1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <linux/netdev_features.h> 44 #include <linux/neighbour.h> 45 #include <linux/netdevice_xmit.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm_kern; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 struct ethtool_netdev_state; 83 struct phy_link_topology; 84 85 typedef u32 xdp_features_t; 86 87 void synchronize_net(void); 88 void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92 /* Backlog congestion levels */ 93 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94 #define NET_RX_DROP 1 /* packet dropped */ 95 96 #define MAX_NEST_DEV 8 97 98 /* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115 /* qdisc ->enqueue() return codes. */ 116 #define NET_XMIT_SUCCESS 0x00 117 #define NET_XMIT_DROP 0x01 /* skb dropped */ 118 #define NET_XMIT_CN 0x02 /* congestion notification */ 119 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127 /* Driver transmit return codes */ 128 #define NETDEV_TX_MASK 0xf0 129 130 enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134 }; 135 typedef enum netdev_tx netdev_tx_t; 136 137 /* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141 static inline bool dev_xmit_complete(int rc) 142 { 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153 } 154 155 /* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160 #if defined(CONFIG_HYPERV_NET) 161 # define LL_MAX_HEADER 128 162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163 # if defined(CONFIG_MAC80211_MESH) 164 # define LL_MAX_HEADER 128 165 # else 166 # define LL_MAX_HEADER 96 167 # endif 168 #else 169 # define LL_MAX_HEADER 32 170 #endif 171 172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174 #define MAX_HEADER LL_MAX_HEADER 175 #else 176 #define MAX_HEADER (LL_MAX_HEADER + 48) 177 #endif 178 179 /* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184 #define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190 struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214 }; 215 #undef NET_DEV_STAT 216 217 /* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220 struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225 } __aligned(4 * sizeof(unsigned long)); 226 227 #include <linux/cache.h> 228 #include <linux/skbuff.h> 229 230 struct neighbour; 231 struct neigh_parms; 232 struct sk_buff; 233 234 struct netdev_hw_addr { 235 struct list_head list; 236 struct rb_node node; 237 unsigned char addr[MAX_ADDR_LEN]; 238 unsigned char type; 239 #define NETDEV_HW_ADDR_T_LAN 1 240 #define NETDEV_HW_ADDR_T_SAN 2 241 #define NETDEV_HW_ADDR_T_UNICAST 3 242 #define NETDEV_HW_ADDR_T_MULTICAST 4 243 bool global_use; 244 int sync_cnt; 245 int refcount; 246 int synced; 247 struct rcu_head rcu_head; 248 }; 249 250 struct netdev_hw_addr_list { 251 struct list_head list; 252 int count; 253 254 /* Auxiliary tree for faster lookup on addition and deletion */ 255 struct rb_root tree; 256 }; 257 258 #define netdev_hw_addr_list_count(l) ((l)->count) 259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 260 #define netdev_hw_addr_list_for_each(ha, l) \ 261 list_for_each_entry(ha, &(l)->list, list) 262 263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 265 #define netdev_for_each_uc_addr(ha, dev) \ 266 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 268 netdev_for_each_uc_addr((_ha), (_dev)) \ 269 if ((_ha)->sync_cnt) 270 271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 273 #define netdev_for_each_mc_addr(ha, dev) \ 274 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 276 netdev_for_each_mc_addr((_ha), (_dev)) \ 277 if ((_ha)->sync_cnt) 278 279 struct hh_cache { 280 unsigned int hh_len; 281 seqlock_t hh_lock; 282 283 /* cached hardware header; allow for machine alignment needs. */ 284 #define HH_DATA_MOD 16 285 #define HH_DATA_OFF(__len) \ 286 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 287 #define HH_DATA_ALIGN(__len) \ 288 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 289 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 290 }; 291 292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 293 * Alternative is: 294 * dev->hard_header_len ? (dev->hard_header_len + 295 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 296 * 297 * We could use other alignment values, but we must maintain the 298 * relationship HH alignment <= LL alignment. 299 */ 300 #define LL_RESERVED_SPACE(dev) \ 301 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 302 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 307 struct header_ops { 308 int (*create) (struct sk_buff *skb, struct net_device *dev, 309 unsigned short type, const void *daddr, 310 const void *saddr, unsigned int len); 311 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 312 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 313 void (*cache_update)(struct hh_cache *hh, 314 const struct net_device *dev, 315 const unsigned char *haddr); 316 bool (*validate)(const char *ll_header, unsigned int len); 317 __be16 (*parse_protocol)(const struct sk_buff *skb); 318 }; 319 320 /* These flag bits are private to the generic network queueing 321 * layer; they may not be explicitly referenced by any other 322 * code. 323 */ 324 325 enum netdev_state_t { 326 __LINK_STATE_START, 327 __LINK_STATE_PRESENT, 328 __LINK_STATE_NOCARRIER, 329 __LINK_STATE_LINKWATCH_PENDING, 330 __LINK_STATE_DORMANT, 331 __LINK_STATE_TESTING, 332 }; 333 334 struct gro_list { 335 struct list_head list; 336 int count; 337 }; 338 339 /* 340 * size of gro hash buckets, must less than bit number of 341 * napi_struct::gro_bitmask 342 */ 343 #define GRO_HASH_BUCKETS 8 344 345 /* 346 * Structure for NAPI scheduling similar to tasklet but with weighting 347 */ 348 struct napi_struct { 349 /* The poll_list must only be managed by the entity which 350 * changes the state of the NAPI_STATE_SCHED bit. This means 351 * whoever atomically sets that bit can add this napi_struct 352 * to the per-CPU poll_list, and whoever clears that bit 353 * can remove from the list right before clearing the bit. 354 */ 355 struct list_head poll_list; 356 357 unsigned long state; 358 int weight; 359 u32 defer_hard_irqs_count; 360 unsigned long gro_bitmask; 361 int (*poll)(struct napi_struct *, int); 362 #ifdef CONFIG_NETPOLL 363 /* CPU actively polling if netpoll is configured */ 364 int poll_owner; 365 #endif 366 /* CPU on which NAPI has been scheduled for processing */ 367 int list_owner; 368 struct net_device *dev; 369 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 370 struct sk_buff *skb; 371 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 372 int rx_count; /* length of rx_list */ 373 unsigned int napi_id; 374 struct hrtimer timer; 375 struct task_struct *thread; 376 /* control-path-only fields follow */ 377 struct list_head dev_list; 378 struct hlist_node napi_hash_node; 379 int irq; 380 }; 381 382 enum { 383 NAPI_STATE_SCHED, /* Poll is scheduled */ 384 NAPI_STATE_MISSED, /* reschedule a napi */ 385 NAPI_STATE_DISABLE, /* Disable pending */ 386 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 387 NAPI_STATE_LISTED, /* NAPI added to system lists */ 388 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 389 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 390 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 391 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 392 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 393 }; 394 395 enum { 396 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 397 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 398 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 399 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 400 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 401 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 402 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 403 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 404 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 405 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 406 }; 407 408 enum gro_result { 409 GRO_MERGED, 410 GRO_MERGED_FREE, 411 GRO_HELD, 412 GRO_NORMAL, 413 GRO_CONSUMED, 414 }; 415 typedef enum gro_result gro_result_t; 416 417 /* 418 * enum rx_handler_result - Possible return values for rx_handlers. 419 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 420 * further. 421 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 422 * case skb->dev was changed by rx_handler. 423 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 424 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 425 * 426 * rx_handlers are functions called from inside __netif_receive_skb(), to do 427 * special processing of the skb, prior to delivery to protocol handlers. 428 * 429 * Currently, a net_device can only have a single rx_handler registered. Trying 430 * to register a second rx_handler will return -EBUSY. 431 * 432 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 433 * To unregister a rx_handler on a net_device, use 434 * netdev_rx_handler_unregister(). 435 * 436 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 437 * do with the skb. 438 * 439 * If the rx_handler consumed the skb in some way, it should return 440 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 441 * the skb to be delivered in some other way. 442 * 443 * If the rx_handler changed skb->dev, to divert the skb to another 444 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 445 * new device will be called if it exists. 446 * 447 * If the rx_handler decides the skb should be ignored, it should return 448 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 449 * are registered on exact device (ptype->dev == skb->dev). 450 * 451 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 452 * delivered, it should return RX_HANDLER_PASS. 453 * 454 * A device without a registered rx_handler will behave as if rx_handler 455 * returned RX_HANDLER_PASS. 456 */ 457 458 enum rx_handler_result { 459 RX_HANDLER_CONSUMED, 460 RX_HANDLER_ANOTHER, 461 RX_HANDLER_EXACT, 462 RX_HANDLER_PASS, 463 }; 464 typedef enum rx_handler_result rx_handler_result_t; 465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 466 467 void __napi_schedule(struct napi_struct *n); 468 void __napi_schedule_irqoff(struct napi_struct *n); 469 470 static inline bool napi_disable_pending(struct napi_struct *n) 471 { 472 return test_bit(NAPI_STATE_DISABLE, &n->state); 473 } 474 475 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 476 { 477 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 478 } 479 480 /** 481 * napi_is_scheduled - test if NAPI is scheduled 482 * @n: NAPI context 483 * 484 * This check is "best-effort". With no locking implemented, 485 * a NAPI can be scheduled or terminate right after this check 486 * and produce not precise results. 487 * 488 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 489 * should not be used normally and napi_schedule should be 490 * used instead. 491 * 492 * Use only if the driver really needs to check if a NAPI 493 * is scheduled for example in the context of delayed timer 494 * that can be skipped if a NAPI is already scheduled. 495 * 496 * Return True if NAPI is scheduled, False otherwise. 497 */ 498 static inline bool napi_is_scheduled(struct napi_struct *n) 499 { 500 return test_bit(NAPI_STATE_SCHED, &n->state); 501 } 502 503 bool napi_schedule_prep(struct napi_struct *n); 504 505 /** 506 * napi_schedule - schedule NAPI poll 507 * @n: NAPI context 508 * 509 * Schedule NAPI poll routine to be called if it is not already 510 * running. 511 * Return true if we schedule a NAPI or false if not. 512 * Refer to napi_schedule_prep() for additional reason on why 513 * a NAPI might not be scheduled. 514 */ 515 static inline bool napi_schedule(struct napi_struct *n) 516 { 517 if (napi_schedule_prep(n)) { 518 __napi_schedule(n); 519 return true; 520 } 521 522 return false; 523 } 524 525 /** 526 * napi_schedule_irqoff - schedule NAPI poll 527 * @n: NAPI context 528 * 529 * Variant of napi_schedule(), assuming hard irqs are masked. 530 */ 531 static inline void napi_schedule_irqoff(struct napi_struct *n) 532 { 533 if (napi_schedule_prep(n)) 534 __napi_schedule_irqoff(n); 535 } 536 537 /** 538 * napi_complete_done - NAPI processing complete 539 * @n: NAPI context 540 * @work_done: number of packets processed 541 * 542 * Mark NAPI processing as complete. Should only be called if poll budget 543 * has not been completely consumed. 544 * Prefer over napi_complete(). 545 * Return false if device should avoid rearming interrupts. 546 */ 547 bool napi_complete_done(struct napi_struct *n, int work_done); 548 549 static inline bool napi_complete(struct napi_struct *n) 550 { 551 return napi_complete_done(n, 0); 552 } 553 554 int dev_set_threaded(struct net_device *dev, bool threaded); 555 556 /** 557 * napi_disable - prevent NAPI from scheduling 558 * @n: NAPI context 559 * 560 * Stop NAPI from being scheduled on this context. 561 * Waits till any outstanding processing completes. 562 */ 563 void napi_disable(struct napi_struct *n); 564 565 void napi_enable(struct napi_struct *n); 566 567 /** 568 * napi_synchronize - wait until NAPI is not running 569 * @n: NAPI context 570 * 571 * Wait until NAPI is done being scheduled on this context. 572 * Waits till any outstanding processing completes but 573 * does not disable future activations. 574 */ 575 static inline void napi_synchronize(const struct napi_struct *n) 576 { 577 if (IS_ENABLED(CONFIG_SMP)) 578 while (test_bit(NAPI_STATE_SCHED, &n->state)) 579 msleep(1); 580 else 581 barrier(); 582 } 583 584 /** 585 * napi_if_scheduled_mark_missed - if napi is running, set the 586 * NAPIF_STATE_MISSED 587 * @n: NAPI context 588 * 589 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 590 * NAPI is scheduled. 591 **/ 592 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 593 { 594 unsigned long val, new; 595 596 val = READ_ONCE(n->state); 597 do { 598 if (val & NAPIF_STATE_DISABLE) 599 return true; 600 601 if (!(val & NAPIF_STATE_SCHED)) 602 return false; 603 604 new = val | NAPIF_STATE_MISSED; 605 } while (!try_cmpxchg(&n->state, &val, new)); 606 607 return true; 608 } 609 610 enum netdev_queue_state_t { 611 __QUEUE_STATE_DRV_XOFF, 612 __QUEUE_STATE_STACK_XOFF, 613 __QUEUE_STATE_FROZEN, 614 }; 615 616 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 617 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 618 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 619 620 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 621 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 622 QUEUE_STATE_FROZEN) 623 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 624 QUEUE_STATE_FROZEN) 625 626 /* 627 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 628 * netif_tx_* functions below are used to manipulate this flag. The 629 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 630 * queue independently. The netif_xmit_*stopped functions below are called 631 * to check if the queue has been stopped by the driver or stack (either 632 * of the XOFF bits are set in the state). Drivers should not need to call 633 * netif_xmit*stopped functions, they should only be using netif_tx_*. 634 */ 635 636 struct netdev_queue { 637 /* 638 * read-mostly part 639 */ 640 struct net_device *dev; 641 netdevice_tracker dev_tracker; 642 643 struct Qdisc __rcu *qdisc; 644 struct Qdisc __rcu *qdisc_sleeping; 645 #ifdef CONFIG_SYSFS 646 struct kobject kobj; 647 #endif 648 unsigned long tx_maxrate; 649 /* 650 * Number of TX timeouts for this queue 651 * (/sys/class/net/DEV/Q/trans_timeout) 652 */ 653 atomic_long_t trans_timeout; 654 655 /* Subordinate device that the queue has been assigned to */ 656 struct net_device *sb_dev; 657 #ifdef CONFIG_XDP_SOCKETS 658 struct xsk_buff_pool *pool; 659 #endif 660 661 /* 662 * write-mostly part 663 */ 664 #ifdef CONFIG_BQL 665 struct dql dql; 666 #endif 667 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 668 int xmit_lock_owner; 669 /* 670 * Time (in jiffies) of last Tx 671 */ 672 unsigned long trans_start; 673 674 unsigned long state; 675 676 /* 677 * slow- / control-path part 678 */ 679 /* NAPI instance for the queue 680 * Readers and writers must hold RTNL 681 */ 682 struct napi_struct *napi; 683 684 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 685 int numa_node; 686 #endif 687 } ____cacheline_aligned_in_smp; 688 689 extern int sysctl_fb_tunnels_only_for_init_net; 690 extern int sysctl_devconf_inherit_init_net; 691 692 /* 693 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 694 * == 1 : For initns only 695 * == 2 : For none. 696 */ 697 static inline bool net_has_fallback_tunnels(const struct net *net) 698 { 699 #if IS_ENABLED(CONFIG_SYSCTL) 700 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 701 702 return !fb_tunnels_only_for_init_net || 703 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 704 #else 705 return true; 706 #endif 707 } 708 709 static inline int net_inherit_devconf(void) 710 { 711 #if IS_ENABLED(CONFIG_SYSCTL) 712 return READ_ONCE(sysctl_devconf_inherit_init_net); 713 #else 714 return 0; 715 #endif 716 } 717 718 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 719 { 720 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 721 return q->numa_node; 722 #else 723 return NUMA_NO_NODE; 724 #endif 725 } 726 727 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 728 { 729 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 730 q->numa_node = node; 731 #endif 732 } 733 734 #ifdef CONFIG_RFS_ACCEL 735 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 736 u16 filter_id); 737 #endif 738 739 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 740 enum xps_map_type { 741 XPS_CPUS = 0, 742 XPS_RXQS, 743 XPS_MAPS_MAX, 744 }; 745 746 #ifdef CONFIG_XPS 747 /* 748 * This structure holds an XPS map which can be of variable length. The 749 * map is an array of queues. 750 */ 751 struct xps_map { 752 unsigned int len; 753 unsigned int alloc_len; 754 struct rcu_head rcu; 755 u16 queues[]; 756 }; 757 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 758 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 759 - sizeof(struct xps_map)) / sizeof(u16)) 760 761 /* 762 * This structure holds all XPS maps for device. Maps are indexed by CPU. 763 * 764 * We keep track of the number of cpus/rxqs used when the struct is allocated, 765 * in nr_ids. This will help not accessing out-of-bound memory. 766 * 767 * We keep track of the number of traffic classes used when the struct is 768 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 769 * not crossing its upper bound, as the original dev->num_tc can be updated in 770 * the meantime. 771 */ 772 struct xps_dev_maps { 773 struct rcu_head rcu; 774 unsigned int nr_ids; 775 s16 num_tc; 776 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 777 }; 778 779 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 780 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 781 782 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 783 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 784 785 #endif /* CONFIG_XPS */ 786 787 #define TC_MAX_QUEUE 16 788 #define TC_BITMASK 15 789 /* HW offloaded queuing disciplines txq count and offset maps */ 790 struct netdev_tc_txq { 791 u16 count; 792 u16 offset; 793 }; 794 795 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 796 /* 797 * This structure is to hold information about the device 798 * configured to run FCoE protocol stack. 799 */ 800 struct netdev_fcoe_hbainfo { 801 char manufacturer[64]; 802 char serial_number[64]; 803 char hardware_version[64]; 804 char driver_version[64]; 805 char optionrom_version[64]; 806 char firmware_version[64]; 807 char model[256]; 808 char model_description[256]; 809 }; 810 #endif 811 812 #define MAX_PHYS_ITEM_ID_LEN 32 813 814 /* This structure holds a unique identifier to identify some 815 * physical item (port for example) used by a netdevice. 