xref: /linux-6.15/include/linux/netdevice.h (revision e96321fa)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm_kern;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 struct ethtool_netdev_state;
83 struct phy_link_topology;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	u32			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	/* CPU actively polling if netpoll is configured */
364 	int			poll_owner;
365 #endif
366 	/* CPU on which NAPI has been scheduled for processing */
367 	int			list_owner;
368 	struct net_device	*dev;
369 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
370 	struct sk_buff		*skb;
371 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
372 	int			rx_count; /* length of rx_list */
373 	unsigned int		napi_id;
374 	struct hrtimer		timer;
375 	struct task_struct	*thread;
376 	/* control-path-only fields follow */
377 	struct list_head	dev_list;
378 	struct hlist_node	napi_hash_node;
379 	int			irq;
380 };
381 
382 enum {
383 	NAPI_STATE_SCHED,		/* Poll is scheduled */
384 	NAPI_STATE_MISSED,		/* reschedule a napi */
385 	NAPI_STATE_DISABLE,		/* Disable pending */
386 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
387 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
388 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
389 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
390 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
391 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
392 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
393 };
394 
395 enum {
396 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
397 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
398 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
399 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
400 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
401 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
402 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
403 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
404 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
405 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
406 };
407 
408 enum gro_result {
409 	GRO_MERGED,
410 	GRO_MERGED_FREE,
411 	GRO_HELD,
412 	GRO_NORMAL,
413 	GRO_CONSUMED,
414 };
415 typedef enum gro_result gro_result_t;
416 
417 /*
418  * enum rx_handler_result - Possible return values for rx_handlers.
419  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
420  * further.
421  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
422  * case skb->dev was changed by rx_handler.
423  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
424  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
425  *
426  * rx_handlers are functions called from inside __netif_receive_skb(), to do
427  * special processing of the skb, prior to delivery to protocol handlers.
428  *
429  * Currently, a net_device can only have a single rx_handler registered. Trying
430  * to register a second rx_handler will return -EBUSY.
431  *
432  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
433  * To unregister a rx_handler on a net_device, use
434  * netdev_rx_handler_unregister().
435  *
436  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
437  * do with the skb.
438  *
439  * If the rx_handler consumed the skb in some way, it should return
440  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
441  * the skb to be delivered in some other way.
442  *
443  * If the rx_handler changed skb->dev, to divert the skb to another
444  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
445  * new device will be called if it exists.
446  *
447  * If the rx_handler decides the skb should be ignored, it should return
448  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
449  * are registered on exact device (ptype->dev == skb->dev).
450  *
451  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
452  * delivered, it should return RX_HANDLER_PASS.
453  *
454  * A device without a registered rx_handler will behave as if rx_handler
455  * returned RX_HANDLER_PASS.
456  */
457 
458 enum rx_handler_result {
459 	RX_HANDLER_CONSUMED,
460 	RX_HANDLER_ANOTHER,
461 	RX_HANDLER_EXACT,
462 	RX_HANDLER_PASS,
463 };
464 typedef enum rx_handler_result rx_handler_result_t;
465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
466 
467 void __napi_schedule(struct napi_struct *n);
468 void __napi_schedule_irqoff(struct napi_struct *n);
469 
470 static inline bool napi_disable_pending(struct napi_struct *n)
471 {
472 	return test_bit(NAPI_STATE_DISABLE, &n->state);
473 }
474 
475 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
476 {
477 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
478 }
479 
480 /**
481  * napi_is_scheduled - test if NAPI is scheduled
482  * @n: NAPI context
483  *
484  * This check is "best-effort". With no locking implemented,
485  * a NAPI can be scheduled or terminate right after this check
486  * and produce not precise results.
487  *
488  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
489  * should not be used normally and napi_schedule should be
490  * used instead.
491  *
492  * Use only if the driver really needs to check if a NAPI
493  * is scheduled for example in the context of delayed timer
494  * that can be skipped if a NAPI is already scheduled.
495  *
496  * Return True if NAPI is scheduled, False otherwise.
497  */
498 static inline bool napi_is_scheduled(struct napi_struct *n)
499 {
500 	return test_bit(NAPI_STATE_SCHED, &n->state);
501 }
502 
503 bool napi_schedule_prep(struct napi_struct *n);
504 
505 /**
506  *	napi_schedule - schedule NAPI poll
507  *	@n: NAPI context
508  *
509  * Schedule NAPI poll routine to be called if it is not already
510  * running.
511  * Return true if we schedule a NAPI or false if not.
512  * Refer to napi_schedule_prep() for additional reason on why
513  * a NAPI might not be scheduled.
514  */
515 static inline bool napi_schedule(struct napi_struct *n)
516 {
517 	if (napi_schedule_prep(n)) {
518 		__napi_schedule(n);
519 		return true;
520 	}
521 
522 	return false;
523 }
524 
525 /**
526  *	napi_schedule_irqoff - schedule NAPI poll
527  *	@n: NAPI context
528  *
529  * Variant of napi_schedule(), assuming hard irqs are masked.
530  */
531 static inline void napi_schedule_irqoff(struct napi_struct *n)
532 {
533 	if (napi_schedule_prep(n))
534 		__napi_schedule_irqoff(n);
535 }
536 
537 /**
538  * napi_complete_done - NAPI processing complete
539  * @n: NAPI context
540  * @work_done: number of packets processed
541  *
542  * Mark NAPI processing as complete. Should only be called if poll budget
543  * has not been completely consumed.
544  * Prefer over napi_complete().
545  * Return false if device should avoid rearming interrupts.
546  */
547 bool napi_complete_done(struct napi_struct *n, int work_done);
548 
549 static inline bool napi_complete(struct napi_struct *n)
550 {
551 	return napi_complete_done(n, 0);
552 }
553 
554 int dev_set_threaded(struct net_device *dev, bool threaded);
555 
556 /**
557  *	napi_disable - prevent NAPI from scheduling
558  *	@n: NAPI context
559  *
560  * Stop NAPI from being scheduled on this context.
561  * Waits till any outstanding processing completes.
562  */
563 void napi_disable(struct napi_struct *n);
564 
565 void napi_enable(struct napi_struct *n);
566 
567 /**
568  *	napi_synchronize - wait until NAPI is not running
569  *	@n: NAPI context
570  *
571  * Wait until NAPI is done being scheduled on this context.
572  * Waits till any outstanding processing completes but
573  * does not disable future activations.
574  */
575 static inline void napi_synchronize(const struct napi_struct *n)
576 {
577 	if (IS_ENABLED(CONFIG_SMP))
578 		while (test_bit(NAPI_STATE_SCHED, &n->state))
579 			msleep(1);
580 	else
581 		barrier();
582 }
583 
584 /**
585  *	napi_if_scheduled_mark_missed - if napi is running, set the
586  *	NAPIF_STATE_MISSED
587  *	@n: NAPI context
588  *
589  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
590  * NAPI is scheduled.
591  **/
592 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
593 {
594 	unsigned long val, new;
595 
596 	val = READ_ONCE(n->state);
597 	do {
598 		if (val & NAPIF_STATE_DISABLE)
599 			return true;
600 
601 		if (!(val & NAPIF_STATE_SCHED))
602 			return false;
603 
604 		new = val | NAPIF_STATE_MISSED;
605 	} while (!try_cmpxchg(&n->state, &val, new));
606 
607 	return true;
608 }
609 
610 enum netdev_queue_state_t {
611 	__QUEUE_STATE_DRV_XOFF,
612 	__QUEUE_STATE_STACK_XOFF,
613 	__QUEUE_STATE_FROZEN,
614 };
615 
616 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
617 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
618 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
619 
620 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
621 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
622 					QUEUE_STATE_FROZEN)
623 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
624 					QUEUE_STATE_FROZEN)
625 
626 /*
627  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
628  * netif_tx_* functions below are used to manipulate this flag.  The
629  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
630  * queue independently.  The netif_xmit_*stopped functions below are called
631  * to check if the queue has been stopped by the driver or stack (either
632  * of the XOFF bits are set in the state).  Drivers should not need to call
633  * netif_xmit*stopped functions, they should only be using netif_tx_*.
634  */
635 
636 struct netdev_queue {
637 /*
638  * read-mostly part
639  */
640 	struct net_device	*dev;
641 	netdevice_tracker	dev_tracker;
642 
643 	struct Qdisc __rcu	*qdisc;
644 	struct Qdisc __rcu	*qdisc_sleeping;
645 #ifdef CONFIG_SYSFS
646 	struct kobject		kobj;
647 #endif
648 	unsigned long		tx_maxrate;
649 	/*
650 	 * Number of TX timeouts for this queue
651 	 * (/sys/class/net/DEV/Q/trans_timeout)
652 	 */
653 	atomic_long_t		trans_timeout;
654 
655 	/* Subordinate device that the queue has been assigned to */
656 	struct net_device	*sb_dev;
657 #ifdef CONFIG_XDP_SOCKETS
658 	struct xsk_buff_pool    *pool;
659 #endif
660 
661 /*
662  * write-mostly part
663  */
664 #ifdef CONFIG_BQL
665 	struct dql		dql;
666 #endif
667 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
668 	int			xmit_lock_owner;
669 	/*
670 	 * Time (in jiffies) of last Tx
671 	 */
672 	unsigned long		trans_start;
673 
674 	unsigned long		state;
675 
676 /*
677  * slow- / control-path part
678  */
679 	/* NAPI instance for the queue
680 	 * Readers and writers must hold RTNL
681 	 */
682 	struct napi_struct	*napi;
683 
684 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
685 	int			numa_node;
686 #endif
687 } ____cacheline_aligned_in_smp;
688 
689 extern int sysctl_fb_tunnels_only_for_init_net;
690 extern int sysctl_devconf_inherit_init_net;
691 
692 /*
693  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
694  *                                     == 1 : For initns only
695  *                                     == 2 : For none.
696  */
697 static inline bool net_has_fallback_tunnels(const struct net *net)
698 {
699 #if IS_ENABLED(CONFIG_SYSCTL)
700 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
701 
702 	return !fb_tunnels_only_for_init_net ||
703 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
704 #else
705 	return true;
706 #endif
707 }
708 
709 static inline int net_inherit_devconf(void)
710 {
711 #if IS_ENABLED(CONFIG_SYSCTL)
712 	return READ_ONCE(sysctl_devconf_inherit_init_net);
713 #else
714 	return 0;
715 #endif
716 }
717 
718 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
719 {
720 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
721 	return q->numa_node;
722 #else
723 	return NUMA_NO_NODE;
724 #endif
725 }
726 
727 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
728 {
729 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
730 	q->numa_node = node;
731 #endif
732 }
733 
734 #ifdef CONFIG_RFS_ACCEL
735 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
736 			 u16 filter_id);
737 #endif
738 
739 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
740 enum xps_map_type {
741 	XPS_CPUS = 0,
742 	XPS_RXQS,
743 	XPS_MAPS_MAX,
744 };
745 
746 #ifdef CONFIG_XPS
747 /*
748  * This structure holds an XPS map which can be of variable length.  The
749  * map is an array of queues.
750  */
751 struct xps_map {
752 	unsigned int len;
753 	unsigned int alloc_len;
754 	struct rcu_head rcu;
755 	u16 queues[];
756 };
757 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
758 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
759        - sizeof(struct xps_map)) / sizeof(u16))
760 
761 /*
762  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
763  *
764  * We keep track of the number of cpus/rxqs used when the struct is allocated,
765  * in nr_ids. This will help not accessing out-of-bound memory.
766  *
767  * We keep track of the number of traffic classes used when the struct is
768  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
769  * not crossing its upper bound, as the original dev->num_tc can be updated in
770  * the meantime.
771  */
772 struct xps_dev_maps {
773 	struct rcu_head rcu;
774 	unsigned int nr_ids;
775 	s16 num_tc;
776 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
777 };
778 
779 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
780 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
781 
782 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
783 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
784 
785 #endif /* CONFIG_XPS */
786 
787 #define TC_MAX_QUEUE	16
788 #define TC_BITMASK	15
789 /* HW offloaded queuing disciplines txq count and offset maps */
790 struct netdev_tc_txq {
791 	u16 count;
792 	u16 offset;
793 };
794 
795 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
796 /*
797  * This structure is to hold information about the device
798  * configured to run FCoE protocol stack.
799  */
800 struct netdev_fcoe_hbainfo {
801 	char	manufacturer[64];
802 	char	serial_number[64];
803 	char	hardware_version[64];
804 	char	driver_version[64];
805 	char	optionrom_version[64];
806 	char	firmware_version[64];
807 	char	model[256];
808 	char	model_description[256];
809 };
810 #endif
811 
812 #define MAX_PHYS_ITEM_ID_LEN 32
813 
814 /* This structure holds a unique identifier to identify some
815  * physical item (port for example) used by a netdevice.
816  */
817 struct netdev_phys_item_id {
818 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
819 	unsigned char id_len;
820 };
821 
822 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
823 					    struct netdev_phys_item_id *b)
824 {
825 	return a->id_len == b->id_len &&
826 	       memcmp(a->id, b->id, a->id_len) == 0;
827 }
828 
829 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
830 				       struct sk_buff *skb,
831 				       struct net_device *sb_dev);
832 
833 enum net_device_path_type {
834 	DEV_PATH_ETHERNET = 0,
835 	DEV_PATH_VLAN,
836 	DEV_PATH_BRIDGE,
837 	DEV_PATH_PPPOE,
838 	DEV_PATH_DSA,
839 	DEV_PATH_MTK_WDMA,
840 };
841 
842 struct net_device_path {
843 	enum net_device_path_type	type;
844 	const struct net_device		*dev;
845 	union {
846 		struct {
847 			u16		id;
848 			__be16		proto;
849 			u8		h_dest[ETH_ALEN];
850 		} encap;
851 		struct {
852 			enum {
853 				DEV_PATH_BR_VLAN_KEEP,
854 				DEV_PATH_BR_VLAN_TAG,
855 				DEV_PATH_BR_VLAN_UNTAG,
856 				DEV_PATH_BR_VLAN_UNTAG_HW,
857 			}		vlan_mode;
858 			u16		vlan_id;
859 			__be16		vlan_proto;
860 		} bridge;
861 		struct {
862 			int port;
863 			u16 proto;
864 		} dsa;
865 		struct {
866 			u8 wdma_idx;
867 			u8 queue;
868 			u16 wcid;
869 			u8 bss;
870 			u8 amsdu;
871 		} mtk_wdma;
872 	};
873 };
874 
875 #define NET_DEVICE_PATH_STACK_MAX	5
876 #define NET_DEVICE_PATH_VLAN_MAX	2
877 
878 struct net_device_path_stack {
879 	int			num_paths;
880 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
881 };
882 
883 struct net_device_path_ctx {
884 	const struct net_device *dev;
885 	u8			daddr[ETH_ALEN];
886 
887 	int			num_vlans;
888 	struct {
889 		u16		id;
890 		__be16		proto;
891 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
892 };
893 
894 enum tc_setup_type {
895 	TC_QUERY_CAPS,
896 	TC_SETUP_QDISC_MQPRIO,
897 	TC_SETUP_CLSU32,
898 	TC_SETUP_CLSFLOWER,
899 	TC_SETUP_CLSMATCHALL,
900 	TC_SETUP_CLSBPF,
901 	TC_SETUP_BLOCK,
902 	TC_SETUP_QDISC_CBS,
903 	TC_SETUP_QDISC_RED,
904 	TC_SETUP_QDISC_PRIO,
905 	TC_SETUP_QDISC_MQ,
906 	TC_SETUP_QDISC_ETF,
907 	TC_SETUP_ROOT_QDISC,
908 	TC_SETUP_QDISC_GRED,
909 	TC_SETUP_QDISC_TAPRIO,
910 	TC_SETUP_FT,
911 	TC_SETUP_QDISC_ETS,
912 	TC_SETUP_QDISC_TBF,
913 	TC_SETUP_QDISC_FIFO,
914 	TC_SETUP_QDISC_HTB,
915 	TC_SETUP_ACT,
916 };
917 
918 /* These structures hold the attributes of bpf state that are being passed
919  * to the netdevice through the bpf op.
920  */
921 enum bpf_netdev_command {
922 	/* Set or clear a bpf program used in the earliest stages of packet
923 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
924 	 * is responsible for calling bpf_prog_put on any old progs that are
925 	 * stored. In case of error, the callee need not release the new prog
926 	 * reference, but on success it takes ownership and must bpf_prog_put
927 	 * when it is no longer used.
928 	 */
929 	XDP_SETUP_PROG,
930 	XDP_SETUP_PROG_HW,
931 	/* BPF program for offload callbacks, invoked at program load time. */
932 	BPF_OFFLOAD_MAP_ALLOC,
933 	BPF_OFFLOAD_MAP_FREE,
934 	XDP_SETUP_XSK_POOL,
935 };
936 
937 struct bpf_prog_offload_ops;
938 struct netlink_ext_ack;
939 struct xdp_umem;
940 struct xdp_dev_bulk_queue;
941 struct bpf_xdp_link;
942 
943 enum bpf_xdp_mode {
944 	XDP_MODE_SKB = 0,
945 	XDP_MODE_DRV = 1,
946 	XDP_MODE_HW = 2,
947 	__MAX_XDP_MODE
948 };
949 
950 struct bpf_xdp_entity {
951 	struct bpf_prog *prog;
952 	struct bpf_xdp_link *link;
953 };
954 
955 struct netdev_bpf {
956 	enum bpf_netdev_command command;
957 	union {
958 		/* XDP_SETUP_PROG */
959 		struct {
960 			u32 flags;
961 			struct bpf_prog *prog;
962 			struct netlink_ext_ack *extack;
963 		};
964 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
965 		struct {
966 			struct bpf_offloaded_map *offmap;
967 		};
968 		/* XDP_SETUP_XSK_POOL */
969 		struct {
970 			struct xsk_buff_pool *pool;
971 			u16 queue_id;
972 		} xsk;
973 	};
974 };
975 
976 /* Flags for ndo_xsk_wakeup. */
977 #define XDP_WAKEUP_RX (1 << 0)
978 #define XDP_WAKEUP_TX (1 << 1)
979 
980 #ifdef CONFIG_XFRM_OFFLOAD
981 struct xfrmdev_ops {
982 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
983 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
984 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
985 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
986 				       struct xfrm_state *x);
987 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
988 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
989 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
990 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
991 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
992 };
993 #endif
994 
995 struct dev_ifalias {
996 	struct rcu_head rcuhead;
997 	char ifalias[];
998 };
999 
1000 struct devlink;
1001 struct tlsdev_ops;
1002 
1003 struct netdev_net_notifier {
1004 	struct list_head list;
1005 	struct notifier_block *nb;
1006 };
1007 
1008 /*
1009  * This structure defines the management hooks for network devices.
1010  * The following hooks can be defined; unless noted otherwise, they are
1011  * optional and can be filled with a null pointer.
1012  *
1013  * int (*ndo_init)(struct net_device *dev);
1014  *     This function is called once when a network device is registered.
1015  *     The network device can use this for any late stage initialization
1016  *     or semantic validation. It can fail with an error code which will
1017  *     be propagated back to register_netdev.
1018  *
1019  * void (*ndo_uninit)(struct net_device *dev);
1020  *     This function is called when device is unregistered or when registration
1021  *     fails. It is not called if init fails.
1022  *
1023  * int (*ndo_open)(struct net_device *dev);
1024  *     This function is called when a network device transitions to the up
1025  *     state.
