1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 83 typedef u32 xdp_features_t; 84 85 void synchronize_net(void); 86 void netdev_set_default_ethtool_ops(struct net_device *dev, 87 const struct ethtool_ops *ops); 88 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 89 90 /* Backlog congestion levels */ 91 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 92 #define NET_RX_DROP 1 /* packet dropped */ 93 94 #define MAX_NEST_DEV 8 95 96 /* 97 * Transmit return codes: transmit return codes originate from three different 98 * namespaces: 99 * 100 * - qdisc return codes 101 * - driver transmit return codes 102 * - errno values 103 * 104 * Drivers are allowed to return any one of those in their hard_start_xmit() 105 * function. Real network devices commonly used with qdiscs should only return 106 * the driver transmit return codes though - when qdiscs are used, the actual 107 * transmission happens asynchronously, so the value is not propagated to 108 * higher layers. Virtual network devices transmit synchronously; in this case 109 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 110 * others are propagated to higher layers. 111 */ 112 113 /* qdisc ->enqueue() return codes. */ 114 #define NET_XMIT_SUCCESS 0x00 115 #define NET_XMIT_DROP 0x01 /* skb dropped */ 116 #define NET_XMIT_CN 0x02 /* congestion notification */ 117 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 118 119 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 120 * indicates that the device will soon be dropping packets, or already drops 121 * some packets of the same priority; prompting us to send less aggressively. */ 122 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 123 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 124 125 /* Driver transmit return codes */ 126 #define NETDEV_TX_MASK 0xf0 127 128 enum netdev_tx { 129 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 130 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 131 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 132 }; 133 typedef enum netdev_tx netdev_tx_t; 134 135 /* 136 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 137 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 138 */ 139 static inline bool dev_xmit_complete(int rc) 140 { 141 /* 142 * Positive cases with an skb consumed by a driver: 143 * - successful transmission (rc == NETDEV_TX_OK) 144 * - error while transmitting (rc < 0) 145 * - error while queueing to a different device (rc & NET_XMIT_MASK) 146 */ 147 if (likely(rc < NET_XMIT_MASK)) 148 return true; 149 150 return false; 151 } 152 153 /* 154 * Compute the worst-case header length according to the protocols 155 * used. 156 */ 157 158 #if defined(CONFIG_HYPERV_NET) 159 # define LL_MAX_HEADER 128 160 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 161 # if defined(CONFIG_MAC80211_MESH) 162 # define LL_MAX_HEADER 128 163 # else 164 # define LL_MAX_HEADER 96 165 # endif 166 #else 167 # define LL_MAX_HEADER 32 168 #endif 169 170 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 171 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 172 #define MAX_HEADER LL_MAX_HEADER 173 #else 174 #define MAX_HEADER (LL_MAX_HEADER + 48) 175 #endif 176 177 /* 178 * Old network device statistics. Fields are native words 179 * (unsigned long) so they can be read and written atomically. 180 */ 181 182 #define NET_DEV_STAT(FIELD) \ 183 union { \ 184 unsigned long FIELD; \ 185 atomic_long_t __##FIELD; \ 186 } 187 188 struct net_device_stats { 189 NET_DEV_STAT(rx_packets); 190 NET_DEV_STAT(tx_packets); 191 NET_DEV_STAT(rx_bytes); 192 NET_DEV_STAT(tx_bytes); 193 NET_DEV_STAT(rx_errors); 194 NET_DEV_STAT(tx_errors); 195 NET_DEV_STAT(rx_dropped); 196 NET_DEV_STAT(tx_dropped); 197 NET_DEV_STAT(multicast); 198 NET_DEV_STAT(collisions); 199 NET_DEV_STAT(rx_length_errors); 200 NET_DEV_STAT(rx_over_errors); 201 NET_DEV_STAT(rx_crc_errors); 202 NET_DEV_STAT(rx_frame_errors); 203 NET_DEV_STAT(rx_fifo_errors); 204 NET_DEV_STAT(rx_missed_errors); 205 NET_DEV_STAT(tx_aborted_errors); 206 NET_DEV_STAT(tx_carrier_errors); 207 NET_DEV_STAT(tx_fifo_errors); 208 NET_DEV_STAT(tx_heartbeat_errors); 209 NET_DEV_STAT(tx_window_errors); 210 NET_DEV_STAT(rx_compressed); 211 NET_DEV_STAT(tx_compressed); 212 }; 213 #undef NET_DEV_STAT 214 215 /* per-cpu stats, allocated on demand. 216 * Try to fit them in a single cache line, for dev_get_stats() sake. 217 */ 218 struct net_device_core_stats { 219 unsigned long rx_dropped; 220 unsigned long tx_dropped; 221 unsigned long rx_nohandler; 222 unsigned long rx_otherhost_dropped; 223 } __aligned(4 * sizeof(unsigned long)); 224 225 #include <linux/cache.h> 226 #include <linux/skbuff.h> 227 228 struct neighbour; 229 struct neigh_parms; 230 struct sk_buff; 231 232 struct netdev_hw_addr { 233 struct list_head list; 234 struct rb_node node; 235 unsigned char addr[MAX_ADDR_LEN]; 236 unsigned char type; 237 #define NETDEV_HW_ADDR_T_LAN 1 238 #define NETDEV_HW_ADDR_T_SAN 2 239 #define NETDEV_HW_ADDR_T_UNICAST 3 240 #define NETDEV_HW_ADDR_T_MULTICAST 4 241 bool global_use; 242 int sync_cnt; 243 int refcount; 244 int synced; 245 struct rcu_head rcu_head; 246 }; 247 248 struct netdev_hw_addr_list { 249 struct list_head list; 250 int count; 251 252 /* Auxiliary tree for faster lookup on addition and deletion */ 253 struct rb_root tree; 254 }; 255 256 #define netdev_hw_addr_list_count(l) ((l)->count) 257 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 258 #define netdev_hw_addr_list_for_each(ha, l) \ 259 list_for_each_entry(ha, &(l)->list, list) 260 261 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 262 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 263 #define netdev_for_each_uc_addr(ha, dev) \ 264 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 265 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 266 netdev_for_each_uc_addr((_ha), (_dev)) \ 267 if ((_ha)->sync_cnt) 268 269 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 270 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 271 #define netdev_for_each_mc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 273 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 274 netdev_for_each_mc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277 struct hh_cache { 278 unsigned int hh_len; 279 seqlock_t hh_lock; 280 281 /* cached hardware header; allow for machine alignment needs. */ 282 #define HH_DATA_MOD 16 283 #define HH_DATA_OFF(__len) \ 284 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 285 #define HH_DATA_ALIGN(__len) \ 286 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 287 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 288 }; 289 290 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 291 * Alternative is: 292 * dev->hard_header_len ? (dev->hard_header_len + 293 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 294 * 295 * We could use other alignment values, but we must maintain the 296 * relationship HH alignment <= LL alignment. 297 */ 298 #define LL_RESERVED_SPACE(dev) \ 299 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 300 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 301 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 302 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 303 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 304 305 struct header_ops { 306 int (*create) (struct sk_buff *skb, struct net_device *dev, 307 unsigned short type, const void *daddr, 308 const void *saddr, unsigned int len); 309 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 310 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 311 void (*cache_update)(struct hh_cache *hh, 312 const struct net_device *dev, 313 const unsigned char *haddr); 314 bool (*validate)(const char *ll_header, unsigned int len); 315 __be16 (*parse_protocol)(const struct sk_buff *skb); 316 }; 317 318 /* These flag bits are private to the generic network queueing 319 * layer; they may not be explicitly referenced by any other 320 * code. 321 */ 322 323 enum netdev_state_t { 324 __LINK_STATE_START, 325 __LINK_STATE_PRESENT, 326 __LINK_STATE_NOCARRIER, 327 __LINK_STATE_LINKWATCH_PENDING, 328 __LINK_STATE_DORMANT, 329 __LINK_STATE_TESTING, 330 }; 331 332 struct gro_list { 333 struct list_head list; 334 int count; 335 }; 336 337 /* 338 * size of gro hash buckets, must less than bit number of 339 * napi_struct::gro_bitmask 340 */ 341 #define GRO_HASH_BUCKETS 8 342 343 /* 344 * Structure for NAPI scheduling similar to tasklet but with weighting 345 */ 346 struct napi_struct { 347 /* The poll_list must only be managed by the entity which 348 * changes the state of the NAPI_STATE_SCHED bit. This means 349 * whoever atomically sets that bit can add this napi_struct 350 * to the per-CPU poll_list, and whoever clears that bit 351 * can remove from the list right before clearing the bit. 352 */ 353 struct list_head poll_list; 354 355 unsigned long state; 356 int weight; 357 int defer_hard_irqs_count; 358 unsigned long gro_bitmask; 359 int (*poll)(struct napi_struct *, int); 360 #ifdef CONFIG_NETPOLL 361 /* CPU actively polling if netpoll is configured */ 362 int poll_owner; 363 #endif 364 /* CPU on which NAPI has been scheduled for processing */ 365 int list_owner; 366 struct net_device *dev; 367 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 368 struct sk_buff *skb; 369 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 370 int rx_count; /* length of rx_list */ 371 unsigned int napi_id; 372 struct hrtimer timer; 373 struct task_struct *thread; 374 /* control-path-only fields follow */ 375 struct list_head dev_list; 376 struct hlist_node napi_hash_node; 377 int irq; 378 }; 379 380 enum { 381 NAPI_STATE_SCHED, /* Poll is scheduled */ 382 NAPI_STATE_MISSED, /* reschedule a napi */ 383 NAPI_STATE_DISABLE, /* Disable pending */ 384 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 385 NAPI_STATE_LISTED, /* NAPI added to system lists */ 386 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 387 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 388 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 389 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 390 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 391 }; 392 393 enum { 394 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 395 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 396 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 397 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 398 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 399 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 400 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 401 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 402 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 403 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 404 }; 405 406 enum gro_result { 407 GRO_MERGED, 408 GRO_MERGED_FREE, 409 GRO_HELD, 410 GRO_NORMAL, 411 GRO_CONSUMED, 412 }; 413 typedef enum gro_result gro_result_t; 414 415 /* 416 * enum rx_handler_result - Possible return values for rx_handlers. 417 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 418 * further. 419 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 420 * case skb->dev was changed by rx_handler. 421 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 422 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 423 * 424 * rx_handlers are functions called from inside __netif_receive_skb(), to do 425 * special processing of the skb, prior to delivery to protocol handlers. 426 * 427 * Currently, a net_device can only have a single rx_handler registered. Trying 428 * to register a second rx_handler will return -EBUSY. 429 * 430 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 431 * To unregister a rx_handler on a net_device, use 432 * netdev_rx_handler_unregister(). 433 * 434 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 435 * do with the skb. 436 * 437 * If the rx_handler consumed the skb in some way, it should return 438 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 439 * the skb to be delivered in some other way. 440 * 441 * If the rx_handler changed skb->dev, to divert the skb to another 442 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 443 * new device will be called if it exists. 444 * 445 * If the rx_handler decides the skb should be ignored, it should return 446 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 447 * are registered on exact device (ptype->dev == skb->dev). 448 * 449 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 450 * delivered, it should return RX_HANDLER_PASS. 451 * 452 * A device without a registered rx_handler will behave as if rx_handler 453 * returned RX_HANDLER_PASS. 454 */ 455 456 enum rx_handler_result { 457 RX_HANDLER_CONSUMED, 458 RX_HANDLER_ANOTHER, 459 RX_HANDLER_EXACT, 460 RX_HANDLER_PASS, 461 }; 462 typedef enum rx_handler_result rx_handler_result_t; 463 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 464 465 void __napi_schedule(struct napi_struct *n); 466 void __napi_schedule_irqoff(struct napi_struct *n); 467 468 static inline bool napi_disable_pending(struct napi_struct *n) 469 { 470 return test_bit(NAPI_STATE_DISABLE, &n->state); 471 } 472 473 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 474 { 475 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 476 } 477 478 /** 479 * napi_is_scheduled - test if NAPI is scheduled 480 * @n: NAPI context 481 * 482 * This check is "best-effort". With no locking implemented, 483 * a NAPI can be scheduled or terminate right after this check 484 * and produce not precise results. 485 * 486 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 487 * should not be used normally and napi_schedule should be 488 * used instead. 489 * 490 * Use only if the driver really needs to check if a NAPI 491 * is scheduled for example in the context of delayed timer 492 * that can be skipped if a NAPI is already scheduled. 493 * 494 * Return True if NAPI is scheduled, False otherwise. 495 */ 496 static inline bool napi_is_scheduled(struct napi_struct *n) 497 { 498 return test_bit(NAPI_STATE_SCHED, &n->state); 499 } 500 501 bool napi_schedule_prep(struct napi_struct *n); 502 503 /** 504 * napi_schedule - schedule NAPI poll 505 * @n: NAPI context 506 * 507 * Schedule NAPI poll routine to be called if it is not already 508 * running. 509 * Return true if we schedule a NAPI or false if not. 510 * Refer to napi_schedule_prep() for additional reason on why 511 * a NAPI might not be scheduled. 512 */ 513 static inline bool napi_schedule(struct napi_struct *n) 514 { 515 if (napi_schedule_prep(n)) { 516 __napi_schedule(n); 517 return true; 518 } 519 520 return false; 521 } 522 523 /** 524 * napi_schedule_irqoff - schedule NAPI poll 525 * @n: NAPI context 526 * 527 * Variant of napi_schedule(), assuming hard irqs are masked. 528 */ 529 static inline void napi_schedule_irqoff(struct napi_struct *n) 530 { 531 if (napi_schedule_prep(n)) 532 __napi_schedule_irqoff(n); 533 } 534 535 /** 536 * napi_complete_done - NAPI processing complete 537 * @n: NAPI context 538 * @work_done: number of packets processed 539 * 540 * Mark NAPI processing as complete. Should only be called if poll budget 541 * has not been completely consumed. 542 * Prefer over napi_complete(). 543 * Return false if device should avoid rearming interrupts. 544 */ 545 bool napi_complete_done(struct napi_struct *n, int work_done); 546 547 static inline bool napi_complete(struct napi_struct *n) 548 { 549 return napi_complete_done(n, 0); 550 } 551 552 int dev_set_threaded(struct net_device *dev, bool threaded); 553 554 /** 555 * napi_disable - prevent NAPI from scheduling 556 * @n: NAPI context 557 * 558 * Stop NAPI from being scheduled on this context. 559 * Waits till any outstanding processing completes. 560 */ 561 void napi_disable(struct napi_struct *n); 562 563 void napi_enable(struct napi_struct *n); 564 565 /** 566 * napi_synchronize - wait until NAPI is not running 567 * @n: NAPI context 568 * 569 * Wait until NAPI is done being scheduled on this context. 570 * Waits till any outstanding processing completes but 571 * does not disable future activations. 572 */ 573 static inline void napi_synchronize(const struct napi_struct *n) 574 { 575 if (IS_ENABLED(CONFIG_SMP)) 576 while (test_bit(NAPI_STATE_SCHED, &n->state)) 577 msleep(1); 578 else 579 barrier(); 580 } 581 582 /** 583 * napi_if_scheduled_mark_missed - if napi is running, set the 584 * NAPIF_STATE_MISSED 585 * @n: NAPI context 586 * 587 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 588 * NAPI is scheduled. 589 **/ 590 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 591 { 592 unsigned long val, new; 593 594 val = READ_ONCE(n->state); 595 do { 596 if (val & NAPIF_STATE_DISABLE) 597 return true; 598 599 if (!(val & NAPIF_STATE_SCHED)) 600 return false; 601 602 new = val | NAPIF_STATE_MISSED; 603 } while (!try_cmpxchg(&n->state, &val, new)); 604 605 return true; 606 } 607 608 enum netdev_queue_state_t { 609 __QUEUE_STATE_DRV_XOFF, 610 __QUEUE_STATE_STACK_XOFF, 611 __QUEUE_STATE_FROZEN, 612 }; 613 614 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 615 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 616 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 617 618 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 619 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 620 QUEUE_STATE_FROZEN) 621 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 622 QUEUE_STATE_FROZEN) 623 624 /* 625 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 626 * netif_tx_* functions below are used to manipulate this flag. The 627 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 628 * queue independently. The netif_xmit_*stopped functions below are called 629 * to check if the queue has been stopped by the driver or stack (either 630 * of the XOFF bits are set in the state). Drivers should not need to call 631 * netif_xmit*stopped functions, they should only be using netif_tx_*. 632 */ 633 634 struct netdev_queue { 635 /* 636 * read-mostly part 637 */ 638 struct net_device *dev; 639 netdevice_tracker dev_tracker; 640 641 struct Qdisc __rcu *qdisc; 642 struct Qdisc __rcu *qdisc_sleeping; 643 #ifdef CONFIG_SYSFS 644 struct kobject kobj; 645 #endif 646 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 647 int numa_node; 648 #endif 649 unsigned long tx_maxrate; 650 /* 651 * Number of TX timeouts for this queue 652 * (/sys/class/net/DEV/Q/trans_timeout) 653 */ 654 atomic_long_t trans_timeout; 655 656 /* Subordinate device that the queue has been assigned to */ 657 struct net_device *sb_dev; 658 #ifdef CONFIG_XDP_SOCKETS 659 struct xsk_buff_pool *pool; 660 #endif 661 /* NAPI instance for the queue 662 * Readers and writers must hold RTNL 663 */ 664 struct napi_struct *napi; 665 /* 666 * write-mostly part 667 */ 668 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 669 int xmit_lock_owner; 670 /* 671 * Time (in jiffies) of last Tx 672 */ 673 unsigned long trans_start; 674 675 unsigned long state; 676 677 #ifdef CONFIG_BQL 678 struct dql dql; 679 #endif 680 } ____cacheline_aligned_in_smp; 681 682 extern int sysctl_fb_tunnels_only_for_init_net; 683 extern int sysctl_devconf_inherit_init_net; 684 685 /* 686 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 687 * == 1 : For initns only 688 * == 2 : For none. 689 */ 690 static inline bool net_has_fallback_tunnels(const struct net *net) 691 { 692 #if IS_ENABLED(CONFIG_SYSCTL) 693 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 694 695 return !fb_tunnels_only_for_init_net || 696 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 697 #else 698 return true; 699 #endif 700 } 701 702 static inline int net_inherit_devconf(void) 703 { 704 #if IS_ENABLED(CONFIG_SYSCTL) 705 return READ_ONCE(sysctl_devconf_inherit_init_net); 706 #else 707 return 0; 708 #endif 709 } 710 711 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 712 { 713 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 714 return q->numa_node; 715 #else 716 return NUMA_NO_NODE; 717 #endif 718 } 719 720 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 721 { 722 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 723 q->numa_node = node; 724 #endif 725 } 726 727 #ifdef CONFIG_RFS_ACCEL 728 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 729 u16 filter_id); 730 #endif 731 732 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 733 enum xps_map_type { 734 XPS_CPUS = 0, 735 XPS_RXQS, 736 XPS_MAPS_MAX, 737 }; 738 739 #ifdef CONFIG_XPS 740 /* 741 * This structure holds an XPS map which can be of variable length. The 742 * map is an array of queues. 743 */ 744 struct xps_map { 745 unsigned int len; 746 unsigned int alloc_len; 747 struct rcu_head rcu; 748 u16 queues[]; 749 }; 750 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 751 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 752 - sizeof(struct xps_map)) / sizeof(u16)) 753 754 /* 755 * This structure holds all XPS maps for device. Maps are indexed by CPU. 756 * 757 * We keep track of the number of cpus/rxqs used when the struct is allocated, 758 * in nr_ids. This will help not accessing out-of-bound memory. 759 * 760 * We keep track of the number of traffic classes used when the struct is 761 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 762 * not crossing its upper bound, as the original dev->num_tc can be updated in 763 * the meantime. 