1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos_params.h> 35 #include <linux/timer.h> 36 #include <linux/delay.h> 37 #include <linux/mm.h> 38 #include <asm/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/device.h> 43 #include <linux/percpu.h> 44 #include <linux/rculist.h> 45 #include <linux/dmaengine.h> 46 #include <linux/workqueue.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 55 struct vlan_group; 56 struct netpoll_info; 57 struct phy_device; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* source back-compat hooks */ 61 #define SET_ETHTOOL_OPS(netdev,ops) \ 62 ( (netdev)->ethtool_ops = (ops) ) 63 64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev 65 functions are available. */ 66 #define HAVE_FREE_NETDEV /* free_netdev() */ 67 #define HAVE_NETDEV_PRIV /* netdev_priv() */ 68 69 /* hardware address assignment types */ 70 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously, in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), all 92 * others are propagated to higher layers. 93 */ 94 95 /* qdisc ->enqueue() return codes. */ 96 #define NET_XMIT_SUCCESS 0x00 97 #define NET_XMIT_DROP 0x01 /* skb dropped */ 98 #define NET_XMIT_CN 0x02 /* congestion notification */ 99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 116 }; 117 typedef enum netdev_tx netdev_tx_t; 118 119 /* 120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 122 */ 123 static inline bool dev_xmit_complete(int rc) 124 { 125 /* 126 * Positive cases with an skb consumed by a driver: 127 * - successful transmission (rc == NETDEV_TX_OK) 128 * - error while transmitting (rc < 0) 129 * - error while queueing to a different device (rc & NET_XMIT_MASK) 130 */ 131 if (likely(rc < NET_XMIT_MASK)) 132 return true; 133 134 return false; 135 } 136 137 #endif 138 139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 140 141 /* Initial net device group. All devices belong to group 0 by default. */ 142 #define INIT_NETDEV_GROUP 0 143 144 #ifdef __KERNEL__ 145 /* 146 * Compute the worst case header length according to the protocols 147 * used. 148 */ 149 150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 151 # if defined(CONFIG_MAC80211_MESH) 152 # define LL_MAX_HEADER 128 153 # else 154 # define LL_MAX_HEADER 96 155 # endif 156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 157 # define LL_MAX_HEADER 48 158 #else 159 # define LL_MAX_HEADER 32 160 #endif 161 162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 166 #define MAX_HEADER LL_MAX_HEADER 167 #else 168 #define MAX_HEADER (LL_MAX_HEADER + 48) 169 #endif 170 171 /* 172 * Old network device statistics. Fields are native words 173 * (unsigned long) so they can be read and written atomically. 174 */ 175 176 struct net_device_stats { 177 unsigned long rx_packets; 178 unsigned long tx_packets; 179 unsigned long rx_bytes; 180 unsigned long tx_bytes; 181 unsigned long rx_errors; 182 unsigned long tx_errors; 183 unsigned long rx_dropped; 184 unsigned long tx_dropped; 185 unsigned long multicast; 186 unsigned long collisions; 187 unsigned long rx_length_errors; 188 unsigned long rx_over_errors; 189 unsigned long rx_crc_errors; 190 unsigned long rx_frame_errors; 191 unsigned long rx_fifo_errors; 192 unsigned long rx_missed_errors; 193 unsigned long tx_aborted_errors; 194 unsigned long tx_carrier_errors; 195 unsigned long tx_fifo_errors; 196 unsigned long tx_heartbeat_errors; 197 unsigned long tx_window_errors; 198 unsigned long rx_compressed; 199 unsigned long tx_compressed; 200 }; 201 202 #endif /* __KERNEL__ */ 203 204 205 /* Media selection options. */ 206 enum { 207 IF_PORT_UNKNOWN = 0, 208 IF_PORT_10BASE2, 209 IF_PORT_10BASET, 210 IF_PORT_AUI, 211 IF_PORT_100BASET, 212 IF_PORT_100BASETX, 213 IF_PORT_100BASEFX 214 }; 215 216 #ifdef __KERNEL__ 217 218 #include <linux/cache.h> 219 #include <linux/skbuff.h> 220 221 struct neighbour; 222 struct neigh_parms; 223 struct sk_buff; 224 225 struct netdev_hw_addr { 226 struct list_head list; 227 unsigned char addr[MAX_ADDR_LEN]; 228 unsigned char type; 229 #define NETDEV_HW_ADDR_T_LAN 1 230 #define NETDEV_HW_ADDR_T_SAN 2 231 #define NETDEV_HW_ADDR_T_SLAVE 3 232 #define NETDEV_HW_ADDR_T_UNICAST 4 233 #define NETDEV_HW_ADDR_T_MULTICAST 5 234 bool synced; 235 bool global_use; 236 int refcount; 237 struct rcu_head rcu_head; 238 }; 239 240 struct netdev_hw_addr_list { 241 struct list_head list; 242 int count; 243 }; 244 245 #define netdev_hw_addr_list_count(l) ((l)->count) 246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 247 #define netdev_hw_addr_list_for_each(ha, l) \ 248 list_for_each_entry(ha, &(l)->list, list) 249 250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 252 #define netdev_for_each_uc_addr(ha, dev) \ 253 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 254 255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 257 #define netdev_for_each_mc_addr(ha, dev) \ 258 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 259 260 struct hh_cache { 261 struct hh_cache *hh_next; /* Next entry */ 262 atomic_t hh_refcnt; /* number of users */ 263 /* 264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate 265 * cache line on SMP. 266 * They are mostly read, but hh_refcnt may be changed quite frequently, 267 * incurring cache line ping pongs. 268 */ 269 __be16 hh_type ____cacheline_aligned_in_smp; 270 /* protocol identifier, f.e ETH_P_IP 271 * NOTE: For VLANs, this will be the 272 * encapuslated type. --BLG 273 */ 274 u16 hh_len; /* length of header */ 275 int (*hh_output)(struct sk_buff *skb); 276 seqlock_t hh_lock; 277 278 /* cached hardware header; allow for machine alignment needs. */ 279 #define HH_DATA_MOD 16 280 #define HH_DATA_OFF(__len) \ 281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 282 #define HH_DATA_ALIGN(__len) \ 283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 285 }; 286 287 static inline void hh_cache_put(struct hh_cache *hh) 288 { 289 if (atomic_dec_and_test(&hh->hh_refcnt)) 290 kfree(hh); 291 } 292 293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 294 * Alternative is: 295 * dev->hard_header_len ? (dev->hard_header_len + 296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 297 * 298 * We could use other alignment values, but we must maintain the 299 * relationship HH alignment <= LL alignment. 300 * 301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 302 * may need. 303 */ 304 #define LL_RESERVED_SPACE(dev) \ 305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 308 #define LL_ALLOCATED_SPACE(dev) \ 309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 311 struct header_ops { 312 int (*create) (struct sk_buff *skb, struct net_device *dev, 313 unsigned short type, const void *daddr, 314 const void *saddr, unsigned len); 315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 316 int (*rebuild)(struct sk_buff *skb); 317 #define HAVE_HEADER_CACHE 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 }; 323 324 /* These flag bits are private to the generic network queueing 325 * layer, they may not be explicitly referenced by any other 326 * code. 327 */ 328 329 enum netdev_state_t { 330 __LINK_STATE_START, 331 __LINK_STATE_PRESENT, 332 __LINK_STATE_NOCARRIER, 333 __LINK_STATE_LINKWATCH_PENDING, 334 __LINK_STATE_DORMANT, 335 }; 336 337 338 /* 339 * This structure holds at boot time configured netdevice settings. They 340 * are then used in the device probing. 341 */ 342 struct netdev_boot_setup { 343 char name[IFNAMSIZ]; 344 struct ifmap map; 345 }; 346 #define NETDEV_BOOT_SETUP_MAX 8 347 348 extern int __init netdev_boot_setup(char *str); 349 350 /* 351 * Structure for NAPI scheduling similar to tasklet but with weighting 352 */ 353 struct napi_struct { 354 /* The poll_list must only be managed by the entity which 355 * changes the state of the NAPI_STATE_SCHED bit. This means 356 * whoever atomically sets that bit can add this napi_struct 357 * to the per-cpu poll_list, and whoever clears that bit 358 * can remove from the list right before clearing the bit. 359 */ 360 struct list_head poll_list; 361 362 unsigned long state; 363 int weight; 364 int (*poll)(struct napi_struct *, int); 365 #ifdef CONFIG_NETPOLL 366 spinlock_t poll_lock; 367 int poll_owner; 368 #endif 369 370 unsigned int gro_count; 371 372 struct net_device *dev; 373 struct list_head dev_list; 374 struct sk_buff *gro_list; 375 struct sk_buff *skb; 376 }; 377 378 enum { 379 NAPI_STATE_SCHED, /* Poll is scheduled */ 380 NAPI_STATE_DISABLE, /* Disable pending */ 381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 382 }; 383 384 enum gro_result { 385 GRO_MERGED, 386 GRO_MERGED_FREE, 387 GRO_HELD, 388 GRO_NORMAL, 389 GRO_DROP, 390 }; 391 typedef enum gro_result gro_result_t; 392 393 /* 394 * enum rx_handler_result - Possible return values for rx_handlers. 395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 396 * further. 397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 398 * case skb->dev was changed by rx_handler. 399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 400 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 401 * 402 * rx_handlers are functions called from inside __netif_receive_skb(), to do 403 * special processing of the skb, prior to delivery to protocol handlers. 404 * 405 * Currently, a net_device can only have a single rx_handler registered. Trying 406 * to register a second rx_handler will return -EBUSY. 407 * 408 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 409 * To unregister a rx_handler on a net_device, use 410 * netdev_rx_handler_unregister(). 411 * 412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 413 * do with the skb. 414 * 415 * If the rx_handler consumed to skb in some way, it should return 416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 417 * the skb to be delivered in some other ways. 418 * 419 * If the rx_handler changed skb->dev, to divert the skb to another 420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 421 * new device will be called if it exists. 422 * 423 * If the rx_handler consider the skb should be ignored, it should return 424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 425 * are registred on exact device (ptype->dev == skb->dev). 426 * 427 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 428 * delivered, it should return RX_HANDLER_PASS. 429 * 430 * A device without a registered rx_handler will behave as if rx_handler 431 * returned RX_HANDLER_PASS. 432 */ 433 434 enum rx_handler_result { 435 RX_HANDLER_CONSUMED, 436 RX_HANDLER_ANOTHER, 437 RX_HANDLER_EXACT, 438 RX_HANDLER_PASS, 439 }; 440 typedef enum rx_handler_result rx_handler_result_t; 441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 442 443 extern void __napi_schedule(struct napi_struct *n); 444 445 static inline int napi_disable_pending(struct napi_struct *n) 446 { 447 return test_bit(NAPI_STATE_DISABLE, &n->state); 448 } 449 450 /** 451 * napi_schedule_prep - check if napi can be scheduled 452 * @n: napi context 453 * 454 * Test if NAPI routine is already running, and if not mark 455 * it as running. This is used as a condition variable 456 * insure only one NAPI poll instance runs. We also make 457 * sure there is no pending NAPI disable. 