1026  *
1027  * int (*ndo_stop)(struct net_device *dev);
1028  *     This function is called when a network device transitions to the down
1029  *     state.
1030  *
1031  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1032  *                               struct net_device *dev);
1033  *	Called when a packet needs to be transmitted.
1034  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1035  *	the queue before that can happen; it's for obsolete devices and weird
1036  *	corner cases, but the stack really does a non-trivial amount
1037  *	of useless work if you return NETDEV_TX_BUSY.
1038  *	Required; cannot be NULL.
1039  *
1040  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1041  *					   struct net_device *dev
1042  *					   netdev_features_t features);
1043  *	Called by core transmit path to determine if device is capable of
1044  *	performing offload operations on a given packet. This is to give
1045  *	the device an opportunity to implement any restrictions that cannot
1046  *	be otherwise expressed by feature flags. The check is called with
1047  *	the set of features that the stack has calculated and it returns
1048  *	those the driver believes to be appropriate.
1049  *
1050  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1051  *                         struct net_device *sb_dev);
1052  *	Called to decide which queue to use when device supports multiple
1053  *	transmit queues.
1054  *
1055  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1056  *	This function is called to allow device receiver to make
1057  *	changes to configuration when multicast or promiscuous is enabled.
1058  *
1059  * void (*ndo_set_rx_mode)(struct net_device *dev);
1060  *	This function is called device changes address list filtering.
1061  *	If driver handles unicast address filtering, it should set
1062  *	IFF_UNICAST_FLT in its priv_flags.
1063  *
1064  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1065  *	This function  is called when the Media Access Control address
1066  *	needs to be changed. If this interface is not defined, the
1067  *	MAC address can not be changed.
1068  *
1069  * int (*ndo_validate_addr)(struct net_device *dev);
1070  *	Test if Media Access Control address is valid for the device.
1071  *
1072  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1073  *	Old-style ioctl entry point. This is used internally by the
1074  *	appletalk and ieee802154 subsystems but is no longer called by
1075  *	the device ioctl handler.
1076  *
1077  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1078  *	Used by the bonding driver for its device specific ioctls:
1079  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1080  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1081  *
1082  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1083  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1084  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1085  *
1086  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1087  *	Used to set network devices bus interface parameters. This interface
1088  *	is retained for legacy reasons; new devices should use the bus
1089  *	interface (PCI) for low level management.
1090  *
1091  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1092  *	Called when a user wants to change the Maximum Transfer Unit
1093  *	of a device.
1094  *
1095  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1096  *	Callback used when the transmitter has not made any progress
1097  *	for dev->watchdog ticks.
1098  *
1099  * void (*ndo_get_stats64)(struct net_device *dev,
1100  *                         struct rtnl_link_stats64 *storage);
1101  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1102  *	Called when a user wants to get the network device usage
1103  *	statistics. Drivers must do one of the following:
1104  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1105  *	   rtnl_link_stats64 structure passed by the caller.
1106  *	2. Define @ndo_get_stats to update a net_device_stats structure
1107  *	   (which should normally be dev->stats) and return a pointer to
1108  *	   it. The structure may be changed asynchronously only if each
1109  *	   field is written atomically.
1110  *	3. Update dev->stats asynchronously and atomically, and define
1111  *	   neither operation.
1112  *
1113  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1114  *	Return true if this device supports offload stats of this attr_id.
1115  *
1116  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1117  *	void *attr_data)
1118  *	Get statistics for offload operations by attr_id. Write it into the
1119  *	attr_data pointer.
1120  *
1121  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1122  *	If device supports VLAN filtering this function is called when a
1123  *	VLAN id is registered.
1124  *
1125  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1126  *	If device supports VLAN filtering this function is called when a
1127  *	VLAN id is unregistered.
1128  *
1129  * void (*ndo_poll_controller)(struct net_device *dev);
1130  *
1131  *	SR-IOV management functions.
1132  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1133  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1134  *			  u8 qos, __be16 proto);
1135  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1136  *			  int max_tx_rate);
1137  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1138  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1139  * int (*ndo_get_vf_config)(struct net_device *dev,
1140  *			    int vf, struct ifla_vf_info *ivf);
1141  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1142  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1143  *			  struct nlattr *port[]);
1144  *
1145  *      Enable or disable the VF ability to query its RSS Redirection Table and
1146  *      Hash Key. This is needed since on some devices VF share this information
1147  *      with PF and querying it may introduce a theoretical security risk.
1148  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1149  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1150  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1151  *		       void *type_data);
1152  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1153  *	This is always called from the stack with the rtnl lock held and netif
1154  *	tx queues stopped. This allows the netdevice to perform queue
1155  *	management safely.
1156  *
1157  *	Fiber Channel over Ethernet (FCoE) offload functions.
1158  * int (*ndo_fcoe_enable)(struct net_device *dev);
1159  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1160  *	so the underlying device can perform whatever needed configuration or
1161  *	initialization to support acceleration of FCoE traffic.
1162  *
1163  * int (*ndo_fcoe_disable)(struct net_device *dev);
1164  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1165  *	so the underlying device can perform whatever needed clean-ups to
1166  *	stop supporting acceleration of FCoE traffic.
1167  *
1168  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1169  *			     struct scatterlist *sgl, unsigned int sgc);
1170  *	Called when the FCoE Initiator wants to initialize an I/O that
1171  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1172  *	perform necessary setup and returns 1 to indicate the device is set up
1173  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1174  *
1175  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1176  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1177  *	indicated by the FC exchange id 'xid', so the underlying device can
1178  *	clean up and reuse resources for later DDP requests.
1179  *
1180  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1181  *			      struct scatterlist *sgl, unsigned int sgc);
1182  *	Called when the FCoE Target wants to initialize an I/O that
1183  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1184  *	perform necessary setup and returns 1 to indicate the device is set up
1185  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1186  *
1187  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1188  *			       struct netdev_fcoe_hbainfo *hbainfo);
1189  *	Called when the FCoE Protocol stack wants information on the underlying
1190  *	device. This information is utilized by the FCoE protocol stack to
1191  *	register attributes with Fiber Channel management service as per the
1192  *	FC-GS Fabric Device Management Information(FDMI) specification.
1193  *
1194  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1195  *	Called when the underlying device wants to override default World Wide
1196  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1197  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1198  *	protocol stack to use.
1199  *
1200  *	RFS acceleration.
1201  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1202  *			    u16 rxq_index, u32 flow_id);
1203  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1204  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1205  *	Return the filter ID on success, or a negative error code.
1206  *
1207  *	Slave management functions (for bridge, bonding, etc).
1208  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1209  *	Called to make another netdev an underling.
1210  *
1211  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1212  *	Called to release previously enslaved netdev.
1213  *
1214  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1215  *					    struct sk_buff *skb,
1216  *					    bool all_slaves);
1217  *	Get the xmit slave of master device. If all_slaves is true, function
1218  *	assume all the slaves can transmit.
1219  *
1220  *      Feature/offload setting functions.
1221  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1222  *		netdev_features_t features);
1223  *	Adjusts the requested feature flags according to device-specific
1224  *	constraints, and returns the resulting flags. Must not modify
1225  *	the device state.
1226  *
1227  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1228  *	Called to update device configuration to new features. Passed
1229  *	feature set might be less than what was returned by ndo_fix_features()).
1230  *	Must return >0 or -errno if it changed dev->features itself.
1231  *
1232  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1233  *		      struct net_device *dev,
1234  *		      const unsigned char *addr, u16 vid, u16 flags,
1235  *		      struct netlink_ext_ack *extack);
1236  *	Adds an FDB entry to dev for addr.
1237  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1238  *		      struct net_device *dev,
1239  *		      const unsigned char *addr, u16 vid)
1240  *	Deletes the FDB entry from dev corresponding to addr.
1241  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1242  *			   struct netlink_ext_ack *extack);
1243  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1244  *		       struct net_device *dev, struct net_device *filter_dev,
1245  *		       int *idx)
1246  *	Used to add FDB entries to dump requests. Implementers should add
1247  *	entries to skb and update idx with the number of entries.
1248  *
1249  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1250  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1251  *	Adds an MDB entry to dev.
1252  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1253  *		      struct netlink_ext_ack *extack);
1254  *	Deletes the MDB entry from dev.
1255  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1256  *			   struct netlink_ext_ack *extack);
1257  *	Bulk deletes MDB entries from dev.
1258  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1259  *		       struct netlink_callback *cb);
1260  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1261  *	callback is used by core rtnetlink code.
1262  *
1263  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1264  *			     u16 flags, struct netlink_ext_ack *extack)
1265  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1266  *			     struct net_device *dev, u32 filter_mask,
1267  *			     int nlflags)
1268  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1269  *			     u16 flags);
1270  *
1271  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1272  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1273  *	which do not represent real hardware may define this to allow their
1274  *	userspace components to manage their virtual carrier state. Devices
1275  *	that determine carrier state from physical hardware properties (eg
1276  *	network cables) or protocol-dependent mechanisms (eg
1277  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1278  *
1279  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1280  *			       struct netdev_phys_item_id *ppid);
1281  *	Called to get ID of physical port of this device. If driver does
1282  *	not implement this, it is assumed that the hw is not able to have
1283  *	multiple net devices on single physical port.
1284  *
1285  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1286  *				 struct netdev_phys_item_id *ppid)
1287  *	Called to get the parent ID of the physical port of this device.
1288  *
1289  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1290  *				 struct net_device *dev)
1291  *	Called by upper layer devices to accelerate switching or other
1292  *	station functionality into hardware. 'pdev is the lowerdev
1293  *	to use for the offload and 'dev' is the net device that will
1294  *	back the offload. Returns a pointer to the private structure
1295  *	the upper layer will maintain.
1296  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1297  *	Called by upper layer device to delete the station created
1298  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1299  *	the station and priv is the structure returned by the add
1300  *	operation.
1301  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1302  *			     int queue_index, u32 maxrate);
1303  *	Called when a user wants to set a max-rate limitation of specific
1304  *	TX queue.
1305  * int (*ndo_get_iflink)(const struct net_device *dev);
1306  *	Called to get the iflink value of this device.
1307  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1308  *	This function is used to get egress tunnel information for given skb.
1309  *	This is useful for retrieving outer tunnel header parameters while
1310  *	sampling packet.
1311  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1312  *	This function is used to specify the headroom that the skb must
1313  *	consider when allocation skb during packet reception. Setting
1314  *	appropriate rx headroom value allows avoiding skb head copy on
1315  *	forward. Setting a negative value resets the rx headroom to the
1316  *	default value.
1317  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1318  *	This function is used to set or query state related to XDP on the
1319  *	netdevice and manage BPF offload. See definition of
1320  *	enum bpf_netdev_command for details.
1321  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1322  *			u32 flags);
1323  *	This function is used to submit @n XDP packets for transmit on a
1324  *	netdevice. Returns number of frames successfully transmitted, frames
1325  *	that got dropped are freed/returned via xdp_return_frame().
1326  *	Returns negative number, means general error invoking ndo, meaning
1327  *	no frames were xmit'ed and core-caller will free all frames.
1328  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1329  *					        struct xdp_buff *xdp);
1330  *      Get the xmit slave of master device based on the xdp_buff.
1331  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1332  *      This function is used to wake up the softirq, ksoftirqd or kthread
1333  *	responsible for sending and/or receiving packets on a specific
1334  *	queue id bound to an AF_XDP socket. The flags field specifies if
1335  *	only RX, only Tx, or both should be woken up using the flags
1336  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1337  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1338  *			 int cmd);
1339  *	Add, change, delete or get information on an IPv4 tunnel.
1340  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1341  *	If a device is paired with a peer device, return the peer instance.
1342  *	The caller must be under RCU read context.
1343  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1344  *     Get the forwarding path to reach the real device from the HW destination address
1345  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1346  *			     const struct skb_shared_hwtstamps *hwtstamps,
1347  *			     bool cycles);
1348  *	Get hardware timestamp based on normal/adjustable time or free running
1349  *	cycle counter. This function is required if physical clock supports a
1350  *	free running cycle counter.
1351  *
1352  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1353  *			   struct kernel_hwtstamp_config *kernel_config);
1354  *	Get the currently configured hardware timestamping parameters for the
1355  *	NIC device.
1356  *
1357  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1358  *			   struct kernel_hwtstamp_config *kernel_config,
1359  *			   struct netlink_ext_ack *extack);
1360  *	Change the hardware timestamping parameters for NIC device.
1361  */
1362 struct net_device_ops {
1363 	int			(*ndo_init)(struct net_device *dev);
1364 	void			(*ndo_uninit)(struct net_device *dev);
1365 	int			(*ndo_open)(struct net_device *dev);
1366 	int			(*ndo_stop)(struct net_device *dev);
1367 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1368 						  struct net_device *dev);
1369 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1370 						      struct net_device *dev,
1371 						      netdev_features_t features);
1372 	u16			(*ndo_select_queue)(struct net_device *dev,
1373 						    struct sk_buff *skb,
1374 						    struct net_device *sb_dev);
1375 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1376 						       int flags);
1377 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1378 	int			(*ndo_set_mac_address)(struct net_device *dev,
1379 						       void *addr);
1380 	int			(*ndo_validate_addr)(struct net_device *dev);
1381 	int			(*ndo_do_ioctl)(struct net_device *dev,
1382 					        struct ifreq *ifr, int cmd);
1383 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1384 						 struct ifreq *ifr, int cmd);
1385 	int			(*ndo_siocbond)(struct net_device *dev,
1386 						struct ifreq *ifr, int cmd);
1387 	int			(*ndo_siocwandev)(struct net_device *dev,
1388 						  struct if_settings *ifs);
1389 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1390 						      struct ifreq *ifr,
1391 						      void __user *data, int cmd);
1392 	int			(*ndo_set_config)(struct net_device *dev,
1393 					          struct ifmap *map);
1394 	int			(*ndo_change_mtu)(struct net_device *dev,
1395 						  int new_mtu);
1396 	int			(*ndo_neigh_setup)(struct net_device *dev,
1397 						   struct neigh_parms *);
1398 	void			(*ndo_tx_timeout) (struct net_device *dev,
1399 						   unsigned int txqueue);
1400 
1401 	void			(*ndo_get_stats64)(struct net_device *dev,
1402 						   struct rtnl_link_stats64 *storage);
1403 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1404 	int			(*ndo_get_offload_stats)(int attr_id,
1405 							 const struct net_device *dev,
1406 							 void *attr_data);
1407 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1408 
1409 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1410 						       __be16 proto, u16 vid);
1411 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1412 						        __be16 proto, u16 vid);
1413 #ifdef CONFIG_NET_POLL_CONTROLLER
1414 	void                    (*ndo_poll_controller)(struct net_device *dev);
1415 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1416 						     struct netpoll_info *info);
1417 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1418 #endif
1419 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1420 						  int queue, u8 *mac);
1421 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1422 						   int queue, u16 vlan,
1423 						   u8 qos, __be16 proto);
1424 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1425 						   int vf, int min_tx_rate,
1426 						   int max_tx_rate);
1427 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1428 						       int vf, bool setting);
1429 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1430 						    int vf, bool setting);
1431 	int			(*ndo_get_vf_config)(struct net_device *dev,
1432 						     int vf,
1433 						     struct ifla_vf_info *ivf);
1434 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1435 							 int vf, int link_state);
1436 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1437 						    int vf,
1438 						    struct ifla_vf_stats
1439 						    *vf_stats);
1440 	int			(*ndo_set_vf_port)(struct net_device *dev,
1441 						   int vf,
1442 						   struct nlattr *port[]);
1443 	int			(*ndo_get_vf_port)(struct net_device *dev,
1444 						   int vf, struct sk_buff *skb);
1445 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1446 						   int vf,
1447 						   struct ifla_vf_guid *node_guid,
1448 						   struct ifla_vf_guid *port_guid);
1449 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1450 						   int vf, u64 guid,
1451 						   int guid_type);
1452 	int			(*ndo_set_vf_rss_query_en)(
1453 						   struct net_device *dev,
1454 						   int vf, bool setting);
1455 	int			(*ndo_setup_tc)(struct net_device *dev,
1456 						enum tc_setup_type type,
1457 						void *type_data);
1458 #if IS_ENABLED(CONFIG_FCOE)
1459 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1460 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1461 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1462 						      u16 xid,
1463 						      struct scatterlist *sgl,
1464 						      unsigned int sgc);
1465 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1466 						     u16 xid);
1467 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1468 						       u16 xid,
1469 						       struct scatterlist *sgl,
1470 						       unsigned int sgc);
1471 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1472 							struct netdev_fcoe_hbainfo *hbainfo);
1473 #endif
1474 
1475 #if IS_ENABLED(CONFIG_LIBFCOE)
1476 #define NETDEV_FCOE_WWNN 0
1477 #define NETDEV_FCOE_WWPN 1
1478 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1479 						    u64 *wwn, int type);
1480 #endif
1481 
1482 #ifdef CONFIG_RFS_ACCEL
1483 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1484 						     const struct sk_buff *skb,
1485 						     u16 rxq_index,
1486 						     u32 flow_id);
1487 #endif
1488 	int			(*ndo_add_slave)(struct net_device *dev,
1489 						 struct net_device *slave_dev,
1490 						 struct netlink_ext_ack *extack);
1491 	int			(*ndo_del_slave)(struct net_device *dev,
1492 						 struct net_device *slave_dev);
1493 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1494 						      struct sk_buff *skb,
1495 						      bool all_slaves);
1496 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1497 							struct sock *sk);
1498 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1499 						    netdev_features_t features);
1500 	int			(*ndo_set_features)(struct net_device *dev,
1501 						    netdev_features_t features);
1502 	int			(*ndo_neigh_construct)(struct net_device *dev,
1503 						       struct neighbour *n);
1504 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1505 						     struct neighbour *n);
1506 
1507 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1508 					       struct nlattr *tb[],
1509 					       struct net_device *dev,
1510 					       const unsigned char *addr,
1511 					       u16 vid,
1512 					       u16 flags,
1513 					       struct netlink_ext_ack *extack);
1514 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1515 					       struct nlattr *tb[],
1516 					       struct net_device *dev,
1517 					       const unsigned char *addr,
1518 					       u16 vid, struct netlink_ext_ack *extack);
1519 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1520 						    struct net_device *dev,
1521 						    struct netlink_ext_ack *extack);
1522 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1523 						struct netlink_callback *cb,
1524 						struct net_device *dev,
1525 						struct net_device *filter_dev,
1526 						int *idx);
1527 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1528 					       struct nlattr *tb[],
1529 					       struct net_device *dev,
1530 					       const unsigned char *addr,
1531 					       u16 vid, u32 portid, u32 seq,
1532 					       struct netlink_ext_ack *extack);
1533 	int			(*ndo_mdb_add)(struct net_device *dev,
1534 					       struct nlattr *tb[],
1535 					       u16 nlmsg_flags,
1536 					       struct netlink_ext_ack *extack);
1537 	int			(*ndo_mdb_del)(struct net_device *dev,
1538 					       struct nlattr *tb[],
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1541 						    struct nlattr *tb[],
1542 						    struct netlink_ext_ack *extack);
1543 	int			(*ndo_mdb_dump)(struct net_device *dev,
1544 						struct sk_buff *skb,
1545 						struct netlink_callback *cb);
1546 	int			(*ndo_mdb_get)(struct net_device *dev,
1547 					       struct nlattr *tb[], u32 portid,
1548 					       u32 seq,
1549 					       struct netlink_ext_ack *extack);
1550 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1551 						      struct nlmsghdr *nlh,
1552 						      u16 flags,
1553 						      struct netlink_ext_ack *extack);
1554 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1555 						      u32 pid, u32 seq,
1556 						      struct net_device *dev,
1557 						      u32 filter_mask,
1558 						      int nlflags);
1559 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1560 						      struct nlmsghdr *nlh,
1561 						      u16 flags);
1562 	int			(*ndo_change_carrier)(struct net_device *dev,
1563 						      bool new_carrier);
1564 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1565 							struct netdev_phys_item_id *ppid);
1566 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1567 							  struct netdev_phys_item_id *ppid);
1568 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1569 							  char *name, size_t len);
1570 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1571 							struct net_device *dev);
1572 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1573 							void *priv);
1574 
1575 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1576 						      int queue_index,
1577 						      u32 maxrate);
1578 	int			(*ndo_get_iflink)(const struct net_device *dev);
1579 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1580 						       struct sk_buff *skb);
1581 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1582 						       int needed_headroom);
1583 	int			(*ndo_bpf)(struct net_device *dev,
1584 					   struct netdev_bpf *bpf);
1585 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1586 						struct xdp_frame **xdp,
1587 						u32 flags);
1588 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1589 							  struct xdp_buff *xdp);
1590 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1591 						  u32 queue_id, u32 flags);
1592 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1593 						  struct ip_tunnel_parm_kern *p,
1594 						  int cmd);
1595 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1596 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1597                                                          struct net_device_path *path);
1598 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1599 						  const struct skb_shared_hwtstamps *hwtstamps,
1600 						  bool cycles);
1601 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1602 						    struct kernel_hwtstamp_config *kernel_config);
1603 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1604 						    struct kernel_hwtstamp_config *kernel_config,
1605 						    struct netlink_ext_ack *extack);
1606 };
1607 
1608 /**
1609  * enum netdev_priv_flags - &struct net_device priv_flags
1610  *
1611  * These are the &struct net_device, they are only set internally
1612  * by drivers and used in the kernel. These flags are invisible to
1613  * userspace; this means that the order of these flags can change
1614  * during any kernel release.
