xref: /linux-6.15/include/linux/netdevice.h (revision ebda2f0b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_name_node;
67 struct sd_flow_limit;
68 struct sfp_bus;
69 /* 802.11 specific */
70 struct wireless_dev;
71 /* 802.15.4 specific */
72 struct wpan_dev;
73 struct mpls_dev;
74 /* UDP Tunnel offloads */
75 struct udp_tunnel_info;
76 struct udp_tunnel_nic_info;
77 struct udp_tunnel_nic;
78 struct bpf_prog;
79 struct xdp_buff;
80 struct xdp_frame;
81 struct xdp_metadata_ops;
82 struct xdp_md;
83 struct ethtool_netdev_state;
84 struct phy_link_topology;
85 struct hwtstamp_provider;
86 
87 typedef u32 xdp_features_t;
88 
89 void synchronize_net(void);
90 void netdev_set_default_ethtool_ops(struct net_device *dev,
91 				    const struct ethtool_ops *ops);
92 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
93 
94 /* Backlog congestion levels */
95 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
96 #define NET_RX_DROP		1	/* packet dropped */
97 
98 #define MAX_NEST_DEV 8
99 
100 /*
101  * Transmit return codes: transmit return codes originate from three different
102  * namespaces:
103  *
104  * - qdisc return codes
105  * - driver transmit return codes
106  * - errno values
107  *
108  * Drivers are allowed to return any one of those in their hard_start_xmit()
109  * function. Real network devices commonly used with qdiscs should only return
110  * the driver transmit return codes though - when qdiscs are used, the actual
111  * transmission happens asynchronously, so the value is not propagated to
112  * higher layers. Virtual network devices transmit synchronously; in this case
113  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
114  * others are propagated to higher layers.
115  */
116 
117 /* qdisc ->enqueue() return codes. */
118 #define NET_XMIT_SUCCESS	0x00
119 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
120 #define NET_XMIT_CN		0x02	/* congestion notification	*/
121 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
122 
123 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
124  * indicates that the device will soon be dropping packets, or already drops
125  * some packets of the same priority; prompting us to send less aggressively. */
126 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
127 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
128 
129 /* Driver transmit return codes */
130 #define NETDEV_TX_MASK		0xf0
131 
132 enum netdev_tx {
133 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
134 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
135 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
136 };
137 typedef enum netdev_tx netdev_tx_t;
138 
139 /*
140  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
141  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
142  */
143 static inline bool dev_xmit_complete(int rc)
144 {
145 	/*
146 	 * Positive cases with an skb consumed by a driver:
147 	 * - successful transmission (rc == NETDEV_TX_OK)
148 	 * - error while transmitting (rc < 0)
149 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
150 	 */
151 	if (likely(rc < NET_XMIT_MASK))
152 		return true;
153 
154 	return false;
155 }
156 
157 /*
158  *	Compute the worst-case header length according to the protocols
159  *	used.
160  */
161 
162 #if defined(CONFIG_HYPERV_NET)
163 # define LL_MAX_HEADER 128
164 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
165 # if defined(CONFIG_MAC80211_MESH)
166 #  define LL_MAX_HEADER 128
167 # else
168 #  define LL_MAX_HEADER 96
169 # endif
170 #else
171 # define LL_MAX_HEADER 32
172 #endif
173 
174 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
175     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
176 #define MAX_HEADER LL_MAX_HEADER
177 #else
178 #define MAX_HEADER (LL_MAX_HEADER + 48)
179 #endif
180 
181 /*
182  *	Old network device statistics. Fields are native words
183  *	(unsigned long) so they can be read and written atomically.
184  */
185 
186 #define NET_DEV_STAT(FIELD)			\
187 	union {					\
188 		unsigned long FIELD;		\
189 		atomic_long_t __##FIELD;	\
190 	}
191 
192 struct net_device_stats {
193 	NET_DEV_STAT(rx_packets);
194 	NET_DEV_STAT(tx_packets);
195 	NET_DEV_STAT(rx_bytes);
196 	NET_DEV_STAT(tx_bytes);
197 	NET_DEV_STAT(rx_errors);
198 	NET_DEV_STAT(tx_errors);
199 	NET_DEV_STAT(rx_dropped);
200 	NET_DEV_STAT(tx_dropped);
201 	NET_DEV_STAT(multicast);
202 	NET_DEV_STAT(collisions);
203 	NET_DEV_STAT(rx_length_errors);
204 	NET_DEV_STAT(rx_over_errors);
205 	NET_DEV_STAT(rx_crc_errors);
206 	NET_DEV_STAT(rx_frame_errors);
207 	NET_DEV_STAT(rx_fifo_errors);
208 	NET_DEV_STAT(rx_missed_errors);
209 	NET_DEV_STAT(tx_aborted_errors);
210 	NET_DEV_STAT(tx_carrier_errors);
211 	NET_DEV_STAT(tx_fifo_errors);
212 	NET_DEV_STAT(tx_heartbeat_errors);
213 	NET_DEV_STAT(tx_window_errors);
214 	NET_DEV_STAT(rx_compressed);
215 	NET_DEV_STAT(tx_compressed);
216 };
217 #undef NET_DEV_STAT
218 
219 /* per-cpu stats, allocated on demand.
220  * Try to fit them in a single cache line, for dev_get_stats() sake.
221  */
222 struct net_device_core_stats {
223 	unsigned long	rx_dropped;
224 	unsigned long	tx_dropped;
225 	unsigned long	rx_nohandler;
226 	unsigned long	rx_otherhost_dropped;
227 } __aligned(4 * sizeof(unsigned long));
228 
229 #include <linux/cache.h>
230 #include <linux/skbuff.h>
231 
232 struct neighbour;
233 struct neigh_parms;
234 struct sk_buff;
235 
236 struct netdev_hw_addr {
237 	struct list_head	list;
238 	struct rb_node		node;
239 	unsigned char		addr[MAX_ADDR_LEN];
240 	unsigned char		type;
241 #define NETDEV_HW_ADDR_T_LAN		1
242 #define NETDEV_HW_ADDR_T_SAN		2
243 #define NETDEV_HW_ADDR_T_UNICAST	3
244 #define NETDEV_HW_ADDR_T_MULTICAST	4
245 	bool			global_use;
246 	int			sync_cnt;
247 	int			refcount;
248 	int			synced;
249 	struct rcu_head		rcu_head;
250 };
251 
252 struct netdev_hw_addr_list {
253 	struct list_head	list;
254 	int			count;
255 
256 	/* Auxiliary tree for faster lookup on addition and deletion */
257 	struct rb_root		tree;
258 };
259 
260 #define netdev_hw_addr_list_count(l) ((l)->count)
261 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
262 #define netdev_hw_addr_list_for_each(ha, l) \
263 	list_for_each_entry(ha, &(l)->list, list)
264 
265 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
266 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
267 #define netdev_for_each_uc_addr(ha, dev) \
268 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
269 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
270 	netdev_for_each_uc_addr((_ha), (_dev)) \
271 		if ((_ha)->sync_cnt)
272 
273 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
274 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
275 #define netdev_for_each_mc_addr(ha, dev) \
276 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
277 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
278 	netdev_for_each_mc_addr((_ha), (_dev)) \
279 		if ((_ha)->sync_cnt)
280 
281 struct hh_cache {
282 	unsigned int	hh_len;
283 	seqlock_t	hh_lock;
284 
285 	/* cached hardware header; allow for machine alignment needs.        */
286 #define HH_DATA_MOD	16
287 #define HH_DATA_OFF(__len) \
288 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
289 #define HH_DATA_ALIGN(__len) \
290 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
291 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
292 };
293 
294 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
295  * Alternative is:
296  *   dev->hard_header_len ? (dev->hard_header_len +
297  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
298  *
299  * We could use other alignment values, but we must maintain the
300  * relationship HH alignment <= LL alignment.
301  */
302 #define LL_RESERVED_SPACE(dev) \
303 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
304 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
305 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
306 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
307 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
308 
309 struct header_ops {
310 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
311 			   unsigned short type, const void *daddr,
312 			   const void *saddr, unsigned int len);
313 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
314 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
315 	void	(*cache_update)(struct hh_cache *hh,
316 				const struct net_device *dev,
317 				const unsigned char *haddr);
318 	bool	(*validate)(const char *ll_header, unsigned int len);
319 	__be16	(*parse_protocol)(const struct sk_buff *skb);
320 };
321 
322 /* These flag bits are private to the generic network queueing
323  * layer; they may not be explicitly referenced by any other
324  * code.
325  */
326 
327 enum netdev_state_t {
328 	__LINK_STATE_START,
329 	__LINK_STATE_PRESENT,
330 	__LINK_STATE_NOCARRIER,
331 	__LINK_STATE_LINKWATCH_PENDING,
332 	__LINK_STATE_DORMANT,
333 	__LINK_STATE_TESTING,
334 };
335 
336 struct gro_list {
337 	struct list_head	list;
338 	int			count;
339 };
340 
341 /*
342  * size of gro hash buckets, must less than bit number of
343  * napi_struct::gro_bitmask
344  */
345 #define GRO_HASH_BUCKETS	8
346 
347 /*
348  * Structure for per-NAPI config
349  */
350 struct napi_config {
351 	u64 gro_flush_timeout;
352 	u64 irq_suspend_timeout;
353 	u32 defer_hard_irqs;
354 	unsigned int napi_id;
355 };
356 
357 /*
358  * Structure for NAPI scheduling similar to tasklet but with weighting
359  */
360 struct napi_struct {
361 	/* The poll_list must only be managed by the entity which
362 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
363 	 * whoever atomically sets that bit can add this napi_struct
364 	 * to the per-CPU poll_list, and whoever clears that bit
365 	 * can remove from the list right before clearing the bit.
366 	 */
367 	struct list_head	poll_list;
368 
369 	unsigned long		state;
370 	int			weight;
371 	u32			defer_hard_irqs_count;
372 	unsigned long		gro_bitmask;
373 	int			(*poll)(struct napi_struct *, int);
374 #ifdef CONFIG_NETPOLL
375 	/* CPU actively polling if netpoll is configured */
376 	int			poll_owner;
377 #endif
378 	/* CPU on which NAPI has been scheduled for processing */
379 	int			list_owner;
380 	struct net_device	*dev;
381 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
382 	struct sk_buff		*skb;
383 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
384 	int			rx_count; /* length of rx_list */
385 	unsigned int		napi_id;
386 	struct hrtimer		timer;
387 	struct task_struct	*thread;
388 	unsigned long		gro_flush_timeout;
389 	unsigned long		irq_suspend_timeout;
390 	u32			defer_hard_irqs;
391 	/* control-path-only fields follow */
392 	struct list_head	dev_list;
393 	struct hlist_node	napi_hash_node;
394 	int			irq;
395 	int			index;
396 	struct napi_config	*config;
397 };
398 
399 enum {
400 	NAPI_STATE_SCHED,		/* Poll is scheduled */
401 	NAPI_STATE_MISSED,		/* reschedule a napi */
402 	NAPI_STATE_DISABLE,		/* Disable pending */
403 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
404 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
405 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
406 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
407 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
408 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
409 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
410 };
411 
412 enum {
413 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
414 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
415 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
416 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
417 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
418 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
419 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
420 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
421 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
422 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
423 };
424 
425 enum gro_result {
426 	GRO_MERGED,
427 	GRO_MERGED_FREE,
428 	GRO_HELD,
429 	GRO_NORMAL,
430 	GRO_CONSUMED,
431 };
432 typedef enum gro_result gro_result_t;
433 
434 /*
435  * enum rx_handler_result - Possible return values for rx_handlers.
436  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
437  * further.
438  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
439  * case skb->dev was changed by rx_handler.
440  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
441  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
442  *
443  * rx_handlers are functions called from inside __netif_receive_skb(), to do
444  * special processing of the skb, prior to delivery to protocol handlers.
445  *
446  * Currently, a net_device can only have a single rx_handler registered. Trying
447  * to register a second rx_handler will return -EBUSY.
448  *
449  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
450  * To unregister a rx_handler on a net_device, use
451  * netdev_rx_handler_unregister().
452  *
453  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
454  * do with the skb.
455  *
456  * If the rx_handler consumed the skb in some way, it should return
457  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
458  * the skb to be delivered in some other way.
459  *
460  * If the rx_handler changed skb->dev, to divert the skb to another
461  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
462  * new device will be called if it exists.
463  *
464  * If the rx_handler decides the skb should be ignored, it should return
465  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
466  * are registered on exact device (ptype->dev == skb->dev).
467  *
468  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
469  * delivered, it should return RX_HANDLER_PASS.
470  *
471  * A device without a registered rx_handler will behave as if rx_handler
472  * returned RX_HANDLER_PASS.
473  */
474 
475 enum rx_handler_result {
476 	RX_HANDLER_CONSUMED,
477 	RX_HANDLER_ANOTHER,
478 	RX_HANDLER_EXACT,
479 	RX_HANDLER_PASS,
480 };
481 typedef enum rx_handler_result rx_handler_result_t;
482 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
483 
484 void __napi_schedule(struct napi_struct *n);
485 void __napi_schedule_irqoff(struct napi_struct *n);
486 
487 static inline bool napi_disable_pending(struct napi_struct *n)
488 {
489 	return test_bit(NAPI_STATE_DISABLE, &n->state);
490 }
491 
492 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
493 {
494 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
495 }
496 
497 /**
498  * napi_is_scheduled - test if NAPI is scheduled
499  * @n: NAPI context
500  *
501  * This check is "best-effort". With no locking implemented,
502  * a NAPI can be scheduled or terminate right after this check
503  * and produce not precise results.
504  *
505  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
506  * should not be used normally and napi_schedule should be
507  * used instead.
508  *
509  * Use only if the driver really needs to check if a NAPI
510  * is scheduled for example in the context of delayed timer
511  * that can be skipped if a NAPI is already scheduled.
512  *
513  * Return: True if NAPI is scheduled, False otherwise.
514  */
515 static inline bool napi_is_scheduled(struct napi_struct *n)
516 {
517 	return test_bit(NAPI_STATE_SCHED, &n->state);
518 }
519 
520 bool napi_schedule_prep(struct napi_struct *n);
521 
522 /**
523  *	napi_schedule - schedule NAPI poll
524  *	@n: NAPI context
525  *
526  * Schedule NAPI poll routine to be called if it is not already
527  * running.
528  * Return: true if we schedule a NAPI or false if not.
529  * Refer to napi_schedule_prep() for additional reason on why
530  * a NAPI might not be scheduled.
531  */
532 static inline bool napi_schedule(struct napi_struct *n)
533 {
534 	if (napi_schedule_prep(n)) {
535 		__napi_schedule(n);
536 		return true;
537 	}
538 
539 	return false;
540 }
541 
542 /**
543  *	napi_schedule_irqoff - schedule NAPI poll
544  *	@n: NAPI context
545  *
546  * Variant of napi_schedule(), assuming hard irqs are masked.
547  */
548 static inline void napi_schedule_irqoff(struct napi_struct *n)
549 {
550 	if (napi_schedule_prep(n))
551 		__napi_schedule_irqoff(n);
552 }
553 
554 /**
555  * napi_complete_done - NAPI processing complete
556  * @n: NAPI context
557  * @work_done: number of packets processed
558  *
559  * Mark NAPI processing as complete. Should only be called if poll budget
560  * has not been completely consumed.
561  * Prefer over napi_complete().
562  * Return: false if device should avoid rearming interrupts.
563  */
564 bool napi_complete_done(struct napi_struct *n, int work_done);
565 
566 static inline bool napi_complete(struct napi_struct *n)
567 {
568 	return napi_complete_done(n, 0);
569 }
570 
571 int dev_set_threaded(struct net_device *dev, bool threaded);
572 
573 /**
574  *	napi_disable - prevent NAPI from scheduling
575  *	@n: NAPI context
576  *
577  * Stop NAPI from being scheduled on this context.
578  * Waits till any outstanding processing completes.
579  */
580 void napi_disable(struct napi_struct *n);
581 
582 void napi_enable(struct napi_struct *n);
583 
584 /**
585  *	napi_synchronize - wait until NAPI is not running
586  *	@n: NAPI context
587  *
588  * Wait until NAPI is done being scheduled on this context.
589  * Waits till any outstanding processing completes but
590  * does not disable future activations.
591  */
592 static inline void napi_synchronize(const struct napi_struct *n)
593 {
594 	if (IS_ENABLED(CONFIG_SMP))
595 		while (test_bit(NAPI_STATE_SCHED, &n->state))
596 			msleep(1);
597 	else
598 		barrier();
599 }
600 
601 /**
602  *	napi_if_scheduled_mark_missed - if napi is running, set the
603  *	NAPIF_STATE_MISSED
604  *	@n: NAPI context
605  *
606  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
607  * NAPI is scheduled.
608  **/
609 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
610 {
611 	unsigned long val, new;
612 
613 	val = READ_ONCE(n->state);
614 	do {
615 		if (val & NAPIF_STATE_DISABLE)
616 			return true;
617 
618 		if (!(val & NAPIF_STATE_SCHED))
619 			return false;
620 
621 		new = val | NAPIF_STATE_MISSED;
622 	} while (!try_cmpxchg(&n->state, &val, new));
623 
624 	return true;
625 }
626 
627 enum netdev_queue_state_t {
628 	__QUEUE_STATE_DRV_XOFF,
629 	__QUEUE_STATE_STACK_XOFF,
630 	__QUEUE_STATE_FROZEN,
631 };
632 
633 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
634 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
635 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
636 
637 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
638 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
639 					QUEUE_STATE_FROZEN)
640 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
641 					QUEUE_STATE_FROZEN)
642 
643 /*
644  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
645  * netif_tx_* functions below are used to manipulate this flag.  The
646  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
647  * queue independently.  The netif_xmit_*stopped functions below are called
648  * to check if the queue has been stopped by the driver or stack (either
649  * of the XOFF bits are set in the state).  Drivers should not need to call
650  * netif_xmit*stopped functions, they should only be using netif_tx_*.
651  */
652 
653 struct netdev_queue {
654 /*
655  * read-mostly part
656  */
657 	struct net_device	*dev;
658 	netdevice_tracker	dev_tracker;
659 
660 	struct Qdisc __rcu	*qdisc;
661 	struct Qdisc __rcu	*qdisc_sleeping;
662 #ifdef CONFIG_SYSFS
663 	struct kobject		kobj;
664 #endif
665 	unsigned long		tx_maxrate;
666 	/*
667 	 * Number of TX timeouts for this queue
668 	 * (/sys/class/net/DEV/Q/trans_timeout)
669 	 */
670 	atomic_long_t		trans_timeout;
671 
672 	/* Subordinate device that the queue has been assigned to */
673 	struct net_device	*sb_dev;
674 #ifdef CONFIG_XDP_SOCKETS
675 	struct xsk_buff_pool    *pool;
676 #endif
677 
678 /*
679  * write-mostly part
680  */
681 #ifdef CONFIG_BQL
682 	struct dql		dql;
683 #endif
684 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
685 	int			xmit_lock_owner;
686 	/*
687 	 * Time (in jiffies) of last Tx
688 	 */
689 	unsigned long		trans_start;
690 
691 	unsigned long		state;
692 
693 /*
694  * slow- / control-path part
695  */
696 	/* NAPI instance for the queue
697 	 * Readers and writers must hold RTNL
698 	 */
699 	struct napi_struct	*napi;
700 
701 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
702 	int			numa_node;
703 #endif
704 } ____cacheline_aligned_in_smp;
705 
706 extern int sysctl_fb_tunnels_only_for_init_net;
707 extern int sysctl_devconf_inherit_init_net;
708 
709 /*
710  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
711  *                                     == 1 : For initns only
712  *                                     == 2 : For none.
713  */
714 static inline bool net_has_fallback_tunnels(const struct net *net)
715 {
716 #if IS_ENABLED(CONFIG_SYSCTL)
717 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
718 
719 	return !fb_tunnels_only_for_init_net ||
720 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
721 #else
722 	return true;
723 #endif
724 }
725 
726 static inline int net_inherit_devconf(void)
727 {
728 #if IS_ENABLED(CONFIG_SYSCTL)
729 	return READ_ONCE(sysctl_devconf_inherit_init_net);
730 #else
731 	return 0;
732 #endif
733 }
734 
735 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
736 {
737 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
738 	return q->numa_node;
739 #else
740 	return NUMA_NO_NODE;
741 #endif
742 }
743 
744 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
745 {
746 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
747 	q->numa_node = node;
748 #endif
749 }
750 
751 #ifdef CONFIG_RFS_ACCEL
752 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
753 			 u16 filter_id);
754 #endif
755 
756 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
757 enum xps_map_type {
758 	XPS_CPUS = 0,
759 	XPS_RXQS,
760 	XPS_MAPS_MAX,
761 };
762 
763 #ifdef CONFIG_XPS
764 /*
765  * This structure holds an XPS map which can be of variable length.  The
766  * map is an array of queues.
767  */
768 struct xps_map {
769 	unsigned int len;
770 	unsigned int alloc_len;
771 	struct rcu_head rcu;
772 	u16 queues[];
773 };
774 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776        - sizeof(struct xps_map)) / sizeof(u16))
777 
778 /*
779  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
780  *
781  * We keep track of the number of cpus/rxqs used when the struct is allocated,
782  * in nr_ids. This will help not accessing out-of-bound memory.
