1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/pm_qos.h> 29 #include <linux/timer.h> 30 #include <linux/bug.h> 31 #include <linux/delay.h> 32 #include <linux/atomic.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 54 struct netpoll_info; 55 struct device; 56 struct phy_device; 57 /* 802.11 specific */ 58 struct wireless_dev; 59 /* source back-compat hooks */ 60 #define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63 void netdev_set_default_ethtool_ops(struct net_device *dev, 64 const struct ethtool_ops *ops); 65 66 /* Backlog congestion levels */ 67 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 68 #define NET_RX_DROP 1 /* packet dropped */ 69 70 /* 71 * Transmit return codes: transmit return codes originate from three different 72 * namespaces: 73 * 74 * - qdisc return codes 75 * - driver transmit return codes 76 * - errno values 77 * 78 * Drivers are allowed to return any one of those in their hard_start_xmit() 79 * function. Real network devices commonly used with qdiscs should only return 80 * the driver transmit return codes though - when qdiscs are used, the actual 81 * transmission happens asynchronously, so the value is not propagated to 82 * higher layers. Virtual network devices transmit synchronously, in this case 83 * the driver transmit return codes are consumed by dev_queue_xmit(), all 84 * others are propagated to higher layers. 85 */ 86 87 /* qdisc ->enqueue() return codes. */ 88 #define NET_XMIT_SUCCESS 0x00 89 #define NET_XMIT_DROP 0x01 /* skb dropped */ 90 #define NET_XMIT_CN 0x02 /* congestion notification */ 91 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 92 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 93 94 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 95 * indicates that the device will soon be dropping packets, or already drops 96 * some packets of the same priority; prompting us to send less aggressively. */ 97 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 98 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 99 100 /* Driver transmit return codes */ 101 #define NETDEV_TX_MASK 0xf0 102 103 enum netdev_tx { 104 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 105 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 106 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 107 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 108 }; 109 typedef enum netdev_tx netdev_tx_t; 110 111 /* 112 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 113 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 114 */ 115 static inline bool dev_xmit_complete(int rc) 116 { 117 /* 118 * Positive cases with an skb consumed by a driver: 119 * - successful transmission (rc == NETDEV_TX_OK) 120 * - error while transmitting (rc < 0) 121 * - error while queueing to a different device (rc & NET_XMIT_MASK) 122 */ 123 if (likely(rc < NET_XMIT_MASK)) 124 return true; 125 126 return false; 127 } 128 129 /* 130 * Compute the worst case header length according to the protocols 131 * used. 132 */ 133 134 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 135 # if defined(CONFIG_MAC80211_MESH) 136 # define LL_MAX_HEADER 128 137 # else 138 # define LL_MAX_HEADER 96 139 # endif 140 #else 141 # define LL_MAX_HEADER 32 142 #endif 143 144 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 145 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 146 #define MAX_HEADER LL_MAX_HEADER 147 #else 148 #define MAX_HEADER (LL_MAX_HEADER + 48) 149 #endif 150 151 /* 152 * Old network device statistics. Fields are native words 153 * (unsigned long) so they can be read and written atomically. 154 */ 155 156 struct net_device_stats { 157 unsigned long rx_packets; 158 unsigned long tx_packets; 159 unsigned long rx_bytes; 160 unsigned long tx_bytes; 161 unsigned long rx_errors; 162 unsigned long tx_errors; 163 unsigned long rx_dropped; 164 unsigned long tx_dropped; 165 unsigned long multicast; 166 unsigned long collisions; 167 unsigned long rx_length_errors; 168 unsigned long rx_over_errors; 169 unsigned long rx_crc_errors; 170 unsigned long rx_frame_errors; 171 unsigned long rx_fifo_errors; 172 unsigned long rx_missed_errors; 173 unsigned long tx_aborted_errors; 174 unsigned long tx_carrier_errors; 175 unsigned long tx_fifo_errors; 176 unsigned long tx_heartbeat_errors; 177 unsigned long tx_window_errors; 178 unsigned long rx_compressed; 179 unsigned long tx_compressed; 180 }; 181 182 183 #include <linux/cache.h> 184 #include <linux/skbuff.h> 185 186 #ifdef CONFIG_RPS 187 #include <linux/static_key.h> 188 extern struct static_key rps_needed; 189 #endif 190 191 struct neighbour; 192 struct neigh_parms; 193 struct sk_buff; 194 195 struct netdev_hw_addr { 196 struct list_head list; 197 unsigned char addr[MAX_ADDR_LEN]; 198 unsigned char type; 199 #define NETDEV_HW_ADDR_T_LAN 1 200 #define NETDEV_HW_ADDR_T_SAN 2 201 #define NETDEV_HW_ADDR_T_SLAVE 3 202 #define NETDEV_HW_ADDR_T_UNICAST 4 203 #define NETDEV_HW_ADDR_T_MULTICAST 5 204 bool global_use; 205 int sync_cnt; 206 int refcount; 207 int synced; 208 struct rcu_head rcu_head; 209 }; 210 211 struct netdev_hw_addr_list { 212 struct list_head list; 213 int count; 214 }; 215 216 #define netdev_hw_addr_list_count(l) ((l)->count) 217 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 218 #define netdev_hw_addr_list_for_each(ha, l) \ 219 list_for_each_entry(ha, &(l)->list, list) 220 221 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 222 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 223 #define netdev_for_each_uc_addr(ha, dev) \ 224 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 225 226 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 227 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 228 #define netdev_for_each_mc_addr(ha, dev) \ 229 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 230 231 struct hh_cache { 232 u16 hh_len; 233 u16 __pad; 234 seqlock_t hh_lock; 235 236 /* cached hardware header; allow for machine alignment needs. */ 237 #define HH_DATA_MOD 16 238 #define HH_DATA_OFF(__len) \ 239 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 240 #define HH_DATA_ALIGN(__len) \ 241 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 242 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 243 }; 244 245 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 246 * Alternative is: 247 * dev->hard_header_len ? (dev->hard_header_len + 248 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 249 * 250 * We could use other alignment values, but we must maintain the 251 * relationship HH alignment <= LL alignment. 252 */ 253 #define LL_RESERVED_SPACE(dev) \ 254 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 255 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 256 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 257 258 struct header_ops { 259 int (*create) (struct sk_buff *skb, struct net_device *dev, 260 unsigned short type, const void *daddr, 261 const void *saddr, unsigned int len); 262 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 263 int (*rebuild)(struct sk_buff *skb); 264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 265 void (*cache_update)(struct hh_cache *hh, 266 const struct net_device *dev, 267 const unsigned char *haddr); 268 }; 269 270 /* These flag bits are private to the generic network queueing 271 * layer, they may not be explicitly referenced by any other 272 * code. 273 */ 274 275 enum netdev_state_t { 276 __LINK_STATE_START, 277 __LINK_STATE_PRESENT, 278 __LINK_STATE_NOCARRIER, 279 __LINK_STATE_LINKWATCH_PENDING, 280 __LINK_STATE_DORMANT, 281 }; 282 283 284 /* 285 * This structure holds at boot time configured netdevice settings. They 286 * are then used in the device probing. 287 */ 288 struct netdev_boot_setup { 289 char name[IFNAMSIZ]; 290 struct ifmap map; 291 }; 292 #define NETDEV_BOOT_SETUP_MAX 8 293 294 int __init netdev_boot_setup(char *str); 295 296 /* 297 * Structure for NAPI scheduling similar to tasklet but with weighting 298 */ 299 struct napi_struct { 300 /* The poll_list must only be managed by the entity which 301 * changes the state of the NAPI_STATE_SCHED bit. This means 302 * whoever atomically sets that bit can add this napi_struct 303 * to the per-cpu poll_list, and whoever clears that bit 304 * can remove from the list right before clearing the bit. 305 */ 306 struct list_head poll_list; 307 308 unsigned long state; 309 int weight; 310 unsigned int gro_count; 311 int (*poll)(struct napi_struct *, int); 312 #ifdef CONFIG_NETPOLL 313 spinlock_t poll_lock; 314 int poll_owner; 315 #endif 316 struct net_device *dev; 317 struct sk_buff *gro_list; 318 struct sk_buff *skb; 319 struct list_head dev_list; 320 struct hlist_node napi_hash_node; 321 unsigned int napi_id; 322 }; 323 324 enum { 325 NAPI_STATE_SCHED, /* Poll is scheduled */ 326 NAPI_STATE_DISABLE, /* Disable pending */ 327 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 328 NAPI_STATE_HASHED, /* In NAPI hash */ 329 }; 330 331 enum gro_result { 332 GRO_MERGED, 333 GRO_MERGED_FREE, 334 GRO_HELD, 335 GRO_NORMAL, 336 GRO_DROP, 337 }; 338 typedef enum gro_result gro_result_t; 339 340 /* 341 * enum rx_handler_result - Possible return values for rx_handlers. 342 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 343 * further. 