458 */ 459 static inline int napi_schedule_prep(struct napi_struct *n) 460 { 461 return !napi_disable_pending(n) && 462 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 463 } 464 465 /** 466 * napi_schedule - schedule NAPI poll 467 * @n: napi context 468 * 469 * Schedule NAPI poll routine to be called if it is not already 470 * running. 471 */ 472 static inline void napi_schedule(struct napi_struct *n) 473 { 474 if (napi_schedule_prep(n)) 475 __napi_schedule(n); 476 } 477 478 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 479 static inline int napi_reschedule(struct napi_struct *napi) 480 { 481 if (napi_schedule_prep(napi)) { 482 __napi_schedule(napi); 483 return 1; 484 } 485 return 0; 486 } 487 488 /** 489 * napi_complete - NAPI processing complete 490 * @n: napi context 491 * 492 * Mark NAPI processing as complete. 493 */ 494 extern void __napi_complete(struct napi_struct *n); 495 extern void napi_complete(struct napi_struct *n); 496 497 /** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: napi context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504 static inline void napi_disable(struct napi_struct *n) 505 { 506 set_bit(NAPI_STATE_DISABLE, &n->state); 507 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 508 msleep(1); 509 clear_bit(NAPI_STATE_DISABLE, &n->state); 510 } 511 512 /** 513 * napi_enable - enable NAPI scheduling 514 * @n: napi context 515 * 516 * Resume NAPI from being scheduled on this context. 517 * Must be paired with napi_disable. 518 */ 519 static inline void napi_enable(struct napi_struct *n) 520 { 521 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 522 smp_mb__before_clear_bit(); 523 clear_bit(NAPI_STATE_SCHED, &n->state); 524 } 525 526 #ifdef CONFIG_SMP 527 /** 528 * napi_synchronize - wait until NAPI is not running 529 * @n: napi context 530 * 531 * Wait until NAPI is done being scheduled on this context. 532 * Waits till any outstanding processing completes but 533 * does not disable future activations. 534 */ 535 static inline void napi_synchronize(const struct napi_struct *n) 536 { 537 while (test_bit(NAPI_STATE_SCHED, &n->state)) 538 msleep(1); 539 } 540 #else 541 # define napi_synchronize(n) barrier() 542 #endif 543 544 enum netdev_queue_state_t { 545 __QUEUE_STATE_XOFF, 546 __QUEUE_STATE_FROZEN, 547 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \ 548 (1 << __QUEUE_STATE_FROZEN)) 549 }; 550 551 struct netdev_queue { 552 /* 553 * read mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc *qdisc; 557 unsigned long state; 558 struct Qdisc *qdisc_sleeping; 559 #ifdef CONFIG_RPS 560 struct kobject kobj; 561 #endif 562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 int numa_node; 564 #endif 565 /* 566 * write mostly part 567 */ 568 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 569 int xmit_lock_owner; 570 /* 571 * please use this field instead of dev->trans_start 572 */ 573 unsigned long trans_start; 574 } ____cacheline_aligned_in_smp; 575 576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 577 { 578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 579 return q->numa_node; 580 #else 581 return NUMA_NO_NODE; 582 #endif 583 } 584 585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 586 { 587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 588 q->numa_node = node; 589 #endif 590 } 591 592 #ifdef CONFIG_RPS 593 /* 594 * This structure holds an RPS map which can be of variable length. The 595 * map is an array of CPUs. 596 */ 597 struct rps_map { 598 unsigned int len; 599 struct rcu_head rcu; 600 u16 cpus[0]; 601 }; 602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) 603 604 /* 605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 606 * tail pointer for that CPU's input queue at the time of last enqueue, and 607 * a hardware filter index. 608 */ 609 struct rps_dev_flow { 610 u16 cpu; 611 u16 filter; 612 unsigned int last_qtail; 613 }; 614 #define RPS_NO_FILTER 0xffff 615 616 /* 617 * The rps_dev_flow_table structure contains a table of flow mappings. 618 */ 619 struct rps_dev_flow_table { 620 unsigned int mask; 621 struct rcu_head rcu; 622 struct work_struct free_work; 623 struct rps_dev_flow flows[0]; 624 }; 625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 626 (_num * sizeof(struct rps_dev_flow))) 627 628 /* 629 * The rps_sock_flow_table contains mappings of flows to the last CPU 630 * on which they were processed by the application (set in recvmsg). 631 */ 632 struct rps_sock_flow_table { 633 unsigned int mask; 634 u16 ents[0]; 635 }; 636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 637 (_num * sizeof(u16))) 638 639 #define RPS_NO_CPU 0xffff 640 641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 642 u32 hash) 643 { 644 if (table && hash) { 645 unsigned int cpu, index = hash & table->mask; 646 647 /* We only give a hint, preemption can change cpu under us */ 648 cpu = raw_smp_processor_id(); 649 650 if (table->ents[index] != cpu) 651 table->ents[index] = cpu; 652 } 653 } 654 655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 656 u32 hash) 657 { 658 if (table && hash) 659 table->ents[hash & table->mask] = RPS_NO_CPU; 660 } 661 662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 663 664 #ifdef CONFIG_RFS_ACCEL 665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 666 u32 flow_id, u16 filter_id); 667 #endif 668 669 /* This structure contains an instance of an RX queue. */ 670 struct netdev_rx_queue { 671 struct rps_map __rcu *rps_map; 672 struct rps_dev_flow_table __rcu *rps_flow_table; 673 struct kobject kobj; 674 struct net_device *dev; 675 } ____cacheline_aligned_in_smp; 676 #endif /* CONFIG_RPS */ 677 678 #ifdef CONFIG_XPS 679 /* 680 * This structure holds an XPS map which can be of variable length. The 681 * map is an array of queues. 682 */ 683 struct xps_map { 684 unsigned int len; 685 unsigned int alloc_len; 686 struct rcu_head rcu; 687 u16 queues[0]; 688 }; 689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16))) 690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 691 / sizeof(u16)) 692 693 /* 694 * This structure holds all XPS maps for device. Maps are indexed by CPU. 695 */ 696 struct xps_dev_maps { 697 struct rcu_head rcu; 698 struct xps_map __rcu *cpu_map[0]; 699 }; 700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 701 (nr_cpu_ids * sizeof(struct xps_map *))) 702 #endif /* CONFIG_XPS */ 703 704 #define TC_MAX_QUEUE 16 705 #define TC_BITMASK 15 706 /* HW offloaded queuing disciplines txq count and offset maps */ 707 struct netdev_tc_txq { 708 u16 count; 709 u16 offset; 710 }; 711 712 /* 713 * This structure defines the management hooks for network devices. 714 * The following hooks can be defined; unless noted otherwise, they are 715 * optional and can be filled with a null pointer. 716 * 717 * int (*ndo_init)(struct net_device *dev); 718 * This function is called once when network device is registered. 719 * The network device can use this to any late stage initializaton 720 * or semantic validattion. It can fail with an error code which will 721 * be propogated back to register_netdev 722 * 723 * void (*ndo_uninit)(struct net_device *dev); 724 * This function is called when device is unregistered or when registration 725 * fails. It is not called if init fails. 726 * 727 * int (*ndo_open)(struct net_device *dev); 728 * This function is called when network device transistions to the up 729 * state. 730 * 731 * int (*ndo_stop)(struct net_device *dev); 732 * This function is called when network device transistions to the down 733 * state. 734 * 735 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 736 * struct net_device *dev); 737 * Called when a packet needs to be transmitted. 738 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 739 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 740 * Required can not be NULL. 741 * 742 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 743 * Called to decide which queue to when device supports multiple 744 * transmit queues. 745 * 746 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 747 * This function is called to allow device receiver to make 748 * changes to configuration when multicast or promiscious is enabled. 749 * 750 * void (*ndo_set_rx_mode)(struct net_device *dev); 751 * This function is called device changes address list filtering. 752 * 753 * void (*ndo_set_multicast_list)(struct net_device *dev); 754 * This function is called when the multicast address list changes. 755 * 756 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 757 * This function is called when the Media Access Control address 758 * needs to be changed. If this interface is not defined, the 759 * mac address can not be changed. 760 * 761 * int (*ndo_validate_addr)(struct net_device *dev); 762 * Test if Media Access Control address is valid for the device. 763 * 764 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 765 * Called when a user request an ioctl which can't be handled by 766 * the generic interface code. If not defined ioctl's return 767 * not supported error code. 768 * 769 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 770 * Used to set network devices bus interface parameters. This interface 771 * is retained for legacy reason, new devices should use the bus 772 * interface (PCI) for low level management. 773 * 774 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 775 * Called when a user wants to change the Maximum Transfer Unit 776 * of a device. If not defined, any request to change MTU will 777 * will return an error. 778 * 779 * void (*ndo_tx_timeout)(struct net_device *dev); 780 * Callback uses when the transmitter has not made any progress 781 * for dev->watchdog ticks. 782 * 783 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 784 * struct rtnl_link_stats64 *storage); 785 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 786 * Called when a user wants to get the network device usage 787 * statistics. Drivers must do one of the following: 788 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 789 * rtnl_link_stats64 structure passed by the caller. 790 * 2. Define @ndo_get_stats to update a net_device_stats structure 791 * (which should normally be dev->stats) and return a pointer to 792 * it. The structure may be changed asynchronously only if each 793 * field is written atomically. 794 * 3. Update dev->stats asynchronously and atomically, and define 795 * neither operation. 796 * 797 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); 798 * If device support VLAN receive acceleration 799 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called 800 * when vlan groups for the device changes. Note: grp is NULL 801 * if no vlan's groups are being used. 802 * 803 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 804 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 805 * this function is called when a VLAN id is registered. 