816 */ 817 struct netdev_phys_item_id { 818 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 819 unsigned char id_len; 820 }; 821 822 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 823 struct netdev_phys_item_id *b) 824 { 825 return a->id_len == b->id_len && 826 memcmp(a->id, b->id, a->id_len) == 0; 827 } 828 829 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 830 struct sk_buff *skb, 831 struct net_device *sb_dev); 832 833 enum net_device_path_type { 834 DEV_PATH_ETHERNET = 0, 835 DEV_PATH_VLAN, 836 DEV_PATH_BRIDGE, 837 DEV_PATH_PPPOE, 838 DEV_PATH_DSA, 839 DEV_PATH_MTK_WDMA, 840 }; 841 842 struct net_device_path { 843 enum net_device_path_type type; 844 const struct net_device *dev; 845 union { 846 struct { 847 u16 id; 848 __be16 proto; 849 u8 h_dest[ETH_ALEN]; 850 } encap; 851 struct { 852 enum { 853 DEV_PATH_BR_VLAN_KEEP, 854 DEV_PATH_BR_VLAN_TAG, 855 DEV_PATH_BR_VLAN_UNTAG, 856 DEV_PATH_BR_VLAN_UNTAG_HW, 857 } vlan_mode; 858 u16 vlan_id; 859 __be16 vlan_proto; 860 } bridge; 861 struct { 862 int port; 863 u16 proto; 864 } dsa; 865 struct { 866 u8 wdma_idx; 867 u8 queue; 868 u16 wcid; 869 u8 bss; 870 u8 amsdu; 871 } mtk_wdma; 872 }; 873 }; 874 875 #define NET_DEVICE_PATH_STACK_MAX 5 876 #define NET_DEVICE_PATH_VLAN_MAX 2 877 878 struct net_device_path_stack { 879 int num_paths; 880 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 881 }; 882 883 struct net_device_path_ctx { 884 const struct net_device *dev; 885 u8 daddr[ETH_ALEN]; 886 887 int num_vlans; 888 struct { 889 u16 id; 890 __be16 proto; 891 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 892 }; 893 894 enum tc_setup_type { 895 TC_QUERY_CAPS, 896 TC_SETUP_QDISC_MQPRIO, 897 TC_SETUP_CLSU32, 898 TC_SETUP_CLSFLOWER, 899 TC_SETUP_CLSMATCHALL, 900 TC_SETUP_CLSBPF, 901 TC_SETUP_BLOCK, 902 TC_SETUP_QDISC_CBS, 903 TC_SETUP_QDISC_RED, 904 TC_SETUP_QDISC_PRIO, 905 TC_SETUP_QDISC_MQ, 906 TC_SETUP_QDISC_ETF, 907 TC_SETUP_ROOT_QDISC, 908 TC_SETUP_QDISC_GRED, 909 TC_SETUP_QDISC_TAPRIO, 910 TC_SETUP_FT, 911 TC_SETUP_QDISC_ETS, 912 TC_SETUP_QDISC_TBF, 913 TC_SETUP_QDISC_FIFO, 914 TC_SETUP_QDISC_HTB, 915 TC_SETUP_ACT, 916 }; 917 918 /* These structures hold the attributes of bpf state that are being passed 919 * to the netdevice through the bpf op. 920 */ 921 enum bpf_netdev_command { 922 /* Set or clear a bpf program used in the earliest stages of packet 923 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 924 * is responsible for calling bpf_prog_put on any old progs that are 925 * stored. In case of error, the callee need not release the new prog 926 * reference, but on success it takes ownership and must bpf_prog_put 927 * when it is no longer used. 928 */ 929 XDP_SETUP_PROG, 930 XDP_SETUP_PROG_HW, 931 /* BPF program for offload callbacks, invoked at program load time. */ 932 BPF_OFFLOAD_MAP_ALLOC, 933 BPF_OFFLOAD_MAP_FREE, 934 XDP_SETUP_XSK_POOL, 935 }; 936 937 struct bpf_prog_offload_ops; 938 struct netlink_ext_ack; 939 struct xdp_umem; 940 struct xdp_dev_bulk_queue; 941 struct bpf_xdp_link; 942 943 enum bpf_xdp_mode { 944 XDP_MODE_SKB = 0, 945 XDP_MODE_DRV = 1, 946 XDP_MODE_HW = 2, 947 __MAX_XDP_MODE 948 }; 949 950 struct bpf_xdp_entity { 951 struct bpf_prog *prog; 952 struct bpf_xdp_link *link; 953 }; 954 955 struct netdev_bpf { 956 enum bpf_netdev_command command; 957 union { 958 /* XDP_SETUP_PROG */ 959 struct { 960 u32 flags; 961 struct bpf_prog *prog; 962 struct netlink_ext_ack *extack; 963 }; 964 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 965 struct { 966 struct bpf_offloaded_map *offmap; 967 }; 968 /* XDP_SETUP_XSK_POOL */ 969 struct { 970 struct xsk_buff_pool *pool; 971 u16 queue_id; 972 } xsk; 973 }; 974 }; 975 976 /* Flags for ndo_xsk_wakeup. */ 977 #define XDP_WAKEUP_RX (1 << 0) 978 #define XDP_WAKEUP_TX (1 << 1) 979 980 #ifdef CONFIG_XFRM_OFFLOAD 981 struct xfrmdev_ops { 982 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 983 void (*xdo_dev_state_delete) (struct xfrm_state *x); 984 void (*xdo_dev_state_free) (struct xfrm_state *x); 985 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 986 struct xfrm_state *x); 987 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 988 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 989 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 990 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 991 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 992 }; 993 #endif 994 995 struct dev_ifalias { 996 struct rcu_head rcuhead; 997 char ifalias[]; 998 }; 999 1000 struct devlink; 1001 struct tlsdev_ops; 1002 1003 struct netdev_net_notifier { 1004 struct list_head list; 1005 struct notifier_block *nb; 1006 }; 1007 1008 /* 1009 * This structure defines the management hooks for network devices. 1010 * The following hooks can be defined; unless noted otherwise, they are 1011 * optional and can be filled with a null pointer. 1012 * 1013 * int (*ndo_init)(struct net_device *dev); 1014 * This function is called once when a network device is registered. 1015 * The network device can use this for any late stage initialization 1016 * or semantic validation. It can fail with an error code which will 1017 * be propagated back to register_netdev. 1018 * 1019 * void (*ndo_uninit)(struct net_device *dev); 1020 * This function is called when device is unregistered or when registration 1021 * fails. It is not called if init fails. 1022 * 1023 * int (*ndo_open)(struct net_device *dev); 1024 * This function is called when a network device transitions to the up 1025 * state. 1026 * 1027 * int (*ndo_stop)(struct net_device *dev); 1028 * This function is called when a network device transitions to the down 1029 * state. 1030 * 1031 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1032 * struct net_device *dev); 1033 * Called when a packet needs to be transmitted. 1034 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1035 * the queue before that can happen; it's for obsolete devices and weird 1036 * corner cases, but the stack really does a non-trivial amount 1037 * of useless work if you return NETDEV_TX_BUSY. 1038 * Required; cannot be NULL. 1039 * 1040 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1041 * struct net_device *dev 1042 * netdev_features_t features); 1043 * Called by core transmit path to determine if device is capable of 1044 * performing offload operations on a given packet. This is to give 1045 * the device an opportunity to implement any restrictions that cannot 1046 * be otherwise expressed by feature flags. The check is called with 1047 * the set of features that the stack has calculated and it returns 1048 * those the driver believes to be appropriate. 1049 * 1050 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1051 * struct net_device *sb_dev); 1052 * Called to decide which queue to use when device supports multiple 1053 * transmit queues. 1054 * 1055 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1056 * This function is called to allow device receiver to make 1057 * changes to configuration when multicast or promiscuous is enabled. 1058 * 1059 * void (*ndo_set_rx_mode)(struct net_device *dev); 1060 * This function is called device changes address list filtering. 1061 * If driver handles unicast address filtering, it should set 1062 * IFF_UNICAST_FLT in its priv_flags. 1063 * 1064 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1065 * This function is called when the Media Access Control address 1066 * needs to be changed. If this interface is not defined, the 1067 * MAC address can not be changed. 1068 * 1069 * int (*ndo_validate_addr)(struct net_device *dev); 1070 * Test if Media Access Control address is valid for the device. 1071 * 1072 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1073 * Old-style ioctl entry point. This is used internally by the 1074 * appletalk and ieee802154 subsystems but is no longer called by 1075 * the device ioctl handler. 1076 * 1077 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1078 * Used by the bonding driver for its device specific ioctls: 1079 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1080 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1081 * 1082 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1083 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1084 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1085 * 1086 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1087 * Used to set network devices bus interface parameters. This interface 1088 * is retained for legacy reasons; new devices should use the bus 1089 * interface (PCI) for low level management. 1090 * 1091 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1092 * Called when a user wants to change the Maximum Transfer Unit 1093 * of a device. 1094 * 1095 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1096 * Callback used when the transmitter has not made any progress 1097 * for dev->watchdog ticks. 1098 * 1099 * void (*ndo_get_stats64)(struct net_device *dev, 1100 * struct rtnl_link_stats64 *storage); 1101 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1102 * Called when a user wants to get the network device usage 1103 * statistics. Drivers must do one of the following: 1104 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1105 * rtnl_link_stats64 structure passed by the caller. 1106 * 2. Define @ndo_get_stats to update a net_device_stats structure 1107 * (which should normally be dev->stats) and return a pointer to 1108 * it. The structure may be changed asynchronously only if each 1109 * field is written atomically. 1110 * 3. Update dev->stats asynchronously and atomically, and define 1111 * neither operation. 1112 * 1113 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1114 * Return true if this device supports offload stats of this attr_id. 1115 * 1116 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1117 * void *attr_data) 1118 * Get statistics for offload operations by attr_id. Write it into the 1119 * attr_data pointer. 1120 * 1121 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1122 * If device supports VLAN filtering this function is called when a 1123 * VLAN id is registered. 1124 * 1125 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1126 * If device supports VLAN filtering this function is called when a 1127 * VLAN id is unregistered. 1128 * 1129 * void (*ndo_poll_controller)(struct net_device *dev); 1130 * 1131 * SR-IOV management functions. 1132 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1133 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1134 * u8 qos, __be16 proto); 1135 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1136 * int max_tx_rate); 1137 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1138 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1139 * int (*ndo_get_vf_config)(struct net_device *dev, 1140 * int vf, struct ifla_vf_info *ivf); 1141 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1142 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1143 * struct nlattr *port[]); 1144 * 1145 * Enable or disable the VF ability to query its RSS Redirection Table and 1146 * Hash Key. This is needed since on some devices VF share this information 1147 * with PF and querying it may introduce a theoretical security risk. 1148 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1149 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1150 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1151 * void *type_data); 1152 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1153 * This is always called from the stack with the rtnl lock held and netif 1154 * tx queues stopped. This allows the netdevice to perform queue 1155 * management safely. 1156 * 1157 * Fiber Channel over Ethernet (FCoE) offload functions. 1158 * int (*ndo_fcoe_enable)(struct net_device *dev); 1159 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1160 * so the underlying device can perform whatever needed configuration or 1161 * initialization to support acceleration of FCoE traffic. 1162 * 1163 * int (*ndo_fcoe_disable)(struct net_device *dev); 1164 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1165 * so the underlying device can perform whatever needed clean-ups to 1166 * stop supporting acceleration of FCoE traffic. 1167 * 1168 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1169 * struct scatterlist *sgl, unsigned int sgc); 1170 * Called when the FCoE Initiator wants to initialize an I/O that 1171 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1172 * perform necessary setup and returns 1 to indicate the device is set up 1173 * successfully to perform DDP on this I/O, otherwise this returns 0. 1174 * 1175 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1176 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1177 * indicated by the FC exchange id 'xid', so the underlying device can 1178 * clean up and reuse resources for later DDP requests. 1179 * 1180 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1181 * struct scatterlist *sgl, unsigned int sgc); 1182 * Called when the FCoE Target wants to initialize an I/O that 1183 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1184 * perform necessary setup and returns 1 to indicate the device is set up 1185 * successfully to perform DDP on this I/O, otherwise this returns 0. 1186 * 1187 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1188 * struct netdev_fcoe_hbainfo *hbainfo); 1189 * Called when the FCoE Protocol stack wants information on the underlying 1190 * device. This information is utilized by the FCoE protocol stack to 1191 * register attributes with Fiber Channel management service as per the 1192 * FC-GS Fabric Device Management Information(FDMI) specification. 1193 * 1194 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1195 * Called when the underlying device wants to override default World Wide 1196 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1197 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1198 * protocol stack to use. 1199 * 1200 * RFS acceleration. 1201 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1202 * u16 rxq_index, u32 flow_id); 1203 * Set hardware filter for RFS. rxq_index is the target queue index; 1204 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1205 * Return the filter ID on success, or a negative error code. 1206 * 1207 * Slave management functions (for bridge, bonding, etc). 1208 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1209 * Called to make another netdev an underling. 1210 * 1211 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1212 * Called to release previously enslaved netdev. 1213 * 1214 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1215 * struct sk_buff *skb, 1216 * bool all_slaves); 1217 * Get the xmit slave of master device. If all_slaves is true, function 1218 * assume all the slaves can transmit. 1219 * 1220 * Feature/offload setting functions. 1221 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1222 * netdev_features_t features); 1223 * Adjusts the requested feature flags according to device-specific 1224 * constraints, and returns the resulting flags. Must not modify 1225 * the device state. 1226 * 1227 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1228 * Called to update device configuration to new features. Passed 1229 * feature set might be less than what was returned by ndo_fix_features()). 1230 * Must return >0 or -errno if it changed dev->features itself. 1231 * 1232 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1233 * struct net_device *dev, 1234 * const unsigned char *addr, u16 vid, u16 flags, 1235 * struct netlink_ext_ack *extack); 1236 * Adds an FDB entry to dev for addr. 1237 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1238 * struct net_device *dev, 1239 * const unsigned char *addr, u16 vid) 1240 * Deletes the FDB entry from dev corresponding to addr. 1241 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1242 * struct netlink_ext_ack *extack); 1243 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1244 * struct net_device *dev, struct net_device *filter_dev, 1245 * int *idx) 1246 * Used to add FDB entries to dump requests. Implementers should add 1247 * entries to skb and update idx with the number of entries. 1248 * 1249 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1250 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1251 * Adds an MDB entry to dev. 1252 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1253 * struct netlink_ext_ack *extack); 1254 * Deletes the MDB entry from dev. 1255 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1256 * struct netlink_ext_ack *extack); 1257 * Bulk deletes MDB entries from dev. 1258 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1259 * struct netlink_callback *cb); 1260 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1261 * callback is used by core rtnetlink code. 1262 * 1263 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1264 * u16 flags, struct netlink_ext_ack *extack) 1265 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1266 * struct net_device *dev, u32 filter_mask, 1267 * int nlflags) 1268 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1269 * u16 flags); 1270 * 1271 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1272 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1273 * which do not represent real hardware may define this to allow their 1274 * userspace components to manage their virtual carrier state. Devices 1275 * that determine carrier state from physical hardware properties (eg 1276 * network cables) or protocol-dependent mechanisms (eg 1277 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1278 * 1279 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1280 * struct netdev_phys_item_id *ppid); 1281 * Called to get ID of physical port of this device. If driver does 1282 * not implement this, it is assumed that the hw is not able to have 1283 * multiple net devices on single physical port. 1284 * 1285 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1286 * struct netdev_phys_item_id *ppid) 1287 * Called to get the parent ID of the physical port of this device. 1288 * 1289 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1290 * struct net_device *dev) 1291 * Called by upper layer devices to accelerate switching or other 1292 * station functionality into hardware. 'pdev is the lowerdev 1293 * to use for the offload and 'dev' is the net device that will 1294 * back the offload. Returns a pointer to the private structure 1295 * the upper layer will maintain. 1296 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1297 * Called by upper layer device to delete the station created 1298 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1299 * the station and priv is the structure returned by the add 1300 * operation. 1301 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1302 * int queue_index, u32 maxrate); 1303 * Called when a user wants to set a max-rate limitation of specific 1304 * TX queue. 1305 * int (*ndo_get_iflink)(const struct net_device *dev); 1306 * Called to get the iflink value of this device. 1307 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1308 * This function is used to get egress tunnel information for given skb. 1309 * This is useful for retrieving outer tunnel header parameters while 1310 * sampling packet. 1311 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1312 * This function is used to specify the headroom that the skb must 1313 * consider when allocation skb during packet reception. Setting 1314 * appropriate rx headroom value allows avoiding skb head copy on 1315 * forward. Setting a negative value resets the rx headroom to the 1316 * default value. 1317 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1318 * This function is used to set or query state related to XDP on the 1319 * netdevice and manage BPF offload. See definition of 1320 * enum bpf_netdev_command for details. 1321 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1322 * u32 flags); 1323 * This function is used to submit @n XDP packets for transmit on a 1324 * netdevice. Returns number of frames successfully transmitted, frames 1325 * that got dropped are freed/returned via xdp_return_frame(). 1326 * Returns negative number, means general error invoking ndo, meaning 1327 * no frames were xmit'ed and core-caller will free all frames. 1328 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1329 * struct xdp_buff *xdp); 1330 * Get the xmit slave of master device based on the xdp_buff. 1331 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1332 * This function is used to wake up the softirq, ksoftirqd or kthread 1333 * responsible for sending and/or receiving packets on a specific 1334 * queue id bound to an AF_XDP socket. The flags field specifies if 1335 * only RX, only Tx, or both should be woken up using the flags 1336 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1337 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1338 * int cmd); 1339 * Add, change, delete or get information on an IPv4 tunnel. 1340 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1341 * If a device is paired with a peer device, return the peer instance. 1342 * The caller must be under RCU read context. 1343 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1344 * Get the forwarding path to reach the real device from the HW destination address 1345 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1346 * const struct skb_shared_hwtstamps *hwtstamps, 1347 * bool cycles); 1348 * Get hardware timestamp based on normal/adjustable time or free running 1349 * cycle counter. This function is required if physical clock supports a 1350 * free running cycle counter. 1351 * 1352 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1353 * struct kernel_hwtstamp_config *kernel_config); 1354 * Get the currently configured hardware timestamping parameters for the 1355 * NIC device. 1356 * 1357 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1358 * struct kernel_hwtstamp_config *kernel_config, 1359 * struct netlink_ext_ack *extack); 1360 * Change the hardware timestamping parameters for NIC device. 