344 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 345 * case skb->dev was changed by rx_handler. 346 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 347 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 348 * 349 * rx_handlers are functions called from inside __netif_receive_skb(), to do 350 * special processing of the skb, prior to delivery to protocol handlers. 351 * 352 * Currently, a net_device can only have a single rx_handler registered. Trying 353 * to register a second rx_handler will return -EBUSY. 354 * 355 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 356 * To unregister a rx_handler on a net_device, use 357 * netdev_rx_handler_unregister(). 358 * 359 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 360 * do with the skb. 361 * 362 * If the rx_handler consumed to skb in some way, it should return 363 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 364 * the skb to be delivered in some other ways. 365 * 366 * If the rx_handler changed skb->dev, to divert the skb to another 367 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 368 * new device will be called if it exists. 369 * 370 * If the rx_handler consider the skb should be ignored, it should return 371 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 372 * are registered on exact device (ptype->dev == skb->dev). 373 * 374 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 375 * delivered, it should return RX_HANDLER_PASS. 376 * 377 * A device without a registered rx_handler will behave as if rx_handler 378 * returned RX_HANDLER_PASS. 379 */ 380 381 enum rx_handler_result { 382 RX_HANDLER_CONSUMED, 383 RX_HANDLER_ANOTHER, 384 RX_HANDLER_EXACT, 385 RX_HANDLER_PASS, 386 }; 387 typedef enum rx_handler_result rx_handler_result_t; 388 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 389 390 void __napi_schedule(struct napi_struct *n); 391 392 static inline bool napi_disable_pending(struct napi_struct *n) 393 { 394 return test_bit(NAPI_STATE_DISABLE, &n->state); 395 } 396 397 /** 398 * napi_schedule_prep - check if napi can be scheduled 399 * @n: napi context 400 * 401 * Test if NAPI routine is already running, and if not mark 402 * it as running. This is used as a condition variable 403 * insure only one NAPI poll instance runs. We also make 404 * sure there is no pending NAPI disable. 405 */ 406 static inline bool napi_schedule_prep(struct napi_struct *n) 407 { 408 return !napi_disable_pending(n) && 409 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 410 } 411 412 /** 413 * napi_schedule - schedule NAPI poll 414 * @n: napi context 415 * 416 * Schedule NAPI poll routine to be called if it is not already 417 * running. 418 */ 419 static inline void napi_schedule(struct napi_struct *n) 420 { 421 if (napi_schedule_prep(n)) 422 __napi_schedule(n); 423 } 424 425 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 426 static inline bool napi_reschedule(struct napi_struct *napi) 427 { 428 if (napi_schedule_prep(napi)) { 429 __napi_schedule(napi); 430 return true; 431 } 432 return false; 433 } 434 435 /** 436 * napi_complete - NAPI processing complete 437 * @n: napi context 438 * 439 * Mark NAPI processing as complete. 440 */ 441 void __napi_complete(struct napi_struct *n); 442 void napi_complete(struct napi_struct *n); 443 444 /** 445 * napi_by_id - lookup a NAPI by napi_id 446 * @napi_id: hashed napi_id 447 * 448 * lookup @napi_id in napi_hash table 449 * must be called under rcu_read_lock() 450 */ 451 struct napi_struct *napi_by_id(unsigned int napi_id); 452 453 /** 454 * napi_hash_add - add a NAPI to global hashtable 455 * @napi: napi context 456 * 457 * generate a new napi_id and store a @napi under it in napi_hash 458 */ 459 void napi_hash_add(struct napi_struct *napi); 460 461 /** 462 * napi_hash_del - remove a NAPI from global table 463 * @napi: napi context 464 * 465 * Warning: caller must observe rcu grace period 466 * before freeing memory containing @napi 467 */ 468 void napi_hash_del(struct napi_struct *napi); 469 470 /** 471 * napi_disable - prevent NAPI from scheduling 472 * @n: napi context 473 * 474 * Stop NAPI from being scheduled on this context. 475 * Waits till any outstanding processing completes. 476 */ 477 static inline void napi_disable(struct napi_struct *n) 478 { 479 might_sleep(); 480 set_bit(NAPI_STATE_DISABLE, &n->state); 481 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 482 msleep(1); 483 clear_bit(NAPI_STATE_DISABLE, &n->state); 484 } 485 486 /** 487 * napi_enable - enable NAPI scheduling 488 * @n: napi context 489 * 490 * Resume NAPI from being scheduled on this context. 491 * Must be paired with napi_disable. 492 */ 493 static inline void napi_enable(struct napi_struct *n) 494 { 495 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 496 smp_mb__before_clear_bit(); 497 clear_bit(NAPI_STATE_SCHED, &n->state); 498 } 499 500 #ifdef CONFIG_SMP 501 /** 502 * napi_synchronize - wait until NAPI is not running 503 * @n: napi context 504 * 505 * Wait until NAPI is done being scheduled on this context. 506 * Waits till any outstanding processing completes but 507 * does not disable future activations. 508 */ 509 static inline void napi_synchronize(const struct napi_struct *n) 510 { 511 while (test_bit(NAPI_STATE_SCHED, &n->state)) 512 msleep(1); 513 } 514 #else 515 # define napi_synchronize(n) barrier() 516 #endif 517 518 enum netdev_queue_state_t { 519 __QUEUE_STATE_DRV_XOFF, 520 __QUEUE_STATE_STACK_XOFF, 521 __QUEUE_STATE_FROZEN, 522 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 523 (1 << __QUEUE_STATE_STACK_XOFF)) 524 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 525 (1 << __QUEUE_STATE_FROZEN)) 526 }; 527 /* 528 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 529 * netif_tx_* functions below are used to manipulate this flag. The 530 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 531 * queue independently. The netif_xmit_*stopped functions below are called 532 * to check if the queue has been stopped by the driver or stack (either 533 * of the XOFF bits are set in the state). Drivers should not need to call 534 * netif_xmit*stopped functions, they should only be using netif_tx_*. 535 */ 536 537 struct netdev_queue { 538 /* 539 * read mostly part 540 */ 541 struct net_device *dev; 542 struct Qdisc *qdisc; 543 struct Qdisc *qdisc_sleeping; 544 #ifdef CONFIG_SYSFS 545 struct kobject kobj; 546 #endif 547 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 548 int numa_node; 549 #endif 550 /* 551 * write mostly part 552 */ 553 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 554 int xmit_lock_owner; 555 /* 556 * please use this field instead of dev->trans_start 557 */ 558 unsigned long trans_start; 559 560 /* 561 * Number of TX timeouts for this queue 562 * (/sys/class/net/DEV/Q/trans_timeout) 563 */ 564 unsigned long trans_timeout; 565 566 unsigned long state; 567 568 #ifdef CONFIG_BQL 569 struct dql dql; 570 #endif 571 } ____cacheline_aligned_in_smp; 572 573 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 574 { 575 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 576 return q->numa_node; 577 #else 578 return NUMA_NO_NODE; 579 #endif 580 } 581 582 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 583 { 584 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 585 q->numa_node = node; 586 #endif 587 } 588 589 #ifdef CONFIG_RPS 590 /* 591 * This structure holds an RPS map which can be of variable length. The 592 * map is an array of CPUs. 593 */ 594 struct rps_map { 595 unsigned int len; 596 struct rcu_head rcu; 597 u16 cpus[0]; 598 }; 599 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 600 601 /* 602 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 603 * tail pointer for that CPU's input queue at the time of last enqueue, and 604 * a hardware filter index. 605 */ 606 struct rps_dev_flow { 607 u16 cpu; 608 u16 filter; 609 unsigned int last_qtail; 610 }; 611 #define RPS_NO_FILTER 0xffff 612 613 /* 614 * The rps_dev_flow_table structure contains a table of flow mappings. 615 */ 616 struct rps_dev_flow_table { 617 unsigned int mask; 618 struct rcu_head rcu; 619 struct rps_dev_flow flows[0]; 620 }; 621 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 622 ((_num) * sizeof(struct rps_dev_flow))) 623 624 /* 625 * The rps_sock_flow_table contains mappings of flows to the last CPU 626 * on which they were processed by the application (set in recvmsg). 627 */ 628 struct rps_sock_flow_table { 629 unsigned int mask; 630 u16 ents[0]; 631 }; 632 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 633 ((_num) * sizeof(u16))) 634 635 #define RPS_NO_CPU 0xffff 636 637 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 638 u32 hash) 639 { 640 if (table && hash) { 641 unsigned int cpu, index = hash & table->mask; 642 643 /* We only give a hint, preemption can change cpu under us */ 644 cpu = raw_smp_processor_id(); 645 646 if (table->ents[index] != cpu) 647 table->ents[index] = cpu; 648 } 649 } 650 651 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 652 u32 hash) 653 { 654 if (table && hash) 655 table->ents[hash & table->mask] = RPS_NO_CPU; 656 } 657 658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 659 660 #ifdef CONFIG_RFS_ACCEL 661 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 662 u16 filter_id); 663 #endif 664 #endif /* CONFIG_RPS */ 665 666 /* This structure contains an instance of an RX queue. */ 667 struct netdev_rx_queue { 668 #ifdef CONFIG_RPS 669 struct rps_map __rcu *rps_map; 670 struct rps_dev_flow_table __rcu *rps_flow_table; 671 #endif 672 struct kobject kobj; 673 struct net_device *dev; 674 } ____cacheline_aligned_in_smp; 675 676 /* 677 * RX queue sysfs structures and functions. 