783  *
784  * We keep track of the number of traffic classes used when the struct is
785  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
786  * not crossing its upper bound, as the original dev->num_tc can be updated in
787  * the meantime.
788  */
789 struct xps_dev_maps {
790 	struct rcu_head rcu;
791 	unsigned int nr_ids;
792 	s16 num_tc;
793 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
794 };
795 
796 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
797 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
798 
799 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
800 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
801 
802 #endif /* CONFIG_XPS */
803 
804 #define TC_MAX_QUEUE	16
805 #define TC_BITMASK	15
806 /* HW offloaded queuing disciplines txq count and offset maps */
807 struct netdev_tc_txq {
808 	u16 count;
809 	u16 offset;
810 };
811 
812 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
813 /*
814  * This structure is to hold information about the device
815  * configured to run FCoE protocol stack.
816  */
817 struct netdev_fcoe_hbainfo {
818 	char	manufacturer[64];
819 	char	serial_number[64];
820 	char	hardware_version[64];
821 	char	driver_version[64];
822 	char	optionrom_version[64];
823 	char	firmware_version[64];
824 	char	model[256];
825 	char	model_description[256];
826 };
827 #endif
828 
829 #define MAX_PHYS_ITEM_ID_LEN 32
830 
831 /* This structure holds a unique identifier to identify some
832  * physical item (port for example) used by a netdevice.
833  */
834 struct netdev_phys_item_id {
835 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
836 	unsigned char id_len;
837 };
838 
839 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
840 					    struct netdev_phys_item_id *b)
841 {
842 	return a->id_len == b->id_len &&
843 	       memcmp(a->id, b->id, a->id_len) == 0;
844 }
845 
846 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
847 				       struct sk_buff *skb,
848 				       struct net_device *sb_dev);
849 
850 enum net_device_path_type {
851 	DEV_PATH_ETHERNET = 0,
852 	DEV_PATH_VLAN,
853 	DEV_PATH_BRIDGE,
854 	DEV_PATH_PPPOE,
855 	DEV_PATH_DSA,
856 	DEV_PATH_MTK_WDMA,
857 };
858 
859 struct net_device_path {
860 	enum net_device_path_type	type;
861 	const struct net_device		*dev;
862 	union {
863 		struct {
864 			u16		id;
865 			__be16		proto;
866 			u8		h_dest[ETH_ALEN];
867 		} encap;
868 		struct {
869 			enum {
870 				DEV_PATH_BR_VLAN_KEEP,
871 				DEV_PATH_BR_VLAN_TAG,
872 				DEV_PATH_BR_VLAN_UNTAG,
873 				DEV_PATH_BR_VLAN_UNTAG_HW,
874 			}		vlan_mode;
875 			u16		vlan_id;
876 			__be16		vlan_proto;
877 		} bridge;
878 		struct {
879 			int port;
880 			u16 proto;
881 		} dsa;
882 		struct {
883 			u8 wdma_idx;
884 			u8 queue;
885 			u16 wcid;
886 			u8 bss;
887 			u8 amsdu;
888 		} mtk_wdma;
889 	};
890 };
891 
892 #define NET_DEVICE_PATH_STACK_MAX	5
893 #define NET_DEVICE_PATH_VLAN_MAX	2
894 
895 struct net_device_path_stack {
896 	int			num_paths;
897 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
898 };
899 
900 struct net_device_path_ctx {
901 	const struct net_device *dev;
902 	u8			daddr[ETH_ALEN];
903 
904 	int			num_vlans;
905 	struct {
906 		u16		id;
907 		__be16		proto;
908 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
909 };
910 
911 enum tc_setup_type {
912 	TC_QUERY_CAPS,
913 	TC_SETUP_QDISC_MQPRIO,
914 	TC_SETUP_CLSU32,
915 	TC_SETUP_CLSFLOWER,
916 	TC_SETUP_CLSMATCHALL,
917 	TC_SETUP_CLSBPF,
918 	TC_SETUP_BLOCK,
919 	TC_SETUP_QDISC_CBS,
920 	TC_SETUP_QDISC_RED,
921 	TC_SETUP_QDISC_PRIO,
922 	TC_SETUP_QDISC_MQ,
923 	TC_SETUP_QDISC_ETF,
924 	TC_SETUP_ROOT_QDISC,
925 	TC_SETUP_QDISC_GRED,
926 	TC_SETUP_QDISC_TAPRIO,
927 	TC_SETUP_FT,
928 	TC_SETUP_QDISC_ETS,
929 	TC_SETUP_QDISC_TBF,
930 	TC_SETUP_QDISC_FIFO,
931 	TC_SETUP_QDISC_HTB,
932 	TC_SETUP_ACT,
933 };
934 
935 /* These structures hold the attributes of bpf state that are being passed
936  * to the netdevice through the bpf op.
937  */
938 enum bpf_netdev_command {
939 	/* Set or clear a bpf program used in the earliest stages of packet
940 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
941 	 * is responsible for calling bpf_prog_put on any old progs that are
942 	 * stored. In case of error, the callee need not release the new prog
943 	 * reference, but on success it takes ownership and must bpf_prog_put
944 	 * when it is no longer used.
945 	 */
946 	XDP_SETUP_PROG,
947 	XDP_SETUP_PROG_HW,
948 	/* BPF program for offload callbacks, invoked at program load time. */
949 	BPF_OFFLOAD_MAP_ALLOC,
950 	BPF_OFFLOAD_MAP_FREE,
951 	XDP_SETUP_XSK_POOL,
952 };
953 
954 struct bpf_prog_offload_ops;
955 struct netlink_ext_ack;
956 struct xdp_umem;
957 struct xdp_dev_bulk_queue;
958 struct bpf_xdp_link;
959 
960 enum bpf_xdp_mode {
961 	XDP_MODE_SKB = 0,
962 	XDP_MODE_DRV = 1,
963 	XDP_MODE_HW = 2,
964 	__MAX_XDP_MODE
965 };
966 
967 struct bpf_xdp_entity {
968 	struct bpf_prog *prog;
969 	struct bpf_xdp_link *link;
970 };
971 
972 struct netdev_bpf {
973 	enum bpf_netdev_command command;
974 	union {
975 		/* XDP_SETUP_PROG */
976 		struct {
977 			u32 flags;
978 			struct bpf_prog *prog;
979 			struct netlink_ext_ack *extack;
980 		};
981 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
982 		struct {
983 			struct bpf_offloaded_map *offmap;
984 		};
985 		/* XDP_SETUP_XSK_POOL */
986 		struct {
987 			struct xsk_buff_pool *pool;
988 			u16 queue_id;
989 		} xsk;
990 	};
991 };
992 
993 /* Flags for ndo_xsk_wakeup. */
994 #define XDP_WAKEUP_RX (1 << 0)
995 #define XDP_WAKEUP_TX (1 << 1)
996 
997 #ifdef CONFIG_XFRM_OFFLOAD
998 struct xfrmdev_ops {
999 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1000 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1001 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1002 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1003 				       struct xfrm_state *x);
1004 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1005 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1006 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1007 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1008 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1009 };
1010 #endif
1011 
1012 struct dev_ifalias {
1013 	struct rcu_head rcuhead;
1014 	char ifalias[];
1015 };
1016 
1017 struct devlink;
1018 struct tlsdev_ops;
1019 
1020 struct netdev_net_notifier {
1021 	struct list_head list;
1022 	struct notifier_block *nb;
1023 };
1024 
1025 /*
1026  * This structure defines the management hooks for network devices.
1027  * The following hooks can be defined; unless noted otherwise, they are
1028  * optional and can be filled with a null pointer.
1029  *
1030  * int (*ndo_init)(struct net_device *dev);
1031  *     This function is called once when a network device is registered.
1032  *     The network device can use this for any late stage initialization
1033  *     or semantic validation. It can fail with an error code which will
1034  *     be propagated back to register_netdev.
1035  *
1036  * void (*ndo_uninit)(struct net_device *dev);
1037  *     This function is called when device is unregistered or when registration
1038  *     fails. It is not called if init fails.
1039  *
1040  * int (*ndo_open)(struct net_device *dev);
1041  *     This function is called when a network device transitions to the up
1042  *     state.
1043  *
1044  * int (*ndo_stop)(struct net_device *dev);
1045  *     This function is called when a network device transitions to the down
1046  *     state.
1047  *
1048  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1049  *                               struct net_device *dev);
1050  *	Called when a packet needs to be transmitted.
1051  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1052  *	the queue before that can happen; it's for obsolete devices and weird
1053  *	corner cases, but the stack really does a non-trivial amount
1054  *	of useless work if you return NETDEV_TX_BUSY.
1055  *	Required; cannot be NULL.
1056  *
1057  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1058  *					   struct net_device *dev
1059  *					   netdev_features_t features);
1060  *	Called by core transmit path to determine if device is capable of
1061  *	performing offload operations on a given packet. This is to give
1062  *	the device an opportunity to implement any restrictions that cannot
1063  *	be otherwise expressed by feature flags. The check is called with
1064  *	the set of features that the stack has calculated and it returns
1065  *	those the driver believes to be appropriate.
1066  *
1067  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1068  *                         struct net_device *sb_dev);
1069  *	Called to decide which queue to use when device supports multiple
1070  *	transmit queues.
1071  *
1072  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1073  *	This function is called to allow device receiver to make
1074  *	changes to configuration when multicast or promiscuous is enabled.
1075  *
1076  * void (*ndo_set_rx_mode)(struct net_device *dev);
1077  *	This function is called device changes address list filtering.
1078  *	If driver handles unicast address filtering, it should set
1079  *	IFF_UNICAST_FLT in its priv_flags.
1080  *
1081  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1082  *	This function  is called when the Media Access Control address
1083  *	needs to be changed. If this interface is not defined, the
1084  *	MAC address can not be changed.
1085  *
1086  * int (*ndo_validate_addr)(struct net_device *dev);
1087  *	Test if Media Access Control address is valid for the device.
1088  *
1089  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1090  *	Old-style ioctl entry point. This is used internally by the
1091  *	appletalk and ieee802154 subsystems but is no longer called by
1092  *	the device ioctl handler.
1093  *
1094  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1095  *	Used by the bonding driver for its device specific ioctls:
1096  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1097  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1098  *
1099  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1100  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1101  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1102  *
1103  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1104  *	Used to set network devices bus interface parameters. This interface
1105  *	is retained for legacy reasons; new devices should use the bus
1106  *	interface (PCI) for low level management.
1107  *
1108  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1109  *	Called when a user wants to change the Maximum Transfer Unit
1110  *	of a device.
1111  *
1112  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1113  *	Callback used when the transmitter has not made any progress
1114  *	for dev->watchdog ticks.
1115  *
1116  * void (*ndo_get_stats64)(struct net_device *dev,
1117  *                         struct rtnl_link_stats64 *storage);
1118  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1119  *	Called when a user wants to get the network device usage
1120  *	statistics. Drivers must do one of the following:
1121  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1122  *	   rtnl_link_stats64 structure passed by the caller.
1123  *	2. Define @ndo_get_stats to update a net_device_stats structure
1124  *	   (which should normally be dev->stats) and return a pointer to
1125  *	   it. The structure may be changed asynchronously only if each
1126  *	   field is written atomically.
1127  *	3. Update dev->stats asynchronously and atomically, and define
1128  *	   neither operation.
1129  *
1130  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1131  *	Return true if this device supports offload stats of this attr_id.
1132  *
1133  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1134  *	void *attr_data)
1135  *	Get statistics for offload operations by attr_id. Write it into the
1136  *	attr_data pointer.
1137  *
1138  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1139  *	If device supports VLAN filtering this function is called when a
1140  *	VLAN id is registered.
1141  *
1142  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1143  *	If device supports VLAN filtering this function is called when a
1144  *	VLAN id is unregistered.
1145  *
1146  * void (*ndo_poll_controller)(struct net_device *dev);
1147  *
1148  *	SR-IOV management functions.
1149  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1150  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1151  *			  u8 qos, __be16 proto);
1152  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1153  *			  int max_tx_rate);
1154  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1155  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1156  * int (*ndo_get_vf_config)(struct net_device *dev,
1157  *			    int vf, struct ifla_vf_info *ivf);
1158  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1159  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1160  *			  struct nlattr *port[]);
1161  *
1162  *      Enable or disable the VF ability to query its RSS Redirection Table and
1163  *      Hash Key. This is needed since on some devices VF share this information
1164  *      with PF and querying it may introduce a theoretical security risk.
1165  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1166  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1167  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1168  *		       void *type_data);
1169  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1170  *	This is always called from the stack with the rtnl lock held and netif
1171  *	tx queues stopped. This allows the netdevice to perform queue
1172  *	management safely.
1173  *
1174  *	Fiber Channel over Ethernet (FCoE) offload functions.
1175  * int (*ndo_fcoe_enable)(struct net_device *dev);
1176  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1177  *	so the underlying device can perform whatever needed configuration or
1178  *	initialization to support acceleration of FCoE traffic.
1179  *
1180  * int (*ndo_fcoe_disable)(struct net_device *dev);
1181  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1182  *	so the underlying device can perform whatever needed clean-ups to
1183  *	stop supporting acceleration of FCoE traffic.
1184  *
1185  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1186  *			     struct scatterlist *sgl, unsigned int sgc);
1187  *	Called when the FCoE Initiator wants to initialize an I/O that
1188  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1189  *	perform necessary setup and returns 1 to indicate the device is set up
1190  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1191  *
1192  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1193  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1194  *	indicated by the FC exchange id 'xid', so the underlying device can
1195  *	clean up and reuse resources for later DDP requests.
1196  *
1197  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1198  *			      struct scatterlist *sgl, unsigned int sgc);
1199  *	Called when the FCoE Target wants to initialize an I/O that
1200  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1201  *	perform necessary setup and returns 1 to indicate the device is set up
1202  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1203  *
1204  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1205  *			       struct netdev_fcoe_hbainfo *hbainfo);
1206  *	Called when the FCoE Protocol stack wants information on the underlying
1207  *	device. This information is utilized by the FCoE protocol stack to
1208  *	register attributes with Fiber Channel management service as per the
1209  *	FC-GS Fabric Device Management Information(FDMI) specification.
1210  *
1211  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1212  *	Called when the underlying device wants to override default World Wide
1213  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1214  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1215  *	protocol stack to use.
1216  *
1217  *	RFS acceleration.
1218  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1219  *			    u16 rxq_index, u32 flow_id);
1220  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1221  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1222  *	Return the filter ID on success, or a negative error code.
1223  *
1224  *	Slave management functions (for bridge, bonding, etc).
1225  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1226  *	Called to make another netdev an underling.
1227  *
1228  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1229  *	Called to release previously enslaved netdev.
1230  *
1231  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1232  *					    struct sk_buff *skb,
1233  *					    bool all_slaves);
1234  *	Get the xmit slave of master device. If all_slaves is true, function
1235  *	assume all the slaves can transmit.
1236  *
1237  *      Feature/offload setting functions.
1238  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1239  *		netdev_features_t features);
1240  *	Adjusts the requested feature flags according to device-specific
1241  *	constraints, and returns the resulting flags. Must not modify
1242  *	the device state.
1243  *
1244  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1245  *	Called to update device configuration to new features. Passed
1246  *	feature set might be less than what was returned by ndo_fix_features()).
1247  *	Must return >0 or -errno if it changed dev->features itself.
1248  *
1249  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1250  *		      struct net_device *dev,
1251  *		      const unsigned char *addr, u16 vid, u16 flags,
1252  *		      bool *notified, struct netlink_ext_ack *extack);
1253  *	Adds an FDB entry to dev for addr.
1254  *	Callee shall set *notified to true if it sent any appropriate
1255  *	notification(s). Otherwise core will send a generic one.
1256  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1257  *		      struct net_device *dev,
1258  *		      const unsigned char *addr, u16 vid
1259  *		      bool *notified, struct netlink_ext_ack *extack);
1260  *	Deletes the FDB entry from dev corresponding to addr.
1261  *	Callee shall set *notified to true if it sent any appropriate
1262  *	notification(s). Otherwise core will send a generic one.
1263  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1264  *			   struct netlink_ext_ack *extack);
1265  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1266  *		       struct net_device *dev, struct net_device *filter_dev,
1267  *		       int *idx)
1268  *	Used to add FDB entries to dump requests. Implementers should add
1269  *	entries to skb and update idx with the number of entries.
1270  *
1271  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1272  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1273  *	Adds an MDB entry to dev.
1274  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1275  *		      struct netlink_ext_ack *extack);
1276  *	Deletes the MDB entry from dev.
1277  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1278  *			   struct netlink_ext_ack *extack);
1279  *	Bulk deletes MDB entries from dev.
1280  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1281  *		       struct netlink_callback *cb);
1282  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1283  *	callback is used by core rtnetlink code.
1284  *
1285  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1286  *			     u16 flags, struct netlink_ext_ack *extack)
1287  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1288  *			     struct net_device *dev, u32 filter_mask,
1289  *			     int nlflags)
1290  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1291  *			     u16 flags);
1292  *
1293  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1294  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1295  *	which do not represent real hardware may define this to allow their
1296  *	userspace components to manage their virtual carrier state. Devices
1297  *	that determine carrier state from physical hardware properties (eg
1298  *	network cables) or protocol-dependent mechanisms (eg
1299  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1300  *
1301  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1302  *			       struct netdev_phys_item_id *ppid);
1303  *	Called to get ID of physical port of this device. If driver does
1304  *	not implement this, it is assumed that the hw is not able to have
1305  *	multiple net devices on single physical port.
1306  *
1307  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1308  *				 struct netdev_phys_item_id *ppid)
1309  *	Called to get the parent ID of the physical port of this device.
1310  *
1311  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1312  *				 struct net_device *dev)
1313  *	Called by upper layer devices to accelerate switching or other
1314  *	station functionality into hardware. 'pdev is the lowerdev
1315  *	to use for the offload and 'dev' is the net device that will
1316  *	back the offload. Returns a pointer to the private structure
1317  *	the upper layer will maintain.
1318  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1319  *	Called by upper layer device to delete the station created
1320  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1321  *	the station and priv is the structure returned by the add
1322  *	operation.
1323  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1324  *			     int queue_index, u32 maxrate);
1325  *	Called when a user wants to set a max-rate limitation of specific
1326  *	TX queue.
1327  * int (*ndo_get_iflink)(const struct net_device *dev);
1328  *	Called to get the iflink value of this device.
1329  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1330  *	This function is used to get egress tunnel information for given skb.
1331  *	This is useful for retrieving outer tunnel header parameters while
1332  *	sampling packet.
1333  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1334  *	This function is used to specify the headroom that the skb must
1335  *	consider when allocation skb during packet reception. Setting
1336  *	appropriate rx headroom value allows avoiding skb head copy on
1337  *	forward. Setting a negative value resets the rx headroom to the
1338  *	default value.
1339  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1340  *	This function is used to set or query state related to XDP on the
1341  *	netdevice and manage BPF offload. See definition of
1342  *	enum bpf_netdev_command for details.
1343  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1344  *			u32 flags);
1345  *	This function is used to submit @n XDP packets for transmit on a
1346  *	netdevice. Returns number of frames successfully transmitted, frames
1347  *	that got dropped are freed/returned via xdp_return_frame().
1348  *	Returns negative number, means general error invoking ndo, meaning
1349  *	no frames were xmit'ed and core-caller will free all frames.
1350  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1351  *					        struct xdp_buff *xdp);
1352  *      Get the xmit slave of master device based on the xdp_buff.
1353  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1354  *      This function is used to wake up the softirq, ksoftirqd or kthread
1355  *	responsible for sending and/or receiving packets on a specific
1356  *	queue id bound to an AF_XDP socket. The flags field specifies if
1357  *	only RX, only Tx, or both should be woken up using the flags
1358  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1359  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1360  *			 int cmd);
1361  *	Add, change, delete or get information on an IPv4 tunnel.
1362  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1363  *	If a device is paired with a peer device, return the peer instance.
1364  *	The caller must be under RCU read context.
1365  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1366  *     Get the forwarding path to reach the real device from the HW destination address
1367  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1368  *			     const struct skb_shared_hwtstamps *hwtstamps,
1369  *			     bool cycles);
1370  *	Get hardware timestamp based on normal/adjustable time or free running
1371  *	cycle counter. This function is required if physical clock supports a
1372  *	free running cycle counter.
1373  *
1374  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1375  *			   struct kernel_hwtstamp_config *kernel_config);
1376  *	Get the currently configured hardware timestamping parameters for the
1377  *	NIC device.
1378  *
1379  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1380  *			   struct kernel_hwtstamp_config *kernel_config,
1381  *			   struct netlink_ext_ack *extack);
1382  *	Change the hardware timestamping parameters for NIC device.