764 */ 765 struct xps_dev_maps { 766 struct rcu_head rcu; 767 unsigned int nr_ids; 768 s16 num_tc; 769 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 770 }; 771 772 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 773 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 774 775 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 776 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 777 778 #endif /* CONFIG_XPS */ 779 780 #define TC_MAX_QUEUE 16 781 #define TC_BITMASK 15 782 /* HW offloaded queuing disciplines txq count and offset maps */ 783 struct netdev_tc_txq { 784 u16 count; 785 u16 offset; 786 }; 787 788 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 789 /* 790 * This structure is to hold information about the device 791 * configured to run FCoE protocol stack. 792 */ 793 struct netdev_fcoe_hbainfo { 794 char manufacturer[64]; 795 char serial_number[64]; 796 char hardware_version[64]; 797 char driver_version[64]; 798 char optionrom_version[64]; 799 char firmware_version[64]; 800 char model[256]; 801 char model_description[256]; 802 }; 803 #endif 804 805 #define MAX_PHYS_ITEM_ID_LEN 32 806 807 /* This structure holds a unique identifier to identify some 808 * physical item (port for example) used by a netdevice. 809 */ 810 struct netdev_phys_item_id { 811 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 812 unsigned char id_len; 813 }; 814 815 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 816 struct netdev_phys_item_id *b) 817 { 818 return a->id_len == b->id_len && 819 memcmp(a->id, b->id, a->id_len) == 0; 820 } 821 822 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 823 struct sk_buff *skb, 824 struct net_device *sb_dev); 825 826 enum net_device_path_type { 827 DEV_PATH_ETHERNET = 0, 828 DEV_PATH_VLAN, 829 DEV_PATH_BRIDGE, 830 DEV_PATH_PPPOE, 831 DEV_PATH_DSA, 832 DEV_PATH_MTK_WDMA, 833 }; 834 835 struct net_device_path { 836 enum net_device_path_type type; 837 const struct net_device *dev; 838 union { 839 struct { 840 u16 id; 841 __be16 proto; 842 u8 h_dest[ETH_ALEN]; 843 } encap; 844 struct { 845 enum { 846 DEV_PATH_BR_VLAN_KEEP, 847 DEV_PATH_BR_VLAN_TAG, 848 DEV_PATH_BR_VLAN_UNTAG, 849 DEV_PATH_BR_VLAN_UNTAG_HW, 850 } vlan_mode; 851 u16 vlan_id; 852 __be16 vlan_proto; 853 } bridge; 854 struct { 855 int port; 856 u16 proto; 857 } dsa; 858 struct { 859 u8 wdma_idx; 860 u8 queue; 861 u16 wcid; 862 u8 bss; 863 u8 amsdu; 864 } mtk_wdma; 865 }; 866 }; 867 868 #define NET_DEVICE_PATH_STACK_MAX 5 869 #define NET_DEVICE_PATH_VLAN_MAX 2 870 871 struct net_device_path_stack { 872 int num_paths; 873 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 874 }; 875 876 struct net_device_path_ctx { 877 const struct net_device *dev; 878 u8 daddr[ETH_ALEN]; 879 880 int num_vlans; 881 struct { 882 u16 id; 883 __be16 proto; 884 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 885 }; 886 887 enum tc_setup_type { 888 TC_QUERY_CAPS, 889 TC_SETUP_QDISC_MQPRIO, 890 TC_SETUP_CLSU32, 891 TC_SETUP_CLSFLOWER, 892 TC_SETUP_CLSMATCHALL, 893 TC_SETUP_CLSBPF, 894 TC_SETUP_BLOCK, 895 TC_SETUP_QDISC_CBS, 896 TC_SETUP_QDISC_RED, 897 TC_SETUP_QDISC_PRIO, 898 TC_SETUP_QDISC_MQ, 899 TC_SETUP_QDISC_ETF, 900 TC_SETUP_ROOT_QDISC, 901 TC_SETUP_QDISC_GRED, 902 TC_SETUP_QDISC_TAPRIO, 903 TC_SETUP_FT, 904 TC_SETUP_QDISC_ETS, 905 TC_SETUP_QDISC_TBF, 906 TC_SETUP_QDISC_FIFO, 907 TC_SETUP_QDISC_HTB, 908 TC_SETUP_ACT, 909 }; 910 911 /* These structures hold the attributes of bpf state that are being passed 912 * to the netdevice through the bpf op. 913 */ 914 enum bpf_netdev_command { 915 /* Set or clear a bpf program used in the earliest stages of packet 916 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 917 * is responsible for calling bpf_prog_put on any old progs that are 918 * stored. In case of error, the callee need not release the new prog 919 * reference, but on success it takes ownership and must bpf_prog_put 920 * when it is no longer used. 921 */ 922 XDP_SETUP_PROG, 923 XDP_SETUP_PROG_HW, 924 /* BPF program for offload callbacks, invoked at program load time. */ 925 BPF_OFFLOAD_MAP_ALLOC, 926 BPF_OFFLOAD_MAP_FREE, 927 XDP_SETUP_XSK_POOL, 928 }; 929 930 struct bpf_prog_offload_ops; 931 struct netlink_ext_ack; 932 struct xdp_umem; 933 struct xdp_dev_bulk_queue; 934 struct bpf_xdp_link; 935 936 enum bpf_xdp_mode { 937 XDP_MODE_SKB = 0, 938 XDP_MODE_DRV = 1, 939 XDP_MODE_HW = 2, 940 __MAX_XDP_MODE 941 }; 942 943 struct bpf_xdp_entity { 944 struct bpf_prog *prog; 945 struct bpf_xdp_link *link; 946 }; 947 948 struct netdev_bpf { 949 enum bpf_netdev_command command; 950 union { 951 /* XDP_SETUP_PROG */ 952 struct { 953 u32 flags; 954 struct bpf_prog *prog; 955 struct netlink_ext_ack *extack; 956 }; 957 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 958 struct { 959 struct bpf_offloaded_map *offmap; 960 }; 961 /* XDP_SETUP_XSK_POOL */ 962 struct { 963 struct xsk_buff_pool *pool; 964 u16 queue_id; 965 } xsk; 966 }; 967 }; 968 969 /* Flags for ndo_xsk_wakeup. */ 970 #define XDP_WAKEUP_RX (1 << 0) 971 #define XDP_WAKEUP_TX (1 << 1) 972 973 #ifdef CONFIG_XFRM_OFFLOAD 974 struct xfrmdev_ops { 975 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 976 void (*xdo_dev_state_delete) (struct xfrm_state *x); 977 void (*xdo_dev_state_free) (struct xfrm_state *x); 978 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 979 struct xfrm_state *x); 980 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 981 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 982 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 983 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 984 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 985 }; 986 #endif 987 988 struct dev_ifalias { 989 struct rcu_head rcuhead; 990 char ifalias[]; 991 }; 992 993 struct devlink; 994 struct tlsdev_ops; 995 996 struct netdev_net_notifier { 997 struct list_head list; 998 struct notifier_block *nb; 999 }; 1000 1001 /* 1002 * This structure defines the management hooks for network devices. 1003 * The following hooks can be defined; unless noted otherwise, they are 1004 * optional and can be filled with a null pointer. 1005 * 1006 * int (*ndo_init)(struct net_device *dev); 1007 * This function is called once when a network device is registered. 1008 * The network device can use this for any late stage initialization 1009 * or semantic validation. It can fail with an error code which will 1010 * be propagated back to register_netdev. 1011 * 1012 * void (*ndo_uninit)(struct net_device *dev); 1013 * This function is called when device is unregistered or when registration 1014 * fails. It is not called if init fails. 1015 * 1016 * int (*ndo_open)(struct net_device *dev); 1017 * This function is called when a network device transitions to the up 1018 * state. 1019 * 1020 * int (*ndo_stop)(struct net_device *dev); 1021 * This function is called when a network device transitions to the down 1022 * state. 1023 * 1024 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1025 * struct net_device *dev); 1026 * Called when a packet needs to be transmitted. 1027 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1028 * the queue before that can happen; it's for obsolete devices and weird 1029 * corner cases, but the stack really does a non-trivial amount 1030 * of useless work if you return NETDEV_TX_BUSY. 1031 * Required; cannot be NULL. 1032 * 1033 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1034 * struct net_device *dev 1035 * netdev_features_t features); 1036 * Called by core transmit path to determine if device is capable of 1037 * performing offload operations on a given packet. This is to give 1038 * the device an opportunity to implement any restrictions that cannot 1039 * be otherwise expressed by feature flags. The check is called with 1040 * the set of features that the stack has calculated and it returns 1041 * those the driver believes to be appropriate. 1042 * 1043 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1044 * struct net_device *sb_dev); 1045 * Called to decide which queue to use when device supports multiple 1046 * transmit queues. 1047 * 1048 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1049 * This function is called to allow device receiver to make 1050 * changes to configuration when multicast or promiscuous is enabled. 1051 * 1052 * void (*ndo_set_rx_mode)(struct net_device *dev); 1053 * This function is called device changes address list filtering. 1054 * If driver handles unicast address filtering, it should set 1055 * IFF_UNICAST_FLT in its priv_flags. 1056 * 1057 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1058 * This function is called when the Media Access Control address 1059 * needs to be changed. If this interface is not defined, the 1060 * MAC address can not be changed. 1061 * 1062 * int (*ndo_validate_addr)(struct net_device *dev); 1063 * Test if Media Access Control address is valid for the device. 1064 * 1065 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1066 * Old-style ioctl entry point. This is used internally by the 1067 * appletalk and ieee802154 subsystems but is no longer called by 1068 * the device ioctl handler. 1069 * 1070 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1071 * Used by the bonding driver for its device specific ioctls: 1072 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1073 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1074 * 1075 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1076 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1077 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1078 * 1079 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1080 * Used to set network devices bus interface parameters. This interface 1081 * is retained for legacy reasons; new devices should use the bus 1082 * interface (PCI) for low level management. 1083 * 1084 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1085 * Called when a user wants to change the Maximum Transfer Unit 1086 * of a device. 1087 * 1088 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1089 * Callback used when the transmitter has not made any progress 1090 * for dev->watchdog ticks. 1091 * 1092 * void (*ndo_get_stats64)(struct net_device *dev, 1093 * struct rtnl_link_stats64 *storage); 1094 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1095 * Called when a user wants to get the network device usage 1096 * statistics. Drivers must do one of the following: 1097 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1098 * rtnl_link_stats64 structure passed by the caller. 1099 * 2. Define @ndo_get_stats to update a net_device_stats structure 1100 * (which should normally be dev->stats) and return a pointer to 1101 * it. The structure may be changed asynchronously only if each 1102 * field is written atomically. 1103 * 3. Update dev->stats asynchronously and atomically, and define 1104 * neither operation. 1105 * 1106 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1107 * Return true if this device supports offload stats of this attr_id. 1108 * 1109 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1110 * void *attr_data) 1111 * Get statistics for offload operations by attr_id. Write it into the 1112 * attr_data pointer. 1113 * 1114 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1115 * If device supports VLAN filtering this function is called when a 1116 * VLAN id is registered. 1117 * 1118 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1119 * If device supports VLAN filtering this function is called when a 1120 * VLAN id is unregistered. 1121 * 1122 * void (*ndo_poll_controller)(struct net_device *dev); 1123 * 1124 * SR-IOV management functions. 1125 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1126 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1127 * u8 qos, __be16 proto); 1128 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1129 * int max_tx_rate); 1130 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1131 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1132 * int (*ndo_get_vf_config)(struct net_device *dev, 1133 * int vf, struct ifla_vf_info *ivf); 1134 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1135 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1136 * struct nlattr *port[]); 1137 * 1138 * Enable or disable the VF ability to query its RSS Redirection Table and 1139 * Hash Key. This is needed since on some devices VF share this information 1140 * with PF and querying it may introduce a theoretical security risk. 1141 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1142 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1143 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1144 * void *type_data); 1145 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1146 * This is always called from the stack with the rtnl lock held and netif 1147 * tx queues stopped. This allows the netdevice to perform queue 1148 * management safely. 1149 * 1150 * Fiber Channel over Ethernet (FCoE) offload functions. 1151 * int (*ndo_fcoe_enable)(struct net_device *dev); 1152 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1153 * so the underlying device can perform whatever needed configuration or 1154 * initialization to support acceleration of FCoE traffic. 1155 * 1156 * int (*ndo_fcoe_disable)(struct net_device *dev); 1157 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1158 * so the underlying device can perform whatever needed clean-ups to 1159 * stop supporting acceleration of FCoE traffic. 1160 * 1161 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1162 * struct scatterlist *sgl, unsigned int sgc); 1163 * Called when the FCoE Initiator wants to initialize an I/O that 1164 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1165 * perform necessary setup and returns 1 to indicate the device is set up 1166 * successfully to perform DDP on this I/O, otherwise this returns 0. 1167 * 1168 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1169 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1170 * indicated by the FC exchange id 'xid', so the underlying device can 1171 * clean up and reuse resources for later DDP requests. 1172 * 1173 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1174 * struct scatterlist *sgl, unsigned int sgc); 1175 * Called when the FCoE Target wants to initialize an I/O that 1176 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1177 * perform necessary setup and returns 1 to indicate the device is set up 1178 * successfully to perform DDP on this I/O, otherwise this returns 0. 1179 * 1180 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1181 * struct netdev_fcoe_hbainfo *hbainfo); 1182 * Called when the FCoE Protocol stack wants information on the underlying 1183 * device. This information is utilized by the FCoE protocol stack to 1184 * register attributes with Fiber Channel management service as per the 1185 * FC-GS Fabric Device Management Information(FDMI) specification. 1186 * 1187 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1188 * Called when the underlying device wants to override default World Wide 1189 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1190 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1191 * protocol stack to use. 1192 * 1193 * RFS acceleration. 1194 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1195 * u16 rxq_index, u32 flow_id); 1196 * Set hardware filter for RFS. rxq_index is the target queue index; 1197 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1198 * Return the filter ID on success, or a negative error code. 1199 * 1200 * Slave management functions (for bridge, bonding, etc). 1201 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1202 * Called to make another netdev an underling. 1203 * 1204 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1205 * Called to release previously enslaved netdev. 1206 * 1207 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1208 * struct sk_buff *skb, 1209 * bool all_slaves); 1210 * Get the xmit slave of master device. If all_slaves is true, function 1211 * assume all the slaves can transmit. 1212 * 1213 * Feature/offload setting functions. 1214 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1215 * netdev_features_t features); 1216 * Adjusts the requested feature flags according to device-specific 1217 * constraints, and returns the resulting flags. Must not modify 1218 * the device state. 1219 * 1220 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1221 * Called to update device configuration to new features. Passed 1222 * feature set might be less than what was returned by ndo_fix_features()). 1223 * Must return >0 or -errno if it changed dev->features itself. 1224 * 1225 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1226 * struct net_device *dev, 1227 * const unsigned char *addr, u16 vid, u16 flags, 1228 * struct netlink_ext_ack *extack); 1229 * Adds an FDB entry to dev for addr. 1230 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1231 * struct net_device *dev, 1232 * const unsigned char *addr, u16 vid) 1233 * Deletes the FDB entry from dev coresponding to addr. 1234 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1235 * struct netlink_ext_ack *extack); 1236 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1237 * struct net_device *dev, struct net_device *filter_dev, 1238 * int *idx) 1239 * Used to add FDB entries to dump requests. Implementers should add 1240 * entries to skb and update idx with the number of entries. 1241 * 1242 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1243 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1244 * Adds an MDB entry to dev. 1245 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1246 * struct netlink_ext_ack *extack); 1247 * Deletes the MDB entry from dev. 1248 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1249 * struct netlink_ext_ack *extack); 1250 * Bulk deletes MDB entries from dev. 1251 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1252 * struct netlink_callback *cb); 1253 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1254 * callback is used by core rtnetlink code. 1255 * 1256 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1257 * u16 flags, struct netlink_ext_ack *extack) 1258 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1259 * struct net_device *dev, u32 filter_mask, 1260 * int nlflags) 1261 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1262 * u16 flags); 1263 * 1264 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1265 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1266 * which do not represent real hardware may define this to allow their 1267 * userspace components to manage their virtual carrier state. Devices 1268 * that determine carrier state from physical hardware properties (eg 1269 * network cables) or protocol-dependent mechanisms (eg 1270 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1271 * 1272 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1273 * struct netdev_phys_item_id *ppid); 1274 * Called to get ID of physical port of this device. If driver does 1275 * not implement this, it is assumed that the hw is not able to have 1276 * multiple net devices on single physical port. 1277 * 1278 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1279 * struct netdev_phys_item_id *ppid) 1280 * Called to get the parent ID of the physical port of this device. 1281 * 1282 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1283 * struct net_device *dev) 1284 * Called by upper layer devices to accelerate switching or other 1285 * station functionality into hardware. 'pdev is the lowerdev 1286 * to use for the offload and 'dev' is the net device that will 1287 * back the offload. Returns a pointer to the private structure 1288 * the upper layer will maintain. 1289 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1290 * Called by upper layer device to delete the station created 1291 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1292 * the station and priv is the structure returned by the add 1293 * operation. 1294 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1295 * int queue_index, u32 maxrate); 1296 * Called when a user wants to set a max-rate limitation of specific 1297 * TX queue. 1298 * int (*ndo_get_iflink)(const struct net_device *dev); 1299 * Called to get the iflink value of this device. 1300 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1301 * This function is used to get egress tunnel information for given skb. 1302 * This is useful for retrieving outer tunnel header parameters while 1303 * sampling packet. 1304 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1305 * This function is used to specify the headroom that the skb must 1306 * consider when allocation skb during packet reception. Setting 1307 * appropriate rx headroom value allows avoiding skb head copy on 1308 * forward. Setting a negative value resets the rx headroom to the 1309 * default value. 1310 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1311 * This function is used to set or query state related to XDP on the 1312 * netdevice and manage BPF offload. See definition of 1313 * enum bpf_netdev_command for details. 1314 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1315 * u32 flags); 1316 * This function is used to submit @n XDP packets for transmit on a 1317 * netdevice. Returns number of frames successfully transmitted, frames 1318 * that got dropped are freed/returned via xdp_return_frame(). 1319 * Returns negative number, means general error invoking ndo, meaning 1320 * no frames were xmit'ed and core-caller will free all frames. 