1361 */ 1362 struct net_device_ops { 1363 int (*ndo_init)(struct net_device *dev); 1364 void (*ndo_uninit)(struct net_device *dev); 1365 int (*ndo_open)(struct net_device *dev); 1366 int (*ndo_stop)(struct net_device *dev); 1367 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1368 struct net_device *dev); 1369 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1370 struct net_device *dev, 1371 netdev_features_t features); 1372 u16 (*ndo_select_queue)(struct net_device *dev, 1373 struct sk_buff *skb, 1374 struct net_device *sb_dev); 1375 void (*ndo_change_rx_flags)(struct net_device *dev, 1376 int flags); 1377 void (*ndo_set_rx_mode)(struct net_device *dev); 1378 int (*ndo_set_mac_address)(struct net_device *dev, 1379 void *addr); 1380 int (*ndo_validate_addr)(struct net_device *dev); 1381 int (*ndo_do_ioctl)(struct net_device *dev, 1382 struct ifreq *ifr, int cmd); 1383 int (*ndo_eth_ioctl)(struct net_device *dev, 1384 struct ifreq *ifr, int cmd); 1385 int (*ndo_siocbond)(struct net_device *dev, 1386 struct ifreq *ifr, int cmd); 1387 int (*ndo_siocwandev)(struct net_device *dev, 1388 struct if_settings *ifs); 1389 int (*ndo_siocdevprivate)(struct net_device *dev, 1390 struct ifreq *ifr, 1391 void __user *data, int cmd); 1392 int (*ndo_set_config)(struct net_device *dev, 1393 struct ifmap *map); 1394 int (*ndo_change_mtu)(struct net_device *dev, 1395 int new_mtu); 1396 int (*ndo_neigh_setup)(struct net_device *dev, 1397 struct neigh_parms *); 1398 void (*ndo_tx_timeout) (struct net_device *dev, 1399 unsigned int txqueue); 1400 1401 void (*ndo_get_stats64)(struct net_device *dev, 1402 struct rtnl_link_stats64 *storage); 1403 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1404 int (*ndo_get_offload_stats)(int attr_id, 1405 const struct net_device *dev, 1406 void *attr_data); 1407 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1408 1409 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1410 __be16 proto, u16 vid); 1411 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1412 __be16 proto, u16 vid); 1413 #ifdef CONFIG_NET_POLL_CONTROLLER 1414 void (*ndo_poll_controller)(struct net_device *dev); 1415 int (*ndo_netpoll_setup)(struct net_device *dev, 1416 struct netpoll_info *info); 1417 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1418 #endif 1419 int (*ndo_set_vf_mac)(struct net_device *dev, 1420 int queue, u8 *mac); 1421 int (*ndo_set_vf_vlan)(struct net_device *dev, 1422 int queue, u16 vlan, 1423 u8 qos, __be16 proto); 1424 int (*ndo_set_vf_rate)(struct net_device *dev, 1425 int vf, int min_tx_rate, 1426 int max_tx_rate); 1427 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1428 int vf, bool setting); 1429 int (*ndo_set_vf_trust)(struct net_device *dev, 1430 int vf, bool setting); 1431 int (*ndo_get_vf_config)(struct net_device *dev, 1432 int vf, 1433 struct ifla_vf_info *ivf); 1434 int (*ndo_set_vf_link_state)(struct net_device *dev, 1435 int vf, int link_state); 1436 int (*ndo_get_vf_stats)(struct net_device *dev, 1437 int vf, 1438 struct ifla_vf_stats 1439 *vf_stats); 1440 int (*ndo_set_vf_port)(struct net_device *dev, 1441 int vf, 1442 struct nlattr *port[]); 1443 int (*ndo_get_vf_port)(struct net_device *dev, 1444 int vf, struct sk_buff *skb); 1445 int (*ndo_get_vf_guid)(struct net_device *dev, 1446 int vf, 1447 struct ifla_vf_guid *node_guid, 1448 struct ifla_vf_guid *port_guid); 1449 int (*ndo_set_vf_guid)(struct net_device *dev, 1450 int vf, u64 guid, 1451 int guid_type); 1452 int (*ndo_set_vf_rss_query_en)( 1453 struct net_device *dev, 1454 int vf, bool setting); 1455 int (*ndo_setup_tc)(struct net_device *dev, 1456 enum tc_setup_type type, 1457 void *type_data); 1458 #if IS_ENABLED(CONFIG_FCOE) 1459 int (*ndo_fcoe_enable)(struct net_device *dev); 1460 int (*ndo_fcoe_disable)(struct net_device *dev); 1461 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1462 u16 xid, 1463 struct scatterlist *sgl, 1464 unsigned int sgc); 1465 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1466 u16 xid); 1467 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1468 u16 xid, 1469 struct scatterlist *sgl, 1470 unsigned int sgc); 1471 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1472 struct netdev_fcoe_hbainfo *hbainfo); 1473 #endif 1474 1475 #if IS_ENABLED(CONFIG_LIBFCOE) 1476 #define NETDEV_FCOE_WWNN 0 1477 #define NETDEV_FCOE_WWPN 1 1478 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1479 u64 *wwn, int type); 1480 #endif 1481 1482 #ifdef CONFIG_RFS_ACCEL 1483 int (*ndo_rx_flow_steer)(struct net_device *dev, 1484 const struct sk_buff *skb, 1485 u16 rxq_index, 1486 u32 flow_id); 1487 #endif 1488 int (*ndo_add_slave)(struct net_device *dev, 1489 struct net_device *slave_dev, 1490 struct netlink_ext_ack *extack); 1491 int (*ndo_del_slave)(struct net_device *dev, 1492 struct net_device *slave_dev); 1493 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1494 struct sk_buff *skb, 1495 bool all_slaves); 1496 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1497 struct sock *sk); 1498 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1499 netdev_features_t features); 1500 int (*ndo_set_features)(struct net_device *dev, 1501 netdev_features_t features); 1502 int (*ndo_neigh_construct)(struct net_device *dev, 1503 struct neighbour *n); 1504 void (*ndo_neigh_destroy)(struct net_device *dev, 1505 struct neighbour *n); 1506 1507 int (*ndo_fdb_add)(struct ndmsg *ndm, 1508 struct nlattr *tb[], 1509 struct net_device *dev, 1510 const unsigned char *addr, 1511 u16 vid, 1512 u16 flags, 1513 struct netlink_ext_ack *extack); 1514 int (*ndo_fdb_del)(struct ndmsg *ndm, 1515 struct nlattr *tb[], 1516 struct net_device *dev, 1517 const unsigned char *addr, 1518 u16 vid, struct netlink_ext_ack *extack); 1519 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1520 struct net_device *dev, 1521 struct netlink_ext_ack *extack); 1522 int (*ndo_fdb_dump)(struct sk_buff *skb, 1523 struct netlink_callback *cb, 1524 struct net_device *dev, 1525 struct net_device *filter_dev, 1526 int *idx); 1527 int (*ndo_fdb_get)(struct sk_buff *skb, 1528 struct nlattr *tb[], 1529 struct net_device *dev, 1530 const unsigned char *addr, 1531 u16 vid, u32 portid, u32 seq, 1532 struct netlink_ext_ack *extack); 1533 int (*ndo_mdb_add)(struct net_device *dev, 1534 struct nlattr *tb[], 1535 u16 nlmsg_flags, 1536 struct netlink_ext_ack *extack); 1537 int (*ndo_mdb_del)(struct net_device *dev, 1538 struct nlattr *tb[], 1539 struct netlink_ext_ack *extack); 1540 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1541 struct nlattr *tb[], 1542 struct netlink_ext_ack *extack); 1543 int (*ndo_mdb_dump)(struct net_device *dev, 1544 struct sk_buff *skb, 1545 struct netlink_callback *cb); 1546 int (*ndo_mdb_get)(struct net_device *dev, 1547 struct nlattr *tb[], u32 portid, 1548 u32 seq, 1549 struct netlink_ext_ack *extack); 1550 int (*ndo_bridge_setlink)(struct net_device *dev, 1551 struct nlmsghdr *nlh, 1552 u16 flags, 1553 struct netlink_ext_ack *extack); 1554 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1555 u32 pid, u32 seq, 1556 struct net_device *dev, 1557 u32 filter_mask, 1558 int nlflags); 1559 int (*ndo_bridge_dellink)(struct net_device *dev, 1560 struct nlmsghdr *nlh, 1561 u16 flags); 1562 int (*ndo_change_carrier)(struct net_device *dev, 1563 bool new_carrier); 1564 int (*ndo_get_phys_port_id)(struct net_device *dev, 1565 struct netdev_phys_item_id *ppid); 1566 int (*ndo_get_port_parent_id)(struct net_device *dev, 1567 struct netdev_phys_item_id *ppid); 1568 int (*ndo_get_phys_port_name)(struct net_device *dev, 1569 char *name, size_t len); 1570 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1571 struct net_device *dev); 1572 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1573 void *priv); 1574 1575 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1576 int queue_index, 1577 u32 maxrate); 1578 int (*ndo_get_iflink)(const struct net_device *dev); 1579 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1580 struct sk_buff *skb); 1581 void (*ndo_set_rx_headroom)(struct net_device *dev, 1582 int needed_headroom); 1583 int (*ndo_bpf)(struct net_device *dev, 1584 struct netdev_bpf *bpf); 1585 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1586 struct xdp_frame **xdp, 1587 u32 flags); 1588 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1589 struct xdp_buff *xdp); 1590 int (*ndo_xsk_wakeup)(struct net_device *dev, 1591 u32 queue_id, u32 flags); 1592 int (*ndo_tunnel_ctl)(struct net_device *dev, 1593 struct ip_tunnel_parm_kern *p, 1594 int cmd); 1595 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1596 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1597 struct net_device_path *path); 1598 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1599 const struct skb_shared_hwtstamps *hwtstamps, 1600 bool cycles); 1601 int (*ndo_hwtstamp_get)(struct net_device *dev, 1602 struct kernel_hwtstamp_config *kernel_config); 1603 int (*ndo_hwtstamp_set)(struct net_device *dev, 1604 struct kernel_hwtstamp_config *kernel_config, 1605 struct netlink_ext_ack *extack); 1606 }; 1607 1608 /** 1609 * enum netdev_priv_flags - &struct net_device priv_flags 1610 * 1611 * These are the &struct net_device, they are only set internally 1612 * by drivers and used in the kernel. These flags are invisible to 1613 * userspace; this means that the order of these flags can change 1614 * during any kernel release. 1615 * 1616 * You should add bitfield booleans after either net_device::priv_flags 1617 * (hotpath) or ::threaded (slowpath) instead of extending these flags. 1618 * 1619 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1620 * @IFF_EBRIDGE: Ethernet bridging device 1621 * @IFF_BONDING: bonding master or slave 1622 * @IFF_ISATAP: ISATAP interface (RFC4214) 1623 * @IFF_WAN_HDLC: WAN HDLC device 1624 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1625 * release skb->dst 1626 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1627 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1628 * @IFF_MACVLAN_PORT: device used as macvlan port 1629 * @IFF_BRIDGE_PORT: device used as bridge port 1630 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1631 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1632 * @IFF_UNICAST_FLT: Supports unicast filtering 1633 * @IFF_TEAM_PORT: device used as team port 1634 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1635 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1636 * change when it's running 1637 * @IFF_MACVLAN: Macvlan device 1638 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1639 * underlying stacked devices 1640 * @IFF_L3MDEV_MASTER: device is an L3 master device 1641 * @IFF_NO_QUEUE: device can run without qdisc attached 1642 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1643 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1644 * @IFF_TEAM: device is a team device 1645 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1646 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1647 * entity (i.e. the master device for bridged veth) 1648 * @IFF_MACSEC: device is a MACsec device 1649 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1650 * @IFF_FAILOVER: device is a failover master device 1651 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1652 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1653 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1654 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1655 * skb_headlen(skb) == 0 (data starts from frag0) 1656 */ 1657 enum netdev_priv_flags { 1658 IFF_802_1Q_VLAN = 1<<0, 1659 IFF_EBRIDGE = 1<<1, 1660 IFF_BONDING = 1<<2, 1661 IFF_ISATAP = 1<<3, 1662 IFF_WAN_HDLC = 1<<4, 1663 IFF_XMIT_DST_RELEASE = 1<<5, 1664 IFF_DONT_BRIDGE = 1<<6, 1665 IFF_DISABLE_NETPOLL = 1<<7, 1666 IFF_MACVLAN_PORT = 1<<8, 1667 IFF_BRIDGE_PORT = 1<<9, 1668 IFF_OVS_DATAPATH = 1<<10, 1669 IFF_TX_SKB_SHARING = 1<<11, 1670 IFF_UNICAST_FLT = 1<<12, 1671 IFF_TEAM_PORT = 1<<13, 1672 IFF_SUPP_NOFCS = 1<<14, 1673 IFF_LIVE_ADDR_CHANGE = 1<<15, 1674 IFF_MACVLAN = 1<<16, 1675 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1676 IFF_L3MDEV_MASTER = 1<<18, 1677 IFF_NO_QUEUE = 1<<19, 1678 IFF_OPENVSWITCH = 1<<20, 1679 IFF_L3MDEV_SLAVE = 1<<21, 1680 IFF_TEAM = 1<<22, 1681 IFF_RXFH_CONFIGURED = 1<<23, 1682 IFF_PHONY_HEADROOM = 1<<24, 1683 IFF_MACSEC = 1<<25, 1684 IFF_NO_RX_HANDLER = 1<<26, 1685 IFF_FAILOVER = 1<<27, 1686 IFF_FAILOVER_SLAVE = 1<<28, 1687 IFF_L3MDEV_RX_HANDLER = 1<<29, 1688 IFF_NO_ADDRCONF = BIT_ULL(30), 1689 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1690 }; 1691 1692 /* Specifies the type of the struct net_device::ml_priv pointer */ 1693 enum netdev_ml_priv_type { 1694 ML_PRIV_NONE, 1695 ML_PRIV_CAN, 1696 }; 1697 1698 enum netdev_stat_type { 1699 NETDEV_PCPU_STAT_NONE, 1700 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1701 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1702 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1703 }; 1704 1705 enum netdev_reg_state { 1706 NETREG_UNINITIALIZED = 0, 1707 NETREG_REGISTERED, /* completed register_netdevice */ 1708 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1709 NETREG_UNREGISTERED, /* completed unregister todo */ 1710 NETREG_RELEASED, /* called free_netdev */ 1711 NETREG_DUMMY, /* dummy device for NAPI poll */ 1712 }; 1713 1714 /** 1715 * struct net_device - The DEVICE structure. 1716 * 1717 * Actually, this whole structure is a big mistake. It mixes I/O 1718 * data with strictly "high-level" data, and it has to know about 1719 * almost every data structure used in the INET module. 1720 * 1721 * @priv_flags: flags invisible to userspace defined as bits, see 1722 * enum netdev_priv_flags for the definitions 1723 * @lltx: device supports lockless Tx. Deprecated for real HW 1724 * drivers. Mainly used by logical interfaces, such as 1725 * bonding and tunnels 1726 * 1727 * @name: This is the first field of the "visible" part of this structure 1728 * (i.e. as seen by users in the "Space.c" file). It is the name 1729 * of the interface. 1730 * 1731 * @name_node: Name hashlist node 1732 * @ifalias: SNMP alias 1733 * @mem_end: Shared memory end 1734 * @mem_start: Shared memory start 1735 * @base_addr: Device I/O address 1736 * @irq: Device IRQ number 1737 * 1738 * @state: Generic network queuing layer state, see netdev_state_t 1739 * @dev_list: The global list of network devices 1740 * @napi_list: List entry used for polling NAPI devices 1741 * @unreg_list: List entry when we are unregistering the 1742 * device; see the function unregister_netdev 1743 * @close_list: List entry used when we are closing the device 1744 * @ptype_all: Device-specific packet handlers for all protocols 1745 * @ptype_specific: Device-specific, protocol-specific packet handlers 1746 * 1747 * @adj_list: Directly linked devices, like slaves for bonding 1748 * @features: Currently active device features 1749 * @hw_features: User-changeable features 1750 * 1751 * @wanted_features: User-requested features 1752 * @vlan_features: Mask of features inheritable by VLAN devices 1753 * 1754 * @hw_enc_features: Mask of features inherited by encapsulating devices 1755 * This field indicates what encapsulation 1756 * offloads the hardware is capable of doing, 1757 * and drivers will need to set them appropriately. 1758 * 1759 * @mpls_features: Mask of features inheritable by MPLS 1760 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1761 * 1762 * @ifindex: interface index 1763 * @group: The group the device belongs to 1764 * 1765 * @stats: Statistics struct, which was left as a legacy, use 1766 * rtnl_link_stats64 instead 1767 * 1768 * @core_stats: core networking counters, 1769 * do not use this in drivers 1770 * @carrier_up_count: Number of times the carrier has been up 1771 * @carrier_down_count: Number of times the carrier has been down 1772 * 1773 * @wireless_handlers: List of functions to handle Wireless Extensions, 1774 * instead of ioctl, 1775 * see <net/iw_handler.h> for details. 1776 * @wireless_data: Instance data managed by the core of wireless extensions 1777 * 1778 * @netdev_ops: Includes several pointers to callbacks, 1779 * if one wants to override the ndo_*() functions 1780 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1781 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1782 * @ethtool_ops: Management operations 1783 * @l3mdev_ops: Layer 3 master device operations 1784 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1785 * discovery handling. Necessary for e.g. 6LoWPAN. 1786 * @xfrmdev_ops: Transformation offload operations 1787 * @tlsdev_ops: Transport Layer Security offload operations 1788 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1789 * of Layer 2 headers. 1790 * 1791 * @flags: Interface flags (a la BSD) 1792 * @xdp_features: XDP capability supported by the device 1793 * @gflags: Global flags ( kept as legacy ) 1794 * @priv_len: Size of the ->priv flexible array 1795 * @priv: Flexible array containing private data 1796 * @operstate: RFC2863 operstate 1797 * @link_mode: Mapping policy to operstate 1798 * @if_port: Selectable AUI, TP, ... 1799 * @dma: DMA channel 1800 * @mtu: Interface MTU value 1801 * @min_mtu: Interface Minimum MTU value 1802 * @max_mtu: Interface Maximum MTU value 1803 * @type: Interface hardware type 1804 * @hard_header_len: Maximum hardware header length. 1805 * @min_header_len: Minimum hardware header length 1806 * 1807 * @needed_headroom: Extra headroom the hardware may need, but not in all 1808 * cases can this be guaranteed 1809 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1810 * cases can this be guaranteed. Some cases also use 1811 * LL_MAX_HEADER instead to allocate the skb 1812 * 1813 * interface address info: 1814 * 1815 * @perm_addr: Permanent hw address 1816 * @addr_assign_type: Hw address assignment type 1817 * @addr_len: Hardware address length 1818 * @upper_level: Maximum depth level of upper devices. 1819 * @lower_level: Maximum depth level of lower devices. 1820 * @neigh_priv_len: Used in neigh_alloc() 1821 * @dev_id: Used to differentiate devices that share 1822 * the same link layer address 1823 * @dev_port: Used to differentiate devices that share 1824 * the same function 1825 * @addr_list_lock: XXX: need comments on this one 1826 * @name_assign_type: network interface name assignment type 1827 * @uc_promisc: Counter that indicates promiscuous mode 1828 * has been enabled due to the need to listen to 1829 * additional unicast addresses in a device that 1830 * does not implement ndo_set_rx_mode() 1831 * @uc: unicast mac addresses 1832 * @mc: multicast mac addresses 1833 * @dev_addrs: list of device hw addresses 1834 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1835 * @promiscuity: Number of times the NIC is told to work in 1836 * promiscuous mode; if it becomes 0 the NIC will 1837 * exit promiscuous mode 1838 * @allmulti: Counter, enables or disables allmulticast mode 1839 * 1840 * @vlan_info: VLAN info 1841 * @dsa_ptr: dsa specific data 1842 * @tipc_ptr: TIPC specific data 1843 * @atalk_ptr: AppleTalk link 1844 * @ip_ptr: IPv4 specific data 1845 * @ip6_ptr: IPv6 specific data 1846 * @ax25_ptr: AX.25 specific data 1847 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1848 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1849 * device struct 1850 * @mpls_ptr: mpls_dev struct pointer 1851 * @mctp_ptr: MCTP specific data 1852 * 1853 * @dev_addr: Hw address (before bcast, 1854 * because most packets are unicast) 1855 * 1856 * @_rx: Array of RX queues 1857 * @num_rx_queues: Number of RX queues 1858 * allocated at register_netdev() time 1859 * @real_num_rx_queues: Number of RX queues currently active in device 1860 * @xdp_prog: XDP sockets filter program pointer 1861 * @gro_flush_timeout: timeout for GRO layer in NAPI 1862 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1863 * allow to avoid NIC hard IRQ, on busy queues. 1864 * 1865 * @rx_handler: handler for received packets 1866 * @rx_handler_data: XXX: need comments on this one 1867 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1868 * @ingress_queue: XXX: need comments on this one 1869 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1870 * @broadcast: hw bcast address 1871 * 1872 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1873 * indexed by RX queue number. Assigned by driver. 1874 * This must only be set if the ndo_rx_flow_steer 1875 * operation is defined 1876 * @index_hlist: Device index hash chain 1877 * 1878 * @_tx: Array of TX queues 1879 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1880 * @real_num_tx_queues: Number of TX queues currently active in device 1881 * @qdisc: Root qdisc from userspace point of view 1882 * @tx_queue_len: Max frames per queue allowed 1883 * @tx_global_lock: XXX: need comments on this one 1884 * @xdp_bulkq: XDP device bulk queue 1885 * @xps_maps: all CPUs/RXQs maps for XPS device 1886 * 1887 * @xps_maps: XXX: need comments on this one 1888 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1889 * @nf_hooks_egress: netfilter hooks executed for egress packets 1890 * @qdisc_hash: qdisc hash table 1891 * @watchdog_timeo: Represents the timeout that is used by 1892 * the watchdog (see dev_watchdog()) 1893 * @watchdog_timer: List of timers 1894 * 1895 * @proto_down_reason: reason a netdev interface is held down 1896 * @pcpu_refcnt: Number of references to this device 1897 * @dev_refcnt: Number of references to this device 1898 * @refcnt_tracker: Tracker directory for tracked references to this device 1899 * @todo_list: Delayed register/unregister 1900 * @link_watch_list: XXX: need comments on this one 1901 * 1902 * @reg_state: Register/unregister state machine 1903 * @dismantle: Device is going to be freed 1904 * @rtnl_link_state: This enum represents the phases of creating 1905 * a new link 1906 * 1907 * @needs_free_netdev: Should unregister perform free_netdev? 