1383  */
1384 struct net_device_ops {
1385 	int			(*ndo_init)(struct net_device *dev);
1386 	void			(*ndo_uninit)(struct net_device *dev);
1387 	int			(*ndo_open)(struct net_device *dev);
1388 	int			(*ndo_stop)(struct net_device *dev);
1389 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1390 						  struct net_device *dev);
1391 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1392 						      struct net_device *dev,
1393 						      netdev_features_t features);
1394 	u16			(*ndo_select_queue)(struct net_device *dev,
1395 						    struct sk_buff *skb,
1396 						    struct net_device *sb_dev);
1397 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1398 						       int flags);
1399 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1400 	int			(*ndo_set_mac_address)(struct net_device *dev,
1401 						       void *addr);
1402 	int			(*ndo_validate_addr)(struct net_device *dev);
1403 	int			(*ndo_do_ioctl)(struct net_device *dev,
1404 					        struct ifreq *ifr, int cmd);
1405 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1406 						 struct ifreq *ifr, int cmd);
1407 	int			(*ndo_siocbond)(struct net_device *dev,
1408 						struct ifreq *ifr, int cmd);
1409 	int			(*ndo_siocwandev)(struct net_device *dev,
1410 						  struct if_settings *ifs);
1411 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1412 						      struct ifreq *ifr,
1413 						      void __user *data, int cmd);
1414 	int			(*ndo_set_config)(struct net_device *dev,
1415 					          struct ifmap *map);
1416 	int			(*ndo_change_mtu)(struct net_device *dev,
1417 						  int new_mtu);
1418 	int			(*ndo_neigh_setup)(struct net_device *dev,
1419 						   struct neigh_parms *);
1420 	void			(*ndo_tx_timeout) (struct net_device *dev,
1421 						   unsigned int txqueue);
1422 
1423 	void			(*ndo_get_stats64)(struct net_device *dev,
1424 						   struct rtnl_link_stats64 *storage);
1425 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1426 	int			(*ndo_get_offload_stats)(int attr_id,
1427 							 const struct net_device *dev,
1428 							 void *attr_data);
1429 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1430 
1431 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1432 						       __be16 proto, u16 vid);
1433 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1434 						        __be16 proto, u16 vid);
1435 #ifdef CONFIG_NET_POLL_CONTROLLER
1436 	void                    (*ndo_poll_controller)(struct net_device *dev);
1437 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1438 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1439 #endif
1440 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1441 						  int queue, u8 *mac);
1442 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1443 						   int queue, u16 vlan,
1444 						   u8 qos, __be16 proto);
1445 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1446 						   int vf, int min_tx_rate,
1447 						   int max_tx_rate);
1448 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1449 						       int vf, bool setting);
1450 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1451 						    int vf, bool setting);
1452 	int			(*ndo_get_vf_config)(struct net_device *dev,
1453 						     int vf,
1454 						     struct ifla_vf_info *ivf);
1455 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1456 							 int vf, int link_state);
1457 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1458 						    int vf,
1459 						    struct ifla_vf_stats
1460 						    *vf_stats);
1461 	int			(*ndo_set_vf_port)(struct net_device *dev,
1462 						   int vf,
1463 						   struct nlattr *port[]);
1464 	int			(*ndo_get_vf_port)(struct net_device *dev,
1465 						   int vf, struct sk_buff *skb);
1466 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1467 						   int vf,
1468 						   struct ifla_vf_guid *node_guid,
1469 						   struct ifla_vf_guid *port_guid);
1470 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1471 						   int vf, u64 guid,
1472 						   int guid_type);
1473 	int			(*ndo_set_vf_rss_query_en)(
1474 						   struct net_device *dev,
1475 						   int vf, bool setting);
1476 	int			(*ndo_setup_tc)(struct net_device *dev,
1477 						enum tc_setup_type type,
1478 						void *type_data);
1479 #if IS_ENABLED(CONFIG_FCOE)
1480 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1481 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1482 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1483 						      u16 xid,
1484 						      struct scatterlist *sgl,
1485 						      unsigned int sgc);
1486 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1487 						     u16 xid);
1488 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1489 						       u16 xid,
1490 						       struct scatterlist *sgl,
1491 						       unsigned int sgc);
1492 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1493 							struct netdev_fcoe_hbainfo *hbainfo);
1494 #endif
1495 
1496 #if IS_ENABLED(CONFIG_LIBFCOE)
1497 #define NETDEV_FCOE_WWNN 0
1498 #define NETDEV_FCOE_WWPN 1
1499 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1500 						    u64 *wwn, int type);
1501 #endif
1502 
1503 #ifdef CONFIG_RFS_ACCEL
1504 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1505 						     const struct sk_buff *skb,
1506 						     u16 rxq_index,
1507 						     u32 flow_id);
1508 #endif
1509 	int			(*ndo_add_slave)(struct net_device *dev,
1510 						 struct net_device *slave_dev,
1511 						 struct netlink_ext_ack *extack);
1512 	int			(*ndo_del_slave)(struct net_device *dev,
1513 						 struct net_device *slave_dev);
1514 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1515 						      struct sk_buff *skb,
1516 						      bool all_slaves);
1517 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1518 							struct sock *sk);
1519 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1520 						    netdev_features_t features);
1521 	int			(*ndo_set_features)(struct net_device *dev,
1522 						    netdev_features_t features);
1523 	int			(*ndo_neigh_construct)(struct net_device *dev,
1524 						       struct neighbour *n);
1525 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1526 						     struct neighbour *n);
1527 
1528 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1529 					       struct nlattr *tb[],
1530 					       struct net_device *dev,
1531 					       const unsigned char *addr,
1532 					       u16 vid,
1533 					       u16 flags,
1534 					       bool *notified,
1535 					       struct netlink_ext_ack *extack);
1536 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1537 					       struct nlattr *tb[],
1538 					       struct net_device *dev,
1539 					       const unsigned char *addr,
1540 					       u16 vid,
1541 					       bool *notified,
1542 					       struct netlink_ext_ack *extack);
1543 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1544 						    struct net_device *dev,
1545 						    struct netlink_ext_ack *extack);
1546 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1547 						struct netlink_callback *cb,
1548 						struct net_device *dev,
1549 						struct net_device *filter_dev,
1550 						int *idx);
1551 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1552 					       struct nlattr *tb[],
1553 					       struct net_device *dev,
1554 					       const unsigned char *addr,
1555 					       u16 vid, u32 portid, u32 seq,
1556 					       struct netlink_ext_ack *extack);
1557 	int			(*ndo_mdb_add)(struct net_device *dev,
1558 					       struct nlattr *tb[],
1559 					       u16 nlmsg_flags,
1560 					       struct netlink_ext_ack *extack);
1561 	int			(*ndo_mdb_del)(struct net_device *dev,
1562 					       struct nlattr *tb[],
1563 					       struct netlink_ext_ack *extack);
1564 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1565 						    struct nlattr *tb[],
1566 						    struct netlink_ext_ack *extack);
1567 	int			(*ndo_mdb_dump)(struct net_device *dev,
1568 						struct sk_buff *skb,
1569 						struct netlink_callback *cb);
1570 	int			(*ndo_mdb_get)(struct net_device *dev,
1571 					       struct nlattr *tb[], u32 portid,
1572 					       u32 seq,
1573 					       struct netlink_ext_ack *extack);
1574 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1575 						      struct nlmsghdr *nlh,
1576 						      u16 flags,
1577 						      struct netlink_ext_ack *extack);
1578 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1579 						      u32 pid, u32 seq,
1580 						      struct net_device *dev,
1581 						      u32 filter_mask,
1582 						      int nlflags);
1583 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1584 						      struct nlmsghdr *nlh,
1585 						      u16 flags);
1586 	int			(*ndo_change_carrier)(struct net_device *dev,
1587 						      bool new_carrier);
1588 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1589 							struct netdev_phys_item_id *ppid);
1590 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1591 							  struct netdev_phys_item_id *ppid);
1592 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1593 							  char *name, size_t len);
1594 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1595 							struct net_device *dev);
1596 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1597 							void *priv);
1598 
1599 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1600 						      int queue_index,
1601 						      u32 maxrate);
1602 	int			(*ndo_get_iflink)(const struct net_device *dev);
1603 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1604 						       struct sk_buff *skb);
1605 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1606 						       int needed_headroom);
1607 	int			(*ndo_bpf)(struct net_device *dev,
1608 					   struct netdev_bpf *bpf);
1609 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1610 						struct xdp_frame **xdp,
1611 						u32 flags);
1612 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1613 							  struct xdp_buff *xdp);
1614 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1615 						  u32 queue_id, u32 flags);
1616 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1617 						  struct ip_tunnel_parm_kern *p,
1618 						  int cmd);
1619 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1620 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1621                                                          struct net_device_path *path);
1622 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1623 						  const struct skb_shared_hwtstamps *hwtstamps,
1624 						  bool cycles);
1625 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1626 						    struct kernel_hwtstamp_config *kernel_config);
1627 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1628 						    struct kernel_hwtstamp_config *kernel_config,
1629 						    struct netlink_ext_ack *extack);
1630 
1631 #if IS_ENABLED(CONFIG_NET_SHAPER)
1632 	/**
1633 	 * @net_shaper_ops: Device shaping offload operations
1634 	 * see include/net/net_shapers.h
1635 	 */
1636 	const struct net_shaper_ops *net_shaper_ops;
1637 #endif
1638 };
1639 
1640 /**
1641  * enum netdev_priv_flags - &struct net_device priv_flags
1642  *
1643  * These are the &struct net_device, they are only set internally
1644  * by drivers and used in the kernel. These flags are invisible to
1645  * userspace; this means that the order of these flags can change
1646  * during any kernel release.
1647  *
1648  * You should add bitfield booleans after either net_device::priv_flags
1649  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1650  *
1651  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1652  * @IFF_EBRIDGE: Ethernet bridging device
1653  * @IFF_BONDING: bonding master or slave
1654  * @IFF_ISATAP: ISATAP interface (RFC4214)
1655  * @IFF_WAN_HDLC: WAN HDLC device
1656  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1657  *	release skb->dst
1658  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1659  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1660  * @IFF_MACVLAN_PORT: device used as macvlan port
1661  * @IFF_BRIDGE_PORT: device used as bridge port
1662  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1663  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1664  * @IFF_UNICAST_FLT: Supports unicast filtering
1665  * @IFF_TEAM_PORT: device used as team port
1666  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1667  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1668  *	change when it's running
1669  * @IFF_MACVLAN: Macvlan device
1670  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1671  *	underlying stacked devices
1672  * @IFF_L3MDEV_MASTER: device is an L3 master device
1673  * @IFF_NO_QUEUE: device can run without qdisc attached
1674  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1675  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1676  * @IFF_TEAM: device is a team device
1677  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1678  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1679  *	entity (i.e. the master device for bridged veth)
1680  * @IFF_MACSEC: device is a MACsec device
1681  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1682  * @IFF_FAILOVER: device is a failover master device
1683  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1684  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1685  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1686  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1687  *	skb_headlen(skb) == 0 (data starts from frag0)
1688  */
1689 enum netdev_priv_flags {
1690 	IFF_802_1Q_VLAN			= 1<<0,
1691 	IFF_EBRIDGE			= 1<<1,
1692 	IFF_BONDING			= 1<<2,
1693 	IFF_ISATAP			= 1<<3,
1694 	IFF_WAN_HDLC			= 1<<4,
1695 	IFF_XMIT_DST_RELEASE		= 1<<5,
1696 	IFF_DONT_BRIDGE			= 1<<6,
1697 	IFF_DISABLE_NETPOLL		= 1<<7,
1698 	IFF_MACVLAN_PORT		= 1<<8,
1699 	IFF_BRIDGE_PORT			= 1<<9,
1700 	IFF_OVS_DATAPATH		= 1<<10,
1701 	IFF_TX_SKB_SHARING		= 1<<11,
1702 	IFF_UNICAST_FLT			= 1<<12,
1703 	IFF_TEAM_PORT			= 1<<13,
1704 	IFF_SUPP_NOFCS			= 1<<14,
1705 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1706 	IFF_MACVLAN			= 1<<16,
1707 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1708 	IFF_L3MDEV_MASTER		= 1<<18,
1709 	IFF_NO_QUEUE			= 1<<19,
1710 	IFF_OPENVSWITCH			= 1<<20,
1711 	IFF_L3MDEV_SLAVE		= 1<<21,
1712 	IFF_TEAM			= 1<<22,
1713 	IFF_RXFH_CONFIGURED		= 1<<23,
1714 	IFF_PHONY_HEADROOM		= 1<<24,
1715 	IFF_MACSEC			= 1<<25,
1716 	IFF_NO_RX_HANDLER		= 1<<26,
1717 	IFF_FAILOVER			= 1<<27,
1718 	IFF_FAILOVER_SLAVE		= 1<<28,
1719 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1720 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1721 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1722 };
1723 
1724 /* Specifies the type of the struct net_device::ml_priv pointer */
1725 enum netdev_ml_priv_type {
1726 	ML_PRIV_NONE,
1727 	ML_PRIV_CAN,
1728 };
1729 
1730 enum netdev_stat_type {
1731 	NETDEV_PCPU_STAT_NONE,
1732 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1733 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1734 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1735 };
1736 
1737 enum netdev_reg_state {
1738 	NETREG_UNINITIALIZED = 0,
1739 	NETREG_REGISTERED,	/* completed register_netdevice */
1740 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1741 	NETREG_UNREGISTERED,	/* completed unregister todo */
1742 	NETREG_RELEASED,	/* called free_netdev */
1743 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1744 };
1745 
1746 /**
1747  *	struct net_device - The DEVICE structure.
1748  *
1749  *	Actually, this whole structure is a big mistake.  It mixes I/O
1750  *	data with strictly "high-level" data, and it has to know about
1751  *	almost every data structure used in the INET module.
1752  *
1753  *	@priv_flags:	flags invisible to userspace defined as bits, see
1754  *			enum netdev_priv_flags for the definitions
1755  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1756  *			drivers. Mainly used by logical interfaces, such as
1757  *			bonding and tunnels
1758  *
1759  *	@name:	This is the first field of the "visible" part of this structure
1760  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1761  *		of the interface.
1762  *
1763  *	@name_node:	Name hashlist node
1764  *	@ifalias:	SNMP alias
1765  *	@mem_end:	Shared memory end
1766  *	@mem_start:	Shared memory start
1767  *	@base_addr:	Device I/O address
1768  *	@irq:		Device IRQ number
1769  *
1770  *	@state:		Generic network queuing layer state, see netdev_state_t
1771  *	@dev_list:	The global list of network devices
1772  *	@napi_list:	List entry used for polling NAPI devices
1773  *	@unreg_list:	List entry  when we are unregistering the
1774  *			device; see the function unregister_netdev
1775  *	@close_list:	List entry used when we are closing the device
1776  *	@ptype_all:     Device-specific packet handlers for all protocols
1777  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1778  *
1779  *	@adj_list:	Directly linked devices, like slaves for bonding
1780  *	@features:	Currently active device features
1781  *	@hw_features:	User-changeable features
1782  *
1783  *	@wanted_features:	User-requested features
1784  *	@vlan_features:		Mask of features inheritable by VLAN devices
1785  *
1786  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1787  *				This field indicates what encapsulation
1788  *				offloads the hardware is capable of doing,
1789  *				and drivers will need to set them appropriately.
1790  *
1791  *	@mpls_features:	Mask of features inheritable by MPLS
1792  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1793  *
1794  *	@ifindex:	interface index
1795  *	@group:		The group the device belongs to
1796  *
1797  *	@stats:		Statistics struct, which was left as a legacy, use
1798  *			rtnl_link_stats64 instead
1799  *
1800  *	@core_stats:	core networking counters,
1801  *			do not use this in drivers
1802  *	@carrier_up_count:	Number of times the carrier has been up
1803  *	@carrier_down_count:	Number of times the carrier has been down
1804  *
1805  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1806  *				instead of ioctl,
1807  *				see <net/iw_handler.h> for details.
1808  *
1809  *	@netdev_ops:	Includes several pointers to callbacks,
1810  *			if one wants to override the ndo_*() functions
1811  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1812  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1813  *	@ethtool_ops:	Management operations
1814  *	@l3mdev_ops:	Layer 3 master device operations
1815  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1816  *			discovery handling. Necessary for e.g. 6LoWPAN.
1817  *	@xfrmdev_ops:	Transformation offload operations
1818  *	@tlsdev_ops:	Transport Layer Security offload operations
1819  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1820  *			of Layer 2 headers.
1821  *
1822  *	@flags:		Interface flags (a la BSD)
1823  *	@xdp_features:	XDP capability supported by the device
1824  *	@gflags:	Global flags ( kept as legacy )
1825  *	@priv_len:	Size of the ->priv flexible array
1826  *	@priv:		Flexible array containing private data
1827  *	@operstate:	RFC2863 operstate
1828  *	@link_mode:	Mapping policy to operstate
1829  *	@if_port:	Selectable AUI, TP, ...
1830  *	@dma:		DMA channel
1831  *	@mtu:		Interface MTU value
1832  *	@min_mtu:	Interface Minimum MTU value
1833  *	@max_mtu:	Interface Maximum MTU value
1834  *	@type:		Interface hardware type
1835  *	@hard_header_len: Maximum hardware header length.
1836  *	@min_header_len:  Minimum hardware header length
1837  *
1838  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1839  *			  cases can this be guaranteed
1840  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1841  *			  cases can this be guaranteed. Some cases also use
1842  *			  LL_MAX_HEADER instead to allocate the skb
1843  *
1844  *	interface address info:
1845  *
1846  * 	@perm_addr:		Permanent hw address
1847  * 	@addr_assign_type:	Hw address assignment type
1848  * 	@addr_len:		Hardware address length
1849  *	@upper_level:		Maximum depth level of upper devices.
1850  *	@lower_level:		Maximum depth level of lower devices.
1851  *	@neigh_priv_len:	Used in neigh_alloc()
1852  * 	@dev_id:		Used to differentiate devices that share
1853  * 				the same link layer address
1854  * 	@dev_port:		Used to differentiate devices that share
1855  * 				the same function
1856  *	@addr_list_lock:	XXX: need comments on this one
1857  *	@name_assign_type:	network interface name assignment type
1858  *	@uc_promisc:		Counter that indicates promiscuous mode
1859  *				has been enabled due to the need to listen to
1860  *				additional unicast addresses in a device that
1861  *				does not implement ndo_set_rx_mode()
1862  *	@uc:			unicast mac addresses
1863  *	@mc:			multicast mac addresses
1864  *	@dev_addrs:		list of device hw addresses
1865  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1866  *	@promiscuity:		Number of times the NIC is told to work in
1867  *				promiscuous mode; if it becomes 0 the NIC will
1868  *				exit promiscuous mode
1869  *	@allmulti:		Counter, enables or disables allmulticast mode
1870  *
1871  *	@vlan_info:	VLAN info
1872  *	@dsa_ptr:	dsa specific data
1873  *	@tipc_ptr:	TIPC specific data
1874  *	@atalk_ptr:	AppleTalk link
1875  *	@ip_ptr:	IPv4 specific data
1876  *	@ip6_ptr:	IPv6 specific data
1877  *	@ax25_ptr:	AX.25 specific data
1878  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1879  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1880  *			 device struct
1881  *	@mpls_ptr:	mpls_dev struct pointer
1882  *	@mctp_ptr:	MCTP specific data
1883  *
1884  *	@dev_addr:	Hw address (before bcast,
1885  *			because most packets are unicast)
1886  *
1887  *	@_rx:			Array of RX queues
1888  *	@num_rx_queues:		Number of RX queues
1889  *				allocated at register_netdev() time
1890  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1891  *	@xdp_prog:		XDP sockets filter program pointer
1892  *
1893  *	@rx_handler:		handler for received packets
1894  *	@rx_handler_data: 	XXX: need comments on this one
1895  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1896  *	@ingress_queue:		XXX: need comments on this one
1897  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1898  *	@broadcast:		hw bcast address
1899  *
1900  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1901  *			indexed by RX queue number. Assigned by driver.
1902  *			This must only be set if the ndo_rx_flow_steer
1903  *			operation is defined
1904  *	@index_hlist:		Device index hash chain
1905  *
1906  *	@_tx:			Array of TX queues
1907  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1908  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1909  *	@qdisc:			Root qdisc from userspace point of view
1910  *	@tx_queue_len:		Max frames per queue allowed
1911  *	@tx_global_lock: 	XXX: need comments on this one
1912  *	@xdp_bulkq:		XDP device bulk queue
1913  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1914  *
1915  *	@xps_maps:	XXX: need comments on this one
1916  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1917  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1918  *	@qdisc_hash:		qdisc hash table
1919  *	@watchdog_timeo:	Represents the timeout that is used by
1920  *				the watchdog (see dev_watchdog())
1921  *	@watchdog_timer:	List of timers
1922  *
1923  *	@proto_down_reason:	reason a netdev interface is held down
1924  *	@pcpu_refcnt:		Number of references to this device
1925  *	@dev_refcnt:		Number of references to this device
1926  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1927  *	@todo_list:		Delayed register/unregister
1928  *	@link_watch_list:	XXX: need comments on this one
1929  *
1930  *	@reg_state:		Register/unregister state machine
1931  *	@dismantle:		Device is going to be freed
1932  *	@rtnl_link_state:	This enum represents the phases of creating
1933  *				a new link
1934  *
1935  *	@needs_free_netdev:	Should unregister perform free_netdev?
1936  *	@priv_destructor:	Called from unregister
1937  *	@npinfo:		XXX: need comments on this one
1938  * 	@nd_net:		Network namespace this network device is inside
1939  *
1940  * 	@ml_priv:	Mid-layer private
1941  *	@ml_priv_type:  Mid-layer private type
1942  *
1943  *	@pcpu_stat_type:	Type of device statistics which the core should
1944  *				allocate/free: none, lstats, tstats, dstats. none
1945  *				means the driver is handling statistics allocation/
1946  *				freeing internally.