806 * 807 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 808 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 809 * this function is called when a VLAN id is unregistered. 810 * 811 * void (*ndo_poll_controller)(struct net_device *dev); 812 * 813 * SR-IOV management functions. 814 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 815 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 816 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 817 * int (*ndo_get_vf_config)(struct net_device *dev, 818 * int vf, struct ifla_vf_info *ivf); 819 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 820 * struct nlattr *port[]); 821 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 822 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 823 * Called to setup 'tc' number of traffic classes in the net device. This 824 * is always called from the stack with the rtnl lock held and netif tx 825 * queues stopped. This allows the netdevice to perform queue management 826 * safely. 827 * 828 * Fiber Channel over Ethernet (FCoE) offload functions. 829 * int (*ndo_fcoe_enable)(struct net_device *dev); 830 * Called when the FCoE protocol stack wants to start using LLD for FCoE 831 * so the underlying device can perform whatever needed configuration or 832 * initialization to support acceleration of FCoE traffic. 833 * 834 * int (*ndo_fcoe_disable)(struct net_device *dev); 835 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 836 * so the underlying device can perform whatever needed clean-ups to 837 * stop supporting acceleration of FCoE traffic. 838 * 839 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 840 * struct scatterlist *sgl, unsigned int sgc); 841 * Called when the FCoE Initiator wants to initialize an I/O that 842 * is a possible candidate for Direct Data Placement (DDP). The LLD can 843 * perform necessary setup and returns 1 to indicate the device is set up 844 * successfully to perform DDP on this I/O, otherwise this returns 0. 845 * 846 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 847 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 848 * indicated by the FC exchange id 'xid', so the underlying device can 849 * clean up and reuse resources for later DDP requests. 850 * 851 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 852 * struct scatterlist *sgl, unsigned int sgc); 853 * Called when the FCoE Target wants to initialize an I/O that 854 * is a possible candidate for Direct Data Placement (DDP). The LLD can 855 * perform necessary setup and returns 1 to indicate the device is set up 856 * successfully to perform DDP on this I/O, otherwise this returns 0. 857 * 858 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 859 * Called when the underlying device wants to override default World Wide 860 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 861 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 862 * protocol stack to use. 863 * 864 * RFS acceleration. 865 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 866 * u16 rxq_index, u32 flow_id); 867 * Set hardware filter for RFS. rxq_index is the target queue index; 868 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 869 * Return the filter ID on success, or a negative error code. 870 * 871 * Slave management functions (for bridge, bonding, etc). User should 872 * call netdev_set_master() to set dev->master properly. 873 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 874 * Called to make another netdev an underling. 875 * 876 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 877 * Called to release previously enslaved netdev. 878 * 879 * Feature/offload setting functions. 880 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features); 881 * Adjusts the requested feature flags according to device-specific 882 * constraints, and returns the resulting flags. Must not modify 883 * the device state. 884 * 885 * int (*ndo_set_features)(struct net_device *dev, u32 features); 886 * Called to update device configuration to new features. Passed 887 * feature set might be less than what was returned by ndo_fix_features()). 888 * Must return >0 or -errno if it changed dev->features itself. 889 * 890 */ 891 #define HAVE_NET_DEVICE_OPS 892 struct net_device_ops { 893 int (*ndo_init)(struct net_device *dev); 894 void (*ndo_uninit)(struct net_device *dev); 895 int (*ndo_open)(struct net_device *dev); 896 int (*ndo_stop)(struct net_device *dev); 897 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 898 struct net_device *dev); 899 u16 (*ndo_select_queue)(struct net_device *dev, 900 struct sk_buff *skb); 901 void (*ndo_change_rx_flags)(struct net_device *dev, 902 int flags); 903 void (*ndo_set_rx_mode)(struct net_device *dev); 904 void (*ndo_set_multicast_list)(struct net_device *dev); 905 int (*ndo_set_mac_address)(struct net_device *dev, 906 void *addr); 907 int (*ndo_validate_addr)(struct net_device *dev); 908 int (*ndo_do_ioctl)(struct net_device *dev, 909 struct ifreq *ifr, int cmd); 910 int (*ndo_set_config)(struct net_device *dev, 911 struct ifmap *map); 912 int (*ndo_change_mtu)(struct net_device *dev, 913 int new_mtu); 914 int (*ndo_neigh_setup)(struct net_device *dev, 915 struct neigh_parms *); 916 void (*ndo_tx_timeout) (struct net_device *dev); 917 918 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 919 struct rtnl_link_stats64 *storage); 920 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 921 922 void (*ndo_vlan_rx_register)(struct net_device *dev, 923 struct vlan_group *grp); 924 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 925 unsigned short vid); 926 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 927 unsigned short vid); 928 #ifdef CONFIG_NET_POLL_CONTROLLER 929 void (*ndo_poll_controller)(struct net_device *dev); 930 int (*ndo_netpoll_setup)(struct net_device *dev, 931 struct netpoll_info *info); 932 void (*ndo_netpoll_cleanup)(struct net_device *dev); 933 #endif 934 int (*ndo_set_vf_mac)(struct net_device *dev, 935 int queue, u8 *mac); 936 int (*ndo_set_vf_vlan)(struct net_device *dev, 937 int queue, u16 vlan, u8 qos); 938 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 939 int vf, int rate); 940 int (*ndo_get_vf_config)(struct net_device *dev, 941 int vf, 942 struct ifla_vf_info *ivf); 943 int (*ndo_set_vf_port)(struct net_device *dev, 944 int vf, 945 struct nlattr *port[]); 946 int (*ndo_get_vf_port)(struct net_device *dev, 947 int vf, struct sk_buff *skb); 948 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 949 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 950 int (*ndo_fcoe_enable)(struct net_device *dev); 951 int (*ndo_fcoe_disable)(struct net_device *dev); 952 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 953 u16 xid, 954 struct scatterlist *sgl, 955 unsigned int sgc); 956 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 957 u16 xid); 958 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 959 u16 xid, 960 struct scatterlist *sgl, 961 unsigned int sgc); 962 #define NETDEV_FCOE_WWNN 0 963 #define NETDEV_FCOE_WWPN 1 964 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 965 u64 *wwn, int type); 966 #endif 967 #ifdef CONFIG_RFS_ACCEL 968 int (*ndo_rx_flow_steer)(struct net_device *dev, 969 const struct sk_buff *skb, 970 u16 rxq_index, 971 u32 flow_id); 972 #endif 973 int (*ndo_add_slave)(struct net_device *dev, 974 struct net_device *slave_dev); 975 int (*ndo_del_slave)(struct net_device *dev, 976 struct net_device *slave_dev); 977 u32 (*ndo_fix_features)(struct net_device *dev, 978 u32 features); 979 int (*ndo_set_features)(struct net_device *dev, 980 u32 features); 981 }; 982 983 /* 984 * The DEVICE structure. 985 * Actually, this whole structure is a big mistake. It mixes I/O 986 * data with strictly "high-level" data, and it has to know about 987 * almost every data structure used in the INET module. 988 * 989 * FIXME: cleanup struct net_device such that network protocol info 990 * moves out. 991 */ 992 993 struct net_device { 994 995 /* 996 * This is the first field of the "visible" part of this structure 997 * (i.e. as seen by users in the "Space.c" file). It is the name 998 * of the interface. 999 */ 1000 char name[IFNAMSIZ]; 1001 1002 struct pm_qos_request_list pm_qos_req; 1003 1004 /* device name hash chain */ 1005 struct hlist_node name_hlist; 1006 /* snmp alias */ 1007 char *ifalias; 1008 1009 /* 1010 * I/O specific fields 1011 * FIXME: Merge these and struct ifmap into one 1012 */ 1013 unsigned long mem_end; /* shared mem end */ 1014 unsigned long mem_start; /* shared mem start */ 1015 unsigned long base_addr; /* device I/O address */ 1016 unsigned int irq; /* device IRQ number */ 1017 1018 /* 1019 * Some hardware also needs these fields, but they are not 1020 * part of the usual set specified in Space.c. 1021 */ 1022 1023 unsigned long state; 1024 1025 struct list_head dev_list; 1026 struct list_head napi_list; 1027 struct list_head unreg_list; 1028 1029 /* currently active device features */ 1030 u32 features; 1031 /* user-changeable features */ 1032 u32 hw_features; 1033 /* user-requested features */ 1034 u32 wanted_features; 1035 /* mask of features inheritable by VLAN devices */ 1036 u32 vlan_features; 1037 1038 /* Net device feature bits; if you change something, 1039 * also update netdev_features_strings[] in ethtool.c */ 1040 1041 #define NETIF_F_SG 1 /* Scatter/gather IO. */ 1042 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 1043 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 1044 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 1045 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 1046 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 1047 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 1048 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 1049 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 1050 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 1051 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 1052 #define NETIF_F_GSO 2048 /* Enable software GSO. */ 1053 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 1054 /* do not use LLTX in new drivers */ 1055 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 1056 #define NETIF_F_GRO 16384 /* Generic receive offload */ 1057 #define NETIF_F_LRO 32768 /* large receive offload */ 1058 1059 /* the GSO_MASK reserves bits 16 through 23 */ 1060 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 1061 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 1062 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 1063 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ 1064 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ 1065 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */ 1066 #define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */ 1067 #define NETIF_F_LOOPBACK (1 << 31) /* Enable loopback */ 1068 1069 /* Segmentation offload features */ 1070 #define NETIF_F_GSO_SHIFT 16 1071 #define NETIF_F_GSO_MASK 0x00ff0000 1072 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 1073 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 1074 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 1075 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 1076 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 1077 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 1078 1079 /* Features valid for ethtool to change */ 1080 /* = all defined minus driver/device-class-related */ 1081 #define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \ 1082 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL) 1083 #define NETIF_F_ETHTOOL_BITS (0xff3fffff & ~NETIF_F_NEVER_CHANGE) 1084 1085 /* List of features with software fallbacks. */ 1086 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ 1087 NETIF_F_TSO6 | NETIF_F_UFO) 1088 1089 1090 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 1091 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 1092 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 1093 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 1094 1095 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1096 1097 #define NETIF_F_ALL_FCOE (NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \ 1098 NETIF_F_FSO) 1099 1100 #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \ 1101 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ 1102 NETIF_F_HIGHDMA | \ 1103 NETIF_F_SCTP_CSUM | \ 1104 NETIF_F_ALL_FCOE) 1105 1106 /* 1107 * If one device supports one of these features, then enable them 1108 * for all in netdev_increment_features. 1109 */ 1110 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 1111 NETIF_F_SG | NETIF_F_HIGHDMA | \ 1112 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED) 1113 /* 1114 * If one device doesn't support one of these features, then disable it 1115 * for all in netdev_increment_features. 1116 */ 1117 #define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO) 1118 1119 /* changeable features with no special hardware requirements */ 1120 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO) 1121 1122 /* Interface index. Unique device identifier */ 1123 int ifindex; 1124 int iflink; 1125 1126 struct net_device_stats stats; 1127 atomic_long_t rx_dropped; /* dropped packets by core network 1128 * Do not use this in drivers. 1129 */ 1130 1131 #ifdef CONFIG_WIRELESS_EXT 1132 /* List of functions to handle Wireless Extensions (instead of ioctl). 1133 * See <net/iw_handler.h> for details. Jean II */ 1134 const struct iw_handler_def * wireless_handlers; 1135 /* Instance data managed by the core of Wireless Extensions. */ 1136 struct iw_public_data * wireless_data; 1137 #endif 1138 /* Management operations */ 1139 const struct net_device_ops *netdev_ops; 1140 const struct ethtool_ops *ethtool_ops; 1141 1142 /* Hardware header description */ 1143 const struct header_ops *header_ops; 1144 1145 unsigned int flags; /* interface flags (a la BSD) */ 1146 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 1147 unsigned short gflags; 1148 unsigned short padded; /* How much padding added by alloc_netdev() */ 1149 1150 unsigned char operstate; /* RFC2863 operstate */ 1151 unsigned char link_mode; /* mapping policy to operstate */ 1152 1153 unsigned char if_port; /* Selectable AUI, TP,..*/ 1154 unsigned char dma; /* DMA channel */ 1155 1156 unsigned int mtu; /* interface MTU value */ 1157 unsigned short type; /* interface hardware type */ 1158 unsigned short hard_header_len; /* hardware hdr length */ 1159 1160 /* extra head- and tailroom the hardware may need, but not in all cases 1161 * can this be guaranteed, especially tailroom. Some cases also use 1162 * LL_MAX_HEADER instead to allocate the skb. 1163 */ 1164 unsigned short needed_headroom; 1165 unsigned short needed_tailroom; 1166 1167 /* Interface address info. */ 1168 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1169 unsigned char addr_assign_type; /* hw address assignment type */ 1170 unsigned char addr_len; /* hardware address length */ 1171 unsigned short dev_id; /* for shared network cards */ 1172 1173 spinlock_t addr_list_lock; 1174 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1175 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1176 int uc_promisc; 1177 unsigned int promiscuity; 1178 unsigned int allmulti; 1179 1180 1181 /* Protocol specific pointers */ 1182 1183 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1184 struct vlan_group __rcu *vlgrp; /* VLAN group */ 1185 #endif 1186 #ifdef CONFIG_NET_DSA 1187 void *dsa_ptr; /* dsa specific data */ 1188 #endif 1189 void *atalk_ptr; /* AppleTalk link */ 1190 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1191 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1192 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1193 void *ec_ptr; /* Econet specific data */ 1194 void *ax25_ptr; /* AX.25 specific data */ 1195 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1196 assign before registering */ 1197 1198 /* 1199 * Cache lines mostly used on receive path (including eth_type_trans()) 1200 */ 1201 unsigned long last_rx; /* Time of last Rx 1202 * This should not be set in 1203 * drivers, unless really needed, 1204 * because network stack (bonding) 1205 * use it if/when necessary, to 1206 * avoid dirtying this cache line. 1207 */ 1208 1209 struct net_device *master; /* Pointer to master device of a group, 1210 * which this device is member of. 1211 */ 1212 1213 /* Interface address info used in eth_type_trans() */ 1214 unsigned char *dev_addr; /* hw address, (before bcast 1215 because most packets are 1216 unicast) */ 1217 1218 struct netdev_hw_addr_list dev_addrs; /* list of device 1219 hw addresses */ 1220 1221 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1222 1223 #ifdef CONFIG_RPS 1224 struct kset *queues_kset; 1225 1226 struct netdev_rx_queue *_rx; 1227 1228 /* Number of RX queues allocated at register_netdev() time */ 1229 unsigned int num_rx_queues; 1230 1231 /* Number of RX queues currently active in device */ 1232 unsigned int real_num_rx_queues; 1233 1234 #ifdef CONFIG_RFS_ACCEL 1235 /* CPU reverse-mapping for RX completion interrupts, indexed 1236 * by RX queue number. Assigned by driver. This must only be 1237 * set if the ndo_rx_flow_steer operation is defined. */ 1238 struct cpu_rmap *rx_cpu_rmap; 1239 #endif 1240 #endif 1241 1242 rx_handler_func_t __rcu *rx_handler; 1243 void __rcu *rx_handler_data; 1244 1245 struct netdev_queue __rcu *ingress_queue; 1246 1247 /* 1248 * Cache lines mostly used on transmit path 1249 */ 1250 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1251 1252 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1253 unsigned int num_tx_queues; 1254 1255 /* Number of TX queues currently active in device */ 1256 unsigned int real_num_tx_queues; 1257 1258 /* root qdisc from userspace point of view */ 1259 struct Qdisc *qdisc; 1260 1261 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1262 spinlock_t tx_global_lock; 1263 1264 #ifdef CONFIG_XPS 1265 struct xps_dev_maps __rcu *xps_maps; 1266 #endif 1267 1268 /* These may be needed for future network-power-down code. */ 1269 1270 /* 1271 * trans_start here is expensive for high speed devices on SMP, 1272 * please use netdev_queue->trans_start instead. 1273 */ 1274 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1275 1276 int watchdog_timeo; /* used by dev_watchdog() */ 1277 struct timer_list watchdog_timer; 1278 1279 /* Number of references to this device */ 1280 int __percpu *pcpu_refcnt; 1281 1282 /* delayed register/unregister */ 1283 struct list_head todo_list; 1284 /* device index hash chain */ 1285 struct hlist_node index_hlist; 1286 1287 struct list_head link_watch_list; 1288 1289 /* register/unregister state machine */ 1290 enum { NETREG_UNINITIALIZED=0, 1291 NETREG_REGISTERED, /* completed register_netdevice */ 1292 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1293 NETREG_UNREGISTERED, /* completed unregister todo */ 1294 NETREG_RELEASED, /* called free_netdev */ 1295 NETREG_DUMMY, /* dummy device for NAPI poll */ 1296 } reg_state:8; 1297 1298 bool dismantle; /* device is going do be freed */ 1299 1300 enum { 1301 RTNL_LINK_INITIALIZED, 1302 RTNL_LINK_INITIALIZING, 1303 } rtnl_link_state:16; 1304 1305 /* Called from unregister, can be used to call free_netdev */ 1306 void (*destructor)(struct net_device *dev); 1307 1308 #ifdef CONFIG_NETPOLL 1309 struct netpoll_info *npinfo; 1310 #endif 1311 1312 #ifdef CONFIG_NET_NS 1313 /* Network namespace this network device is inside */ 1314 struct net *nd_net; 1315 #endif 1316 1317 /* mid-layer private */ 1318 union { 1319 void *ml_priv; 1320 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1321 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1322 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1323 }; 1324 /* GARP */ 1325 struct garp_port __rcu *garp_port; 1326 1327 /* class/net/name entry */ 1328 struct device dev; 1329 /* space for optional device, statistics, and wireless sysfs groups */ 1330 const struct attribute_group *sysfs_groups[4]; 1331 1332 /* rtnetlink link ops */ 1333 const struct rtnl_link_ops *rtnl_link_ops; 1334 1335 /* for setting kernel sock attribute on TCP connection setup */ 1336 #define GSO_MAX_SIZE 65536 1337 unsigned int gso_max_size; 1338 1339 #ifdef CONFIG_DCB 1340 /* Data Center Bridging netlink ops */ 1341 const struct dcbnl_rtnl_ops *dcbnl_ops; 1342 #endif 1343 u8 num_tc; 1344 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1345 u8 prio_tc_map[TC_BITMASK + 1]; 1346 1347 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 1348 /* max exchange id for FCoE LRO by ddp */ 1349 unsigned int fcoe_ddp_xid; 1350 #endif 1351 /* n-tuple filter list attached to this device */ 1352 struct ethtool_rx_ntuple_list ethtool_ntuple_list; 1353 1354 /* phy device may attach itself for hardware timestamping */ 1355 struct phy_device *phydev; 1356 1357 /* group the device belongs to */ 1358 int group; 1359 }; 1360 #define to_net_dev(d) container_of(d, struct net_device, dev) 1361 1362 #define NETDEV_ALIGN 32 1363 1364 static inline 1365 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1366 { 1367 return dev->prio_tc_map[prio & TC_BITMASK]; 1368 } 1369 1370 static inline 1371 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1372 { 1373 if (tc >= dev->num_tc) 1374 return -EINVAL; 1375 1376 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1377 return 0; 1378 } 1379 1380 static inline 1381 void netdev_reset_tc(struct net_device *dev) 1382 { 1383 dev->num_tc = 0; 1384 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1385 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1386 } 1387 1388 static inline 1389 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1390 { 1391 if (tc >= dev->num_tc) 1392 return -EINVAL; 1393 1394 dev->tc_to_txq[tc].count = count; 1395 dev->tc_to_txq[tc].offset = offset; 1396 return 0; 1397 } 1398 1399 static inline 1400 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1401 { 1402 if (num_tc > TC_MAX_QUEUE) 1403 return -EINVAL; 1404 1405 dev->num_tc = num_tc; 1406 return 0; 1407 } 1408 1409 static inline 1410 int netdev_get_num_tc(struct net_device *dev) 1411 { 1412 return dev->num_tc; 1413 } 1414 1415 static inline 1416 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1417 unsigned int index) 1418 { 1419 return &dev->_tx[index]; 1420 } 1421 1422 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1423 void (*f)(struct net_device *, 1424 struct netdev_queue *, 1425 void *), 1426 void *arg) 1427 { 1428 unsigned int i; 1429 1430 for (i = 0; i < dev->num_tx_queues; i++) 1431 f(dev, &dev->_tx[i], arg); 1432 } 1433 1434 /* 1435 * Net namespace inlines 1436 */ 1437 static inline 1438 struct net *dev_net(const struct net_device *dev) 1439 { 1440 return read_pnet(&dev->nd_net); 1441 } 1442 1443 static inline 1444 void dev_net_set(struct net_device *dev, struct net *net) 1445 { 1446 #ifdef CONFIG_NET_NS 1447 release_net(dev->nd_net); 1448 dev->nd_net = hold_net(net); 1449 #endif 1450 } 1451 1452 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1453 { 1454 #ifdef CONFIG_NET_DSA_TAG_DSA 1455 if (dev->dsa_ptr != NULL) 1456 return dsa_uses_dsa_tags(dev->dsa_ptr); 1457 #endif 1458 1459 return 0; 1460 } 1461 1462 #ifndef CONFIG_NET_NS 1463 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1464 { 1465 skb->dev = dev; 1466 } 1467 #else /* CONFIG_NET_NS */ 1468 void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1469 #endif 1470 1471 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1472 { 1473 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1474 if (dev->dsa_ptr != NULL) 1475 return dsa_uses_trailer_tags(dev->dsa_ptr); 1476 #endif 1477 1478 return 0; 1479 } 1480 1481 /** 1482 * netdev_priv - access network device private data 1483 * @dev: network device 1484 * 1485 * Get network device private data 1486 */ 1487 static inline void *netdev_priv(const struct net_device *dev) 1488 { 1489 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1490 } 1491 1492 /* Set the sysfs physical device reference for the network logical device 1493 * if set prior to registration will cause a symlink during initialization. 1494 */ 1495 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1496 1497 /* Set the sysfs device type for the network logical device to allow 1498 * fin grained indentification of different network device types. For 1499 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1500 */ 1501 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1502 1503 /** 1504 * netif_napi_add - initialize a napi context 1505 * @dev: network device 1506 * @napi: napi context 1507 * @poll: polling function 1508 * @weight: default weight 1509 * 1510 * netif_napi_add() must be used to initialize a napi context prior to calling 1511 * *any* of the other napi related functions. 1512 */ 1513 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1514 int (*poll)(struct napi_struct *, int), int weight); 1515 1516 /** 1517 * netif_napi_del - remove a napi context 1518 * @napi: napi context 1519 * 1520 * netif_napi_del() removes a napi context from the network device napi list 1521 */ 1522 void netif_napi_del(struct napi_struct *napi); 1523 1524 struct napi_gro_cb { 1525 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1526 void *frag0; 1527 1528 /* Length of frag0. */ 1529 unsigned int frag0_len; 1530 1531 /* This indicates where we are processing relative to skb->data. */ 1532 int data_offset; 1533 1534 /* This is non-zero if the packet may be of the same flow. */ 1535 int same_flow; 1536 1537 /* This is non-zero if the packet cannot be merged with the new skb. */ 1538 int flush; 1539 1540 /* Number of segments aggregated. */ 1541 int count; 1542 1543 /* Free the skb? */ 1544 int free; 1545 }; 1546 1547 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1548 1549 struct packet_type { 1550 __be16 type; /* This is really htons(ether_type). */ 1551 struct net_device *dev; /* NULL is wildcarded here */ 1552 int (*func) (struct sk_buff *, 1553 struct net_device *, 1554 struct packet_type *, 1555 struct net_device *); 1556 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1557 u32 features); 1558 int (*gso_send_check)(struct sk_buff *skb); 1559 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1560 struct sk_buff *skb); 1561 int (*gro_complete)(struct sk_buff *skb); 1562 void *af_packet_priv; 1563 struct list_head list; 1564 }; 1565 1566 #include <linux/interrupt.h> 1567 #include <linux/notifier.h> 1568 1569 extern rwlock_t dev_base_lock; /* Device list lock */ 1570 1571 1572 #define for_each_netdev(net, d) \ 1573 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1574 #define for_each_netdev_reverse(net, d) \ 1575 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1576 #define for_each_netdev_rcu(net, d) \ 1577 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1578 #define for_each_netdev_safe(net, d, n) \ 1579 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1580 #define for_each_netdev_continue(net, d) \ 1581 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1582 #define for_each_netdev_continue_rcu(net, d) \ 1583 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1584 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1585 1586 static inline struct net_device *next_net_device(struct net_device *dev) 1587 { 1588 struct list_head *lh; 1589 struct net *net; 1590 1591 net = dev_net(dev); 1592 lh = dev->dev_list.next; 1593 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1594 } 1595 1596 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1597 { 1598 struct list_head *lh; 1599 struct net *net; 1600 1601 net = dev_net(dev); 1602 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1603 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1604 } 1605 1606 static inline struct net_device *first_net_device(struct net *net) 1607 { 1608 return list_empty(&net->dev_base_head) ? NULL : 1609 net_device_entry(net->dev_base_head.next); 1610 } 1611 1612 static inline struct net_device *first_net_device_rcu(struct net *net) 1613 { 1614 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1615 1616 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1617 } 1618 1619 extern int netdev_boot_setup_check(struct net_device *dev); 1620 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1621 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1622 const char *hwaddr); 1623 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1624 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1625 extern void dev_add_pack(struct packet_type *pt); 1626 extern void dev_remove_pack(struct packet_type *pt); 1627 extern void __dev_remove_pack(struct packet_type *pt); 1628 1629 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1630 unsigned short mask); 1631 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1632 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1633 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1634 extern int dev_alloc_name(struct net_device *dev, const char *name); 1635 extern int dev_open(struct net_device *dev); 1636 extern int dev_close(struct net_device *dev); 1637 extern void dev_disable_lro(struct net_device *dev); 1638 extern int dev_queue_xmit(struct sk_buff *skb); 1639 extern int register_netdevice(struct net_device *dev); 1640 extern void unregister_netdevice_queue(struct net_device *dev, 1641 struct list_head *head); 1642 extern void unregister_netdevice_many(struct list_head *head); 1643 static inline void unregister_netdevice(struct net_device *dev) 1644 { 1645 unregister_netdevice_queue(dev, NULL); 1646 } 1647 1648 extern int netdev_refcnt_read(const struct net_device *dev); 1649 extern void free_netdev(struct net_device *dev); 1650 extern void synchronize_net(void); 1651 extern int register_netdevice_notifier(struct notifier_block *nb); 1652 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1653 extern int init_dummy_netdev(struct net_device *dev); 1654 extern void netdev_resync_ops(struct net_device *dev); 1655 1656 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1657 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1658 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1659 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1660 extern int dev_restart(struct net_device *dev); 1661 #ifdef CONFIG_NETPOLL_TRAP 1662 extern int netpoll_trap(void); 1663 #endif 1664 extern int skb_gro_receive(struct sk_buff **head, 1665 struct sk_buff *skb); 1666 extern void skb_gro_reset_offset(struct sk_buff *skb); 1667 1668 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1669 { 1670 return NAPI_GRO_CB(skb)->data_offset; 1671 } 1672 1673 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1674 { 1675 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1676 } 1677 1678 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1679 { 1680 NAPI_GRO_CB(skb)->data_offset += len; 1681 } 1682 1683 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1684 unsigned int offset) 1685 { 1686 return NAPI_GRO_CB(skb)->frag0 + offset; 1687 } 1688 1689 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1690 { 1691 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1692 } 1693 1694 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1695 unsigned int offset) 1696 { 1697 NAPI_GRO_CB(skb)->frag0 = NULL; 1698 NAPI_GRO_CB(skb)->frag0_len = 0; 1699 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 1700 } 1701 1702 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1703 { 1704 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1705 } 1706 1707 static inline void *skb_gro_network_header(struct sk_buff *skb) 1708 { 1709 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1710 skb_network_offset(skb); 1711 } 1712 1713 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1714 unsigned short type, 1715 const void *daddr, const void *saddr, 1716 unsigned len) 1717 { 1718 if (!dev->header_ops || !dev->header_ops->create) 1719 return 0; 1720 1721 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1722 } 1723 1724 static inline int dev_parse_header(const struct sk_buff *skb, 1725 unsigned char *haddr) 1726 { 1727 const struct net_device *dev = skb->dev; 1728 1729 if (!dev->header_ops || !dev->header_ops->parse) 1730 return 0; 1731 return dev->header_ops->parse(skb, haddr); 1732 } 1733 1734 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1735 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1736 static inline int unregister_gifconf(unsigned int family) 1737 { 1738 return register_gifconf(family, NULL); 1739 } 1740 1741 /* 1742 * Incoming packets are placed on per-cpu queues 1743 */ 1744 struct softnet_data { 1745 struct Qdisc *output_queue; 