i;
2808 
2809 	for (i = 0; i < dev->num_tx_queues; i++) {
2810 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2811 
2812 		/* No need to grab the _xmit_lock here.  If the
2813 		 * queue is not stopped for another reason, we
2814 		 * force a schedule.
2815 		 */
2816 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2817 		netif_schedule_queue(txq);
2818 	}
2819 	spin_unlock(&dev->tx_global_lock);
2820 }
2821 
2822 static inline void netif_tx_unlock_bh(struct net_device *dev)
2823 {
2824 	netif_tx_unlock(dev);
2825 	local_bh_enable();
2826 }
2827 
2828 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2829 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2830 		__netif_tx_lock(txq, cpu);		\
2831 	}						\
2832 }
2833 
2834 #define HARD_TX_UNLOCK(dev, txq) {			\
2835 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2836 		__netif_tx_unlock(txq);			\
2837 	}						\
2838 }
2839 
2840 static inline void netif_tx_disable(struct net_device *dev)
2841 {
2842 	unsigned int i;
2843 	int cpu;
2844 
2845 	local_bh_disable();
2846 	cpu = smp_processor_id();
2847 	for (i = 0; i < dev->num_tx_queues; i++) {
2848 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2849 
2850 		__netif_tx_lock(txq, cpu);
2851 		netif_tx_stop_queue(txq);
2852 		__netif_tx_unlock(txq);
2853 	}
2854 	local_bh_enable();
2855 }
2856 
2857 static inline void netif_addr_lock(struct net_device *dev)
2858 {
2859 	spin_lock(&dev->addr_list_lock);
2860 }
2861 
2862 static inline void netif_addr_lock_nested(struct net_device *dev)
2863 {
2864 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2865 }
2866 
2867 static inline void netif_addr_lock_bh(struct net_device *dev)
2868 {
2869 	spin_lock_bh(&dev->addr_list_lock);
2870 }
2871 
2872 static inline void netif_addr_unlock(struct net_device *dev)
2873 {
2874 	spin_unlock(&dev->addr_list_lock);
2875 }
2876 
2877 static inline void netif_addr_unlock_bh(struct net_device *dev)
2878 {
2879 	spin_unlock_bh(&dev->addr_list_lock);
2880 }
2881 
2882 /*
2883  * dev_addrs walker. Should be used only for read access. Call with
2884  * rcu_read_lock held.
2885  */
2886 #define for_each_dev_addr(dev, ha) \
2887 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2888 
2889 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2890 
2891 void ether_setup(struct net_device *dev);
2892 
2893 /* Support for loadable net-drivers */
2894 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2895 				    void (*setup)(struct net_device *),
2896 				    unsigned int txqs, unsigned int rxqs);
2897 #define alloc_netdev(sizeof_priv, name, setup) \
2898 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2899 
2900 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2901 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2902 
2903 int register_netdev(struct net_device *dev);
2904 void unregister_netdev(struct net_device *dev);
2905 
2906 /* General hardware address lists handling functions */
2907 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2908 		   struct netdev_hw_addr_list *from_list, int addr_len);
2909 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2910 		      struct netdev_hw_addr_list *from_list, int addr_len);
2911 void __hw_addr_init(struct netdev_hw_addr_list *list);
2912 
2913 /* Functions used for device addresses handling */
2914 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2915 		 unsigned char addr_type);
2916 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2917 		 unsigned char addr_type);
2918 void dev_addr_flush(struct net_device *dev);
2919 int dev_addr_init(struct net_device *dev);
2920 
2921 /* Functions used for unicast addresses handling */
2922 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2923 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2924 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2925 int dev_uc_sync(struct net_device *to, struct net_device *from);
2926 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2927 void dev_uc_unsync(struct net_device *to, struct net_device *from);
2928 void dev_uc_flush(struct net_device *dev);
2929 void dev_uc_init(struct net_device *dev);
2930 
2931 /* Functions used for multicast addresses handling */
2932 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2933 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2934 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2935 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2936 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2937 int dev_mc_sync(struct net_device *to, struct net_device *from);
2938 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2939 void dev_mc_unsync(struct net_device *to, struct net_device *from);
2940 void dev_mc_flush(struct net_device *dev);
2941 void dev_mc_init(struct net_device *dev);
2942 
2943 /* Functions used for secondary unicast and multicast support */
2944 void dev_set_rx_mode(struct net_device *dev);
2945 void __dev_set_rx_mode(struct net_device *dev);
2946 int dev_set_promiscuity(struct net_device *dev, int inc);