1321 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1322 * struct xdp_buff *xdp); 1323 * Get the xmit slave of master device based on the xdp_buff. 1324 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1325 * This function is used to wake up the softirq, ksoftirqd or kthread 1326 * responsible for sending and/or receiving packets on a specific 1327 * queue id bound to an AF_XDP socket. The flags field specifies if 1328 * only RX, only Tx, or both should be woken up using the flags 1329 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1330 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1331 * int cmd); 1332 * Add, change, delete or get information on an IPv4 tunnel. 1333 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1334 * If a device is paired with a peer device, return the peer instance. 1335 * The caller must be under RCU read context. 1336 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1337 * Get the forwarding path to reach the real device from the HW destination address 1338 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1339 * const struct skb_shared_hwtstamps *hwtstamps, 1340 * bool cycles); 1341 * Get hardware timestamp based on normal/adjustable time or free running 1342 * cycle counter. This function is required if physical clock supports a 1343 * free running cycle counter. 1344 * 1345 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1346 * struct kernel_hwtstamp_config *kernel_config); 1347 * Get the currently configured hardware timestamping parameters for the 1348 * NIC device. 1349 * 1350 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1351 * struct kernel_hwtstamp_config *kernel_config, 1352 * struct netlink_ext_ack *extack); 1353 * Change the hardware timestamping parameters for NIC device. 1354 */ 1355 struct net_device_ops { 1356 int (*ndo_init)(struct net_device *dev); 1357 void (*ndo_uninit)(struct net_device *dev); 1358 int (*ndo_open)(struct net_device *dev); 1359 int (*ndo_stop)(struct net_device *dev); 1360 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1361 struct net_device *dev); 1362 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1363 struct net_device *dev, 1364 netdev_features_t features); 1365 u16 (*ndo_select_queue)(struct net_device *dev, 1366 struct sk_buff *skb, 1367 struct net_device *sb_dev); 1368 void (*ndo_change_rx_flags)(struct net_device *dev, 1369 int flags); 1370 void (*ndo_set_rx_mode)(struct net_device *dev); 1371 int (*ndo_set_mac_address)(struct net_device *dev, 1372 void *addr); 1373 int (*ndo_validate_addr)(struct net_device *dev); 1374 int (*ndo_do_ioctl)(struct net_device *dev, 1375 struct ifreq *ifr, int cmd); 1376 int (*ndo_eth_ioctl)(struct net_device *dev, 1377 struct ifreq *ifr, int cmd); 1378 int (*ndo_siocbond)(struct net_device *dev, 1379 struct ifreq *ifr, int cmd); 1380 int (*ndo_siocwandev)(struct net_device *dev, 1381 struct if_settings *ifs); 1382 int (*ndo_siocdevprivate)(struct net_device *dev, 1383 struct ifreq *ifr, 1384 void __user *data, int cmd); 1385 int (*ndo_set_config)(struct net_device *dev, 1386 struct ifmap *map); 1387 int (*ndo_change_mtu)(struct net_device *dev, 1388 int new_mtu); 1389 int (*ndo_neigh_setup)(struct net_device *dev, 1390 struct neigh_parms *); 1391 void (*ndo_tx_timeout) (struct net_device *dev, 1392 unsigned int txqueue); 1393 1394 void (*ndo_get_stats64)(struct net_device *dev, 1395 struct rtnl_link_stats64 *storage); 1396 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1397 int (*ndo_get_offload_stats)(int attr_id, 1398 const struct net_device *dev, 1399 void *attr_data); 1400 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1401 1402 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1403 __be16 proto, u16 vid); 1404 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1405 __be16 proto, u16 vid); 1406 #ifdef CONFIG_NET_POLL_CONTROLLER 1407 void (*ndo_poll_controller)(struct net_device *dev); 1408 int (*ndo_netpoll_setup)(struct net_device *dev, 1409 struct netpoll_info *info); 1410 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1411 #endif 1412 int (*ndo_set_vf_mac)(struct net_device *dev, 1413 int queue, u8 *mac); 1414 int (*ndo_set_vf_vlan)(struct net_device *dev, 1415 int queue, u16 vlan, 1416 u8 qos, __be16 proto); 1417 int (*ndo_set_vf_rate)(struct net_device *dev, 1418 int vf, int min_tx_rate, 1419 int max_tx_rate); 1420 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1421 int vf, bool setting); 1422 int (*ndo_set_vf_trust)(struct net_device *dev, 1423 int vf, bool setting); 1424 int (*ndo_get_vf_config)(struct net_device *dev, 1425 int vf, 1426 struct ifla_vf_info *ivf); 1427 int (*ndo_set_vf_link_state)(struct net_device *dev, 1428 int vf, int link_state); 1429 int (*ndo_get_vf_stats)(struct net_device *dev, 1430 int vf, 1431 struct ifla_vf_stats 1432 *vf_stats); 1433 int (*ndo_set_vf_port)(struct net_device *dev, 1434 int vf, 1435 struct nlattr *port[]); 1436 int (*ndo_get_vf_port)(struct net_device *dev, 1437 int vf, struct sk_buff *skb); 1438 int (*ndo_get_vf_guid)(struct net_device *dev, 1439 int vf, 1440 struct ifla_vf_guid *node_guid, 1441 struct ifla_vf_guid *port_guid); 1442 int (*ndo_set_vf_guid)(struct net_device *dev, 1443 int vf, u64 guid, 1444 int guid_type); 1445 int (*ndo_set_vf_rss_query_en)( 1446 struct net_device *dev, 1447 int vf, bool setting); 1448 int (*ndo_setup_tc)(struct net_device *dev, 1449 enum tc_setup_type type, 1450 void *type_data); 1451 #if IS_ENABLED(CONFIG_FCOE) 1452 int (*ndo_fcoe_enable)(struct net_device *dev); 1453 int (*ndo_fcoe_disable)(struct net_device *dev); 1454 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1455 u16 xid, 1456 struct scatterlist *sgl, 1457 unsigned int sgc); 1458 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1459 u16 xid); 1460 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1461 u16 xid, 1462 struct scatterlist *sgl, 1463 unsigned int sgc); 1464 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1465 struct netdev_fcoe_hbainfo *hbainfo); 1466 #endif 1467 1468 #if IS_ENABLED(CONFIG_LIBFCOE) 1469 #define NETDEV_FCOE_WWNN 0 1470 #define NETDEV_FCOE_WWPN 1 1471 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1472 u64 *wwn, int type); 1473 #endif 1474 1475 #ifdef CONFIG_RFS_ACCEL 1476 int (*ndo_rx_flow_steer)(struct net_device *dev, 1477 const struct sk_buff *skb, 1478 u16 rxq_index, 1479 u32 flow_id); 1480 #endif 1481 int (*ndo_add_slave)(struct net_device *dev, 1482 struct net_device *slave_dev, 1483 struct netlink_ext_ack *extack); 1484 int (*ndo_del_slave)(struct net_device *dev, 1485 struct net_device *slave_dev); 1486 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1487 struct sk_buff *skb, 1488 bool all_slaves); 1489 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1490 struct sock *sk); 1491 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1492 netdev_features_t features); 1493 int (*ndo_set_features)(struct net_device *dev, 1494 netdev_features_t features); 1495 int (*ndo_neigh_construct)(struct net_device *dev, 1496 struct neighbour *n); 1497 void (*ndo_neigh_destroy)(struct net_device *dev, 1498 struct neighbour *n); 1499 1500 int (*ndo_fdb_add)(struct ndmsg *ndm, 1501 struct nlattr *tb[], 1502 struct net_device *dev, 1503 const unsigned char *addr, 1504 u16 vid, 1505 u16 flags, 1506 struct netlink_ext_ack *extack); 1507 int (*ndo_fdb_del)(struct ndmsg *ndm, 1508 struct nlattr *tb[], 1509 struct net_device *dev, 1510 const unsigned char *addr, 1511 u16 vid, struct netlink_ext_ack *extack); 1512 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1513 struct net_device *dev, 1514 struct netlink_ext_ack *extack); 1515 int (*ndo_fdb_dump)(struct sk_buff *skb, 1516 struct netlink_callback *cb, 1517 struct net_device *dev, 1518 struct net_device *filter_dev, 1519 int *idx); 1520 int (*ndo_fdb_get)(struct sk_buff *skb, 1521 struct nlattr *tb[], 1522 struct net_device *dev, 1523 const unsigned char *addr, 1524 u16 vid, u32 portid, u32 seq, 1525 struct netlink_ext_ack *extack); 1526 int (*ndo_mdb_add)(struct net_device *dev, 1527 struct nlattr *tb[], 1528 u16 nlmsg_flags, 1529 struct netlink_ext_ack *extack); 1530 int (*ndo_mdb_del)(struct net_device *dev, 1531 struct nlattr *tb[], 1532 struct netlink_ext_ack *extack); 1533 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1534 struct nlattr *tb[], 1535 struct netlink_ext_ack *extack); 1536 int (*ndo_mdb_dump)(struct net_device *dev, 1537 struct sk_buff *skb, 1538 struct netlink_callback *cb); 1539 int (*ndo_mdb_get)(struct net_device *dev, 1540 struct nlattr *tb[], u32 portid, 1541 u32 seq, 1542 struct netlink_ext_ack *extack); 1543 int (*ndo_bridge_setlink)(struct net_device *dev, 1544 struct nlmsghdr *nlh, 1545 u16 flags, 1546 struct netlink_ext_ack *extack); 1547 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1548 u32 pid, u32 seq, 1549 struct net_device *dev, 1550 u32 filter_mask, 1551 int nlflags); 1552 int (*ndo_bridge_dellink)(struct net_device *dev, 1553 struct nlmsghdr *nlh, 1554 u16 flags); 1555 int (*ndo_change_carrier)(struct net_device *dev, 1556 bool new_carrier); 1557 int (*ndo_get_phys_port_id)(struct net_device *dev, 1558 struct netdev_phys_item_id *ppid); 1559 int (*ndo_get_port_parent_id)(struct net_device *dev, 1560 struct netdev_phys_item_id *ppid); 1561 int (*ndo_get_phys_port_name)(struct net_device *dev, 1562 char *name, size_t len); 1563 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1564 struct net_device *dev); 1565 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1566 void *priv); 1567 1568 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1569 int queue_index, 1570 u32 maxrate); 1571 int (*ndo_get_iflink)(const struct net_device *dev); 1572 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1573 struct sk_buff *skb); 1574 void (*ndo_set_rx_headroom)(struct net_device *dev, 1575 int needed_headroom); 1576 int (*ndo_bpf)(struct net_device *dev, 1577 struct netdev_bpf *bpf); 1578 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1579 struct xdp_frame **xdp, 1580 u32 flags); 1581 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1582 struct xdp_buff *xdp); 1583 int (*ndo_xsk_wakeup)(struct net_device *dev, 1584 u32 queue_id, u32 flags); 1585 int (*ndo_tunnel_ctl)(struct net_device *dev, 1586 struct ip_tunnel_parm *p, int cmd); 1587 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1588 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1589 struct net_device_path *path); 1590 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1591 const struct skb_shared_hwtstamps *hwtstamps, 1592 bool cycles); 1593 int (*ndo_hwtstamp_get)(struct net_device *dev, 1594 struct kernel_hwtstamp_config *kernel_config); 1595 int (*ndo_hwtstamp_set)(struct net_device *dev, 1596 struct kernel_hwtstamp_config *kernel_config, 1597 struct netlink_ext_ack *extack); 1598 }; 1599 1600 /** 1601 * enum netdev_priv_flags - &struct net_device priv_flags 1602 * 1603 * These are the &struct net_device, they are only set internally 1604 * by drivers and used in the kernel. These flags are invisible to 1605 * userspace; this means that the order of these flags can change 1606 * during any kernel release. 1607 * 1608 * You should have a pretty good reason to be extending these flags. 1609 * 1610 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1611 * @IFF_EBRIDGE: Ethernet bridging device 1612 * @IFF_BONDING: bonding master or slave 1613 * @IFF_ISATAP: ISATAP interface (RFC4214) 1614 * @IFF_WAN_HDLC: WAN HDLC device 1615 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1616 * release skb->dst 1617 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1618 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1619 * @IFF_MACVLAN_PORT: device used as macvlan port 1620 * @IFF_BRIDGE_PORT: device used as bridge port 1621 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1622 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1623 * @IFF_UNICAST_FLT: Supports unicast filtering 1624 * @IFF_TEAM_PORT: device used as team port 1625 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1626 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1627 * change when it's running 1628 * @IFF_MACVLAN: Macvlan device 1629 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1630 * underlying stacked devices 1631 * @IFF_L3MDEV_MASTER: device is an L3 master device 1632 * @IFF_NO_QUEUE: device can run without qdisc attached 1633 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1634 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1635 * @IFF_TEAM: device is a team device 1636 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1637 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1638 * entity (i.e. the master device for bridged veth) 1639 * @IFF_MACSEC: device is a MACsec device 1640 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1641 * @IFF_FAILOVER: device is a failover master device 1642 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1643 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1644 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1645 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1646 * skb_headlen(skb) == 0 (data starts from frag0) 1647 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1648 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1649 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1650 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1651 */ 1652 enum netdev_priv_flags { 1653 IFF_802_1Q_VLAN = 1<<0, 1654 IFF_EBRIDGE = 1<<1, 1655 IFF_BONDING = 1<<2, 1656 IFF_ISATAP = 1<<3, 1657 IFF_WAN_HDLC = 1<<4, 1658 IFF_XMIT_DST_RELEASE = 1<<5, 1659 IFF_DONT_BRIDGE = 1<<6, 1660 IFF_DISABLE_NETPOLL = 1<<7, 1661 IFF_MACVLAN_PORT = 1<<8, 1662 IFF_BRIDGE_PORT = 1<<9, 1663 IFF_OVS_DATAPATH = 1<<10, 1664 IFF_TX_SKB_SHARING = 1<<11, 1665 IFF_UNICAST_FLT = 1<<12, 1666 IFF_TEAM_PORT = 1<<13, 1667 IFF_SUPP_NOFCS = 1<<14, 1668 IFF_LIVE_ADDR_CHANGE = 1<<15, 1669 IFF_MACVLAN = 1<<16, 1670 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1671 IFF_L3MDEV_MASTER = 1<<18, 1672 IFF_NO_QUEUE = 1<<19, 1673 IFF_OPENVSWITCH = 1<<20, 1674 IFF_L3MDEV_SLAVE = 1<<21, 1675 IFF_TEAM = 1<<22, 1676 IFF_RXFH_CONFIGURED = 1<<23, 1677 IFF_PHONY_HEADROOM = 1<<24, 1678 IFF_MACSEC = 1<<25, 1679 IFF_NO_RX_HANDLER = 1<<26, 1680 IFF_FAILOVER = 1<<27, 1681 IFF_FAILOVER_SLAVE = 1<<28, 1682 IFF_L3MDEV_RX_HANDLER = 1<<29, 1683 IFF_NO_ADDRCONF = BIT_ULL(30), 1684 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1685 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1686 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1687 }; 1688 1689 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1690 #define IFF_EBRIDGE IFF_EBRIDGE 1691 #define IFF_BONDING IFF_BONDING 1692 #define IFF_ISATAP IFF_ISATAP 1693 #define IFF_WAN_HDLC IFF_WAN_HDLC 1694 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1695 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1696 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1697 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1698 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1699 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1700 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1701 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1702 #define IFF_TEAM_PORT IFF_TEAM_PORT 1703 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1704 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1705 #define IFF_MACVLAN IFF_MACVLAN 1706 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1707 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1708 #define IFF_NO_QUEUE IFF_NO_QUEUE 1709 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1710 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1711 #define IFF_TEAM IFF_TEAM 1712 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1713 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1714 #define IFF_MACSEC IFF_MACSEC 1715 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1716 #define IFF_FAILOVER IFF_FAILOVER 1717 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1718 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1719 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1720 1721 /* Specifies the type of the struct net_device::ml_priv pointer */ 1722 enum netdev_ml_priv_type { 1723 ML_PRIV_NONE, 1724 ML_PRIV_CAN, 1725 }; 1726 1727 enum netdev_stat_type { 1728 NETDEV_PCPU_STAT_NONE, 1729 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1730 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1731 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1732 }; 1733 1734 enum netdev_reg_state { 1735 NETREG_UNINITIALIZED = 0, 1736 NETREG_REGISTERED, /* completed register_netdevice */ 1737 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1738 NETREG_UNREGISTERED, /* completed unregister todo */ 1739 NETREG_RELEASED, /* called free_netdev */ 1740 NETREG_DUMMY, /* dummy device for NAPI poll */ 1741 }; 1742 1743 /** 1744 * struct net_device - The DEVICE structure. 1745 * 1746 * Actually, this whole structure is a big mistake. It mixes I/O 1747 * data with strictly "high-level" data, and it has to know about 1748 * almost every data structure used in the INET module. 1749 * 1750 * @name: This is the first field of the "visible" part of this structure 1751 * (i.e. as seen by users in the "Space.c" file). It is the name 1752 * of the interface. 1753 * 1754 * @name_node: Name hashlist node 1755 * @ifalias: SNMP alias 1756 * @mem_end: Shared memory end 1757 * @mem_start: Shared memory start 1758 * @base_addr: Device I/O address 1759 * @irq: Device IRQ number 1760 * 1761 * @state: Generic network queuing layer state, see netdev_state_t 1762 * @dev_list: The global list of network devices 1763 * @napi_list: List entry used for polling NAPI devices 1764 * @unreg_list: List entry when we are unregistering the 1765 * device; see the function unregister_netdev 1766 * @close_list: List entry used when we are closing the device 1767 * @ptype_all: Device-specific packet handlers for all protocols 1768 * @ptype_specific: Device-specific, protocol-specific packet handlers 1769 * 1770 * @adj_list: Directly linked devices, like slaves for bonding 1771 * @features: Currently active device features 1772 * @hw_features: User-changeable features 1773 * 1774 * @wanted_features: User-requested features 1775 * @vlan_features: Mask of features inheritable by VLAN devices 1776 * 1777 * @hw_enc_features: Mask of features inherited by encapsulating devices 1778 * This field indicates what encapsulation 1779 * offloads the hardware is capable of doing, 1780 * and drivers will need to set them appropriately. 1781 * 1782 * @mpls_features: Mask of features inheritable by MPLS 1783 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1784 * 1785 * @ifindex: interface index 1786 * @group: The group the device belongs to 1787 * 1788 * @stats: Statistics struct, which was left as a legacy, use 1789 * rtnl_link_stats64 instead 1790 * 1791 * @core_stats: core networking counters, 1792 * do not use this in drivers 1793 * @carrier_up_count: Number of times the carrier has been up 1794 * @carrier_down_count: Number of times the carrier has been down 1795 * 1796 * @wireless_handlers: List of functions to handle Wireless Extensions, 1797 * instead of ioctl, 1798 * see <net/iw_handler.h> for details. 1799 * @wireless_data: Instance data managed by the core of wireless extensions 1800 * 1801 * @netdev_ops: Includes several pointers to callbacks, 1802 * if one wants to override the ndo_*() functions 1803 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1804 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1805 * @ethtool_ops: Management operations 1806 * @l3mdev_ops: Layer 3 master device operations 1807 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1808 * discovery handling. Necessary for e.g. 6LoWPAN. 1809 * @xfrmdev_ops: Transformation offload operations 1810 * @tlsdev_ops: Transport Layer Security offload operations 1811 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1812 * of Layer 2 headers. 1813 * 1814 * @flags: Interface flags (a la BSD) 1815 * @xdp_features: XDP capability supported by the device 1816 * @priv_flags: Like 'flags' but invisible to userspace, 1817 * see if.h for the definitions 1818 * @gflags: Global flags ( kept as legacy ) 1819 * @padded: How much padding added by alloc_netdev() 1820 * @operstate: RFC2863 operstate 1821 * @link_mode: Mapping policy to operstate 1822 * @if_port: Selectable AUI, TP, ... 1823 * @dma: DMA channel 1824 * @mtu: Interface MTU value 1825 * @min_mtu: Interface Minimum MTU value 1826 * @max_mtu: Interface Maximum MTU value 1827 * @type: Interface hardware type 1828 * @hard_header_len: Maximum hardware header length. 1829 * @min_header_len: Minimum hardware header length 1830 * 1831 * @needed_headroom: Extra headroom the hardware may need, but not in all 1832 * cases can this be guaranteed 1833 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1834 * cases can this be guaranteed. Some cases also use 1835 * LL_MAX_HEADER instead to allocate the skb 1836 * 1837 * interface address info: 1838 * 1839 * @perm_addr: Permanent hw address 1840 * @addr_assign_type: Hw address assignment type 1841 * @addr_len: Hardware address length 1842 * @upper_level: Maximum depth level of upper devices. 1843 * @lower_level: Maximum depth level of lower devices. 