1947  *	@lstats:		Loopback statistics: packets, bytes
1948  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1949  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1950  *
1951  *	@garp_port:	GARP
1952  *	@mrp_port:	MRP
1953  *
1954  *	@dm_private:	Drop monitor private
1955  *
1956  *	@dev:		Class/net/name entry
1957  *	@sysfs_groups:	Space for optional device, statistics and wireless
1958  *			sysfs groups
1959  *
1960  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1961  *	@rtnl_link_ops:	Rtnl_link_ops
1962  *	@stat_ops:	Optional ops for queue-aware statistics
1963  *	@queue_mgmt_ops:	Optional ops for queue management
1964  *
1965  *	@gso_max_size:	Maximum size of generic segmentation offload
1966  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1967  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1968  *			NIC for GSO
1969  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1970  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1971  * 				for IPv4.
1972  *
1973  *	@dcbnl_ops:	Data Center Bridging netlink ops
1974  *	@num_tc:	Number of traffic classes in the net device
1975  *	@tc_to_txq:	XXX: need comments on this one
1976  *	@prio_tc_map:	XXX: need comments on this one
1977  *
1978  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1979  *
1980  *	@priomap:	XXX: need comments on this one
1981  *	@link_topo:	Physical link topology tracking attached PHYs
1982  *	@phydev:	Physical device may attach itself
1983  *			for hardware timestamping
1984  *	@sfp_bus:	attached &struct sfp_bus structure.
1985  *
1986  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1987  *
1988  *	@proto_down:	protocol port state information can be sent to the
1989  *			switch driver and used to set the phys state of the
1990  *			switch port.
1991  *
1992  *	@threaded:	napi threaded mode is enabled
1993  *
1994  *	@see_all_hwtstamp_requests: device wants to see calls to
1995  *			ndo_hwtstamp_set() for all timestamp requests
1996  *			regardless of source, even if those aren't
1997  *			HWTSTAMP_SOURCE_NETDEV
1998  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1999  *	@netns_local: interface can't change network namespaces
2000  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
2001  *
2002  *	@net_notifier_list:	List of per-net netdev notifier block
2003  *				that follow this device when it is moved
2004  *				to another network namespace.
2005  *
2006  *	@macsec_ops:    MACsec offloading ops
2007  *
2008  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2009  *				offload capabilities of the device
2010  *	@udp_tunnel_nic:	UDP tunnel offload state
2011  *	@ethtool:	ethtool related state
2012  *	@xdp_state:		stores info on attached XDP BPF programs
2013  *
2014  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2015  *			dev->addr_list_lock.
2016  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2017  *			keep a list of interfaces to be deleted.
2018  *	@gro_max_size:	Maximum size of aggregated packet in generic
2019  *			receive offload (GRO)
2020  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2021  * 				receive offload (GRO), for IPv4.
2022  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2023  *				zero copy driver
2024  *
2025  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2026  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2027  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2028  *	@dev_registered_tracker:	tracker for reference held while
2029  *					registered
2030  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2031  *
2032  *	@devlink_port:	Pointer to related devlink port structure.
2033  *			Assigned by a driver before netdev registration using
2034  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2035  *			during the time netdevice is registered.
2036  *
2037  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2038  *		   where the clock is recovered.
2039  *
2040  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2041  *	@napi_config: An array of napi_config structures containing per-NAPI
2042  *		      settings.
2043  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2044  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2045  *				allow to avoid NIC hard IRQ, on busy queues.
2046  *
2047  *	@neighbours:	List heads pointing to this device's neighbours'
2048  *			dev_list, one per address-family.
2049  *	@hwprov: Tracks which PTP performs hardware packet time stamping.
2050  *
2051  *	FIXME: cleanup struct net_device such that network protocol info
2052  *	moves out.
2053  */
2054 
2055 struct net_device {
2056 	/* Cacheline organization can be found documented in
2057 	 * Documentation/networking/net_cachelines/net_device.rst.
2058 	 * Please update the document when adding new fields.
2059 	 */
2060 
2061 	/* TX read-mostly hotpath */
2062 	__cacheline_group_begin(net_device_read_tx);
2063 	struct_group(priv_flags_fast,
2064 		unsigned long		priv_flags:32;
2065 		unsigned long		lltx:1;
2066 	);
2067 	const struct net_device_ops *netdev_ops;
2068 	const struct header_ops *header_ops;
2069 	struct netdev_queue	*_tx;
2070 	netdev_features_t	gso_partial_features;
2071 	unsigned int		real_num_tx_queues;
2072 	unsigned int		gso_max_size;
2073 	unsigned int		gso_ipv4_max_size;
2074 	u16			gso_max_segs;
2075 	s16			num_tc;
2076 	/* Note : dev->mtu is often read without holding a lock.
2077 	 * Writers usually hold RTNL.
2078 	 * It is recommended to use READ_ONCE() to annotate the reads,
2079 	 * and to use WRITE_ONCE() to annotate the writes.
2080 	 */
2081 	unsigned int		mtu;
2082 	unsigned short		needed_headroom;
2083 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2084 #ifdef CONFIG_XPS
2085 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2086 #endif
2087 #ifdef CONFIG_NETFILTER_EGRESS
2088 	struct nf_hook_entries __rcu *nf_hooks_egress;
2089 #endif
2090 #ifdef CONFIG_NET_XGRESS
2091 	struct bpf_mprog_entry __rcu *tcx_egress;
2092 #endif
2093 	__cacheline_group_end(net_device_read_tx);
2094 
2095 	/* TXRX read-mostly hotpath */
2096 	__cacheline_group_begin(net_device_read_txrx);
2097 	union {
2098 		struct pcpu_lstats __percpu		*lstats;
2099 		struct pcpu_sw_netstats __percpu	*tstats;
2100 		struct pcpu_dstats __percpu		*dstats;
2101 	};
2102 	unsigned long		state;
2103 	unsigned int		flags;
2104 	unsigned short		hard_header_len;
2105 	netdev_features_t	features;
2106 	struct inet6_dev __rcu	*ip6_ptr;
2107 	__cacheline_group_end(net_device_read_txrx);
2108 
2109 	/* RX read-mostly hotpath */
2110 	__cacheline_group_begin(net_device_read_rx);
2111 	struct bpf_prog __rcu	*xdp_prog;
2112 	struct list_head	ptype_specific;
2113 	int			ifindex;
2114 	unsigned int		real_num_rx_queues;
2115 	struct netdev_rx_queue	*_rx;
2116 	unsigned int		gro_max_size;
2117 	unsigned int		gro_ipv4_max_size;
2118 	rx_handler_func_t __rcu	*rx_handler;
2119 	void __rcu		*rx_handler_data;
2120 	possible_net_t			nd_net;
2121 #ifdef CONFIG_NETPOLL
2122 	struct netpoll_info __rcu	*npinfo;
2123 #endif
2124 #ifdef CONFIG_NET_XGRESS
2125 	struct bpf_mprog_entry __rcu *tcx_ingress;
2126 #endif
2127 	__cacheline_group_end(net_device_read_rx);
2128 
2129 	char			name[IFNAMSIZ];
2130 	struct netdev_name_node	*name_node;
2131 	struct dev_ifalias	__rcu *ifalias;
2132 	/*
2133 	 *	I/O specific fields
2134 	 *	FIXME: Merge these and struct ifmap into one
2135 	 */
2136 	unsigned long		mem_end;
2137 	unsigned long		mem_start;
2138 	unsigned long		base_addr;
2139 
2140 	/*
2141 	 *	Some hardware also needs these fields (state,dev_list,
2142 	 *	napi_list,unreg_list,close_list) but they are not
2143 	 *	part of the usual set specified in Space.c.
2144 	 */
2145 
2146 
2147 	struct list_head	dev_list;
2148 	struct list_head	napi_list;
2149 	struct list_head	unreg_list;
2150 	struct list_head	close_list;
2151 	struct list_head	ptype_all;
2152 
2153 	struct {
2154 		struct list_head upper;
2155 		struct list_head lower;
2156 	} adj_list;
2157 
2158 	/* Read-mostly cache-line for fast-path access */
2159 	xdp_features_t		xdp_features;
2160 	const struct xdp_metadata_ops *xdp_metadata_ops;
2161 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2162 	unsigned short		gflags;
2163 
2164 	unsigned short		needed_tailroom;
2165 
2166 	netdev_features_t	hw_features;
2167 	netdev_features_t	wanted_features;
2168 	netdev_features_t	vlan_features;
2169 	netdev_features_t	hw_enc_features;
2170 	netdev_features_t	mpls_features;
2171 
2172 	unsigned int		min_mtu;
2173 	unsigned int		max_mtu;
2174 	unsigned short		type;
2175 	unsigned char		min_header_len;
2176 	unsigned char		name_assign_type;
2177 
2178 	int			group;
2179 
2180 	struct net_device_stats	stats; /* not used by modern drivers */
2181 
2182 	struct net_device_core_stats __percpu *core_stats;
2183 
2184 	/* Stats to monitor link on/off, flapping */
2185 	atomic_t		carrier_up_count;
2186 	atomic_t		carrier_down_count;
2187 
2188 #ifdef CONFIG_WIRELESS_EXT
2189 	const struct iw_handler_def *wireless_handlers;
2190 #endif
2191 	const struct ethtool_ops *ethtool_ops;
2192 #ifdef CONFIG_NET_L3_MASTER_DEV
2193 	const struct l3mdev_ops	*l3mdev_ops;
2194 #endif
2195 #if IS_ENABLED(CONFIG_IPV6)
2196 	const struct ndisc_ops *ndisc_ops;
2197 #endif
2198 
2199 #ifdef CONFIG_XFRM_OFFLOAD
2200 	const struct xfrmdev_ops *xfrmdev_ops;
2201 #endif
2202 
2203 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2204 	const struct tlsdev_ops *tlsdev_ops;
2205 #endif
2206 
2207 	unsigned int		operstate;
2208 	unsigned char		link_mode;
2209 
2210 	unsigned char		if_port;
2211 	unsigned char		dma;
2212 
2213 	/* Interface address info. */
2214 	unsigned char		perm_addr[MAX_ADDR_LEN];
2215 	unsigned char		addr_assign_type;
2216 	unsigned char		addr_len;
2217 	unsigned char		upper_level;
2218 	unsigned char		lower_level;
2219 
2220 	unsigned short		neigh_priv_len;
2221 	unsigned short          dev_id;
2222 	unsigned short          dev_port;
2223 	int			irq;
2224 	u32			priv_len;
2225 
2226 	spinlock_t		addr_list_lock;
2227 
2228 	struct netdev_hw_addr_list	uc;
2229 	struct netdev_hw_addr_list	mc;
2230 	struct netdev_hw_addr_list	dev_addrs;
2231 
2232 #ifdef CONFIG_SYSFS
2233 	struct kset		*queues_kset;
2234 #endif
2235 #ifdef CONFIG_LOCKDEP
2236 	struct list_head	unlink_list;
2237 #endif
2238 	unsigned int		promiscuity;
2239 	unsigned int		allmulti;
2240 	bool			uc_promisc;
2241 #ifdef CONFIG_LOCKDEP
2242 	unsigned char		nested_level;
2243 #endif
2244 
2245 
2246 	/* Protocol-specific pointers */
2247 	struct in_device __rcu	*ip_ptr;
2248 	/** @fib_nh_head: nexthops associated with this netdev */
2249 	struct hlist_head	fib_nh_head;
2250 
2251 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2252 	struct vlan_info __rcu	*vlan_info;
2253 #endif
2254 #if IS_ENABLED(CONFIG_NET_DSA)
2255 	struct dsa_port		*dsa_ptr;
2256 #endif
2257 #if IS_ENABLED(CONFIG_TIPC)
2258 	struct tipc_bearer __rcu *tipc_ptr;
2259 #endif
2260 #if IS_ENABLED(CONFIG_ATALK)
2261 	void 			*atalk_ptr;
2262 #endif
2263 #if IS_ENABLED(CONFIG_AX25)
2264 	struct ax25_dev	__rcu	*ax25_ptr;
2265 #endif
2266 #if IS_ENABLED(CONFIG_CFG80211)
2267 	struct wireless_dev	*ieee80211_ptr;
2268 #endif
2269 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2270 	struct wpan_dev		*ieee802154_ptr;
2271 #endif
2272 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2273 	struct mpls_dev __rcu	*mpls_ptr;
2274 #endif
2275 #if IS_ENABLED(CONFIG_MCTP)
2276 	struct mctp_dev __rcu	*mctp_ptr;
2277 #endif
2278 
2279 /*
2280  * Cache lines mostly used on receive path (including eth_type_trans())
2281  */
2282 	/* Interface address info used in eth_type_trans() */
2283 	const unsigned char	*dev_addr;
2284 
2285 	unsigned int		num_rx_queues;
2286 #define GRO_LEGACY_MAX_SIZE	65536u
2287 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2288  * and shinfo->gso_segs is a 16bit field.
2289  */
2290 #define GRO_MAX_SIZE		(8 * 65535u)
2291 	unsigned int		xdp_zc_max_segs;
2292 	struct netdev_queue __rcu *ingress_queue;
2293 #ifdef CONFIG_NETFILTER_INGRESS
2294 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2295 #endif
2296 
2297 	unsigned char		broadcast[MAX_ADDR_LEN];
2298 #ifdef CONFIG_RFS_ACCEL
2299 	struct cpu_rmap		*rx_cpu_rmap;
2300 #endif
2301 	struct hlist_node	index_hlist;
2302 
2303 /*
2304  * Cache lines mostly used on transmit path
2305  */
2306 	unsigned int		num_tx_queues;
2307 	struct Qdisc __rcu	*qdisc;
2308 	unsigned int		tx_queue_len;
2309 	spinlock_t		tx_global_lock;
2310 
2311 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2312 
2313 #ifdef CONFIG_NET_SCHED
2314 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2315 #endif
2316 	/* These may be needed for future network-power-down code. */
2317 	struct timer_list	watchdog_timer;
2318 	int			watchdog_timeo;
2319 
2320 	u32                     proto_down_reason;
2321 
2322 	struct list_head	todo_list;
2323 
2324 #ifdef CONFIG_PCPU_DEV_REFCNT
2325 	int __percpu		*pcpu_refcnt;
2326 #else
2327 	refcount_t		dev_refcnt;
2328 #endif
2329 	struct ref_tracker_dir	refcnt_tracker;
2330 
2331 	struct list_head	link_watch_list;
2332 
2333 	u8 reg_state;
2334 
2335 	bool dismantle;
2336 
2337 	enum {
2338 		RTNL_LINK_INITIALIZED,
2339 		RTNL_LINK_INITIALIZING,
2340 	} rtnl_link_state:16;
2341 
2342 	bool needs_free_netdev;
2343 	void (*priv_destructor)(struct net_device *dev);
2344 
2345 	/* mid-layer private */
2346 	void				*ml_priv;
2347 	enum netdev_ml_priv_type	ml_priv_type;
2348 
2349 	enum netdev_stat_type		pcpu_stat_type:8;
2350 
2351 #if IS_ENABLED(CONFIG_GARP)
2352 	struct garp_port __rcu	*garp_port;
2353 #endif
2354 #if IS_ENABLED(CONFIG_MRP)
2355 	struct mrp_port __rcu	*mrp_port;
2356 #endif
2357 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2358 	struct dm_hw_stat_delta __rcu *dm_private;
2359 #endif
2360 	struct device		dev;
2361 	const struct attribute_group *sysfs_groups[4];
2362 	const struct attribute_group *sysfs_rx_queue_group;
2363 
2364 	const struct rtnl_link_ops *rtnl_link_ops;
2365 
2366 	const struct netdev_stat_ops *stat_ops;
2367 
2368 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2369 
2370 	/* for setting kernel sock attribute on TCP connection setup */
2371 #define GSO_MAX_SEGS		65535u
2372 #define GSO_LEGACY_MAX_SIZE	65536u
2373 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2374  * and shinfo->gso_segs is a 16bit field.
2375  */
2376 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2377 
2378 #define TSO_LEGACY_MAX_SIZE	65536
2379 #define TSO_MAX_SIZE		UINT_MAX
2380 	unsigned int		tso_max_size;
2381 #define TSO_MAX_SEGS		U16_MAX
2382 	u16			tso_max_segs;
2383 
2384 #ifdef CONFIG_DCB
2385 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2386 #endif
2387 	u8			prio_tc_map[TC_BITMASK + 1];
2388 
2389 #if IS_ENABLED(CONFIG_FCOE)
2390 	unsigned int		fcoe_ddp_xid;
2391 #endif
2392 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2393 	struct netprio_map __rcu *priomap;
2394 #endif
2395 	struct phy_link_topology	*link_topo;
2396 	struct phy_device	*phydev;
2397 	struct sfp_bus		*sfp_bus;
2398 	struct lock_class_key	*qdisc_tx_busylock;
2399 	bool			proto_down;
2400 	bool			threaded;
2401 
2402 	/* priv_flags_slow, ungrouped to save space */
2403 	unsigned long		see_all_hwtstamp_requests:1;
2404 	unsigned long		change_proto_down:1;
2405 	unsigned long		netns_local:1;
2406 	unsigned long		fcoe_mtu:1;
2407 
2408 	struct list_head	net_notifier_list;
2409 
2410 #if IS_ENABLED(CONFIG_MACSEC)
2411 	/* MACsec management functions */
2412 	const struct macsec_ops *macsec_ops;
2413 #endif
2414 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2415 	struct udp_tunnel_nic	*udp_tunnel_nic;
2416 
2417 	struct ethtool_netdev_state *ethtool;
2418 
2419 	/* protected by rtnl_lock */
2420 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2421 
2422 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2423 	netdevice_tracker	linkwatch_dev_tracker;
2424 	netdevice_tracker	watchdog_dev_tracker;
2425 	netdevice_tracker	dev_registered_tracker;
2426 	struct rtnl_hw_stats64	*offload_xstats_l3;
2427 
2428 	struct devlink_port	*devlink_port;
2429 
2430 #if IS_ENABLED(CONFIG_DPLL)
2431 	struct dpll_pin	__rcu	*dpll_pin;
2432 #endif
2433 #if IS_ENABLED(CONFIG_PAGE_POOL)
2434 	/** @page_pools: page pools created for this netdevice */
2435 	struct hlist_head	page_pools;
2436 #endif
2437 
2438 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2439 	struct dim_irq_moder	*irq_moder;
2440 
2441 	u64			max_pacing_offload_horizon;
2442 	struct napi_config	*napi_config;
2443 	unsigned long		gro_flush_timeout;
2444 	u32			napi_defer_hard_irqs;
2445 
2446 	/**
2447 	 * @lock: netdev-scope lock, protects a small selection of fields.
2448 	 * Should always be taken using netdev_lock() / netdev_unlock() helpers.
2449 	 * Drivers are free to use it for other protection.
2450 	 *
2451 	 * Protects: @net_shaper_hierarchy.
2452 	 * Ordering: take after rtnl_lock.
2453 	 */
2454 	struct mutex		lock;
2455 
2456 #if IS_ENABLED(CONFIG_NET_SHAPER)
2457 	/**
2458 	 * @net_shaper_hierarchy: data tracking the current shaper status
2459 	 *  see include/net/net_shapers.h
2460 	 */
2461 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2462 #endif
2463 
2464 	struct hlist_head neighbours[NEIGH_NR_TABLES];
2465 
2466 	struct hwtstamp_provider __rcu	*hwprov;
2467 
2468 	u8			priv[] ____cacheline_aligned
2469 				       __counted_by(priv_len);
2470 } ____cacheline_aligned;
2471 #define to_net_dev(d) container_of(d, struct net_device, dev)
2472 
2473 /*
2474  * Driver should use this to assign devlink port instance to a netdevice
2475  * before it registers the netdevice. Therefore devlink_port is static
2476  * during the netdev lifetime after it is registered.