2947 int dev_set_allmulti(struct net_device *dev, int inc);
2948 void netdev_state_change(struct net_device *dev);
2949 void netdev_notify_peers(struct net_device *dev);
2950 void netdev_features_change(struct net_device *dev);
2951 /* Load a device via the kmod */
2952 void dev_load(struct net *net, const char *name);
2953 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2954 					struct rtnl_link_stats64 *storage);
2955 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2956 			     const struct net_device_stats *netdev_stats);
2957 
2958 extern int		netdev_max_backlog;
2959 extern int		netdev_tstamp_prequeue;
2960 extern int		weight_p;
2961 extern int		bpf_jit_enable;
2962 
2963 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
2964 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
2965 						     struct list_head **iter);
2966 
2967 /* iterate through upper list, must be called under RCU read lock */
2968 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
2969 	for (iter = &(dev)->all_adj_list.upper, \
2970 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
2971 	     updev; \
2972 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
2973 
2974 void *netdev_lower_get_next_private(struct net_device *dev,
2975 				    struct list_head **iter);
2976 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
2977 					struct list_head **iter);
2978 
2979 #define netdev_for_each_lower_private(dev, priv, iter) \
2980 	for (iter = (dev)->adj_list.lower.next, \
2981 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
2982 	     priv; \
2983 	     priv = netdev_lower_get_next_private(dev, &(iter)))
2984 
2985 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
2986 	for (iter = &(dev)->adj_list.lower, \
2987 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
2988 	     priv; \
2989 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
2990 
2991 void *netdev_adjacent_get_private(struct list_head *adj_list);
2992 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
2993 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2994 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2995 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
2996 int netdev_master_upper_dev_link(struct net_device *dev,
2997 				 struct net_device *upper_dev);
2998 int netdev_master_upper_dev_link_private(struct net_device *dev,
2999 					 struct net_device *upper_dev,
3000 					 void *private);
3001 void netdev_upper_dev_unlink(struct net_device *dev,
3002 			     struct net_device *upper_dev);
3003 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3004 void *netdev_lower_dev_get_private(struct net_device *dev,
3005 				   struct net_device *lower_dev);
3006 int skb_checksum_help(struct sk_buff *skb);
3007 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3008 				  netdev_features_t features, bool tx_path);
3009 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3010 				    netdev_features_t features);
3011 
3012 static inline
3013 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3014 {
3015 	return __skb_gso_segment(skb, features, true);
3016 }
3017 __be16 skb_network_protocol(struct sk_buff *skb);
3018 
3019 static inline bool can_checksum_protocol(netdev_features_t features,
3020 					 __be16 protocol)
3021 {
3022 	return ((features & NETIF_F_GEN_CSUM) ||
3023 		((features & NETIF_F_V4_CSUM) &&
3024 		 protocol == htons(ETH_P_IP)) ||
3025 		((features & NETIF_F_V6_CSUM) &&
3026 		 protocol == htons(ETH_P_IPV6)) ||
3027 		((features & NETIF_F_FCOE_CRC) &&
3028 		 protocol == htons(ETH_P_FCOE)));
3029 }
3030 
3031 #ifdef CONFIG_BUG
3032 void netdev_rx_csum_fault(struct net_device *dev);
3033 #else
3034 static inline void netdev_rx_csum_fault(struct net_device *dev)
3035 {
3036 }
3037 #endif
3038 /* rx skb timestamps */
3039 void net_enable_timestamp(void);
3040 void net_disable_timestamp(void);
3041 
3042 #ifdef CONFIG_PROC_FS
3043 int __init dev_proc_init(void);
3044 #else
3045 #define dev_proc_init() 0
3046 #endif
3047 
3048 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3049 				const void *ns);
3050 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3051 				 const void *ns);
3052 
3053 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3054 {
3055 	return netdev_class_create_file_ns(class_attr, NULL);
3056 }
3057 
3058 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3059 {
3060 	netdev_class_remove_file_ns(class_attr, NULL);
3061 }
3062 
3063 extern struct kobj_ns_type_operations net_ns_type_operations;
3064 
3065 const char *netdev_drivername(const struct net_device *dev);
3066 
3067 void linkwatch_run_queue(void);
3068 
3069 static inline netdev_features_t netdev_get_wanted_features(
3070 	struct net_device *dev)
3071 {
3072 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3073 }
3074 netdev_features_t netdev_increment_features(netdev_features_t all,
3075 	netdev_features_t one, netdev_features_t mask);
3076 
3077 /* Allow TSO being used on stacked device :
3078  * Performing the GSO segmentation before last device
3079  * is a performance improvement.