1844 * @neigh_priv_len: Used in neigh_alloc() 1845 * @dev_id: Used to differentiate devices that share 1846 * the same link layer address 1847 * @dev_port: Used to differentiate devices that share 1848 * the same function 1849 * @addr_list_lock: XXX: need comments on this one 1850 * @name_assign_type: network interface name assignment type 1851 * @uc_promisc: Counter that indicates promiscuous mode 1852 * has been enabled due to the need to listen to 1853 * additional unicast addresses in a device that 1854 * does not implement ndo_set_rx_mode() 1855 * @uc: unicast mac addresses 1856 * @mc: multicast mac addresses 1857 * @dev_addrs: list of device hw addresses 1858 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1859 * @promiscuity: Number of times the NIC is told to work in 1860 * promiscuous mode; if it becomes 0 the NIC will 1861 * exit promiscuous mode 1862 * @allmulti: Counter, enables or disables allmulticast mode 1863 * 1864 * @vlan_info: VLAN info 1865 * @dsa_ptr: dsa specific data 1866 * @tipc_ptr: TIPC specific data 1867 * @atalk_ptr: AppleTalk link 1868 * @ip_ptr: IPv4 specific data 1869 * @ip6_ptr: IPv6 specific data 1870 * @ax25_ptr: AX.25 specific data 1871 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1872 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1873 * device struct 1874 * @mpls_ptr: mpls_dev struct pointer 1875 * @mctp_ptr: MCTP specific data 1876 * 1877 * @dev_addr: Hw address (before bcast, 1878 * because most packets are unicast) 1879 * 1880 * @_rx: Array of RX queues 1881 * @num_rx_queues: Number of RX queues 1882 * allocated at register_netdev() time 1883 * @real_num_rx_queues: Number of RX queues currently active in device 1884 * @xdp_prog: XDP sockets filter program pointer 1885 * @gro_flush_timeout: timeout for GRO layer in NAPI 1886 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1887 * allow to avoid NIC hard IRQ, on busy queues. 1888 * 1889 * @rx_handler: handler for received packets 1890 * @rx_handler_data: XXX: need comments on this one 1891 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1892 * @ingress_queue: XXX: need comments on this one 1893 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1894 * @broadcast: hw bcast address 1895 * 1896 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1897 * indexed by RX queue number. Assigned by driver. 1898 * This must only be set if the ndo_rx_flow_steer 1899 * operation is defined 1900 * @index_hlist: Device index hash chain 1901 * 1902 * @_tx: Array of TX queues 1903 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1904 * @real_num_tx_queues: Number of TX queues currently active in device 1905 * @qdisc: Root qdisc from userspace point of view 1906 * @tx_queue_len: Max frames per queue allowed 1907 * @tx_global_lock: XXX: need comments on this one 1908 * @xdp_bulkq: XDP device bulk queue 1909 * @xps_maps: all CPUs/RXQs maps for XPS device 1910 * 1911 * @xps_maps: XXX: need comments on this one 1912 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1913 * @nf_hooks_egress: netfilter hooks executed for egress packets 1914 * @qdisc_hash: qdisc hash table 1915 * @watchdog_timeo: Represents the timeout that is used by 1916 * the watchdog (see dev_watchdog()) 1917 * @watchdog_timer: List of timers 1918 * 1919 * @proto_down_reason: reason a netdev interface is held down 1920 * @pcpu_refcnt: Number of references to this device 1921 * @dev_refcnt: Number of references to this device 1922 * @refcnt_tracker: Tracker directory for tracked references to this device 1923 * @todo_list: Delayed register/unregister 1924 * @link_watch_list: XXX: need comments on this one 1925 * 1926 * @reg_state: Register/unregister state machine 1927 * @dismantle: Device is going to be freed 1928 * @rtnl_link_state: This enum represents the phases of creating 1929 * a new link 1930 * 1931 * @needs_free_netdev: Should unregister perform free_netdev? 1932 * @priv_destructor: Called from unregister 1933 * @npinfo: XXX: need comments on this one 1934 * @nd_net: Network namespace this network device is inside 1935 * 1936 * @ml_priv: Mid-layer private 1937 * @ml_priv_type: Mid-layer private type 1938 * 1939 * @pcpu_stat_type: Type of device statistics which the core should 1940 * allocate/free: none, lstats, tstats, dstats. none 1941 * means the driver is handling statistics allocation/ 1942 * freeing internally. 1943 * @lstats: Loopback statistics: packets, bytes 1944 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1945 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1946 * 1947 * @garp_port: GARP 1948 * @mrp_port: MRP 1949 * 1950 * @dm_private: Drop monitor private 1951 * 1952 * @dev: Class/net/name entry 1953 * @sysfs_groups: Space for optional device, statistics and wireless 1954 * sysfs groups 1955 * 1956 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1957 * @rtnl_link_ops: Rtnl_link_ops 1958 * @stat_ops: Optional ops for queue-aware statistics 1959 * 1960 * @gso_max_size: Maximum size of generic segmentation offload 1961 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1962 * @gso_max_segs: Maximum number of segments that can be passed to the 1963 * NIC for GSO 1964 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1965 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1966 * for IPv4. 1967 * 1968 * @dcbnl_ops: Data Center Bridging netlink ops 1969 * @num_tc: Number of traffic classes in the net device 1970 * @tc_to_txq: XXX: need comments on this one 1971 * @prio_tc_map: XXX: need comments on this one 1972 * 1973 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1974 * 1975 * @priomap: XXX: need comments on this one 1976 * @phydev: Physical device may attach itself 1977 * for hardware timestamping 1978 * @sfp_bus: attached &struct sfp_bus structure. 1979 * 1980 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1981 * 1982 * @proto_down: protocol port state information can be sent to the 1983 * switch driver and used to set the phys state of the 1984 * switch port. 1985 * 1986 * @wol_enabled: Wake-on-LAN is enabled 1987 * 1988 * @threaded: napi threaded mode is enabled 1989 * 1990 * @net_notifier_list: List of per-net netdev notifier block 1991 * that follow this device when it is moved 1992 * to another network namespace. 1993 * 1994 * @macsec_ops: MACsec offloading ops 1995 * 1996 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1997 * offload capabilities of the device 1998 * @udp_tunnel_nic: UDP tunnel offload state 1999 * @xdp_state: stores info on attached XDP BPF programs 2000 * 2001 * @nested_level: Used as a parameter of spin_lock_nested() of 2002 * dev->addr_list_lock. 2003 * @unlink_list: As netif_addr_lock() can be called recursively, 2004 * keep a list of interfaces to be deleted. 2005 * @gro_max_size: Maximum size of aggregated packet in generic 2006 * receive offload (GRO) 2007 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2008 * receive offload (GRO), for IPv4. 2009 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2010 * zero copy driver 2011 * 2012 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2013 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2014 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2015 * @dev_registered_tracker: tracker for reference held while 2016 * registered 2017 * @offload_xstats_l3: L3 HW stats for this netdevice. 2018 * 2019 * @devlink_port: Pointer to related devlink port structure. 2020 * Assigned by a driver before netdev registration using 2021 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2022 * during the time netdevice is registered. 2023 * 2024 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2025 * where the clock is recovered. 2026 * 2027 * FIXME: cleanup struct net_device such that network protocol info 2028 * moves out. 2029 */ 2030 2031 struct net_device { 2032 /* Cacheline organization can be found documented in 2033 * Documentation/networking/net_cachelines/net_device.rst. 2034 * Please update the document when adding new fields. 2035 */ 2036 2037 /* TX read-mostly hotpath */ 2038 __cacheline_group_begin(net_device_read_tx); 2039 unsigned long long priv_flags; 2040 const struct net_device_ops *netdev_ops; 2041 const struct header_ops *header_ops; 2042 struct netdev_queue *_tx; 2043 netdev_features_t gso_partial_features; 2044 unsigned int real_num_tx_queues; 2045 unsigned int gso_max_size; 2046 unsigned int gso_ipv4_max_size; 2047 u16 gso_max_segs; 2048 s16 num_tc; 2049 /* Note : dev->mtu is often read without holding a lock. 2050 * Writers usually hold RTNL. 2051 * It is recommended to use READ_ONCE() to annotate the reads, 2052 * and to use WRITE_ONCE() to annotate the writes. 2053 */ 2054 unsigned int mtu; 2055 unsigned short needed_headroom; 2056 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2057 #ifdef CONFIG_XPS 2058 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2059 #endif 2060 #ifdef CONFIG_NETFILTER_EGRESS 2061 struct nf_hook_entries __rcu *nf_hooks_egress; 2062 #endif 2063 #ifdef CONFIG_NET_XGRESS 2064 struct bpf_mprog_entry __rcu *tcx_egress; 2065 #endif 2066 __cacheline_group_end(net_device_read_tx); 2067 2068 /* TXRX read-mostly hotpath */ 2069 __cacheline_group_begin(net_device_read_txrx); 2070 union { 2071 struct pcpu_lstats __percpu *lstats; 2072 struct pcpu_sw_netstats __percpu *tstats; 2073 struct pcpu_dstats __percpu *dstats; 2074 }; 2075 unsigned long state; 2076 unsigned int flags; 2077 unsigned short hard_header_len; 2078 netdev_features_t features; 2079 struct inet6_dev __rcu *ip6_ptr; 2080 __cacheline_group_end(net_device_read_txrx); 2081 2082 /* RX read-mostly hotpath */ 2083 __cacheline_group_begin(net_device_read_rx); 2084 struct bpf_prog __rcu *xdp_prog; 2085 struct list_head ptype_specific; 2086 int ifindex; 2087 unsigned int real_num_rx_queues; 2088 struct netdev_rx_queue *_rx; 2089 unsigned long gro_flush_timeout; 2090 int napi_defer_hard_irqs; 2091 unsigned int gro_max_size; 2092 unsigned int gro_ipv4_max_size; 2093 rx_handler_func_t __rcu *rx_handler; 2094 void __rcu *rx_handler_data; 2095 possible_net_t nd_net; 2096 #ifdef CONFIG_NETPOLL 2097 struct netpoll_info __rcu *npinfo; 2098 #endif 2099 #ifdef CONFIG_NET_XGRESS 2100 struct bpf_mprog_entry __rcu *tcx_ingress; 2101 #endif 2102 __cacheline_group_end(net_device_read_rx); 2103 2104 char name[IFNAMSIZ]; 2105 struct netdev_name_node *name_node; 2106 struct dev_ifalias __rcu *ifalias; 2107 /* 2108 * I/O specific fields 2109 * FIXME: Merge these and struct ifmap into one 2110 */ 2111 unsigned long mem_end; 2112 unsigned long mem_start; 2113 unsigned long base_addr; 2114 2115 /* 2116 * Some hardware also needs these fields (state,dev_list, 2117 * napi_list,unreg_list,close_list) but they are not 2118 * part of the usual set specified in Space.c. 2119 */ 2120 2121 2122 struct list_head dev_list; 2123 struct list_head napi_list; 2124 struct list_head unreg_list; 2125 struct list_head close_list; 2126 struct list_head ptype_all; 2127 2128 struct { 2129 struct list_head upper; 2130 struct list_head lower; 2131 } adj_list; 2132 2133 /* Read-mostly cache-line for fast-path access */ 2134 xdp_features_t xdp_features; 2135 const struct xdp_metadata_ops *xdp_metadata_ops; 2136 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2137 unsigned short gflags; 2138 2139 unsigned short needed_tailroom; 2140 2141 netdev_features_t hw_features; 2142 netdev_features_t wanted_features; 2143 netdev_features_t vlan_features; 2144 netdev_features_t hw_enc_features; 2145 netdev_features_t mpls_features; 2146 2147 unsigned int min_mtu; 2148 unsigned int max_mtu; 2149 unsigned short type; 2150 unsigned char min_header_len; 2151 unsigned char name_assign_type; 2152 2153 int group; 2154 2155 struct net_device_stats stats; /* not used by modern drivers */ 2156 2157 struct net_device_core_stats __percpu *core_stats; 2158 2159 /* Stats to monitor link on/off, flapping */ 2160 atomic_t carrier_up_count; 2161 atomic_t carrier_down_count; 2162 2163 #ifdef CONFIG_WIRELESS_EXT 2164 const struct iw_handler_def *wireless_handlers; 2165 struct iw_public_data *wireless_data; 2166 #endif 2167 const struct ethtool_ops *ethtool_ops; 2168 #ifdef CONFIG_NET_L3_MASTER_DEV 2169 const struct l3mdev_ops *l3mdev_ops; 2170 #endif 2171 #if IS_ENABLED(CONFIG_IPV6) 2172 const struct ndisc_ops *ndisc_ops; 2173 #endif 2174 2175 #ifdef CONFIG_XFRM_OFFLOAD 2176 const struct xfrmdev_ops *xfrmdev_ops; 2177 #endif 2178 2179 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2180 const struct tlsdev_ops *tlsdev_ops; 2181 #endif 2182 2183 unsigned int operstate; 2184 unsigned char link_mode; 2185 2186 unsigned char if_port; 2187 unsigned char dma; 2188 2189 /* Interface address info. */ 2190 unsigned char perm_addr[MAX_ADDR_LEN]; 2191 unsigned char addr_assign_type; 2192 unsigned char addr_len; 2193 unsigned char upper_level; 2194 unsigned char lower_level; 2195 2196 unsigned short neigh_priv_len; 2197 unsigned short dev_id; 2198 unsigned short dev_port; 2199 unsigned short padded; 2200 2201 spinlock_t addr_list_lock; 2202 int irq; 2203 2204 struct netdev_hw_addr_list uc; 2205 struct netdev_hw_addr_list mc; 2206 struct netdev_hw_addr_list dev_addrs; 2207 2208 #ifdef CONFIG_SYSFS 2209 struct kset *queues_kset; 2210 #endif 2211 #ifdef CONFIG_LOCKDEP 2212 struct list_head unlink_list; 2213 #endif 2214 unsigned int promiscuity; 2215 unsigned int allmulti; 2216 bool uc_promisc; 2217 #ifdef CONFIG_LOCKDEP 2218 unsigned char nested_level; 2219 #endif 2220 2221 2222 /* Protocol-specific pointers */ 2223 struct in_device __rcu *ip_ptr; 2224 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2225 struct vlan_info __rcu *vlan_info; 2226 #endif 2227 #if IS_ENABLED(CONFIG_NET_DSA) 2228 struct dsa_port *dsa_ptr; 2229 #endif 2230 #if IS_ENABLED(CONFIG_TIPC) 2231 struct tipc_bearer __rcu *tipc_ptr; 2232 #endif 2233 #if IS_ENABLED(CONFIG_ATALK) 2234 void *atalk_ptr; 2235 #endif 2236 #if IS_ENABLED(CONFIG_AX25) 2237 void *ax25_ptr; 2238 #endif 2239 #if IS_ENABLED(CONFIG_CFG80211) 2240 struct wireless_dev *ieee80211_ptr; 2241 #endif 2242 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2243 struct wpan_dev *ieee802154_ptr; 2244 #endif 2245 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2246 struct mpls_dev __rcu *mpls_ptr; 2247 #endif 2248 #if IS_ENABLED(CONFIG_MCTP) 2249 struct mctp_dev __rcu *mctp_ptr; 2250 #endif 2251 2252 /* 2253 * Cache lines mostly used on receive path (including eth_type_trans()) 2254 */ 2255 /* Interface address info used in eth_type_trans() */ 2256 const unsigned char *dev_addr; 2257 2258 unsigned int num_rx_queues; 2259 #define GRO_LEGACY_MAX_SIZE 65536u 2260 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2261 * and shinfo->gso_segs is a 16bit field. 2262 */ 2263 #define GRO_MAX_SIZE (8 * 65535u) 2264 unsigned int xdp_zc_max_segs; 2265 struct netdev_queue __rcu *ingress_queue; 2266 #ifdef CONFIG_NETFILTER_INGRESS 2267 struct nf_hook_entries __rcu *nf_hooks_ingress; 2268 #endif 2269 2270 unsigned char broadcast[MAX_ADDR_LEN]; 2271 #ifdef CONFIG_RFS_ACCEL 2272 struct cpu_rmap *rx_cpu_rmap; 2273 #endif 2274 struct hlist_node index_hlist; 2275 2276 /* 2277 * Cache lines mostly used on transmit path 2278 */ 2279 unsigned int num_tx_queues; 2280 struct Qdisc __rcu *qdisc; 2281 unsigned int tx_queue_len; 2282 spinlock_t tx_global_lock; 2283 2284 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2285 2286 #ifdef CONFIG_NET_SCHED 2287 DECLARE_HASHTABLE (qdisc_hash, 4); 2288 #endif 2289 /* These may be needed for future network-power-down code. */ 2290 struct timer_list watchdog_timer; 2291 int watchdog_timeo; 2292 2293 u32 proto_down_reason; 2294 2295 struct list_head todo_list; 2296 2297 #ifdef CONFIG_PCPU_DEV_REFCNT 2298 int __percpu *pcpu_refcnt; 2299 #else 2300 refcount_t dev_refcnt; 2301 #endif 2302 struct ref_tracker_dir refcnt_tracker; 2303 2304 struct list_head link_watch_list; 2305 2306 u8 reg_state; 2307 2308 bool dismantle; 2309 2310 enum { 2311 RTNL_LINK_INITIALIZED, 2312 RTNL_LINK_INITIALIZING, 2313 } rtnl_link_state:16; 2314 2315 bool needs_free_netdev; 2316 void (*priv_destructor)(struct net_device *dev); 2317 2318 /* mid-layer private */ 2319 void *ml_priv; 2320 enum netdev_ml_priv_type ml_priv_type; 2321 2322 enum netdev_stat_type pcpu_stat_type:8; 2323 2324 #if IS_ENABLED(CONFIG_GARP) 2325 struct garp_port __rcu *garp_port; 2326 #endif 2327 #if IS_ENABLED(CONFIG_MRP) 2328 struct mrp_port __rcu *mrp_port; 2329 #endif 2330 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2331 struct dm_hw_stat_delta __rcu *dm_private; 2332 #endif 2333 struct device dev; 2334 const struct attribute_group *sysfs_groups[4]; 2335 const struct attribute_group *sysfs_rx_queue_group; 2336 2337 const struct rtnl_link_ops *rtnl_link_ops; 2338 2339 const struct netdev_stat_ops *stat_ops; 2340 2341 /* for setting kernel sock attribute on TCP connection setup */ 2342 #define GSO_MAX_SEGS 65535u 2343 #define GSO_LEGACY_MAX_SIZE 65536u 2344 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2345 * and shinfo->gso_segs is a 16bit field. 2346 */ 2347 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2348 2349 #define TSO_LEGACY_MAX_SIZE 65536 2350 #define TSO_MAX_SIZE UINT_MAX 2351 unsigned int tso_max_size; 2352 #define TSO_MAX_SEGS U16_MAX 2353 u16 tso_max_segs; 2354 2355 #ifdef CONFIG_DCB 2356 const struct dcbnl_rtnl_ops *dcbnl_ops; 2357 #endif 2358 u8 prio_tc_map[TC_BITMASK + 1]; 2359 2360 #if IS_ENABLED(CONFIG_FCOE) 2361 unsigned int fcoe_ddp_xid; 2362 #endif 2363 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2364 struct netprio_map __rcu *priomap; 2365 #endif 2366 struct phy_device *phydev; 2367 struct sfp_bus *sfp_bus; 2368 struct lock_class_key *qdisc_tx_busylock; 2369 bool proto_down; 2370 unsigned wol_enabled:1; 2371 unsigned threaded:1; 2372 2373 struct list_head net_notifier_list; 2374 2375 #if IS_ENABLED(CONFIG_MACSEC) 2376 /* MACsec management functions */ 2377 const struct macsec_ops *macsec_ops; 2378 #endif 2379 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2380 struct udp_tunnel_nic *udp_tunnel_nic; 2381 2382 /* protected by rtnl_lock */ 2383 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2384 2385 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2386 netdevice_tracker linkwatch_dev_tracker; 2387 netdevice_tracker watchdog_dev_tracker; 2388 netdevice_tracker dev_registered_tracker; 2389 struct rtnl_hw_stats64 *offload_xstats_l3; 2390 2391 struct devlink_port *devlink_port; 2392 2393 #if IS_ENABLED(CONFIG_DPLL) 2394 struct dpll_pin __rcu *dpll_pin; 2395 #endif 2396 #if IS_ENABLED(CONFIG_PAGE_POOL) 2397 /** @page_pools: page pools created for this netdevice */ 2398 struct hlist_head page_pools; 2399 #endif 2400 }; 2401 #define to_net_dev(d) container_of(d, struct net_device, dev) 2402 2403 /* 2404 * Driver should use this to assign devlink port instance to a netdevice 2405 * before it registers the netdevice. Therefore devlink_port is static 2406 * during the netdev lifetime after it is registered. 2407 */ 2408 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2409 ({ \ 2410 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2411 ((dev)->devlink_port = (port)); \ 2412 }) 2413 2414 static inline bool netif_elide_gro(const struct net_device *dev) 2415 { 2416 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2417 return true; 2418 return false; 2419 } 2420 2421 #define NETDEV_ALIGN 32 2422 2423 static inline 2424 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2425 { 2426 return dev->prio_tc_map[prio & TC_BITMASK]; 2427 } 2428 2429 static inline 2430 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2431 { 2432 if (tc >= dev->num_tc) 2433 return -EINVAL; 2434 2435 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2436 return 0; 2437 } 2438 2439 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2440 void netdev_reset_tc(struct net_device *dev); 2441 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2442 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2443 2444 static inline 2445 int netdev_get_num_tc(struct net_device *dev) 2446 { 2447 return dev->num_tc; 2448 } 2449 2450 static inline void net_prefetch(void *p) 2451 { 2452 prefetch(p); 2453 #if L1_CACHE_BYTES < 128 2454 prefetch((u8 *)p + L1_CACHE_BYTES); 2455 #endif 2456 } 2457 2458 static inline void net_prefetchw(void *p) 2459 { 2460 prefetchw(p); 2461 #if L1_CACHE_BYTES < 128 2462 prefetchw((u8 *)p + L1_CACHE_BYTES); 2463 #endif 2464 } 2465 2466 void netdev_unbind_sb_channel(struct net_device *dev, 2467 struct net_device *sb_dev); 2468 int netdev_bind_sb_channel_queue(struct net_device *dev, 2469 struct net_device *sb_dev, 2470 u8 tc, u16 count, u16 offset); 2471 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2472 static inline int netdev_get_sb_channel(struct net_device *dev) 2473 { 2474 return max_t(int, -dev->num_tc, 0); 2475 } 2476 2477 static inline 2478 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2479 unsigned int index) 2480 { 2481 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2482 return &dev->_tx[index]; 2483 } 2484 2485 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2486 const struct sk_buff *skb) 2487 { 2488 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2489 } 2490 2491 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2492 void (*f)(struct net_device *, 2493 struct netdev_queue *, 2494 void *), 2495 void *arg) 2496 { 2497 unsigned int i; 2498 2499 for (i = 0; i < dev->num_tx_queues; i++) 2500 f(dev, &dev->_tx[i], arg); 2501 } 2502 2503 #define netdev_lockdep_set_classes(dev) \ 2504 { \ 2505 static struct lock_class_key qdisc_tx_busylock_key; \ 2506 static struct lock_class_key qdisc_xmit_lock_key; \ 2507 static struct lock_class_key dev_addr_list_lock_key; \ 2508 unsigned int i; \ 2509 \ 2510 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2511 lockdep_set_class(&(dev)->addr_list_lock, \ 2512 &dev_addr_list_lock_key); \ 2513 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2514 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2515 &qdisc_xmit_lock_key); \ 2516 } 2517 2518 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2519 struct net_device *sb_dev); 2520 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2521 struct sk_buff *skb, 2522 struct net_device *sb_dev); 2523 2524 /* returns the headroom that the master device needs to take in account 2525 * when forwarding to this dev 2526 */ 2527 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2528 { 2529 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2530 } 2531 2532 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2533 { 2534 if (dev->netdev_ops->ndo_set_rx_headroom) 2535 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2536 } 2537 2538 /* set the device rx headroom to the dev's default */ 2539 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2540 { 2541 netdev_set_rx_headroom(dev, -1); 2542 } 2543 2544 static inline void *netdev_get_ml_priv(struct net_device *dev, 2545 enum netdev_ml_priv_type type) 2546 { 2547 if (dev->ml_priv_type != type) 2548 return NULL; 2549 2550 return dev->ml_priv; 2551 } 2552 2553 static inline void netdev_set_ml_priv(struct net_device *dev, 2554 void *ml_priv, 2555 enum netdev_ml_priv_type type) 2556 { 2557 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2558 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2559 dev->ml_priv_type, type); 2560 WARN(!dev->ml_priv_type && dev->ml_priv, 2561 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2562 2563 dev->ml_priv = ml_priv; 2564 dev->ml_priv_type = type; 2565 } 2566 2567 /* 2568 * Net namespace inlines 2569 */ 2570 static inline 2571 struct net *dev_net(const struct net_device *dev) 2572 { 2573 return read_pnet(&dev->nd_net); 2574 } 2575 2576 static inline 2577 void dev_net_set(struct net_device *dev, struct net *net) 2578 { 2579 write_pnet(&dev->nd_net, net); 2580 } 2581 2582 /** 2583 * netdev_priv - access network device private data 2584 * @dev: network device 2585 * 2586 * Get network device private data 2587 */ 2588 static inline void *netdev_priv(const struct net_device *dev) 2589 { 2590 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2591 } 2592 2593 /* Set the sysfs physical device reference for the network logical device 2594 * if set prior to registration will cause a symlink during initialization. 