2477  */
2478 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2479 ({								\
2480 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2481 	((dev)->devlink_port = (port));				\
2482 })
2483 
2484 static inline bool netif_elide_gro(const struct net_device *dev)
2485 {
2486 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2487 		return true;
2488 	return false;
2489 }
2490 
2491 #define	NETDEV_ALIGN		32
2492 
2493 static inline
2494 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2495 {
2496 	return dev->prio_tc_map[prio & TC_BITMASK];
2497 }
2498 
2499 static inline
2500 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2501 {
2502 	if (tc >= dev->num_tc)
2503 		return -EINVAL;
2504 
2505 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2506 	return 0;
2507 }
2508 
2509 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2510 void netdev_reset_tc(struct net_device *dev);
2511 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2512 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2513 
2514 static inline
2515 int netdev_get_num_tc(struct net_device *dev)
2516 {
2517 	return dev->num_tc;
2518 }
2519 
2520 static inline void net_prefetch(void *p)
2521 {
2522 	prefetch(p);
2523 #if L1_CACHE_BYTES < 128
2524 	prefetch((u8 *)p + L1_CACHE_BYTES);
2525 #endif
2526 }
2527 
2528 static inline void net_prefetchw(void *p)
2529 {
2530 	prefetchw(p);
2531 #if L1_CACHE_BYTES < 128
2532 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2533 #endif
2534 }
2535 
2536 void netdev_unbind_sb_channel(struct net_device *dev,
2537 			      struct net_device *sb_dev);
2538 int netdev_bind_sb_channel_queue(struct net_device *dev,
2539 				 struct net_device *sb_dev,
2540 				 u8 tc, u16 count, u16 offset);
2541 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2542 static inline int netdev_get_sb_channel(struct net_device *dev)
2543 {
2544 	return max_t(int, -dev->num_tc, 0);
2545 }
2546 
2547 static inline
2548 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2549 					 unsigned int index)
2550 {
2551 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2552 	return &dev->_tx[index];
2553 }
2554 
2555 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2556 						    const struct sk_buff *skb)
2557 {
2558 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2559 }
2560 
2561 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2562 					    void (*f)(struct net_device *,
2563 						      struct netdev_queue *,
2564 						      void *),
2565 					    void *arg)
2566 {
2567 	unsigned int i;
2568 
2569 	for (i = 0; i < dev->num_tx_queues; i++)
2570 		f(dev, &dev->_tx[i], arg);
2571 }
2572 
2573 #define netdev_lockdep_set_classes(dev)				\
2574 {								\
2575 	static struct lock_class_key qdisc_tx_busylock_key;	\
2576 	static struct lock_class_key qdisc_xmit_lock_key;	\
2577 	static struct lock_class_key dev_addr_list_lock_key;	\
2578 	unsigned int i;						\
2579 								\
2580 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2581 	lockdep_set_class(&(dev)->addr_list_lock,		\
2582 			  &dev_addr_list_lock_key);		\
2583 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2584 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2585 				  &qdisc_xmit_lock_key);	\
2586 }
2587 
2588 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2589 		     struct net_device *sb_dev);
2590 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2591 					 struct sk_buff *skb,
2592 					 struct net_device *sb_dev);
2593 
2594 /* returns the headroom that the master device needs to take in account
2595  * when forwarding to this dev
2596  */
2597 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2598 {
2599 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2600 }
2601 
2602 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2603 {
2604 	if (dev->netdev_ops->ndo_set_rx_headroom)
2605 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2606 }
2607 
2608 /* set the device rx headroom to the dev's default */
2609 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2610 {
2611 	netdev_set_rx_headroom(dev, -1);
2612 }
2613 
2614 static inline void *netdev_get_ml_priv(struct net_device *dev,
2615 				       enum netdev_ml_priv_type type)
2616 {
2617 	if (dev->ml_priv_type != type)
2618 		return NULL;
2619 
2620 	return dev->ml_priv;
2621 }
2622 
2623 static inline void netdev_set_ml_priv(struct net_device *dev,
2624 				      void *ml_priv,
2625 				      enum netdev_ml_priv_type type)
2626 {
2627 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2628 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2629 	     dev->ml_priv_type, type);
2630 	WARN(!dev->ml_priv_type && dev->ml_priv,
2631 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2632 
2633 	dev->ml_priv = ml_priv;
2634 	dev->ml_priv_type = type;
2635 }
2636 
2637 /*
2638  * Net namespace inlines
2639  */
2640 static inline
2641 struct net *dev_net(const struct net_device *dev)
2642 {
2643 	return read_pnet(&dev->nd_net);
2644 }
2645 
2646 static inline
2647 void dev_net_set(struct net_device *dev, struct net *net)
2648 {
2649 	write_pnet(&dev->nd_net, net);
2650 }
2651 
2652 /**
2653  *	netdev_priv - access network device private data
2654  *	@dev: network device
2655  *
2656  * Get network device private data
2657  */
2658 static inline void *netdev_priv(const struct net_device *dev)
2659 {
2660 	return (void *)dev->priv;
2661 }
2662 
2663 /* Set the sysfs physical device reference for the network logical device
2664  * if set prior to registration will cause a symlink during initialization.
2665  */
2666 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2667 
2668 /* Set the sysfs device type for the network logical device to allow
2669  * fine-grained identification of different network device types. For
2670  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2671  */
2672 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2673 
2674 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2675 			  enum netdev_queue_type type,
2676 			  struct napi_struct *napi);
2677 
2678 static inline void netdev_lock(struct net_device *dev)
2679 {
2680 	mutex_lock(&dev->lock);
2681 }
2682 
2683 static inline void netdev_unlock(struct net_device *dev)
2684 {
2685 	mutex_unlock(&dev->lock);
2686 }
2687 
2688 static inline void netdev_assert_locked(struct net_device *dev)
2689 {
2690 	lockdep_assert_held(&dev->lock);
2691 }
2692 
2693 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2694 {
2695 	napi->irq = irq;
2696 }
2697 
2698 /* Default NAPI poll() weight
2699  * Device drivers are strongly advised to not use bigger value
2700  */
2701 #define NAPI_POLL_WEIGHT 64
2702 
2703 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2704 			   int (*poll)(struct napi_struct *, int), int weight);
2705 
2706 /**
2707  * netif_napi_add() - initialize a NAPI context
2708  * @dev:  network device
2709  * @napi: NAPI context
2710  * @poll: polling function
2711  *
2712  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2713  * *any* of the other NAPI-related functions.
2714  */
2715 static inline void
2716 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2717 	       int (*poll)(struct napi_struct *, int))
2718 {
2719 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2720 }
2721 
2722 static inline void
2723 netif_napi_add_tx_weight(struct net_device *dev,
2724 			 struct napi_struct *napi,
2725 			 int (*poll)(struct napi_struct *, int),
2726 			 int weight)
2727 {
2728 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2729 	netif_napi_add_weight(dev, napi, poll, weight);
2730 }
2731 
2732 /**
2733  * netif_napi_add_config - initialize a NAPI context with persistent config
2734  * @dev: network device
2735  * @napi: NAPI context
2736  * @poll: polling function
2737  * @index: the NAPI index
2738  */
2739 static inline void
2740 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2741 		      int (*poll)(struct napi_struct *, int), int index)
2742 {
2743 	napi->index = index;
2744 	napi->config = &dev->napi_config[index];
2745 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2746 }
2747 
2748 /**
2749  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2750  * @dev:  network device
2751  * @napi: NAPI context
2752  * @poll: polling function
2753  *
2754  * This variant of netif_napi_add() should be used from drivers using NAPI
2755  * to exclusively poll a TX queue.
2756  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2757  */
2758 static inline void netif_napi_add_tx(struct net_device *dev,
2759 				     struct napi_struct *napi,
2760 				     int (*poll)(struct napi_struct *, int))
2761 {
2762 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2763 }
2764 
2765 /**
2766  *  __netif_napi_del - remove a NAPI context
2767  *  @napi: NAPI context
2768  *
2769  * Warning: caller must observe RCU grace period before freeing memory
2770  * containing @napi. Drivers might want to call this helper to combine
2771  * all the needed RCU grace periods into a single one.
2772  */
2773 void __netif_napi_del(struct napi_struct *napi);
2774 
2775 /**
2776  *  netif_napi_del - remove a NAPI context
2777  *  @napi: NAPI context
2778  *
2779  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2780  */
2781 static inline void netif_napi_del(struct napi_struct *napi)
2782 {
2783 	__netif_napi_del(napi);
2784 	synchronize_net();
2785 }
2786 
2787 struct packet_type {
2788 	__be16			type;	/* This is really htons(ether_type). */
2789 	bool			ignore_outgoing;
2790 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2791 	netdevice_tracker	dev_tracker;
2792 	int			(*func) (struct sk_buff *,
2793 					 struct net_device *,
2794 					 struct packet_type *,
2795 					 struct net_device *);
2796 	void			(*list_func) (struct list_head *,
2797 					      struct packet_type *,
2798 					      struct net_device *);
2799 	bool			(*id_match)(struct packet_type *ptype,
2800 					    struct sock *sk);
2801 	struct net		*af_packet_net;
2802 	void			*af_packet_priv;
2803 	struct list_head	list;
2804 };
2805 
2806 struct offload_callbacks {
2807 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2808 						netdev_features_t features);
2809 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2810 						struct sk_buff *skb);
2811 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2812 };
2813 
2814 struct packet_offload {
2815 	__be16			 type;	/* This is really htons(ether_type). */
2816 	u16			 priority;
2817 	struct offload_callbacks callbacks;
2818 	struct list_head	 list;
2819 };
2820 
2821 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2822 struct pcpu_sw_netstats {
2823 	u64_stats_t		rx_packets;
2824 	u64_stats_t		rx_bytes;
2825 	u64_stats_t		tx_packets;
2826 	u64_stats_t		tx_bytes;
2827 	struct u64_stats_sync   syncp;
2828 } __aligned(4 * sizeof(u64));
2829 
2830 struct pcpu_dstats {
2831 	u64_stats_t		rx_packets;
2832 	u64_stats_t		rx_bytes;
2833 	u64_stats_t		rx_drops;
2834 	u64_stats_t		tx_packets;
2835 	u64_stats_t		tx_bytes;
2836 	u64_stats_t		tx_drops;
2837 	struct u64_stats_sync	syncp;
2838 } __aligned(8 * sizeof(u64));
2839 
2840 struct pcpu_lstats {
2841 	u64_stats_t packets;
2842 	u64_stats_t bytes;
2843 	struct u64_stats_sync syncp;
2844 } __aligned(2 * sizeof(u64));
2845 
2846 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2847 
2848 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2849 {
2850 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2851 
2852 	u64_stats_update_begin(&tstats->syncp);
2853 	u64_stats_add(&tstats->rx_bytes, len);
2854 	u64_stats_inc(&tstats->rx_packets);
2855 	u64_stats_update_end(&tstats->syncp);
2856 }
2857 
2858 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2859 					  unsigned int packets,
2860 					  unsigned int len)
2861 {
2862 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2863 
2864 	u64_stats_update_begin(&tstats->syncp);
2865 	u64_stats_add(&tstats->tx_bytes, len);
2866 	u64_stats_add(&tstats->tx_packets, packets);
2867 	u64_stats_update_end(&tstats->syncp);
2868 }
2869 
2870 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2871 {
2872 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2873 
2874 	u64_stats_update_begin(&lstats->syncp);
2875 	u64_stats_add(&lstats->bytes, len);
2876 	u64_stats_inc(&lstats->packets);
2877 	u64_stats_update_end(&lstats->syncp);
2878 }
2879 
2880 static inline void dev_dstats_rx_add(struct net_device *dev,
2881 				     unsigned int len)
2882 {
2883 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2884 
2885 	u64_stats_update_begin(&dstats->syncp);
2886 	u64_stats_inc(&dstats->rx_packets);
2887 	u64_stats_add(&dstats->rx_bytes, len);
2888 	u64_stats_update_end(&dstats->syncp);
2889 }
2890 
2891 static inline void dev_dstats_rx_dropped(struct net_device *dev)
2892 {
2893 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2894 
2895 	u64_stats_update_begin(&dstats->syncp);
2896 	u64_stats_inc(&dstats->rx_drops);
2897 	u64_stats_update_end(&dstats->syncp);
2898 }
2899 
2900 static inline void dev_dstats_tx_add(struct net_device *dev,
2901 				     unsigned int len)
2902 {
2903 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2904 
2905 	u64_stats_update_begin(&dstats->syncp);
2906 	u64_stats_inc(&dstats->tx_packets);
2907 	u64_stats_add(&dstats->tx_bytes, len);
2908 	u64_stats_update_end(&dstats->syncp);
2909 }
2910 
2911 static inline void dev_dstats_tx_dropped(struct net_device *dev)
2912 {
2913 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2914 
2915 	u64_stats_update_begin(&dstats->syncp);
2916 	u64_stats_inc(&dstats->tx_drops);
2917 	u64_stats_update_end(&dstats->syncp);
2918 }
2919 
2920 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2921 ({									\
2922 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2923 	if (pcpu_stats)	{						\
2924 		int __cpu;						\
2925 		for_each_possible_cpu(__cpu) {				\
2926 			typeof(type) *stat;				\
2927 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2928 			u64_stats_init(&stat->syncp);			\
2929 		}							\
2930 	}								\
2931 	pcpu_stats;							\
2932 })
2933 
2934 #define netdev_alloc_pcpu_stats(type)					\
2935 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2936 
2937 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2938 ({									\
2939 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2940 	if (pcpu_stats) {						\
2941 		int __cpu;						\
2942 		for_each_possible_cpu(__cpu) {				\
2943 			typeof(type) *stat;				\
2944 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2945 			u64_stats_init(&stat->syncp);			\
2946 		}							\
2947 	}								\
2948 	pcpu_stats;							\
2949 })
2950 
2951 enum netdev_lag_tx_type {
2952 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2953 	NETDEV_LAG_TX_TYPE_RANDOM,
2954 	NETDEV_LAG_TX_TYPE_BROADCAST,
2955 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2956 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2957 	NETDEV_LAG_TX_TYPE_HASH,
2958 };
2959 
2960 enum netdev_lag_hash {
2961 	NETDEV_LAG_HASH_NONE,
2962 	NETDEV_LAG_HASH_L2,
2963 	NETDEV_LAG_HASH_L34,
2964 	NETDEV_LAG_HASH_L23,
2965 	NETDEV_LAG_HASH_E23,
2966 	NETDEV_LAG_HASH_E34,
2967 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2968 	NETDEV_LAG_HASH_UNKNOWN,
2969 };
2970 
2971 struct netdev_lag_upper_info {
2972 	enum netdev_lag_tx_type tx_type;
2973 	enum netdev_lag_hash hash_type;
2974 };
2975 
2976 struct netdev_lag_lower_state_info {
2977 	u8 link_up : 1,
2978 	   tx_enabled : 1;
2979 };
2980 
2981 #include <linux/notifier.h>
2982 
2983 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2984  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2985  * adding new types.
2986  */
2987 enum netdev_cmd {
2988 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2989 	NETDEV_DOWN,
2990 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2991 				   detected a hardware crash and restarted
2992 				   - we can use this eg to kick tcp sessions
2993 				   once done */
2994 	NETDEV_CHANGE,		/* Notify device state change */
2995 	NETDEV_REGISTER,
2996 	NETDEV_UNREGISTER,
2997 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2998 	NETDEV_CHANGEADDR,	/* notify after the address change */
2999 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
3000 	NETDEV_GOING_DOWN,
3001 	NETDEV_CHANGENAME,
3002 	NETDEV_FEAT_CHANGE,
3003 	NETDEV_BONDING_FAILOVER,
3004 	NETDEV_PRE_UP,
3005 	NETDEV_PRE_TYPE_CHANGE,
3006 	NETDEV_POST_TYPE_CHANGE,
3007 	NETDEV_POST_INIT,
3008 	NETDEV_PRE_UNINIT,
3009 	NETDEV_RELEASE,
3010 	NETDEV_NOTIFY_PEERS,
3011 	NETDEV_JOIN,
3012 	NETDEV_CHANGEUPPER,
3013 	NETDEV_RESEND_IGMP,
3014 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
3015 	NETDEV_CHANGEINFODATA,
3016 	NETDEV_BONDING_INFO,
3017 	NETDEV_PRECHANGEUPPER,
3018 	NETDEV_CHANGELOWERSTATE,
3019 	NETDEV_UDP_TUNNEL_PUSH_INFO,
3020 	NETDEV_UDP_TUNNEL_DROP_INFO,
3021 	NETDEV_CHANGE_TX_QUEUE_LEN,
3022 	NETDEV_CVLAN_FILTER_PUSH_INFO,
3023 	NETDEV_CVLAN_FILTER_DROP_INFO,
3024 	NETDEV_SVLAN_FILTER_PUSH_INFO,
3025 	NETDEV_SVLAN_FILTER_DROP_INFO,
3026 	NETDEV_OFFLOAD_XSTATS_ENABLE,
3027 	NETDEV_OFFLOAD_XSTATS_DISABLE,
3028 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
3029 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
3030 	NETDEV_XDP_FEAT_CHANGE,
3031 };
3032 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
3033 
3034 int register_netdevice_notifier(struct notifier_block *nb);
3035 int unregister_netdevice_notifier(struct notifier_block *nb);
3036 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
3037 int unregister_netdevice_notifier_net(struct net *net,
3038 				      struct notifier_block *nb);
3039 int register_netdevice_notifier_dev_net(struct net_device *dev,
3040 					struct notifier_block *nb,
3041 					struct netdev_net_notifier *nn);
3042 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
3043 					  struct notifier_block *nb,
3044 					  struct netdev_net_notifier *nn);
3045 
3046 struct netdev_notifier_info {
3047 	struct net_device	*dev;
3048 	struct netlink_ext_ack	*extack;
3049 };
3050 
3051 struct netdev_notifier_info_ext {
3052 	struct netdev_notifier_info info; /* must be first */
3053 	union {
3054 		u32 mtu;
3055 	} ext;
3056 };
3057 
3058 struct netdev_notifier_change_info {
3059 	struct netdev_notifier_info info; /* must be first */
3060 	unsigned int flags_changed;
3061 };
3062 
3063 struct netdev_notifier_changeupper_info {
3064 	struct netdev_notifier_info info; /* must be first */
3065 	struct net_device *upper_dev; /* new upper dev */
3066 	bool master; /* is upper dev master */
3067 	bool linking; /* is the notification for link or unlink */
3068 	void *upper_info; /* upper dev info */
3069 };
3070 
3071 struct netdev_notifier_changelowerstate_info {
3072 	struct netdev_notifier_info info; /* must be first */
3073 	void *lower_state_info; /* is lower dev state */
3074 };
3075 
3076 struct netdev_notifier_pre_changeaddr_info {
3077 	struct netdev_notifier_info info; /* must be first */
3078 	const unsigned char *dev_addr;
3079 };
3080 
3081 enum netdev_offload_xstats_type {
3082 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3083 };
3084 
3085 struct netdev_notifier_offload_xstats_info {
3086 	struct netdev_notifier_info info; /* must be first */
3087 	enum netdev_offload_xstats_type type;
3088 
3089 	union {
3090 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3091 		struct netdev_notifier_offload_xstats_rd *report_delta;
3092 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3093 		struct netdev_notifier_offload_xstats_ru *report_used;
3094 	};
3095 };
3096 
3097 int netdev_offload_xstats_enable(struct net_device *dev,
3098 				 enum netdev_offload_xstats_type type,
3099 				 struct netlink_ext_ack *extack);
3100 int netdev_offload_xstats_disable(struct net_device *dev,
3101 				  enum netdev_offload_xstats_type type);
3102 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3103 				   enum netdev_offload_xstats_type type);
3104 int netdev_offload_xstats_get(struct net_device *dev,
3105 			      enum netdev_offload_xstats_type type,
3106 			      struct rtnl_hw_stats64 *stats, bool *used,
3107 			      struct netlink_ext_ack *extack);
3108 void
3109 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3110 				   const struct rtnl_hw_stats64 *stats);
3111 void
3112 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3113 void netdev_offload_xstats_push_delta(struct net_device *dev,
3114 				      enum netdev_offload_xstats_type type,
3115 				      const struct rtnl_hw_stats64 *stats);
3116 
3117 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3118 					     struct net_device *dev)
3119 {
3120 	info->dev = dev;
3121 	info->extack = NULL;
3122 }
3123 
3124 static inline struct net_device *
3125 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3126 {
3127 	return info->dev;
3128 }
3129 
3130 static inline struct netlink_ext_ack *
3131 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3132 {
3133 	return info->extack;
3134 }
3135 
3136 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3137 int call_netdevice_notifiers_info(unsigned long val,
3138 				  struct netdev_notifier_info *info);
3139 
3140 #define for_each_netdev(net, d)		\
3141 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3142 #define for_each_netdev_reverse(net, d)	\
3143 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3144 #define for_each_netdev_rcu(net, d)		\
3145 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3146 #define for_each_netdev_safe(net, d, n)	\
3147 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3148 #define for_each_netdev_continue(net, d)		\
3149 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3150 #define for_each_netdev_continue_reverse(net, d)		\
3151 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3152 						     dev_list)
3153 #define for_each_netdev_continue_rcu(net, d)		\
3154 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3155 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3156 		for_each_netdev_rcu(&init_net, slave)	\
3157 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3158 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3159 
3160 #define for_each_netdev_dump(net, d, ifindex)				\
3161 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3162 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3163 
3164 static inline struct net_device *next_net_device(struct net_device *dev)
3165 {
3166 	struct list_head *lh;
3167 	struct net *net;
3168 
3169 	net = dev_net(dev);
3170 	lh = dev->dev_list.next;
3171 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3172 }
3173 
3174 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3175 {
3176 	struct list_head *lh;
3177 	struct net *net;
3178 
3179 	net = dev_net(dev);
3180 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3181 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3182 }
3183 
3184 static inline struct net_device *first_net_device(struct net *net)
3185 {
3186 	return list_empty(&net->dev_base_head) ? NULL :
3187 		net_device_entry(net->dev_base_head.next);
3188 }
3189 
3190 static inline struct net_device *first_net_device_rcu(struct net *net)
3191 {
3192 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3193 
3194 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3195 }
3196 
3197 int netdev_boot_setup_check(struct net_device *dev);
3198 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3199 				       const char *hwaddr);
3200 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3201 void dev_add_pack(struct packet_type *pt);
3202 void dev_remove_pack(struct packet_type *pt);
3203 void __dev_remove_pack(struct packet_type *pt);
3204 void dev_add_offload(struct packet_offload *po);
3205 void dev_remove_offload(struct packet_offload *po);
3206 
3207 int dev_get_iflink(const struct net_device *dev);
3208 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3209 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3210 			  struct net_device_path_stack *stack);
3211 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3212 				      unsigned short mask);
3213 struct net_device *dev_get_by_name(struct net *net, const char *name);
3214 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3215 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3216 bool netdev_name_in_use(struct net *net, const char *name);
3217 int dev_alloc_name(struct net_device *dev, const char *name);
3218 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3219 void dev_close(struct net_device *dev);
3220 void dev_close_many(struct list_head *head, bool unlink);
3221 void dev_disable_lro(struct net_device *dev);
3222 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3223 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3224 		     struct net_device *sb_dev);
3225 
3226 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3227 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3228 
3229 static inline int dev_queue_xmit(struct sk_buff *skb)
3230 {
3231 	return __dev_queue_xmit(skb, NULL);
3232 }
3233 
3234 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3235 				       struct net_device *sb_dev)
3236 {
3237 	return __dev_queue_xmit(skb, sb_dev);
3238 }
3239 
3240 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3241 {
3242 	int ret;
3243 
3244 	ret = __dev_direct_xmit(skb, queue_id);
3245 	if (!dev_xmit_complete(ret))
3246 		kfree_skb(skb);
3247 	return ret;
3248 }
3249 
3250 int register_netdevice(struct net_device *dev);
3251 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3252 void unregister_netdevice_many(struct list_head *head);
3253 static inline void unregister_netdevice(struct net_device *dev)
3254 {
3255 	unregister_netdevice_queue(dev, NULL);
3256 }
3257 
3258 int netdev_refcnt_read(const struct net_device *dev);
3259 void free_netdev(struct net_device *dev);
3260 
3261 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3262 					 struct sk_buff *skb,
3263 					 bool all_slaves);
3264 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3265 					    struct sock *sk);
3266 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3267 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3268 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3269 				       netdevice_tracker *tracker, gfp_t gfp);
3270 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3271 				      netdevice_tracker *tracker, gfp_t gfp);
3272 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3273 void netdev_copy_name(struct net_device *dev, char *name);
3274 
3275 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3276 				  unsigned short type,
3277 				  const void *daddr, const void *saddr,
3278 				  unsigned int len)
3279 {
3280 	if (!dev->header_ops || !dev->header_ops->create)
3281 		return 0;
3282 
3283 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3284 }
3285 
3286 static inline int dev_parse_header(const struct sk_buff *skb,
3287 				   unsigned char *haddr)
3288 {
3289 	const struct net_device *dev = skb->dev;
3290 
3291 	if (!dev->header_ops || !dev->header_ops->parse)
3292 		return 0;
3293 	return dev->header_ops->parse(skb, haddr);
3294 }
3295 
3296 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3297 {
3298 	const struct net_device *dev = skb->dev;
3299 
3300 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3301 		return 0;
3302 	return dev->header_ops->parse_protocol(skb);
3303 }
3304 
3305 /* ll_header must have at least hard_header_len allocated */
3306 static inline bool dev_validate_header(const struct net_device *dev,
3307 				       char *ll_header, int len)
3308 {
3309 	if (likely(len >= dev->hard_header_len))
3310 		return true;
3311 	if (len < dev->min_header_len)
3312 		return false;
3313 
3314 	if (capable(CAP_SYS_RAWIO)) {
3315 		memset(ll_header + len, 0, dev->hard_header_len - len);
3316 		return true;
3317 	}
3318 
3319 	if (dev->header_ops && dev->header_ops->validate)
3320 		return dev->header_ops->validate(ll_header, len);
3321 
3322 	return false;
3323 }
3324 
3325 static inline bool dev_has_header(const struct net_device *dev)
3326 {
3327 	return dev->header_ops && dev->header_ops->create;
3328 }
3329 
3330 /*
3331  * Incoming packets are placed on per-CPU queues
3332  */
3333 struct softnet_data {
3334 	struct list_head	poll_list;
3335 	struct sk_buff_head	process_queue;
3336 	local_lock_t		process_queue_bh_lock;
3337 
3338 	/* stats */
3339 	unsigned int		processed;
3340 	unsigned int		time_squeeze;
3341 #ifdef CONFIG_RPS
3342 	struct softnet_data	*rps_ipi_list;
3343 #endif
3344 
3345 	unsigned int		received_rps;
3346 	bool			in_net_rx_action;
3347 	bool			in_napi_threaded_poll;
3348 
3349 #ifdef CONFIG_NET_FLOW_LIMIT
3350 	struct sd_flow_limit __rcu *flow_limit;
3351 #endif
3352 	struct Qdisc		*output_queue;
3353 	struct Qdisc		**output_queue_tailp;
3354 	struct sk_buff		*completion_queue;
3355 #ifdef CONFIG_XFRM_OFFLOAD
3356 	struct sk_buff_head	xfrm_backlog;
3357 #endif
3358 	/* written and read only by owning cpu: */
3359 	struct netdev_xmit xmit;
3360 #ifdef CONFIG_RPS
3361 	/* input_queue_head should be written by cpu owning this struct,
3362 	 * and only read by other cpus. Worth using a cache line.