1908 * @priv_destructor: Called from unregister 1909 * @npinfo: XXX: need comments on this one 1910 * @nd_net: Network namespace this network device is inside 1911 * 1912 * @ml_priv: Mid-layer private 1913 * @ml_priv_type: Mid-layer private type 1914 * 1915 * @pcpu_stat_type: Type of device statistics which the core should 1916 * allocate/free: none, lstats, tstats, dstats. none 1917 * means the driver is handling statistics allocation/ 1918 * freeing internally. 1919 * @lstats: Loopback statistics: packets, bytes 1920 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1921 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1922 * 1923 * @garp_port: GARP 1924 * @mrp_port: MRP 1925 * 1926 * @dm_private: Drop monitor private 1927 * 1928 * @dev: Class/net/name entry 1929 * @sysfs_groups: Space for optional device, statistics and wireless 1930 * sysfs groups 1931 * 1932 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1933 * @rtnl_link_ops: Rtnl_link_ops 1934 * @stat_ops: Optional ops for queue-aware statistics 1935 * @queue_mgmt_ops: Optional ops for queue management 1936 * 1937 * @gso_max_size: Maximum size of generic segmentation offload 1938 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1939 * @gso_max_segs: Maximum number of segments that can be passed to the 1940 * NIC for GSO 1941 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1942 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1943 * for IPv4. 1944 * 1945 * @dcbnl_ops: Data Center Bridging netlink ops 1946 * @num_tc: Number of traffic classes in the net device 1947 * @tc_to_txq: XXX: need comments on this one 1948 * @prio_tc_map: XXX: need comments on this one 1949 * 1950 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1951 * 1952 * @priomap: XXX: need comments on this one 1953 * @link_topo: Physical link topology tracking attached PHYs 1954 * @phydev: Physical device may attach itself 1955 * for hardware timestamping 1956 * @sfp_bus: attached &struct sfp_bus structure. 1957 * 1958 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1959 * 1960 * @proto_down: protocol port state information can be sent to the 1961 * switch driver and used to set the phys state of the 1962 * switch port. 1963 * 1964 * @threaded: napi threaded mode is enabled 1965 * 1966 * @see_all_hwtstamp_requests: device wants to see calls to 1967 * ndo_hwtstamp_set() for all timestamp requests 1968 * regardless of source, even if those aren't 1969 * HWTSTAMP_SOURCE_NETDEV 1970 * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN 1971 * @netns_local: interface can't change network namespaces 1972 * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes 1973 * 1974 * @net_notifier_list: List of per-net netdev notifier block 1975 * that follow this device when it is moved 1976 * to another network namespace. 1977 * 1978 * @macsec_ops: MACsec offloading ops 1979 * 1980 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1981 * offload capabilities of the device 1982 * @udp_tunnel_nic: UDP tunnel offload state 1983 * @ethtool: ethtool related state 1984 * @xdp_state: stores info on attached XDP BPF programs 1985 * 1986 * @nested_level: Used as a parameter of spin_lock_nested() of 1987 * dev->addr_list_lock. 1988 * @unlink_list: As netif_addr_lock() can be called recursively, 1989 * keep a list of interfaces to be deleted. 1990 * @gro_max_size: Maximum size of aggregated packet in generic 1991 * receive offload (GRO) 1992 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 1993 * receive offload (GRO), for IPv4. 1994 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 1995 * zero copy driver 1996 * 1997 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 1998 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 1999 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2000 * @dev_registered_tracker: tracker for reference held while 2001 * registered 2002 * @offload_xstats_l3: L3 HW stats for this netdevice. 2003 * 2004 * @devlink_port: Pointer to related devlink port structure. 2005 * Assigned by a driver before netdev registration using 2006 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2007 * during the time netdevice is registered. 2008 * 2009 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2010 * where the clock is recovered. 2011 * 2012 * @max_pacing_offload_horizon: max EDT offload horizon in nsec. 2013 * 2014 * FIXME: cleanup struct net_device such that network protocol info 2015 * moves out. 2016 */ 2017 2018 struct net_device { 2019 /* Cacheline organization can be found documented in 2020 * Documentation/networking/net_cachelines/net_device.rst. 2021 * Please update the document when adding new fields. 2022 */ 2023 2024 /* TX read-mostly hotpath */ 2025 __cacheline_group_begin(net_device_read_tx); 2026 struct_group(priv_flags_fast, 2027 unsigned long priv_flags:32; 2028 unsigned long lltx:1; 2029 ); 2030 const struct net_device_ops *netdev_ops; 2031 const struct header_ops *header_ops; 2032 struct netdev_queue *_tx; 2033 netdev_features_t gso_partial_features; 2034 unsigned int real_num_tx_queues; 2035 unsigned int gso_max_size; 2036 unsigned int gso_ipv4_max_size; 2037 u16 gso_max_segs; 2038 s16 num_tc; 2039 /* Note : dev->mtu is often read without holding a lock. 2040 * Writers usually hold RTNL. 2041 * It is recommended to use READ_ONCE() to annotate the reads, 2042 * and to use WRITE_ONCE() to annotate the writes. 2043 */ 2044 unsigned int mtu; 2045 unsigned short needed_headroom; 2046 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2047 #ifdef CONFIG_XPS 2048 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2049 #endif 2050 #ifdef CONFIG_NETFILTER_EGRESS 2051 struct nf_hook_entries __rcu *nf_hooks_egress; 2052 #endif 2053 #ifdef CONFIG_NET_XGRESS 2054 struct bpf_mprog_entry __rcu *tcx_egress; 2055 #endif 2056 __cacheline_group_end(net_device_read_tx); 2057 2058 /* TXRX read-mostly hotpath */ 2059 __cacheline_group_begin(net_device_read_txrx); 2060 union { 2061 struct pcpu_lstats __percpu *lstats; 2062 struct pcpu_sw_netstats __percpu *tstats; 2063 struct pcpu_dstats __percpu *dstats; 2064 }; 2065 unsigned long state; 2066 unsigned int flags; 2067 unsigned short hard_header_len; 2068 netdev_features_t features; 2069 struct inet6_dev __rcu *ip6_ptr; 2070 __cacheline_group_end(net_device_read_txrx); 2071 2072 /* RX read-mostly hotpath */ 2073 __cacheline_group_begin(net_device_read_rx); 2074 struct bpf_prog __rcu *xdp_prog; 2075 struct list_head ptype_specific; 2076 int ifindex; 2077 unsigned int real_num_rx_queues; 2078 struct netdev_rx_queue *_rx; 2079 unsigned long gro_flush_timeout; 2080 u32 napi_defer_hard_irqs; 2081 unsigned int gro_max_size; 2082 unsigned int gro_ipv4_max_size; 2083 rx_handler_func_t __rcu *rx_handler; 2084 void __rcu *rx_handler_data; 2085 possible_net_t nd_net; 2086 #ifdef CONFIG_NETPOLL 2087 struct netpoll_info __rcu *npinfo; 2088 #endif 2089 #ifdef CONFIG_NET_XGRESS 2090 struct bpf_mprog_entry __rcu *tcx_ingress; 2091 #endif 2092 __cacheline_group_end(net_device_read_rx); 2093 2094 char name[IFNAMSIZ]; 2095 struct netdev_name_node *name_node; 2096 struct dev_ifalias __rcu *ifalias; 2097 /* 2098 * I/O specific fields 2099 * FIXME: Merge these and struct ifmap into one 2100 */ 2101 unsigned long mem_end; 2102 unsigned long mem_start; 2103 unsigned long base_addr; 2104 2105 /* 2106 * Some hardware also needs these fields (state,dev_list, 2107 * napi_list,unreg_list,close_list) but they are not 2108 * part of the usual set specified in Space.c. 2109 */ 2110 2111 2112 struct list_head dev_list; 2113 struct list_head napi_list; 2114 struct list_head unreg_list; 2115 struct list_head close_list; 2116 struct list_head ptype_all; 2117 2118 struct { 2119 struct list_head upper; 2120 struct list_head lower; 2121 } adj_list; 2122 2123 /* Read-mostly cache-line for fast-path access */ 2124 xdp_features_t xdp_features; 2125 const struct xdp_metadata_ops *xdp_metadata_ops; 2126 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2127 unsigned short gflags; 2128 2129 unsigned short needed_tailroom; 2130 2131 netdev_features_t hw_features; 2132 netdev_features_t wanted_features; 2133 netdev_features_t vlan_features; 2134 netdev_features_t hw_enc_features; 2135 netdev_features_t mpls_features; 2136 2137 unsigned int min_mtu; 2138 unsigned int max_mtu; 2139 unsigned short type; 2140 unsigned char min_header_len; 2141 unsigned char name_assign_type; 2142 2143 int group; 2144 2145 struct net_device_stats stats; /* not used by modern drivers */ 2146 2147 struct net_device_core_stats __percpu *core_stats; 2148 2149 /* Stats to monitor link on/off, flapping */ 2150 atomic_t carrier_up_count; 2151 atomic_t carrier_down_count; 2152 2153 #ifdef CONFIG_WIRELESS_EXT 2154 const struct iw_handler_def *wireless_handlers; 2155 struct iw_public_data *wireless_data; 2156 #endif 2157 const struct ethtool_ops *ethtool_ops; 2158 #ifdef CONFIG_NET_L3_MASTER_DEV 2159 const struct l3mdev_ops *l3mdev_ops; 2160 #endif 2161 #if IS_ENABLED(CONFIG_IPV6) 2162 const struct ndisc_ops *ndisc_ops; 2163 #endif 2164 2165 #ifdef CONFIG_XFRM_OFFLOAD 2166 const struct xfrmdev_ops *xfrmdev_ops; 2167 #endif 2168 2169 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2170 const struct tlsdev_ops *tlsdev_ops; 2171 #endif 2172 2173 unsigned int operstate; 2174 unsigned char link_mode; 2175 2176 unsigned char if_port; 2177 unsigned char dma; 2178 2179 /* Interface address info. */ 2180 unsigned char perm_addr[MAX_ADDR_LEN]; 2181 unsigned char addr_assign_type; 2182 unsigned char addr_len; 2183 unsigned char upper_level; 2184 unsigned char lower_level; 2185 2186 unsigned short neigh_priv_len; 2187 unsigned short dev_id; 2188 unsigned short dev_port; 2189 int irq; 2190 u32 priv_len; 2191 2192 spinlock_t addr_list_lock; 2193 2194 struct netdev_hw_addr_list uc; 2195 struct netdev_hw_addr_list mc; 2196 struct netdev_hw_addr_list dev_addrs; 2197 2198 #ifdef CONFIG_SYSFS 2199 struct kset *queues_kset; 2200 #endif 2201 #ifdef CONFIG_LOCKDEP 2202 struct list_head unlink_list; 2203 #endif 2204 unsigned int promiscuity; 2205 unsigned int allmulti; 2206 bool uc_promisc; 2207 #ifdef CONFIG_LOCKDEP 2208 unsigned char nested_level; 2209 #endif 2210 2211 2212 /* Protocol-specific pointers */ 2213 struct in_device __rcu *ip_ptr; 2214 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2215 struct vlan_info __rcu *vlan_info; 2216 #endif 2217 #if IS_ENABLED(CONFIG_NET_DSA) 2218 struct dsa_port *dsa_ptr; 2219 #endif 2220 #if IS_ENABLED(CONFIG_TIPC) 2221 struct tipc_bearer __rcu *tipc_ptr; 2222 #endif 2223 #if IS_ENABLED(CONFIG_ATALK) 2224 void *atalk_ptr; 2225 #endif 2226 #if IS_ENABLED(CONFIG_AX25) 2227 void *ax25_ptr; 2228 #endif 2229 #if IS_ENABLED(CONFIG_CFG80211) 2230 struct wireless_dev *ieee80211_ptr; 2231 #endif 2232 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2233 struct wpan_dev *ieee802154_ptr; 2234 #endif 2235 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2236 struct mpls_dev __rcu *mpls_ptr; 2237 #endif 2238 #if IS_ENABLED(CONFIG_MCTP) 2239 struct mctp_dev __rcu *mctp_ptr; 2240 #endif 2241 2242 /* 2243 * Cache lines mostly used on receive path (including eth_type_trans()) 2244 */ 2245 /* Interface address info used in eth_type_trans() */ 2246 const unsigned char *dev_addr; 2247 2248 unsigned int num_rx_queues; 2249 #define GRO_LEGACY_MAX_SIZE 65536u 2250 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2251 * and shinfo->gso_segs is a 16bit field. 2252 */ 2253 #define GRO_MAX_SIZE (8 * 65535u) 2254 unsigned int xdp_zc_max_segs; 2255 struct netdev_queue __rcu *ingress_queue; 2256 #ifdef CONFIG_NETFILTER_INGRESS 2257 struct nf_hook_entries __rcu *nf_hooks_ingress; 2258 #endif 2259 2260 unsigned char broadcast[MAX_ADDR_LEN]; 2261 #ifdef CONFIG_RFS_ACCEL 2262 struct cpu_rmap *rx_cpu_rmap; 2263 #endif 2264 struct hlist_node index_hlist; 2265 2266 /* 2267 * Cache lines mostly used on transmit path 2268 */ 2269 unsigned int num_tx_queues; 2270 struct Qdisc __rcu *qdisc; 2271 unsigned int tx_queue_len; 2272 spinlock_t tx_global_lock; 2273 2274 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2275 2276 #ifdef CONFIG_NET_SCHED 2277 DECLARE_HASHTABLE (qdisc_hash, 4); 2278 #endif 2279 /* These may be needed for future network-power-down code. */ 2280 struct timer_list watchdog_timer; 2281 int watchdog_timeo; 2282 2283 u32 proto_down_reason; 2284 2285 struct list_head todo_list; 2286 2287 #ifdef CONFIG_PCPU_DEV_REFCNT 2288 int __percpu *pcpu_refcnt; 2289 #else 2290 refcount_t dev_refcnt; 2291 #endif 2292 struct ref_tracker_dir refcnt_tracker; 2293 2294 struct list_head link_watch_list; 2295 2296 u8 reg_state; 2297 2298 bool dismantle; 2299 2300 enum { 2301 RTNL_LINK_INITIALIZED, 2302 RTNL_LINK_INITIALIZING, 2303 } rtnl_link_state:16; 2304 2305 bool needs_free_netdev; 2306 void (*priv_destructor)(struct net_device *dev); 2307 2308 /* mid-layer private */ 2309 void *ml_priv; 2310 enum netdev_ml_priv_type ml_priv_type; 2311 2312 enum netdev_stat_type pcpu_stat_type:8; 2313 2314 #if IS_ENABLED(CONFIG_GARP) 2315 struct garp_port __rcu *garp_port; 2316 #endif 2317 #if IS_ENABLED(CONFIG_MRP) 2318 struct mrp_port __rcu *mrp_port; 2319 #endif 2320 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2321 struct dm_hw_stat_delta __rcu *dm_private; 2322 #endif 2323 struct device dev; 2324 const struct attribute_group *sysfs_groups[4]; 2325 const struct attribute_group *sysfs_rx_queue_group; 2326 2327 const struct rtnl_link_ops *rtnl_link_ops; 2328 2329 const struct netdev_stat_ops *stat_ops; 2330 2331 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2332 2333 /* for setting kernel sock attribute on TCP connection setup */ 2334 #define GSO_MAX_SEGS 65535u 2335 #define GSO_LEGACY_MAX_SIZE 65536u 2336 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2337 * and shinfo->gso_segs is a 16bit field. 2338 */ 2339 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2340 2341 #define TSO_LEGACY_MAX_SIZE 65536 2342 #define TSO_MAX_SIZE UINT_MAX 2343 unsigned int tso_max_size; 2344 #define TSO_MAX_SEGS U16_MAX 2345 u16 tso_max_segs; 2346 2347 #ifdef CONFIG_DCB 2348 const struct dcbnl_rtnl_ops *dcbnl_ops; 2349 #endif 2350 u8 prio_tc_map[TC_BITMASK + 1]; 2351 2352 #if IS_ENABLED(CONFIG_FCOE) 2353 unsigned int fcoe_ddp_xid; 2354 #endif 2355 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2356 struct netprio_map __rcu *priomap; 2357 #endif 2358 struct phy_link_topology *link_topo; 2359 struct phy_device *phydev; 2360 struct sfp_bus *sfp_bus; 2361 struct lock_class_key *qdisc_tx_busylock; 2362 bool proto_down; 2363 bool threaded; 2364 2365 /* priv_flags_slow, ungrouped to save space */ 2366 unsigned long see_all_hwtstamp_requests:1; 2367 unsigned long change_proto_down:1; 2368 unsigned long netns_local:1; 2369 unsigned long fcoe_mtu:1; 2370 2371 struct list_head net_notifier_list; 2372 2373 #if IS_ENABLED(CONFIG_MACSEC) 2374 /* MACsec management functions */ 2375 const struct macsec_ops *macsec_ops; 2376 #endif 2377 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2378 struct udp_tunnel_nic *udp_tunnel_nic; 2379 2380 struct ethtool_netdev_state *ethtool; 2381 2382 /* protected by rtnl_lock */ 2383 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2384 2385 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2386 netdevice_tracker linkwatch_dev_tracker; 2387 netdevice_tracker watchdog_dev_tracker; 2388 netdevice_tracker dev_registered_tracker; 2389 struct rtnl_hw_stats64 *offload_xstats_l3; 2390 2391 struct devlink_port *devlink_port; 2392 2393 #if IS_ENABLED(CONFIG_DPLL) 2394 struct dpll_pin __rcu *dpll_pin; 2395 #endif 2396 #if IS_ENABLED(CONFIG_PAGE_POOL) 2397 /** @page_pools: page pools created for this netdevice */ 2398 struct hlist_head page_pools; 2399 #endif 2400 2401 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ 2402 struct dim_irq_moder *irq_moder; 2403 2404 u64 max_pacing_offload_horizon; 2405 2406 u8 priv[] ____cacheline_aligned 2407 __counted_by(priv_len); 2408 } ____cacheline_aligned; 2409 #define to_net_dev(d) container_of(d, struct net_device, dev) 2410 2411 /* 2412 * Driver should use this to assign devlink port instance to a netdevice 2413 * before it registers the netdevice. Therefore devlink_port is static 2414 * during the netdev lifetime after it is registered. 2415 */ 2416 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2417 ({ \ 2418 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2419 ((dev)->devlink_port = (port)); \ 2420 }) 2421 2422 static inline bool netif_elide_gro(const struct net_device *dev) 2423 { 2424 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2425 return true; 2426 return false; 2427 } 2428 2429 #define NETDEV_ALIGN 32 2430 2431 static inline 2432 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2433 { 2434 return dev->prio_tc_map[prio & TC_BITMASK]; 2435 } 2436 2437 static inline 2438 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2439 { 2440 if (tc >= dev->num_tc) 2441 return -EINVAL; 2442 2443 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2444 return 0; 2445 } 2446 2447 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2448 void netdev_reset_tc(struct net_device *dev); 2449 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2450 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2451 2452 static inline 2453 int netdev_get_num_tc(struct net_device *dev) 2454 { 2455 return dev->num_tc; 2456 } 2457 2458 static inline void net_prefetch(void *p) 2459 { 2460 prefetch(p); 2461 #if L1_CACHE_BYTES < 128 2462 prefetch((u8 *)p + L1_CACHE_BYTES); 2463 #endif 2464 } 2465 2466 static inline void net_prefetchw(void *p) 2467 { 2468 prefetchw(p); 2469 #if L1_CACHE_BYTES < 128 2470 prefetchw((u8 *)p + L1_CACHE_BYTES); 2471 #endif 2472 } 2473 2474 void netdev_unbind_sb_channel(struct net_device *dev, 2475 struct net_device *sb_dev); 2476 int netdev_bind_sb_channel_queue(struct net_device *dev, 2477 struct net_device *sb_dev, 2478 u8 tc, u16 count, u16 offset); 2479 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2480 static inline int netdev_get_sb_channel(struct net_device *dev) 2481 { 2482 return max_t(int, -dev->num_tc, 0); 2483 } 2484 2485 static inline 2486 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2487 unsigned int index) 2488 { 2489 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2490 return &dev->_tx[index]; 2491 } 2492 2493 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2494 const struct sk_buff *skb) 2495 { 2496 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2497 } 2498 2499 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2500 void (*f)(struct net_device *, 2501 struct netdev_queue *, 2502 void *), 2503 void *arg) 2504 { 2505 unsigned int i; 2506 2507 for (i = 0; i < dev->num_tx_queues; i++) 2508 f(dev, &dev->_tx[i], arg); 2509 } 2510 2511 #define netdev_lockdep_set_classes(dev) \ 2512 { \ 2513 static struct lock_class_key qdisc_tx_busylock_key; \ 2514 static struct lock_class_key qdisc_xmit_lock_key; \ 2515 static struct lock_class_key dev_addr_list_lock_key; \ 2516 unsigned int i; \ 2517 \ 2518 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2519 lockdep_set_class(&(dev)->addr_list_lock, \ 2520 &dev_addr_list_lock_key); \ 2521 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2522 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2523 &qdisc_xmit_lock_key); \ 2524 } 2525 2526 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2527 struct net_device *sb_dev); 2528 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2529 struct sk_buff *skb, 2530 struct net_device *sb_dev); 2531 2532 /* returns the headroom that the master device needs to take in account 2533 * when forwarding to this dev 2534 */ 2535 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2536 { 2537 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2538 } 2539 2540 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2541 { 2542 if (dev->netdev_ops->ndo_set_rx_headroom) 2543 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2544 } 2545 2546 /* set the device rx headroom to the dev's default */ 2547 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2548 { 2549 netdev_set_rx_headroom(dev, -1); 2550 } 2551 2552 static inline void *netdev_get_ml_priv(struct net_device *dev, 2553 enum netdev_ml_priv_type type) 2554 { 2555 if (dev->ml_priv_type != type) 2556 return NULL; 2557 2558 return dev->ml_priv; 2559 } 2560 2561 static inline void netdev_set_ml_priv(struct net_device *dev, 2562 void *ml_priv, 2563 enum netdev_ml_priv_type type) 2564 { 2565 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2566 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2567 dev->ml_priv_type, type); 2568 WARN(!dev->ml_priv_type && dev->ml_priv, 2569 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2570 2571 dev->ml_priv = ml_priv; 2572 dev->ml_priv_type = type; 2573 } 2574 2575 /* 2576 * Net namespace inlines 2577 */ 2578 static inline 2579 struct net *dev_net(const struct net_device *dev) 2580 { 2581 return read_pnet(&dev->nd_net); 2582 } 2583 2584 static inline 2585 void dev_net_set(struct net_device *dev, struct net *net) 2586 { 2587 write_pnet(&dev->nd_net, net); 2588 } 2589 2590 /** 2591 * netdev_priv - access network device private data 2592 * @dev: network device 2593 * 2594 * Get network device private data 2595 */ 2596 static inline void *netdev_priv(const struct net_device *dev) 2597 { 2598 return (void *)dev->priv; 2599 } 2600 2601 /* Set the sysfs physical device reference for the network logical device 2602 * if set prior to registration will cause a symlink during initialization. 