2595 */ 2596 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2597 2598 /* Set the sysfs device type for the network logical device to allow 2599 * fine-grained identification of different network device types. For 2600 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2601 */ 2602 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2603 2604 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2605 enum netdev_queue_type type, 2606 struct napi_struct *napi); 2607 2608 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2609 { 2610 napi->irq = irq; 2611 } 2612 2613 /* Default NAPI poll() weight 2614 * Device drivers are strongly advised to not use bigger value 2615 */ 2616 #define NAPI_POLL_WEIGHT 64 2617 2618 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2619 int (*poll)(struct napi_struct *, int), int weight); 2620 2621 /** 2622 * netif_napi_add() - initialize a NAPI context 2623 * @dev: network device 2624 * @napi: NAPI context 2625 * @poll: polling function 2626 * 2627 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2628 * *any* of the other NAPI-related functions. 2629 */ 2630 static inline void 2631 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2632 int (*poll)(struct napi_struct *, int)) 2633 { 2634 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2635 } 2636 2637 static inline void 2638 netif_napi_add_tx_weight(struct net_device *dev, 2639 struct napi_struct *napi, 2640 int (*poll)(struct napi_struct *, int), 2641 int weight) 2642 { 2643 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2644 netif_napi_add_weight(dev, napi, poll, weight); 2645 } 2646 2647 /** 2648 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2649 * @dev: network device 2650 * @napi: NAPI context 2651 * @poll: polling function 2652 * 2653 * This variant of netif_napi_add() should be used from drivers using NAPI 2654 * to exclusively poll a TX queue. 2655 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2656 */ 2657 static inline void netif_napi_add_tx(struct net_device *dev, 2658 struct napi_struct *napi, 2659 int (*poll)(struct napi_struct *, int)) 2660 { 2661 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2662 } 2663 2664 /** 2665 * __netif_napi_del - remove a NAPI context 2666 * @napi: NAPI context 2667 * 2668 * Warning: caller must observe RCU grace period before freeing memory 2669 * containing @napi. Drivers might want to call this helper to combine 2670 * all the needed RCU grace periods into a single one. 2671 */ 2672 void __netif_napi_del(struct napi_struct *napi); 2673 2674 /** 2675 * netif_napi_del - remove a NAPI context 2676 * @napi: NAPI context 2677 * 2678 * netif_napi_del() removes a NAPI context from the network device NAPI list 2679 */ 2680 static inline void netif_napi_del(struct napi_struct *napi) 2681 { 2682 __netif_napi_del(napi); 2683 synchronize_net(); 2684 } 2685 2686 struct packet_type { 2687 __be16 type; /* This is really htons(ether_type). */ 2688 bool ignore_outgoing; 2689 struct net_device *dev; /* NULL is wildcarded here */ 2690 netdevice_tracker dev_tracker; 2691 int (*func) (struct sk_buff *, 2692 struct net_device *, 2693 struct packet_type *, 2694 struct net_device *); 2695 void (*list_func) (struct list_head *, 2696 struct packet_type *, 2697 struct net_device *); 2698 bool (*id_match)(struct packet_type *ptype, 2699 struct sock *sk); 2700 struct net *af_packet_net; 2701 void *af_packet_priv; 2702 struct list_head list; 2703 }; 2704 2705 struct offload_callbacks { 2706 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2707 netdev_features_t features); 2708 struct sk_buff *(*gro_receive)(struct list_head *head, 2709 struct sk_buff *skb); 2710 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2711 }; 2712 2713 struct packet_offload { 2714 __be16 type; /* This is really htons(ether_type). */ 2715 u16 priority; 2716 struct offload_callbacks callbacks; 2717 struct list_head list; 2718 }; 2719 2720 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2721 struct pcpu_sw_netstats { 2722 u64_stats_t rx_packets; 2723 u64_stats_t rx_bytes; 2724 u64_stats_t tx_packets; 2725 u64_stats_t tx_bytes; 2726 struct u64_stats_sync syncp; 2727 } __aligned(4 * sizeof(u64)); 2728 2729 struct pcpu_dstats { 2730 u64 rx_packets; 2731 u64 rx_bytes; 2732 u64 rx_drops; 2733 u64 tx_packets; 2734 u64 tx_bytes; 2735 u64 tx_drops; 2736 struct u64_stats_sync syncp; 2737 } __aligned(8 * sizeof(u64)); 2738 2739 struct pcpu_lstats { 2740 u64_stats_t packets; 2741 u64_stats_t bytes; 2742 struct u64_stats_sync syncp; 2743 } __aligned(2 * sizeof(u64)); 2744 2745 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2746 2747 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2748 { 2749 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2750 2751 u64_stats_update_begin(&tstats->syncp); 2752 u64_stats_add(&tstats->rx_bytes, len); 2753 u64_stats_inc(&tstats->rx_packets); 2754 u64_stats_update_end(&tstats->syncp); 2755 } 2756 2757 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2758 unsigned int packets, 2759 unsigned int len) 2760 { 2761 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2762 2763 u64_stats_update_begin(&tstats->syncp); 2764 u64_stats_add(&tstats->tx_bytes, len); 2765 u64_stats_add(&tstats->tx_packets, packets); 2766 u64_stats_update_end(&tstats->syncp); 2767 } 2768 2769 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2770 { 2771 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2772 2773 u64_stats_update_begin(&lstats->syncp); 2774 u64_stats_add(&lstats->bytes, len); 2775 u64_stats_inc(&lstats->packets); 2776 u64_stats_update_end(&lstats->syncp); 2777 } 2778 2779 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2780 ({ \ 2781 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2782 if (pcpu_stats) { \ 2783 int __cpu; \ 2784 for_each_possible_cpu(__cpu) { \ 2785 typeof(type) *stat; \ 2786 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2787 u64_stats_init(&stat->syncp); \ 2788 } \ 2789 } \ 2790 pcpu_stats; \ 2791 }) 2792 2793 #define netdev_alloc_pcpu_stats(type) \ 2794 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2795 2796 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2797 ({ \ 2798 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2799 if (pcpu_stats) { \ 2800 int __cpu; \ 2801 for_each_possible_cpu(__cpu) { \ 2802 typeof(type) *stat; \ 2803 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2804 u64_stats_init(&stat->syncp); \ 2805 } \ 2806 } \ 2807 pcpu_stats; \ 2808 }) 2809 2810 enum netdev_lag_tx_type { 2811 NETDEV_LAG_TX_TYPE_UNKNOWN, 2812 NETDEV_LAG_TX_TYPE_RANDOM, 2813 NETDEV_LAG_TX_TYPE_BROADCAST, 2814 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2815 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2816 NETDEV_LAG_TX_TYPE_HASH, 2817 }; 2818 2819 enum netdev_lag_hash { 2820 NETDEV_LAG_HASH_NONE, 2821 NETDEV_LAG_HASH_L2, 2822 NETDEV_LAG_HASH_L34, 2823 NETDEV_LAG_HASH_L23, 2824 NETDEV_LAG_HASH_E23, 2825 NETDEV_LAG_HASH_E34, 2826 NETDEV_LAG_HASH_VLAN_SRCMAC, 2827 NETDEV_LAG_HASH_UNKNOWN, 2828 }; 2829 2830 struct netdev_lag_upper_info { 2831 enum netdev_lag_tx_type tx_type; 2832 enum netdev_lag_hash hash_type; 2833 }; 2834 2835 struct netdev_lag_lower_state_info { 2836 u8 link_up : 1, 2837 tx_enabled : 1; 2838 }; 2839 2840 #include <linux/notifier.h> 2841 2842 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2843 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2844 * adding new types. 2845 */ 2846 enum netdev_cmd { 2847 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2848 NETDEV_DOWN, 2849 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2850 detected a hardware crash and restarted 2851 - we can use this eg to kick tcp sessions 2852 once done */ 2853 NETDEV_CHANGE, /* Notify device state change */ 2854 NETDEV_REGISTER, 2855 NETDEV_UNREGISTER, 2856 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2857 NETDEV_CHANGEADDR, /* notify after the address change */ 2858 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2859 NETDEV_GOING_DOWN, 2860 NETDEV_CHANGENAME, 2861 NETDEV_FEAT_CHANGE, 2862 NETDEV_BONDING_FAILOVER, 2863 NETDEV_PRE_UP, 2864 NETDEV_PRE_TYPE_CHANGE, 2865 NETDEV_POST_TYPE_CHANGE, 2866 NETDEV_POST_INIT, 2867 NETDEV_PRE_UNINIT, 2868 NETDEV_RELEASE, 2869 NETDEV_NOTIFY_PEERS, 2870 NETDEV_JOIN, 2871 NETDEV_CHANGEUPPER, 2872 NETDEV_RESEND_IGMP, 2873 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2874 NETDEV_CHANGEINFODATA, 2875 NETDEV_BONDING_INFO, 2876 NETDEV_PRECHANGEUPPER, 2877 NETDEV_CHANGELOWERSTATE, 2878 NETDEV_UDP_TUNNEL_PUSH_INFO, 2879 NETDEV_UDP_TUNNEL_DROP_INFO, 2880 NETDEV_CHANGE_TX_QUEUE_LEN, 2881 NETDEV_CVLAN_FILTER_PUSH_INFO, 2882 NETDEV_CVLAN_FILTER_DROP_INFO, 2883 NETDEV_SVLAN_FILTER_PUSH_INFO, 2884 NETDEV_SVLAN_FILTER_DROP_INFO, 2885 NETDEV_OFFLOAD_XSTATS_ENABLE, 2886 NETDEV_OFFLOAD_XSTATS_DISABLE, 2887 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2888 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2889 NETDEV_XDP_FEAT_CHANGE, 2890 }; 2891 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2892 2893 int register_netdevice_notifier(struct notifier_block *nb); 2894 int unregister_netdevice_notifier(struct notifier_block *nb); 2895 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2896 int unregister_netdevice_notifier_net(struct net *net, 2897 struct notifier_block *nb); 2898 int register_netdevice_notifier_dev_net(struct net_device *dev, 2899 struct notifier_block *nb, 2900 struct netdev_net_notifier *nn); 2901 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2902 struct notifier_block *nb, 2903 struct netdev_net_notifier *nn); 2904 2905 struct netdev_notifier_info { 2906 struct net_device *dev; 2907 struct netlink_ext_ack *extack; 2908 }; 2909 2910 struct netdev_notifier_info_ext { 2911 struct netdev_notifier_info info; /* must be first */ 2912 union { 2913 u32 mtu; 2914 } ext; 2915 }; 2916 2917 struct netdev_notifier_change_info { 2918 struct netdev_notifier_info info; /* must be first */ 2919 unsigned int flags_changed; 2920 }; 2921 2922 struct netdev_notifier_changeupper_info { 2923 struct netdev_notifier_info info; /* must be first */ 2924 struct net_device *upper_dev; /* new upper dev */ 2925 bool master; /* is upper dev master */ 2926 bool linking; /* is the notification for link or unlink */ 2927 void *upper_info; /* upper dev info */ 2928 }; 2929 2930 struct netdev_notifier_changelowerstate_info { 2931 struct netdev_notifier_info info; /* must be first */ 2932 void *lower_state_info; /* is lower dev state */ 2933 }; 2934 2935 struct netdev_notifier_pre_changeaddr_info { 2936 struct netdev_notifier_info info; /* must be first */ 2937 const unsigned char *dev_addr; 2938 }; 2939 2940 enum netdev_offload_xstats_type { 2941 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2942 }; 2943 2944 struct netdev_notifier_offload_xstats_info { 2945 struct netdev_notifier_info info; /* must be first */ 2946 enum netdev_offload_xstats_type type; 2947 2948 union { 2949 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2950 struct netdev_notifier_offload_xstats_rd *report_delta; 2951 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2952 struct netdev_notifier_offload_xstats_ru *report_used; 2953 }; 2954 }; 2955 2956 int netdev_offload_xstats_enable(struct net_device *dev, 2957 enum netdev_offload_xstats_type type, 2958 struct netlink_ext_ack *extack); 2959 int netdev_offload_xstats_disable(struct net_device *dev, 2960 enum netdev_offload_xstats_type type); 2961 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2962 enum netdev_offload_xstats_type type); 2963 int netdev_offload_xstats_get(struct net_device *dev, 2964 enum netdev_offload_xstats_type type, 2965 struct rtnl_hw_stats64 *stats, bool *used, 2966 struct netlink_ext_ack *extack); 2967 void 2968 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2969 const struct rtnl_hw_stats64 *stats); 2970 void 2971 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2972 void netdev_offload_xstats_push_delta(struct net_device *dev, 2973 enum netdev_offload_xstats_type type, 2974 const struct rtnl_hw_stats64 *stats); 2975 2976 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2977 struct net_device *dev) 2978 { 2979 info->dev = dev; 2980 info->extack = NULL; 2981 } 2982 2983 static inline struct net_device * 2984 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2985 { 2986 return info->dev; 2987 } 2988 2989 static inline struct netlink_ext_ack * 2990 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2991 { 2992 return info->extack; 2993 } 2994 2995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2996 int call_netdevice_notifiers_info(unsigned long val, 2997 struct netdev_notifier_info *info); 2998 2999 #define for_each_netdev(net, d) \ 3000 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3001 #define for_each_netdev_reverse(net, d) \ 3002 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3003 #define for_each_netdev_rcu(net, d) \ 3004 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3005 #define for_each_netdev_safe(net, d, n) \ 3006 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3007 #define for_each_netdev_continue(net, d) \ 3008 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3009 #define for_each_netdev_continue_reverse(net, d) \ 3010 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3011 dev_list) 3012 #define for_each_netdev_continue_rcu(net, d) \ 3013 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3014 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3015 for_each_netdev_rcu(&init_net, slave) \ 3016 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3017 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3018 3019 #define for_each_netdev_dump(net, d, ifindex) \ 3020 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3021 3022 static inline struct net_device *next_net_device(struct net_device *dev) 3023 { 3024 struct list_head *lh; 3025 struct net *net; 3026 3027 net = dev_net(dev); 3028 lh = dev->dev_list.next; 3029 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3030 } 3031 3032 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3033 { 3034 struct list_head *lh; 3035 struct net *net; 3036 3037 net = dev_net(dev); 3038 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3039 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3040 } 3041 3042 static inline struct net_device *first_net_device(struct net *net) 3043 { 3044 return list_empty(&net->dev_base_head) ? NULL : 3045 net_device_entry(net->dev_base_head.next); 3046 } 3047 3048 static inline struct net_device *first_net_device_rcu(struct net *net) 3049 { 3050 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3051 3052 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3053 } 3054 3055 int netdev_boot_setup_check(struct net_device *dev); 3056 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3057 const char *hwaddr); 3058 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3059 void dev_add_pack(struct packet_type *pt); 3060 void dev_remove_pack(struct packet_type *pt); 3061 void __dev_remove_pack(struct packet_type *pt); 3062 void dev_add_offload(struct packet_offload *po); 3063 void dev_remove_offload(struct packet_offload *po); 3064 3065 int dev_get_iflink(const struct net_device *dev); 3066 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3067 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3068 struct net_device_path_stack *stack); 3069 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3070 unsigned short mask); 3071 struct net_device *dev_get_by_name(struct net *net, const char *name); 3072 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3073 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3074 bool netdev_name_in_use(struct net *net, const char *name); 3075 int dev_alloc_name(struct net_device *dev, const char *name); 3076 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3077 void dev_close(struct net_device *dev); 3078 void dev_close_many(struct list_head *head, bool unlink); 3079 void dev_disable_lro(struct net_device *dev); 3080 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3081 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3082 struct net_device *sb_dev); 3083 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3084 struct net_device *sb_dev); 3085 3086 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3087 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3088 3089 static inline int dev_queue_xmit(struct sk_buff *skb) 3090 { 3091 return __dev_queue_xmit(skb, NULL); 3092 } 3093 3094 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3095 struct net_device *sb_dev) 3096 { 3097 return __dev_queue_xmit(skb, sb_dev); 3098 } 3099 3100 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3101 { 3102 int ret; 3103 3104 ret = __dev_direct_xmit(skb, queue_id); 3105 if (!dev_xmit_complete(ret)) 3106 kfree_skb(skb); 3107 return ret; 3108 } 3109 3110 int register_netdevice(struct net_device *dev); 3111 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3112 void unregister_netdevice_many(struct list_head *head); 3113 static inline void unregister_netdevice(struct net_device *dev) 3114 { 3115 unregister_netdevice_queue(dev, NULL); 3116 } 3117 3118 int netdev_refcnt_read(const struct net_device *dev); 3119 void free_netdev(struct net_device *dev); 3120 void netdev_freemem(struct net_device *dev); 3121 void init_dummy_netdev(struct net_device *dev); 3122 3123 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3124 struct sk_buff *skb, 3125 bool all_slaves); 3126 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3127 struct sock *sk); 3128 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3129 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3130 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3131 netdevice_tracker *tracker, gfp_t gfp); 3132 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3133 netdevice_tracker *tracker, gfp_t gfp); 3134 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3135 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3136 3137 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3138 unsigned short type, 3139 const void *daddr, const void *saddr, 3140 unsigned int len) 3141 { 3142 if (!dev->header_ops || !dev->header_ops->create) 3143 return 0; 3144 3145 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3146 } 3147 3148 static inline int dev_parse_header(const struct sk_buff *skb, 3149 unsigned char *haddr) 3150 { 3151 const struct net_device *dev = skb->dev; 3152 3153 if (!dev->header_ops || !dev->header_ops->parse) 3154 return 0; 3155 return dev->header_ops->parse(skb, haddr); 3156 } 3157 3158 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3159 { 3160 const struct net_device *dev = skb->dev; 3161 3162 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3163 return 0; 3164 return dev->header_ops->parse_protocol(skb); 3165 } 3166 3167 /* ll_header must have at least hard_header_len allocated */ 3168 static inline bool dev_validate_header(const struct net_device *dev, 3169 char *ll_header, int len) 3170 { 3171 if (likely(len >= dev->hard_header_len)) 3172 return true; 3173 if (len < dev->min_header_len) 3174 return false; 3175 3176 if (capable(CAP_SYS_RAWIO)) { 3177 memset(ll_header + len, 0, dev->hard_header_len - len); 3178 return true; 3179 } 3180 3181 if (dev->header_ops && dev->header_ops->validate) 3182 return dev->header_ops->validate(ll_header, len); 3183 3184 return false; 3185 } 3186 3187 static inline bool dev_has_header(const struct net_device *dev) 3188 { 3189 return dev->header_ops && dev->header_ops->create; 3190 } 3191 3192 /* 3193 * Incoming packets are placed on per-CPU queues 3194 */ 3195 struct softnet_data { 3196 struct list_head poll_list; 3197 struct sk_buff_head process_queue; 3198 3199 /* stats */ 3200 unsigned int processed; 3201 unsigned int time_squeeze; 3202 #ifdef CONFIG_RPS 3203 struct softnet_data *rps_ipi_list; 3204 #endif 3205 3206 bool in_net_rx_action; 3207 bool in_napi_threaded_poll; 3208 3209 #ifdef CONFIG_NET_FLOW_LIMIT 3210 struct sd_flow_limit __rcu *flow_limit; 3211 #endif 3212 struct Qdisc *output_queue; 3213 struct Qdisc **output_queue_tailp; 3214 struct sk_buff *completion_queue; 3215 #ifdef CONFIG_XFRM_OFFLOAD 3216 struct sk_buff_head xfrm_backlog; 3217 #endif 3218 /* written and read only by owning cpu: */ 3219 struct { 3220 u16 recursion; 3221 u8 more; 3222 #ifdef CONFIG_NET_EGRESS 3223 u8 skip_txqueue; 3224 #endif 3225 } xmit; 3226 #ifdef CONFIG_RPS 3227 /* input_queue_head should be written by cpu owning this struct, 3228 * and only read by other cpus. Worth using a cache line. 3229 */ 3230 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3231 3232 /* Elements below can be accessed between CPUs for RPS/RFS */ 3233 call_single_data_t csd ____cacheline_aligned_in_smp; 3234 struct softnet_data *rps_ipi_next; 3235 unsigned int cpu; 3236 unsigned int input_queue_tail; 3237 #endif 3238 unsigned int received_rps; 3239 unsigned int dropped; 3240 struct sk_buff_head input_pkt_queue; 3241 struct napi_struct backlog; 3242 3243 /* Another possibly contended cache line */ 3244 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3245 int defer_count; 3246 int defer_ipi_scheduled; 3247 struct sk_buff *defer_list; 3248 call_single_data_t defer_csd; 3249 }; 3250 3251 static inline void input_queue_head_incr(struct softnet_data *sd) 3252 { 3253 #ifdef CONFIG_RPS 3254 sd->input_queue_head++; 3255 #endif 3256 } 3257 3258 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3259 unsigned int *qtail) 3260 { 3261 #ifdef CONFIG_RPS 3262 *qtail = ++sd->input_queue_tail; 3263 #endif 3264 } 3265 3266 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3267 3268 static inline int dev_recursion_level(void) 3269 { 3270 return this_cpu_read(softnet_data.xmit.recursion); 3271 } 3272 3273 #define XMIT_RECURSION_LIMIT 8 3274 static inline bool dev_xmit_recursion(void) 3275 { 3276 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3277 XMIT_RECURSION_LIMIT); 3278 } 3279 3280 static inline void dev_xmit_recursion_inc(void) 3281 { 3282 __this_cpu_inc(softnet_data.xmit.recursion); 3283 } 3284 3285 static inline void dev_xmit_recursion_dec(void) 3286 { 3287 __this_cpu_dec(softnet_data.xmit.recursion); 3288 } 3289 3290 void __netif_schedule(struct Qdisc *q); 3291 void netif_schedule_queue(struct netdev_queue *txq); 3292 3293 static inline void netif_tx_schedule_all(struct net_device *dev) 3294 { 3295 unsigned int i; 3296 3297 for (i = 0; i < dev->num_tx_queues; i++) 3298 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3299 } 3300 3301 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3302 { 3303 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3304 } 3305 3306 /** 3307 * netif_start_queue - allow transmit 3308 * @dev: network device 3309 * 3310 * Allow upper layers to call the device hard_start_xmit routine. 