678 */ 679 struct rx_queue_attribute { 680 struct attribute attr; 681 ssize_t (*show)(struct netdev_rx_queue *queue, 682 struct rx_queue_attribute *attr, char *buf); 683 ssize_t (*store)(struct netdev_rx_queue *queue, 684 struct rx_queue_attribute *attr, const char *buf, size_t len); 685 }; 686 687 #ifdef CONFIG_XPS 688 /* 689 * This structure holds an XPS map which can be of variable length. The 690 * map is an array of queues. 691 */ 692 struct xps_map { 693 unsigned int len; 694 unsigned int alloc_len; 695 struct rcu_head rcu; 696 u16 queues[0]; 697 }; 698 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 699 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 700 / sizeof(u16)) 701 702 /* 703 * This structure holds all XPS maps for device. Maps are indexed by CPU. 704 */ 705 struct xps_dev_maps { 706 struct rcu_head rcu; 707 struct xps_map __rcu *cpu_map[0]; 708 }; 709 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 710 (nr_cpu_ids * sizeof(struct xps_map *))) 711 #endif /* CONFIG_XPS */ 712 713 #define TC_MAX_QUEUE 16 714 #define TC_BITMASK 15 715 /* HW offloaded queuing disciplines txq count and offset maps */ 716 struct netdev_tc_txq { 717 u16 count; 718 u16 offset; 719 }; 720 721 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 722 /* 723 * This structure is to hold information about the device 724 * configured to run FCoE protocol stack. 725 */ 726 struct netdev_fcoe_hbainfo { 727 char manufacturer[64]; 728 char serial_number[64]; 729 char hardware_version[64]; 730 char driver_version[64]; 731 char optionrom_version[64]; 732 char firmware_version[64]; 733 char model[256]; 734 char model_description[256]; 735 }; 736 #endif 737 738 #define MAX_PHYS_PORT_ID_LEN 32 739 740 /* This structure holds a unique identifier to identify the 741 * physical port used by a netdevice. 742 */ 743 struct netdev_phys_port_id { 744 unsigned char id[MAX_PHYS_PORT_ID_LEN]; 745 unsigned char id_len; 746 }; 747 748 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 749 struct sk_buff *skb); 750 751 /* 752 * This structure defines the management hooks for network devices. 753 * The following hooks can be defined; unless noted otherwise, they are 754 * optional and can be filled with a null pointer. 755 * 756 * int (*ndo_init)(struct net_device *dev); 757 * This function is called once when network device is registered. 758 * The network device can use this to any late stage initializaton 759 * or semantic validattion. It can fail with an error code which will 760 * be propogated back to register_netdev 761 * 762 * void (*ndo_uninit)(struct net_device *dev); 763 * This function is called when device is unregistered or when registration 764 * fails. It is not called if init fails. 765 * 766 * int (*ndo_open)(struct net_device *dev); 767 * This function is called when network device transistions to the up 768 * state. 769 * 770 * int (*ndo_stop)(struct net_device *dev); 771 * This function is called when network device transistions to the down 772 * state. 773 * 774 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 775 * struct net_device *dev); 776 * Called when a packet needs to be transmitted. 777 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 778 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 779 * Required can not be NULL. 780 * 781 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 782 * void *accel_priv, select_queue_fallback_t fallback); 783 * Called to decide which queue to when device supports multiple 784 * transmit queues. 785 * 786 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 787 * This function is called to allow device receiver to make 788 * changes to configuration when multicast or promiscious is enabled. 789 * 790 * void (*ndo_set_rx_mode)(struct net_device *dev); 791 * This function is called device changes address list filtering. 792 * If driver handles unicast address filtering, it should set 793 * IFF_UNICAST_FLT to its priv_flags. 794 * 795 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 796 * This function is called when the Media Access Control address 797 * needs to be changed. If this interface is not defined, the 798 * mac address can not be changed. 799 * 800 * int (*ndo_validate_addr)(struct net_device *dev); 801 * Test if Media Access Control address is valid for the device. 802 * 803 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 804 * Called when a user request an ioctl which can't be handled by 805 * the generic interface code. If not defined ioctl's return 806 * not supported error code. 807 * 808 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 809 * Used to set network devices bus interface parameters. This interface 810 * is retained for legacy reason, new devices should use the bus 811 * interface (PCI) for low level management. 812 * 813 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 814 * Called when a user wants to change the Maximum Transfer Unit 815 * of a device. If not defined, any request to change MTU will 816 * will return an error. 817 * 818 * void (*ndo_tx_timeout)(struct net_device *dev); 819 * Callback uses when the transmitter has not made any progress 820 * for dev->watchdog ticks. 821 * 822 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 823 * struct rtnl_link_stats64 *storage); 824 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 825 * Called when a user wants to get the network device usage 826 * statistics. Drivers must do one of the following: 827 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 828 * rtnl_link_stats64 structure passed by the caller. 829 * 2. Define @ndo_get_stats to update a net_device_stats structure 830 * (which should normally be dev->stats) and return a pointer to 831 * it. The structure may be changed asynchronously only if each 832 * field is written atomically. 833 * 3. Update dev->stats asynchronously and atomically, and define 834 * neither operation. 835 * 836 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid); 837 * If device support VLAN filtering this function is called when a 838 * VLAN id is registered. 839 * 840 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 841 * If device support VLAN filtering this function is called when a 842 * VLAN id is unregistered. 843 * 844 * void (*ndo_poll_controller)(struct net_device *dev); 845 * 846 * SR-IOV management functions. 847 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 848 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 849 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 850 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 851 * int (*ndo_get_vf_config)(struct net_device *dev, 852 * int vf, struct ifla_vf_info *ivf); 853 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 854 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 855 * struct nlattr *port[]); 856 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 857 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 858 * Called to setup 'tc' number of traffic classes in the net device. This 859 * is always called from the stack with the rtnl lock held and netif tx 860 * queues stopped. This allows the netdevice to perform queue management 861 * safely. 862 * 863 * Fiber Channel over Ethernet (FCoE) offload functions. 864 * int (*ndo_fcoe_enable)(struct net_device *dev); 865 * Called when the FCoE protocol stack wants to start using LLD for FCoE 866 * so the underlying device can perform whatever needed configuration or 867 * initialization to support acceleration of FCoE traffic. 868 * 869 * int (*ndo_fcoe_disable)(struct net_device *dev); 870 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 871 * so the underlying device can perform whatever needed clean-ups to 872 * stop supporting acceleration of FCoE traffic. 873 * 874 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 875 * struct scatterlist *sgl, unsigned int sgc); 876 * Called when the FCoE Initiator wants to initialize an I/O that 877 * is a possible candidate for Direct Data Placement (DDP). The LLD can 878 * perform necessary setup and returns 1 to indicate the device is set up 879 * successfully to perform DDP on this I/O, otherwise this returns 0. 880 * 881 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 882 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 883 * indicated by the FC exchange id 'xid', so the underlying device can 884 * clean up and reuse resources for later DDP requests. 885 * 886 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 887 * struct scatterlist *sgl, unsigned int sgc); 888 * Called when the FCoE Target wants to initialize an I/O that 889 * is a possible candidate for Direct Data Placement (DDP). The LLD can 890 * perform necessary setup and returns 1 to indicate the device is set up 891 * successfully to perform DDP on this I/O, otherwise this returns 0. 