1615  *
1616  * You should add bitfield booleans after either net_device::priv_flags
1617  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1618  *
1619  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1620  * @IFF_EBRIDGE: Ethernet bridging device
1621  * @IFF_BONDING: bonding master or slave
1622  * @IFF_ISATAP: ISATAP interface (RFC4214)
1623  * @IFF_WAN_HDLC: WAN HDLC device
1624  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1625  *	release skb->dst
1626  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1627  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1628  * @IFF_MACVLAN_PORT: device used as macvlan port
1629  * @IFF_BRIDGE_PORT: device used as bridge port
1630  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1631  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1632  * @IFF_UNICAST_FLT: Supports unicast filtering
1633  * @IFF_TEAM_PORT: device used as team port
1634  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1635  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1636  *	change when it's running
1637  * @IFF_MACVLAN: Macvlan device
1638  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1639  *	underlying stacked devices
1640  * @IFF_L3MDEV_MASTER: device is an L3 master device
1641  * @IFF_NO_QUEUE: device can run without qdisc attached
1642  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1643  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1644  * @IFF_TEAM: device is a team device
1645  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1646  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1647  *	entity (i.e. the master device for bridged veth)
1648  * @IFF_MACSEC: device is a MACsec device
1649  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1650  * @IFF_FAILOVER: device is a failover master device
1651  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1652  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1653  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1654  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1655  *	skb_headlen(skb) == 0 (data starts from frag0)
1656  */
1657 enum netdev_priv_flags {
1658 	IFF_802_1Q_VLAN			= 1<<0,
1659 	IFF_EBRIDGE			= 1<<1,
1660 	IFF_BONDING			= 1<<2,
1661 	IFF_ISATAP			= 1<<3,
1662 	IFF_WAN_HDLC			= 1<<4,
1663 	IFF_XMIT_DST_RELEASE		= 1<<5,
1664 	IFF_DONT_BRIDGE			= 1<<6,
1665 	IFF_DISABLE_NETPOLL		= 1<<7,
1666 	IFF_MACVLAN_PORT		= 1<<8,
1667 	IFF_BRIDGE_PORT			= 1<<9,
1668 	IFF_OVS_DATAPATH		= 1<<10,
1669 	IFF_TX_SKB_SHARING		= 1<<11,
1670 	IFF_UNICAST_FLT			= 1<<12,
1671 	IFF_TEAM_PORT			= 1<<13,
1672 	IFF_SUPP_NOFCS			= 1<<14,
1673 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1674 	IFF_MACVLAN			= 1<<16,
1675 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1676 	IFF_L3MDEV_MASTER		= 1<<18,
1677 	IFF_NO_QUEUE			= 1<<19,
1678 	IFF_OPENVSWITCH			= 1<<20,
1679 	IFF_L3MDEV_SLAVE		= 1<<21,
1680 	IFF_TEAM			= 1<<22,
1681 	IFF_RXFH_CONFIGURED		= 1<<23,
1682 	IFF_PHONY_HEADROOM		= 1<<24,
1683 	IFF_MACSEC			= 1<<25,
1684 	IFF_NO_RX_HANDLER		= 1<<26,
1685 	IFF_FAILOVER			= 1<<27,
1686 	IFF_FAILOVER_SLAVE		= 1<<28,
1687 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1688 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1689 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1690 };
1691 
1692 /* Specifies the type of the struct net_device::ml_priv pointer */
1693 enum netdev_ml_priv_type {
1694 	ML_PRIV_NONE,
1695 	ML_PRIV_CAN,
1696 };
1697 
1698 enum netdev_stat_type {
1699 	NETDEV_PCPU_STAT_NONE,
1700 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1701 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1702 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1703 };
1704 
1705 enum netdev_reg_state {
1706 	NETREG_UNINITIALIZED = 0,
1707 	NETREG_REGISTERED,	/* completed register_netdevice */
1708 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1709 	NETREG_UNREGISTERED,	/* completed unregister todo */
1710 	NETREG_RELEASED,	/* called free_netdev */
1711 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1712 };
1713 
1714 /**
1715  *	struct net_device - The DEVICE structure.
1716  *
1717  *	Actually, this whole structure is a big mistake.  It mixes I/O
1718  *	data with strictly "high-level" data, and it has to know about
1719  *	almost every data structure used in the INET module.
1720  *
1721  *	@priv_flags:	flags invisible to userspace defined as bits, see
1722  *			enum netdev_priv_flags for the definitions
1723  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1724  *			drivers. Mainly used by logical interfaces, such as
1725  *			bonding and tunnels
1726  *
1727  *	@name:	This is the first field of the "visible" part of this structure
1728  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1729  *		of the interface.
1730  *
1731  *	@name_node:	Name hashlist node
1732  *	@ifalias:	SNMP alias
1733  *	@mem_end:	Shared memory end
1734  *	@mem_start:	Shared memory start
1735  *	@base_addr:	Device I/O address
1736  *	@irq:		Device IRQ number
1737  *
1738  *	@state:		Generic network queuing layer state, see netdev_state_t
1739  *	@dev_list:	The global list of network devices
1740  *	@napi_list:	List entry used for polling NAPI devices
1741  *	@unreg_list:	List entry  when we are unregistering the
1742  *			device; see the function unregister_netdev
1743  *	@close_list:	List entry used when we are closing the device
1744  *	@ptype_all:     Device-specific packet handlers for all protocols
1745  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1746  *
1747  *	@adj_list:	Directly linked devices, like slaves for bonding
1748  *	@features:	Currently active device features
1749  *	@hw_features:	User-changeable features
1750  *
1751  *	@wanted_features:	User-requested features
1752  *	@vlan_features:		Mask of features inheritable by VLAN devices
1753  *
1754  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1755  *				This field indicates what encapsulation
1756  *				offloads the hardware is capable of doing,
1757  *				and drivers will need to set them appropriately.
1758  *
1759  *	@mpls_features:	Mask of features inheritable by MPLS
1760  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1761  *
1762  *	@ifindex:	interface index
1763  *	@group:		The group the device belongs to
1764  *
1765  *	@stats:		Statistics struct, which was left as a legacy, use
1766  *			rtnl_link_stats64 instead
1767  *
1768  *	@core_stats:	core networking counters,
1769  *			do not use this in drivers
1770  *	@carrier_up_count:	Number of times the carrier has been up
1771  *	@carrier_down_count:	Number of times the carrier has been down
1772  *
1773  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1774  *				instead of ioctl,
1775  *				see <net/iw_handler.h> for details.
1776  *	@wireless_data:	Instance data managed by the core of wireless extensions
1777  *
1778  *	@netdev_ops:	Includes several pointers to callbacks,
1779  *			if one wants to override the ndo_*() functions
1780  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1781  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1782  *	@ethtool_ops:	Management operations
1783  *	@l3mdev_ops:	Layer 3 master device operations
1784  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1785  *			discovery handling. Necessary for e.g. 6LoWPAN.
1786  *	@xfrmdev_ops:	Transformation offload operations
1787  *	@tlsdev_ops:	Transport Layer Security offload operations
1788  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1789  *			of Layer 2 headers.
1790  *
1791  *	@flags:		Interface flags (a la BSD)
1792  *	@xdp_features:	XDP capability supported by the device
1793  *	@gflags:	Global flags ( kept as legacy )
1794  *	@priv_len:	Size of the ->priv flexible array
1795  *	@priv:		Flexible array containing private data
1796  *	@operstate:	RFC2863 operstate
1797  *	@link_mode:	Mapping policy to operstate
1798  *	@if_port:	Selectable AUI, TP, ...
1799  *	@dma:		DMA channel
1800  *	@mtu:		Interface MTU value
1801  *	@min_mtu:	Interface Minimum MTU value
1802  *	@max_mtu:	Interface Maximum MTU value
1803  *	@type:		Interface hardware type
1804  *	@hard_header_len: Maximum hardware header length.
1805  *	@min_header_len:  Minimum hardware header length
1806  *
1807  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1808  *			  cases can this be guaranteed
1809  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1810  *			  cases can this be guaranteed. Some cases also use
1811  *			  LL_MAX_HEADER instead to allocate the skb
1812  *
1813  *	interface address info:
1814  *
1815  * 	@perm_addr:		Permanent hw address
1816  * 	@addr_assign_type:	Hw address assignment type
1817  * 	@addr_len:		Hardware address length
1818  *	@upper_level:		Maximum depth level of upper devices.
1819  *	@lower_level:		Maximum depth level of lower devices.
1820  *	@neigh_priv_len:	Used in neigh_alloc()
1821  * 	@dev_id:		Used to differentiate devices that share
1822  * 				the same link layer address
1823  * 	@dev_port:		Used to differentiate devices that share
1824  * 				the same function
1825  *	@addr_list_lock:	XXX: need comments on this one
1826  *	@name_assign_type:	network interface name assignment type
1827  *	@uc_promisc:		Counter that indicates promiscuous mode
1828  *				has been enabled due to the need to listen to
1829  *				additional unicast addresses in a device that
1830  *				does not implement ndo_set_rx_mode()
1831  *	@uc:			unicast mac addresses
1832  *	@mc:			multicast mac addresses
1833  *	@dev_addrs:		list of device hw addresses
1834  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1835  *	@promiscuity:		Number of times the NIC is told to work in
1836  *				promiscuous mode; if it becomes 0 the NIC will
1837  *				exit promiscuous mode
1838  *	@allmulti:		Counter, enables or disables allmulticast mode
1839  *
1840  *	@vlan_info:	VLAN info
1841  *	@dsa_ptr:	dsa specific data
1842  *	@tipc_ptr:	TIPC specific data
1843  *	@atalk_ptr:	AppleTalk link
1844  *	@ip_ptr:	IPv4 specific data
1845  *	@ip6_ptr:	IPv6 specific data
1846  *	@ax25_ptr:	AX.25 specific data
1847  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1848  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1849  *			 device struct
1850  *	@mpls_ptr:	mpls_dev struct pointer
1851  *	@mctp_ptr:	MCTP specific data
1852  *
1853  *	@dev_addr:	Hw address (before bcast,
1854  *			because most packets are unicast)
1855  *
1856  *	@_rx:			Array of RX queues
1857  *	@num_rx_queues:		Number of RX queues
1858  *				allocated at register_netdev() time
1859  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1860  *	@xdp_prog:		XDP sockets filter program pointer
1861  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1862  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1863  *				allow to avoid NIC hard IRQ, on busy queues.
1864  *
1865  *	@rx_handler:		handler for received packets
1866  *	@rx_handler_data: 	XXX: need comments on this one
1867  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1868  *	@ingress_queue:		XXX: need comments on this one
1869  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1870  *	@broadcast:		hw bcast address
1871  *
1872  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1873  *			indexed by RX queue number. Assigned by driver.
1874  *			This must only be set if the ndo_rx_flow_steer
1875  *			operation is defined
1876  *	@index_hlist:		Device index hash chain
1877  *
1878  *	@_tx:			Array of TX queues
1879  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1880  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1881  *	@qdisc:			Root qdisc from userspace point of view
1882  *	@tx_queue_len:		Max frames per queue allowed
1883  *	@tx_global_lock: 	XXX: need comments on this one
1884  *	@xdp_bulkq:		XDP device bulk queue
1885  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1886  *
1887  *	@xps_maps:	XXX: need comments on this one
1888  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1889  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1890  *	@qdisc_hash:		qdisc hash table
1891  *	@watchdog_timeo:	Represents the timeout that is used by
1892  *				the watchdog (see dev_watchdog())
1893  *	@watchdog_timer:	List of timers
1894  *
1895  *	@proto_down_reason:	reason a netdev interface is held down
1896  *	@pcpu_refcnt:		Number of references to this device
1897  *	@dev_refcnt:		Number of references to this device
1898  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1899  *	@todo_list:		Delayed register/unregister
1900  *	@link_watch_list:	XXX: need comments on this one
1901  *
1902  *	@reg_state:		Register/unregister state machine
1903  *	@dismantle:		Device is going to be freed
1904  *	@rtnl_link_state:	This enum represents the phases of creating
1905  *				a new link
1906  *
1907  *	@needs_free_netdev:	Should unregister perform free_netdev?
1908  *	@priv_destructor:	Called from unregister
1909  *	@npinfo:		XXX: need comments on this one
1910  * 	@nd_net:		Network namespace this network device is inside
1911  *
1912  * 	@ml_priv:	Mid-layer private
1913  *	@ml_priv_type:  Mid-layer private type
1914  *
1915  *	@pcpu_stat_type:	Type of device statistics which the core should
1916  *				allocate/free: none, lstats, tstats, dstats. none
1917  *				means the driver is handling statistics allocation/
1918  *				freeing internally.
1919  *	@lstats:		Loopback statistics: packets, bytes
1920  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1921  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1922  *
1923  *	@garp_port:	GARP
1924  *	@mrp_port:	MRP
1925  *
1926  *	@dm_private:	Drop monitor private
1927  *
1928  *	@dev:		Class/net/name entry
1929  *	@sysfs_groups:	Space for optional device, statistics and wireless
1930  *			sysfs groups
1931  *
1932  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1933  *	@rtnl_link_ops:	Rtnl_link_ops
1934  *	@stat_ops:	Optional ops for queue-aware statistics
1935  *	@queue_mgmt_ops:	Optional ops for queue management
1936  *
1937  *	@gso_max_size:	Maximum size of generic segmentation offload
1938  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1939  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1940  *			NIC for GSO
1941  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1942  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1943  * 				for IPv4.
1944  *
1945  *	@dcbnl_ops:	Data Center Bridging netlink ops
1946  *	@num_tc:	Number of traffic classes in the net device
1947  *	@tc_to_txq:	XXX: need comments on this one
1948  *	@prio_tc_map:	XXX: need comments on this one
1949  *
1950  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1951  *
1952  *	@priomap:	XXX: need comments on this one
1953  *	@link_topo:	Physical link topology tracking attached PHYs
1954  *	@phydev:	Physical device may attach itself
1955  *			for hardware timestamping
1956  *	@sfp_bus:	attached &struct sfp_bus structure.
1957  *
1958  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1959  *
1960  *	@proto_down:	protocol port state information can be sent to the
1961  *			switch driver and used to set the phys state of the
1962  *			switch port.
1963  *
1964  *	@threaded:	napi threaded mode is enabled
1965  *
1966  *	@see_all_hwtstamp_requests: device wants to see calls to
1967  *			ndo_hwtstamp_set() for all timestamp requests
1968  *			regardless of source, even if those aren't
1969  *			HWTSTAMP_SOURCE_NETDEV
1970  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1971  *	@netns_local: interface can't change network namespaces
1972  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
1973  *
1974  *	@net_notifier_list:	List of per-net netdev notifier block
1975  *				that follow this device when it is moved
1976  *				to another network namespace.
1977  *
1978  *	@macsec_ops:    MACsec offloading ops
1979  *
1980  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1981  *				offload capabilities of the device
1982  *	@udp_tunnel_nic:	UDP tunnel offload state
1983  *	@ethtool:	ethtool related state
1984  *	@xdp_state:		stores info on attached XDP BPF programs
1985  *
1986  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1987  *			dev->addr_list_lock.
1988  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1989  *			keep a list of interfaces to be deleted.
1990  *	@gro_max_size:	Maximum size of aggregated packet in generic
1991  *			receive offload (GRO)
1992  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
1993  * 				receive offload (GRO), for IPv4.
1994  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
1995  *				zero copy driver
1996  *
1997  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1998  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1999  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2000  *	@dev_registered_tracker:	tracker for reference held while
2001  *					registered
2002  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2003  *
2004  *	@devlink_port:	Pointer to related devlink port structure.
2005  *			Assigned by a driver before netdev registration using
2006  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2007  *			during the time netdevice is registered.
2008  *
2009  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2010  *		   where the clock is recovered.
2011  *
2012  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2013  *
2014  *	FIXME: cleanup struct net_device such that network protocol info
2015  *	moves out.
2016  */
2017 
2018 struct net_device {
2019 	/* Cacheline organization can be found documented in
2020 	 * Documentation/networking/net_cachelines/net_device.rst.
2021 	 * Please update the document when adding new fields.
2022 	 */
2023 
2024 	/* TX read-mostly hotpath */
2025 	__cacheline_group_begin(net_device_read_tx);
2026 	struct_group(priv_flags_fast,
2027 		unsigned long		priv_flags:32;
2028 		unsigned long		lltx:1;
2029 	);
2030 	const struct net_device_ops *netdev_ops;
2031 	const struct header_ops *header_ops;
2032 	struct netdev_queue	*_tx;
2033 	netdev_features_t	gso_partial_features;
2034 	unsigned int		real_num_tx_queues;
2035 	unsigned int		gso_max_size;
2036 	unsigned int		gso_ipv4_max_size;
2037 	u16			gso_max_segs;
2038 	s16			num_tc;
2039 	/* Note : dev->mtu is often read without holding a lock.
2040 	 * Writers usually hold RTNL.
2041 	 * It is recommended to use READ_ONCE() to annotate the reads,
2042 	 * and to use WRITE_ONCE() to annotate the writes.