3311 */ 3312 static inline void netif_start_queue(struct net_device *dev) 3313 { 3314 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3315 } 3316 3317 static inline void netif_tx_start_all_queues(struct net_device *dev) 3318 { 3319 unsigned int i; 3320 3321 for (i = 0; i < dev->num_tx_queues; i++) { 3322 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3323 netif_tx_start_queue(txq); 3324 } 3325 } 3326 3327 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3328 3329 /** 3330 * netif_wake_queue - restart transmit 3331 * @dev: network device 3332 * 3333 * Allow upper layers to call the device hard_start_xmit routine. 3334 * Used for flow control when transmit resources are available. 3335 */ 3336 static inline void netif_wake_queue(struct net_device *dev) 3337 { 3338 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3339 } 3340 3341 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3342 { 3343 unsigned int i; 3344 3345 for (i = 0; i < dev->num_tx_queues; i++) { 3346 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3347 netif_tx_wake_queue(txq); 3348 } 3349 } 3350 3351 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3352 { 3353 /* Must be an atomic op see netif_txq_try_stop() */ 3354 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3355 } 3356 3357 /** 3358 * netif_stop_queue - stop transmitted packets 3359 * @dev: network device 3360 * 3361 * Stop upper layers calling the device hard_start_xmit routine. 3362 * Used for flow control when transmit resources are unavailable. 3363 */ 3364 static inline void netif_stop_queue(struct net_device *dev) 3365 { 3366 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3367 } 3368 3369 void netif_tx_stop_all_queues(struct net_device *dev); 3370 3371 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3372 { 3373 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3374 } 3375 3376 /** 3377 * netif_queue_stopped - test if transmit queue is flowblocked 3378 * @dev: network device 3379 * 3380 * Test if transmit queue on device is currently unable to send. 3381 */ 3382 static inline bool netif_queue_stopped(const struct net_device *dev) 3383 { 3384 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3385 } 3386 3387 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3388 { 3389 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3390 } 3391 3392 static inline bool 3393 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3394 { 3395 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3396 } 3397 3398 static inline bool 3399 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3400 { 3401 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3402 } 3403 3404 /** 3405 * netdev_queue_set_dql_min_limit - set dql minimum limit 3406 * @dev_queue: pointer to transmit queue 3407 * @min_limit: dql minimum limit 3408 * 3409 * Forces xmit_more() to return true until the minimum threshold 3410 * defined by @min_limit is reached (or until the tx queue is 3411 * empty). Warning: to be use with care, misuse will impact the 3412 * latency. 3413 */ 3414 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3415 unsigned int min_limit) 3416 { 3417 #ifdef CONFIG_BQL 3418 dev_queue->dql.min_limit = min_limit; 3419 #endif 3420 } 3421 3422 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3423 { 3424 #ifdef CONFIG_BQL 3425 /* Non-BQL migrated drivers will return 0, too. */ 3426 return dql_avail(&txq->dql); 3427 #else 3428 return 0; 3429 #endif 3430 } 3431 3432 /** 3433 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3434 * @dev_queue: pointer to transmit queue 3435 * 3436 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3437 * to give appropriate hint to the CPU. 3438 */ 3439 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3440 { 3441 #ifdef CONFIG_BQL 3442 prefetchw(&dev_queue->dql.num_queued); 3443 #endif 3444 } 3445 3446 /** 3447 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3448 * @dev_queue: pointer to transmit queue 3449 * 3450 * BQL enabled drivers might use this helper in their TX completion path, 3451 * to give appropriate hint to the CPU. 3452 */ 3453 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3454 { 3455 #ifdef CONFIG_BQL 3456 prefetchw(&dev_queue->dql.limit); 3457 #endif 3458 } 3459 3460 /** 3461 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3462 * @dev_queue: network device queue 3463 * @bytes: number of bytes queued to the device queue 3464 * 3465 * Report the number of bytes queued for sending/completion to the network 3466 * device hardware queue. @bytes should be a good approximation and should 3467 * exactly match netdev_completed_queue() @bytes. 3468 * This is typically called once per packet, from ndo_start_xmit(). 3469 */ 3470 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3471 unsigned int bytes) 3472 { 3473 #ifdef CONFIG_BQL 3474 dql_queued(&dev_queue->dql, bytes); 3475 3476 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3477 return; 3478 3479 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3480 3481 /* 3482 * The XOFF flag must be set before checking the dql_avail below, 3483 * because in netdev_tx_completed_queue we update the dql_completed 3484 * before checking the XOFF flag. 3485 */ 3486 smp_mb(); 3487 3488 /* check again in case another CPU has just made room avail */ 3489 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3490 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3491 #endif 3492 } 3493 3494 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3495 * that they should not test BQL status themselves. 3496 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3497 * skb of a batch. 3498 * Returns true if the doorbell must be used to kick the NIC. 3499 */ 3500 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3501 unsigned int bytes, 3502 bool xmit_more) 3503 { 3504 if (xmit_more) { 3505 #ifdef CONFIG_BQL 3506 dql_queued(&dev_queue->dql, bytes); 3507 #endif 3508 return netif_tx_queue_stopped(dev_queue); 3509 } 3510 netdev_tx_sent_queue(dev_queue, bytes); 3511 return true; 3512 } 3513 3514 /** 3515 * netdev_sent_queue - report the number of bytes queued to hardware 3516 * @dev: network device 3517 * @bytes: number of bytes queued to the hardware device queue 3518 * 3519 * Report the number of bytes queued for sending/completion to the network 3520 * device hardware queue#0. @bytes should be a good approximation and should 3521 * exactly match netdev_completed_queue() @bytes. 3522 * This is typically called once per packet, from ndo_start_xmit(). 3523 */ 3524 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3525 { 3526 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3527 } 3528 3529 static inline bool __netdev_sent_queue(struct net_device *dev, 3530 unsigned int bytes, 3531 bool xmit_more) 3532 { 3533 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3534 xmit_more); 3535 } 3536 3537 /** 3538 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3539 * @dev_queue: network device queue 3540 * @pkts: number of packets (currently ignored) 3541 * @bytes: number of bytes dequeued from the device queue 3542 * 3543 * Must be called at most once per TX completion round (and not per 3544 * individual packet), so that BQL can adjust its limits appropriately. 3545 */ 3546 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3547 unsigned int pkts, unsigned int bytes) 3548 { 3549 #ifdef CONFIG_BQL 3550 if (unlikely(!bytes)) 3551 return; 3552 3553 dql_completed(&dev_queue->dql, bytes); 3554 3555 /* 3556 * Without the memory barrier there is a small possiblity that 3557 * netdev_tx_sent_queue will miss the update and cause the queue to 3558 * be stopped forever 3559 */ 3560 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3561 3562 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3563 return; 3564 3565 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3566 netif_schedule_queue(dev_queue); 3567 #endif 3568 } 3569 3570 /** 3571 * netdev_completed_queue - report bytes and packets completed by device 3572 * @dev: network device 3573 * @pkts: actual number of packets sent over the medium 3574 * @bytes: actual number of bytes sent over the medium 3575 * 3576 * Report the number of bytes and packets transmitted by the network device 3577 * hardware queue over the physical medium, @bytes must exactly match the 3578 * @bytes amount passed to netdev_sent_queue() 3579 */ 3580 static inline void netdev_completed_queue(struct net_device *dev, 3581 unsigned int pkts, unsigned int bytes) 3582 { 3583 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3584 } 3585 3586 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3587 { 3588 #ifdef CONFIG_BQL 3589 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3590 dql_reset(&q->dql); 3591 #endif 3592 } 3593 3594 /** 3595 * netdev_reset_queue - reset the packets and bytes count of a network device 3596 * @dev_queue: network device 3597 * 3598 * Reset the bytes and packet count of a network device and clear the 3599 * software flow control OFF bit for this network device 3600 */ 3601 static inline void netdev_reset_queue(struct net_device *dev_queue) 3602 { 3603 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3604 } 3605 3606 /** 3607 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3608 * @dev: network device 3609 * @queue_index: given tx queue index 3610 * 3611 * Returns 0 if given tx queue index >= number of device tx queues, 3612 * otherwise returns the originally passed tx queue index. 3613 */ 3614 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3615 { 3616 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3617 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3618 dev->name, queue_index, 3619 dev->real_num_tx_queues); 3620 return 0; 3621 } 3622 3623 return queue_index; 3624 } 3625 3626 /** 3627 * netif_running - test if up 3628 * @dev: network device 3629 * 3630 * Test if the device has been brought up. 3631 */ 3632 static inline bool netif_running(const struct net_device *dev) 3633 { 3634 return test_bit(__LINK_STATE_START, &dev->state); 3635 } 3636 3637 /* 3638 * Routines to manage the subqueues on a device. We only need start, 3639 * stop, and a check if it's stopped. All other device management is 3640 * done at the overall netdevice level. 3641 * Also test the device if we're multiqueue. 3642 */ 3643 3644 /** 3645 * netif_start_subqueue - allow sending packets on subqueue 3646 * @dev: network device 3647 * @queue_index: sub queue index 3648 * 3649 * Start individual transmit queue of a device with multiple transmit queues. 3650 */ 3651 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3652 { 3653 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3654 3655 netif_tx_start_queue(txq); 3656 } 3657 3658 /** 3659 * netif_stop_subqueue - stop sending packets on subqueue 3660 * @dev: network device 3661 * @queue_index: sub queue index 3662 * 3663 * Stop individual transmit queue of a device with multiple transmit queues. 3664 */ 3665 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3666 { 3667 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3668 netif_tx_stop_queue(txq); 3669 } 3670 3671 /** 3672 * __netif_subqueue_stopped - test status of subqueue 3673 * @dev: network device 3674 * @queue_index: sub queue index 3675 * 3676 * Check individual transmit queue of a device with multiple transmit queues. 3677 */ 3678 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3679 u16 queue_index) 3680 { 3681 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3682 3683 return netif_tx_queue_stopped(txq); 3684 } 3685 3686 /** 3687 * netif_subqueue_stopped - test status of subqueue 3688 * @dev: network device 3689 * @skb: sub queue buffer pointer 3690 * 3691 * Check individual transmit queue of a device with multiple transmit queues. 3692 */ 3693 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3694 struct sk_buff *skb) 3695 { 3696 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3697 } 3698 3699 /** 3700 * netif_wake_subqueue - allow sending packets on subqueue 3701 * @dev: network device 3702 * @queue_index: sub queue index 3703 * 3704 * Resume individual transmit queue of a device with multiple transmit queues. 3705 */ 3706 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3707 { 3708 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3709 3710 netif_tx_wake_queue(txq); 3711 } 3712 3713 #ifdef CONFIG_XPS 3714 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3715 u16 index); 3716 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3717 u16 index, enum xps_map_type type); 3718 3719 /** 3720 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3721 * @j: CPU/Rx queue index 3722 * @mask: bitmask of all cpus/rx queues 3723 * @nr_bits: number of bits in the bitmask 3724 * 3725 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3726 */ 3727 static inline bool netif_attr_test_mask(unsigned long j, 3728 const unsigned long *mask, 3729 unsigned int nr_bits) 3730 { 3731 cpu_max_bits_warn(j, nr_bits); 3732 return test_bit(j, mask); 3733 } 3734 3735 /** 3736 * netif_attr_test_online - Test for online CPU/Rx queue 3737 * @j: CPU/Rx queue index 3738 * @online_mask: bitmask for CPUs/Rx queues that are online 3739 * @nr_bits: number of bits in the bitmask 3740 * 3741 * Returns true if a CPU/Rx queue is online. 3742 */ 3743 static inline bool netif_attr_test_online(unsigned long j, 3744 const unsigned long *online_mask, 3745 unsigned int nr_bits) 3746 { 3747 cpu_max_bits_warn(j, nr_bits); 3748 3749 if (online_mask) 3750 return test_bit(j, online_mask); 3751 3752 return (j < nr_bits); 3753 } 3754 3755 /** 3756 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3757 * @n: CPU/Rx queue index 3758 * @srcp: the cpumask/Rx queue mask pointer 3759 * @nr_bits: number of bits in the bitmask 3760 * 3761 * Returns >= nr_bits if no further CPUs/Rx queues set. 3762 */ 3763 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3764 unsigned int nr_bits) 3765 { 3766 /* -1 is a legal arg here. */ 3767 if (n != -1) 3768 cpu_max_bits_warn(n, nr_bits); 3769 3770 if (srcp) 3771 return find_next_bit(srcp, nr_bits, n + 1); 3772 3773 return n + 1; 3774 } 3775 3776 /** 3777 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3778 * @n: CPU/Rx queue index 3779 * @src1p: the first CPUs/Rx queues mask pointer 3780 * @src2p: the second CPUs/Rx queues mask pointer 3781 * @nr_bits: number of bits in the bitmask 3782 * 3783 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3784 */ 3785 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3786 const unsigned long *src2p, 3787 unsigned int nr_bits) 3788 { 3789 /* -1 is a legal arg here. */ 3790 if (n != -1) 3791 cpu_max_bits_warn(n, nr_bits); 3792 3793 if (src1p && src2p) 3794 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3795 else if (src1p) 3796 return find_next_bit(src1p, nr_bits, n + 1); 3797 else if (src2p) 3798 return find_next_bit(src2p, nr_bits, n + 1); 3799 3800 return n + 1; 3801 } 3802 #else 3803 static inline int netif_set_xps_queue(struct net_device *dev, 3804 const struct cpumask *mask, 3805 u16 index) 3806 { 3807 return 0; 3808 } 3809 3810 static inline int __netif_set_xps_queue(struct net_device *dev, 3811 const unsigned long *mask, 3812 u16 index, enum xps_map_type type) 3813 { 3814 return 0; 3815 } 3816 #endif 3817 3818 /** 3819 * netif_is_multiqueue - test if device has multiple transmit queues 3820 * @dev: network device 3821 * 3822 * Check if device has multiple transmit queues 3823 */ 3824 static inline bool netif_is_multiqueue(const struct net_device *dev) 3825 { 3826 return dev->num_tx_queues > 1; 3827 } 3828 3829 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3830 3831 #ifdef CONFIG_SYSFS 3832 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3833 #else 3834 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3835 unsigned int rxqs) 3836 { 3837 dev->real_num_rx_queues = rxqs; 3838 return 0; 3839 } 3840 #endif 3841 int netif_set_real_num_queues(struct net_device *dev, 3842 unsigned int txq, unsigned int rxq); 3843 3844 int netif_get_num_default_rss_queues(void); 3845 3846 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3847 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3848 3849 /* 3850 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3851 * interrupt context or with hardware interrupts being disabled. 