892 * 893 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 894 * struct netdev_fcoe_hbainfo *hbainfo); 895 * Called when the FCoE Protocol stack wants information on the underlying 896 * device. This information is utilized by the FCoE protocol stack to 897 * register attributes with Fiber Channel management service as per the 898 * FC-GS Fabric Device Management Information(FDMI) specification. 899 * 900 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 901 * Called when the underlying device wants to override default World Wide 902 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 903 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 904 * protocol stack to use. 905 * 906 * RFS acceleration. 907 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 908 * u16 rxq_index, u32 flow_id); 909 * Set hardware filter for RFS. rxq_index is the target queue index; 910 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 911 * Return the filter ID on success, or a negative error code. 912 * 913 * Slave management functions (for bridge, bonding, etc). 914 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 915 * Called to make another netdev an underling. 916 * 917 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 918 * Called to release previously enslaved netdev. 919 * 920 * Feature/offload setting functions. 921 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 922 * netdev_features_t features); 923 * Adjusts the requested feature flags according to device-specific 924 * constraints, and returns the resulting flags. Must not modify 925 * the device state. 926 * 927 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 928 * Called to update device configuration to new features. Passed 929 * feature set might be less than what was returned by ndo_fix_features()). 930 * Must return >0 or -errno if it changed dev->features itself. 931 * 932 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 933 * struct net_device *dev, 934 * const unsigned char *addr, u16 flags) 935 * Adds an FDB entry to dev for addr. 936 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 937 * struct net_device *dev, 938 * const unsigned char *addr) 939 * Deletes the FDB entry from dev coresponding to addr. 940 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 941 * struct net_device *dev, int idx) 942 * Used to add FDB entries to dump requests. Implementers should add 943 * entries to skb and update idx with the number of entries. 944 * 945 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 946 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 947 * struct net_device *dev, u32 filter_mask) 948 * 949 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 950 * Called to change device carrier. Soft-devices (like dummy, team, etc) 951 * which do not represent real hardware may define this to allow their 952 * userspace components to manage their virtual carrier state. Devices 953 * that determine carrier state from physical hardware properties (eg 954 * network cables) or protocol-dependent mechanisms (eg 955 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 956 * 957 * int (*ndo_get_phys_port_id)(struct net_device *dev, 958 * struct netdev_phys_port_id *ppid); 959 * Called to get ID of physical port of this device. If driver does 960 * not implement this, it is assumed that the hw is not able to have 961 * multiple net devices on single physical port. 962 * 963 * void (*ndo_add_vxlan_port)(struct net_device *dev, 964 * sa_family_t sa_family, __be16 port); 965 * Called by vxlan to notiy a driver about the UDP port and socket 966 * address family that vxlan is listnening to. It is called only when 967 * a new port starts listening. The operation is protected by the 968 * vxlan_net->sock_lock. 969 * 970 * void (*ndo_del_vxlan_port)(struct net_device *dev, 971 * sa_family_t sa_family, __be16 port); 972 * Called by vxlan to notify the driver about a UDP port and socket 973 * address family that vxlan is not listening to anymore. The operation 974 * is protected by the vxlan_net->sock_lock. 975 * 976 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 977 * struct net_device *dev) 978 * Called by upper layer devices to accelerate switching or other 979 * station functionality into hardware. 'pdev is the lowerdev 980 * to use for the offload and 'dev' is the net device that will 981 * back the offload. Returns a pointer to the private structure 982 * the upper layer will maintain. 983 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 984 * Called by upper layer device to delete the station created 985 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 986 * the station and priv is the structure returned by the add 987 * operation. 988 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 989 * struct net_device *dev, 990 * void *priv); 991 * Callback to use for xmit over the accelerated station. This 992 * is used in place of ndo_start_xmit on accelerated net 993 * devices. 994 */ 995 struct net_device_ops { 996 int (*ndo_init)(struct net_device *dev); 997 void (*ndo_uninit)(struct net_device *dev); 998 int (*ndo_open)(struct net_device *dev); 999 int (*ndo_stop)(struct net_device *dev); 1000 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1001 struct net_device *dev); 1002 u16 (*ndo_select_queue)(struct net_device *dev, 1003 struct sk_buff *skb, 1004 void *accel_priv, 1005 select_queue_fallback_t fallback); 1006 void (*ndo_change_rx_flags)(struct net_device *dev, 1007 int flags); 1008 void (*ndo_set_rx_mode)(struct net_device *dev); 1009 int (*ndo_set_mac_address)(struct net_device *dev, 1010 void *addr); 1011 int (*ndo_validate_addr)(struct net_device *dev); 1012 int (*ndo_do_ioctl)(struct net_device *dev, 1013 struct ifreq *ifr, int cmd); 1014 int (*ndo_set_config)(struct net_device *dev, 1015 struct ifmap *map); 1016 int (*ndo_change_mtu)(struct net_device *dev, 1017 int new_mtu); 1018 int (*ndo_neigh_setup)(struct net_device *dev, 1019 struct neigh_parms *); 1020 void (*ndo_tx_timeout) (struct net_device *dev); 1021 1022 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1023 struct rtnl_link_stats64 *storage); 1024 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1025 1026 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1027 __be16 proto, u16 vid); 1028 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1029 __be16 proto, u16 vid); 1030 #ifdef CONFIG_NET_POLL_CONTROLLER 1031 void (*ndo_poll_controller)(struct net_device *dev); 1032 int (*ndo_netpoll_setup)(struct net_device *dev, 1033 struct netpoll_info *info); 1034 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1035 #endif 1036 #ifdef CONFIG_NET_RX_BUSY_POLL 1037 int (*ndo_busy_poll)(struct napi_struct *dev); 1038 #endif 1039 int (*ndo_set_vf_mac)(struct net_device *dev, 1040 int queue, u8 *mac); 1041 int (*ndo_set_vf_vlan)(struct net_device *dev, 1042 int queue, u16 vlan, u8 qos); 1043 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 1044 int vf, int rate); 1045 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1046 int vf, bool setting); 1047 int (*ndo_get_vf_config)(struct net_device *dev, 1048 int vf, 1049 struct ifla_vf_info *ivf); 1050 int (*ndo_set_vf_link_state)(struct net_device *dev, 1051 int vf, int link_state); 1052 int (*ndo_set_vf_port)(struct net_device *dev, 1053 int vf, 1054 struct nlattr *port[]); 1055 int (*ndo_get_vf_port)(struct net_device *dev, 1056 int vf, struct sk_buff *skb); 1057 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1058 #if IS_ENABLED(CONFIG_FCOE) 1059 int (*ndo_fcoe_enable)(struct net_device *dev); 1060 int (*ndo_fcoe_disable)(struct net_device *dev); 1061 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1062 u16 xid, 1063 struct scatterlist *sgl, 1064 unsigned int sgc); 1065 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1066 u16 xid); 1067 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1068 u16 xid, 1069 struct scatterlist *sgl, 1070 unsigned int sgc); 1071 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1072 struct netdev_fcoe_hbainfo *hbainfo); 1073 #endif 1074 1075 #if IS_ENABLED(CONFIG_LIBFCOE) 1076 #define NETDEV_FCOE_WWNN 0 1077 #define NETDEV_FCOE_WWPN 1 1078 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1079 u64 *wwn, int type); 1080 #endif 1081 1082 #ifdef CONFIG_RFS_ACCEL 1083 int (*ndo_rx_flow_steer)(struct net_device *dev, 1084 const struct sk_buff *skb, 1085 u16 rxq_index, 1086 u32 flow_id); 1087 #endif 1088 int (*ndo_add_slave)(struct net_device *dev, 1089 struct net_device *slave_dev); 1090 int (*ndo_del_slave)(struct net_device *dev, 1091 struct net_device *slave_dev); 1092 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1093 netdev_features_t features); 1094 int (*ndo_set_features)(struct net_device *dev, 1095 netdev_features_t features); 1096 int (*ndo_neigh_construct)(struct neighbour *n); 1097 void (*ndo_neigh_destroy)(struct neighbour *n); 1098 1099 int (*ndo_fdb_add)(struct ndmsg *ndm, 1100 struct nlattr *tb[], 1101 struct net_device *dev, 1102 const unsigned char *addr, 1103 u16 flags); 1104 int (*ndo_fdb_del)(struct ndmsg *ndm, 1105 struct nlattr *tb[], 1106 struct