2603 */ 2604 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2605 2606 /* Set the sysfs device type for the network logical device to allow 2607 * fine-grained identification of different network device types. For 2608 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2609 */ 2610 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2611 2612 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2613 enum netdev_queue_type type, 2614 struct napi_struct *napi); 2615 2616 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2617 { 2618 napi->irq = irq; 2619 } 2620 2621 /* Default NAPI poll() weight 2622 * Device drivers are strongly advised to not use bigger value 2623 */ 2624 #define NAPI_POLL_WEIGHT 64 2625 2626 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2627 int (*poll)(struct napi_struct *, int), int weight); 2628 2629 /** 2630 * netif_napi_add() - initialize a NAPI context 2631 * @dev: network device 2632 * @napi: NAPI context 2633 * @poll: polling function 2634 * 2635 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2636 * *any* of the other NAPI-related functions. 2637 */ 2638 static inline void 2639 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2640 int (*poll)(struct napi_struct *, int)) 2641 { 2642 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2643 } 2644 2645 static inline void 2646 netif_napi_add_tx_weight(struct net_device *dev, 2647 struct napi_struct *napi, 2648 int (*poll)(struct napi_struct *, int), 2649 int weight) 2650 { 2651 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2652 netif_napi_add_weight(dev, napi, poll, weight); 2653 } 2654 2655 /** 2656 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2657 * @dev: network device 2658 * @napi: NAPI context 2659 * @poll: polling function 2660 * 2661 * This variant of netif_napi_add() should be used from drivers using NAPI 2662 * to exclusively poll a TX queue. 2663 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2664 */ 2665 static inline void netif_napi_add_tx(struct net_device *dev, 2666 struct napi_struct *napi, 2667 int (*poll)(struct napi_struct *, int)) 2668 { 2669 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2670 } 2671 2672 /** 2673 * __netif_napi_del - remove a NAPI context 2674 * @napi: NAPI context 2675 * 2676 * Warning: caller must observe RCU grace period before freeing memory 2677 * containing @napi. Drivers might want to call this helper to combine 2678 * all the needed RCU grace periods into a single one. 2679 */ 2680 void __netif_napi_del(struct napi_struct *napi); 2681 2682 /** 2683 * netif_napi_del - remove a NAPI context 2684 * @napi: NAPI context 2685 * 2686 * netif_napi_del() removes a NAPI context from the network device NAPI list 2687 */ 2688 static inline void netif_napi_del(struct napi_struct *napi) 2689 { 2690 __netif_napi_del(napi); 2691 synchronize_net(); 2692 } 2693 2694 struct packet_type { 2695 __be16 type; /* This is really htons(ether_type). */ 2696 bool ignore_outgoing; 2697 struct net_device *dev; /* NULL is wildcarded here */ 2698 netdevice_tracker dev_tracker; 2699 int (*func) (struct sk_buff *, 2700 struct net_device *, 2701 struct packet_type *, 2702 struct net_device *); 2703 void (*list_func) (struct list_head *, 2704 struct packet_type *, 2705 struct net_device *); 2706 bool (*id_match)(struct packet_type *ptype, 2707 struct sock *sk); 2708 struct net *af_packet_net; 2709 void *af_packet_priv; 2710 struct list_head list; 2711 }; 2712 2713 struct offload_callbacks { 2714 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2715 netdev_features_t features); 2716 struct sk_buff *(*gro_receive)(struct list_head *head, 2717 struct sk_buff *skb); 2718 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2719 }; 2720 2721 struct packet_offload { 2722 __be16 type; /* This is really htons(ether_type). */ 2723 u16 priority; 2724 struct offload_callbacks callbacks; 2725 struct list_head list; 2726 }; 2727 2728 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2729 struct pcpu_sw_netstats { 2730 u64_stats_t rx_packets; 2731 u64_stats_t rx_bytes; 2732 u64_stats_t tx_packets; 2733 u64_stats_t tx_bytes; 2734 struct u64_stats_sync syncp; 2735 } __aligned(4 * sizeof(u64)); 2736 2737 struct pcpu_dstats { 2738 u64_stats_t rx_packets; 2739 u64_stats_t rx_bytes; 2740 u64_stats_t rx_drops; 2741 u64_stats_t tx_packets; 2742 u64_stats_t tx_bytes; 2743 u64_stats_t tx_drops; 2744 struct u64_stats_sync syncp; 2745 } __aligned(8 * sizeof(u64)); 2746 2747 struct pcpu_lstats { 2748 u64_stats_t packets; 2749 u64_stats_t bytes; 2750 struct u64_stats_sync syncp; 2751 } __aligned(2 * sizeof(u64)); 2752 2753 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2754 2755 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2756 { 2757 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2758 2759 u64_stats_update_begin(&tstats->syncp); 2760 u64_stats_add(&tstats->rx_bytes, len); 2761 u64_stats_inc(&tstats->rx_packets); 2762 u64_stats_update_end(&tstats->syncp); 2763 } 2764 2765 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2766 unsigned int packets, 2767 unsigned int len) 2768 { 2769 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2770 2771 u64_stats_update_begin(&tstats->syncp); 2772 u64_stats_add(&tstats->tx_bytes, len); 2773 u64_stats_add(&tstats->tx_packets, packets); 2774 u64_stats_update_end(&tstats->syncp); 2775 } 2776 2777 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2778 { 2779 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2780 2781 u64_stats_update_begin(&lstats->syncp); 2782 u64_stats_add(&lstats->bytes, len); 2783 u64_stats_inc(&lstats->packets); 2784 u64_stats_update_end(&lstats->syncp); 2785 } 2786 2787 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2788 ({ \ 2789 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2790 if (pcpu_stats) { \ 2791 int __cpu; \ 2792 for_each_possible_cpu(__cpu) { \ 2793 typeof(type) *stat; \ 2794 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2795 u64_stats_init(&stat->syncp); \ 2796 } \ 2797 } \ 2798 pcpu_stats; \ 2799 }) 2800 2801 #define netdev_alloc_pcpu_stats(type) \ 2802 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2803 2804 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2805 ({ \ 2806 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2807 if (pcpu_stats) { \ 2808 int __cpu; \ 2809 for_each_possible_cpu(__cpu) { \ 2810 typeof(type) *stat; \ 2811 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2812 u64_stats_init(&stat->syncp); \ 2813 } \ 2814 } \ 2815 pcpu_stats; \ 2816 }) 2817 2818 enum netdev_lag_tx_type { 2819 NETDEV_LAG_TX_TYPE_UNKNOWN, 2820 NETDEV_LAG_TX_TYPE_RANDOM, 2821 NETDEV_LAG_TX_TYPE_BROADCAST, 2822 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2823 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2824 NETDEV_LAG_TX_TYPE_HASH, 2825 }; 2826 2827 enum netdev_lag_hash { 2828 NETDEV_LAG_HASH_NONE, 2829 NETDEV_LAG_HASH_L2, 2830 NETDEV_LAG_HASH_L34, 2831 NETDEV_LAG_HASH_L23, 2832 NETDEV_LAG_HASH_E23, 2833 NETDEV_LAG_HASH_E34, 2834 NETDEV_LAG_HASH_VLAN_SRCMAC, 2835 NETDEV_LAG_HASH_UNKNOWN, 2836 }; 2837 2838 struct netdev_lag_upper_info { 2839 enum netdev_lag_tx_type tx_type; 2840 enum netdev_lag_hash hash_type; 2841 }; 2842 2843 struct netdev_lag_lower_state_info { 2844 u8 link_up : 1, 2845 tx_enabled : 1; 2846 }; 2847 2848 #include <linux/notifier.h> 2849 2850 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2851 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2852 * adding new types. 2853 */ 2854 enum netdev_cmd { 2855 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2856 NETDEV_DOWN, 2857 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2858 detected a hardware crash and restarted 2859 - we can use this eg to kick tcp sessions 2860 once done */ 2861 NETDEV_CHANGE, /* Notify device state change */ 2862 NETDEV_REGISTER, 2863 NETDEV_UNREGISTER, 2864 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2865 NETDEV_CHANGEADDR, /* notify after the address change */ 2866 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2867 NETDEV_GOING_DOWN, 2868 NETDEV_CHANGENAME, 2869 NETDEV_FEAT_CHANGE, 2870 NETDEV_BONDING_FAILOVER, 2871 NETDEV_PRE_UP, 2872 NETDEV_PRE_TYPE_CHANGE, 2873 NETDEV_POST_TYPE_CHANGE, 2874 NETDEV_POST_INIT, 2875 NETDEV_PRE_UNINIT, 2876 NETDEV_RELEASE, 2877 NETDEV_NOTIFY_PEERS, 2878 NETDEV_JOIN, 2879 NETDEV_CHANGEUPPER, 2880 NETDEV_RESEND_IGMP, 2881 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2882 NETDEV_CHANGEINFODATA, 2883 NETDEV_BONDING_INFO, 2884 NETDEV_PRECHANGEUPPER, 2885 NETDEV_CHANGELOWERSTATE, 2886 NETDEV_UDP_TUNNEL_PUSH_INFO, 2887 NETDEV_UDP_TUNNEL_DROP_INFO, 2888 NETDEV_CHANGE_TX_QUEUE_LEN, 2889 NETDEV_CVLAN_FILTER_PUSH_INFO, 2890 NETDEV_CVLAN_FILTER_DROP_INFO, 2891 NETDEV_SVLAN_FILTER_PUSH_INFO, 2892 NETDEV_SVLAN_FILTER_DROP_INFO, 2893 NETDEV_OFFLOAD_XSTATS_ENABLE, 2894 NETDEV_OFFLOAD_XSTATS_DISABLE, 2895 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2896 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2897 NETDEV_XDP_FEAT_CHANGE, 2898 }; 2899 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2900 2901 int register_netdevice_notifier(struct notifier_block *nb); 2902 int unregister_netdevice_notifier(struct notifier_block *nb); 2903 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2904 int unregister_netdevice_notifier_net(struct net *net, 2905 struct notifier_block *nb); 2906 int register_netdevice_notifier_dev_net(struct net_device *dev, 2907 struct notifier_block *nb, 2908 struct netdev_net_notifier *nn); 2909 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2910 struct notifier_block *nb, 2911 struct netdev_net_notifier *nn); 2912 2913 struct netdev_notifier_info { 2914 struct net_device *dev; 2915 struct netlink_ext_ack *extack; 2916 }; 2917 2918 struct netdev_notifier_info_ext { 2919 struct netdev_notifier_info info; /* must be first */ 2920 union { 2921 u32 mtu; 2922 } ext; 2923 }; 2924 2925 struct netdev_notifier_change_info { 2926 struct netdev_notifier_info info; /* must be first */ 2927 unsigned int flags_changed; 2928 }; 2929 2930 struct netdev_notifier_changeupper_info { 2931 struct netdev_notifier_info info; /* must be first */ 2932 struct net_device *upper_dev; /* new upper dev */ 2933 bool master; /* is upper dev master */ 2934 bool linking; /* is the notification for link or unlink */ 2935 void *upper_info; /* upper dev info */ 2936 }; 2937 2938 struct netdev_notifier_changelowerstate_info { 2939 struct netdev_notifier_info info; /* must be first */ 2940 void *lower_state_info; /* is lower dev state */ 2941 }; 2942 2943 struct netdev_notifier_pre_changeaddr_info { 2944 struct netdev_notifier_info info; /* must be first */ 2945 const unsigned char *dev_addr; 2946 }; 2947 2948 enum netdev_offload_xstats_type { 2949 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2950 }; 2951 2952 struct netdev_notifier_offload_xstats_info { 2953 struct netdev_notifier_info info; /* must be first */ 2954 enum netdev_offload_xstats_type type; 2955 2956 union { 2957 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2958 struct netdev_notifier_offload_xstats_rd *report_delta; 2959 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2960 struct netdev_notifier_offload_xstats_ru *report_used; 2961 }; 2962 }; 2963 2964 int netdev_offload_xstats_enable(struct net_device *dev, 2965 enum netdev_offload_xstats_type type, 2966 struct netlink_ext_ack *extack); 2967 int netdev_offload_xstats_disable(struct net_device *dev, 2968 enum netdev_offload_xstats_type type); 2969 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2970 enum netdev_offload_xstats_type type); 2971 int netdev_offload_xstats_get(struct net_device *dev, 2972 enum netdev_offload_xstats_type type, 2973 struct rtnl_hw_stats64 *stats, bool *used, 2974 struct netlink_ext_ack *extack); 2975 void 2976 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2977 const struct rtnl_hw_stats64 *stats); 2978 void 2979 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2980 void netdev_offload_xstats_push_delta(struct net_device *dev, 2981 enum netdev_offload_xstats_type type, 2982 const struct rtnl_hw_stats64 *stats); 2983 2984 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2985 struct net_device *dev) 2986 { 2987 info->dev = dev; 2988 info->extack = NULL; 2989 } 2990 2991 static inline struct net_device * 2992 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2993 { 2994 return info->dev; 2995 } 2996 2997 static inline struct netlink_ext_ack * 2998 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2999 { 3000 return info->extack; 3001 } 3002 3003 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3004 int call_netdevice_notifiers_info(unsigned long val, 3005 struct netdev_notifier_info *info); 3006 3007 #define for_each_netdev(net, d) \ 3008 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3009 #define for_each_netdev_reverse(net, d) \ 3010 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3011 #define for_each_netdev_rcu(net, d) \ 3012 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3013 #define for_each_netdev_safe(net, d, n) \ 3014 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3015 #define for_each_netdev_continue(net, d) \ 3016 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3017 #define for_each_netdev_continue_reverse(net, d) \ 3018 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3019 dev_list) 3020 #define for_each_netdev_continue_rcu(net, d) \ 3021 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3022 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3023 for_each_netdev_rcu(&init_net, slave) \ 3024 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3025 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3026 3027 #define for_each_netdev_dump(net, d, ifindex) \ 3028 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ 3029 ULONG_MAX, XA_PRESENT)); ifindex++) 3030 3031 static inline struct net_device *next_net_device(struct net_device *dev) 3032 { 3033 struct list_head *lh; 3034 struct net *net; 3035 3036 net = dev_net(dev); 3037 lh = dev->dev_list.next; 3038 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3039 } 3040 3041 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3042 { 3043 struct list_head *lh; 3044 struct net *net; 3045 3046 net = dev_net(dev); 3047 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3048 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3049 } 3050 3051 static inline struct net_device *first_net_device(struct net *net) 3052 { 3053 return list_empty(&net->dev_base_head) ? NULL : 3054 net_device_entry(net->dev_base_head.next); 3055 } 3056 3057 static inline struct net_device *first_net_device_rcu(struct net *net) 3058 { 3059 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3060 3061 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3062 } 3063 3064 int netdev_boot_setup_check(struct net_device *dev); 3065 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3066 const char *hwaddr); 3067 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3068 void dev_add_pack(struct packet_type *pt); 3069 void dev_remove_pack(struct packet_type *pt); 3070 void __dev_remove_pack(struct packet_type *pt); 3071 void dev_add_offload(struct packet_offload *po); 3072 void dev_remove_offload(struct packet_offload *po); 3073 3074 int dev_get_iflink(const struct net_device *dev); 3075 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3076 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3077 struct net_device_path_stack *stack); 3078 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3079 unsigned short mask); 3080 struct net_device *dev_get_by_name(struct net *net, const char *name); 3081 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3082 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3083 bool netdev_name_in_use(struct net *net, const char *name); 3084 int dev_alloc_name(struct net_device *dev, const char *name); 3085 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3086 void dev_close(struct net_device *dev); 3087 void dev_close_many(struct list_head *head, bool unlink); 3088 void dev_disable_lro(struct net_device *dev); 3089 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3090 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3091 struct net_device *sb_dev); 3092 3093 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3094 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3095 3096 static inline int dev_queue_xmit(struct sk_buff *skb) 3097 { 3098 return __dev_queue_xmit(skb, NULL); 3099 } 3100 3101 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3102 struct net_device *sb_dev) 3103 { 3104 return __dev_queue_xmit(skb, sb_dev); 3105 } 3106 3107 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3108 { 3109 int ret; 3110 3111 ret = __dev_direct_xmit(skb, queue_id); 3112 if (!dev_xmit_complete(ret)) 3113 kfree_skb(skb); 3114 return ret; 3115 } 3116 3117 int register_netdevice(struct net_device *dev); 3118 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3119 void unregister_netdevice_many(struct list_head *head); 3120 static inline void unregister_netdevice(struct net_device *dev) 3121 { 3122 unregister_netdevice_queue(dev, NULL); 3123 } 3124 3125 int netdev_refcnt_read(const struct net_device *dev); 3126 void free_netdev(struct net_device *dev); 3127 void init_dummy_netdev(struct net_device *dev); 3128 3129 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3130 struct sk_buff *skb, 3131 bool all_slaves); 3132 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3133 struct sock *sk); 3134 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3135 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3136 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3137 netdevice_tracker *tracker, gfp_t gfp); 3138 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3139 netdevice_tracker *tracker, gfp_t gfp); 3140 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3141 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3142 void netdev_copy_name(struct net_device *dev, char *name); 3143 3144 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3145 unsigned short type, 3146 const void *daddr, const void *saddr, 3147 unsigned int len) 3148 { 3149 if (!dev->header_ops || !dev->header_ops->create) 3150 return 0; 3151 3152 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3153 } 3154 3155 static inline int dev_parse_header(const struct sk_buff *skb, 3156 unsigned char *haddr) 3157 { 3158 const struct net_device *dev = skb->dev; 3159 3160 if (!dev->header_ops || !dev->header_ops->parse) 3161 return 0; 3162 return dev->header_ops->parse(skb, haddr); 3163 } 3164 3165 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3166 { 3167 const struct net_device *dev = skb->dev; 3168 3169 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3170 return 0; 3171 return dev->header_ops->parse_protocol(skb); 3172 } 3173 3174 /* ll_header must have at least hard_header_len allocated */ 3175 static inline bool dev_validate_header(const struct net_device *dev, 3176 char *ll_header, int len) 3177 { 3178 if (likely(len >= dev->hard_header_len)) 3179 return true; 3180 if (len < dev->min_header_len) 3181 return false; 3182 3183 if (capable(CAP_SYS_RAWIO)) { 3184 memset(ll_header + len, 0, dev->hard_header_len - len); 3185 return true; 3186 } 3187 3188 if (dev->header_ops && dev->header_ops->validate) 3189 return dev->header_ops->validate(ll_header, len); 3190 3191 return false; 3192 } 3193 3194 static inline bool dev_has_header(const struct net_device *dev) 3195 { 3196 return dev->header_ops && dev->header_ops->create; 3197 } 3198 3199 /* 3200 * Incoming packets are placed on per-CPU queues 3201 */ 3202 struct softnet_data { 3203 struct list_head poll_list; 3204 struct sk_buff_head process_queue; 3205 local_lock_t process_queue_bh_lock; 3206 3207 /* stats */ 3208 unsigned int processed; 3209 unsigned int time_squeeze; 3210 #ifdef CONFIG_RPS 3211 struct softnet_data *rps_ipi_list; 3212 #endif 3213 3214 unsigned int received_rps; 3215 bool in_net_rx_action; 3216 bool in_napi_threaded_poll; 3217 3218 #ifdef CONFIG_NET_FLOW_LIMIT 3219 struct sd_flow_limit __rcu *flow_limit; 3220 #endif 3221 struct Qdisc *output_queue; 3222 struct Qdisc **output_queue_tailp; 3223 struct sk_buff *completion_queue; 3224 #ifdef CONFIG_XFRM_OFFLOAD 3225 struct sk_buff_head xfrm_backlog; 3226 #endif 3227 /* written and read only by owning cpu: */ 3228 struct netdev_xmit xmit; 3229 #ifdef CONFIG_RPS 3230 /* input_queue_head should be written by cpu owning this struct, 3231 * and only read by other cpus. Worth using a cache line. 3232 */ 3233 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3234 3235 /* Elements below can be accessed between CPUs for RPS/RFS */ 3236 call_single_data_t csd ____cacheline_aligned_in_smp; 3237 struct softnet_data *rps_ipi_next; 3238 unsigned int cpu; 3239 unsigned int input_queue_tail; 3240 #endif 3241 struct sk_buff_head input_pkt_queue; 3242 struct napi_struct backlog; 3243 3244 atomic_t dropped ____cacheline_aligned_in_smp; 3245 3246 /* Another possibly contended cache line */ 3247 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3248 int defer_count; 3249 int defer_ipi_scheduled; 3250 struct sk_buff *defer_list; 3251 call_single_data_t defer_csd; 3252 }; 3253 3254 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3255 3256 #ifndef CONFIG_PREEMPT_RT 3257 static inline int dev_recursion_level(void) 3258 { 3259 return this_cpu_read(softnet_data.xmit.recursion); 3260 } 3261 #else 3262 static inline int dev_recursion_level(void) 3263 { 3264 return current->net_xmit.recursion; 3265 } 3266 3267 #endif 3268 3269 void __netif_schedule(struct Qdisc *q); 3270 void netif_schedule_queue(struct netdev_queue *txq); 3271 3272 static inline void netif_tx_schedule_all(struct net_device *dev) 3273 { 3274 unsigned int i; 3275 3276 for (i = 0; i < dev->num_tx_queues; i++) 3277 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3278 } 3279 3280 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3281 { 3282 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3283 } 3284 3285 /** 3286 * netif_start_queue - allow transmit 3287 * @dev: network device 3288 * 3289 * Allow upper layers to call the device hard_start_xmit routine. 