3852 * (in_hardirq() || irqs_disabled()) 3853 * 3854 * We provide four helpers that can be used in following contexts : 3855 * 3856 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3857 * replacing kfree_skb(skb) 3858 * 3859 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3860 * Typically used in place of consume_skb(skb) in TX completion path 3861 * 3862 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3863 * replacing kfree_skb(skb) 3864 * 3865 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3866 * and consumed a packet. Used in place of consume_skb(skb) 3867 */ 3868 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3869 { 3870 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3871 } 3872 3873 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3874 { 3875 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3876 } 3877 3878 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3879 { 3880 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3881 } 3882 3883 static inline void dev_consume_skb_any(struct sk_buff *skb) 3884 { 3885 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3886 } 3887 3888 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3889 struct bpf_prog *xdp_prog); 3890 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3891 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb); 3892 int netif_rx(struct sk_buff *skb); 3893 int __netif_rx(struct sk_buff *skb); 3894 3895 int netif_receive_skb(struct sk_buff *skb); 3896 int netif_receive_skb_core(struct sk_buff *skb); 3897 void netif_receive_skb_list_internal(struct list_head *head); 3898 void netif_receive_skb_list(struct list_head *head); 3899 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3900 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3901 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3902 void napi_get_frags_check(struct napi_struct *napi); 3903 gro_result_t napi_gro_frags(struct napi_struct *napi); 3904 3905 static inline void napi_free_frags(struct napi_struct *napi) 3906 { 3907 kfree_skb(napi->skb); 3908 napi->skb = NULL; 3909 } 3910 3911 bool netdev_is_rx_handler_busy(struct net_device *dev); 3912 int netdev_rx_handler_register(struct net_device *dev, 3913 rx_handler_func_t *rx_handler, 3914 void *rx_handler_data); 3915 void netdev_rx_handler_unregister(struct net_device *dev); 3916 3917 bool dev_valid_name(const char *name); 3918 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3919 { 3920 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3921 } 3922 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3923 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3924 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3925 void __user *data, bool *need_copyout); 3926 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3927 int generic_hwtstamp_get_lower(struct net_device *dev, 3928 struct kernel_hwtstamp_config *kernel_cfg); 3929 int generic_hwtstamp_set_lower(struct net_device *dev, 3930 struct kernel_hwtstamp_config *kernel_cfg, 3931 struct netlink_ext_ack *extack); 3932 int dev_set_hwtstamp_phylib(struct net_device *dev, 3933 struct kernel_hwtstamp_config *cfg, 3934 struct netlink_ext_ack *extack); 3935 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3936 unsigned int dev_get_flags(const struct net_device *); 3937 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3938 struct netlink_ext_ack *extack); 3939 int dev_change_flags(struct net_device *dev, unsigned int flags, 3940 struct netlink_ext_ack *extack); 3941 int dev_set_alias(struct net_device *, const char *, size_t); 3942 int dev_get_alias(const struct net_device *, char *, size_t); 3943 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3944 const char *pat, int new_ifindex); 3945 static inline 3946 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3947 const char *pat) 3948 { 3949 return __dev_change_net_namespace(dev, net, pat, 0); 3950 } 3951 int __dev_set_mtu(struct net_device *, int); 3952 int dev_set_mtu(struct net_device *, int); 3953 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3954 struct netlink_ext_ack *extack); 3955 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3956 struct netlink_ext_ack *extack); 3957 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3958 struct netlink_ext_ack *extack); 3959 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3960 int dev_get_port_parent_id(struct net_device *dev, 3961 struct netdev_phys_item_id *ppid, bool recurse); 3962 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3963 3964 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3965 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3966 struct netdev_queue *txq, int *ret); 3967 3968 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3969 u8 dev_xdp_prog_count(struct net_device *dev); 3970 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3971 3972 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3973 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3974 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3975 bool is_skb_forwardable(const struct net_device *dev, 3976 const struct sk_buff *skb); 3977 3978 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3979 const struct sk_buff *skb, 3980 const bool check_mtu) 3981 { 3982 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3983 unsigned int len; 3984 3985 if (!(dev->flags & IFF_UP)) 3986 return false; 3987 3988 if (!check_mtu) 3989 return true; 3990 3991 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3992 if (skb->len <= len) 3993 return true; 3994 3995 /* if TSO is enabled, we don't care about the length as the packet 3996 * could be forwarded without being segmented before 3997 */ 3998 if (skb_is_gso(skb)) 3999 return true; 4000 4001 return false; 4002 } 4003 4004 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4005 4006 #define DEV_CORE_STATS_INC(FIELD) \ 4007 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4008 { \ 4009 netdev_core_stats_inc(dev, \ 4010 offsetof(struct net_device_core_stats, FIELD)); \ 4011 } 4012 DEV_CORE_STATS_INC(rx_dropped) 4013 DEV_CORE_STATS_INC(tx_dropped) 4014 DEV_CORE_STATS_INC(rx_nohandler) 4015 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4016 #undef DEV_CORE_STATS_INC 4017 4018 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4019 struct sk_buff *skb, 4020 const bool check_mtu) 4021 { 4022 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4023 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4024 dev_core_stats_rx_dropped_inc(dev); 4025 kfree_skb(skb); 4026 return NET_RX_DROP; 4027 } 4028 4029 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4030 skb->priority = 0; 4031 return 0; 4032 } 4033 4034 bool dev_nit_active(struct net_device *dev); 4035 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4036 4037 static inline void __dev_put(struct net_device *dev) 4038 { 4039 if (dev) { 4040 #ifdef CONFIG_PCPU_DEV_REFCNT 4041 this_cpu_dec(*dev->pcpu_refcnt); 4042 #else 4043 refcount_dec(&dev->dev_refcnt); 4044 #endif 4045 } 4046 } 4047 4048 static inline void __dev_hold(struct net_device *dev) 4049 { 4050 if (dev) { 4051 #ifdef CONFIG_PCPU_DEV_REFCNT 4052 this_cpu_inc(*dev->pcpu_refcnt); 4053 #else 4054 refcount_inc(&dev->dev_refcnt); 4055 #endif 4056 } 4057 } 4058 4059 static inline void __netdev_tracker_alloc(struct net_device *dev, 4060 netdevice_tracker *tracker, 4061 gfp_t gfp) 4062 { 4063 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4064 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4065 #endif 4066 } 4067 4068 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4069 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4070 */ 4071 static inline void netdev_tracker_alloc(struct net_device *dev, 4072 netdevice_tracker *tracker, gfp_t gfp) 4073 { 4074 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4075 refcount_dec(&dev->refcnt_tracker.no_tracker); 4076 __netdev_tracker_alloc(dev, tracker, gfp); 4077 #endif 4078 } 4079 4080 static inline void netdev_tracker_free(struct net_device *dev, 4081 netdevice_tracker *tracker) 4082 { 4083 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4084 ref_tracker_free(&dev->refcnt_tracker, tracker); 4085 #endif 4086 } 4087 4088 static inline void netdev_hold(struct net_device *dev, 4089 netdevice_tracker *tracker, gfp_t gfp) 4090 { 4091 if (dev) { 4092 __dev_hold(dev); 4093 __netdev_tracker_alloc(dev, tracker, gfp); 4094 } 4095 } 4096 4097 static inline void netdev_put(struct net_device *dev, 4098 netdevice_tracker *tracker) 4099 { 4100 if (dev) { 4101 netdev_tracker_free(dev, tracker); 4102 __dev_put(dev); 4103 } 4104 } 4105 4106 /** 4107 * dev_hold - get reference to device 4108 * @dev: network device 4109 * 4110 * Hold reference to device to keep it from being freed. 4111 * Try using netdev_hold() instead. 4112 */ 4113 static inline void dev_hold(struct net_device *dev) 4114 { 4115 netdev_hold(dev, NULL, GFP_ATOMIC); 4116 } 4117 4118 /** 4119 * dev_put - release reference to device 4120 * @dev: network device 4121 * 4122 * Release reference to device to allow it to be freed. 4123 * Try using netdev_put() instead. 4124 */ 4125 static inline void dev_put(struct net_device *dev) 4126 { 4127 netdev_put(dev, NULL); 4128 } 4129 4130 static inline void netdev_ref_replace(struct net_device *odev, 4131 struct net_device *ndev, 4132 netdevice_tracker *tracker, 4133 gfp_t gfp) 4134 { 4135 if (odev) 4136 netdev_tracker_free(odev, tracker); 4137 4138 __dev_hold(ndev); 4139 __dev_put(odev); 4140 4141 if (ndev) 4142 __netdev_tracker_alloc(ndev, tracker, gfp); 4143 } 4144 4145 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4146 * and _off may be called from IRQ context, but it is caller 4147 * who is responsible for serialization of these calls. 4148 * 4149 * The name carrier is inappropriate, these functions should really be 4150 * called netif_lowerlayer_*() because they represent the state of any 4151 * kind of lower layer not just hardware media. 4152 */ 4153 void linkwatch_fire_event(struct net_device *dev); 4154 4155 /** 4156 * linkwatch_sync_dev - sync linkwatch for the given device 4157 * @dev: network device to sync linkwatch for 4158 * 4159 * Sync linkwatch for the given device, removing it from the 4160 * pending work list (if queued). 4161 */ 4162 void linkwatch_sync_dev(struct net_device *dev); 4163 4164 /** 4165 * netif_carrier_ok - test if carrier present 4166 * @dev: network device 4167 * 4168 * Check if carrier is present on device 4169 */ 4170 static inline bool netif_carrier_ok(const struct net_device *dev) 4171 { 4172 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4173 } 4174 4175 unsigned long dev_trans_start(struct net_device *dev); 4176 4177 void __netdev_watchdog_up(struct net_device *dev); 4178 4179 void netif_carrier_on(struct net_device *dev); 4180 void netif_carrier_off(struct net_device *dev); 4181 void netif_carrier_event(struct net_device *dev); 4182 4183 /** 4184 * netif_dormant_on - mark device as dormant. 4185 * @dev: network device 4186 * 4187 * Mark device as dormant (as per RFC2863). 4188 * 4189 * The dormant state indicates that the relevant interface is not 4190 * actually in a condition to pass packets (i.e., it is not 'up') but is 4191 * in a "pending" state, waiting for some external event. For "on- 4192 * demand" interfaces, this new state identifies the situation where the 4193 * interface is waiting for events to place it in the up state. 4194 */ 4195 static inline void netif_dormant_on(struct net_device *dev) 4196 { 4197 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4198 linkwatch_fire_event(dev); 4199 } 4200 4201 /** 4202 * netif_dormant_off - set device as not dormant. 4203 * @dev: network device 4204 * 4205 * Device is not in dormant state. 4206 */ 4207 static inline void netif_dormant_off(struct net_device *dev) 4208 { 4209 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4210 linkwatch_fire_event(dev); 4211 } 4212 4213 /** 4214 * netif_dormant - test if device is dormant 4215 * @dev: network device 4216 * 4217 * Check if device is dormant. 4218 */ 4219 static inline bool netif_dormant(const struct net_device *dev) 4220 { 4221 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4222 } 4223 4224 4225 /** 4226 * netif_testing_on - mark device as under test. 4227 * @dev: network device 4228 * 4229 * Mark device as under test (as per RFC2863). 4230 * 4231 * The testing state indicates that some test(s) must be performed on 4232 * the interface. After completion, of the test, the interface state 4233 * will change to up, dormant, or down, as appropriate. 4234 */ 4235 static inline void netif_testing_on(struct net_device *dev) 4236 { 4237 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4238 linkwatch_fire_event(dev); 4239 } 4240 4241 /** 4242 * netif_testing_off - set device as not under test. 4243 * @dev: network device 4244 * 4245 * Device is not in testing state. 4246 */ 4247 static inline void netif_testing_off(struct net_device *dev) 4248 { 4249 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4250 linkwatch_fire_event(dev); 4251 } 4252 4253 /** 4254 * netif_testing - test if device is under test 4255 * @dev: network device 4256 * 4257 * Check if device is under test 4258 */ 4259 static inline bool netif_testing(const struct net_device *dev) 4260 { 4261 return test_bit(__LINK_STATE_TESTING, &dev->state); 4262 } 4263 4264 4265 /** 4266 * netif_oper_up - test if device is operational 4267 * @dev: network device 4268 * 4269 * Check if carrier is operational 4270 */ 4271 static inline bool netif_oper_up(const struct net_device *dev) 4272 { 4273 unsigned int operstate = READ_ONCE(dev->operstate); 4274 4275 return operstate == IF_OPER_UP || 4276 operstate == IF_OPER_UNKNOWN /* backward compat */; 4277 } 4278 4279 /** 4280 * netif_device_present - is device available or removed 4281 * @dev: network device 4282 * 4283 * Check if device has not been removed from system. 4284 */ 4285 static inline bool netif_device_present(const struct net_device *dev) 4286 { 4287 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4288 } 4289 4290 void netif_device_detach(struct net_device *dev); 4291 4292 void netif_device_attach(struct net_device *dev); 4293 4294 /* 4295 * Network interface message level settings 4296 */ 4297 4298 enum { 4299 NETIF_MSG_DRV_BIT, 4300 NETIF_MSG_PROBE_BIT, 4301 NETIF_MSG_LINK_BIT, 4302 NETIF_MSG_TIMER_BIT, 4303 NETIF_MSG_IFDOWN_BIT, 4304 NETIF_MSG_IFUP_BIT, 4305 NETIF_MSG_RX_ERR_BIT, 4306 NETIF_MSG_TX_ERR_BIT, 4307 NETIF_MSG_TX_QUEUED_BIT, 4308 NETIF_MSG_INTR_BIT, 4309 NETIF_MSG_TX_DONE_BIT, 4310 NETIF_MSG_RX_STATUS_BIT, 4311 NETIF_MSG_PKTDATA_BIT, 4312 NETIF_MSG_HW_BIT, 4313 NETIF_MSG_WOL_BIT, 4314 4315 /* When you add a new bit above, update netif_msg_class_names array 4316 * in net/ethtool/common.c 4317 */ 4318 NETIF_MSG_CLASS_COUNT, 4319 }; 4320 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4321 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4322 4323 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4324 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4325 4326 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4327 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4328 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4329 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4330 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4331 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4332 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4333 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4334 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4335 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4336 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4337 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4338 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4339 #define NETIF_MSG_HW __NETIF_MSG(HW) 4340 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4341 4342 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4343 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4344 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4345 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4346 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4347 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4348 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4349 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4350 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4351 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4352 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4353 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4354 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4355 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4356 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4357 4358 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4359 { 4360 /* use default */ 4361 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4362 return default_msg_enable_bits; 4363 if (debug_value == 0) /* no output */ 4364 return 0; 4365 /* set low N bits */ 4366 return (1U << debug_value) - 1; 4367 } 4368 4369 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4370 { 4371 spin_lock(&txq->_xmit_lock); 4372 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4373 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4374 } 4375 4376 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4377 { 4378 __acquire(&txq->_xmit_lock); 4379 return true; 4380 } 4381 4382 static inline void __netif_tx_release(struct netdev_queue *txq) 4383 { 4384 __release(&txq->_xmit_lock); 4385 } 4386 4387 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4388 { 4389 spin_lock_bh(&txq->_xmit_lock); 4390 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4391 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4392 } 4393 4394 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4395 { 4396 bool ok = spin_trylock(&txq->_xmit_lock); 4397 4398 if (likely(ok)) { 4399 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4400 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4401 } 4402 return ok; 4403 } 4404 4405 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4406 { 4407 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4408 WRITE_ONCE(txq->xmit_lock_owner, -1); 4409 spin_unlock(&txq->_xmit_lock); 4410 } 4411 4412 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4413 { 4414 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4415 WRITE_ONCE(txq->xmit_lock_owner, -1); 4416 spin_unlock_bh(&txq->_xmit_lock); 4417 } 4418 4419 /* 4420 * txq->trans_start can be read locklessly from dev_watchdog() 4421 */ 4422 static inline void txq_trans_update(struct netdev_queue *txq) 4423 { 4424 if (txq->xmit_lock_owner != -1) 4425 WRITE_ONCE(txq->trans_start, jiffies); 4426 } 4427 4428 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4429 { 4430 unsigned long now = jiffies; 4431 4432 if (READ_ONCE(txq->trans_start) != now) 4433 WRITE_ONCE(txq->trans_start, now); 4434 } 4435 4436 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4437 static inline void netif_trans_update(struct net_device *dev) 4438 { 4439 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4440 4441 txq_trans_cond_update(txq); 4442 } 4443 4444 /** 4445 * netif_tx_lock - grab network device transmit lock 4446 * @dev: network device 4447 * 4448 * Get network device transmit lock 4449 */ 4450 void netif_tx_lock(struct net_device *dev); 4451 4452 static inline void netif_tx_lock_bh(struct net_device *dev) 4453 { 4454 local_bh_disable(); 4455 netif_tx_lock(dev); 4456 } 4457 4458 void netif_tx_unlock(struct net_device *dev); 4459 4460 static inline void netif_tx_unlock_bh(struct net_device *dev) 4461 { 4462 netif_tx_unlock(dev); 4463 local_bh_enable(); 4464 } 4465 4466 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4467 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4468 __netif_tx_lock(txq, cpu); \ 4469 } else { \ 4470 __netif_tx_acquire(txq); \ 4471 } \ 4472 } 4473 4474 #define HARD_TX_TRYLOCK(dev, txq) \ 4475 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4476 __netif_tx_trylock(txq) : \ 4477 __netif_tx_acquire(txq)) 4478 4479 #define HARD_TX_UNLOCK(dev, txq) { \ 4480 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4481 __netif_tx_unlock(txq); \ 4482 } else { \ 4483 __netif_tx_release(txq); \ 4484 } \ 4485 } 4486 4487 static inline void netif_tx_disable(struct net_device *dev) 4488 { 4489 unsigned int i; 4490 int cpu; 4491 4492 local_bh_disable(); 4493 cpu = smp_processor_id(); 4494 spin_lock(&dev->tx_global_lock); 4495 for (i = 0; i < dev->num_tx_queues; i++) { 4496 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4497 4498 __netif_tx_lock(txq, cpu); 4499 netif_tx_stop_queue(txq); 4500 __netif_tx_unlock(txq); 4501 } 4502 spin_unlock(&dev->tx_global_lock); 4503 local_bh_enable(); 4504 } 4505 4506 static inline void netif_addr_lock(struct net_device *dev) 4507 { 4508 unsigned char nest_level = 0; 4509 4510 #ifdef CONFIG_LOCKDEP 4511 nest_level = dev->nested_level; 4512 #endif 4513 spin_lock_nested(&dev->addr_list_lock, nest_level); 4514 } 4515 4516 static inline void netif_addr_lock_bh(struct net_device *dev) 4517 { 4518 unsigned char nest_level = 0; 4519 4520 #ifdef CONFIG_LOCKDEP 4521 nest_level = dev->nested_level; 4522 #endif 4523 local_bh_disable(); 4524 spin_lock_nested(&dev->addr_list_lock, nest_level); 4525 } 4526 4527 static inline void netif_addr_unlock(struct net_device *dev) 4528 { 4529 spin_unlock(&dev->addr_list_lock); 4530 } 4531 4532 static inline void netif_addr_unlock_bh(struct net_device *dev) 4533 { 4534 spin_unlock_bh(&dev->addr_list_lock); 4535 } 4536 4537 /* 4538 * dev_addrs walker. Should be used only for read access. Call with 4539 * rcu_read_lock held. 4540 */ 4541 #define for_each_dev_addr(dev, ha) \ 4542 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4543 4544 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4545 4546 void ether_setup(struct net_device *dev); 4547 4548 /* Support for loadable net-drivers */ 4549 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4550 unsigned char name_assign_type, 4551 void (*setup)(struct net_device *), 4552 unsigned int txqs, unsigned int rxqs); 4553 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4554 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4555 4556 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4557 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4558 count) 4559 4560 int register_netdev(struct net_device *dev); 4561 void unregister_netdev(struct net_device *dev); 4562 4563 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4564 4565 /* General hardware address lists handling functions */ 4566 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4567 struct netdev_hw_addr_list *from_list, int addr_len); 4568 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4569 struct netdev_hw_addr_list *from_list, int addr_len); 4570 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4571 struct net_device *dev, 4572 int (*sync)(struct net_device *, const unsigned char *), 4573 int (*unsync)(struct net_device *, 4574 const unsigned char *)); 4575 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4576 struct net_device *dev, 4577 int (*sync)(struct net_device *, 4578 const unsigned char *, int), 4579 int (*unsync)(struct net_device *, 4580 const unsigned char *, int)); 4581 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4582 struct net_device *dev, 4583 int (*unsync)(struct net_device *, 4584 const unsigned char *, int)); 4585 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4586 struct net_device *dev, 4587 int (*unsync)(struct net_device *, 4588 const unsigned char *)); 4589 void __hw_addr_init(struct netdev_hw_addr_list *list); 4590 4591 /* Functions used for device addresses handling */ 4592 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4593 const void *addr, size_t len); 4594 4595 static inline void 4596 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4597 { 4598 dev_addr_mod(dev, 0, addr, len); 4599 } 4600 4601 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4602 { 4603 __dev_addr_set(dev, addr, dev->addr_len); 4604 } 4605 4606 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4607 unsigned char addr_type); 4608 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4609 unsigned char addr_type); 4610 4611 /* Functions used for unicast addresses handling */ 4612 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4613 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4614 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4615 int dev_uc_sync(struct net_device *to, struct net_device *from); 4616 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4617 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4618 void dev_uc_flush(struct net_device *dev); 4619 void dev_uc_init(struct net_device *dev); 4620 4621 /** 4622 * __dev_uc_sync - Synchonize device's unicast list 4623 * @dev: device to sync 4624 * @sync: function to call if address should be added 4625 * @unsync: function to call if address should be removed 4626 * 4627 * Add newly added addresses to the interface, and release 4628 * addresses that have been deleted. 