net_device *dev, 1107 const unsigned char *addr); 1108 int (*ndo_fdb_dump)(struct sk_buff *skb, 1109 struct netlink_callback *cb, 1110 struct net_device *dev, 1111 int idx); 1112 1113 int (*ndo_bridge_setlink)(struct net_device *dev, 1114 struct nlmsghdr *nlh); 1115 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1116 u32 pid, u32 seq, 1117 struct net_device *dev, 1118 u32 filter_mask); 1119 int (*ndo_bridge_dellink)(struct net_device *dev, 1120 struct nlmsghdr *nlh); 1121 int (*ndo_change_carrier)(struct net_device *dev, 1122 bool new_carrier); 1123 int (*ndo_get_phys_port_id)(struct net_device *dev, 1124 struct netdev_phys_port_id *ppid); 1125 void (*ndo_add_vxlan_port)(struct net_device *dev, 1126 sa_family_t sa_family, 1127 __be16 port); 1128 void (*ndo_del_vxlan_port)(struct net_device *dev, 1129 sa_family_t sa_family, 1130 __be16 port); 1131 1132 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1133 struct net_device *dev); 1134 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1135 void *priv); 1136 1137 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1138 struct net_device *dev, 1139 void *priv); 1140 }; 1141 1142 /** 1143 * enum net_device_priv_flags - &struct net_device priv_flags 1144 * 1145 * These are the &struct net_device, they are only set internally 1146 * by drivers and used in the kernel. These flags are invisible to 1147 * userspace, this means that the order of these flags can change 1148 * during any kernel release. 1149 * 1150 * You should have a pretty good reason to be extending these flags. 1151 * 1152 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1153 * @IFF_EBRIDGE: Ethernet bridging device 1154 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active 1155 * @IFF_MASTER_8023AD: bonding master, 802.3ad 1156 * @IFF_MASTER_ALB: bonding master, balance-alb 1157 * @IFF_BONDING: bonding master or slave 1158 * @IFF_SLAVE_NEEDARP: need ARPs for validation 1159 * @IFF_ISATAP: ISATAP interface (RFC4214) 1160 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use 1161 * @IFF_WAN_HDLC: WAN HDLC device 1162 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1163 * release skb->dst 1164 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1165 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1166 * @IFF_MACVLAN_PORT: device used as macvlan port 1167 * @IFF_BRIDGE_PORT: device used as bridge port 1168 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1169 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1170 * @IFF_UNICAST_FLT: Supports unicast filtering 1171 * @IFF_TEAM_PORT: device used as team port 1172 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1173 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1174 * change when it's running 1175 * @IFF_MACVLAN: Macvlan device 1176 */ 1177 enum netdev_priv_flags { 1178 IFF_802_1Q_VLAN = 1<<0, 1179 IFF_EBRIDGE = 1<<1, 1180 IFF_SLAVE_INACTIVE = 1<<2, 1181 IFF_MASTER_8023AD = 1<<3, 1182 IFF_MASTER_ALB = 1<<4, 1183 IFF_BONDING = 1<<5, 1184 IFF_SLAVE_NEEDARP = 1<<6, 1185 IFF_ISATAP = 1<<7, 1186 IFF_MASTER_ARPMON = 1<<8, 1187 IFF_WAN_HDLC = 1<<9, 1188 IFF_XMIT_DST_RELEASE = 1<<10, 1189 IFF_DONT_BRIDGE = 1<<11, 1190 IFF_DISABLE_NETPOLL = 1<<12, 1191 IFF_MACVLAN_PORT = 1<<13, 1192 IFF_BRIDGE_PORT = 1<<14, 1193 IFF_OVS_DATAPATH = 1<<15, 1194 IFF_TX_SKB_SHARING = 1<<16, 1195 IFF_UNICAST_FLT = 1<<17, 1196 IFF_TEAM_PORT = 1<<18, 1197 IFF_SUPP_NOFCS = 1<<19, 1198 IFF_LIVE_ADDR_CHANGE = 1<<20, 1199 IFF_MACVLAN = 1<<21, 1200 }; 1201 1202 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1203 #define IFF_EBRIDGE IFF_EBRIDGE 1204 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE 1205 #define IFF_MASTER_8023AD IFF_MASTER_8023AD 1206 #define IFF_MASTER_ALB IFF_MASTER_ALB 1207 #define IFF_BONDING IFF_BONDING 1208 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP 1209 #define IFF_ISATAP IFF_ISATAP 1210 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON 1211 #define IFF_WAN_HDLC IFF_WAN_HDLC 1212 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1213 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1214 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1215 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1216 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1217 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1218 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1219 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1220 #define IFF_TEAM_PORT IFF_TEAM_PORT 1221 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1222 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1223 #define IFF_MACVLAN IFF_MACVLAN 1224 1225 /* 1226 * The DEVICE structure. 1227 * Actually, this whole structure is a big mistake. It mixes I/O 1228 * data with strictly "high-level" data, and it has to know about 1229 * almost every data structure used in the INET module. 1230 * 1231 * FIXME: cleanup struct net_device such that network protocol info 1232 * moves out. 1233 */ 1234 1235 struct net_device { 1236 1237 /* 1238 * This is the first field of the "visible" part of this structure 1239 * (i.e. as seen by users in the "Space.c" file). It is the name 1240 * of the interface. 1241 */ 1242 char name[IFNAMSIZ]; 1243 1244 /* device name hash chain, please keep it close to name[] */ 1245 struct hlist_node name_hlist; 1246 1247 /* snmp alias */ 1248 char *ifalias; 1249 1250 /* 1251 * I/O specific fields 1252 * FIXME: Merge these and struct ifmap into one 1253 */ 1254 unsigned long mem_end; /* shared mem end */ 1255 unsigned long mem_start; /* shared mem start */ 1256 unsigned long base_addr; /* device I/O address */ 1257 int irq; /* device IRQ number */ 1258 1259 /* 1260 * Some hardware also needs these fields, but they are not 1261 * part of the usual set specified in Space.c. 1262 */ 1263 1264 unsigned long state; 1265 1266 struct list_head dev_list; 1267 struct list_head napi_list; 1268 struct list_head unreg_list; 1269 struct list_head close_list; 1270 1271 /* directly linked devices, like slaves for bonding */ 1272 struct { 1273 struct list_head upper; 1274 struct list_head lower; 1275 } adj_list; 1276 1277 /* all linked devices, *including* neighbours */ 1278 struct { 1279 struct list_head upper; 1280 struct list_head lower; 1281 } all_adj_list; 1282 1283 1284 /* currently active device features */ 1285 netdev_features_t features; 1286 /* user-changeable features */ 1287 netdev_features_t hw_features; 1288 /* user-requested features */ 1289 netdev_features_t wanted_features; 1290 /* mask of features inheritable by VLAN devices */ 1291 netdev_features_t vlan_features; 1292 /* mask of features inherited by encapsulating devices 1293 * This field indicates what encapsulation offloads 1294 * the hardware is capable of doing, and drivers will 1295 * need to set them appropriately. 1296 */ 1297 netdev_features_t hw_enc_features; 1298 /* mask of fetures inheritable by MPLS */ 1299 netdev_features_t mpls_features; 1300 1301 /* Interface index. Unique device identifier */ 1302 int ifindex; 1303 int iflink; 1304 1305 struct net_device_stats stats; 1306 1307 /* dropped packets by core network, Do not use this in drivers */ 1308 atomic_long_t rx_dropped; 1309 atomic_long_t tx_dropped; 1310 1311 /* Stats to monitor carrier on<->off transitions */ 1312 atomic_t carrier_changes; 1313 1314 #ifdef CONFIG_WIRELESS_EXT 1315 /* List of functions to handle Wireless Extensions (instead of ioctl). 1316 * See <net/iw_handler.h> for details. Jean II */ 1317 const struct iw_handler_def * wireless_handlers; 1318 /* Instance data managed by the core of Wireless Extensions. */ 1319 struct iw_public_data * wireless_data; 1320 #endif 1321 /* Management operations */ 1322 const struct net_device_ops *netdev_ops; 1323 const struct ethtool_ops *ethtool_ops; 1324 const struct forwarding_accel_ops *fwd_ops; 1325 1326 /* Hardware header description */ 1327 const struct header_ops *header_ops; 1328 1329 unsigned int flags; /* interface flags (a la BSD) */ 1330 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1331 * See if.h for definitions. */ 1332 unsigned short gflags; 1333 unsigned short padded; /* How much padding added by alloc_netdev() */ 1334 1335 unsigned char operstate; /* RFC2863 operstate */ 1336 unsigned char link_mode; /* mapping policy to operstate */ 1337 1338 unsigned char if_port; /* Selectable AUI, TP,..