2043 	 */
2044 	unsigned int		mtu;
2045 	unsigned short		needed_headroom;
2046 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2047 #ifdef CONFIG_XPS
2048 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2049 #endif
2050 #ifdef CONFIG_NETFILTER_EGRESS
2051 	struct nf_hook_entries __rcu *nf_hooks_egress;
2052 #endif
2053 #ifdef CONFIG_NET_XGRESS
2054 	struct bpf_mprog_entry __rcu *tcx_egress;
2055 #endif
2056 	__cacheline_group_end(net_device_read_tx);
2057 
2058 	/* TXRX read-mostly hotpath */
2059 	__cacheline_group_begin(net_device_read_txrx);
2060 	union {
2061 		struct pcpu_lstats __percpu		*lstats;
2062 		struct pcpu_sw_netstats __percpu	*tstats;
2063 		struct pcpu_dstats __percpu		*dstats;
2064 	};
2065 	unsigned long		state;
2066 	unsigned int		flags;
2067 	unsigned short		hard_header_len;
2068 	netdev_features_t	features;
2069 	struct inet6_dev __rcu	*ip6_ptr;
2070 	__cacheline_group_end(net_device_read_txrx);
2071 
2072 	/* RX read-mostly hotpath */
2073 	__cacheline_group_begin(net_device_read_rx);
2074 	struct bpf_prog __rcu	*xdp_prog;
2075 	struct list_head	ptype_specific;
2076 	int			ifindex;
2077 	unsigned int		real_num_rx_queues;
2078 	struct netdev_rx_queue	*_rx;
2079 	unsigned long		gro_flush_timeout;
2080 	u32			napi_defer_hard_irqs;
2081 	unsigned int		gro_max_size;
2082 	unsigned int		gro_ipv4_max_size;
2083 	rx_handler_func_t __rcu	*rx_handler;
2084 	void __rcu		*rx_handler_data;
2085 	possible_net_t			nd_net;
2086 #ifdef CONFIG_NETPOLL
2087 	struct netpoll_info __rcu	*npinfo;
2088 #endif
2089 #ifdef CONFIG_NET_XGRESS
2090 	struct bpf_mprog_entry __rcu *tcx_ingress;
2091 #endif
2092 	__cacheline_group_end(net_device_read_rx);
2093 
2094 	char			name[IFNAMSIZ];
2095 	struct netdev_name_node	*name_node;
2096 	struct dev_ifalias	__rcu *ifalias;
2097 	/*
2098 	 *	I/O specific fields
2099 	 *	FIXME: Merge these and struct ifmap into one
2100 	 */
2101 	unsigned long		mem_end;
2102 	unsigned long		mem_start;
2103 	unsigned long		base_addr;
2104 
2105 	/*
2106 	 *	Some hardware also needs these fields (state,dev_list,
2107 	 *	napi_list,unreg_list,close_list) but they are not
2108 	 *	part of the usual set specified in Space.c.
2109 	 */
2110 
2111 
2112 	struct list_head	dev_list;
2113 	struct list_head	napi_list;
2114 	struct list_head	unreg_list;
2115 	struct list_head	close_list;
2116 	struct list_head	ptype_all;
2117 
2118 	struct {
2119 		struct list_head upper;
2120 		struct list_head lower;
2121 	} adj_list;
2122 
2123 	/* Read-mostly cache-line for fast-path access */
2124 	xdp_features_t		xdp_features;
2125 	const struct xdp_metadata_ops *xdp_metadata_ops;
2126 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2127 	unsigned short		gflags;
2128 
2129 	unsigned short		needed_tailroom;
2130 
2131 	netdev_features_t	hw_features;
2132 	netdev_features_t	wanted_features;
2133 	netdev_features_t	vlan_features;
2134 	netdev_features_t	hw_enc_features;
2135 	netdev_features_t	mpls_features;
2136 
2137 	unsigned int		min_mtu;
2138 	unsigned int		max_mtu;
2139 	unsigned short		type;
2140 	unsigned char		min_header_len;
2141 	unsigned char		name_assign_type;
2142 
2143 	int			group;
2144 
2145 	struct net_device_stats	stats; /* not used by modern drivers */
2146 
2147 	struct net_device_core_stats __percpu *core_stats;
2148 
2149 	/* Stats to monitor link on/off, flapping */
2150 	atomic_t		carrier_up_count;
2151 	atomic_t		carrier_down_count;
2152 
2153 #ifdef CONFIG_WIRELESS_EXT
2154 	const struct iw_handler_def *wireless_handlers;
2155 	struct iw_public_data	*wireless_data;
2156 #endif
2157 	const struct ethtool_ops *ethtool_ops;
2158 #ifdef CONFIG_NET_L3_MASTER_DEV
2159 	const struct l3mdev_ops	*l3mdev_ops;
2160 #endif
2161 #if IS_ENABLED(CONFIG_IPV6)
2162 	const struct ndisc_ops *ndisc_ops;
2163 #endif
2164 
2165 #ifdef CONFIG_XFRM_OFFLOAD
2166 	const struct xfrmdev_ops *xfrmdev_ops;
2167 #endif
2168 
2169 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2170 	const struct tlsdev_ops *tlsdev_ops;
2171 #endif
2172 
2173 	unsigned int		operstate;
2174 	unsigned char		link_mode;
2175 
2176 	unsigned char		if_port;
2177 	unsigned char		dma;
2178 
2179 	/* Interface address info. */
2180 	unsigned char		perm_addr[MAX_ADDR_LEN];
2181 	unsigned char		addr_assign_type;
2182 	unsigned char		addr_len;
2183 	unsigned char		upper_level;
2184 	unsigned char		lower_level;
2185 
2186 	unsigned short		neigh_priv_len;
2187 	unsigned short          dev_id;
2188 	unsigned short          dev_port;
2189 	int			irq;
2190 	u32			priv_len;
2191 
2192 	spinlock_t		addr_list_lock;
2193 
2194 	struct netdev_hw_addr_list	uc;
2195 	struct netdev_hw_addr_list	mc;
2196 	struct netdev_hw_addr_list	dev_addrs;
2197 
2198 #ifdef CONFIG_SYSFS
2199 	struct kset		*queues_kset;
2200 #endif
2201 #ifdef CONFIG_LOCKDEP
2202 	struct list_head	unlink_list;
2203 #endif
2204 	unsigned int		promiscuity;
2205 	unsigned int		allmulti;
2206 	bool			uc_promisc;
2207 #ifdef CONFIG_LOCKDEP
2208 	unsigned char		nested_level;
2209 #endif
2210 
2211 
2212 	/* Protocol-specific pointers */
2213 	struct in_device __rcu	*ip_ptr;
2214 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2215 	struct vlan_info __rcu	*vlan_info;
2216 #endif
2217 #if IS_ENABLED(CONFIG_NET_DSA)
2218 	struct dsa_port		*dsa_ptr;
2219 #endif
2220 #if IS_ENABLED(CONFIG_TIPC)
2221 	struct tipc_bearer __rcu *tipc_ptr;
2222 #endif
2223 #if IS_ENABLED(CONFIG_ATALK)
2224 	void 			*atalk_ptr;
2225 #endif
2226 #if IS_ENABLED(CONFIG_AX25)
2227 	void			*ax25_ptr;
2228 #endif
2229 #if IS_ENABLED(CONFIG_CFG80211)
2230 	struct wireless_dev	*ieee80211_ptr;
2231 #endif
2232 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2233 	struct wpan_dev		*ieee802154_ptr;
2234 #endif
2235 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2236 	struct mpls_dev __rcu	*mpls_ptr;
2237 #endif
2238 #if IS_ENABLED(CONFIG_MCTP)
2239 	struct mctp_dev __rcu	*mctp_ptr;
2240 #endif
2241 
2242 /*
2243  * Cache lines mostly used on receive path (including eth_type_trans())
2244  */
2245 	/* Interface address info used in eth_type_trans() */
2246 	const unsigned char	*dev_addr;
2247 
2248 	unsigned int		num_rx_queues;
2249 #define GRO_LEGACY_MAX_SIZE	65536u
2250 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2251  * and shinfo->gso_segs is a 16bit field.
2252  */
2253 #define GRO_MAX_SIZE		(8 * 65535u)
2254 	unsigned int		xdp_zc_max_segs;
2255 	struct netdev_queue __rcu *ingress_queue;
2256 #ifdef CONFIG_NETFILTER_INGRESS
2257 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2258 #endif
2259 
2260 	unsigned char		broadcast[MAX_ADDR_LEN];
2261 #ifdef CONFIG_RFS_ACCEL
2262 	struct cpu_rmap		*rx_cpu_rmap;
2263 #endif
2264 	struct hlist_node	index_hlist;
2265 
2266 /*
2267  * Cache lines mostly used on transmit path
2268  */
2269 	unsigned int		num_tx_queues;
2270 	struct Qdisc __rcu	*qdisc;
2271 	unsigned int		tx_queue_len;
2272 	spinlock_t		tx_global_lock;
2273 
2274 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2275 
2276 #ifdef CONFIG_NET_SCHED
2277 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2278 #endif
2279 	/* These may be needed for future network-power-down code. */
2280 	struct timer_list	watchdog_timer;
2281 	int			watchdog_timeo;
2282 
2283 	u32                     proto_down_reason;
2284 
2285 	struct list_head	todo_list;
2286 
2287 #ifdef CONFIG_PCPU_DEV_REFCNT
2288 	int __percpu		*pcpu_refcnt;
2289 #else
2290 	refcount_t		dev_refcnt;
2291 #endif
2292 	struct ref_tracker_dir	refcnt_tracker;
2293 
2294 	struct list_head	link_watch_list;
2295 
2296 	u8 reg_state;
2297 
2298 	bool dismantle;
2299 
2300 	enum {
2301 		RTNL_LINK_INITIALIZED,
2302 		RTNL_LINK_INITIALIZING,
2303 	} rtnl_link_state:16;
2304 
2305 	bool needs_free_netdev;
2306 	void (*priv_destructor)(struct net_device *dev);
2307 
2308 	/* mid-layer private */
2309 	void				*ml_priv;
2310 	enum netdev_ml_priv_type	ml_priv_type;
2311 
2312 	enum netdev_stat_type		pcpu_stat_type:8;
2313 
2314 #if IS_ENABLED(CONFIG_GARP)
2315 	struct garp_port __rcu	*garp_port;
2316 #endif
2317 #if IS_ENABLED(CONFIG_MRP)
2318 	struct mrp_port __rcu	*mrp_port;
2319 #endif
2320 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2321 	struct dm_hw_stat_delta __rcu *dm_private;
2322 #endif
2323 	struct device		dev;
2324 	const struct attribute_group *sysfs_groups[4];
2325 	const struct attribute_group *sysfs_rx_queue_group;
2326 
2327 	const struct rtnl_link_ops *rtnl_link_ops;
2328 
2329 	const struct netdev_stat_ops *stat_ops;
2330 
2331 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2332 
2333 	/* for setting kernel sock attribute on TCP connection setup */
2334 #define GSO_MAX_SEGS		65535u
2335 #define GSO_LEGACY_MAX_SIZE	65536u
2336 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2337  * and shinfo->gso_segs is a 16bit field.
2338  */
2339 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2340 
2341 #define TSO_LEGACY_MAX_SIZE	65536
2342 #define TSO_MAX_SIZE		UINT_MAX
2343 	unsigned int		tso_max_size;
2344 #define TSO_MAX_SEGS		U16_MAX
2345 	u16			tso_max_segs;
2346 
2347 #ifdef CONFIG_DCB
2348 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2349 #endif
2350 	u8			prio_tc_map[TC_BITMASK + 1];
2351 
2352 #if IS_ENABLED(CONFIG_FCOE)
2353 	unsigned int		fcoe_ddp_xid;
2354 #endif
2355 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2356 	struct netprio_map __rcu *priomap;
2357 #endif
2358 	struct phy_link_topology	*link_topo;
2359 	struct phy_device	*phydev;
2360 	struct sfp_bus		*sfp_bus;
2361 	struct lock_class_key	*qdisc_tx_busylock;
2362 	bool			proto_down;
2363 	bool			threaded;
2364 
2365 	/* priv_flags_slow, ungrouped to save space */
2366 	unsigned long		see_all_hwtstamp_requests:1;
2367 	unsigned long		change_proto_down:1;
2368 	unsigned long		netns_local:1;
2369 	unsigned long		fcoe_mtu:1;
2370 
2371 	struct list_head	net_notifier_list;
2372 
2373 #if IS_ENABLED(CONFIG_MACSEC)
2374 	/* MACsec management functions */
2375 	const struct macsec_ops *macsec_ops;
2376 #endif
2377 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2378 	struct udp_tunnel_nic	*udp_tunnel_nic;
2379 
2380 	struct ethtool_netdev_state *ethtool;
2381 
2382 	/* protected by rtnl_lock */
2383 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2384 
2385 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2386 	netdevice_tracker	linkwatch_dev_tracker;
2387 	netdevice_tracker	watchdog_dev_tracker;
2388 	netdevice_tracker	dev_registered_tracker;
2389 	struct rtnl_hw_stats64	*offload_xstats_l3;
2390 
2391 	struct devlink_port	*devlink_port;
2392 
2393 #if IS_ENABLED(CONFIG_DPLL)
2394 	struct dpll_pin	__rcu	*dpll_pin;
2395 #endif
2396 #if IS_ENABLED(CONFIG_PAGE_POOL)
2397 	/** @page_pools: page pools created for this netdevice */
2398 	struct hlist_head	page_pools;
2399 #endif
2400 
2401 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2402 	struct dim_irq_moder	*irq_moder;
2403 
2404 	u64			max_pacing_offload_horizon;
2405 
2406 	u8			priv[] ____cacheline_aligned
2407 				       __counted_by(priv_len);
2408 } ____cacheline_aligned;
2409 #define to_net_dev(d) container_of(d, struct net_device, dev)
2410 
2411 /*
2412  * Driver should use this to assign devlink port instance to a netdevice
2413  * before it registers the netdevice. Therefore devlink_port is static
2414  * during the netdev lifetime after it is registered.
2415  */
2416 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2417 ({								\
2418 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2419 	((dev)->devlink_port = (port));				\
2420 })
2421 
2422 static inline bool netif_elide_gro(const struct net_device *dev)
2423 {
2424 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2425 		return true;
2426 	return false;
2427 }
2428 
2429 #define	NETDEV_ALIGN		32
2430 
2431 static inline
2432 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2433 {
2434 	return dev->prio_tc_map[prio & TC_BITMASK];
2435 }
2436 
2437 static inline
2438 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2439 {
2440 	if (tc >= dev->num_tc)
2441 		return -EINVAL;
2442 
2443 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2444 	return 0;
2445 }
2446 
2447 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2448 void netdev_reset_tc(struct net_device *dev);
2449 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2450 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2451 
2452 static inline
2453 int netdev_get_num_tc(struct net_device *dev)
2454 {
2455 	return dev->num_tc;
2456 }
2457 
2458 static inline void net_prefetch(void *p)
2459 {
2460 	prefetch(p);
2461 #if L1_CACHE_BYTES < 128
2462 	prefetch((u8 *)p + L1_CACHE_BYTES);
2463 #endif
2464 }
2465 
2466 static inline void net_prefetchw(void *p)
2467 {
2468 	prefetchw(p);
2469 #if L1_CACHE_BYTES < 128
2470 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2471 #endif
2472 }
2473 
2474 void netdev_unbind_sb_channel(struct net_device *dev,
2475 			      struct net_device *sb_dev);
2476 int netdev_bind_sb_channel_queue(struct net_device *dev,
2477 				 struct net_device *sb_dev,
2478 				 u8 tc, u16 count, u16 offset);
2479 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2480 static inline int netdev_get_sb_channel(struct net_device *dev)
2481 {
2482 	return max_t(int, -dev->num_tc, 0);
2483 }
2484 
2485 static inline
2486 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2487 					 unsigned int index)
2488 {
2489 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2490 	return &dev->_tx[index];
2491 }
2492 
2493 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2494 						    const struct sk_buff *skb)
2495 {
2496 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2497 }
2498 
2499 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2500 					    void (*f)(struct net_device *,
2501 						      struct netdev_queue *,
2502 						      void *),
2503 					    void *arg)
2504 {
2505 	unsigned int i;
2506 
2507 	for (i = 0; i < dev->num_tx_queues; i++)
2508 		f(dev, &dev->_tx[i], arg);
2509 }
2510 
2511 #define netdev_lockdep_set_classes(dev)				\
2512 {								\
2513 	static struct lock_class_key qdisc_tx_busylock_key;	\
2514 	static struct lock_class_key qdisc_xmit_lock_key;	\
2515 	static struct lock_class_key dev_addr_list_lock_key;	\
2516 	unsigned int i;						\
2517 								\
2518 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2519 	lockdep_set_class(&(dev)->addr_list_lock,		\
2520 			  &dev_addr_list_lock_key);		\
2521 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2522 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2523 				  &qdisc_xmit_lock_key);	\
2524 }
2525 
2526 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2527 		     struct net_device *sb_dev);
2528 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2529 					 struct sk_buff *skb,
2530 					 struct net_device *sb_dev);
2531 
2532 /* returns the headroom that the master device needs to take in account
2533  * when forwarding to this dev
2534  */
2535 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2536 {
2537 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2538 }
2539 
2540 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2541 {
2542 	if (dev->netdev_ops->ndo_set_rx_headroom)
2543 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2544 }
2545 
2546 /* set the device rx headroom to the dev's default */
2547 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2548 {
2549 	netdev_set_rx_headroom(dev, -1);
2550 }
2551 
2552 static inline void *netdev_get_ml_priv(struct net_device *dev,
2553 				       enum netdev_ml_priv_type type)
2554 {
2555 	if (dev->ml_priv_type != type)
2556 		return NULL;
2557 
2558 	return dev->ml_priv;
2559 }
2560 
2561 static inline void netdev_set_ml_priv(struct net_device *dev,
2562 				      void *ml_priv,
2563 				      enum netdev_ml_priv_type type)
2564 {
2565 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2566 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2567 	     dev->ml_priv_type, type);
2568 	WARN(!dev->ml_priv_type && dev->ml_priv,
2569 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2570 
2571 	dev->ml_priv = ml_priv;
2572 	dev->ml_priv_type = type;
2573 }
2574 
2575 /*
2576  * Net namespace inlines
2577  */
2578 static inline
2579 struct net *dev_net(const struct net_device *dev)
2580 {
2581 	return read_pnet(&dev->nd_net);
2582 }
2583 
2584 static inline
2585 void dev_net_set(struct net_device *dev, struct net *net)
2586 {
2587 	write_pnet(&dev->nd_net, net);
2588 }
2589 
2590 /**
2591  *	netdev_priv - access network device private data
2592  *	@dev: network device
2593  *
2594  * Get network device private data
2595  */
2596 static inline void *netdev_priv(const struct net_device *dev)
2597 {
2598 	return (void *)dev->priv;
2599 }
2600 
2601 /* Set the sysfs physical device reference for the network logical device
2602  * if set prior to registration will cause a symlink during initialization.
2603  */
2604 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2605 
2606 /* Set the sysfs device type for the network logical device to allow
2607  * fine-grained identification of different network device types. For
2608  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2609  */
2610 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2611 
2612 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2613 			  enum netdev_queue_type type,
2614 			  struct napi_struct *napi);
2615 
2616 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2617 {
2618 	napi->irq = irq;
2619 }
2620 
2621 /* Default NAPI poll() weight
2622  * Device drivers are strongly advised to not use bigger value
2623  */
2624 #define NAPI_POLL_WEIGHT 64
2625 
2626 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2627 			   int (*poll)(struct napi_struct *, int), int weight);
2628 
2629 /**
2630  * netif_napi_add() - initialize a NAPI context
2631  * @dev:  network device
2632  * @napi: NAPI context
2633  * @poll: polling function
2634  *
2635  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2636  * *any* of the other NAPI-related functions.