3363 	 */
3364 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3365 
3366 	/* Elements below can be accessed between CPUs for RPS/RFS */
3367 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3368 	struct softnet_data	*rps_ipi_next;
3369 	unsigned int		cpu;
3370 	unsigned int		input_queue_tail;
3371 #endif
3372 	struct sk_buff_head	input_pkt_queue;
3373 	struct napi_struct	backlog;
3374 
3375 	atomic_t		dropped ____cacheline_aligned_in_smp;
3376 
3377 	/* Another possibly contended cache line */
3378 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3379 	int			defer_count;
3380 	int			defer_ipi_scheduled;
3381 	struct sk_buff		*defer_list;
3382 	call_single_data_t	defer_csd;
3383 };
3384 
3385 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3386 DECLARE_PER_CPU(struct page_pool *, system_page_pool);
3387 
3388 #ifndef CONFIG_PREEMPT_RT
3389 static inline int dev_recursion_level(void)
3390 {
3391 	return this_cpu_read(softnet_data.xmit.recursion);
3392 }
3393 #else
3394 static inline int dev_recursion_level(void)
3395 {
3396 	return current->net_xmit.recursion;
3397 }
3398 
3399 #endif
3400 
3401 void __netif_schedule(struct Qdisc *q);
3402 void netif_schedule_queue(struct netdev_queue *txq);
3403 
3404 static inline void netif_tx_schedule_all(struct net_device *dev)
3405 {
3406 	unsigned int i;
3407 
3408 	for (i = 0; i < dev->num_tx_queues; i++)
3409 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3410 }
3411 
3412 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3413 {
3414 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3415 }
3416 
3417 /**
3418  *	netif_start_queue - allow transmit
3419  *	@dev: network device
3420  *
3421  *	Allow upper layers to call the device hard_start_xmit routine.
3422  */
3423 static inline void netif_start_queue(struct net_device *dev)
3424 {
3425 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3426 }
3427 
3428 static inline void netif_tx_start_all_queues(struct net_device *dev)
3429 {
3430 	unsigned int i;
3431 
3432 	for (i = 0; i < dev->num_tx_queues; i++) {
3433 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3434 		netif_tx_start_queue(txq);
3435 	}
3436 }
3437 
3438 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3439 
3440 /**
3441  *	netif_wake_queue - restart transmit
3442  *	@dev: network device
3443  *
3444  *	Allow upper layers to call the device hard_start_xmit routine.
3445  *	Used for flow control when transmit resources are available.
3446  */
3447 static inline void netif_wake_queue(struct net_device *dev)
3448 {
3449 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3450 }
3451 
3452 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3453 {
3454 	unsigned int i;
3455 
3456 	for (i = 0; i < dev->num_tx_queues; i++) {
3457 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3458 		netif_tx_wake_queue(txq);
3459 	}
3460 }
3461 
3462 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3463 {
3464 	/* Paired with READ_ONCE() from dev_watchdog() */
3465 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3466 
3467 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3468 	smp_mb__before_atomic();
3469 
3470 	/* Must be an atomic op see netif_txq_try_stop() */
3471 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3472 }
3473 
3474 /**
3475  *	netif_stop_queue - stop transmitted packets
3476  *	@dev: network device
3477  *
3478  *	Stop upper layers calling the device hard_start_xmit routine.
3479  *	Used for flow control when transmit resources are unavailable.
3480  */
3481 static inline void netif_stop_queue(struct net_device *dev)
3482 {
3483 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3484 }
3485 
3486 void netif_tx_stop_all_queues(struct net_device *dev);
3487 
3488 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3489 {
3490 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3491 }
3492 
3493 /**
3494  *	netif_queue_stopped - test if transmit queue is flowblocked
3495  *	@dev: network device
3496  *
3497  *	Test if transmit queue on device is currently unable to send.
3498  */
3499 static inline bool netif_queue_stopped(const struct net_device *dev)
3500 {
3501 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3502 }
3503 
3504 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3505 {
3506 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3507 }
3508 
3509 static inline bool
3510 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3511 {
3512 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3513 }
3514 
3515 static inline bool
3516 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3517 {
3518 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3519 }
3520 
3521 /**
3522  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3523  *	@dev_queue: pointer to transmit queue
3524  *	@min_limit: dql minimum limit
3525  *
3526  * Forces xmit_more() to return true until the minimum threshold
3527  * defined by @min_limit is reached (or until the tx queue is
3528  * empty). Warning: to be use with care, misuse will impact the
3529  * latency.
3530  */
3531 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3532 						  unsigned int min_limit)
3533 {
3534 #ifdef CONFIG_BQL
3535 	dev_queue->dql.min_limit = min_limit;
3536 #endif
3537 }
3538 
3539 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3540 {
3541 #ifdef CONFIG_BQL
3542 	/* Non-BQL migrated drivers will return 0, too. */
3543 	return dql_avail(&txq->dql);
3544 #else
3545 	return 0;
3546 #endif
3547 }
3548 
3549 /**
3550  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3551  *	@dev_queue: pointer to transmit queue
3552  *
3553  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3554  * to give appropriate hint to the CPU.
3555  */
3556 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3557 {
3558 #ifdef CONFIG_BQL
3559 	prefetchw(&dev_queue->dql.num_queued);
3560 #endif
3561 }
3562 
3563 /**
3564  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3565  *	@dev_queue: pointer to transmit queue
3566  *
3567  * BQL enabled drivers might use this helper in their TX completion path,
3568  * to give appropriate hint to the CPU.
3569  */
3570 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3571 {
3572 #ifdef CONFIG_BQL
3573 	prefetchw(&dev_queue->dql.limit);
3574 #endif
3575 }
3576 
3577 /**
3578  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3579  *	@dev_queue: network device queue
3580  *	@bytes: number of bytes queued to the device queue
3581  *
3582  *	Report the number of bytes queued for sending/completion to the network
3583  *	device hardware queue. @bytes should be a good approximation and should
3584  *	exactly match netdev_completed_queue() @bytes.
3585  *	This is typically called once per packet, from ndo_start_xmit().
3586  */
3587 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3588 					unsigned int bytes)
3589 {
3590 #ifdef CONFIG_BQL
3591 	dql_queued(&dev_queue->dql, bytes);
3592 
3593 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3594 		return;
3595 
3596 	/* Paired with READ_ONCE() from dev_watchdog() */
3597 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3598 
3599 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3600 	smp_mb__before_atomic();
3601 
3602 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3603 
3604 	/*
3605 	 * The XOFF flag must be set before checking the dql_avail below,
3606 	 * because in netdev_tx_completed_queue we update the dql_completed
3607 	 * before checking the XOFF flag.
3608 	 */
3609 	smp_mb__after_atomic();
3610 
3611 	/* check again in case another CPU has just made room avail */
3612 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3613 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3614 #endif
3615 }
3616 
3617 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3618  * that they should not test BQL status themselves.
3619  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3620  * skb of a batch.
3621  * Returns true if the doorbell must be used to kick the NIC.
3622  */
3623 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3624 					  unsigned int bytes,
3625 					  bool xmit_more)
3626 {
3627 	if (xmit_more) {
3628 #ifdef CONFIG_BQL
3629 		dql_queued(&dev_queue->dql, bytes);
3630 #endif
3631 		return netif_tx_queue_stopped(dev_queue);
3632 	}
3633 	netdev_tx_sent_queue(dev_queue, bytes);
3634 	return true;
3635 }
3636 
3637 /**
3638  *	netdev_sent_queue - report the number of bytes queued to hardware
3639  *	@dev: network device
3640  *	@bytes: number of bytes queued to the hardware device queue
3641  *
3642  *	Report the number of bytes queued for sending/completion to the network
3643  *	device hardware queue#0. @bytes should be a good approximation and should
3644  *	exactly match netdev_completed_queue() @bytes.
3645  *	This is typically called once per packet, from ndo_start_xmit().
3646  */
3647 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3648 {
3649 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3650 }
3651 
3652 static inline bool __netdev_sent_queue(struct net_device *dev,
3653 				       unsigned int bytes,
3654 				       bool xmit_more)
3655 {
3656 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3657 				      xmit_more);
3658 }
3659 
3660 /**
3661  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3662  *	@dev_queue: network device queue
3663  *	@pkts: number of packets (currently ignored)
3664  *	@bytes: number of bytes dequeued from the device queue
3665  *
3666  *	Must be called at most once per TX completion round (and not per
3667  *	individual packet), so that BQL can adjust its limits appropriately.
3668  */
3669 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3670 					     unsigned int pkts, unsigned int bytes)
3671 {
3672 #ifdef CONFIG_BQL
3673 	if (unlikely(!bytes))
3674 		return;
3675 
3676 	dql_completed(&dev_queue->dql, bytes);
3677 
3678 	/*
3679 	 * Without the memory barrier there is a small possibility that
3680 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3681 	 * be stopped forever
3682 	 */
3683 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3684 
3685 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3686 		return;
3687 
3688 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3689 		netif_schedule_queue(dev_queue);
3690 #endif
3691 }
3692 
3693 /**
3694  * 	netdev_completed_queue - report bytes and packets completed by device
3695  * 	@dev: network device
3696  * 	@pkts: actual number of packets sent over the medium
3697  * 	@bytes: actual number of bytes sent over the medium
3698  *
3699  * 	Report the number of bytes and packets transmitted by the network device
3700  * 	hardware queue over the physical medium, @bytes must exactly match the
3701  * 	@bytes amount passed to netdev_sent_queue()
3702  */
3703 static inline void netdev_completed_queue(struct net_device *dev,
3704 					  unsigned int pkts, unsigned int bytes)
3705 {
3706 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3707 }
3708 
3709 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3710 {
3711 #ifdef CONFIG_BQL
3712 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3713 	dql_reset(&q->dql);
3714 #endif
3715 }
3716 
3717 /**
3718  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3719  * @dev: network device
3720  * @qid: stack index of the queue to reset
3721  */
3722 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3723 					    u32 qid)
3724 {
3725 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3726 }
3727 
3728 /**
3729  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3730  * 	@dev_queue: network device
3731  *
3732  * 	Reset the bytes and packet count of a network device and clear the
3733  * 	software flow control OFF bit for this network device
3734  */
3735 static inline void netdev_reset_queue(struct net_device *dev_queue)
3736 {
3737 	netdev_tx_reset_subqueue(dev_queue, 0);
3738 }
3739 
3740 /**
3741  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3742  * 	@dev: network device
3743  * 	@queue_index: given tx queue index
3744  *
3745  * 	Returns 0 if given tx queue index >= number of device tx queues,
3746  * 	otherwise returns the originally passed tx queue index.
3747  */
3748 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3749 {
3750 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3751 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3752 				     dev->name, queue_index,
3753 				     dev->real_num_tx_queues);
3754 		return 0;
3755 	}
3756 
3757 	return queue_index;
3758 }
3759 
3760 /**
3761  *	netif_running - test if up
3762  *	@dev: network device
3763  *
3764  *	Test if the device has been brought up.
3765  */
3766 static inline bool netif_running(const struct net_device *dev)
3767 {
3768 	return test_bit(__LINK_STATE_START, &dev->state);
3769 }
3770 
3771 /*
3772  * Routines to manage the subqueues on a device.  We only need start,
3773  * stop, and a check if it's stopped.  All other device management is
3774  * done at the overall netdevice level.
3775  * Also test the device if we're multiqueue.
3776  */
3777 
3778 /**
3779  *	netif_start_subqueue - allow sending packets on subqueue
3780  *	@dev: network device
3781  *	@queue_index: sub queue index
3782  *
3783  * Start individual transmit queue of a device with multiple transmit queues.
3784  */
3785 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3786 {
3787 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3788 
3789 	netif_tx_start_queue(txq);
3790 }
3791 
3792 /**
3793  *	netif_stop_subqueue - stop sending packets on subqueue
3794  *	@dev: network device
3795  *	@queue_index: sub queue index
3796  *
3797  * Stop individual transmit queue of a device with multiple transmit queues.
3798  */
3799 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3800 {
3801 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3802 	netif_tx_stop_queue(txq);
3803 }
3804 
3805 /**
3806  *	__netif_subqueue_stopped - test status of subqueue
3807  *	@dev: network device
3808  *	@queue_index: sub queue index
3809  *
3810  * Check individual transmit queue of a device with multiple transmit queues.
3811  */
3812 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3813 					    u16 queue_index)
3814 {
3815 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3816 
3817 	return netif_tx_queue_stopped(txq);
3818 }
3819 
3820 /**
3821  *	netif_subqueue_stopped - test status of subqueue
3822  *	@dev: network device
3823  *	@skb: sub queue buffer pointer
3824  *
3825  * Check individual transmit queue of a device with multiple transmit queues.
3826  */
3827 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3828 					  struct sk_buff *skb)
3829 {
3830 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3831 }
3832 
3833 /**
3834  *	netif_wake_subqueue - allow sending packets on subqueue
3835  *	@dev: network device
3836  *	@queue_index: sub queue index
3837  *
3838  * Resume individual transmit queue of a device with multiple transmit queues.
3839  */
3840 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3841 {
3842 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3843 
3844 	netif_tx_wake_queue(txq);
3845 }
3846 
3847 #ifdef CONFIG_XPS
3848 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3849 			u16 index);
3850 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3851 			  u16 index, enum xps_map_type type);
3852 
3853 /**
3854  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3855  *	@j: CPU/Rx queue index
3856  *	@mask: bitmask of all cpus/rx queues
3857  *	@nr_bits: number of bits in the bitmask
3858  *
3859  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3860  */
3861 static inline bool netif_attr_test_mask(unsigned long j,
3862 					const unsigned long *mask,
3863 					unsigned int nr_bits)
3864 {
3865 	cpu_max_bits_warn(j, nr_bits);
3866 	return test_bit(j, mask);
3867 }
3868 
3869 /**
3870  *	netif_attr_test_online - Test for online CPU/Rx queue
3871  *	@j: CPU/Rx queue index
3872  *	@online_mask: bitmask for CPUs/Rx queues that are online
3873  *	@nr_bits: number of bits in the bitmask
3874  *
3875  * Returns: true if a CPU/Rx queue is online.
3876  */
3877 static inline bool netif_attr_test_online(unsigned long j,
3878 					  const unsigned long *online_mask,
3879 					  unsigned int nr_bits)
3880 {
3881 	cpu_max_bits_warn(j, nr_bits);
3882 
3883 	if (online_mask)
3884 		return test_bit(j, online_mask);
3885 
3886 	return (j < nr_bits);
3887 }
3888 
3889 /**
3890  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3891  *	@n: CPU/Rx queue index
3892  *	@srcp: the cpumask/Rx queue mask pointer
3893  *	@nr_bits: number of bits in the bitmask
3894  *
3895  * Returns: next (after n) CPU/Rx queue index in the mask;
3896  * >= nr_bits if no further CPUs/Rx queues set.
3897  */
3898 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3899 					       unsigned int nr_bits)
3900 {
3901 	/* -1 is a legal arg here. */
3902 	if (n != -1)
3903 		cpu_max_bits_warn(n, nr_bits);
3904 
3905 	if (srcp)
3906 		return find_next_bit(srcp, nr_bits, n + 1);
3907 
3908 	return n + 1;
3909 }
3910 
3911 /**
3912  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3913  *	@n: CPU/Rx queue index
3914  *	@src1p: the first CPUs/Rx queues mask pointer
3915  *	@src2p: the second CPUs/Rx queues mask pointer
3916  *	@nr_bits: number of bits in the bitmask
3917  *
3918  * Returns: next (after n) CPU/Rx queue index set in both masks;
3919  * >= nr_bits if no further CPUs/Rx queues set in both.