*/ 1339 unsigned char dma; /* DMA channel */ 1340 1341 unsigned int mtu; /* interface MTU value */ 1342 unsigned short type; /* interface hardware type */ 1343 unsigned short hard_header_len; /* hardware hdr length */ 1344 1345 /* extra head- and tailroom the hardware may need, but not in all cases 1346 * can this be guaranteed, especially tailroom. Some cases also use 1347 * LL_MAX_HEADER instead to allocate the skb. 1348 */ 1349 unsigned short needed_headroom; 1350 unsigned short needed_tailroom; 1351 1352 /* Interface address info. */ 1353 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1354 unsigned char addr_assign_type; /* hw address assignment type */ 1355 unsigned char addr_len; /* hardware address length */ 1356 unsigned short neigh_priv_len; 1357 unsigned short dev_id; /* Used to differentiate devices 1358 * that share the same link 1359 * layer address 1360 */ 1361 unsigned short dev_port; /* Used to differentiate 1362 * devices that share the same 1363 * function 1364 */ 1365 spinlock_t addr_list_lock; 1366 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1367 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1368 struct netdev_hw_addr_list dev_addrs; /* list of device 1369 * hw addresses 1370 */ 1371 #ifdef CONFIG_SYSFS 1372 struct kset *queues_kset; 1373 #endif 1374 1375 bool uc_promisc; 1376 unsigned int promiscuity; 1377 unsigned int allmulti; 1378 1379 1380 /* Protocol specific pointers */ 1381 1382 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1383 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1384 #endif 1385 #if IS_ENABLED(CONFIG_NET_DSA) 1386 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1387 #endif 1388 #if IS_ENABLED(CONFIG_TIPC) 1389 struct tipc_bearer __rcu *tipc_ptr; /* TIPC specific data */ 1390 #endif 1391 void *atalk_ptr; /* AppleTalk link */ 1392 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1393 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1394 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1395 void *ax25_ptr; /* AX.25 specific data */ 1396 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1397 assign before registering */ 1398 1399 /* 1400 * Cache lines mostly used on receive path (including eth_type_trans()) 1401 */ 1402 unsigned long last_rx; /* Time of last Rx */ 1403 1404 /* Interface address info used in eth_type_trans() */ 1405 unsigned char *dev_addr; /* hw address, (before bcast 1406 because most packets are 1407 unicast) */ 1408 1409 1410 #ifdef CONFIG_SYSFS 1411 struct netdev_rx_queue *_rx; 1412 1413 /* Number of RX queues allocated at register_netdev() time */ 1414 unsigned int num_rx_queues; 1415 1416 /* Number of RX queues currently active in device */ 1417 unsigned int real_num_rx_queues; 1418 1419 #endif 1420 1421 rx_handler_func_t __rcu *rx_handler; 1422 void __rcu *rx_handler_data; 1423 1424 struct netdev_queue __rcu *ingress_queue; 1425 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1426 1427 1428 /* 1429 * Cache lines mostly used on transmit path 1430 */ 1431 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1432 1433 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1434 unsigned int num_tx_queues; 1435 1436 /* Number of TX queues currently active in device */ 1437 unsigned int real_num_tx_queues; 1438 1439 /* root qdisc from userspace point of view */ 1440 struct Qdisc *qdisc; 1441 1442 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1443 spinlock_t tx_global_lock; 1444 1445 #ifdef CONFIG_XPS 1446 struct xps_dev_maps __rcu *xps_maps; 1447 #endif 1448 #ifdef CONFIG_RFS_ACCEL 1449 /* CPU reverse-mapping for RX completion interrupts, indexed 1450 * by RX queue number. Assigned by driver. This must only be 1451 * set if the ndo_rx_flow_steer operation is defined. */ 1452 struct cpu_rmap *rx_cpu_rmap; 1453 #endif 1454 1455 /* These may be needed for future network-power-down code. */ 1456 1457 /* 1458 * trans_start here is expensive for high speed devices on SMP, 1459 * please use netdev_queue->trans_start instead. 1460 */ 1461 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1462 1463 int watchdog_timeo; /* used by dev_watchdog() */ 1464 struct timer_list watchdog_timer; 1465 1466 /* Number of references to this device */ 1467 int __percpu *pcpu_refcnt; 1468 1469 /* delayed register/unregister */ 1470 struct list_head todo_list; 1471 /* device index hash chain */ 1472 struct hlist_node index_hlist; 1473 1474 struct list_head link_watch_list; 1475 1476 /* register/unregister state machine */ 1477 enum { NETREG_UNINITIALIZED=0, 1478 NETREG_REGISTERED, /* completed register_netdevice */ 1479 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1480 NETREG_UNREGISTERED, /* completed unregister todo */ 1481 NETREG_RELEASED, /* called free_netdev */ 1482 NETREG_DUMMY, /* dummy device for NAPI poll */ 1483 } reg_state:8; 1484 1485 bool dismantle; /* device is going do be freed */ 1486 1487 enum { 1488 RTNL_LINK_INITIALIZED, 1489 RTNL_LINK_INITIALIZING, 1490 } rtnl_link_state:16; 1491 1492 /* Called from unregister, can be used to call free_netdev */ 1493 void (*destructor)(struct net_device *dev); 1494 1495 #ifdef CONFIG_NETPOLL 1496 struct netpoll_info __rcu *npinfo; 1497 #endif 1498 1499 #ifdef CONFIG_NET_NS 1500 /* Network namespace this network device is inside */ 1501 struct net *nd_net; 1502 #endif 1503 1504 /* mid-layer private */ 1505 union { 1506 void *ml_priv; 1507 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1508 struct pcpu_sw_netstats __percpu *tstats; 1509 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1510 struct pcpu_vstats __percpu *vstats; /* veth stats */ 1511 }; 1512 /* GARP */ 1513 struct garp_port __rcu *garp_port; 1514 /* MRP */ 1515 struct mrp_port __rcu *mrp_port; 1516 1517 /* class/net/name entry */ 1518 struct device dev; 1519 /* space for optional device, statistics, and wireless sysfs groups */ 1520 const struct attribute_group *sysfs_groups[4]; 1521 /* space for optional per-rx queue attributes */ 1522 const struct attribute_group *sysfs_rx_queue_group; 1523 1524 /* rtnetlink link ops */ 1525 const struct rtnl_link_ops *rtnl_link_ops; 1526 1527 /* for setting kernel sock attribute on TCP connection setup */ 1528 #define GSO_MAX_SIZE 65536 1529 unsigned int gso_max_size; 1530 #define GSO_MAX_SEGS 65535 1531 u16 gso_max_segs; 1532 1533 #ifdef CONFIG_DCB 1534 /* Data Center Bridging netlink ops */ 1535 const struct dcbnl_rtnl_ops *dcbnl_ops; 1536 #endif 1537 u8 num_tc; 1538 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1539 u8 prio_tc_map[TC_BITMASK + 1]; 1540 1541 #if IS_ENABLED(CONFIG_FCOE) 1542 /* max exchange id for FCoE LRO by ddp */ 1543 unsigned int fcoe_ddp_xid; 1544 #endif 1545 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1546 struct netprio_map __rcu *priomap; 1547 #endif 1548 /* phy device may attach itself for hardware timestamping */ 1549 struct phy_device *phydev; 1550 1551 struct lock_class_key *qdisc_tx_busylock; 1552 1553 /* group the device belongs to */ 1554 int group; 1555 1556 struct pm_qos_request pm_qos_req; 1557 }; 1558 #define to_net_dev(d) container_of(d, struct net_device, dev) 1559 1560 #define NETDEV_ALIGN 32 1561 1562 static inline 1563 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1564 { 1565 return dev->prio_tc_map[prio & TC_BITMASK]; 1566 } 1567 1568 static inline 1569 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1570 { 1571 if (tc >= dev->num_tc) 1572 return -EINVAL; 1573 1574 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1575 return 0; 1576 } 1577 1578 static inline 1579 void netdev_reset_tc(struct net_device *dev) 1580 { 1581 dev->num_tc = 0; 1582 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1583 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1584 } 1585 1586 static inline 1587 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1588 { 1589 if (tc >= dev->num_tc) 1590 return -EINVAL; 1591 1592 dev->tc_to_txq[tc].count = count; 1593 dev->tc_to_txq[tc].offset = offset; 1594 return 0; 1595 } 1596 1597 static inline 1598 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1599 { 1600 if (num_tc > TC_MAX_QUEUE) 1601 return -EINVAL; 1602 1603 dev->num_tc = num_tc; 1604 return 0; 1605 } 1606 1607 static inline 1608 int netdev_get_num_tc(struct net_device *dev) 1609 { 1610 return dev->num_tc; 1611 } 1612 1613 static inline 1614 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1615 unsigned int index) 1616 { 1617 return &dev->_tx[index]; 1618 } 1619 1620 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1621 void (*f)(struct net_device *, 1622 struct netdev_queue *, 1623 void *), 1624 void *arg) 1625 { 1626 unsigned int i; 1627 1628 for (i = 0; i < dev->num_tx_queues; i++) 1629 f(dev, &dev->_tx[i], arg); 1630 } 1631 1632 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1633 struct sk_buff *skb, 1634 void *accel_priv); 1635 1636 /* 1637 * Net namespace inlines 1638 */ 1639 static inline 1640 struct net *dev_net(const struct net_device *dev) 1641 { 1642 return read_pnet(&dev->nd_net); 1643 } 1644 1645 static inline 1646 void dev_net_set(struct net_device *dev, struct net *net) 1647 { 1648 #ifdef CONFIG_NET_NS 1649 release_net(dev->nd_net); 1650 dev->nd_net = hold_net(net); 1651 #endif 1652 } 1653 1654 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1655 { 1656 #ifdef CONFIG_NET_DSA_TAG_DSA 1657 if (dev->dsa_ptr != NULL) 1658 return dsa_uses_dsa_tags(dev->dsa_ptr); 1659 #endif 1660 1661 return 0; 1662 } 1663 1664 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1665 { 1666 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1667 if (dev->dsa_ptr != NULL) 1668 return dsa_uses_trailer_tags(dev->dsa_ptr); 1669 #endif 1670 1671 return 0; 1672 } 1673 1674 /** 1675 * netdev_priv - access network device private data 1676 * @dev: network device 1677 * 1678 * Get network device private data 1679 */ 1680 static inline void *netdev_priv(const struct net_device *dev) 1681 { 1682 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1683 } 1684 1685 /* Set the sysfs physical device reference for the network logical device 1686 * if set prior to registration will cause a symlink during initialization. 