2637  */
2638 static inline void
2639 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2640 	       int (*poll)(struct napi_struct *, int))
2641 {
2642 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2643 }
2644 
2645 static inline void
2646 netif_napi_add_tx_weight(struct net_device *dev,
2647 			 struct napi_struct *napi,
2648 			 int (*poll)(struct napi_struct *, int),
2649 			 int weight)
2650 {
2651 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2652 	netif_napi_add_weight(dev, napi, poll, weight);
2653 }
2654 
2655 /**
2656  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2657  * @dev:  network device
2658  * @napi: NAPI context
2659  * @poll: polling function
2660  *
2661  * This variant of netif_napi_add() should be used from drivers using NAPI
2662  * to exclusively poll a TX queue.
2663  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2664  */
2665 static inline void netif_napi_add_tx(struct net_device *dev,
2666 				     struct napi_struct *napi,
2667 				     int (*poll)(struct napi_struct *, int))
2668 {
2669 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2670 }
2671 
2672 /**
2673  *  __netif_napi_del - remove a NAPI context
2674  *  @napi: NAPI context
2675  *
2676  * Warning: caller must observe RCU grace period before freeing memory
2677  * containing @napi. Drivers might want to call this helper to combine
2678  * all the needed RCU grace periods into a single one.
2679  */
2680 void __netif_napi_del(struct napi_struct *napi);
2681 
2682 /**
2683  *  netif_napi_del - remove a NAPI context
2684  *  @napi: NAPI context
2685  *
2686  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2687  */
2688 static inline void netif_napi_del(struct napi_struct *napi)
2689 {
2690 	__netif_napi_del(napi);
2691 	synchronize_net();
2692 }
2693 
2694 struct packet_type {
2695 	__be16			type;	/* This is really htons(ether_type). */
2696 	bool			ignore_outgoing;
2697 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2698 	netdevice_tracker	dev_tracker;
2699 	int			(*func) (struct sk_buff *,
2700 					 struct net_device *,
2701 					 struct packet_type *,
2702 					 struct net_device *);
2703 	void			(*list_func) (struct list_head *,
2704 					      struct packet_type *,
2705 					      struct net_device *);
2706 	bool			(*id_match)(struct packet_type *ptype,
2707 					    struct sock *sk);
2708 	struct net		*af_packet_net;
2709 	void			*af_packet_priv;
2710 	struct list_head	list;
2711 };
2712 
2713 struct offload_callbacks {
2714 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2715 						netdev_features_t features);
2716 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2717 						struct sk_buff *skb);
2718 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2719 };
2720 
2721 struct packet_offload {
2722 	__be16			 type;	/* This is really htons(ether_type). */
2723 	u16			 priority;
2724 	struct offload_callbacks callbacks;
2725 	struct list_head	 list;
2726 };
2727 
2728 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2729 struct pcpu_sw_netstats {
2730 	u64_stats_t		rx_packets;
2731 	u64_stats_t		rx_bytes;
2732 	u64_stats_t		tx_packets;
2733 	u64_stats_t		tx_bytes;
2734 	struct u64_stats_sync   syncp;
2735 } __aligned(4 * sizeof(u64));
2736 
2737 struct pcpu_dstats {
2738 	u64_stats_t		rx_packets;
2739 	u64_stats_t		rx_bytes;
2740 	u64_stats_t		rx_drops;
2741 	u64_stats_t		tx_packets;
2742 	u64_stats_t		tx_bytes;
2743 	u64_stats_t		tx_drops;
2744 	struct u64_stats_sync	syncp;
2745 } __aligned(8 * sizeof(u64));
2746 
2747 struct pcpu_lstats {
2748 	u64_stats_t packets;
2749 	u64_stats_t bytes;
2750 	struct u64_stats_sync syncp;
2751 } __aligned(2 * sizeof(u64));
2752 
2753 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2754 
2755 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2756 {
2757 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2758 
2759 	u64_stats_update_begin(&tstats->syncp);
2760 	u64_stats_add(&tstats->rx_bytes, len);
2761 	u64_stats_inc(&tstats->rx_packets);
2762 	u64_stats_update_end(&tstats->syncp);
2763 }
2764 
2765 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2766 					  unsigned int packets,
2767 					  unsigned int len)
2768 {
2769 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2770 
2771 	u64_stats_update_begin(&tstats->syncp);
2772 	u64_stats_add(&tstats->tx_bytes, len);
2773 	u64_stats_add(&tstats->tx_packets, packets);
2774 	u64_stats_update_end(&tstats->syncp);
2775 }
2776 
2777 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2778 {
2779 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2780 
2781 	u64_stats_update_begin(&lstats->syncp);
2782 	u64_stats_add(&lstats->bytes, len);
2783 	u64_stats_inc(&lstats->packets);
2784 	u64_stats_update_end(&lstats->syncp);
2785 }
2786 
2787 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2788 ({									\
2789 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2790 	if (pcpu_stats)	{						\
2791 		int __cpu;						\
2792 		for_each_possible_cpu(__cpu) {				\
2793 			typeof(type) *stat;				\
2794 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2795 			u64_stats_init(&stat->syncp);			\
2796 		}							\
2797 	}								\
2798 	pcpu_stats;							\
2799 })
2800 
2801 #define netdev_alloc_pcpu_stats(type)					\
2802 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2803 
2804 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2805 ({									\
2806 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2807 	if (pcpu_stats) {						\
2808 		int __cpu;						\
2809 		for_each_possible_cpu(__cpu) {				\
2810 			typeof(type) *stat;				\
2811 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2812 			u64_stats_init(&stat->syncp);			\
2813 		}							\
2814 	}								\
2815 	pcpu_stats;							\
2816 })
2817 
2818 enum netdev_lag_tx_type {
2819 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2820 	NETDEV_LAG_TX_TYPE_RANDOM,
2821 	NETDEV_LAG_TX_TYPE_BROADCAST,
2822 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2823 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2824 	NETDEV_LAG_TX_TYPE_HASH,
2825 };
2826 
2827 enum netdev_lag_hash {
2828 	NETDEV_LAG_HASH_NONE,
2829 	NETDEV_LAG_HASH_L2,
2830 	NETDEV_LAG_HASH_L34,
2831 	NETDEV_LAG_HASH_L23,
2832 	NETDEV_LAG_HASH_E23,
2833 	NETDEV_LAG_HASH_E34,
2834 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2835 	NETDEV_LAG_HASH_UNKNOWN,
2836 };
2837 
2838 struct netdev_lag_upper_info {
2839 	enum netdev_lag_tx_type tx_type;
2840 	enum netdev_lag_hash hash_type;
2841 };
2842 
2843 struct netdev_lag_lower_state_info {
2844 	u8 link_up : 1,
2845 	   tx_enabled : 1;
2846 };
2847 
2848 #include <linux/notifier.h>
2849 
2850 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2851  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2852  * adding new types.
2853  */
2854 enum netdev_cmd {
2855 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2856 	NETDEV_DOWN,
2857 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2858 				   detected a hardware crash and restarted
2859 				   - we can use this eg to kick tcp sessions
2860 				   once done */
2861 	NETDEV_CHANGE,		/* Notify device state change */
2862 	NETDEV_REGISTER,
2863 	NETDEV_UNREGISTER,
2864 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2865 	NETDEV_CHANGEADDR,	/* notify after the address change */
2866 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2867 	NETDEV_GOING_DOWN,
2868 	NETDEV_CHANGENAME,
2869 	NETDEV_FEAT_CHANGE,
2870 	NETDEV_BONDING_FAILOVER,
2871 	NETDEV_PRE_UP,
2872 	NETDEV_PRE_TYPE_CHANGE,
2873 	NETDEV_POST_TYPE_CHANGE,
2874 	NETDEV_POST_INIT,
2875 	NETDEV_PRE_UNINIT,
2876 	NETDEV_RELEASE,
2877 	NETDEV_NOTIFY_PEERS,
2878 	NETDEV_JOIN,
2879 	NETDEV_CHANGEUPPER,
2880 	NETDEV_RESEND_IGMP,
2881 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2882 	NETDEV_CHANGEINFODATA,
2883 	NETDEV_BONDING_INFO,
2884 	NETDEV_PRECHANGEUPPER,
2885 	NETDEV_CHANGELOWERSTATE,
2886 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2887 	NETDEV_UDP_TUNNEL_DROP_INFO,
2888 	NETDEV_CHANGE_TX_QUEUE_LEN,
2889 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2890 	NETDEV_CVLAN_FILTER_DROP_INFO,
2891 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2892 	NETDEV_SVLAN_FILTER_DROP_INFO,
2893 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2894 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2895 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2896 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2897 	NETDEV_XDP_FEAT_CHANGE,
2898 };
2899 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2900 
2901 int register_netdevice_notifier(struct notifier_block *nb);
2902 int unregister_netdevice_notifier(struct notifier_block *nb);
2903 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2904 int unregister_netdevice_notifier_net(struct net *net,
2905 				      struct notifier_block *nb);
2906 int register_netdevice_notifier_dev_net(struct net_device *dev,
2907 					struct notifier_block *nb,
2908 					struct netdev_net_notifier *nn);
2909 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2910 					  struct notifier_block *nb,
2911 					  struct netdev_net_notifier *nn);
2912 
2913 struct netdev_notifier_info {
2914 	struct net_device	*dev;
2915 	struct netlink_ext_ack	*extack;
2916 };
2917 
2918 struct netdev_notifier_info_ext {
2919 	struct netdev_notifier_info info; /* must be first */
2920 	union {
2921 		u32 mtu;
2922 	} ext;
2923 };
2924 
2925 struct netdev_notifier_change_info {
2926 	struct netdev_notifier_info info; /* must be first */
2927 	unsigned int flags_changed;
2928 };
2929 
2930 struct netdev_notifier_changeupper_info {
2931 	struct netdev_notifier_info info; /* must be first */
2932 	struct net_device *upper_dev; /* new upper dev */
2933 	bool master; /* is upper dev master */
2934 	bool linking; /* is the notification for link or unlink */
2935 	void *upper_info; /* upper dev info */
2936 };
2937 
2938 struct netdev_notifier_changelowerstate_info {
2939 	struct netdev_notifier_info info; /* must be first */
2940 	void *lower_state_info; /* is lower dev state */
2941 };
2942 
2943 struct netdev_notifier_pre_changeaddr_info {
2944 	struct netdev_notifier_info info; /* must be first */
2945 	const unsigned char *dev_addr;
2946 };
2947 
2948 enum netdev_offload_xstats_type {
2949 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2950 };
2951 
2952 struct netdev_notifier_offload_xstats_info {
2953 	struct netdev_notifier_info info; /* must be first */
2954 	enum netdev_offload_xstats_type type;
2955 
2956 	union {
2957 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2958 		struct netdev_notifier_offload_xstats_rd *report_delta;
2959 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2960 		struct netdev_notifier_offload_xstats_ru *report_used;
2961 	};
2962 };
2963 
2964 int netdev_offload_xstats_enable(struct net_device *dev,
2965 				 enum netdev_offload_xstats_type type,
2966 				 struct netlink_ext_ack *extack);
2967 int netdev_offload_xstats_disable(struct net_device *dev,
2968 				  enum netdev_offload_xstats_type type);
2969 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2970 				   enum netdev_offload_xstats_type type);
2971 int netdev_offload_xstats_get(struct net_device *dev,
2972 			      enum netdev_offload_xstats_type type,
2973 			      struct rtnl_hw_stats64 *stats, bool *used,
2974 			      struct netlink_ext_ack *extack);
2975 void
2976 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2977 				   const struct rtnl_hw_stats64 *stats);
2978 void
2979 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2980 void netdev_offload_xstats_push_delta(struct net_device *dev,
2981 				      enum netdev_offload_xstats_type type,
2982 				      const struct rtnl_hw_stats64 *stats);
2983 
2984 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2985 					     struct net_device *dev)
2986 {
2987 	info->dev = dev;
2988 	info->extack = NULL;
2989 }
2990 
2991 static inline struct net_device *
2992 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2993 {
2994 	return info->dev;
2995 }
2996 
2997 static inline struct netlink_ext_ack *
2998 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2999 {
3000 	return info->extack;
3001 }
3002 
3003 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3004 int call_netdevice_notifiers_info(unsigned long val,
3005 				  struct netdev_notifier_info *info);
3006 
3007 #define for_each_netdev(net, d)		\
3008 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3009 #define for_each_netdev_reverse(net, d)	\
3010 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3011 #define for_each_netdev_rcu(net, d)		\
3012 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3013 #define for_each_netdev_safe(net, d, n)	\
3014 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3015 #define for_each_netdev_continue(net, d)		\
3016 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3017 #define for_each_netdev_continue_reverse(net, d)		\
3018 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3019 						     dev_list)
3020 #define for_each_netdev_continue_rcu(net, d)		\
3021 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3022 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3023 		for_each_netdev_rcu(&init_net, slave)	\
3024 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3025 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3026 
3027 #define for_each_netdev_dump(net, d, ifindex)				\
3028 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3029 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3030 
3031 static inline struct net_device *next_net_device(struct net_device *dev)
3032 {
3033 	struct list_head *lh;
3034 	struct net *net;
3035 
3036 	net = dev_net(dev);
3037 	lh = dev->dev_list.next;
3038 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3039 }
3040 
3041 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3042 {
3043 	struct list_head *lh;
3044 	struct net *net;
3045 
3046 	net = dev_net(dev);
3047 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3048 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3049 }
3050 
3051 static inline struct net_device *first_net_device(struct net *net)
3052 {
3053 	return list_empty(&net->dev_base_head) ? NULL :
3054 		net_device_entry(net->dev_base_head.next);
3055 }
3056 
3057 static inline struct net_device *first_net_device_rcu(struct net *net)
3058 {
3059 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3060 
3061 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3062 }
3063 
3064 int netdev_boot_setup_check(struct net_device *dev);
3065 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3066 				       const char *hwaddr);
3067 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3068 void dev_add_pack(struct packet_type *pt);
3069 void dev_remove_pack(struct packet_type *pt);
3070 void __dev_remove_pack(struct packet_type *pt);
3071 void dev_add_offload(struct packet_offload *po);
3072 void dev_remove_offload(struct packet_offload *po);
3073 
3074 int dev_get_iflink(const struct net_device *dev);
3075 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3076 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3077 			  struct net_device_path_stack *stack);
3078 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3079 				      unsigned short mask);
3080 struct net_device *dev_get_by_name(struct net *net, const char *name);
3081 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3082 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3083 bool netdev_name_in_use(struct net *net, const char *name);
3084 int dev_alloc_name(struct net_device *dev, const char *name);
3085 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3086 void dev_close(struct net_device *dev);
3087 void dev_close_many(struct list_head *head, bool unlink);
3088 void dev_disable_lro(struct net_device *dev);
3089 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3090 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3091 		     struct net_device *sb_dev);
3092 
3093 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3094 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3095 
3096 static inline int dev_queue_xmit(struct sk_buff *skb)
3097 {
3098 	return __dev_queue_xmit(skb, NULL);
3099 }
3100 
3101 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3102 				       struct net_device *sb_dev)
3103 {
3104 	return __dev_queue_xmit(skb, sb_dev);
3105 }
3106 
3107 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3108 {
3109 	int ret;
3110 
3111 	ret = __dev_direct_xmit(skb, queue_id);
3112 	if (!dev_xmit_complete(ret))
3113 		kfree_skb(skb);
3114 	return ret;
3115 }
3116 
3117 int register_netdevice(struct net_device *dev);
3118 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3119 void unregister_netdevice_many(struct list_head *head);
3120 static inline void unregister_netdevice(struct net_device *dev)
3121 {
3122 	unregister_netdevice_queue(dev, NULL);
3123 }
3124 
3125 int netdev_refcnt_read(const struct net_device *dev);
3126 void free_netdev(struct net_device *dev);
3127 void init_dummy_netdev(struct net_device *dev);
3128 
3129 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3130 					 struct sk_buff *skb,
3131 					 bool all_slaves);
3132 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3133 					    struct sock *sk);
3134 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3135 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3136 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3137 				       netdevice_tracker *tracker, gfp_t gfp);
3138 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3139 				      netdevice_tracker *tracker, gfp_t gfp);
3140 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3141 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3142 void netdev_copy_name(struct net_device *dev, char *name);
3143 
3144 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3145 				  unsigned short type,
3146 				  const void *daddr, const void *saddr,
3147 				  unsigned int len)
3148 {
3149 	if (!dev->header_ops || !dev->header_ops->create)
3150 		return 0;
3151 
3152 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3153 }
3154 
3155 static inline int dev_parse_header(const struct sk_buff *skb,
3156 				   unsigned char *haddr)
3157 {
3158 	const struct net_device *dev = skb->dev;
3159 
3160 	if (!dev->header_ops || !dev->header_ops->parse)
3161 		return 0;
3162 	return dev->header_ops->parse(skb, haddr);
3163 }
3164 
3165 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3166 {
3167 	const struct net_device *dev = skb->dev;
3168 
3169 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3170 		return 0;
3171 	return dev->header_ops->parse_protocol(skb);
3172 }
3173 
3174 /* ll_header must have at least hard_header_len allocated */
3175 static inline bool dev_validate_header(const struct net_device *dev,
3176 				       char *ll_header, int len)
3177 {
3178 	if (likely(len >= dev->hard_header_len))
3179 		return true;
3180 	if (len < dev->min_header_len)
3181 		return false;
3182 
3183 	if (capable(CAP_SYS_RAWIO)) {
3184 		memset(ll_header + len, 0, dev->hard_header_len - len);
3185 		return true;
3186 	}
3187 
3188 	if (dev->header_ops && dev->header_ops->validate)
3189 		return dev->header_ops->validate(ll_header, len);
3190 
3191 	return false;
3192 }
3193 
3194 static inline bool dev_has_header(const struct net_device *dev)
3195 {
3196 	return dev->header_ops && dev->header_ops->create;
3197 }
3198 
3199 /*
3200  * Incoming packets are placed on per-CPU queues
3201  */
3202 struct softnet_data {
3203 	struct list_head	poll_list;
3204 	struct sk_buff_head	process_queue;
3205 	local_lock_t		process_queue_bh_lock;
3206 
3207 	/* stats */
3208 	unsigned int		processed;
3209 	unsigned int		time_squeeze;
3210 #ifdef CONFIG_RPS
3211 	struct softnet_data	*rps_ipi_list;
3212 #endif
3213 
3214 	unsigned int		received_rps;
3215 	bool			in_net_rx_action;
3216 	bool			in_napi_threaded_poll;
3217 
3218 #ifdef CONFIG_NET_FLOW_LIMIT
3219 	struct sd_flow_limit __rcu *flow_limit;
3220 #endif
3221 	struct Qdisc		*output_queue;
3222 	struct Qdisc		**output_queue_tailp;
3223 	struct sk_buff		*completion_queue;
3224 #ifdef CONFIG_XFRM_OFFLOAD
3225 	struct sk_buff_head	xfrm_backlog;
3226 #endif
3227 	/* written and read only by owning cpu: */
3228 	struct netdev_xmit xmit;
3229 #ifdef CONFIG_RPS
3230 	/* input_queue_head should be written by cpu owning this struct,
3231 	 * and only read by other cpus. Worth using a cache line.