1746 struct Qdisc **output_queue_tailp; 1747 struct list_head poll_list; 1748 struct sk_buff *completion_queue; 1749 struct sk_buff_head process_queue; 1750 1751 /* stats */ 1752 unsigned int processed; 1753 unsigned int time_squeeze; 1754 unsigned int cpu_collision; 1755 unsigned int received_rps; 1756 1757 #ifdef CONFIG_RPS 1758 struct softnet_data *rps_ipi_list; 1759 1760 /* Elements below can be accessed between CPUs for RPS */ 1761 struct call_single_data csd ____cacheline_aligned_in_smp; 1762 struct softnet_data *rps_ipi_next; 1763 unsigned int cpu; 1764 unsigned int input_queue_head; 1765 unsigned int input_queue_tail; 1766 #endif 1767 unsigned dropped; 1768 struct sk_buff_head input_pkt_queue; 1769 struct napi_struct backlog; 1770 }; 1771 1772 static inline void input_queue_head_incr(struct softnet_data *sd) 1773 { 1774 #ifdef CONFIG_RPS 1775 sd->input_queue_head++; 1776 #endif 1777 } 1778 1779 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1780 unsigned int *qtail) 1781 { 1782 #ifdef CONFIG_RPS 1783 *qtail = ++sd->input_queue_tail; 1784 #endif 1785 } 1786 1787 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1788 1789 #define HAVE_NETIF_QUEUE 1790 1791 extern void __netif_schedule(struct Qdisc *q); 1792 1793 static inline void netif_schedule_queue(struct netdev_queue *txq) 1794 { 1795 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1796 __netif_schedule(txq->qdisc); 1797 } 1798 1799 static inline void netif_tx_schedule_all(struct net_device *dev) 1800 { 1801 unsigned int i; 1802 1803 for (i = 0; i < dev->num_tx_queues; i++) 1804 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1805 } 1806 1807 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1808 { 1809 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1810 } 1811 1812 /** 1813 * netif_start_queue - allow transmit 1814 * @dev: network device 1815 * 1816 * Allow upper layers to call the device hard_start_xmit routine. 1817 */ 1818 static inline void netif_start_queue(struct net_device *dev) 1819 { 1820 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1821 } 1822 1823 static inline void netif_tx_start_all_queues(struct net_device *dev) 1824 { 1825 unsigned int i; 1826 1827 for (i = 0; i < dev->num_tx_queues; i++) { 1828 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1829 netif_tx_start_queue(txq); 1830 } 1831 } 1832 1833 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1834 { 1835 #ifdef CONFIG_NETPOLL_TRAP 1836 if (netpoll_trap()) { 1837 netif_tx_start_queue(dev_queue); 1838 return; 1839 } 1840 #endif 1841 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1842 __netif_schedule(dev_queue->qdisc); 1843 } 1844 1845 /** 1846 * netif_wake_queue - restart transmit 1847 * @dev: network device 1848 * 1849 * Allow upper layers to call the device hard_start_xmit routine. 1850 * Used for flow control when transmit resources are available. 1851 */ 1852 static inline void netif_wake_queue(struct net_device *dev) 1853 { 1854 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1855 } 1856 1857 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1858 { 1859 unsigned int i; 1860 1861 for (i = 0; i < dev->num_tx_queues; i++) { 1862 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1863 netif_tx_wake_queue(txq); 1864 } 1865 } 1866 1867 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1868 { 1869 if (WARN_ON(!dev_queue)) { 1870 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1871 return; 1872 } 1873 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1874 } 1875 1876 /** 1877 * netif_stop_queue - stop transmitted packets 1878 * @dev: network device 1879 * 1880 * Stop upper layers calling the device hard_start_xmit routine. 1881 * Used for flow control when transmit resources are unavailable. 1882 */ 1883 static inline void netif_stop_queue(struct net_device *dev) 1884 { 1885 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1886 } 1887 1888 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1889 { 1890 unsigned int i; 1891 1892 for (i = 0; i < dev->num_tx_queues; i++) { 1893 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1894 netif_tx_stop_queue(txq); 1895 } 1896 } 1897 1898 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1899 { 1900 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1901 } 1902 1903 /** 1904 * netif_queue_stopped - test if transmit queue is flowblocked 1905 * @dev: network device 1906 * 1907 * Test if transmit queue on device is currently unable to send. 1908 */ 1909 static inline int netif_queue_stopped(const struct net_device *dev) 1910 { 1911 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1912 } 1913 1914 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue) 1915 { 1916 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN; 1917 } 1918 1919 /** 1920 * netif_running - test if up 1921 * @dev: network device 1922 * 1923 * Test if the device has been brought up. 1924 */ 1925 static inline int netif_running(const struct net_device *dev) 1926 { 1927 return test_bit(__LINK_STATE_START, &dev->state); 1928 } 1929 1930 /* 1931 * Routines to manage the subqueues on a device. We only need start 1932 * stop, and a check if it's stopped. All other device management is 1933 * done at the overall netdevice level. 1934 * Also test the device if we're multiqueue. 1935 */ 1936 1937 /** 1938 * netif_start_subqueue - allow sending packets on subqueue 1939 * @dev: network device 1940 * @queue_index: sub queue index 1941 * 1942 * Start individual transmit queue of a device with multiple transmit queues. 1943 */ 1944 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1945 { 1946 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1947 1948 netif_tx_start_queue(txq); 1949 } 1950 1951 /** 1952 * netif_stop_subqueue - stop sending packets on subqueue 1953 * @dev: network device 1954 * @queue_index: sub queue index 1955 * 1956 * Stop individual transmit queue of a device with multiple transmit queues. 1957 */ 1958 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1959 { 1960 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1961 #ifdef CONFIG_NETPOLL_TRAP 1962 if (netpoll_trap()) 1963 return; 1964 #endif 1965 netif_tx_stop_queue(txq); 1966 } 1967 1968 /** 1969 * netif_subqueue_stopped - test status of subqueue 1970 * @dev: network device 1971 * @queue_index: sub queue index 1972 * 1973 * Check individual transmit queue of a device with multiple transmit queues. 1974 */ 1975 static inline int __netif_subqueue_stopped(const struct net_device *dev, 1976 u16 queue_index) 1977 { 1978 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1979 1980 return netif_tx_queue_stopped(txq); 1981 } 1982 1983 static inline int netif_subqueue_stopped(const struct net_device *dev, 1984 struct sk_buff *skb) 1985 { 1986 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1987 } 1988 1989 /** 1990 * netif_wake_subqueue - allow sending packets on subqueue 1991 * @dev: network device 1992 * @queue_index: sub queue index 1993 * 1994 * Resume individual transmit queue of a device with multiple transmit queues. 1995 */ 1996 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1997 { 1998 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1999 #ifdef CONFIG_NETPOLL_TRAP 2000 if (netpoll_trap()) 2001 return; 2002 #endif 2003 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 2004 __netif_schedule(txq->qdisc); 2005 } 2006 2007 /* 2008 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2009 * as a distribution range limit for the returned value. 2010 */ 2011 static inline u16 skb_tx_hash(const struct net_device *dev, 2012 const struct sk_buff *skb) 2013 { 2014 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2015 } 2016 2017 /** 2018 * netif_is_multiqueue - test if device has multiple transmit queues 2019 * @dev: network device 2020 * 2021 * Check if device has multiple transmit queues 2022 */ 2023 static inline int netif_is_multiqueue(const struct net_device *dev) 2024 { 2025 return dev->num_tx_queues > 1; 2026 } 2027 2028 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2029 unsigned int txq); 2030 2031 #ifdef CONFIG_RPS 2032 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2033 unsigned int rxq); 2034 #else 2035 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2036 unsigned int rxq) 2037 { 2038 return 0; 2039 } 2040 #endif 2041 2042 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2043 const struct net_device *from_dev) 2044 { 2045 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2046 #ifdef CONFIG_RPS 2047 return netif_set_real_num_rx_queues(to_dev, 2048 from_dev->real_num_rx_queues); 2049 #else 2050 return 0; 2051 #endif 2052 } 2053 2054 /* Use this variant when it is known for sure that it 2055 * is executing from hardware interrupt context or with hardware interrupts 2056 * disabled. 2057 */ 2058 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2059 2060 /* Use this variant in places where it could be invoked 2061 * from either hardware interrupt or other context, with hardware interrupts 2062 * either disabled or enabled. 2063 */ 2064 extern void dev_kfree_skb_any(struct sk_buff *skb); 2065 2066 #define HAVE_NETIF_RX 1 2067 extern int netif_rx(struct sk_buff *skb); 2068 extern int netif_rx_ni(struct sk_buff *skb); 2069 #define HAVE_NETIF_RECEIVE_SKB 1 2070 extern int netif_receive_skb(struct sk_buff *skb); 2071 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2072 struct sk_buff *skb); 2073 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2074 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2075 struct sk_buff *skb); 2076 extern void napi_gro_flush(struct napi_struct *napi); 2077 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2078 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2079 struct sk_buff *skb, 2080 gro_result_t ret); 2081 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2082 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2083 2084 static inline void napi_free_frags(struct napi_struct *napi) 2085 { 2086 kfree_skb(napi->skb); 2087 napi->skb = NULL; 2088 } 2089 2090 extern int netdev_rx_handler_register(struct net_device *dev, 2091 rx_handler_func_t *rx_handler, 2092 void *rx_handler_data); 2093 extern void netdev_rx_handler_unregister(struct net_device *dev); 2094 2095 extern int dev_valid_name(const char *name); 2096 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2097 extern int dev_ethtool(struct net *net, struct ifreq *); 2098 extern unsigned dev_get_flags(const struct net_device *); 2099 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2100 extern int dev_change_flags(struct net_device *, unsigned); 2101 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2102 extern int dev_change_name(struct net_device *, const char *); 2103 extern int dev_set_alias(struct net_device *, const char *, size_t); 2104 extern int dev_change_net_namespace(struct net_device *, 2105 struct net *, const char *); 2106 extern int dev_set_mtu(struct net_device *, int); 2107 extern void dev_set_group(struct net_device *, int); 2108 extern int dev_set_mac_address(struct net_device *, 2109 struct sockaddr *); 2110 extern int dev_hard_start_xmit(struct sk_buff *skb, 2111 struct net_device *dev, 2112 struct netdev_queue *txq); 2113 extern int dev_forward_skb(struct net_device *dev, 2114 struct sk_buff *skb); 2115 2116 extern int netdev_budget; 2117 2118 /* Called by rtnetlink.c:rtnl_unlock() */ 2119 extern void netdev_run_todo(void); 2120 2121 /** 2122 * dev_put - release reference to device 2123 * @dev: network device 2124 * 2125 * Release reference to device to allow it to be freed. 