3290 */ 3291 static inline void netif_start_queue(struct net_device *dev) 3292 { 3293 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3294 } 3295 3296 static inline void netif_tx_start_all_queues(struct net_device *dev) 3297 { 3298 unsigned int i; 3299 3300 for (i = 0; i < dev->num_tx_queues; i++) { 3301 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3302 netif_tx_start_queue(txq); 3303 } 3304 } 3305 3306 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3307 3308 /** 3309 * netif_wake_queue - restart transmit 3310 * @dev: network device 3311 * 3312 * Allow upper layers to call the device hard_start_xmit routine. 3313 * Used for flow control when transmit resources are available. 3314 */ 3315 static inline void netif_wake_queue(struct net_device *dev) 3316 { 3317 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3318 } 3319 3320 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3321 { 3322 unsigned int i; 3323 3324 for (i = 0; i < dev->num_tx_queues; i++) { 3325 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3326 netif_tx_wake_queue(txq); 3327 } 3328 } 3329 3330 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3331 { 3332 /* Must be an atomic op see netif_txq_try_stop() */ 3333 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3334 } 3335 3336 /** 3337 * netif_stop_queue - stop transmitted packets 3338 * @dev: network device 3339 * 3340 * Stop upper layers calling the device hard_start_xmit routine. 3341 * Used for flow control when transmit resources are unavailable. 3342 */ 3343 static inline void netif_stop_queue(struct net_device *dev) 3344 { 3345 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3346 } 3347 3348 void netif_tx_stop_all_queues(struct net_device *dev); 3349 3350 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3351 { 3352 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3353 } 3354 3355 /** 3356 * netif_queue_stopped - test if transmit queue is flowblocked 3357 * @dev: network device 3358 * 3359 * Test if transmit queue on device is currently unable to send. 3360 */ 3361 static inline bool netif_queue_stopped(const struct net_device *dev) 3362 { 3363 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3364 } 3365 3366 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3367 { 3368 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3369 } 3370 3371 static inline bool 3372 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3373 { 3374 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3375 } 3376 3377 static inline bool 3378 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3379 { 3380 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3381 } 3382 3383 /** 3384 * netdev_queue_set_dql_min_limit - set dql minimum limit 3385 * @dev_queue: pointer to transmit queue 3386 * @min_limit: dql minimum limit 3387 * 3388 * Forces xmit_more() to return true until the minimum threshold 3389 * defined by @min_limit is reached (or until the tx queue is 3390 * empty). Warning: to be use with care, misuse will impact the 3391 * latency. 3392 */ 3393 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3394 unsigned int min_limit) 3395 { 3396 #ifdef CONFIG_BQL 3397 dev_queue->dql.min_limit = min_limit; 3398 #endif 3399 } 3400 3401 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3402 { 3403 #ifdef CONFIG_BQL 3404 /* Non-BQL migrated drivers will return 0, too. */ 3405 return dql_avail(&txq->dql); 3406 #else 3407 return 0; 3408 #endif 3409 } 3410 3411 /** 3412 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3413 * @dev_queue: pointer to transmit queue 3414 * 3415 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3416 * to give appropriate hint to the CPU. 3417 */ 3418 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3419 { 3420 #ifdef CONFIG_BQL 3421 prefetchw(&dev_queue->dql.num_queued); 3422 #endif 3423 } 3424 3425 /** 3426 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3427 * @dev_queue: pointer to transmit queue 3428 * 3429 * BQL enabled drivers might use this helper in their TX completion path, 3430 * to give appropriate hint to the CPU. 3431 */ 3432 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3433 { 3434 #ifdef CONFIG_BQL 3435 prefetchw(&dev_queue->dql.limit); 3436 #endif 3437 } 3438 3439 /** 3440 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3441 * @dev_queue: network device queue 3442 * @bytes: number of bytes queued to the device queue 3443 * 3444 * Report the number of bytes queued for sending/completion to the network 3445 * device hardware queue. @bytes should be a good approximation and should 3446 * exactly match netdev_completed_queue() @bytes. 3447 * This is typically called once per packet, from ndo_start_xmit(). 3448 */ 3449 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3450 unsigned int bytes) 3451 { 3452 #ifdef CONFIG_BQL 3453 dql_queued(&dev_queue->dql, bytes); 3454 3455 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3456 return; 3457 3458 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3459 3460 /* 3461 * The XOFF flag must be set before checking the dql_avail below, 3462 * because in netdev_tx_completed_queue we update the dql_completed 3463 * before checking the XOFF flag. 3464 */ 3465 smp_mb(); 3466 3467 /* check again in case another CPU has just made room avail */ 3468 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3469 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3470 #endif 3471 } 3472 3473 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3474 * that they should not test BQL status themselves. 3475 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3476 * skb of a batch. 3477 * Returns true if the doorbell must be used to kick the NIC. 3478 */ 3479 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3480 unsigned int bytes, 3481 bool xmit_more) 3482 { 3483 if (xmit_more) { 3484 #ifdef CONFIG_BQL 3485 dql_queued(&dev_queue->dql, bytes); 3486 #endif 3487 return netif_tx_queue_stopped(dev_queue); 3488 } 3489 netdev_tx_sent_queue(dev_queue, bytes); 3490 return true; 3491 } 3492 3493 /** 3494 * netdev_sent_queue - report the number of bytes queued to hardware 3495 * @dev: network device 3496 * @bytes: number of bytes queued to the hardware device queue 3497 * 3498 * Report the number of bytes queued for sending/completion to the network 3499 * device hardware queue#0. @bytes should be a good approximation and should 3500 * exactly match netdev_completed_queue() @bytes. 3501 * This is typically called once per packet, from ndo_start_xmit(). 3502 */ 3503 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3504 { 3505 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3506 } 3507 3508 static inline bool __netdev_sent_queue(struct net_device *dev, 3509 unsigned int bytes, 3510 bool xmit_more) 3511 { 3512 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3513 xmit_more); 3514 } 3515 3516 /** 3517 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3518 * @dev_queue: network device queue 3519 * @pkts: number of packets (currently ignored) 3520 * @bytes: number of bytes dequeued from the device queue 3521 * 3522 * Must be called at most once per TX completion round (and not per 3523 * individual packet), so that BQL can adjust its limits appropriately. 3524 */ 3525 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3526 unsigned int pkts, unsigned int bytes) 3527 { 3528 #ifdef CONFIG_BQL 3529 if (unlikely(!bytes)) 3530 return; 3531 3532 dql_completed(&dev_queue->dql, bytes); 3533 3534 /* 3535 * Without the memory barrier there is a small possibility that 3536 * netdev_tx_sent_queue will miss the update and cause the queue to 3537 * be stopped forever 3538 */ 3539 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3540 3541 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3542 return; 3543 3544 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3545 netif_schedule_queue(dev_queue); 3546 #endif 3547 } 3548 3549 /** 3550 * netdev_completed_queue - report bytes and packets completed by device 3551 * @dev: network device 3552 * @pkts: actual number of packets sent over the medium 3553 * @bytes: actual number of bytes sent over the medium 3554 * 3555 * Report the number of bytes and packets transmitted by the network device 3556 * hardware queue over the physical medium, @bytes must exactly match the 3557 * @bytes amount passed to netdev_sent_queue() 3558 */ 3559 static inline void netdev_completed_queue(struct net_device *dev, 3560 unsigned int pkts, unsigned int bytes) 3561 { 3562 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3563 } 3564 3565 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3566 { 3567 #ifdef CONFIG_BQL 3568 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3569 dql_reset(&q->dql); 3570 #endif 3571 } 3572 3573 /** 3574 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue 3575 * @dev: network device 3576 * @qid: stack index of the queue to reset 3577 */ 3578 static inline void netdev_tx_reset_subqueue(const struct net_device *dev, 3579 u32 qid) 3580 { 3581 netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid)); 3582 } 3583 3584 /** 3585 * netdev_reset_queue - reset the packets and bytes count of a network device 3586 * @dev_queue: network device 3587 * 3588 * Reset the bytes and packet count of a network device and clear the 3589 * software flow control OFF bit for this network device 3590 */ 3591 static inline void netdev_reset_queue(struct net_device *dev_queue) 3592 { 3593 netdev_tx_reset_subqueue(dev_queue, 0); 3594 } 3595 3596 /** 3597 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3598 * @dev: network device 3599 * @queue_index: given tx queue index 3600 * 3601 * Returns 0 if given tx queue index >= number of device tx queues, 3602 * otherwise returns the originally passed tx queue index. 3603 */ 3604 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3605 { 3606 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3607 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3608 dev->name, queue_index, 3609 dev->real_num_tx_queues); 3610 return 0; 3611 } 3612 3613 return queue_index; 3614 } 3615 3616 /** 3617 * netif_running - test if up 3618 * @dev: network device 3619 * 3620 * Test if the device has been brought up. 3621 */ 3622 static inline bool netif_running(const struct net_device *dev) 3623 { 3624 return test_bit(__LINK_STATE_START, &dev->state); 3625 } 3626 3627 /* 3628 * Routines to manage the subqueues on a device. We only need start, 3629 * stop, and a check if it's stopped. All other device management is 3630 * done at the overall netdevice level. 3631 * Also test the device if we're multiqueue. 3632 */ 3633 3634 /** 3635 * netif_start_subqueue - allow sending packets on subqueue 3636 * @dev: network device 3637 * @queue_index: sub queue index 3638 * 3639 * Start individual transmit queue of a device with multiple transmit queues. 3640 */ 3641 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3642 { 3643 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3644 3645 netif_tx_start_queue(txq); 3646 } 3647 3648 /** 3649 * netif_stop_subqueue - stop sending packets on subqueue 3650 * @dev: network device 3651 * @queue_index: sub queue index 3652 * 3653 * Stop individual transmit queue of a device with multiple transmit queues. 3654 */ 3655 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3656 { 3657 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3658 netif_tx_stop_queue(txq); 3659 } 3660 3661 /** 3662 * __netif_subqueue_stopped - test status of subqueue 3663 * @dev: network device 3664 * @queue_index: sub queue index 3665 * 3666 * Check individual transmit queue of a device with multiple transmit queues. 3667 */ 3668 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3669 u16 queue_index) 3670 { 3671 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3672 3673 return netif_tx_queue_stopped(txq); 3674 } 3675 3676 /** 3677 * netif_subqueue_stopped - test status of subqueue 3678 * @dev: network device 3679 * @skb: sub queue buffer pointer 3680 * 3681 * Check individual transmit queue of a device with multiple transmit queues. 3682 */ 3683 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3684 struct sk_buff *skb) 3685 { 3686 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3687 } 3688 3689 /** 3690 * netif_wake_subqueue - allow sending packets on subqueue 3691 * @dev: network device 3692 * @queue_index: sub queue index 3693 * 3694 * Resume individual transmit queue of a device with multiple transmit queues. 3695 */ 3696 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3697 { 3698 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3699 3700 netif_tx_wake_queue(txq); 3701 } 3702 3703 #ifdef CONFIG_XPS 3704 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3705 u16 index); 3706 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3707 u16 index, enum xps_map_type type); 3708 3709 /** 3710 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3711 * @j: CPU/Rx queue index 3712 * @mask: bitmask of all cpus/rx queues 3713 * @nr_bits: number of bits in the bitmask 3714 * 3715 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3716 */ 3717 static inline bool netif_attr_test_mask(unsigned long j, 3718 const unsigned long *mask, 3719 unsigned int nr_bits) 3720 { 3721 cpu_max_bits_warn(j, nr_bits); 3722 return test_bit(j, mask); 3723 } 3724 3725 /** 3726 * netif_attr_test_online - Test for online CPU/Rx queue 3727 * @j: CPU/Rx queue index 3728 * @online_mask: bitmask for CPUs/Rx queues that are online 3729 * @nr_bits: number of bits in the bitmask 3730 * 3731 * Returns true if a CPU/Rx queue is online. 3732 */ 3733 static inline bool netif_attr_test_online(unsigned long j, 3734 const unsigned long *online_mask, 3735 unsigned int nr_bits) 3736 { 3737 cpu_max_bits_warn(j, nr_bits); 3738 3739 if (online_mask) 3740 return test_bit(j, online_mask); 3741 3742 return (j < nr_bits); 3743 } 3744 3745 /** 3746 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3747 * @n: CPU/Rx queue index 3748 * @srcp: the cpumask/Rx queue mask pointer 3749 * @nr_bits: number of bits in the bitmask 3750 * 3751 * Returns >= nr_bits if no further CPUs/Rx queues set. 3752 */ 3753 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3754 unsigned int nr_bits) 3755 { 3756 /* -1 is a legal arg here. */ 3757 if (n != -1) 3758 cpu_max_bits_warn(n, nr_bits); 3759 3760 if (srcp) 3761 return find_next_bit(srcp, nr_bits, n + 1); 3762 3763 return n + 1; 3764 } 3765 3766 /** 3767 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3768 * @n: CPU/Rx queue index 3769 * @src1p: the first CPUs/Rx queues mask pointer 3770 * @src2p: the second CPUs/Rx queues mask pointer 3771 * @nr_bits: number of bits in the bitmask 3772 * 3773 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3774 */ 3775 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3776 const unsigned long *src2p, 3777 unsigned int nr_bits) 3778 { 3779 /* -1 is a legal arg here. */ 3780 if (n != -1) 3781 cpu_max_bits_warn(n, nr_bits); 3782 3783 if (src1p && src2p) 3784 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3785 else if (src1p) 3786 return find_next_bit(src1p, nr_bits, n + 1); 3787 else if (src2p) 3788 return find_next_bit(src2p, nr_bits, n + 1); 3789 3790 return n + 1; 3791 } 3792 #else 3793 static inline int netif_set_xps_queue(struct net_device *dev, 3794 const struct cpumask *mask, 3795 u16 index) 3796 { 3797 return 0; 3798 } 3799 3800 static inline int __netif_set_xps_queue(struct net_device *dev, 3801 const unsigned long *mask, 3802 u16 index, enum xps_map_type type) 3803 { 3804 return 0; 3805 } 3806 #endif 3807 3808 /** 3809 * netif_is_multiqueue - test if device has multiple transmit queues 3810 * @dev: network device 3811 * 3812 * Check if device has multiple transmit queues 3813 */ 3814 static inline bool netif_is_multiqueue(const struct net_device *dev) 3815 { 3816 return dev->num_tx_queues > 1; 3817 } 3818 3819 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3820 3821 #ifdef CONFIG_SYSFS 3822 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3823 #else 3824 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3825 unsigned int rxqs) 3826 { 3827 dev->real_num_rx_queues = rxqs; 3828 return 0; 3829 } 3830 #endif 3831 int netif_set_real_num_queues(struct net_device *dev, 3832 unsigned int txq, unsigned int rxq); 3833 3834 int netif_get_num_default_rss_queues(void); 3835 3836 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3837 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3838 3839 /* 3840 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3841 * interrupt context or with hardware interrupts being disabled. 3842 * (in_hardirq() || irqs_disabled()) 3843 * 3844 * We provide four helpers that can be used in following contexts : 3845 * 3846 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3847 * replacing kfree_skb(skb) 3848 * 3849 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3850 * Typically used in place of consume_skb(skb) in TX completion path 3851 * 3852 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3853 * replacing kfree_skb(skb) 3854 * 3855 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3856 * and consumed a packet. Used in place of consume_skb(skb) 3857 */ 3858 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3859 { 3860 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3861 } 3862 3863 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3864 { 3865 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3866 } 3867 3868 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3869 { 3870 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3871 } 3872 3873 static inline void dev_consume_skb_any(struct sk_buff *skb) 3874 { 3875 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3876 } 3877 3878 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3879 struct bpf_prog *xdp_prog); 3880 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3881 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb); 3882 int netif_rx(struct sk_buff *skb); 3883 int __netif_rx(struct sk_buff *skb); 3884 3885 int netif_receive_skb(struct sk_buff *skb); 3886 int netif_receive_skb_core(struct sk_buff *skb); 3887 void netif_receive_skb_list_internal(struct list_head *head); 3888 void netif_receive_skb_list(struct list_head *head); 3889 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3890 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3891 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3892 void napi_get_frags_check(struct napi_struct *napi); 3893 gro_result_t napi_gro_frags(struct napi_struct *napi); 3894 3895 static inline void napi_free_frags(struct napi_struct *napi) 3896 { 3897 kfree_skb(napi->skb); 3898 napi->skb = NULL; 3899 } 3900 3901 bool netdev_is_rx_handler_busy(struct net_device *dev); 3902 int netdev_rx_handler_register(struct net_device *dev, 3903 rx_handler_func_t *rx_handler, 3904 void *rx_handler_data); 3905 void netdev_rx_handler_unregister(struct net_device *dev); 3906 3907 bool dev_valid_name(const char *name); 3908 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3909 { 3910 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3911 } 3912 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3913 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3914 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3915 void __user *data, bool *need_copyout); 3916 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3917 int generic_hwtstamp_get_lower(struct net_device *dev, 3918 struct kernel_hwtstamp_config *kernel_cfg); 3919 int generic_hwtstamp_set_lower(struct net_device *dev, 3920 struct kernel_hwtstamp_config *kernel_cfg, 3921 struct netlink_ext_ack *extack); 3922 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3923 unsigned int dev_get_flags(const struct net_device *); 3924 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3925 struct netlink_ext_ack *extack); 3926 int dev_change_flags(struct net_device *dev, unsigned int flags, 3927 struct netlink_ext_ack *extack); 3928 int dev_set_alias(struct net_device *, const char *, size_t); 3929 int dev_get_alias(const struct net_device *, char *, size_t); 3930 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3931 const char *pat, int new_ifindex); 3932 static inline 3933 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3934 const char *pat) 3935 { 3936 return __dev_change_net_namespace(dev, net, pat, 0); 3937 } 3938 int __dev_set_mtu(struct net_device *, int); 3939 int dev_set_mtu(struct net_device *, int); 3940 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3941 struct netlink_ext_ack *extack); 3942 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3943 struct netlink_ext_ack *extack); 3944 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3945 struct netlink_ext_ack *extack); 3946 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3947 int dev_get_port_parent_id(struct net_device *dev, 3948 struct netdev_phys_item_id *ppid, bool recurse); 3949 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3950 3951 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3952 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3953 struct netdev_queue *txq, int *ret); 3954 3955 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3956 u8 dev_xdp_prog_count(struct net_device *dev); 3957 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 3958 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3959 3960 u32 dev_get_min_mp_channel_count(const struct net_device *dev); 3961 3962 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3963 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3964 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3965 bool is_skb_forwardable(const struct net_device *dev, 3966 const struct sk_buff *skb); 3967 3968 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3969 const struct sk_buff *skb, 3970 const bool check_mtu) 3971 { 3972 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3973 unsigned int len; 3974 3975 if (!