3232 	 */
3233 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3234 
3235 	/* Elements below can be accessed between CPUs for RPS/RFS */
3236 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3237 	struct softnet_data	*rps_ipi_next;
3238 	unsigned int		cpu;
3239 	unsigned int		input_queue_tail;
3240 #endif
3241 	struct sk_buff_head	input_pkt_queue;
3242 	struct napi_struct	backlog;
3243 
3244 	atomic_t		dropped ____cacheline_aligned_in_smp;
3245 
3246 	/* Another possibly contended cache line */
3247 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3248 	int			defer_count;
3249 	int			defer_ipi_scheduled;
3250 	struct sk_buff		*defer_list;
3251 	call_single_data_t	defer_csd;
3252 };
3253 
3254 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3255 
3256 #ifndef CONFIG_PREEMPT_RT
3257 static inline int dev_recursion_level(void)
3258 {
3259 	return this_cpu_read(softnet_data.xmit.recursion);
3260 }
3261 #else
3262 static inline int dev_recursion_level(void)
3263 {
3264 	return current->net_xmit.recursion;
3265 }
3266 
3267 #endif
3268 
3269 void __netif_schedule(struct Qdisc *q);
3270 void netif_schedule_queue(struct netdev_queue *txq);
3271 
3272 static inline void netif_tx_schedule_all(struct net_device *dev)
3273 {
3274 	unsigned int i;
3275 
3276 	for (i = 0; i < dev->num_tx_queues; i++)
3277 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3278 }
3279 
3280 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3281 {
3282 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3283 }
3284 
3285 /**
3286  *	netif_start_queue - allow transmit
3287  *	@dev: network device
3288  *
3289  *	Allow upper layers to call the device hard_start_xmit routine.
3290  */
3291 static inline void netif_start_queue(struct net_device *dev)
3292 {
3293 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3294 }
3295 
3296 static inline void netif_tx_start_all_queues(struct net_device *dev)
3297 {
3298 	unsigned int i;
3299 
3300 	for (i = 0; i < dev->num_tx_queues; i++) {
3301 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3302 		netif_tx_start_queue(txq);
3303 	}
3304 }
3305 
3306 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3307 
3308 /**
3309  *	netif_wake_queue - restart transmit
3310  *	@dev: network device
3311  *
3312  *	Allow upper layers to call the device hard_start_xmit routine.
3313  *	Used for flow control when transmit resources are available.
3314  */
3315 static inline void netif_wake_queue(struct net_device *dev)
3316 {
3317 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3318 }
3319 
3320 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3321 {
3322 	unsigned int i;
3323 
3324 	for (i = 0; i < dev->num_tx_queues; i++) {
3325 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3326 		netif_tx_wake_queue(txq);
3327 	}
3328 }
3329 
3330 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3331 {
3332 	/* Must be an atomic op see netif_txq_try_stop() */
3333 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3334 }
3335 
3336 /**
3337  *	netif_stop_queue - stop transmitted packets
3338  *	@dev: network device
3339  *
3340  *	Stop upper layers calling the device hard_start_xmit routine.
3341  *	Used for flow control when transmit resources are unavailable.
3342  */
3343 static inline void netif_stop_queue(struct net_device *dev)
3344 {
3345 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3346 }
3347 
3348 void netif_tx_stop_all_queues(struct net_device *dev);
3349 
3350 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3351 {
3352 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3353 }
3354 
3355 /**
3356  *	netif_queue_stopped - test if transmit queue is flowblocked
3357  *	@dev: network device
3358  *
3359  *	Test if transmit queue on device is currently unable to send.
3360  */
3361 static inline bool netif_queue_stopped(const struct net_device *dev)
3362 {
3363 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3364 }
3365 
3366 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3367 {
3368 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3369 }
3370 
3371 static inline bool
3372 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3373 {
3374 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3375 }
3376 
3377 static inline bool
3378 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3379 {
3380 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3381 }
3382 
3383 /**
3384  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3385  *	@dev_queue: pointer to transmit queue
3386  *	@min_limit: dql minimum limit
3387  *
3388  * Forces xmit_more() to return true until the minimum threshold
3389  * defined by @min_limit is reached (or until the tx queue is
3390  * empty). Warning: to be use with care, misuse will impact the
3391  * latency.
3392  */
3393 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3394 						  unsigned int min_limit)
3395 {
3396 #ifdef CONFIG_BQL
3397 	dev_queue->dql.min_limit = min_limit;
3398 #endif
3399 }
3400 
3401 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3402 {
3403 #ifdef CONFIG_BQL
3404 	/* Non-BQL migrated drivers will return 0, too. */
3405 	return dql_avail(&txq->dql);
3406 #else
3407 	return 0;
3408 #endif
3409 }
3410 
3411 /**
3412  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3413  *	@dev_queue: pointer to transmit queue
3414  *
3415  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3416  * to give appropriate hint to the CPU.
3417  */
3418 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3419 {
3420 #ifdef CONFIG_BQL
3421 	prefetchw(&dev_queue->dql.num_queued);
3422 #endif
3423 }
3424 
3425 /**
3426  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3427  *	@dev_queue: pointer to transmit queue
3428  *
3429  * BQL enabled drivers might use this helper in their TX completion path,
3430  * to give appropriate hint to the CPU.
3431  */
3432 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3433 {
3434 #ifdef CONFIG_BQL
3435 	prefetchw(&dev_queue->dql.limit);
3436 #endif
3437 }
3438 
3439 /**
3440  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3441  *	@dev_queue: network device queue
3442  *	@bytes: number of bytes queued to the device queue
3443  *
3444  *	Report the number of bytes queued for sending/completion to the network
3445  *	device hardware queue. @bytes should be a good approximation and should
3446  *	exactly match netdev_completed_queue() @bytes.
3447  *	This is typically called once per packet, from ndo_start_xmit().
3448  */
3449 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3450 					unsigned int bytes)
3451 {
3452 #ifdef CONFIG_BQL
3453 	dql_queued(&dev_queue->dql, bytes);
3454 
3455 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3456 		return;
3457 
3458 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3459 
3460 	/*
3461 	 * The XOFF flag must be set before checking the dql_avail below,
3462 	 * because in netdev_tx_completed_queue we update the dql_completed
3463 	 * before checking the XOFF flag.
3464 	 */
3465 	smp_mb();
3466 
3467 	/* check again in case another CPU has just made room avail */
3468 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3469 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3470 #endif
3471 }
3472 
3473 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3474  * that they should not test BQL status themselves.
3475  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3476  * skb of a batch.
3477  * Returns true if the doorbell must be used to kick the NIC.
3478  */
3479 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3480 					  unsigned int bytes,
3481 					  bool xmit_more)
3482 {
3483 	if (xmit_more) {
3484 #ifdef CONFIG_BQL
3485 		dql_queued(&dev_queue->dql, bytes);
3486 #endif
3487 		return netif_tx_queue_stopped(dev_queue);
3488 	}
3489 	netdev_tx_sent_queue(dev_queue, bytes);
3490 	return true;
3491 }
3492 
3493 /**
3494  *	netdev_sent_queue - report the number of bytes queued to hardware
3495  *	@dev: network device
3496  *	@bytes: number of bytes queued to the hardware device queue
3497  *
3498  *	Report the number of bytes queued for sending/completion to the network
3499  *	device hardware queue#0. @bytes should be a good approximation and should
3500  *	exactly match netdev_completed_queue() @bytes.
3501  *	This is typically called once per packet, from ndo_start_xmit().
3502  */
3503 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3504 {
3505 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3506 }
3507 
3508 static inline bool __netdev_sent_queue(struct net_device *dev,
3509 				       unsigned int bytes,
3510 				       bool xmit_more)
3511 {
3512 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3513 				      xmit_more);
3514 }
3515 
3516 /**
3517  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3518  *	@dev_queue: network device queue
3519  *	@pkts: number of packets (currently ignored)
3520  *	@bytes: number of bytes dequeued from the device queue
3521  *
3522  *	Must be called at most once per TX completion round (and not per
3523  *	individual packet), so that BQL can adjust its limits appropriately.
3524  */
3525 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3526 					     unsigned int pkts, unsigned int bytes)
3527 {
3528 #ifdef CONFIG_BQL
3529 	if (unlikely(!bytes))
3530 		return;
3531 
3532 	dql_completed(&dev_queue->dql, bytes);
3533 
3534 	/*
3535 	 * Without the memory barrier there is a small possibility that
3536 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3537 	 * be stopped forever
3538 	 */
3539 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3540 
3541 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3542 		return;
3543 
3544 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3545 		netif_schedule_queue(dev_queue);
3546 #endif
3547 }
3548 
3549 /**
3550  * 	netdev_completed_queue - report bytes and packets completed by device
3551  * 	@dev: network device
3552  * 	@pkts: actual number of packets sent over the medium
3553  * 	@bytes: actual number of bytes sent over the medium
3554  *
3555  * 	Report the number of bytes and packets transmitted by the network device
3556  * 	hardware queue over the physical medium, @bytes must exactly match the
3557  * 	@bytes amount passed to netdev_sent_queue()
3558  */
3559 static inline void netdev_completed_queue(struct net_device *dev,
3560 					  unsigned int pkts, unsigned int bytes)
3561 {
3562 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3563 }
3564 
3565 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3566 {
3567 #ifdef CONFIG_BQL
3568 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3569 	dql_reset(&q->dql);
3570 #endif
3571 }
3572 
3573 /**
3574  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3575  * @dev: network device
3576  * @qid: stack index of the queue to reset
3577  */
3578 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3579 					    u32 qid)
3580 {
3581 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3582 }
3583 
3584 /**
3585  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3586  * 	@dev_queue: network device
3587  *
3588  * 	Reset the bytes and packet count of a network device and clear the
3589  * 	software flow control OFF bit for this network device
3590  */
3591 static inline void netdev_reset_queue(struct net_device *dev_queue)
3592 {
3593 	netdev_tx_reset_subqueue(dev_queue, 0);
3594 }
3595 
3596 /**
3597  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3598  * 	@dev: network device
3599  * 	@queue_index: given tx queue index
3600  *
3601  * 	Returns 0 if given tx queue index >= number of device tx queues,
3602  * 	otherwise returns the originally passed tx queue index.
3603  */
3604 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3605 {
3606 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3607 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3608 				     dev->name, queue_index,
3609 				     dev->real_num_tx_queues);
3610 		return 0;
3611 	}
3612 
3613 	return queue_index;
3614 }
3615 
3616 /**
3617  *	netif_running - test if up
3618  *	@dev: network device
3619  *
3620  *	Test if the device has been brought up.
3621  */
3622 static inline bool netif_running(const struct net_device *dev)
3623 {
3624 	return test_bit(__LINK_STATE_START, &dev->state);
3625 }
3626 
3627 /*
3628  * Routines to manage the subqueues on a device.  We only need start,
3629  * stop, and a check if it's stopped.  All other device management is
3630  * done at the overall netdevice level.
3631  * Also test the device if we're multiqueue.
3632  */
3633 
3634 /**
3635  *	netif_start_subqueue - allow sending packets on subqueue
3636  *	@dev: network device
3637  *	@queue_index: sub queue index
3638  *
3639  * Start individual transmit queue of a device with multiple transmit queues.
3640  */
3641 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3642 {
3643 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3644 
3645 	netif_tx_start_queue(txq);
3646 }
3647 
3648 /**
3649  *	netif_stop_subqueue - stop sending packets on subqueue
3650  *	@dev: network device
3651  *	@queue_index: sub queue index
3652  *
3653  * Stop individual transmit queue of a device with multiple transmit queues.
3654  */
3655 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3656 {
3657 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3658 	netif_tx_stop_queue(txq);
3659 }
3660 
3661 /**
3662  *	__netif_subqueue_stopped - test status of subqueue
3663  *	@dev: network device
3664  *	@queue_index: sub queue index
3665  *
3666  * Check individual transmit queue of a device with multiple transmit queues.
3667  */
3668 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3669 					    u16 queue_index)
3670 {
3671 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3672 
3673 	return netif_tx_queue_stopped(txq);
3674 }
3675 
3676 /**
3677  *	netif_subqueue_stopped - test status of subqueue
3678  *	@dev: network device
3679  *	@skb: sub queue buffer pointer
3680  *
3681  * Check individual transmit queue of a device with multiple transmit queues.
3682  */
3683 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3684 					  struct sk_buff *skb)
3685 {
3686 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3687 }
3688 
3689 /**
3690  *	netif_wake_subqueue - allow sending packets on subqueue
3691  *	@dev: network device
3692  *	@queue_index: sub queue index
3693  *
3694  * Resume individual transmit queue of a device with multiple transmit queues.
3695  */
3696 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3697 {
3698 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3699 
3700 	netif_tx_wake_queue(txq);
3701 }
3702 
3703 #ifdef CONFIG_XPS
3704 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3705 			u16 index);
3706 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3707 			  u16 index, enum xps_map_type type);
3708 
3709 /**
3710  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3711  *	@j: CPU/Rx queue index
3712  *	@mask: bitmask of all cpus/rx queues
3713  *	@nr_bits: number of bits in the bitmask
3714  *
3715  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3716  */
3717 static inline bool netif_attr_test_mask(unsigned long j,
3718 					const unsigned long *mask,
3719 					unsigned int nr_bits)
3720 {
3721 	cpu_max_bits_warn(j, nr_bits);
3722 	return test_bit(j, mask);
3723 }
3724 
3725 /**
3726  *	netif_attr_test_online - Test for online CPU/Rx queue
3727  *	@j: CPU/Rx queue index
3728  *	@online_mask: bitmask for CPUs/Rx queues that are online
3729  *	@nr_bits: number of bits in the bitmask
3730  *
3731  * Returns true if a CPU/Rx queue is online.
3732  */
3733 static inline bool netif_attr_test_online(unsigned long j,
3734 					  const unsigned long *online_mask,
3735 					  unsigned int nr_bits)
3736 {
3737 	cpu_max_bits_warn(j, nr_bits);
3738 
3739 	if (online_mask)
3740 		return test_bit(j, online_mask);
3741 
3742 	return (j < nr_bits);
3743 }
3744 
3745 /**
3746  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3747  *	@n: CPU/Rx queue index
3748  *	@srcp: the cpumask/Rx queue mask pointer
3749  *	@nr_bits: number of bits in the bitmask
3750  *
3751  * Returns >= nr_bits if no further CPUs/Rx queues set.
3752  */
3753 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3754 					       unsigned int nr_bits)
3755 {
3756 	/* -1 is a legal arg here. */
3757 	if (n != -1)
3758 		cpu_max_bits_warn(n, nr_bits);
3759 
3760 	if (srcp)
3761 		return find_next_bit(srcp, nr_bits, n + 1);
3762 
3763 	return n + 1;
3764 }
3765 
3766 /**
3767  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3768  *	@n: CPU/Rx queue index
3769  *	@src1p: the first CPUs/Rx queues mask pointer
3770  *	@src2p: the second CPUs/Rx queues mask pointer
3771  *	@nr_bits: number of bits in the bitmask
3772  *
3773  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3774  */
3775 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3776 					  const unsigned long *src2p,
3777 					  unsigned int nr_bits)
3778 {
3779 	/* -1 is a legal arg here. */
3780 	if (n != -1)
3781 		cpu_max_bits_warn(n, nr_bits);
3782 
3783 	if (src1p && src2p)
3784 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3785 	else if (src1p)
3786 		return find_next_bit(src1p, nr_bits, n + 1);
3787 	else if (src2p)
3788 		return find_next_bit(src2p, nr_bits, n + 1);
3789 
3790 	return n + 1;
3791 }
3792 #else
3793 static inline int netif_set_xps_queue(struct net_device *dev,
3794 				      const struct cpumask *mask,
3795 				      u16 index)
3796 {
3797 	return 0;
3798 }
3799 
3800 static inline int __netif_set_xps_queue(struct net_device *dev,
3801 					const unsigned long *mask,
3802 					u16 index, enum xps_map_type type)
3803 {
3804 	return 0;
3805 }
3806 #endif
3807 
3808 /**
3809  *	netif_is_multiqueue - test if device has multiple transmit queues
3810  *	@dev: network device
3811  *
3812  * Check if device has multiple transmit queues
3813  */
3814 static inline bool netif_is_multiqueue(const struct net_device *dev)
3815 {
3816 	return dev->num_tx_queues > 1;
3817 }
3818 
3819 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3820 
3821 #ifdef CONFIG_SYSFS
3822 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3823 #else
3824 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3825 						unsigned int rxqs)
3826 {
3827 	dev->real_num_rx_queues = rxqs;
3828 	return 0;
3829 }
3830 #endif
3831 int netif_set_real_num_queues(struct net_device *dev,
3832 			      unsigned int txq, unsigned int rxq);
3833 
3834 int netif_get_num_default_rss_queues(void);
3835 
3836 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3837 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3838 
3839 /*
3840  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3841  * interrupt context or with hardware interrupts being disabled.