4629 */ 4630 static inline int __dev_uc_sync(struct net_device *dev, 4631 int (*sync)(struct net_device *, 4632 const unsigned char *), 4633 int (*unsync)(struct net_device *, 4634 const unsigned char *)) 4635 { 4636 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4637 } 4638 4639 /** 4640 * __dev_uc_unsync - Remove synchronized addresses from device 4641 * @dev: device to sync 4642 * @unsync: function to call if address should be removed 4643 * 4644 * Remove all addresses that were added to the device by dev_uc_sync(). 4645 */ 4646 static inline void __dev_uc_unsync(struct net_device *dev, 4647 int (*unsync)(struct net_device *, 4648 const unsigned char *)) 4649 { 4650 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4651 } 4652 4653 /* Functions used for multicast addresses handling */ 4654 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4655 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4656 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4657 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4658 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4659 int dev_mc_sync(struct net_device *to, struct net_device *from); 4660 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4661 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4662 void dev_mc_flush(struct net_device *dev); 4663 void dev_mc_init(struct net_device *dev); 4664 4665 /** 4666 * __dev_mc_sync - Synchonize device's multicast list 4667 * @dev: device to sync 4668 * @sync: function to call if address should be added 4669 * @unsync: function to call if address should be removed 4670 * 4671 * Add newly added addresses to the interface, and release 4672 * addresses that have been deleted. 4673 */ 4674 static inline int __dev_mc_sync(struct net_device *dev, 4675 int (*sync)(struct net_device *, 4676 const unsigned char *), 4677 int (*unsync)(struct net_device *, 4678 const unsigned char *)) 4679 { 4680 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4681 } 4682 4683 /** 4684 * __dev_mc_unsync - Remove synchronized addresses from device 4685 * @dev: device to sync 4686 * @unsync: function to call if address should be removed 4687 * 4688 * Remove all addresses that were added to the device by dev_mc_sync(). 4689 */ 4690 static inline void __dev_mc_unsync(struct net_device *dev, 4691 int (*unsync)(struct net_device *, 4692 const unsigned char *)) 4693 { 4694 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4695 } 4696 4697 /* Functions used for secondary unicast and multicast support */ 4698 void dev_set_rx_mode(struct net_device *dev); 4699 int dev_set_promiscuity(struct net_device *dev, int inc); 4700 int dev_set_allmulti(struct net_device *dev, int inc); 4701 void netdev_state_change(struct net_device *dev); 4702 void __netdev_notify_peers(struct net_device *dev); 4703 void netdev_notify_peers(struct net_device *dev); 4704 void netdev_features_change(struct net_device *dev); 4705 /* Load a device via the kmod */ 4706 void dev_load(struct net *net, const char *name); 4707 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4708 struct rtnl_link_stats64 *storage); 4709 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4710 const struct net_device_stats *netdev_stats); 4711 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4712 const struct pcpu_sw_netstats __percpu *netstats); 4713 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4714 4715 enum { 4716 NESTED_SYNC_IMM_BIT, 4717 NESTED_SYNC_TODO_BIT, 4718 }; 4719 4720 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4721 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4722 4723 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4724 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4725 4726 struct netdev_nested_priv { 4727 unsigned char flags; 4728 void *data; 4729 }; 4730 4731 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4732 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4733 struct list_head **iter); 4734 4735 /* iterate through upper list, must be called under RCU read lock */ 4736 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4737 for (iter = &(dev)->adj_list.upper, \ 4738 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4739 updev; \ 4740 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4741 4742 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4743 int (*fn)(struct net_device *upper_dev, 4744 struct netdev_nested_priv *priv), 4745 struct netdev_nested_priv *priv); 4746 4747 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4748 struct net_device *upper_dev); 4749 4750 bool netdev_has_any_upper_dev(struct net_device *dev); 4751 4752 void *netdev_lower_get_next_private(struct net_device *dev, 4753 struct list_head **iter); 4754 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4755 struct list_head **iter); 4756 4757 #define netdev_for_each_lower_private(dev, priv, iter) \ 4758 for (iter = (dev)->adj_list.lower.next, \ 4759 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4760 priv; \ 4761 priv = netdev_lower_get_next_private(dev, &(iter))) 4762 4763 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4764 for (iter = &(dev)->adj_list.lower, \ 4765 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4766 priv; \ 4767 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4768 4769 void *netdev_lower_get_next(struct net_device *dev, 4770 struct list_head **iter); 4771 4772 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4773 for (iter = (dev)->adj_list.lower.next, \ 4774 ldev = netdev_lower_get_next(dev, &(iter)); \ 4775 ldev; \ 4776 ldev = netdev_lower_get_next(dev, &(iter))) 4777 4778 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4779 struct list_head **iter); 4780 int netdev_walk_all_lower_dev(struct net_device *dev, 4781 int (*fn)(struct net_device *lower_dev, 4782 struct netdev_nested_priv *priv), 4783 struct netdev_nested_priv *priv); 4784 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4785 int (*fn)(struct net_device *lower_dev, 4786 struct netdev_nested_priv *priv), 4787 struct netdev_nested_priv *priv); 4788 4789 void *netdev_adjacent_get_private(struct list_head *adj_list); 4790 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4791 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4792 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4793 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4794 struct netlink_ext_ack *extack); 4795 int netdev_master_upper_dev_link(struct net_device *dev, 4796 struct net_device *upper_dev, 4797 void *upper_priv, void *upper_info, 4798 struct netlink_ext_ack *extack); 4799 void netdev_upper_dev_unlink(struct net_device *dev, 4800 struct net_device *upper_dev); 4801 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4802 struct net_device *new_dev, 4803 struct net_device *dev, 4804 struct netlink_ext_ack *extack); 4805 void netdev_adjacent_change_commit(struct net_device *old_dev, 4806 struct net_device *new_dev, 4807 struct net_device *dev); 4808 void netdev_adjacent_change_abort(struct net_device *old_dev, 4809 struct net_device *new_dev, 4810 struct net_device *dev); 4811 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4812 void *netdev_lower_dev_get_private(struct net_device *dev, 4813 struct net_device *lower_dev); 4814 void netdev_lower_state_changed(struct net_device *lower_dev, 4815 void *lower_state_info); 4816 4817 /* RSS keys are 40 or 52 bytes long */ 4818 #define NETDEV_RSS_KEY_LEN 52 4819 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4820 void netdev_rss_key_fill(void *buffer, size_t len); 4821 4822 int skb_checksum_help(struct sk_buff *skb); 4823 int skb_crc32c_csum_help(struct sk_buff *skb); 4824 int skb_csum_hwoffload_help(struct sk_buff *skb, 4825 const netdev_features_t features); 4826 4827 struct netdev_bonding_info { 4828 ifslave slave; 4829 ifbond master; 4830 }; 4831 4832 struct netdev_notifier_bonding_info { 4833 struct netdev_notifier_info info; /* must be first */ 4834 struct netdev_bonding_info bonding_info; 4835 }; 4836 4837 void netdev_bonding_info_change(struct net_device *dev, 4838 struct netdev_bonding_info *bonding_info); 4839 4840 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4841 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4842 #else 4843 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4844 const void *data) 4845 { 4846 } 4847 #endif 4848 4849 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4850 4851 static inline bool can_checksum_protocol(netdev_features_t features, 4852 __be16 protocol) 4853 { 4854 if (protocol == htons(ETH_P_FCOE)) 4855 return !!(features & NETIF_F_FCOE_CRC); 4856 4857 /* Assume this is an IP checksum (not SCTP CRC) */ 4858 4859 if (features & NETIF_F_HW_CSUM) { 4860 /* Can checksum everything */ 4861 return true; 4862 } 4863 4864 switch (protocol) { 4865 case htons(ETH_P_IP): 4866 return !!(features & NETIF_F_IP_CSUM); 4867 case htons(ETH_P_IPV6): 4868 return !!(features & NETIF_F_IPV6_CSUM); 4869 default: 4870 return false; 4871 } 4872 } 4873 4874 #ifdef CONFIG_BUG 4875 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4876 #else 4877 static inline void netdev_rx_csum_fault(struct net_device *dev, 4878 struct sk_buff *skb) 4879 { 4880 } 4881 #endif 4882 /* rx skb timestamps */ 4883 void net_enable_timestamp(void); 4884 void net_disable_timestamp(void); 4885 4886 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4887 const struct skb_shared_hwtstamps *hwtstamps, 4888 bool cycles) 4889 { 4890 const struct net_device_ops *ops = dev->netdev_ops; 4891 4892 if (ops->ndo_get_tstamp) 4893 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4894 4895 return hwtstamps->hwtstamp; 4896 } 4897 4898 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4899 struct sk_buff *skb, struct net_device *dev, 4900 bool more) 4901 { 4902 __this_cpu_write(softnet_data.xmit.more, more); 4903 return ops->ndo_start_xmit(skb, dev); 4904 } 4905 4906 static inline bool netdev_xmit_more(void) 4907 { 4908 return __this_cpu_read(softnet_data.xmit.more); 4909 } 4910 4911 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4912 struct netdev_queue *txq, bool more) 4913 { 4914 const struct net_device_ops *ops = dev->netdev_ops; 4915 netdev_tx_t rc; 4916 4917 rc = __netdev_start_xmit(ops, skb, dev, more); 4918 if (rc == NETDEV_TX_OK) 4919 txq_trans_update(txq); 4920 4921 return rc; 4922 } 4923 4924 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4925 const void *ns); 4926 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4927 const void *ns); 4928 4929 extern const struct kobj_ns_type_operations net_ns_type_operations; 4930 4931 const char *netdev_drivername(const struct net_device *dev); 4932 4933 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4934 netdev_features_t f2) 4935 { 4936 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4937 if (f1 & NETIF_F_HW_CSUM) 4938 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4939 else 4940 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4941 } 4942 4943 return f1 & f2; 4944 } 4945 4946 static inline netdev_features_t netdev_get_wanted_features( 4947 struct net_device *dev) 4948 { 4949 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4950 } 4951 netdev_features_t netdev_increment_features(netdev_features_t all, 4952 netdev_features_t one, netdev_features_t mask); 4953 4954 /* Allow TSO being used on stacked device : 4955 * Performing the GSO segmentation before last device 4956 * is a performance improvement. 4957 */ 4958 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4959 netdev_features_t mask) 4960 { 4961 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4962 } 4963 4964 int __netdev_update_features(struct net_device *dev); 4965 void netdev_update_features(struct net_device *dev); 4966 void netdev_change_features(struct net_device *dev); 4967 4968 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4969 struct net_device *dev); 4970 4971 netdev_features_t passthru_features_check(struct sk_buff *skb, 4972 struct net_device *dev, 4973 netdev_features_t features); 4974 netdev_features_t netif_skb_features(struct sk_buff *skb); 4975 void skb_warn_bad_offload(const struct sk_buff *skb); 4976 4977 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4978 { 4979 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4980 4981 /* check flags correspondence */ 4982 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4983 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4984 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4985 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4986 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4987 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4988 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4989 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4990 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4991 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4992 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4993 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4994 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4995 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4996 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4997 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4998 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4999 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5000 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5001 5002 return (features & feature) == feature; 5003 } 5004 5005 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5006 { 5007 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5008 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5009 } 5010 5011 static inline bool netif_needs_gso(struct sk_buff *skb, 5012 netdev_features_t features) 5013 { 5014 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5015 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5016 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5017 } 5018 5019 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5020 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5021 void netif_inherit_tso_max(struct net_device *to, 5022 const struct net_device *from); 5023 5024 static inline bool netif_is_macsec(const struct net_device *dev) 5025 { 5026 return dev->priv_flags & IFF_MACSEC; 5027 } 5028 5029 static inline bool netif_is_macvlan(const struct net_device *dev) 5030 { 5031 return dev->priv_flags & IFF_MACVLAN; 5032 } 5033 5034 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5035 { 5036 return dev->priv_flags & IFF_MACVLAN_PORT; 5037 } 5038 5039 static inline bool netif_is_bond_master(const struct net_device *dev) 5040 { 5041 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5042 } 5043 5044 static inline bool netif_is_bond_slave(const struct net_device *dev) 5045 { 5046 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5047 } 5048 5049 static inline bool netif_supports_nofcs(struct net_device *dev) 5050 { 5051 return dev->priv_flags & IFF_SUPP_NOFCS; 5052 } 5053 5054 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5055 { 5056 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5057 } 5058 5059 static inline bool netif_is_l3_master(const struct net_device *dev) 5060 { 5061 return dev->priv_flags & IFF_L3MDEV_MASTER; 5062 } 5063 5064 static inline bool netif_is_l3_slave(const struct net_device *dev) 5065 { 5066 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5067 } 5068 5069 static inline int dev_sdif(const struct net_device *dev) 5070 { 5071 #ifdef CONFIG_NET_L3_MASTER_DEV 5072 if (netif_is_l3_slave(dev)) 5073 return dev->ifindex; 5074 #endif 5075 return 0; 5076 } 5077 5078 static inline bool netif_is_bridge_master(const struct net_device *dev) 5079 { 5080 return dev->priv_flags & IFF_EBRIDGE; 5081 } 5082 5083 static inline bool netif_is_bridge_port(const struct net_device *dev) 5084 { 5085 return dev->priv_flags & IFF_BRIDGE_PORT; 5086 } 5087 5088 static inline bool netif_is_ovs_master(const struct net_device *dev) 5089 { 5090 return dev->priv_flags & IFF_OPENVSWITCH; 5091 } 5092 5093 static inline bool netif_is_ovs_port(const struct net_device *dev) 5094 { 5095 return dev->priv_flags & IFF_OVS_DATAPATH; 5096 } 5097 5098 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5099 { 5100 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5101 } 5102 5103 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5104 { 5105 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5106 } 5107 5108 static inline bool netif_is_team_master(const struct net_device *dev) 5109 { 5110 return dev->priv_flags & IFF_TEAM; 5111 } 5112 5113 static inline bool netif_is_team_port(const struct net_device *dev) 5114 { 5115 return dev->priv_flags & IFF_TEAM_PORT; 5116 } 5117 5118 static inline bool netif_is_lag_master(const struct net_device *dev) 5119 { 5120 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5121 } 5122 5123 static inline bool netif_is_lag_port(const struct net_device *dev) 5124 { 5125 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5126 } 5127 5128 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5129 { 5130 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5131 } 5132 5133 static inline bool netif_is_failover(const struct net_device *dev) 5134 { 5135 return dev->priv_flags & IFF_FAILOVER; 5136 } 5137 5138 static inline bool netif_is_failover_slave(const struct net_device *dev) 5139 { 5140 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5141 } 5142 5143 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5144 static inline void netif_keep_dst(struct net_device *dev) 5145 { 5146 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5147 } 5148 5149 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5150 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5151 { 5152 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5153 return netif_is_macsec(dev); 5154 } 5155 5156 extern struct pernet_operations __net_initdata loopback_net_ops; 5157 5158 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5159 5160 /* netdev_printk helpers, similar to dev_printk */ 5161 5162 static inline const char *netdev_name(const struct net_device *dev) 5163 { 5164 if (!dev->name[0] || strchr(dev->name, '%')) 5165 return "(unnamed net_device)"; 5166 return dev->name; 5167 } 5168 5169 static inline const char *netdev_reg_state(const struct net_device *dev) 5170 { 5171 u8 reg_state = READ_ONCE(dev->reg_state); 5172 5173 switch (reg_state) { 5174 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5175 case NETREG_REGISTERED: return ""; 5176 case NETREG_UNREGISTERING: return " (unregistering)"; 5177 case NETREG_UNREGISTERED: return " (unregistered)"; 5178 case NETREG_RELEASED: return " (released)"; 5179 case NETREG_DUMMY: return " (dummy)"; 5180 } 5181 5182 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5183 return " (unknown)"; 5184 } 5185 5186 #define MODULE_ALIAS_NETDEV(device) \ 5187 MODULE_ALIAS("netdev-" device) 5188 5189 /* 5190 * netdev_WARN() acts like dev_printk(), but with the key difference 5191 * of using a WARN/WARN_ON to get the message out, including the 5192 * file/line information and a backtrace. 5193 */ 5194 #define netdev_WARN(dev, format, args...) \ 5195 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5196 netdev_reg_state(dev), ##args) 5197 5198 #define netdev_WARN_ONCE(dev, format, args...) \ 5199 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5200 netdev_reg_state(dev), ##args) 5201 5202 /* 5203 * The list of packet types we will receive (as opposed to discard) 5204 * and the routines to invoke. 5205 * 5206 * Why 16. Because with 16 the only overlap we get on a hash of the 5207 * low nibble of the protocol value is RARP/SNAP/X.25. 5208 * 5209 * 0800 IP 5210 * 0001 802.3 5211 * 0002 AX.25 5212 * 0004 802.2 5213 * 8035 RARP 5214 * 0005 SNAP 5215 * 0805 X.25 5216 * 0806 ARP 5217 * 8137 IPX 5218 * 0009 Localtalk 5219 * 86DD IPv6 5220 */ 5221 #define PTYPE_HASH_SIZE (16) 5222 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5223 5224 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5225 5226 extern struct net_device *blackhole_netdev; 5227 5228 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5229 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5230 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5231 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5232 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5233 5234 #endif /* _LINUX_NETDEVICE_H */ 5235