(dev->flags & IFF_UP)) 3976 return false; 3977 3978 if (!check_mtu) 3979 return true; 3980 3981 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3982 if (skb->len <= len) 3983 return true; 3984 3985 /* if TSO is enabled, we don't care about the length as the packet 3986 * could be forwarded without being segmented before 3987 */ 3988 if (skb_is_gso(skb)) 3989 return true; 3990 3991 return false; 3992 } 3993 3994 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 3995 3996 #define DEV_CORE_STATS_INC(FIELD) \ 3997 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3998 { \ 3999 netdev_core_stats_inc(dev, \ 4000 offsetof(struct net_device_core_stats, FIELD)); \ 4001 } 4002 DEV_CORE_STATS_INC(rx_dropped) 4003 DEV_CORE_STATS_INC(tx_dropped) 4004 DEV_CORE_STATS_INC(rx_nohandler) 4005 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4006 #undef DEV_CORE_STATS_INC 4007 4008 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4009 struct sk_buff *skb, 4010 const bool check_mtu) 4011 { 4012 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4013 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4014 dev_core_stats_rx_dropped_inc(dev); 4015 kfree_skb(skb); 4016 return NET_RX_DROP; 4017 } 4018 4019 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4020 skb->priority = 0; 4021 return 0; 4022 } 4023 4024 bool dev_nit_active(struct net_device *dev); 4025 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4026 4027 static inline void __dev_put(struct net_device *dev) 4028 { 4029 if (dev) { 4030 #ifdef CONFIG_PCPU_DEV_REFCNT 4031 this_cpu_dec(*dev->pcpu_refcnt); 4032 #else 4033 refcount_dec(&dev->dev_refcnt); 4034 #endif 4035 } 4036 } 4037 4038 static inline void __dev_hold(struct net_device *dev) 4039 { 4040 if (dev) { 4041 #ifdef CONFIG_PCPU_DEV_REFCNT 4042 this_cpu_inc(*dev->pcpu_refcnt); 4043 #else 4044 refcount_inc(&dev->dev_refcnt); 4045 #endif 4046 } 4047 } 4048 4049 static inline void __netdev_tracker_alloc(struct net_device *dev, 4050 netdevice_tracker *tracker, 4051 gfp_t gfp) 4052 { 4053 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4054 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4055 #endif 4056 } 4057 4058 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4059 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4060 */ 4061 static inline void netdev_tracker_alloc(struct net_device *dev, 4062 netdevice_tracker *tracker, gfp_t gfp) 4063 { 4064 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4065 refcount_dec(&dev->refcnt_tracker.no_tracker); 4066 __netdev_tracker_alloc(dev, tracker, gfp); 4067 #endif 4068 } 4069 4070 static inline void netdev_tracker_free(struct net_device *dev, 4071 netdevice_tracker *tracker) 4072 { 4073 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4074 ref_tracker_free(&dev->refcnt_tracker, tracker); 4075 #endif 4076 } 4077 4078 static inline void netdev_hold(struct net_device *dev, 4079 netdevice_tracker *tracker, gfp_t gfp) 4080 { 4081 if (dev) { 4082 __dev_hold(dev); 4083 __netdev_tracker_alloc(dev, tracker, gfp); 4084 } 4085 } 4086 4087 static inline void netdev_put(struct net_device *dev, 4088 netdevice_tracker *tracker) 4089 { 4090 if (dev) { 4091 netdev_tracker_free(dev, tracker); 4092 __dev_put(dev); 4093 } 4094 } 4095 4096 /** 4097 * dev_hold - get reference to device 4098 * @dev: network device 4099 * 4100 * Hold reference to device to keep it from being freed. 4101 * Try using netdev_hold() instead. 4102 */ 4103 static inline void dev_hold(struct net_device *dev) 4104 { 4105 netdev_hold(dev, NULL, GFP_ATOMIC); 4106 } 4107 4108 /** 4109 * dev_put - release reference to device 4110 * @dev: network device 4111 * 4112 * Release reference to device to allow it to be freed. 4113 * Try using netdev_put() instead. 4114 */ 4115 static inline void dev_put(struct net_device *dev) 4116 { 4117 netdev_put(dev, NULL); 4118 } 4119 4120 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4121 4122 static inline void netdev_ref_replace(struct net_device *odev, 4123 struct net_device *ndev, 4124 netdevice_tracker *tracker, 4125 gfp_t gfp) 4126 { 4127 if (odev) 4128 netdev_tracker_free(odev, tracker); 4129 4130 __dev_hold(ndev); 4131 __dev_put(odev); 4132 4133 if (ndev) 4134 __netdev_tracker_alloc(ndev, tracker, gfp); 4135 } 4136 4137 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4138 * and _off may be called from IRQ context, but it is caller 4139 * who is responsible for serialization of these calls. 4140 * 4141 * The name carrier is inappropriate, these functions should really be 4142 * called netif_lowerlayer_*() because they represent the state of any 4143 * kind of lower layer not just hardware media. 4144 */ 4145 void linkwatch_fire_event(struct net_device *dev); 4146 4147 /** 4148 * linkwatch_sync_dev - sync linkwatch for the given device 4149 * @dev: network device to sync linkwatch for 4150 * 4151 * Sync linkwatch for the given device, removing it from the 4152 * pending work list (if queued). 4153 */ 4154 void linkwatch_sync_dev(struct net_device *dev); 4155 4156 /** 4157 * netif_carrier_ok - test if carrier present 4158 * @dev: network device 4159 * 4160 * Check if carrier is present on device 4161 */ 4162 static inline bool netif_carrier_ok(const struct net_device *dev) 4163 { 4164 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4165 } 4166 4167 unsigned long dev_trans_start(struct net_device *dev); 4168 4169 void __netdev_watchdog_up(struct net_device *dev); 4170 4171 void netif_carrier_on(struct net_device *dev); 4172 void netif_carrier_off(struct net_device *dev); 4173 void netif_carrier_event(struct net_device *dev); 4174 4175 /** 4176 * netif_dormant_on - mark device as dormant. 4177 * @dev: network device 4178 * 4179 * Mark device as dormant (as per RFC2863). 4180 * 4181 * The dormant state indicates that the relevant interface is not 4182 * actually in a condition to pass packets (i.e., it is not 'up') but is 4183 * in a "pending" state, waiting for some external event. For "on- 4184 * demand" interfaces, this new state identifies the situation where the 4185 * interface is waiting for events to place it in the up state. 4186 */ 4187 static inline void netif_dormant_on(struct net_device *dev) 4188 { 4189 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4190 linkwatch_fire_event(dev); 4191 } 4192 4193 /** 4194 * netif_dormant_off - set device as not dormant. 4195 * @dev: network device 4196 * 4197 * Device is not in dormant state. 4198 */ 4199 static inline void netif_dormant_off(struct net_device *dev) 4200 { 4201 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4202 linkwatch_fire_event(dev); 4203 } 4204 4205 /** 4206 * netif_dormant - test if device is dormant 4207 * @dev: network device 4208 * 4209 * Check if device is dormant. 4210 */ 4211 static inline bool netif_dormant(const struct net_device *dev) 4212 { 4213 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4214 } 4215 4216 4217 /** 4218 * netif_testing_on - mark device as under test. 4219 * @dev: network device 4220 * 4221 * Mark device as under test (as per RFC2863). 4222 * 4223 * The testing state indicates that some test(s) must be performed on 4224 * the interface. After completion, of the test, the interface state 4225 * will change to up, dormant, or down, as appropriate. 4226 */ 4227 static inline void netif_testing_on(struct net_device *dev) 4228 { 4229 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4230 linkwatch_fire_event(dev); 4231 } 4232 4233 /** 4234 * netif_testing_off - set device as not under test. 4235 * @dev: network device 4236 * 4237 * Device is not in testing state. 4238 */ 4239 static inline void netif_testing_off(struct net_device *dev) 4240 { 4241 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4242 linkwatch_fire_event(dev); 4243 } 4244 4245 /** 4246 * netif_testing - test if device is under test 4247 * @dev: network device 4248 * 4249 * Check if device is under test 4250 */ 4251 static inline bool netif_testing(const struct net_device *dev) 4252 { 4253 return test_bit(__LINK_STATE_TESTING, &dev->state); 4254 } 4255 4256 4257 /** 4258 * netif_oper_up - test if device is operational 4259 * @dev: network device 4260 * 4261 * Check if carrier is operational 4262 */ 4263 static inline bool netif_oper_up(const struct net_device *dev) 4264 { 4265 unsigned int operstate = READ_ONCE(dev->operstate); 4266 4267 return operstate == IF_OPER_UP || 4268 operstate == IF_OPER_UNKNOWN /* backward compat */; 4269 } 4270 4271 /** 4272 * netif_device_present - is device available or removed 4273 * @dev: network device 4274 * 4275 * Check if device has not been removed from system. 4276 */ 4277 static inline bool netif_device_present(const struct net_device *dev) 4278 { 4279 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4280 } 4281 4282 void netif_device_detach(struct net_device *dev); 4283 4284 void netif_device_attach(struct net_device *dev); 4285 4286 /* 4287 * Network interface message level settings 4288 */ 4289 4290 enum { 4291 NETIF_MSG_DRV_BIT, 4292 NETIF_MSG_PROBE_BIT, 4293 NETIF_MSG_LINK_BIT, 4294 NETIF_MSG_TIMER_BIT, 4295 NETIF_MSG_IFDOWN_BIT, 4296 NETIF_MSG_IFUP_BIT, 4297 NETIF_MSG_RX_ERR_BIT, 4298 NETIF_MSG_TX_ERR_BIT, 4299 NETIF_MSG_TX_QUEUED_BIT, 4300 NETIF_MSG_INTR_BIT, 4301 NETIF_MSG_TX_DONE_BIT, 4302 NETIF_MSG_RX_STATUS_BIT, 4303 NETIF_MSG_PKTDATA_BIT, 4304 NETIF_MSG_HW_BIT, 4305 NETIF_MSG_WOL_BIT, 4306 4307 /* When you add a new bit above, update netif_msg_class_names array 4308 * in net/ethtool/common.c 4309 */ 4310 NETIF_MSG_CLASS_COUNT, 4311 }; 4312 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4313 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4314 4315 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4316 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4317 4318 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4319 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4320 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4321 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4322 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4323 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4324 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4325 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4326 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4327 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4328 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4329 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4330 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4331 #define NETIF_MSG_HW __NETIF_MSG(HW) 4332 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4333 4334 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4335 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4336 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4337 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4338 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4339 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4340 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4341 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4342 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4343 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4344 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4345 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4346 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4347 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4348 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4349 4350 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4351 { 4352 /* use default */ 4353 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4354 return default_msg_enable_bits; 4355 if (debug_value == 0) /* no output */ 4356 return 0; 4357 /* set low N bits */ 4358 return (1U << debug_value) - 1; 4359 } 4360 4361 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4362 { 4363 spin_lock(&txq->_xmit_lock); 4364 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4365 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4366 } 4367 4368 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4369 { 4370 __acquire(&txq->_xmit_lock); 4371 return true; 4372 } 4373 4374 static inline void __netif_tx_release(struct netdev_queue *txq) 4375 { 4376 __release(&txq->_xmit_lock); 4377 } 4378 4379 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4380 { 4381 spin_lock_bh(&txq->_xmit_lock); 4382 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4383 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4384 } 4385 4386 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4387 { 4388 bool ok = spin_trylock(&txq->_xmit_lock); 4389 4390 if (likely(ok)) { 4391 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4392 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4393 } 4394 return ok; 4395 } 4396 4397 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4398 { 4399 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4400 WRITE_ONCE(txq->xmit_lock_owner, -1); 4401 spin_unlock(&txq->_xmit_lock); 4402 } 4403 4404 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4405 { 4406 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4407 WRITE_ONCE(txq->xmit_lock_owner, -1); 4408 spin_unlock_bh(&txq->_xmit_lock); 4409 } 4410 4411 /* 4412 * txq->trans_start can be read locklessly from dev_watchdog() 4413 */ 4414 static inline void txq_trans_update(struct netdev_queue *txq) 4415 { 4416 if (txq->xmit_lock_owner != -1) 4417 WRITE_ONCE(txq->trans_start, jiffies); 4418 } 4419 4420 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4421 { 4422 unsigned long now = jiffies; 4423 4424 if (READ_ONCE(txq->trans_start) != now) 4425 WRITE_ONCE(txq->trans_start, now); 4426 } 4427 4428 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4429 static inline void netif_trans_update(struct net_device *dev) 4430 { 4431 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4432 4433 txq_trans_cond_update(txq); 4434 } 4435 4436 /** 4437 * netif_tx_lock - grab network device transmit lock 4438 * @dev: network device 4439 * 4440 * Get network device transmit lock 4441 */ 4442 void netif_tx_lock(struct net_device *dev); 4443 4444 static inline void netif_tx_lock_bh(struct net_device *dev) 4445 { 4446 local_bh_disable(); 4447 netif_tx_lock(dev); 4448 } 4449 4450 void netif_tx_unlock(struct net_device *dev); 4451 4452 static inline void netif_tx_unlock_bh(struct net_device *dev) 4453 { 4454 netif_tx_unlock(dev); 4455 local_bh_enable(); 4456 } 4457 4458 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4459 if (!(dev)->lltx) { \ 4460 __netif_tx_lock(txq, cpu); \ 4461 } else { \ 4462 __netif_tx_acquire(txq); \ 4463 } \ 4464 } 4465 4466 #define HARD_TX_TRYLOCK(dev, txq) \ 4467 (!(dev)->lltx ? \ 4468 __netif_tx_trylock(txq) : \ 4469 __netif_tx_acquire(txq)) 4470 4471 #define HARD_TX_UNLOCK(dev, txq) { \ 4472 if (!(dev)->lltx) { \ 4473 __netif_tx_unlock(txq); \ 4474 } else { \ 4475 __netif_tx_release(txq); \ 4476 } \ 4477 } 4478 4479 static inline void netif_tx_disable(struct net_device *dev) 4480 { 4481 unsigned int i; 4482 int cpu; 4483 4484 local_bh_disable(); 4485 cpu = smp_processor_id(); 4486 spin_lock(&dev->tx_global_lock); 4487 for (i = 0; i < dev->num_tx_queues; i++) { 4488 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4489 4490 __netif_tx_lock(txq, cpu); 4491 netif_tx_stop_queue(txq); 4492 __netif_tx_unlock(txq); 4493 } 4494 spin_unlock(&dev->tx_global_lock); 4495 local_bh_enable(); 4496 } 4497 4498 static inline void netif_addr_lock(struct net_device *dev) 4499 { 4500 unsigned char nest_level = 0; 4501 4502 #ifdef CONFIG_LOCKDEP 4503 nest_level = dev->nested_level; 4504 #endif 4505 spin_lock_nested(&dev->addr_list_lock, nest_level); 4506 } 4507 4508 static inline void netif_addr_lock_bh(struct net_device *dev) 4509 { 4510 unsigned char nest_level = 0; 4511 4512 #ifdef CONFIG_LOCKDEP 4513 nest_level = dev->nested_level; 4514 #endif 4515 local_bh_disable(); 4516 spin_lock_nested(&dev->addr_list_lock, nest_level); 4517 } 4518 4519 static inline void netif_addr_unlock(struct net_device *dev) 4520 { 4521 spin_unlock(&dev->addr_list_lock); 4522 } 4523 4524 static inline void netif_addr_unlock_bh(struct net_device *dev) 4525 { 4526 spin_unlock_bh(&dev->addr_list_lock); 4527 } 4528 4529 /* 4530 * dev_addrs walker. Should be used only for read access. Call with 4531 * rcu_read_lock held. 4532 */ 4533 #define for_each_dev_addr(dev, ha) \ 4534 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4535 4536 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4537 4538 void ether_setup(struct net_device *dev); 4539 4540 /* Allocate dummy net_device */ 4541 struct net_device *alloc_netdev_dummy(int sizeof_priv); 4542 4543 /* Support for loadable net-drivers */ 4544 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4545 unsigned char name_assign_type, 4546 void (*setup)(struct net_device *), 4547 unsigned int txqs, unsigned int rxqs); 4548 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4549 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4550 4551 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4552 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4553 count) 4554 4555 int register_netdev(struct net_device *dev); 4556 void unregister_netdev(struct net_device *dev); 4557 4558 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4559 4560 /* General hardware address lists handling functions */ 4561 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4562 struct netdev_hw_addr_list *from_list, int addr_len); 4563 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4564 struct netdev_hw_addr_list *from_list, int addr_len); 4565 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4566 struct net_device *dev, 4567 int (*sync)(struct net_device *, const unsigned char *), 4568 int (*unsync)(struct net_device *, 4569 const unsigned char *)); 4570 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4571 struct net_device *dev, 4572 int (*sync)(struct net_device *, 4573 const unsigned char *, int), 4574 int (*unsync)(struct net_device *, 4575 const unsigned char *, int)); 4576 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4577 struct net_device *dev, 4578 int (*unsync)(struct net_device *, 4579 const unsigned char *, int)); 4580 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4581 struct net_device *dev, 4582 int (*unsync)(struct net_device *, 4583 const unsigned char *)); 4584 void __hw_addr_init(struct netdev_hw_addr_list *list); 4585 4586 /* Functions used for device addresses handling */ 4587 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4588 const void *addr, size_t len); 4589 4590 static inline void 4591 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4592 { 4593 dev_addr_mod(dev, 0, addr, len); 4594 } 4595 4596 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4597 { 4598 __dev_addr_set(dev, addr, dev->addr_len); 4599 } 4600 4601 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4602 unsigned char addr_type); 4603 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4604 unsigned char addr_type); 4605 4606 /* Functions used for unicast addresses handling */ 4607 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4608 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4609 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4610 int dev_uc_sync(struct net_device *to, struct net_device *from); 4611 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4612 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4613 void dev_uc_flush(struct net_device *dev); 4614 void dev_uc_init(struct net_device *dev); 4615 4616 /** 4617 * __dev_uc_sync - Synchronize device's unicast list 4618 * @dev: device to sync 4619 * @sync: function to call if address should be added 4620 * @unsync: function to call if address should be removed 4621 * 4622 * Add newly added addresses to the interface, and release 4623 * addresses that have been deleted. 