1687 */ 1688 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1689 1690 /* Set the sysfs device type for the network logical device to allow 1691 * fine-grained identification of different network device types. For 1692 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1693 */ 1694 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1695 1696 /* Default NAPI poll() weight 1697 * Device drivers are strongly advised to not use bigger value 1698 */ 1699 #define NAPI_POLL_WEIGHT 64 1700 1701 /** 1702 * netif_napi_add - initialize a napi context 1703 * @dev: network device 1704 * @napi: napi context 1705 * @poll: polling function 1706 * @weight: default weight 1707 * 1708 * netif_napi_add() must be used to initialize a napi context prior to calling 1709 * *any* of the other napi related functions. 1710 */ 1711 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1712 int (*poll)(struct napi_struct *, int), int weight); 1713 1714 /** 1715 * netif_napi_del - remove a napi context 1716 * @napi: napi context 1717 * 1718 * netif_napi_del() removes a napi context from the network device napi list 1719 */ 1720 void netif_napi_del(struct napi_struct *napi); 1721 1722 struct napi_gro_cb { 1723 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1724 void *frag0; 1725 1726 /* Length of frag0. */ 1727 unsigned int frag0_len; 1728 1729 /* This indicates where we are processing relative to skb->data. */ 1730 int data_offset; 1731 1732 /* This is non-zero if the packet cannot be merged with the new skb. */ 1733 u16 flush; 1734 1735 /* Save the IP ID here and check when we get to the transport layer */ 1736 u16 flush_id; 1737 1738 /* Number of segments aggregated. */ 1739 u16 count; 1740 1741 /* This is non-zero if the packet may be of the same flow. */ 1742 u8 same_flow; 1743 1744 /* Free the skb? */ 1745 u8 free; 1746 #define NAPI_GRO_FREE 1 1747 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1748 1749 /* jiffies when first packet was created/queued */ 1750 unsigned long age; 1751 1752 /* Used in ipv6_gro_receive() */ 1753 u16 proto; 1754 1755 /* Used in udp_gro_receive */ 1756 u16 udp_mark; 1757 1758 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1759 __wsum csum; 1760 1761 /* used in skb_gro_receive() slow path */ 1762 struct sk_buff *last; 1763 }; 1764 1765 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1766 1767 struct packet_type { 1768 __be16 type; /* This is really htons(ether_type). */ 1769 struct net_device *dev; /* NULL is wildcarded here */ 1770 int (*func) (struct sk_buff *, 1771 struct net_device *, 1772 struct packet_type *, 1773 struct net_device *); 1774 bool (*id_match)(struct packet_type *ptype, 1775 struct sock *sk); 1776 void *af_packet_priv; 1777 struct list_head list; 1778 }; 1779 1780 struct offload_callbacks { 1781 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1782 netdev_features_t features); 1783 int (*gso_send_check)(struct sk_buff *skb); 1784 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1785 struct sk_buff *skb); 1786 int (*gro_complete)(struct sk_buff *skb, int nhoff); 1787 }; 1788 1789 struct packet_offload { 1790 __be16 type; /* This is really htons(ether_type). */ 1791 struct offload_callbacks callbacks; 1792 struct list_head list; 1793 }; 1794 1795 struct udp_offload { 1796 __be16 port; 1797 struct offload_callbacks callbacks; 1798 }; 1799 1800 /* often modified stats are per cpu, other are shared (netdev->stats) */ 1801 struct pcpu_sw_netstats { 1802 u64 rx_packets; 1803 u64 rx_bytes; 1804 u64 tx_packets; 1805 u64 tx_bytes; 1806 struct u64_stats_sync syncp; 1807 }; 1808 1809 #define netdev_alloc_pcpu_stats(type) \ 1810 ({ \ 1811 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ 1812 if (pcpu_stats) { \ 1813 int i; \ 1814 for_each_possible_cpu(i) { \ 1815 typeof(type) *stat; \ 1816 stat = per_cpu_ptr(pcpu_stats, i); \ 1817 u64_stats_init(&stat->syncp); \ 1818 } \ 1819 } \ 1820 pcpu_stats; \ 1821 }) 1822 1823 #include <linux/notifier.h> 1824 1825 /* netdevice notifier chain. Please remember to update the rtnetlink 1826 * notification exclusion list in rtnetlink_event() when adding new 1827 * types. 1828 */ 1829 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1830 #define NETDEV_DOWN 0x0002 1831 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1832 detected a hardware crash and restarted 1833 - we can use this eg to kick tcp sessions 1834 once done */ 1835 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1836 #define NETDEV_REGISTER 0x0005 1837 #define NETDEV_UNREGISTER 0x0006 1838 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 1839 #define NETDEV_CHANGEADDR 0x0008 1840 #define NETDEV_GOING_DOWN 0x0009 1841 #define NETDEV_CHANGENAME 0x000A 1842 #define NETDEV_FEAT_CHANGE 0x000B 1843 #define NETDEV_BONDING_FAILOVER 0x000C 1844 #define NETDEV_PRE_UP 0x000D 1845 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1846 #define NETDEV_POST_TYPE_CHANGE 0x000F 1847 #define NETDEV_POST_INIT 0x0010 1848 #define NETDEV_UNREGISTER_FINAL 0x0011 1849 #define NETDEV_RELEASE 0x0012 1850 #define NETDEV_NOTIFY_PEERS 0x0013 1851 #define NETDEV_JOIN 0x0014 1852 #define NETDEV_CHANGEUPPER 0x0015 1853 #define NETDEV_RESEND_IGMP 0x0016 1854 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 1855 1856 int register_netdevice_notifier(struct notifier_block *nb); 1857 int unregister_netdevice_notifier(struct notifier_block *nb); 1858 1859 struct netdev_notifier_info { 1860 struct net_device *dev; 1861 }; 1862 1863 struct netdev_notifier_change_info { 1864 struct netdev_notifier_info info; /* must be first */ 1865 unsigned int flags_changed; 1866 }; 1867 1868 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 1869 struct net_device *dev) 1870 { 1871 info->dev = dev; 1872 } 1873 1874 static inline struct net_device * 1875 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 1876 { 1877 return info->dev; 1878 } 1879 1880 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1881 1882 1883 extern rwlock_t dev_base_lock; /* Device list lock */ 1884 1885 #define for_each_netdev(net, d) \ 1886 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1887 #define for_each_netdev_reverse(net, d) \ 1888 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1889 #define for_each_netdev_rcu(net, d) \ 1890 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1891 #define for_each_netdev_safe(net, d, n) \ 1892 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1893 #define for_each_netdev_continue(net, d) \ 1894 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1895 #define for_each_netdev_continue_rcu(net, d) \ 1896 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1897 #define for_each_netdev_in_bond_rcu(bond, slave) \ 1898 for_each_netdev_rcu(&init_net, slave) \ 1899 if (netdev_master_upper_dev_get_rcu(slave) == bond) 1900 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1901 1902 static inline struct net_device *next_net_device(struct net_device *dev) 1903 { 1904 struct list_head *lh; 1905 struct net *net; 1906 1907 net = dev_net(dev); 1908 lh = dev->dev_list.next; 1909 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1910 } 1911 1912 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1913 { 1914 struct list_head *lh; 1915 struct net *net; 1916 1917 net = dev_net(dev); 1918 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1919 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1920 } 1921 1922 static inline struct net_device *first_net_device(struct net *net) 1923 { 1924 return list_empty(&net->dev_base_head) ? NULL : 1925 net_device_entry(net->dev_base_head.next); 1926 } 1927 1928 static inline struct net_device *first_net_device_rcu(struct net *net) 1929 { 1930 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1931 1932 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1933 } 1934 1935 int netdev_boot_setup_check(struct net_device *dev); 1936 unsigned long netdev_boot_base(const char *prefix, int unit); 1937 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1938 const char *hwaddr); 1939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1940 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1941 void dev_add_pack(struct packet_type *pt); 1942 void dev_remove_pack(struct packet_type *pt); 1943 void __dev_remove_pack(struct packet_type *pt); 1944 void dev_add_offload(struct packet_offload *po); 1945 void dev_remove_offload(struct packet_offload *po); 1946 1947 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1948 unsigned short mask); 1949 struct net_device *dev_get_by_name(struct net *net, const char *name); 1950 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1951 struct net_device *__dev_get_by_name(struct net *net, const char *name); 1952 int dev_alloc_name(struct net_device *dev, const char *name); 1953 int dev_open(struct net_device *dev); 1954 int dev_close(struct net_device *dev); 1955 void dev_disable_lro(struct net_device *dev); 1956 int dev_loopback_xmit(struct sk_buff *newskb); 1957 int dev_queue_xmit(struct sk_buff *skb); 1958 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 1959 int register_netdevice(struct net_device *dev); 1960 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 1961 void unregister_netdevice_many(struct