3080  */
3081 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3082 							netdev_features_t mask)
3083 {
3084 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3085 }
3086 
3087 int __netdev_update_features(struct net_device *dev);
3088 void netdev_update_features(struct net_device *dev);
3089 void netdev_change_features(struct net_device *dev);
3090 
3091 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3092 					struct net_device *dev);
3093 
3094 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
3095 					 const struct net_device *dev);
3096 static inline netdev_features_t netif_skb_features(struct sk_buff *skb)
3097 {
3098 	return netif_skb_dev_features(skb, skb->dev);
3099 }
3100 
3101 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3102 {
3103 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3104 
3105 	/* check flags correspondence */
3106 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3107 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3108 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3109 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3110 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3111 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3112 
3113 	return (features & feature) == feature;
3114 }
3115 
3116 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3117 {
3118 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3119 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3120 }
3121 
3122 static inline bool netif_needs_gso(struct sk_buff *skb,
3123 				   netdev_features_t features)
3124 {
3125 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3126 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3127 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3128 }
3129 
3130 static inline void netif_set_gso_max_size(struct net_device *dev,
3131 					  unsigned int size)
3132 {
3133 	dev->gso_max_size = size;
3134 }
3135 
3136 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3137 					int pulled_hlen, u16 mac_offset,
3138 					int mac_len)
3139 {
3140 	skb->protocol = protocol;
3141 	skb->encapsulation = 1;
3142 	skb_push(skb, pulled_hlen);
3143 	skb_reset_transport_header(skb);
3144 	skb->mac_header = mac_offset;
3145 	skb->network_header = skb->mac_header + mac_len;
3146 	skb->mac_len = mac_len;
3147 }
3148 
3149 static inline bool netif_is_macvlan(struct net_device *dev)
3150 {
3151 	return dev->priv_flags & IFF_MACVLAN;
3152 }
3153 
3154 static inline bool netif_is_bond_master(struct net_device *dev)
3155 {
3156 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3157 }
3158 
3159 static inline bool netif_is_bond_slave(struct net_device *dev)
3160 {
3161 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3162 }
3163 
3164 static inline bool netif_supports_nofcs(struct net_device *dev)
3165 {
3166 	return dev->priv_flags & IFF_SUPP_NOFCS;
3167 }
3168 
3169 extern struct pernet_operations __net_initdata loopback_net_ops;
3170 
3171 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3172 
3173 /* netdev_printk helpers, similar to dev_printk */
3174 
3175 static inline const char *netdev_name(const struct net_device *dev)
3176 {
3177 	if (dev->reg_state != NETREG_REGISTERED)
3178 		return "(unregistered net_device)";
3179 	return dev->name;
3180 }
3181 
3182 __printf(3, 4)
3183 int netdev_printk(const char *level, const struct net_device *dev,
3184 		  const char *format, ...);
3185 __printf(2, 3)
3186 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3187 __printf(2, 3)
3188 int netdev_alert(const struct net_device *dev, const char *format, ...);
3189 __printf(2, 3)
3190 int netdev_crit(const struct net_device *dev, const char *format, ...);
3191 __printf(2, 3)
3192 int netdev_err(const struct net_device *dev, const char *format, ...);
3193 __printf(2, 3)
3194 int netdev_warn(const struct net_device *dev, const char *format, ...);
3195 __printf(2, 3)
3196 int netdev_notice(const struct net_device *dev, const char *format, ...);
3197 __printf(2, 3)
3198 int netdev_info(const struct net_device *dev, const char *format, ...);
3199 
3200 #define MODULE_ALIAS_NETDEV(device) \
3201 	MODULE_ALIAS("netdev-" device)
3202 
3203 #if defined(CONFIG_DYNAMIC_DEBUG)
3204 #define netdev_dbg(__dev, format, args...)			\
3205 do {								\
3206 	dynamic_netdev_dbg(__dev, format, ##args);		\
3207 } while (0)
3208 #elif defined(DEBUG)
3209 #define netdev_dbg(__dev, format, args...)			\
3210 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3211 #else
3212 #define netdev_dbg(__dev, format, args...)			\
3213 ({								\
3214 	if (0)							\
3215 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3216 	0;							\
3217 })
3218 #endif
3219 
3220 #if defined(VERBOSE_DEBUG)
3221 #define netdev_vdbg	netdev_dbg
3222 #else
3223 
3224 #define netdev_vdbg(dev, format, args...)			\
3225 ({								\
3226 	if (0)							\
3227 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3228 	0;							\
3229 })
3230 #endif
3231 
3232 /*
3233  * netdev_WARN() acts like dev_printk(), but with the key difference
3234  * of using a WARN/WARN_ON to get the message out, including the
3235  * file/line information and a backtrace.