3920  */
3921 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3922 					  const unsigned long *src2p,
3923 					  unsigned int nr_bits)
3924 {
3925 	/* -1 is a legal arg here. */
3926 	if (n != -1)
3927 		cpu_max_bits_warn(n, nr_bits);
3928 
3929 	if (src1p && src2p)
3930 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3931 	else if (src1p)
3932 		return find_next_bit(src1p, nr_bits, n + 1);
3933 	else if (src2p)
3934 		return find_next_bit(src2p, nr_bits, n + 1);
3935 
3936 	return n + 1;
3937 }
3938 #else
3939 static inline int netif_set_xps_queue(struct net_device *dev,
3940 				      const struct cpumask *mask,
3941 				      u16 index)
3942 {
3943 	return 0;
3944 }
3945 
3946 static inline int __netif_set_xps_queue(struct net_device *dev,
3947 					const unsigned long *mask,
3948 					u16 index, enum xps_map_type type)
3949 {
3950 	return 0;
3951 }
3952 #endif
3953 
3954 /**
3955  *	netif_is_multiqueue - test if device has multiple transmit queues
3956  *	@dev: network device
3957  *
3958  * Check if device has multiple transmit queues
3959  */
3960 static inline bool netif_is_multiqueue(const struct net_device *dev)
3961 {
3962 	return dev->num_tx_queues > 1;
3963 }
3964 
3965 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3966 
3967 #ifdef CONFIG_SYSFS
3968 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3969 #else
3970 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3971 						unsigned int rxqs)
3972 {
3973 	dev->real_num_rx_queues = rxqs;
3974 	return 0;
3975 }
3976 #endif
3977 int netif_set_real_num_queues(struct net_device *dev,
3978 			      unsigned int txq, unsigned int rxq);
3979 
3980 int netif_get_num_default_rss_queues(void);
3981 
3982 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3983 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3984 
3985 /*
3986  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3987  * interrupt context or with hardware interrupts being disabled.
3988  * (in_hardirq() || irqs_disabled())
3989  *
3990  * We provide four helpers that can be used in following contexts :
3991  *
3992  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3993  *  replacing kfree_skb(skb)
3994  *
3995  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3996  *  Typically used in place of consume_skb(skb) in TX completion path
3997  *
3998  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3999  *  replacing kfree_skb(skb)
4000  *
4001  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
4002  *  and consumed a packet. Used in place of consume_skb(skb)
4003  */
4004 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
4005 {
4006 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4007 }
4008 
4009 static inline void dev_consume_skb_irq(struct sk_buff *skb)
4010 {
4011 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
4012 }
4013 
4014 static inline void dev_kfree_skb_any(struct sk_buff *skb)
4015 {
4016 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4017 }
4018 
4019 static inline void dev_consume_skb_any(struct sk_buff *skb)
4020 {
4021 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
4022 }
4023 
4024 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4025 			     const struct bpf_prog *xdp_prog);
4026 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog);
4027 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb);
4028 int netif_rx(struct sk_buff *skb);
4029 int __netif_rx(struct sk_buff *skb);
4030 
4031 int netif_receive_skb(struct sk_buff *skb);
4032 int netif_receive_skb_core(struct sk_buff *skb);
4033 void netif_receive_skb_list_internal(struct list_head *head);
4034 void netif_receive_skb_list(struct list_head *head);
4035 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
4036 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
4037 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4038 void napi_get_frags_check(struct napi_struct *napi);
4039 gro_result_t napi_gro_frags(struct napi_struct *napi);
4040 
4041 static inline void napi_free_frags(struct napi_struct *napi)
4042 {
4043 	kfree_skb(napi->skb);
4044 	napi->skb = NULL;
4045 }
4046 
4047 bool netdev_is_rx_handler_busy(struct net_device *dev);
4048 int netdev_rx_handler_register(struct net_device *dev,
4049 			       rx_handler_func_t *rx_handler,
4050 			       void *rx_handler_data);
4051 void netdev_rx_handler_unregister(struct net_device *dev);
4052 
4053 bool dev_valid_name(const char *name);
4054 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4055 {
4056 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4057 }
4058 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4059 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4060 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4061 		void __user *data, bool *need_copyout);
4062 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4063 int generic_hwtstamp_get_lower(struct net_device *dev,
4064 			       struct kernel_hwtstamp_config *kernel_cfg);
4065 int generic_hwtstamp_set_lower(struct net_device *dev,
4066 			       struct kernel_hwtstamp_config *kernel_cfg,
4067 			       struct netlink_ext_ack *extack);
4068 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4069 unsigned int dev_get_flags(const struct net_device *);
4070 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4071 		       struct netlink_ext_ack *extack);
4072 int dev_change_flags(struct net_device *dev, unsigned int flags,
4073 		     struct netlink_ext_ack *extack);
4074 int dev_set_alias(struct net_device *, const char *, size_t);
4075 int dev_get_alias(const struct net_device *, char *, size_t);
4076 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4077 			       const char *pat, int new_ifindex);
4078 static inline
4079 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4080 			     const char *pat)
4081 {
4082 	return __dev_change_net_namespace(dev, net, pat, 0);
4083 }
4084 int __dev_set_mtu(struct net_device *, int);
4085 int dev_set_mtu(struct net_device *, int);
4086 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4087 			      struct netlink_ext_ack *extack);
4088 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4089 			struct netlink_ext_ack *extack);
4090 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4091 			     struct netlink_ext_ack *extack);
4092 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4093 int dev_get_port_parent_id(struct net_device *dev,
4094 			   struct netdev_phys_item_id *ppid, bool recurse);
4095 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4096 
4097 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4098 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4099 				    struct netdev_queue *txq, int *ret);
4100 
4101 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4102 u8 dev_xdp_prog_count(struct net_device *dev);
4103 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4104 u8 dev_xdp_sb_prog_count(struct net_device *dev);
4105 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4106 
4107 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4108 
4109 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4110 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4111 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4112 bool is_skb_forwardable(const struct net_device *dev,
4113 			const struct sk_buff *skb);
4114 
4115 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4116 						 const struct sk_buff *skb,
4117 						 const bool check_mtu)
4118 {
4119 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4120 	unsigned int len;
4121 
4122 	if (!(dev->flags & IFF_UP))
4123 		return false;
4124 
4125 	if (!check_mtu)
4126 		return true;
4127 
4128 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4129 	if (skb->len <= len)
4130 		return true;
4131 
4132 	/* if TSO is enabled, we don't care about the length as the packet
4133 	 * could be forwarded without being segmented before
4134 	 */
4135 	if (skb_is_gso(skb))
4136 		return true;
4137 
4138 	return false;
4139 }
4140 
4141 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4142 
4143 #define DEV_CORE_STATS_INC(FIELD)						\
4144 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4145 {										\
4146 	netdev_core_stats_inc(dev,						\
4147 			offsetof(struct net_device_core_stats, FIELD));		\
4148 }
4149 DEV_CORE_STATS_INC(rx_dropped)
4150 DEV_CORE_STATS_INC(tx_dropped)
4151 DEV_CORE_STATS_INC(rx_nohandler)
4152 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4153 #undef DEV_CORE_STATS_INC
4154 
4155 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4156 					       struct sk_buff *skb,
4157 					       const bool check_mtu)
4158 {
4159 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4160 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4161 		dev_core_stats_rx_dropped_inc(dev);
4162 		kfree_skb(skb);
4163 		return NET_RX_DROP;
4164 	}
4165 
4166 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4167 	skb->priority = 0;
4168 	return 0;
4169 }
4170 
4171 bool dev_nit_active(struct net_device *dev);
4172 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4173 
4174 static inline void __dev_put(struct net_device *dev)
4175 {
4176 	if (dev) {
4177 #ifdef CONFIG_PCPU_DEV_REFCNT
4178 		this_cpu_dec(*dev->pcpu_refcnt);
4179 #else
4180 		refcount_dec(&dev->dev_refcnt);
4181 #endif
4182 	}
4183 }
4184 
4185 static inline void __dev_hold(struct net_device *dev)
4186 {
4187 	if (dev) {
4188 #ifdef CONFIG_PCPU_DEV_REFCNT
4189 		this_cpu_inc(*dev->pcpu_refcnt);
4190 #else
4191 		refcount_inc(&dev->dev_refcnt);
4192 #endif
4193 	}
4194 }
4195 
4196 static inline void __netdev_tracker_alloc(struct net_device *dev,
4197 					  netdevice_tracker *tracker,
4198 					  gfp_t gfp)
4199 {
4200 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4201 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4202 #endif
4203 }
4204 
4205 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4206  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4207  */
4208 static inline void netdev_tracker_alloc(struct net_device *dev,
4209 					netdevice_tracker *tracker, gfp_t gfp)
4210 {
4211 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4212 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4213 	__netdev_tracker_alloc(dev, tracker, gfp);
4214 #endif
4215 }
4216 
4217 static inline void netdev_tracker_free(struct net_device *dev,
4218 				       netdevice_tracker *tracker)
4219 {
4220 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4221 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4222 #endif
4223 }
4224 
4225 static inline void netdev_hold(struct net_device *dev,
4226 			       netdevice_tracker *tracker, gfp_t gfp)
4227 {
4228 	if (dev) {
4229 		__dev_hold(dev);
4230 		__netdev_tracker_alloc(dev, tracker, gfp);
4231 	}
4232 }
4233 
4234 static inline void netdev_put(struct net_device *dev,
4235 			      netdevice_tracker *tracker)
4236 {
4237 	if (dev) {
4238 		netdev_tracker_free(dev, tracker);
4239 		__dev_put(dev);
4240 	}
4241 }
4242 
4243 /**
4244  *	dev_hold - get reference to device
4245  *	@dev: network device
4246  *
4247  * Hold reference to device to keep it from being freed.
4248  * Try using netdev_hold() instead.
4249  */
4250 static inline void dev_hold(struct net_device *dev)
4251 {
4252 	netdev_hold(dev, NULL, GFP_ATOMIC);
4253 }
4254 
4255 /**
4256  *	dev_put - release reference to device
4257  *	@dev: network device
4258  *
4259  * Release reference to device to allow it to be freed.
4260  * Try using netdev_put() instead.
4261  */
4262 static inline void dev_put(struct net_device *dev)
4263 {
4264 	netdev_put(dev, NULL);
4265 }
4266 
4267 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4268 
4269 static inline void netdev_ref_replace(struct net_device *odev,
4270 				      struct net_device *ndev,
4271 				      netdevice_tracker *tracker,
4272 				      gfp_t gfp)
4273 {
4274 	if (odev)
4275 		netdev_tracker_free(odev, tracker);
4276 
4277 	__dev_hold(ndev);
4278 	__dev_put(odev);
4279 
4280 	if (ndev)
4281 		__netdev_tracker_alloc(ndev, tracker, gfp);
4282 }
4283 
4284 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4285  * and _off may be called from IRQ context, but it is caller
4286  * who is responsible for serialization of these calls.
4287  *
4288  * The name carrier is inappropriate, these functions should really be
4289  * called netif_lowerlayer_*() because they represent the state of any
4290  * kind of lower layer not just hardware media.
4291  */
4292 void linkwatch_fire_event(struct net_device *dev);
4293 
4294 /**
4295  * linkwatch_sync_dev - sync linkwatch for the given device
4296  * @dev: network device to sync linkwatch for
4297  *
4298  * Sync linkwatch for the given device, removing it from the
4299  * pending work list (if queued).
4300  */
4301 void linkwatch_sync_dev(struct net_device *dev);
4302 
4303 /**
4304  *	netif_carrier_ok - test if carrier present
4305  *	@dev: network device
4306  *
4307  * Check if carrier is present on device
4308  */
4309 static inline bool netif_carrier_ok(const struct net_device *dev)
4310 {
4311 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4312 }
4313 
4314 unsigned long dev_trans_start(struct net_device *dev);
4315 
4316 void netdev_watchdog_up(struct net_device *dev);
4317 
4318 void netif_carrier_on(struct net_device *dev);
4319 void netif_carrier_off(struct net_device *dev);
4320 void netif_carrier_event(struct net_device *dev);
4321 
4322 /**
4323  *	netif_dormant_on - mark device as dormant.
4324  *	@dev: network device
4325  *
4326  * Mark device as dormant (as per RFC2863).
4327  *
4328  * The dormant state indicates that the relevant interface is not
4329  * actually in a condition to pass packets (i.e., it is not 'up') but is
4330  * in a "pending" state, waiting for some external event.  For "on-
4331  * demand" interfaces, this new state identifies the situation where the
4332  * interface is waiting for events to place it in the up state.
4333  */
4334 static inline void netif_dormant_on(struct net_device *dev)
4335 {
4336 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4337 		linkwatch_fire_event(dev);
4338 }
4339 
4340 /**
4341  *	netif_dormant_off - set device as not dormant.
4342  *	@dev: network device
4343  *
4344  * Device is not in dormant state.
4345  */
4346 static inline void netif_dormant_off(struct net_device *dev)
4347 {
4348 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4349 		linkwatch_fire_event(dev);
4350 }
4351 
4352 /**
4353  *	netif_dormant - test if device is dormant
4354  *	@dev: network device
4355  *
4356  * Check if device is dormant.
4357  */
4358 static inline bool netif_dormant(const struct net_device *dev)
4359 {
4360 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4361 }
4362 
4363 
4364 /**
4365  *	netif_testing_on - mark device as under test.
4366  *	@dev: network device
4367  *
4368  * Mark device as under test (as per RFC2863).
4369  *
4370  * The testing state indicates that some test(s) must be performed on
4371  * the interface. After completion, of the test, the interface state
4372  * will change to up, dormant, or down, as appropriate.
4373  */
4374 static inline void netif_testing_on(struct net_device *dev)
4375 {
4376 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4377 		linkwatch_fire_event(dev);
4378 }
4379 
4380 /**
4381  *	netif_testing_off - set device as not under test.
4382  *	@dev: network device
4383  *
4384  * Device is not in testing state.
4385  */
4386 static inline void netif_testing_off(struct net_device *dev)
4387 {
4388 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4389 		linkwatch_fire_event(dev);
4390 }
4391 
4392 /**
4393  *	netif_testing - test if device is under test
4394  *	@dev: network device
4395  *
4396  * Check if device is under test
4397  */
4398 static inline bool netif_testing(const struct net_device *dev)
4399 {
4400 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4401 }
4402 
4403 
4404 /**
4405  *	netif_oper_up - test if device is operational
4406  *	@dev: network device
4407  *
4408  * Check if carrier is operational
4409  */
4410 static inline bool netif_oper_up(const struct net_device *dev)
4411 {
4412 	unsigned int operstate = READ_ONCE(dev->operstate);
4413 
4414 	return	operstate == IF_OPER_UP ||
4415 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4416 }
4417 
4418 /**
4419  *	netif_device_present - is device available or removed
4420  *	@dev: network device
4421  *
4422  * Check if device has not been removed from system.
4423  */
4424 static inline bool netif_device_present(const struct net_device *dev)
4425 {
4426 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4427 }
4428 
4429 void netif_device_detach(struct net_device *dev);
4430 
4431 void netif_device_attach(struct net_device *dev);
4432 
4433 /*
4434  * Network interface message level settings
4435  */
4436 
4437 enum {
4438 	NETIF_MSG_DRV_BIT,
4439 	NETIF_MSG_PROBE_BIT,
4440 	NETIF_MSG_LINK_BIT,
4441 	NETIF_MSG_TIMER_BIT,
4442 	NETIF_MSG_IFDOWN_BIT,
4443 	NETIF_MSG_IFUP_BIT,
4444 	NETIF_MSG_RX_ERR_BIT,
4445 	NETIF_MSG_TX_ERR_BIT,
4446 	NETIF_MSG_TX_QUEUED_BIT,
4447 	NETIF_MSG_INTR_BIT,
4448 	NETIF_MSG_TX_DONE_BIT,
4449 	NETIF_MSG_RX_STATUS_BIT,
4450 	NETIF_MSG_PKTDATA_BIT,
4451 	NETIF_MSG_HW_BIT,
4452 	NETIF_MSG_WOL_BIT,
4453 
4454 	/* When you add a new bit above, update netif_msg_class_names array
4455 	 * in net/ethtool/common.c
4456 	 */
4457 	NETIF_MSG_CLASS_COUNT,
4458 };
4459 /* Both ethtool_ops interface and internal driver implementation use u32 */
4460 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4461 
4462 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4463 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4464 
4465 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4466 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4467 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4468 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4469 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4470 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4471 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4472 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4473 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4474 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4475 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4476 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4477 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4478 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4479 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4480 
4481 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4482 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4483 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4484 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4485 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4486 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4487 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4488 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4489 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4490 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4491 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4492 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4493 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4494 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4495 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4496 
4497 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4498 {
4499 	/* use default */
4500 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4501 		return default_msg_enable_bits;
4502 	if (debug_value == 0)	/* no output */
4503 		return 0;
4504 	/* set low N bits */
4505 	return (1U << debug_value) - 1;
4506 }
4507 
4508 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4509 {
4510 	spin_lock(&txq->_xmit_lock);
4511 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4512 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4513 }
4514 
4515 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4516 {
4517 	__acquire(&txq->_xmit_lock);
4518 	return true;
4519 }
4520 
4521 static inline void __netif_tx_release(struct netdev_queue *txq)
4522 {
4523 	__release(&txq->_xmit_lock);
4524 }
4525 
4526 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4527 {
4528 	spin_lock_bh(&txq->_xmit_lock);
4529 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4530 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4531 }
4532 
4533 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4534 {
4535 	bool ok = spin_trylock(&txq->_xmit_lock);
4536 
4537 	if (likely(ok)) {
4538 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4539 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4540 	}
4541 	return ok;
4542 }
4543 
4544 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4545 {
4546 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4547 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4548 	spin_unlock(&txq->_xmit_lock);
4549 }
4550 
4551 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4552 {
4553 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4554 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4555 	spin_unlock_bh(&txq->_xmit_lock);
4556 }
4557 
4558 /*
4559  * txq->trans_start can be read locklessly from dev_watchdog()
4560  */
4561 static inline void txq_trans_update(struct netdev_queue *txq)
4562 {
4563 	if (txq->xmit_lock_owner != -1)
4564 		WRITE_ONCE(txq->trans_start, jiffies);
4565 }
4566 
4567 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4568 {
4569 	unsigned long now = jiffies;
4570 
4571 	if (READ_ONCE(txq->trans_start) != now)
4572 		WRITE_ONCE(txq->trans_start, now);
4573 }
4574 
4575 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4576 static inline void netif_trans_update(struct net_device *dev)
4577 {
4578 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4579 
4580 	txq_trans_cond_update(txq);
4581 }
4582 
4583 /**
4584  *	netif_tx_lock - grab network device transmit lock
4585  *	@dev: network device
4586  *
4587  * Get network device transmit lock
4588  */
4589 void netif_tx_lock(struct net_device *dev);
4590 
4591 static inline void netif_tx_lock_bh(struct net_device *dev)
4592 {
4593 	local_bh_disable();
4594 	netif_tx_lock(dev);
4595 }
4596 
4597 void netif_tx_unlock(struct net_device *dev);
4598 
4599 static inline void netif_tx_unlock_bh(struct net_device *dev)
4600 {
4601 	netif_tx_unlock(dev);
4602 	local_bh_enable();
4603 }
4604 
4605 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4606 	if (!(dev)->lltx) {				\
4607 		__netif_tx_lock(txq, cpu);		\
4608 	} else {					\
4609 		__netif_tx_acquire(txq);		\
4610 	}						\
4611 }
4612 
4613 #define HARD_TX_TRYLOCK(dev, txq)			\
4614 	(!(dev)->lltx ?					\
4615 		__netif_tx_trylock(txq) :		\
4616 		__netif_tx_acquire(txq))
4617 
4618 #define HARD_TX_UNLOCK(dev, txq) {			\
4619 	if (!(dev)->lltx) {				\
4620 		__netif_tx_unlock(txq);			\
4621 	} else {					\
4622 		__netif_tx_release(txq);		\
4623 	}						\
4624 }
4625 
4626 static inline void netif_tx_disable(struct net_device *dev)
4627 {
4628 	unsigned int i;
4629 	int cpu;
4630 
4631 	local_bh_disable();
4632 	cpu = smp_processor_id();
4633 	spin_lock(&dev->tx_global_lock);
4634 	for (i = 0; i < dev->num_tx_queues; i++) {
4635 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4636 
4637 		__netif_tx_lock(txq, cpu);
4638 		netif_tx_stop_queue(txq);
4639 		__netif_tx_unlock(txq);
4640 	}
4641 	spin_unlock(&dev->tx_global_lock);
4642 	local_bh_enable();
4643 }
4644 
4645 static inline void netif_addr_lock(struct net_device *dev)
4646 {
4647 	unsigned char nest_level = 0;
4648 
4649 #ifdef CONFIG_LOCKDEP
4650 	nest_level = dev->nested_level;
4651 #endif
4652 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4653 }
4654 
4655 static inline void netif_addr_lock_bh(struct net_device *dev)
4656 {
4657 	unsigned char nest_level = 0;
4658 
4659 #ifdef CONFIG_LOCKDEP
4660 	nest_level = dev->nested_level;
4661 #endif
4662 	local_bh_disable();
4663 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4664 }
4665 
4666 static inline void netif_addr_unlock(struct net_device *dev)
4667 {
4668 	spin_unlock(&dev->addr_list_lock);
4669 }
4670 
4671 static inline void netif_addr_unlock_bh(struct net_device *dev)
4672 {
4673 	spin_unlock_bh(&dev->addr_list_lock);
4674 }
4675 
4676 /*
4677  * dev_addrs walker. Should be used only for read access. Call with
4678  * rcu_read_lock held.