3842  * (in_hardirq() || irqs_disabled())
3843  *
3844  * We provide four helpers that can be used in following contexts :
3845  *
3846  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3847  *  replacing kfree_skb(skb)
3848  *
3849  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3850  *  Typically used in place of consume_skb(skb) in TX completion path
3851  *
3852  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3853  *  replacing kfree_skb(skb)
3854  *
3855  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3856  *  and consumed a packet. Used in place of consume_skb(skb)
3857  */
3858 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3859 {
3860 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3861 }
3862 
3863 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3864 {
3865 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3866 }
3867 
3868 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3869 {
3870 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3871 }
3872 
3873 static inline void dev_consume_skb_any(struct sk_buff *skb)
3874 {
3875 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3876 }
3877 
3878 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3879 			     struct bpf_prog *xdp_prog);
3880 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3881 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3882 int netif_rx(struct sk_buff *skb);
3883 int __netif_rx(struct sk_buff *skb);
3884 
3885 int netif_receive_skb(struct sk_buff *skb);
3886 int netif_receive_skb_core(struct sk_buff *skb);
3887 void netif_receive_skb_list_internal(struct list_head *head);
3888 void netif_receive_skb_list(struct list_head *head);
3889 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3890 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3891 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3892 void napi_get_frags_check(struct napi_struct *napi);
3893 gro_result_t napi_gro_frags(struct napi_struct *napi);
3894 
3895 static inline void napi_free_frags(struct napi_struct *napi)
3896 {
3897 	kfree_skb(napi->skb);
3898 	napi->skb = NULL;
3899 }
3900 
3901 bool netdev_is_rx_handler_busy(struct net_device *dev);
3902 int netdev_rx_handler_register(struct net_device *dev,
3903 			       rx_handler_func_t *rx_handler,
3904 			       void *rx_handler_data);
3905 void netdev_rx_handler_unregister(struct net_device *dev);
3906 
3907 bool dev_valid_name(const char *name);
3908 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3909 {
3910 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3911 }
3912 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3913 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3914 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3915 		void __user *data, bool *need_copyout);
3916 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3917 int generic_hwtstamp_get_lower(struct net_device *dev,
3918 			       struct kernel_hwtstamp_config *kernel_cfg);
3919 int generic_hwtstamp_set_lower(struct net_device *dev,
3920 			       struct kernel_hwtstamp_config *kernel_cfg,
3921 			       struct netlink_ext_ack *extack);
3922 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3923 unsigned int dev_get_flags(const struct net_device *);
3924 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3925 		       struct netlink_ext_ack *extack);
3926 int dev_change_flags(struct net_device *dev, unsigned int flags,
3927 		     struct netlink_ext_ack *extack);
3928 int dev_set_alias(struct net_device *, const char *, size_t);
3929 int dev_get_alias(const struct net_device *, char *, size_t);
3930 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3931 			       const char *pat, int new_ifindex);
3932 static inline
3933 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3934 			     const char *pat)
3935 {
3936 	return __dev_change_net_namespace(dev, net, pat, 0);
3937 }
3938 int __dev_set_mtu(struct net_device *, int);
3939 int dev_set_mtu(struct net_device *, int);
3940 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3941 			      struct netlink_ext_ack *extack);
3942 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3943 			struct netlink_ext_ack *extack);
3944 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3945 			     struct netlink_ext_ack *extack);
3946 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3947 int dev_get_port_parent_id(struct net_device *dev,
3948 			   struct netdev_phys_item_id *ppid, bool recurse);
3949 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3950 
3951 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3952 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3953 				    struct netdev_queue *txq, int *ret);
3954 
3955 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3956 u8 dev_xdp_prog_count(struct net_device *dev);
3957 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
3958 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3959 
3960 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
3961 
3962 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3963 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3964 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3965 bool is_skb_forwardable(const struct net_device *dev,
3966 			const struct sk_buff *skb);
3967 
3968 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3969 						 const struct sk_buff *skb,
3970 						 const bool check_mtu)
3971 {
3972 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3973 	unsigned int len;
3974 
3975 	if (!(dev->flags & IFF_UP))
3976 		return false;
3977 
3978 	if (!check_mtu)
3979 		return true;
3980 
3981 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3982 	if (skb->len <= len)
3983 		return true;
3984 
3985 	/* if TSO is enabled, we don't care about the length as the packet
3986 	 * could be forwarded without being segmented before
3987 	 */
3988 	if (skb_is_gso(skb))
3989 		return true;
3990 
3991 	return false;
3992 }
3993 
3994 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
3995 
3996 #define DEV_CORE_STATS_INC(FIELD)						\
3997 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3998 {										\
3999 	netdev_core_stats_inc(dev,						\
4000 			offsetof(struct net_device_core_stats, FIELD));		\
4001 }
4002 DEV_CORE_STATS_INC(rx_dropped)
4003 DEV_CORE_STATS_INC(tx_dropped)
4004 DEV_CORE_STATS_INC(rx_nohandler)
4005 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4006 #undef DEV_CORE_STATS_INC
4007 
4008 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4009 					       struct sk_buff *skb,
4010 					       const bool check_mtu)
4011 {
4012 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4013 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4014 		dev_core_stats_rx_dropped_inc(dev);
4015 		kfree_skb(skb);
4016 		return NET_RX_DROP;
4017 	}
4018 
4019 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4020 	skb->priority = 0;
4021 	return 0;
4022 }
4023 
4024 bool dev_nit_active(struct net_device *dev);
4025 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4026 
4027 static inline void __dev_put(struct net_device *dev)
4028 {
4029 	if (dev) {
4030 #ifdef CONFIG_PCPU_DEV_REFCNT
4031 		this_cpu_dec(*dev->pcpu_refcnt);
4032 #else
4033 		refcount_dec(&dev->dev_refcnt);
4034 #endif
4035 	}
4036 }
4037 
4038 static inline void __dev_hold(struct net_device *dev)
4039 {
4040 	if (dev) {
4041 #ifdef CONFIG_PCPU_DEV_REFCNT
4042 		this_cpu_inc(*dev->pcpu_refcnt);
4043 #else
4044 		refcount_inc(&dev->dev_refcnt);
4045 #endif
4046 	}
4047 }
4048 
4049 static inline void __netdev_tracker_alloc(struct net_device *dev,
4050 					  netdevice_tracker *tracker,
4051 					  gfp_t gfp)
4052 {
4053 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4054 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4055 #endif
4056 }
4057 
4058 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4059  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4060  */
4061 static inline void netdev_tracker_alloc(struct net_device *dev,
4062 					netdevice_tracker *tracker, gfp_t gfp)
4063 {
4064 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4065 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4066 	__netdev_tracker_alloc(dev, tracker, gfp);
4067 #endif
4068 }
4069 
4070 static inline void netdev_tracker_free(struct net_device *dev,
4071 				       netdevice_tracker *tracker)
4072 {
4073 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4074 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4075 #endif
4076 }
4077 
4078 static inline void netdev_hold(struct net_device *dev,
4079 			       netdevice_tracker *tracker, gfp_t gfp)
4080 {
4081 	if (dev) {
4082 		__dev_hold(dev);
4083 		__netdev_tracker_alloc(dev, tracker, gfp);
4084 	}
4085 }
4086 
4087 static inline void netdev_put(struct net_device *dev,
4088 			      netdevice_tracker *tracker)
4089 {
4090 	if (dev) {
4091 		netdev_tracker_free(dev, tracker);
4092 		__dev_put(dev);
4093 	}
4094 }
4095 
4096 /**
4097  *	dev_hold - get reference to device
4098  *	@dev: network device
4099  *
4100  * Hold reference to device to keep it from being freed.
4101  * Try using netdev_hold() instead.
4102  */
4103 static inline void dev_hold(struct net_device *dev)
4104 {
4105 	netdev_hold(dev, NULL, GFP_ATOMIC);
4106 }
4107 
4108 /**
4109  *	dev_put - release reference to device
4110  *	@dev: network device
4111  *
4112  * Release reference to device to allow it to be freed.
4113  * Try using netdev_put() instead.
4114  */
4115 static inline void dev_put(struct net_device *dev)
4116 {
4117 	netdev_put(dev, NULL);
4118 }
4119 
4120 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4121 
4122 static inline void netdev_ref_replace(struct net_device *odev,
4123 				      struct net_device *ndev,
4124 				      netdevice_tracker *tracker,
4125 				      gfp_t gfp)
4126 {
4127 	if (odev)
4128 		netdev_tracker_free(odev, tracker);
4129 
4130 	__dev_hold(ndev);
4131 	__dev_put(odev);
4132 
4133 	if (ndev)
4134 		__netdev_tracker_alloc(ndev, tracker, gfp);
4135 }
4136 
4137 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4138  * and _off may be called from IRQ context, but it is caller
4139  * who is responsible for serialization of these calls.
4140  *
4141  * The name carrier is inappropriate, these functions should really be
4142  * called netif_lowerlayer_*() because they represent the state of any
4143  * kind of lower layer not just hardware media.
4144  */
4145 void linkwatch_fire_event(struct net_device *dev);
4146 
4147 /**
4148  * linkwatch_sync_dev - sync linkwatch for the given device
4149  * @dev: network device to sync linkwatch for
4150  *
4151  * Sync linkwatch for the given device, removing it from the
4152  * pending work list (if queued).
4153  */
4154 void linkwatch_sync_dev(struct net_device *dev);
4155 
4156 /**
4157  *	netif_carrier_ok - test if carrier present
4158  *	@dev: network device
4159  *
4160  * Check if carrier is present on device
4161  */
4162 static inline bool netif_carrier_ok(const struct net_device *dev)
4163 {
4164 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4165 }
4166 
4167 unsigned long dev_trans_start(struct net_device *dev);
4168 
4169 void __netdev_watchdog_up(struct net_device *dev);
4170 
4171 void netif_carrier_on(struct net_device *dev);
4172 void netif_carrier_off(struct net_device *dev);
4173 void netif_carrier_event(struct net_device *dev);
4174 
4175 /**
4176  *	netif_dormant_on - mark device as dormant.
4177  *	@dev: network device
4178  *
4179  * Mark device as dormant (as per RFC2863).
4180  *
4181  * The dormant state indicates that the relevant interface is not
4182  * actually in a condition to pass packets (i.e., it is not 'up') but is
4183  * in a "pending" state, waiting for some external event.  For "on-
4184  * demand" interfaces, this new state identifies the situation where the
4185  * interface is waiting for events to place it in the up state.
4186  */
4187 static inline void netif_dormant_on(struct net_device *dev)
4188 {
4189 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4190 		linkwatch_fire_event(dev);
4191 }
4192 
4193 /**
4194  *	netif_dormant_off - set device as not dormant.
4195  *	@dev: network device
4196  *
4197  * Device is not in dormant state.
4198  */
4199 static inline void netif_dormant_off(struct net_device *dev)
4200 {
4201 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4202 		linkwatch_fire_event(dev);
4203 }
4204 
4205 /**
4206  *	netif_dormant - test if device is dormant
4207  *	@dev: network device
4208  *
4209  * Check if device is dormant.
4210  */
4211 static inline bool netif_dormant(const struct net_device *dev)
4212 {
4213 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4214 }
4215 
4216 
4217 /**
4218  *	netif_testing_on - mark device as under test.
4219  *	@dev: network device
4220  *
4221  * Mark device as under test (as per RFC2863).
4222  *
4223  * The testing state indicates that some test(s) must be performed on
4224  * the interface. After completion, of the test, the interface state
4225  * will change to up, dormant, or down, as appropriate.
4226  */
4227 static inline void netif_testing_on(struct net_device *dev)
4228 {
4229 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4230 		linkwatch_fire_event(dev);
4231 }
4232 
4233 /**
4234  *	netif_testing_off - set device as not under test.
4235  *	@dev: network device
4236  *
4237  * Device is not in testing state.
4238  */
4239 static inline void netif_testing_off(struct net_device *dev)
4240 {
4241 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4242 		linkwatch_fire_event(dev);
4243 }
4244 
4245 /**
4246  *	netif_testing - test if device is under test
4247  *	@dev: network device
4248  *
4249  * Check if device is under test
4250  */
4251 static inline bool netif_testing(const struct net_device *dev)
4252 {
4253 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4254 }
4255 
4256 
4257 /**
4258  *	netif_oper_up - test if device is operational
4259  *	@dev: network device
4260  *
4261  * Check if carrier is operational
4262  */
4263 static inline bool netif_oper_up(const struct net_device *dev)
4264 {
4265 	unsigned int operstate = READ_ONCE(dev->operstate);
4266 
4267 	return	operstate == IF_OPER_UP ||
4268 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4269 }
4270 
4271 /**
4272  *	netif_device_present - is device available or removed
4273  *	@dev: network device
4274  *
4275  * Check if device has not been removed from system.
4276  */
4277 static inline bool netif_device_present(const struct net_device *dev)
4278 {
4279 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4280 }
4281 
4282 void netif_device_detach(struct net_device *dev);
4283 
4284 void netif_device_attach(struct net_device *dev);
4285 
4286 /*
4287  * Network interface message level settings
4288  */
4289 
4290 enum {
4291 	NETIF_MSG_DRV_BIT,
4292 	NETIF_MSG_PROBE_BIT,
4293 	NETIF_MSG_LINK_BIT,
4294 	NETIF_MSG_TIMER_BIT,
4295 	NETIF_MSG_IFDOWN_BIT,
4296 	NETIF_MSG_IFUP_BIT,
4297 	NETIF_MSG_RX_ERR_BIT,
4298 	NETIF_MSG_TX_ERR_BIT,
4299 	NETIF_MSG_TX_QUEUED_BIT,
4300 	NETIF_MSG_INTR_BIT,
4301 	NETIF_MSG_TX_DONE_BIT,
4302 	NETIF_MSG_RX_STATUS_BIT,
4303 	NETIF_MSG_PKTDATA_BIT,
4304 	NETIF_MSG_HW_BIT,
4305 	NETIF_MSG_WOL_BIT,
4306 
4307 	/* When you add a new bit above, update netif_msg_class_names array
4308 	 * in net/ethtool/common.c
4309 	 */
4310 	NETIF_MSG_CLASS_COUNT,
4311 };
4312 /* Both ethtool_ops interface and internal driver implementation use u32 */
4313 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4314 
4315 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4316 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4317 
4318 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4319 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4320 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4321 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4322 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4323 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4324 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4325 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4326 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4327 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4328 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4329 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4330 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4331 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4332 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4333 
4334 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4335 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4336 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4337 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4338 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4339 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4340 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4341 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4342 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4343 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4344 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4345 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4346 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4347 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4348 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4349 
4350 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4351 {
4352 	/* use default */
4353 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4354 		return default_msg_enable_bits;
4355 	if (debug_value == 0)	/* no output */
4356 		return 0;
4357 	/* set low N bits */
4358 	return (1U << debug_value) - 1;
4359 }
4360 
4361 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4362 {
4363 	spin_lock(&txq->_xmit_lock);
4364 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4365 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4366 }
4367 
4368 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4369 {
4370 	__acquire(&txq->_xmit_lock);
4371 	return true;
4372 }
4373 
4374 static inline void __netif_tx_release(struct netdev_queue *txq)
4375 {
4376 	__release(&txq->_xmit_lock);
4377 }
4378 
4379 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4380 {
4381 	spin_lock_bh(&txq->_xmit_lock);
4382 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4383 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4384 }
4385 
4386 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4387 {
4388 	bool ok = spin_trylock(&txq->_xmit_lock);
4389 
4390 	if (likely(ok)) {
4391 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4392 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4393 	}
4394 	return ok;
4395 }
4396 
4397 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4398 {
4399 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4400 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4401 	spin_unlock(&txq->_xmit_lock);
4402 }
4403 
4404 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4405 {
4406 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4407 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4408 	spin_unlock_bh(&txq->_xmit_lock);
4409 }
4410 
4411 /*
4412  * txq->trans_start can be read locklessly from dev_watchdog()
4413  */
4414 static inline void txq_trans_update(struct netdev_queue *txq)
4415 {
4416 	if (txq->xmit_lock_owner != -1)
4417 		WRITE_ONCE(txq->trans_start, jiffies);
4418 }
4419 
4420 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4421 {
4422 	unsigned long now = jiffies;
4423 
4424 	if (READ_ONCE(txq->trans_start) != now)
4425 		WRITE_ONCE(txq->trans_start, now);
4426 }
4427 
4428 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4429 static inline void netif_trans_update(struct net_device *dev)
4430 {
4431 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4432 
4433 	txq_trans_cond_update(txq);
4434 }
4435 
4436 /**
4437  *	netif_tx_lock - grab network device transmit lock
4438  *	@dev: network device
4439  *
4440  * Get network device transmit lock
4441  */
4442 void netif_tx_lock(struct net_device *dev);
4443 
4444 static inline void netif_tx_lock_bh(struct net_device *dev)
4445 {
4446 	local_bh_disable();
4447 	netif_tx_lock(dev);
4448 }
4449 
4450 void netif_tx_unlock(struct net_device *dev);
4451 
4452 static inline void netif_tx_unlock_bh(struct net_device *dev)
4453 {
4454 	netif_tx_unlock(dev);
4455 	local_bh_enable();
4456 }
4457 
4458 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4459 	if (!(dev)->lltx) {				\
4460 		__netif_tx_lock(txq, cpu);		\
4461 	} else {					\
4462 		__netif_tx_acquire(txq);		\
4463 	}						\
4464 }
4465 
4466 #define HARD_TX_TRYLOCK(dev, txq)			\
4467 	(!(dev)->lltx ?					\
4468 		__netif_tx_trylock(txq) :		\
4469 		__netif_tx_acquire(txq))
4470 
4471 #define HARD_TX_UNLOCK(dev, txq) {			\
4472 	if (!(dev)->lltx) {				\
4473 		__netif_tx_unlock(txq);			\
4474 	} else {					\
4475 		__netif_tx_release(txq);		\
4476 	}						\
4477 }
4478 
4479 static inline void netif_tx_disable(struct net_device *dev)
4480 {
4481 	unsigned int i;
4482 	int cpu;
4483 
4484 	local_bh_disable();
4485 	cpu = smp_processor_id();
4486 	spin_lock(&dev->tx_global_lock);
4487 	for (i = 0; i < dev->num_tx_queues; i++) {
4488 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4489 
4490 		__netif_tx_lock(txq, cpu);
4491 		netif_tx_stop_queue(txq);
4492 		__netif_tx_unlock(txq);
4493 	}
4494 	spin_unlock(&dev->tx_global_lock);
4495 	local_bh_enable();
4496 }
4497 
4498 static inline void netif_addr_lock(struct net_device *dev)
4499 {
4500 	unsigned char nest_level = 0;
4501 
4502 #ifdef CONFIG_LOCKDEP
4503 	nest_level = dev->nested_level;
4504 #endif
4505 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4506 }
4507 
4508 static inline void netif_addr_lock_bh(struct net_device *dev)
4509 {
4510 	unsigned char nest_level = 0;
4511 
4512 #ifdef CONFIG_LOCKDEP
4513 	nest_level = dev->nested_level;
4514 #endif
4515 	local_bh_disable();
4516 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4517 }
4518 
4519 static inline void netif_addr_unlock(struct net_device *dev)
4520 {
4521 	spin_unlock(&dev->addr_list_lock);
4522 }
4523 
4524 static inline void netif_addr_unlock_bh(struct net_device *dev)
4525 {
4526 	spin_unlock_bh(&dev->addr_list_lock);
4527 }
4528 
4529 /*
4530  * dev_addrs walker. Should be used only for read access. Call with
4531  * rcu_read_lock held.
4532  */
4533 #define for_each_dev_addr(dev, ha) \
4534 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4535 
4536 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4537 
4538 void ether_setup(struct net_device *dev);
4539 
4540 /* Allocate dummy net_device */
4541 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4542 
4543 /* Support for loadable net-drivers */
4544 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4545 				    unsigned char name_assign_type,
4546 				    void (*setup)(struct net_device *),
4547 				    unsigned int txqs, unsigned int rxqs);
4548 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4549 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4550 
4551 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4552 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4553 			 count)
4554 
4555 int register_netdev(struct net_device *dev);
4556 void unregister_netdev(struct net_device *dev);
4557 
4558 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4559 
4560 /* General hardware address lists handling functions */
4561 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4562 		   struct netdev_hw_addr_list *from_list, int addr_len);
4563 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4564 		      struct netdev_hw_addr_list *from_list, int addr_len);
4565 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4566 		       struct net_device *dev,
4567 		       int (*sync)(struct net_device *, const unsigned char *),
4568 		       int (*unsync)(struct net_device *,
4569 				     const unsigned char *));
4570 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4571 			   struct net_device *dev,
4572 			   int (*sync)(struct net_device *,
4573 				       const unsigned char *, int),
4574 			   int (*unsync)(struct net_device *,
4575 					 const unsigned char *, int));
4576 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4577 			      struct net_device *dev,
4578 			      int (*unsync)(struct net_device *,
4579 					    const unsigned char *, int));
4580 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4581 			  struct net_device *dev,
4582 			  int (*unsync)(struct net_device *,
4583 					const unsigned char *));
4584 void __hw_addr_init(struct netdev_hw_addr_list *list);
4585 
4586 /* Functions used for device addresses handling */
4587 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4588 		  const void *addr, size_t len);
4589 
4590 static inline void
4591 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4592 {
4593 	dev_addr_mod(dev, 0, addr, len);
4594 }
4595 
4596 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4597 {
4598 	__dev_addr_set(dev, addr, dev->addr_len);
4599 }
4600 
4601 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4602 		 unsigned char addr_type);
4603 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4604 		 unsigned char addr_type);
4605 
4606 /* Functions used for unicast addresses handling */
4607 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4608 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4609 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4610 int dev_uc_sync(struct net_device *to, struct net_device *from);
4611 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4612 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4613 void dev_uc_flush(struct net_device *dev);
4614 void dev_uc_init(struct net_device *dev);
4615 
4616 /**
4617  *  __dev_uc_sync - Synchronize device's unicast list
4618  *  @dev:  device to sync
4619  *  @sync: function to call if address should be added
4620  *  @unsync: function to call if address should be removed
4621  *
4622  *  Add newly added addresses to the interface, and release
4623  *  addresses that have been deleted.