2126 */ 2127 static inline void dev_put(struct net_device *dev) 2128 { 2129 irqsafe_cpu_dec(*dev->pcpu_refcnt); 2130 } 2131 2132 /** 2133 * dev_hold - get reference to device 2134 * @dev: network device 2135 * 2136 * Hold reference to device to keep it from being freed. 2137 */ 2138 static inline void dev_hold(struct net_device *dev) 2139 { 2140 irqsafe_cpu_inc(*dev->pcpu_refcnt); 2141 } 2142 2143 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2144 * and _off may be called from IRQ context, but it is caller 2145 * who is responsible for serialization of these calls. 2146 * 2147 * The name carrier is inappropriate, these functions should really be 2148 * called netif_lowerlayer_*() because they represent the state of any 2149 * kind of lower layer not just hardware media. 2150 */ 2151 2152 extern void linkwatch_fire_event(struct net_device *dev); 2153 extern void linkwatch_forget_dev(struct net_device *dev); 2154 2155 /** 2156 * netif_carrier_ok - test if carrier present 2157 * @dev: network device 2158 * 2159 * Check if carrier is present on device 2160 */ 2161 static inline int netif_carrier_ok(const struct net_device *dev) 2162 { 2163 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2164 } 2165 2166 extern unsigned long dev_trans_start(struct net_device *dev); 2167 2168 extern void __netdev_watchdog_up(struct net_device *dev); 2169 2170 extern void netif_carrier_on(struct net_device *dev); 2171 2172 extern void netif_carrier_off(struct net_device *dev); 2173 2174 extern void netif_notify_peers(struct net_device *dev); 2175 2176 /** 2177 * netif_dormant_on - mark device as dormant. 2178 * @dev: network device 2179 * 2180 * Mark device as dormant (as per RFC2863). 2181 * 2182 * The dormant state indicates that the relevant interface is not 2183 * actually in a condition to pass packets (i.e., it is not 'up') but is 2184 * in a "pending" state, waiting for some external event. For "on- 2185 * demand" interfaces, this new state identifies the situation where the 2186 * interface is waiting for events to place it in the up state. 2187 * 2188 */ 2189 static inline void netif_dormant_on(struct net_device *dev) 2190 { 2191 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2192 linkwatch_fire_event(dev); 2193 } 2194 2195 /** 2196 * netif_dormant_off - set device as not dormant. 2197 * @dev: network device 2198 * 2199 * Device is not in dormant state. 2200 */ 2201 static inline void netif_dormant_off(struct net_device *dev) 2202 { 2203 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2204 linkwatch_fire_event(dev); 2205 } 2206 2207 /** 2208 * netif_dormant - test if carrier present 2209 * @dev: network device 2210 * 2211 * Check if carrier is present on device 2212 */ 2213 static inline int netif_dormant(const struct net_device *dev) 2214 { 2215 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2216 } 2217 2218 2219 /** 2220 * netif_oper_up - test if device is operational 2221 * @dev: network device 2222 * 2223 * Check if carrier is operational 2224 */ 2225 static inline int netif_oper_up(const struct net_device *dev) 2226 { 2227 return (dev->operstate == IF_OPER_UP || 2228 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2229 } 2230 2231 /** 2232 * netif_device_present - is device available or removed 2233 * @dev: network device 2234 * 2235 * Check if device has not been removed from system. 2236 */ 2237 static inline int netif_device_present(struct net_device *dev) 2238 { 2239 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2240 } 2241 2242 extern void netif_device_detach(struct net_device *dev); 2243 2244 extern void netif_device_attach(struct net_device *dev); 2245 2246 /* 2247 * Network interface message level settings 2248 */ 2249 #define HAVE_NETIF_MSG 1 2250 2251 enum { 2252 NETIF_MSG_DRV = 0x0001, 2253 NETIF_MSG_PROBE = 0x0002, 2254 NETIF_MSG_LINK = 0x0004, 2255 NETIF_MSG_TIMER = 0x0008, 2256 NETIF_MSG_IFDOWN = 0x0010, 2257 NETIF_MSG_IFUP = 0x0020, 2258 NETIF_MSG_RX_ERR = 0x0040, 2259 NETIF_MSG_TX_ERR = 0x0080, 2260 NETIF_MSG_TX_QUEUED = 0x0100, 2261 NETIF_MSG_INTR = 0x0200, 2262 NETIF_MSG_TX_DONE = 0x0400, 2263 NETIF_MSG_RX_STATUS = 0x0800, 2264 NETIF_MSG_PKTDATA = 0x1000, 2265 NETIF_MSG_HW = 0x2000, 2266 NETIF_MSG_WOL = 0x4000, 2267 }; 2268 2269 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2270 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2271 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2272 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2273 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2274 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2275 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2276 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2277 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2278 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2279 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2280 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2281 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2282 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2283 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2284 2285 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2286 { 2287 /* use default */ 2288 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2289 return default_msg_enable_bits; 2290 if (debug_value == 0) /* no output */ 2291 return 0; 2292 /* set low N bits */ 2293 return (1 << debug_value) - 1; 2294 } 2295 2296 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2297 { 2298 spin_lock(&txq->_xmit_lock); 2299 txq->xmit_lock_owner = cpu; 2300 } 2301 2302 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2303 { 2304 spin_lock_bh(&txq->_xmit_lock); 2305 txq->xmit_lock_owner = smp_processor_id(); 2306 } 2307 2308 static inline int __netif_tx_trylock(struct netdev_queue *txq) 2309 { 2310 int ok = spin_trylock(&txq->_xmit_lock); 2311 if (likely(ok)) 2312 txq->xmit_lock_owner = smp_processor_id(); 2313 return ok; 2314 } 2315 2316 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2317 { 2318 txq->xmit_lock_owner = -1; 2319 spin_unlock(&txq->_xmit_lock); 2320 } 2321 2322 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2323 { 2324 txq->xmit_lock_owner = -1; 2325 spin_unlock_bh(&txq->_xmit_lock); 2326 } 2327 2328 static inline void txq_trans_update(struct netdev_queue *txq) 2329 { 2330 if (txq->xmit_lock_owner != -1) 2331 txq->trans_start = jiffies; 2332 } 2333 2334 /** 2335 * netif_tx_lock - grab network device transmit lock 2336 * @dev: network device 2337 * 2338 * Get network device transmit lock 2339 */ 2340 static inline void netif_tx_lock(struct net_device *dev) 2341 { 2342 unsigned int i; 2343 int cpu; 2344 2345 spin_lock(&dev->tx_global_lock); 2346 cpu = smp_processor_id(); 2347 for (i = 0; i < dev->num_tx_queues; i++) { 2348 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2349 2350 /* We are the only thread of execution doing a 2351 * freeze, but we have to grab the _xmit_lock in 2352 * order to synchronize with threads which are in 2353 * the ->hard_start_xmit() handler and already 2354 * checked the frozen bit. 2355 */ 2356 __netif_tx_lock(txq, cpu); 2357 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2358 __netif_tx_unlock(txq); 2359 } 2360 } 2361 2362 static inline void netif_tx_lock_bh(struct net_device *dev) 2363 { 2364 local_bh_disable(); 2365 netif_tx_lock(dev); 2366 } 2367 2368 static inline void netif_tx_unlock(struct net_device *dev) 2369 { 2370 unsigned int i; 2371 2372 for (i = 0; i < dev->num_tx_queues; i++) { 2373 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2374 2375 /* No need to grab the _xmit_lock here. If the 2376 * queue is not stopped for another reason, we 2377 * force a schedule. 2378 */ 2379 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2380 netif_schedule_queue(txq); 2381 } 2382 spin_unlock(&dev->tx_global_lock); 2383 } 2384 2385 static inline void netif_tx_unlock_bh(struct net_device *dev) 2386 { 2387 netif_tx_unlock(dev); 2388 local_bh_enable(); 2389 } 2390 2391 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2392 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2393 __netif_tx_lock(txq, cpu); \ 2394 } \ 2395 } 2396 2397 #define HARD_TX_UNLOCK(dev, txq) { \ 2398 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2399 __netif_tx_unlock(txq); \ 2400 } \ 2401 } 2402 2403 static inline void netif_tx_disable(struct net_device *dev) 2404 { 2405 unsigned int i; 2406 int cpu; 2407 2408 local_bh_disable(); 2409 cpu = smp_processor_id(); 2410 for (i = 0; i < dev->num_tx_queues; i++) { 2411 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2412 2413 __netif_tx_lock(txq, cpu); 2414 netif_tx_stop_queue(txq); 2415 __netif_tx_unlock(txq); 2416 } 2417 local_bh_enable(); 2418 } 2419 2420 static inline void netif_addr_lock(struct net_device *dev) 2421 { 2422 spin_lock(&dev->addr_list_lock); 2423 } 2424 2425 static inline void netif_addr_lock_bh(struct net_device *dev) 2426 { 2427 spin_lock_bh(&dev->addr_list_lock); 2428 } 2429 2430 static inline void netif_addr_unlock(struct net_device *dev) 2431 { 2432 spin_unlock(&dev->addr_list_lock); 2433 } 2434 2435 static inline void netif_addr_unlock_bh(struct net_device *dev) 2436 { 2437 spin_unlock_bh(&dev->addr_list_lock); 2438 } 2439 2440 /* 2441 * dev_addrs walker. Should be used only for read access. Call with 2442 * rcu_read_lock held. 2443 */ 2444 #define for_each_dev_addr(dev, ha) \ 2445 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2446 2447 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2448 2449 extern void ether_setup(struct net_device *dev); 2450 2451 /* Support for loadable net-drivers */ 2452 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2453 void (*setup)(struct net_device *), 2454 unsigned int txqs, unsigned int rxqs); 2455 #define alloc_netdev(sizeof_priv, name, setup) \ 2456 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2457 2458 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2459 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2460 2461 extern int register_netdev(struct net_device *dev); 2462 extern void unregister_netdev(struct net_device *dev); 2463 2464 /* General hardware address lists handling functions */ 2465 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2466 struct netdev_hw_addr_list *from_list, 2467 int