4679  */
4680 #define for_each_dev_addr(dev, ha) \
4681 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4682 
4683 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4684 
4685 void ether_setup(struct net_device *dev);
4686 
4687 /* Allocate dummy net_device */
4688 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4689 
4690 /* Support for loadable net-drivers */
4691 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4692 				    unsigned char name_assign_type,
4693 				    void (*setup)(struct net_device *),
4694 				    unsigned int txqs, unsigned int rxqs);
4695 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4696 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4697 
4698 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4699 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4700 			 count)
4701 
4702 int register_netdev(struct net_device *dev);
4703 void unregister_netdev(struct net_device *dev);
4704 
4705 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4706 
4707 /* General hardware address lists handling functions */
4708 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4709 		   struct netdev_hw_addr_list *from_list, int addr_len);
4710 int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list,
4711 			    struct netdev_hw_addr_list *from_list,
4712 			    int addr_len);
4713 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4714 		      struct netdev_hw_addr_list *from_list, int addr_len);
4715 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4716 		       struct net_device *dev,
4717 		       int (*sync)(struct net_device *, const unsigned char *),
4718 		       int (*unsync)(struct net_device *,
4719 				     const unsigned char *));
4720 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4721 			   struct net_device *dev,
4722 			   int (*sync)(struct net_device *,
4723 				       const unsigned char *, int),
4724 			   int (*unsync)(struct net_device *,
4725 					 const unsigned char *, int));
4726 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4727 			      struct net_device *dev,
4728 			      int (*unsync)(struct net_device *,
4729 					    const unsigned char *, int));
4730 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4731 			  struct net_device *dev,
4732 			  int (*unsync)(struct net_device *,
4733 					const unsigned char *));
4734 void __hw_addr_init(struct netdev_hw_addr_list *list);
4735 
4736 /* Functions used for device addresses handling */
4737 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4738 		  const void *addr, size_t len);
4739 
4740 static inline void
4741 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4742 {
4743 	dev_addr_mod(dev, 0, addr, len);
4744 }
4745 
4746 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4747 {
4748 	__dev_addr_set(dev, addr, dev->addr_len);
4749 }
4750 
4751 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4752 		 unsigned char addr_type);
4753 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4754 		 unsigned char addr_type);
4755 
4756 /* Functions used for unicast addresses handling */
4757 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4758 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4759 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4760 int dev_uc_sync(struct net_device *to, struct net_device *from);
4761 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4762 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4763 void dev_uc_flush(struct net_device *dev);
4764 void dev_uc_init(struct net_device *dev);
4765 
4766 /**
4767  *  __dev_uc_sync - Synchronize device's unicast list
4768  *  @dev:  device to sync
4769  *  @sync: function to call if address should be added
4770  *  @unsync: function to call if address should be removed
4771  *
4772  *  Add newly added addresses to the interface, and release
4773  *  addresses that have been deleted.
4774  */
4775 static inline int __dev_uc_sync(struct net_device *dev,
4776 				int (*sync)(struct net_device *,
4777 					    const unsigned char *),
4778 				int (*unsync)(struct net_device *,
4779 					      const unsigned char *))
4780 {
4781 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4782 }
4783 
4784 /**
4785  *  __dev_uc_unsync - Remove synchronized addresses from device
4786  *  @dev:  device to sync
4787  *  @unsync: function to call if address should be removed
4788  *
4789  *  Remove all addresses that were added to the device by dev_uc_sync().
4790  */
4791 static inline void __dev_uc_unsync(struct net_device *dev,
4792 				   int (*unsync)(struct net_device *,
4793 						 const unsigned char *))
4794 {
4795 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4796 }
4797 
4798 /* Functions used for multicast addresses handling */
4799 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4800 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4801 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4802 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4803 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4804 int dev_mc_sync(struct net_device *to, struct net_device *from);
4805 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4806 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4807 void dev_mc_flush(struct net_device *dev);
4808 void dev_mc_init(struct net_device *dev);
4809 
4810 /**
4811  *  __dev_mc_sync - Synchronize device's multicast list
4812  *  @dev:  device to sync
4813  *  @sync: function to call if address should be added
4814  *  @unsync: function to call if address should be removed
4815  *
4816  *  Add newly added addresses to the interface, and release
4817  *  addresses that have been deleted.
4818  */
4819 static inline int __dev_mc_sync(struct net_device *dev,
4820 				int (*sync)(struct net_device *,
4821 					    const unsigned char *),
4822 				int (*unsync)(struct net_device *,
4823 					      const unsigned char *))
4824 {
4825 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4826 }
4827 
4828 /**
4829  *  __dev_mc_unsync - Remove synchronized addresses from device
4830  *  @dev:  device to sync
4831  *  @unsync: function to call if address should be removed
4832  *
4833  *  Remove all addresses that were added to the device by dev_mc_sync().
4834  */
4835 static inline void __dev_mc_unsync(struct net_device *dev,
4836 				   int (*unsync)(struct net_device *,
4837 						 const unsigned char *))
4838 {
4839 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4840 }
4841 
4842 /* Functions used for secondary unicast and multicast support */
4843 void dev_set_rx_mode(struct net_device *dev);
4844 int dev_set_promiscuity(struct net_device *dev, int inc);
4845 int dev_set_allmulti(struct net_device *dev, int inc);
4846 void netdev_state_change(struct net_device *dev);
4847 void __netdev_notify_peers(struct net_device *dev);
4848 void netdev_notify_peers(struct net_device *dev);
4849 void netdev_features_change(struct net_device *dev);
4850 /* Load a device via the kmod */
4851 void dev_load(struct net *net, const char *name);
4852 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4853 					struct rtnl_link_stats64 *storage);
4854 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4855 			     const struct net_device_stats *netdev_stats);
4856 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4857 			   const struct pcpu_sw_netstats __percpu *netstats);
4858 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4859 
4860 enum {
4861 	NESTED_SYNC_IMM_BIT,
4862 	NESTED_SYNC_TODO_BIT,
4863 };
4864 
4865 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4866 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4867 
4868 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4869 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4870 
4871 struct netdev_nested_priv {
4872 	unsigned char flags;
4873 	void *data;
4874 };
4875 
4876 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4877 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4878 						     struct list_head **iter);
4879 
4880 /* iterate through upper list, must be called under RCU read lock */
4881 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4882 	for (iter = &(dev)->adj_list.upper, \
4883 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4884 	     updev; \
4885 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4886 
4887 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4888 				  int (*fn)(struct net_device *upper_dev,
4889 					    struct netdev_nested_priv *priv),
4890 				  struct netdev_nested_priv *priv);
4891 
4892 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4893 				  struct net_device *upper_dev);
4894 
4895 bool netdev_has_any_upper_dev(struct net_device *dev);
4896 
4897 void *netdev_lower_get_next_private(struct net_device *dev,
4898 				    struct list_head **iter);
4899 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4900 					struct list_head **iter);
4901 
4902 #define netdev_for_each_lower_private(dev, priv, iter) \
4903 	for (iter = (dev)->adj_list.lower.next, \
4904 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4905 	     priv; \
4906 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4907 
4908 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4909 	for (iter = &(dev)->adj_list.lower, \
4910 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4911 	     priv; \
4912 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4913 
4914 void *netdev_lower_get_next(struct net_device *dev,
4915 				struct list_head **iter);
4916 
4917 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4918 	for (iter = (dev)->adj_list.lower.next, \
4919 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4920 	     ldev; \
4921 	     ldev = netdev_lower_get_next(dev, &(iter)))
4922 
4923 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4924 					     struct list_head **iter);
4925 int netdev_walk_all_lower_dev(struct net_device *dev,
4926 			      int (*fn)(struct net_device *lower_dev,
4927 					struct netdev_nested_priv *priv),
4928 			      struct netdev_nested_priv *priv);
4929 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4930 				  int (*fn)(struct net_device *lower_dev,
4931 					    struct netdev_nested_priv *priv),
4932 				  struct netdev_nested_priv *priv);
4933 
4934 void *netdev_adjacent_get_private(struct list_head *adj_list);
4935 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4936 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4937 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4938 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4939 			  struct netlink_ext_ack *extack);
4940 int netdev_master_upper_dev_link(struct net_device *dev,
4941 				 struct net_device *upper_dev,
4942 				 void *upper_priv, void *upper_info,
4943 				 struct netlink_ext_ack *extack);
4944 void netdev_upper_dev_unlink(struct net_device *dev,
4945 			     struct net_device *upper_dev);
4946 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4947 				   struct net_device *new_dev,
4948 				   struct net_device *dev,
4949 				   struct netlink_ext_ack *extack);
4950 void netdev_adjacent_change_commit(struct net_device *old_dev,
4951 				   struct net_device *new_dev,
4952 				   struct net_device *dev);
4953 void netdev_adjacent_change_abort(struct net_device *old_dev,
4954 				  struct net_device *new_dev,
4955 				  struct net_device *dev);
4956 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4957 void *netdev_lower_dev_get_private(struct net_device *dev,
4958 				   struct net_device *lower_dev);
4959 void netdev_lower_state_changed(struct net_device *lower_dev,
4960 				void *lower_state_info);
4961 
4962 /* RSS keys are 40 or 52 bytes long */
4963 #define NETDEV_RSS_KEY_LEN 52
4964 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4965 void netdev_rss_key_fill(void *buffer, size_t len);
4966 
4967 int skb_checksum_help(struct sk_buff *skb);
4968 int skb_crc32c_csum_help(struct sk_buff *skb);
4969 int skb_csum_hwoffload_help(struct sk_buff *skb,
4970 			    const netdev_features_t features);
4971 
4972 struct netdev_bonding_info {
4973 	ifslave	slave;
4974 	ifbond	master;
4975 };
4976 
4977 struct netdev_notifier_bonding_info {
4978 	struct netdev_notifier_info info; /* must be first */
4979 	struct netdev_bonding_info  bonding_info;
4980 };
4981 
4982 void netdev_bonding_info_change(struct net_device *dev,
4983 				struct netdev_bonding_info *bonding_info);
4984 
4985 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4986 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4987 #else
4988 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4989 				  const void *data)
4990 {
4991 }
4992 #endif
4993 
4994 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4995 
4996 static inline bool can_checksum_protocol(netdev_features_t features,
4997 					 __be16 protocol)
4998 {
4999 	if (protocol == htons(ETH_P_FCOE))
5000 		return !!(features & NETIF_F_FCOE_CRC);
5001 
5002 	/* Assume this is an IP checksum (not SCTP CRC) */
5003 
5004 	if (features & NETIF_F_HW_CSUM) {
5005 		/* Can checksum everything */
5006 		return true;
5007 	}
5008 
5009 	switch (protocol) {
5010 	case htons(ETH_P_IP):
5011 		return !!(features & NETIF_F_IP_CSUM);
5012 	case htons(ETH_P_IPV6):
5013 		return !!(features & NETIF_F_IPV6_CSUM);
5014 	default:
5015 		return false;
5016 	}
5017 }
5018 
5019 #ifdef CONFIG_BUG
5020 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
5021 #else
5022 static inline void netdev_rx_csum_fault(struct net_device *dev,
5023 					struct sk_buff *skb)
5024 {
5025 }
5026 #endif
5027 /* rx skb timestamps */
5028 void net_enable_timestamp(void);
5029 void net_disable_timestamp(void);
5030 
5031 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
5032 					const struct skb_shared_hwtstamps *hwtstamps,
5033 					bool cycles)
5034 {
5035 	const struct net_device_ops *ops = dev->netdev_ops;
5036 
5037 	if (ops->ndo_get_tstamp)
5038 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
5039 
5040 	return hwtstamps->hwtstamp;
5041 }
5042 
5043 #ifndef CONFIG_PREEMPT_RT
5044 static inline void netdev_xmit_set_more(bool more)
5045 {
5046 	__this_cpu_write(softnet_data.xmit.more, more);
5047 }
5048 
5049 static inline bool netdev_xmit_more(void)
5050 {
5051 	return __this_cpu_read(softnet_data.xmit.more);
5052 }
5053 #else
5054 static inline void netdev_xmit_set_more(bool more)
5055 {
5056 	current->net_xmit.more = more;
5057 }
5058 
5059 static inline bool netdev_xmit_more(void)
5060 {
5061 	return current->net_xmit.more;
5062 }
5063 #endif
5064 
5065 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5066 					      struct sk_buff *skb, struct net_device *dev,
5067 					      bool more)
5068 {
5069 	netdev_xmit_set_more(more);
5070 	return ops->ndo_start_xmit(skb, dev);
5071 }
5072 
5073 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5074 					    struct netdev_queue *txq, bool more)
5075 {
5076 	const struct net_device_ops *ops = dev->netdev_ops;
5077 	netdev_tx_t rc;
5078 
5079 	rc = __netdev_start_xmit(ops, skb, dev, more);
5080 	if (rc == NETDEV_TX_OK)
5081 		txq_trans_update(txq);
5082 
5083 	return rc;
5084 }
5085 
5086 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5087 				const void *ns);
5088 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5089 				 const void *ns);
5090 
5091 extern const struct kobj_ns_type_operations net_ns_type_operations;
5092 
5093 const char *netdev_drivername(const struct net_device *dev);
5094 
5095 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5096 							  netdev_features_t f2)
5097 {
5098 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5099 		if (f1 & NETIF_F_HW_CSUM)
5100 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5101 		else
5102 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5103 	}
5104 
5105 	return f1 & f2;
5106 }
5107 
5108 static inline netdev_features_t netdev_get_wanted_features(
5109 	struct net_device *dev)
5110 {
5111 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5112 }
5113 netdev_features_t netdev_increment_features(netdev_features_t all,
5114 	netdev_features_t one, netdev_features_t mask);
5115 
5116 /* Allow TSO being used on stacked device :
5117  * Performing the GSO segmentation before last device
5118  * is a performance improvement.
5119  */
5120 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5121 							netdev_features_t mask)
5122 {
5123 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5124 }
5125 
5126 int __netdev_update_features(struct net_device *dev);
5127 void netdev_update_features(struct net_device *dev);
5128 void netdev_change_features(struct net_device *dev);
5129 
5130 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5131 					struct net_device *dev);
5132 
5133 netdev_features_t passthru_features_check(struct sk_buff *skb,
5134 					  struct net_device *dev,
5135 					  netdev_features_t features);
5136 netdev_features_t netif_skb_features(struct sk_buff *skb);
5137 void skb_warn_bad_offload(const struct sk_buff *skb);
5138 
5139 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5140 {
5141 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5142 
5143 	/* check flags correspondence */
5144 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5145 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5146 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5147 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5148 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5149 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5150 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5151 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5152 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5153 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5154 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5155 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5156 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5157 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5158 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5159 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5160 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5161 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5162 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5163 
5164 	return (features & feature) == feature;
5165 }
5166 
5167 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5168 {
5169 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5170 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5171 }
5172 
5173 static inline bool netif_needs_gso(struct sk_buff *skb,
5174 				   netdev_features_t features)
5175 {
5176 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5177 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5178 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5179 }
5180 
5181 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5182 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5183 void netif_inherit_tso_max(struct net_device *to,
5184 			   const struct net_device *from);
5185 
5186 static inline unsigned int
5187 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5188 {
5189 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5190 	return skb->protocol == htons(ETH_P_IPV6) ?
5191 	       READ_ONCE(dev->gro_max_size) :
5192 	       READ_ONCE(dev->gro_ipv4_max_size);
5193 }
5194 
5195 static inline unsigned int
5196 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5197 {
5198 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5199 	return skb->protocol == htons(ETH_P_IPV6) ?
5200 	       READ_ONCE(dev->gso_max_size) :
5201 	       READ_ONCE(dev->gso_ipv4_max_size);
5202 }
5203 
5204 static inline bool netif_is_macsec(const struct net_device *dev)
5205 {
5206 	return dev->priv_flags & IFF_MACSEC;
5207 }
5208 
5209 static inline bool netif_is_macvlan(const struct net_device *dev)
5210 {
5211 	return dev->priv_flags & IFF_MACVLAN;
5212 }
5213 
5214 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5215 {
5216 	return dev->priv_flags & IFF_MACVLAN_PORT;
5217 }
5218 
5219 static inline bool netif_is_bond_master(const struct net_device *dev)
5220 {
5221 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5222 }
5223 
5224 static inline bool netif_is_bond_slave(const struct net_device *dev)
5225 {
5226 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5227 }
5228 
5229 static inline bool netif_supports_nofcs(struct net_device *dev)
5230 {
5231 	return dev->priv_flags & IFF_SUPP_NOFCS;
5232 }
5233 
5234 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5235 {
5236 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5237 }
5238 
5239 static inline bool netif_is_l3_master(const struct net_device *dev)
5240 {
5241 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5242 }
5243 
5244 static inline bool netif_is_l3_slave(const struct net_device *dev)
5245 {
5246 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5247 }
5248 
5249 static inline int dev_sdif(const struct net_device *dev)
5250 {
5251 #ifdef CONFIG_NET_L3_MASTER_DEV
5252 	if (netif_is_l3_slave(dev))
5253 		return dev->ifindex;
5254 #endif
5255 	return 0;
5256 }
5257 
5258 static inline bool netif_is_bridge_master(const struct net_device *dev)
5259 {
5260 	return dev->priv_flags & IFF_EBRIDGE;
5261 }
5262 
5263 static inline bool netif_is_bridge_port(const struct net_device *dev)
5264 {
5265 	return dev->priv_flags & IFF_BRIDGE_PORT;
5266 }
5267 
5268 static inline bool netif_is_ovs_master(const struct net_device *dev)
5269 {
5270 	return dev->priv_flags & IFF_OPENVSWITCH;
5271 }
5272 
5273 static inline bool netif_is_ovs_port(const struct net_device *dev)
5274 {
5275 	return dev->priv_flags & IFF_OVS_DATAPATH;
5276 }
5277 
5278 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5279 {
5280 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5281 }
5282 
5283 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5284 {
5285 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5286 }
5287 
5288 static inline bool netif_is_team_master(const struct net_device *dev)
5289 {
5290 	return dev->priv_flags & IFF_TEAM;
5291 }
5292 
5293 static inline bool netif_is_team_port(const struct net_device *dev)
5294 {
5295 	return dev->priv_flags & IFF_TEAM_PORT;
5296 }
5297 
5298 static inline bool netif_is_lag_master(const struct net_device *dev)
5299 {
5300 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5301 }
5302 
5303 static inline bool netif_is_lag_port(const struct net_device *dev)
5304 {
5305 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5306 }
5307 
5308 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5309 {
5310 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5311 }
5312 
5313 static inline bool netif_is_failover(const struct net_device *dev)
5314 {
5315 	return dev->priv_flags & IFF_FAILOVER;
5316 }
5317 
5318 static inline bool netif_is_failover_slave(const struct net_device *dev)
5319 {
5320 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5321 }
5322 
5323 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5324 static inline void netif_keep_dst(struct net_device *dev)
5325 {
5326 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5327 }
5328 
5329 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5330 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5331 {
5332 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5333 	return netif_is_macsec(dev);
5334 }
5335 
5336 extern struct pernet_operations __net_initdata loopback_net_ops;
5337 
5338 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5339 
5340 /* netdev_printk helpers, similar to dev_printk */
5341 
5342 static inline const char *netdev_name(const struct net_device *dev)
5343 {
5344 	if (!dev->name[0] || strchr(dev->name, '%'))
5345 		return "(unnamed net_device)";
5346 	return dev->name;
5347 }
5348 
5349 static inline const char *netdev_reg_state(const struct net_device *dev)
5350 {
5351 	u8 reg_state = READ_ONCE(dev->reg_state);
5352 
5353 	switch (reg_state) {
5354 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5355 	case NETREG_REGISTERED: return "";
5356 	case NETREG_UNREGISTERING: return " (unregistering)";
5357 	case NETREG_UNREGISTERED: return " (unregistered)";
5358 	case NETREG_RELEASED: return " (released)";
5359 	case NETREG_DUMMY: return " (dummy)";
5360 	}
5361 
5362 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5363 	return " (unknown)";
5364 }
5365 
5366 #define MODULE_ALIAS_NETDEV(device) \
5367 	MODULE_ALIAS("netdev-" device)
5368 
5369 /*
5370  * netdev_WARN() acts like dev_printk(), but with the key difference
5371  * of using a WARN/WARN_ON to get the message out, including the
5372  * file/line information and a backtrace.
5373  */
5374 #define netdev_WARN(dev, format, args...)			\
5375 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5376 	     netdev_reg_state(dev), ##args)
5377 
5378 #define netdev_WARN_ONCE(dev, format, args...)				\
5379 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5380 		  netdev_reg_state(dev), ##args)
5381 
5382 /*
5383  *	The list of packet types we will receive (as opposed to discard)
5384  *	and the routines to invoke.
5385  *
5386  *	Why 16. Because with 16 the only overlap we get on a hash of the
5387  *	low nibble of the protocol value is RARP/SNAP/X.25.
5388  *
5389  *		0800	IP
5390  *		0001	802.3
5391  *		0002	AX.25
5392  *		0004	802.2
5393  *		8035	RARP
5394  *		0005	SNAP
5395  *		0805	X.25
5396  *		0806	ARP
5397  *		8137	IPX
5398  *		0009	Localtalk
5399  *		86DD	IPv6
5400  */
5401 #define PTYPE_HASH_SIZE	(16)
5402 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5403 
5404 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5405 
5406 extern struct net_device *blackhole_netdev;
5407 
5408 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5409 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5410 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5411 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5412 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5413 
5414 #endif	/* _LINUX_NETDEVICE_H */
5415