3236  */
3237 #define netdev_WARN(dev, format, args...)			\
3238 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3239 
3240 /* netif printk helpers, similar to netdev_printk */
3241 
3242 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3243 do {					  			\
3244 	if (netif_msg_##type(priv))				\
3245 		netdev_printk(level, (dev), fmt, ##args);	\
3246 } while (0)
3247 
3248 #define netif_level(level, priv, type, dev, fmt, args...)	\
3249 do {								\
3250 	if (netif_msg_##type(priv))				\
3251 		netdev_##level(dev, fmt, ##args);		\
3252 } while (0)
3253 
3254 #define netif_emerg(priv, type, dev, fmt, args...)		\
3255 	netif_level(emerg, priv, type, dev, fmt, ##args)
3256 #define netif_alert(priv, type, dev, fmt, args...)		\
3257 	netif_level(alert, priv, type, dev, fmt, ##args)
3258 #define netif_crit(priv, type, dev, fmt, args...)		\
3259 	netif_level(crit, priv, type, dev, fmt, ##args)
3260 #define netif_err(priv, type, dev, fmt, args...)		\
3261 	netif_level(err, priv, type, dev, fmt, ##args)
3262 #define netif_warn(priv, type, dev, fmt, args...)		\
3263 	netif_level(warn, priv, type, dev, fmt, ##args)
3264 #define netif_notice(priv, type, dev, fmt, args...)		\
3265 	netif_level(notice, priv, type, dev, fmt, ##args)
3266 #define netif_info(priv, type, dev, fmt, args...)		\
3267 	netif_level(info, priv, type, dev, fmt, ##args)
3268 
3269 #if defined(CONFIG_DYNAMIC_DEBUG)
3270 #define netif_dbg(priv, type, netdev, format, args...)		\
3271 do {								\
3272 	if (netif_msg_##type(priv))				\
3273 		dynamic_netdev_dbg(netdev, format, ##args);	\
3274 } while (0)
3275 #elif defined(DEBUG)
3276 #define netif_dbg(priv, type, dev, format, args...)		\
3277 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3278 #else
3279 #define netif_dbg(priv, type, dev, format, args...)			\
3280 ({									\
3281 	if (0)								\
3282 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3283 	0;								\
3284 })
3285 #endif
3286 
3287 #if defined(VERBOSE_DEBUG)
3288 #define netif_vdbg	netif_dbg
3289 #else
3290 #define netif_vdbg(priv, type, dev, format, args...)		\
3291 ({								\
3292 	if (0)							\
3293 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3294 	0;							\
3295 })
3296 #endif
3297 
3298 /*
3299  *	The list of packet types we will receive (as opposed to discard)
3300  *	and the routines to invoke.
3301  *
3302  *	Why 16. Because with 16 the only overlap we get on a hash of the
3303  *	low nibble of the protocol value is RARP/SNAP/X.25.
3304  *
3305  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3306  *             sure which should go first, but I bet it won't make much
3307  *             difference if we are running VLANs.  The good news is that
3308  *             this protocol won't be in the list unless compiled in, so
3309  *             the average user (w/out VLANs) will not be adversely affected.
3310  *             --BLG
3311  *
3312  *		0800	IP
3313  *		8100    802.1Q VLAN
3314  *		0001	802.3
3315  *		0002	AX.25
3316  *		0004	802.2
3317  *		8035	RARP
3318  *		0005	SNAP
3319  *		0805	X.25
3320  *		0806	ARP
3321  *		8137	IPX
3322  *		0009	Localtalk
3323  *		86DD	IPv6
3324  */
3325 #define PTYPE_HASH_SIZE	(16)
3326 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3327 
3328 #endif	/* _LINUX_NETDEVICE_H */
3329