4624  */
4625 static inline int __dev_uc_sync(struct net_device *dev,
4626 				int (*sync)(struct net_device *,
4627 					    const unsigned char *),
4628 				int (*unsync)(struct net_device *,
4629 					      const unsigned char *))
4630 {
4631 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4632 }
4633 
4634 /**
4635  *  __dev_uc_unsync - Remove synchronized addresses from device
4636  *  @dev:  device to sync
4637  *  @unsync: function to call if address should be removed
4638  *
4639  *  Remove all addresses that were added to the device by dev_uc_sync().
4640  */
4641 static inline void __dev_uc_unsync(struct net_device *dev,
4642 				   int (*unsync)(struct net_device *,
4643 						 const unsigned char *))
4644 {
4645 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4646 }
4647 
4648 /* Functions used for multicast addresses handling */
4649 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4650 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4651 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4652 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4653 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4654 int dev_mc_sync(struct net_device *to, struct net_device *from);
4655 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4656 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4657 void dev_mc_flush(struct net_device *dev);
4658 void dev_mc_init(struct net_device *dev);
4659 
4660 /**
4661  *  __dev_mc_sync - Synchronize device's multicast list
4662  *  @dev:  device to sync
4663  *  @sync: function to call if address should be added
4664  *  @unsync: function to call if address should be removed
4665  *
4666  *  Add newly added addresses to the interface, and release
4667  *  addresses that have been deleted.
4668  */
4669 static inline int __dev_mc_sync(struct net_device *dev,
4670 				int (*sync)(struct net_device *,
4671 					    const unsigned char *),
4672 				int (*unsync)(struct net_device *,
4673 					      const unsigned char *))
4674 {
4675 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4676 }
4677 
4678 /**
4679  *  __dev_mc_unsync - Remove synchronized addresses from device
4680  *  @dev:  device to sync
4681  *  @unsync: function to call if address should be removed
4682  *
4683  *  Remove all addresses that were added to the device by dev_mc_sync().
4684  */
4685 static inline void __dev_mc_unsync(struct net_device *dev,
4686 				   int (*unsync)(struct net_device *,
4687 						 const unsigned char *))
4688 {
4689 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4690 }
4691 
4692 /* Functions used for secondary unicast and multicast support */
4693 void dev_set_rx_mode(struct net_device *dev);
4694 int dev_set_promiscuity(struct net_device *dev, int inc);
4695 int dev_set_allmulti(struct net_device *dev, int inc);
4696 void netdev_state_change(struct net_device *dev);
4697 void __netdev_notify_peers(struct net_device *dev);
4698 void netdev_notify_peers(struct net_device *dev);
4699 void netdev_features_change(struct net_device *dev);
4700 /* Load a device via the kmod */
4701 void dev_load(struct net *net, const char *name);
4702 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4703 					struct rtnl_link_stats64 *storage);
4704 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4705 			     const struct net_device_stats *netdev_stats);
4706 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4707 			   const struct pcpu_sw_netstats __percpu *netstats);
4708 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4709 
4710 enum {
4711 	NESTED_SYNC_IMM_BIT,
4712 	NESTED_SYNC_TODO_BIT,
4713 };
4714 
4715 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4716 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4717 
4718 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4719 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4720 
4721 struct netdev_nested_priv {
4722 	unsigned char flags;
4723 	void *data;
4724 };
4725 
4726 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4727 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4728 						     struct list_head **iter);
4729 
4730 /* iterate through upper list, must be called under RCU read lock */
4731 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4732 	for (iter = &(dev)->adj_list.upper, \
4733 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4734 	     updev; \
4735 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4736 
4737 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4738 				  int (*fn)(struct net_device *upper_dev,
4739 					    struct netdev_nested_priv *priv),
4740 				  struct netdev_nested_priv *priv);
4741 
4742 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4743 				  struct net_device *upper_dev);
4744 
4745 bool netdev_has_any_upper_dev(struct net_device *dev);
4746 
4747 void *netdev_lower_get_next_private(struct net_device *dev,
4748 				    struct list_head **iter);
4749 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4750 					struct list_head **iter);
4751 
4752 #define netdev_for_each_lower_private(dev, priv, iter) \
4753 	for (iter = (dev)->adj_list.lower.next, \
4754 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4755 	     priv; \
4756 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4757 
4758 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4759 	for (iter = &(dev)->adj_list.lower, \
4760 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4761 	     priv; \
4762 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4763 
4764 void *netdev_lower_get_next(struct net_device *dev,
4765 				struct list_head **iter);
4766 
4767 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4768 	for (iter = (dev)->adj_list.lower.next, \
4769 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4770 	     ldev; \
4771 	     ldev = netdev_lower_get_next(dev, &(iter)))
4772 
4773 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4774 					     struct list_head **iter);
4775 int netdev_walk_all_lower_dev(struct net_device *dev,
4776 			      int (*fn)(struct net_device *lower_dev,
4777 					struct netdev_nested_priv *priv),
4778 			      struct netdev_nested_priv *priv);
4779 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4780 				  int (*fn)(struct net_device *lower_dev,
4781 					    struct netdev_nested_priv *priv),
4782 				  struct netdev_nested_priv *priv);
4783 
4784 void *netdev_adjacent_get_private(struct list_head *adj_list);
4785 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4786 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4787 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4788 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4789 			  struct netlink_ext_ack *extack);
4790 int netdev_master_upper_dev_link(struct net_device *dev,
4791 				 struct net_device *upper_dev,
4792 				 void *upper_priv, void *upper_info,
4793 				 struct netlink_ext_ack *extack);
4794 void netdev_upper_dev_unlink(struct net_device *dev,
4795 			     struct net_device *upper_dev);
4796 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4797 				   struct net_device *new_dev,
4798 				   struct net_device *dev,
4799 				   struct netlink_ext_ack *extack);
4800 void netdev_adjacent_change_commit(struct net_device *old_dev,
4801 				   struct net_device *new_dev,
4802 				   struct net_device *dev);
4803 void netdev_adjacent_change_abort(struct net_device *old_dev,
4804 				  struct net_device *new_dev,
4805 				  struct net_device *dev);
4806 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4807 void *netdev_lower_dev_get_private(struct net_device *dev,
4808 				   struct net_device *lower_dev);
4809 void netdev_lower_state_changed(struct net_device *lower_dev,
4810 				void *lower_state_info);
4811 
4812 /* RSS keys are 40 or 52 bytes long */
4813 #define NETDEV_RSS_KEY_LEN 52
4814 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4815 void netdev_rss_key_fill(void *buffer, size_t len);
4816 
4817 int skb_checksum_help(struct sk_buff *skb);
4818 int skb_crc32c_csum_help(struct sk_buff *skb);
4819 int skb_csum_hwoffload_help(struct sk_buff *skb,
4820 			    const netdev_features_t features);
4821 
4822 struct netdev_bonding_info {
4823 	ifslave	slave;
4824 	ifbond	master;
4825 };
4826 
4827 struct netdev_notifier_bonding_info {
4828 	struct netdev_notifier_info info; /* must be first */
4829 	struct netdev_bonding_info  bonding_info;
4830 };
4831 
4832 void netdev_bonding_info_change(struct net_device *dev,
4833 				struct netdev_bonding_info *bonding_info);
4834 
4835 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4836 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4837 #else
4838 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4839 				  const void *data)
4840 {
4841 }
4842 #endif
4843 
4844 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4845 
4846 static inline bool can_checksum_protocol(netdev_features_t features,
4847 					 __be16 protocol)
4848 {
4849 	if (protocol == htons(ETH_P_FCOE))
4850 		return !!(features & NETIF_F_FCOE_CRC);
4851 
4852 	/* Assume this is an IP checksum (not SCTP CRC) */
4853 
4854 	if (features & NETIF_F_HW_CSUM) {
4855 		/* Can checksum everything */
4856 		return true;
4857 	}
4858 
4859 	switch (protocol) {
4860 	case htons(ETH_P_IP):
4861 		return !!(features & NETIF_F_IP_CSUM);
4862 	case htons(ETH_P_IPV6):
4863 		return !!(features & NETIF_F_IPV6_CSUM);
4864 	default:
4865 		return false;
4866 	}
4867 }
4868 
4869 #ifdef CONFIG_BUG
4870 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4871 #else
4872 static inline void netdev_rx_csum_fault(struct net_device *dev,
4873 					struct sk_buff *skb)
4874 {
4875 }
4876 #endif
4877 /* rx skb timestamps */
4878 void net_enable_timestamp(void);
4879 void net_disable_timestamp(void);
4880 
4881 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4882 					const struct skb_shared_hwtstamps *hwtstamps,
4883 					bool cycles)
4884 {
4885 	const struct net_device_ops *ops = dev->netdev_ops;
4886 
4887 	if (ops->ndo_get_tstamp)
4888 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4889 
4890 	return hwtstamps->hwtstamp;
4891 }
4892 
4893 #ifndef CONFIG_PREEMPT_RT
4894 static inline void netdev_xmit_set_more(bool more)
4895 {
4896 	__this_cpu_write(softnet_data.xmit.more, more);
4897 }
4898 
4899 static inline bool netdev_xmit_more(void)
4900 {
4901 	return __this_cpu_read(softnet_data.xmit.more);
4902 }
4903 #else
4904 static inline void netdev_xmit_set_more(bool more)
4905 {
4906 	current->net_xmit.more = more;
4907 }
4908 
4909 static inline bool netdev_xmit_more(void)
4910 {
4911 	return current->net_xmit.more;
4912 }
4913 #endif
4914 
4915 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4916 					      struct sk_buff *skb, struct net_device *dev,
4917 					      bool more)
4918 {
4919 	netdev_xmit_set_more(more);
4920 	return ops->ndo_start_xmit(skb, dev);
4921 }
4922 
4923 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4924 					    struct netdev_queue *txq, bool more)
4925 {
4926 	const struct net_device_ops *ops = dev->netdev_ops;
4927 	netdev_tx_t rc;
4928 
4929 	rc = __netdev_start_xmit(ops, skb, dev, more);
4930 	if (rc == NETDEV_TX_OK)
4931 		txq_trans_update(txq);
4932 
4933 	return rc;
4934 }
4935 
4936 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4937 				const void *ns);
4938 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4939 				 const void *ns);
4940 
4941 extern const struct kobj_ns_type_operations net_ns_type_operations;
4942 
4943 const char *netdev_drivername(const struct net_device *dev);
4944 
4945 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4946 							  netdev_features_t f2)
4947 {
4948 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4949 		if (f1 & NETIF_F_HW_CSUM)
4950 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4951 		else
4952 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4953 	}
4954 
4955 	return f1 & f2;
4956 }
4957 
4958 static inline netdev_features_t netdev_get_wanted_features(
4959 	struct net_device *dev)
4960 {
4961 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4962 }
4963 netdev_features_t netdev_increment_features(netdev_features_t all,
4964 	netdev_features_t one, netdev_features_t mask);
4965 
4966 /* Allow TSO being used on stacked device :
4967  * Performing the GSO segmentation before last device
4968  * is a performance improvement.
4969  */
4970 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4971 							netdev_features_t mask)
4972 {
4973 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4974 }
4975 
4976 int __netdev_update_features(struct net_device *dev);
4977 void netdev_update_features(struct net_device *dev);
4978 void netdev_change_features(struct net_device *dev);
4979 
4980 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4981 					struct net_device *dev);
4982 
4983 netdev_features_t passthru_features_check(struct sk_buff *skb,
4984 					  struct net_device *dev,
4985 					  netdev_features_t features);
4986 netdev_features_t netif_skb_features(struct sk_buff *skb);
4987 void skb_warn_bad_offload(const struct sk_buff *skb);
4988 
4989 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4990 {
4991 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4992 
4993 	/* check flags correspondence */
4994 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4995 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4996 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5002 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5003 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5004 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5005 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5006 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5007 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5008 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5009 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5010 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5011 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5012 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5013 
5014 	return (features & feature) == feature;
5015 }
5016 
5017 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5018 {
5019 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5020 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5021 }
5022 
5023 static inline bool netif_needs_gso(struct sk_buff *skb,
5024 				   netdev_features_t features)
5025 {
5026 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5027 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5028 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5029 }
5030 
5031 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5032 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5033 void netif_inherit_tso_max(struct net_device *to,
5034 			   const struct net_device *from);
5035 
5036 static inline unsigned int
5037 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5038 {
5039 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5040 	return skb->protocol == htons(ETH_P_IPV6) ?
5041 	       READ_ONCE(dev->gro_max_size) :
5042 	       READ_ONCE(dev->gro_ipv4_max_size);
5043 }
5044 
5045 static inline unsigned int
5046 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5047 {
5048 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5049 	return skb->protocol == htons(ETH_P_IPV6) ?
5050 	       READ_ONCE(dev->gso_max_size) :
5051 	       READ_ONCE(dev->gso_ipv4_max_size);
5052 }
5053 
5054 static inline bool netif_is_macsec(const struct net_device *dev)
5055 {
5056 	return dev->priv_flags & IFF_MACSEC;
5057 }
5058 
5059 static inline bool netif_is_macvlan(const struct net_device *dev)
5060 {
5061 	return dev->priv_flags & IFF_MACVLAN;
5062 }
5063 
5064 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5065 {
5066 	return dev->priv_flags & IFF_MACVLAN_PORT;
5067 }
5068 
5069 static inline bool netif_is_bond_master(const struct net_device *dev)
5070 {
5071 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5072 }
5073 
5074 static inline bool netif_is_bond_slave(const struct net_device *dev)
5075 {
5076 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5077 }
5078 
5079 static inline bool netif_supports_nofcs(struct net_device *dev)
5080 {
5081 	return dev->priv_flags & IFF_SUPP_NOFCS;
5082 }
5083 
5084 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5085 {
5086 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5087 }
5088 
5089 static inline bool netif_is_l3_master(const struct net_device *dev)
5090 {
5091 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5092 }
5093 
5094 static inline bool netif_is_l3_slave(const struct net_device *dev)
5095 {
5096 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5097 }
5098 
5099 static inline int dev_sdif(const struct net_device *dev)
5100 {
5101 #ifdef CONFIG_NET_L3_MASTER_DEV
5102 	if (netif_is_l3_slave(dev))
5103 		return dev->ifindex;
5104 #endif
5105 	return 0;
5106 }
5107 
5108 static inline bool netif_is_bridge_master(const struct net_device *dev)
5109 {
5110 	return dev->priv_flags & IFF_EBRIDGE;
5111 }
5112 
5113 static inline bool netif_is_bridge_port(const struct net_device *dev)
5114 {
5115 	return dev->priv_flags & IFF_BRIDGE_PORT;
5116 }
5117 
5118 static inline bool netif_is_ovs_master(const struct net_device *dev)
5119 {
5120 	return dev->priv_flags & IFF_OPENVSWITCH;
5121 }
5122 
5123 static inline bool netif_is_ovs_port(const struct net_device *dev)
5124 {
5125 	return dev->priv_flags & IFF_OVS_DATAPATH;
5126 }
5127 
5128 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5129 {
5130 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5131 }
5132 
5133 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5134 {
5135 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5136 }
5137 
5138 static inline bool netif_is_team_master(const struct net_device *dev)
5139 {
5140 	return dev->priv_flags & IFF_TEAM;
5141 }
5142 
5143 static inline bool netif_is_team_port(const struct net_device *dev)
5144 {
5145 	return dev->priv_flags & IFF_TEAM_PORT;
5146 }
5147 
5148 static inline bool netif_is_lag_master(const struct net_device *dev)
5149 {
5150 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5151 }
5152 
5153 static inline bool netif_is_lag_port(const struct net_device *dev)
5154 {
5155 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5156 }
5157 
5158 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5159 {
5160 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5161 }
5162 
5163 static inline bool netif_is_failover(const struct net_device *dev)
5164 {
5165 	return dev->priv_flags & IFF_FAILOVER;
5166 }
5167 
5168 static inline bool netif_is_failover_slave(const struct net_device *dev)
5169 {
5170 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5171 }
5172 
5173 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5174 static inline void netif_keep_dst(struct net_device *dev)
5175 {
5176 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5177 }
5178 
5179 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5180 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5181 {
5182 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5183 	return netif_is_macsec(dev);
5184 }
5185 
5186 extern struct pernet_operations __net_initdata loopback_net_ops;
5187 
5188 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5189 
5190 /* netdev_printk helpers, similar to dev_printk */
5191 
5192 static inline const char *netdev_name(const struct net_device *dev)
5193 {
5194 	if (!dev->name[0] || strchr(dev->name, '%'))
5195 		return "(unnamed net_device)";
5196 	return dev->name;
5197 }
5198 
5199 static inline const char *netdev_reg_state(const struct net_device *dev)
5200 {
5201 	u8 reg_state = READ_ONCE(dev->reg_state);
5202 
5203 	switch (reg_state) {
5204 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5205 	case NETREG_REGISTERED: return "";
5206 	case NETREG_UNREGISTERING: return " (unregistering)";
5207 	case NETREG_UNREGISTERED: return " (unregistered)";
5208 	case NETREG_RELEASED: return " (released)";
5209 	case NETREG_DUMMY: return " (dummy)";
5210 	}
5211 
5212 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5213 	return " (unknown)";
5214 }
5215 
5216 #define MODULE_ALIAS_NETDEV(device) \
5217 	MODULE_ALIAS("netdev-" device)
5218 
5219 /*
5220  * netdev_WARN() acts like dev_printk(), but with the key difference
5221  * of using a WARN/WARN_ON to get the message out, including the
5222  * file/line information and a backtrace.
5223  */
5224 #define netdev_WARN(dev, format, args...)			\
5225 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5226 	     netdev_reg_state(dev), ##args)
5227 
5228 #define netdev_WARN_ONCE(dev, format, args...)				\
5229 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5230 		  netdev_reg_state(dev), ##args)
5231 
5232 /*
5233  *	The list of packet types we will receive (as opposed to discard)
5234  *	and the routines to invoke.
5235  *
5236  *	Why 16. Because with 16 the only overlap we get on a hash of the
5237  *	low nibble of the protocol value is RARP/SNAP/X.25.
5238  *
5239  *		0800	IP
5240  *		0001	802.3
5241  *		0002	AX.25
5242  *		0004	802.2
5243  *		8035	RARP
5244  *		0005	SNAP
5245  *		0805	X.25
5246  *		0806	ARP
5247  *		8137	IPX
5248  *		0009	Localtalk
5249  *		86DD	IPv6
5250  */
5251 #define PTYPE_HASH_SIZE	(16)
5252 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5253 
5254 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5255 
5256 extern struct net_device *blackhole_netdev;
5257 
5258 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5259 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5260 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5261 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5262 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5263 
5264 #endif	/* _LINUX_NETDEVICE_H */
5265