addr_len, unsigned char addr_type); 2468 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2469 struct netdev_hw_addr_list *from_list, 2470 int addr_len, unsigned char addr_type); 2471 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2472 struct netdev_hw_addr_list *from_list, 2473 int addr_len); 2474 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2475 struct netdev_hw_addr_list *from_list, 2476 int addr_len); 2477 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2478 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2479 2480 /* Functions used for device addresses handling */ 2481 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2482 unsigned char addr_type); 2483 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2484 unsigned char addr_type); 2485 extern int dev_addr_add_multiple(struct net_device *to_dev, 2486 struct net_device *from_dev, 2487 unsigned char addr_type); 2488 extern int dev_addr_del_multiple(struct net_device *to_dev, 2489 struct net_device *from_dev, 2490 unsigned char addr_type); 2491 extern void dev_addr_flush(struct net_device *dev); 2492 extern int dev_addr_init(struct net_device *dev); 2493 2494 /* Functions used for unicast addresses handling */ 2495 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2496 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2497 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2498 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2499 extern void dev_uc_flush(struct net_device *dev); 2500 extern void dev_uc_init(struct net_device *dev); 2501 2502 /* Functions used for multicast addresses handling */ 2503 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2504 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2505 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2506 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2507 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2508 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2509 extern void dev_mc_flush(struct net_device *dev); 2510 extern void dev_mc_init(struct net_device *dev); 2511 2512 /* Functions used for secondary unicast and multicast support */ 2513 extern void dev_set_rx_mode(struct net_device *dev); 2514 extern void __dev_set_rx_mode(struct net_device *dev); 2515 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2516 extern int dev_set_allmulti(struct net_device *dev, int inc); 2517 extern void netdev_state_change(struct net_device *dev); 2518 extern int netdev_bonding_change(struct net_device *dev, 2519 unsigned long event); 2520 extern void netdev_features_change(struct net_device *dev); 2521 /* Load a device via the kmod */ 2522 extern void dev_load(struct net *net, const char *name); 2523 extern void dev_mcast_init(void); 2524 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2525 struct rtnl_link_stats64 *storage); 2526 2527 extern int netdev_max_backlog; 2528 extern int netdev_tstamp_prequeue; 2529 extern int weight_p; 2530 extern int bpf_jit_enable; 2531 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2532 extern int netdev_set_bond_master(struct net_device *dev, 2533 struct net_device *master); 2534 extern int skb_checksum_help(struct sk_buff *skb); 2535 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features); 2536 #ifdef CONFIG_BUG 2537 extern void netdev_rx_csum_fault(struct net_device *dev); 2538 #else 2539 static inline void netdev_rx_csum_fault(struct net_device *dev) 2540 { 2541 } 2542 #endif 2543 /* rx skb timestamps */ 2544 extern void net_enable_timestamp(void); 2545 extern void net_disable_timestamp(void); 2546 2547 #ifdef CONFIG_PROC_FS 2548 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2549 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2550 extern void dev_seq_stop(struct seq_file *seq, void *v); 2551 #endif 2552 2553 extern int netdev_class_create_file(struct class_attribute *class_attr); 2554 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2555 2556 extern struct kobj_ns_type_operations net_ns_type_operations; 2557 2558 extern const char *netdev_drivername(const struct net_device *dev); 2559 2560 extern void linkwatch_run_queue(void); 2561 2562 static inline u32 netdev_get_wanted_features(struct net_device *dev) 2563 { 2564 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2565 } 2566 u32 netdev_increment_features(u32 all, u32 one, u32 mask); 2567 u32 netdev_fix_features(struct net_device *dev, u32 features); 2568 int __netdev_update_features(struct net_device *dev); 2569 void netdev_update_features(struct net_device *dev); 2570 void netdev_change_features(struct net_device *dev); 2571 2572 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2573 struct net_device *dev); 2574 2575 u32 netif_skb_features(struct sk_buff *skb); 2576 2577 static inline int net_gso_ok(u32 features, int gso_type) 2578 { 2579 int feature = gso_type << NETIF_F_GSO_SHIFT; 2580 return (features & feature) == feature; 2581 } 2582 2583 static inline int skb_gso_ok(struct sk_buff *skb, u32 features) 2584 { 2585 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2586 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2587 } 2588 2589 static inline int netif_needs_gso(struct sk_buff *skb, int features) 2590 { 2591 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2592 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2593 } 2594 2595 static inline void netif_set_gso_max_size(struct net_device *dev, 2596 unsigned int size) 2597 { 2598 dev->gso_max_size = size; 2599 } 2600 2601 static inline int netif_is_bond_slave(struct net_device *dev) 2602 { 2603 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2604 } 2605 2606 extern struct pernet_operations __net_initdata loopback_net_ops; 2607 2608 int dev_ethtool_get_settings(struct net_device *dev, 2609 struct ethtool_cmd *cmd); 2610 2611 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2612 { 2613 if (dev->features & NETIF_F_RXCSUM) 2614 return 1; 2615 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2616 return 0; 2617 return dev->ethtool_ops->get_rx_csum(dev); 2618 } 2619 2620 static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2621 { 2622 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2623 return 0; 2624 return dev->ethtool_ops->get_flags(dev); 2625 } 2626 2627 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2628 2629 /* netdev_printk helpers, similar to dev_printk */ 2630 2631 static inline const char *netdev_name(const struct net_device *dev) 2632 { 2633 if (dev->reg_state != NETREG_REGISTERED) 2634 return "(unregistered net_device)"; 2635 return dev->name; 2636 } 2637 2638 extern int netdev_printk(const char *level, const struct net_device *dev, 2639 const char *format, ...) 2640 __attribute__ ((format (printf, 3, 4))); 2641 extern int netdev_emerg(const struct net_device *dev, const char *format, ...) 2642 __attribute__ ((format (printf, 2, 3))); 2643 extern int netdev_alert(const struct net_device *dev, const char *format, ...) 2644 __attribute__ ((format (printf, 2, 3))); 2645 extern int netdev_crit(const struct net_device *dev, const char *format, ...) 2646 __attribute__ ((format (printf, 2, 3))); 2647 extern int netdev_err(const struct net_device *dev, const char *format, ...) 2648 __attribute__ ((format (printf, 2, 3))); 2649 extern int netdev_warn(const struct net_device *dev, const char *format, ...) 2650 __attribute__ ((format (printf, 2, 3))); 2651 extern int netdev_notice(const struct net_device *dev, const char *format, ...) 2652 __attribute__ ((format (printf, 2, 3))); 2653 extern int netdev_info(const struct net_device *dev, const char *format, ...) 2654 __attribute__ ((format (printf, 2, 3))); 2655 2656 #define MODULE_ALIAS_NETDEV(device) \ 2657 MODULE_ALIAS("netdev-" device) 2658 2659 #if defined(DEBUG) 2660 #define netdev_dbg(__dev, format, args...) \ 2661 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2662 #elif defined(CONFIG_DYNAMIC_DEBUG) 2663 #define netdev_dbg(__dev, format, args...) \ 2664 do { \ 2665 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ 2666 netdev_name(__dev), ##args); \ 2667 } while (0) 2668 #else 2669 #define netdev_dbg(__dev, format, args...) \ 2670 ({ \ 2671 if (0) \ 2672 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2673 0; \ 2674 }) 2675 #endif 2676 2677 #if defined(VERBOSE_DEBUG) 2678 #define netdev_vdbg netdev_dbg 2679 #else 2680 2681 #define netdev_vdbg(dev, format, args...) \ 2682 ({ \ 2683 if (0) \ 2684 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2685 0; \ 2686 }) 2687 #endif 2688 2689 /* 2690 * netdev_WARN() acts like dev_printk(), but with the key difference 2691 * of using a WARN/WARN_ON to get the message out, including the 2692 * file/line information and a backtrace. 2693 */ 2694 #define netdev_WARN(dev, format, args...) \ 2695 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2696 2697 /* netif printk helpers, similar to netdev_printk */ 2698 2699 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2700 do { \ 2701 if (netif_msg_##type(priv)) \ 2702 netdev_printk(level, (dev), fmt, ##args); \ 2703 } while (0) 2704 2705 #define netif_level(level, priv, type, dev, fmt, args...) \ 2706 do { \ 2707 if (netif_msg_##type(priv)) \ 2708 netdev_##level(dev, fmt, ##args); \ 2709 } while (0) 2710 2711 #define netif_emerg(priv, type, dev, fmt, args...) \ 2712 netif_level(emerg, priv, type, dev, fmt, ##args) 2713 #define netif_alert(priv, type, dev, fmt, args...) \ 2714 netif_level(alert, priv, type, dev, fmt, ##args) 2715 #define netif_crit(priv, type, dev, fmt, args...) \ 2716 netif_level(crit, priv, type, dev, fmt, ##args) 2717 #define netif_err(priv, type, dev, fmt, args...) \ 2718 netif_level(err, priv, type, dev, fmt, ##args) 2719 #define netif_warn(priv, type, dev, fmt, args...) \ 2720 netif_level(warn, priv, type, dev, fmt, ##args) 2721 #define netif_notice(priv, type, dev, fmt, args...) \ 2722 netif_level(notice, priv, type, dev, fmt, ##args) 2723 #define netif_info(priv, type, dev, fmt, args...) \ 2724 netif_level(info, priv, type, dev, fmt, ##args) 2725 2726 #if defined(DEBUG) 2727 #define netif_dbg(priv, type, dev, format, args...) \ 2728 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2729 #elif defined(CONFIG_DYNAMIC_DEBUG) 2730 #define netif_dbg(priv, type, netdev, format, args...) \ 2731 do { \ 2732 if (netif_msg_##type(priv)) \ 2733 dynamic_dev_dbg((netdev)->dev.parent, \ 2734 "%s: " format, \ 2735 netdev_name(netdev), ##args); \ 2736 } while (0) 2737 #else 2738 #define netif_dbg(priv, type, dev, format, args...) \ 2739 ({ \ 2740 if (0) \ 2741 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2742 0; \ 2743 }) 2744 #endif 2745 2746 #if defined(VERBOSE_DEBUG) 2747 #define netif_vdbg netif_dbg 2748 #else 2749 #define netif_vdbg(priv, type, dev, format, args...) \ 2750 ({ \ 2751 if (0) \ 2752 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2753 0; \ 2754 }) 2755 #endif 2756 2757 #endif /* __KERNEL__ */ 2758 2759 #endif /* _LINUX_NETDEVICE_H */ 2760