4624 */ 4625 static inline int __dev_uc_sync(struct net_device *dev, 4626 int (*sync)(struct net_device *, 4627 const unsigned char *), 4628 int (*unsync)(struct net_device *, 4629 const unsigned char *)) 4630 { 4631 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4632 } 4633 4634 /** 4635 * __dev_uc_unsync - Remove synchronized addresses from device 4636 * @dev: device to sync 4637 * @unsync: function to call if address should be removed 4638 * 4639 * Remove all addresses that were added to the device by dev_uc_sync(). 4640 */ 4641 static inline void __dev_uc_unsync(struct net_device *dev, 4642 int (*unsync)(struct net_device *, 4643 const unsigned char *)) 4644 { 4645 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4646 } 4647 4648 /* Functions used for multicast addresses handling */ 4649 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4650 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4651 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4652 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4653 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4654 int dev_mc_sync(struct net_device *to, struct net_device *from); 4655 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4656 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4657 void dev_mc_flush(struct net_device *dev); 4658 void dev_mc_init(struct net_device *dev); 4659 4660 /** 4661 * __dev_mc_sync - Synchronize device's multicast list 4662 * @dev: device to sync 4663 * @sync: function to call if address should be added 4664 * @unsync: function to call if address should be removed 4665 * 4666 * Add newly added addresses to the interface, and release 4667 * addresses that have been deleted. 4668 */ 4669 static inline int __dev_mc_sync(struct net_device *dev, 4670 int (*sync)(struct net_device *, 4671 const unsigned char *), 4672 int (*unsync)(struct net_device *, 4673 const unsigned char *)) 4674 { 4675 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4676 } 4677 4678 /** 4679 * __dev_mc_unsync - Remove synchronized addresses from device 4680 * @dev: device to sync 4681 * @unsync: function to call if address should be removed 4682 * 4683 * Remove all addresses that were added to the device by dev_mc_sync(). 4684 */ 4685 static inline void __dev_mc_unsync(struct net_device *dev, 4686 int (*unsync)(struct net_device *, 4687 const unsigned char *)) 4688 { 4689 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4690 } 4691 4692 /* Functions used for secondary unicast and multicast support */ 4693 void dev_set_rx_mode(struct net_device *dev); 4694 int dev_set_promiscuity(struct net_device *dev, int inc); 4695 int dev_set_allmulti(struct net_device *dev, int inc); 4696 void netdev_state_change(struct net_device *dev); 4697 void __netdev_notify_peers(struct net_device *dev); 4698 void netdev_notify_peers(struct net_device *dev); 4699 void netdev_features_change(struct net_device *dev); 4700 /* Load a device via the kmod */ 4701 void dev_load(struct net *net, const char *name); 4702 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4703 struct rtnl_link_stats64 *storage); 4704 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4705 const struct net_device_stats *netdev_stats); 4706 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4707 const struct pcpu_sw_netstats __percpu *netstats); 4708 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4709 4710 enum { 4711 NESTED_SYNC_IMM_BIT, 4712 NESTED_SYNC_TODO_BIT, 4713 }; 4714 4715 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4716 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4717 4718 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4719 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4720 4721 struct netdev_nested_priv { 4722 unsigned char flags; 4723 void *data; 4724 }; 4725 4726 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4727 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4728 struct list_head **iter); 4729 4730 /* iterate through upper list, must be called under RCU read lock */ 4731 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4732 for (iter = &(dev)->adj_list.upper, \ 4733 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4734 updev; \ 4735 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4736 4737 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4738 int (*fn)(struct net_device *upper_dev, 4739 struct netdev_nested_priv *priv), 4740 struct netdev_nested_priv *priv); 4741 4742 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4743 struct net_device *upper_dev); 4744 4745 bool netdev_has_any_upper_dev(struct net_device *dev); 4746 4747 void *netdev_lower_get_next_private(struct net_device *dev, 4748 struct list_head **iter); 4749 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4750 struct list_head **iter); 4751 4752 #define netdev_for_each_lower_private(dev, priv, iter) \ 4753 for (iter = (dev)->adj_list.lower.next, \ 4754 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4755 priv; \ 4756 priv = netdev_lower_get_next_private(dev, &(iter))) 4757 4758 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4759 for (iter = &(dev)->adj_list.lower, \ 4760 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4761 priv; \ 4762 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4763 4764 void *netdev_lower_get_next(struct net_device *dev, 4765 struct list_head **iter); 4766 4767 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4768 for (iter = (dev)->adj_list.lower.next, \ 4769 ldev = netdev_lower_get_next(dev, &(iter)); \ 4770 ldev; \ 4771 ldev = netdev_lower_get_next(dev, &(iter))) 4772 4773 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4774 struct list_head **iter); 4775 int netdev_walk_all_lower_dev(struct net_device *dev, 4776 int (*fn)(struct net_device *lower_dev, 4777 struct netdev_nested_priv *priv), 4778 struct netdev_nested_priv *priv); 4779 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4780 int (*fn)(struct net_device *lower_dev, 4781 struct netdev_nested_priv *priv), 4782 struct netdev_nested_priv *priv); 4783 4784 void *netdev_adjacent_get_private(struct list_head *adj_list); 4785 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4786 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4787 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4788 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4789 struct netlink_ext_ack *extack); 4790 int netdev_master_upper_dev_link(struct net_device *dev, 4791 struct net_device *upper_dev, 4792 void *upper_priv, void *upper_info, 4793 struct netlink_ext_ack *extack); 4794 void netdev_upper_dev_unlink(struct net_device *dev, 4795 struct net_device *upper_dev); 4796 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4797 struct net_device *new_dev, 4798 struct net_device *dev, 4799 struct netlink_ext_ack *extack); 4800 void netdev_adjacent_change_commit(struct net_device *old_dev, 4801 struct net_device *new_dev, 4802 struct net_device *dev); 4803 void netdev_adjacent_change_abort(struct net_device *old_dev, 4804 struct net_device *new_dev, 4805 struct net_device *dev); 4806 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4807 void *netdev_lower_dev_get_private(struct net_device *dev, 4808 struct net_device *lower_dev); 4809 void netdev_lower_state_changed(struct net_device *lower_dev, 4810 void *lower_state_info); 4811 4812 /* RSS keys are 40 or 52 bytes long */ 4813 #define NETDEV_RSS_KEY_LEN 52 4814 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4815 void netdev_rss_key_fill(void *buffer, size_t len); 4816 4817 int skb_checksum_help(struct sk_buff *skb); 4818 int skb_crc32c_csum_help(struct sk_buff *skb); 4819 int skb_csum_hwoffload_help(struct sk_buff *skb, 4820 const netdev_features_t features); 4821 4822 struct netdev_bonding_info { 4823 ifslave slave; 4824 ifbond master; 4825 }; 4826 4827 struct netdev_notifier_bonding_info { 4828 struct netdev_notifier_info info; /* must be first */ 4829 struct netdev_bonding_info bonding_info; 4830 }; 4831 4832 void netdev_bonding_info_change(struct net_device *dev, 4833 struct netdev_bonding_info *bonding_info); 4834 4835 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4836 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4837 #else 4838 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4839 const void *data) 4840 { 4841 } 4842 #endif 4843 4844 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4845 4846 static inline bool can_checksum_protocol(netdev_features_t features, 4847 __be16 protocol) 4848 { 4849 if (protocol == htons(ETH_P_FCOE)) 4850 return !!(features & NETIF_F_FCOE_CRC); 4851 4852 /* Assume this is an IP checksum (not SCTP CRC) */ 4853 4854 if (features & NETIF_F_HW_CSUM) { 4855 /* Can checksum everything */ 4856 return true; 4857 } 4858 4859 switch (protocol) { 4860 case htons(ETH_P_IP): 4861 return !!(features & NETIF_F_IP_CSUM); 4862 case htons(ETH_P_IPV6): 4863 return !!(features & NETIF_F_IPV6_CSUM); 4864 default: 4865 return false; 4866 } 4867 } 4868 4869 #ifdef CONFIG_BUG 4870 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4871 #else 4872 static inline void netdev_rx_csum_fault(struct net_device *dev, 4873 struct sk_buff *skb) 4874 { 4875 } 4876 #endif 4877 /* rx skb timestamps */ 4878 void net_enable_timestamp(void); 4879 void net_disable_timestamp(void); 4880 4881 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4882 const struct skb_shared_hwtstamps *hwtstamps, 4883 bool cycles) 4884 { 4885 const struct net_device_ops *ops = dev->netdev_ops; 4886 4887 if (ops->ndo_get_tstamp) 4888 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4889 4890 return hwtstamps->hwtstamp; 4891 } 4892 4893 #ifndef CONFIG_PREEMPT_RT 4894 static inline void netdev_xmit_set_more(bool more) 4895 { 4896 __this_cpu_write(softnet_data.xmit.more, more); 4897 } 4898 4899 static inline bool netdev_xmit_more(void) 4900 { 4901 return __this_cpu_read(softnet_data.xmit.more); 4902 } 4903 #else 4904 static inline void netdev_xmit_set_more(bool more) 4905 { 4906 current->net_xmit.more = more; 4907 } 4908 4909 static inline bool netdev_xmit_more(void) 4910 { 4911 return current->net_xmit.more; 4912 } 4913 #endif 4914 4915 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4916 struct sk_buff *skb, struct net_device *dev, 4917 bool more) 4918 { 4919 netdev_xmit_set_more(more); 4920 return ops->ndo_start_xmit(skb, dev); 4921 } 4922 4923 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4924 struct netdev_queue *txq, bool more) 4925 { 4926 const struct net_device_ops *ops = dev->netdev_ops; 4927 netdev_tx_t rc; 4928 4929 rc = __netdev_start_xmit(ops, skb, dev, more); 4930 if (rc == NETDEV_TX_OK) 4931 txq_trans_update(txq); 4932 4933 return rc; 4934 } 4935 4936 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4937 const void *ns); 4938 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4939 const void *ns); 4940 4941 extern const struct kobj_ns_type_operations net_ns_type_operations; 4942 4943 const char *netdev_drivername(const struct net_device *dev); 4944 4945 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4946 netdev_features_t f2) 4947 { 4948 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4949 if (f1 & NETIF_F_HW_CSUM) 4950 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4951 else 4952 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4953 } 4954 4955 return f1 & f2; 4956 } 4957 4958 static inline netdev_features_t netdev_get_wanted_features( 4959 struct net_device *dev) 4960 { 4961 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4962 } 4963 netdev_features_t netdev_increment_features(netdev_features_t all, 4964 netdev_features_t one, netdev_features_t mask); 4965 4966 /* Allow TSO being used on stacked device : 4967 * Performing the GSO segmentation before last device 4968 * is a performance improvement. 4969 */ 4970 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4971 netdev_features_t mask) 4972 { 4973 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4974 } 4975 4976 int __netdev_update_features(struct net_device *dev); 4977 void netdev_update_features(struct net_device *dev); 4978 void netdev_change_features(struct net_device *dev); 4979 4980 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4981 struct net_device *dev); 4982 4983 netdev_features_t passthru_features_check(struct sk_buff *skb, 4984 struct net_device *dev, 4985 netdev_features_t features); 4986 netdev_features_t netif_skb_features(struct sk_buff *skb); 4987 void skb_warn_bad_offload(const struct sk_buff *skb); 4988 4989 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4990 { 4991 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4992 4993 /* check flags correspondence */ 4994 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4995 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4996 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4997 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4998 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4999 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5000 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5001 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5002 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5003 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5004 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5005 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5006 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5007 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5008 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5009 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5010 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5011 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5012 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5013 5014 return (features & feature) == feature; 5015 } 5016 5017 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5018 { 5019 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5020 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5021 } 5022 5023 static inline bool netif_needs_gso(struct sk_buff *skb, 5024 netdev_features_t features) 5025 { 5026 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5027 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5028 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5029 } 5030 5031 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5032 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5033 void netif_inherit_tso_max(struct net_device *to, 5034 const struct net_device *from); 5035 5036 static inline unsigned int 5037 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) 5038 { 5039 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ 5040 return skb->protocol == htons(ETH_P_IPV6) ? 5041 READ_ONCE(dev->gro_max_size) : 5042 READ_ONCE(dev->gro_ipv4_max_size); 5043 } 5044 5045 static inline unsigned int 5046 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) 5047 { 5048 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 5049 return skb->protocol == htons(ETH_P_IPV6) ? 5050 READ_ONCE(dev->gso_max_size) : 5051 READ_ONCE(dev->gso_ipv4_max_size); 5052 } 5053 5054 static inline bool netif_is_macsec(const struct net_device *dev) 5055 { 5056 return dev->priv_flags & IFF_MACSEC; 5057 } 5058 5059 static inline bool netif_is_macvlan(const struct net_device *dev) 5060 { 5061 return dev->priv_flags & IFF_MACVLAN; 5062 } 5063 5064 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5065 { 5066 return dev->priv_flags & IFF_MACVLAN_PORT; 5067 } 5068 5069 static inline bool netif_is_bond_master(const struct net_device *dev) 5070 { 5071 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5072 } 5073 5074 static inline bool netif_is_bond_slave(const struct net_device *dev) 5075 { 5076 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5077 } 5078 5079 static inline bool netif_supports_nofcs(struct net_device *dev) 5080 { 5081 return dev->priv_flags & IFF_SUPP_NOFCS; 5082 } 5083 5084 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5085 { 5086 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5087 } 5088 5089 static inline bool netif_is_l3_master(const struct net_device *dev) 5090 { 5091 return dev->priv_flags & IFF_L3MDEV_MASTER; 5092 } 5093 5094 static inline bool netif_is_l3_slave(const struct net_device *dev) 5095 { 5096 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5097 } 5098 5099 static inline int dev_sdif(const struct net_device *dev) 5100 { 5101 #ifdef CONFIG_NET_L3_MASTER_DEV 5102 if (netif_is_l3_slave(dev)) 5103 return dev->ifindex; 5104 #endif 5105 return 0; 5106 } 5107 5108 static inline bool netif_is_bridge_master(const struct net_device *dev) 5109 { 5110 return dev->priv_flags & IFF_EBRIDGE; 5111 } 5112 5113 static inline bool netif_is_bridge_port(const struct net_device *dev) 5114 { 5115 return dev->priv_flags & IFF_BRIDGE_PORT; 5116 } 5117 5118 static inline bool netif_is_ovs_master(const struct net_device *dev) 5119 { 5120 return dev->priv_flags & IFF_OPENVSWITCH; 5121 } 5122 5123 static inline bool netif_is_ovs_port(const struct net_device *dev) 5124 { 5125 return dev->priv_flags & IFF_OVS_DATAPATH; 5126 } 5127 5128 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5129 { 5130 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5131 } 5132 5133 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5134 { 5135 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5136 } 5137 5138 static inline bool netif_is_team_master(const struct net_device *dev) 5139 { 5140 return dev->priv_flags & IFF_TEAM; 5141 } 5142 5143 static inline bool netif_is_team_port(const struct net_device *dev) 5144 { 5145 return dev->priv_flags & IFF_TEAM_PORT; 5146 } 5147 5148 static inline bool netif_is_lag_master(const struct net_device *dev) 5149 { 5150 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5151 } 5152 5153 static inline bool netif_is_lag_port(const struct net_device *dev) 5154 { 5155 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5156 } 5157 5158 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5159 { 5160 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5161 } 5162 5163 static inline bool netif_is_failover(const struct net_device *dev) 5164 { 5165 return dev->priv_flags & IFF_FAILOVER; 5166 } 5167 5168 static inline bool netif_is_failover_slave(const struct net_device *dev) 5169 { 5170 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5171 } 5172 5173 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5174 static inline void netif_keep_dst(struct net_device *dev) 5175 { 5176 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5177 } 5178 5179 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5180 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5181 { 5182 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5183 return netif_is_macsec(dev); 5184 } 5185 5186 extern struct pernet_operations __net_initdata loopback_net_ops; 5187 5188 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5189 5190 /* netdev_printk helpers, similar to dev_printk */ 5191 5192 static inline const char *netdev_name(const struct net_device *dev) 5193 { 5194 if (!dev->name[0] || strchr(dev->name, '%')) 5195 return "(unnamed net_device)"; 5196 return dev->name; 5197 } 5198 5199 static inline const char *netdev_reg_state(const struct net_device *dev) 5200 { 5201 u8 reg_state = READ_ONCE(dev->reg_state); 5202 5203 switch (reg_state) { 5204 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5205 case NETREG_REGISTERED: return ""; 5206 case NETREG_UNREGISTERING: return " (unregistering)"; 5207 case NETREG_UNREGISTERED: return " (unregistered)"; 5208 case NETREG_RELEASED: return " (released)"; 5209 case NETREG_DUMMY: return " (dummy)"; 5210 } 5211 5212 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5213 return " (unknown)"; 5214 } 5215 5216 #define MODULE_ALIAS_NETDEV(device) \ 5217 MODULE_ALIAS("netdev-" device) 5218 5219 /* 5220 * netdev_WARN() acts like dev_printk(), but with the key difference 5221 * of using a WARN/WARN_ON to get the message out, including the 5222 * file/line information and a backtrace. 5223 */ 5224 #define netdev_WARN(dev, format, args...) \ 5225 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5226 netdev_reg_state(dev), ##args) 5227 5228 #define netdev_WARN_ONCE(dev, format, args...) \ 5229 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5230 netdev_reg_state(dev), ##args) 5231 5232 /* 5233 * The list of packet types we will receive (as opposed to discard) 5234 * and the routines to invoke. 5235 * 5236 * Why 16. Because with 16 the only overlap we get on a hash of the 5237 * low nibble of the protocol value is RARP/SNAP/X.25. 5238 * 5239 * 0800 IP 5240 * 0001 802.3 5241 * 0002 AX.25 5242 * 0004 802.2 5243 * 8035 RARP 5244 * 0005 SNAP 5245 * 0805 X.25 5246 * 0806 ARP 5247 * 8137 IPX 5248 * 0009 Localtalk 5249 * 86DD IPv6 5250 */ 5251 #define PTYPE_HASH_SIZE (16) 5252 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5253 5254 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5255 5256 extern struct net_device *blackhole_netdev; 5257 5258 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5259 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5260 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5261 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5262 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5263 5264 #endif /* _LINUX_NETDEVICE_H */ 5265