list_head *head); 1962 static inline void unregister_netdevice(struct net_device *dev) 1963 { 1964 unregister_netdevice_queue(dev, NULL); 1965 } 1966 1967 int netdev_refcnt_read(const struct net_device *dev); 1968 void free_netdev(struct net_device *dev); 1969 void netdev_freemem(struct net_device *dev); 1970 void synchronize_net(void); 1971 int init_dummy_netdev(struct net_device *dev); 1972 1973 struct net_device *dev_get_by_index(struct net *net, int ifindex); 1974 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1975 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1976 int netdev_get_name(struct net *net, char *name, int ifindex); 1977 int dev_restart(struct net_device *dev); 1978 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 1979 1980 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1981 { 1982 return NAPI_GRO_CB(skb)->data_offset; 1983 } 1984 1985 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1986 { 1987 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1988 } 1989 1990 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1991 { 1992 NAPI_GRO_CB(skb)->data_offset += len; 1993 } 1994 1995 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1996 unsigned int offset) 1997 { 1998 return NAPI_GRO_CB(skb)->frag0 + offset; 1999 } 2000 2001 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2002 { 2003 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2004 } 2005 2006 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2007 unsigned int offset) 2008 { 2009 if (!pskb_may_pull(skb, hlen)) 2010 return NULL; 2011 2012 NAPI_GRO_CB(skb)->frag0 = NULL; 2013 NAPI_GRO_CB(skb)->frag0_len = 0; 2014 return skb->data + offset; 2015 } 2016 2017 static inline void *skb_gro_network_header(struct sk_buff *skb) 2018 { 2019 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2020 skb_network_offset(skb); 2021 } 2022 2023 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2024 const void *start, unsigned int len) 2025 { 2026 if (skb->ip_summed == CHECKSUM_COMPLETE) 2027 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2028 csum_partial(start, len, 0)); 2029 } 2030 2031 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2032 unsigned short type, 2033 const void *daddr, const void *saddr, 2034 unsigned int len) 2035 { 2036 if (!dev->header_ops || !dev->header_ops->create) 2037 return 0; 2038 2039 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2040 } 2041 2042 static inline int dev_parse_header(const struct sk_buff *skb, 2043 unsigned char *haddr) 2044 { 2045 const struct net_device *dev = skb->dev; 2046 2047 if (!dev->header_ops || !dev->header_ops->parse) 2048 return 0; 2049 return dev->header_ops->parse(skb, haddr); 2050 } 2051 2052 static inline int dev_rebuild_header(struct sk_buff *skb) 2053 { 2054 const struct net_device *dev = skb->dev; 2055 2056 if (!dev->header_ops || !dev->header_ops->rebuild) 2057 return 0; 2058 return dev->header_ops->rebuild(skb); 2059 } 2060 2061 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2062 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2063 static inline int unregister_gifconf(unsigned int family) 2064 { 2065 return register_gifconf(family, NULL); 2066 } 2067 2068 #ifdef CONFIG_NET_FLOW_LIMIT 2069 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2070 struct sd_flow_limit { 2071 u64 count; 2072 unsigned int num_buckets; 2073 unsigned int history_head; 2074 u16 history[FLOW_LIMIT_HISTORY]; 2075 u8 buckets[]; 2076 }; 2077 2078 extern int netdev_flow_limit_table_len; 2079 #endif /* CONFIG_NET_FLOW_LIMIT */ 2080 2081 /* 2082 * Incoming packets are placed on per-cpu queues 2083 */ 2084 struct softnet_data { 2085 struct Qdisc *output_queue; 2086 struct Qdisc **output_queue_tailp; 2087 struct list_head poll_list; 2088 struct sk_buff *completion_queue; 2089 struct sk_buff_head process_queue; 2090 2091 /* stats */ 2092 unsigned int processed; 2093 unsigned int time_squeeze; 2094 unsigned int cpu_collision; 2095 unsigned int received_rps; 2096 2097 #ifdef CONFIG_RPS 2098 struct softnet_data *rps_ipi_list; 2099 2100 /* Elements below can be accessed between CPUs for RPS */ 2101 struct call_single_data csd ____cacheline_aligned_in_smp; 2102 struct softnet_data *rps_ipi_next; 2103 unsigned int cpu; 2104 unsigned int input_queue_head; 2105 unsigned int input_queue_tail; 2106 #endif 2107 unsigned int dropped; 2108 struct sk_buff_head input_pkt_queue; 2109 struct napi_struct backlog; 2110 2111 #ifdef CONFIG_NET_FLOW_LIMIT 2112 struct sd_flow_limit __rcu *flow_limit; 2113 #endif 2114 }; 2115 2116 static inline void input_queue_head_incr(struct softnet_data *sd) 2117 { 2118 #ifdef CONFIG_RPS 2119 sd->input_queue_head++; 2120 #endif 2121 } 2122 2123 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2124 unsigned int *qtail) 2125 { 2126 #ifdef CONFIG_RPS 2127 *qtail = ++sd->input_queue_tail; 2128 #endif 2129 } 2130 2131 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2132 2133 void __netif_schedule(struct Qdisc *q); 2134 2135 static inline void netif_schedule_queue(struct netdev_queue *txq) 2136 { 2137 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 2138 __netif_schedule(txq->qdisc); 2139 } 2140 2141 static inline void netif_tx_schedule_all(struct net_device *dev) 2142 { 2143 unsigned int i; 2144 2145 for (i = 0; i < dev->num_tx_queues; i++) 2146 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2147 } 2148 2149 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2150 { 2151 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2152 } 2153 2154 /** 2155 * netif_start_queue - allow transmit 2156 * @dev: network device 2157 * 2158 * Allow upper layers to call the device hard_start_xmit routine. 2159 */ 2160 static inline void netif_start_queue(struct net_device *dev) 2161 { 2162 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2163 } 2164 2165 static inline void netif_tx_start_all_queues(struct net_device *dev) 2166 { 2167 unsigned int i; 2168 2169 for (i = 0; i < dev->num_tx_queues; i++) { 2170 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2171 netif_tx_start_queue(txq); 2172 } 2173 } 2174 2175 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2176 { 2177 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 2178 __netif_schedule(dev_queue->qdisc); 2179 } 2180 2181 /** 2182 * netif_wake_queue - restart transmit 2183 * @dev: network device 2184 * 2185 * Allow upper layers to call the device hard_start_xmit routine. 2186 * Used for flow control when transmit resources are available. 2187 */ 2188 static inline void netif_wake_queue(struct net_device *dev) 2189 { 2190 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2191 } 2192 2193 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2194 { 2195 unsigned int i; 2196 2197 for (i = 0; i < dev->num_tx_queues; i++) { 2198 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2199 netif_tx_wake_queue(txq); 2200 } 2201 } 2202 2203 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2204 { 2205 if (WARN_ON(!dev_queue)) { 2206 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 2207 return; 2208 } 2209 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2210 } 2211 2212 /** 2213 * netif_stop_queue - stop transmitted packets 2214 * @dev: network device 2215 * 2216 * Stop upper layers calling the device hard_start_xmit routine. 2217 * Used for flow control when transmit resources are unavailable. 2218 */ 2219 static inline void netif_stop_queue(struct net_device *dev) 2220 { 2221 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2222 } 2223 2224 static inline void netif_tx_stop_all_queues(struct net_device *dev) 2225 { 2226 unsigned int i; 2227 2228 for (i = 0; i < dev->num_tx_queues; i++) { 2229 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2230 netif_tx_stop_queue(txq); 2231 } 2232 } 2233 2234 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2235 { 2236 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2237 } 2238 2239 /** 2240 * netif_queue_stopped - test if transmit queue is flowblocked 2241 * @dev: network device 2242 * 2243 * Test if transmit queue on device is currently unable to send. 2244 */ 2245 static inline bool netif_queue_stopped(const struct net_device *dev) 2246 { 2247 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2248 } 2249 2250 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2251 { 2252 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2253 } 2254 2255 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2256 { 2257 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2258 } 2259 2260 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2261 unsigned int bytes) 2262 { 2263 #ifdef CONFIG_BQL 2264 dql_queued(&dev_queue->dql, bytes); 2265 2266 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2267 return; 2268 2269 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2270 2271 /* 2272 * The XOFF flag must be set before checking the dql_avail below, 2273 * because in netdev_tx_completed_queue we update the dql_completed 2274 * before checking the XOFF flag. 2275 */ 2276 smp_mb(); 2277 2278 /* check again in case another CPU has just made room avail */ 2279 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2280 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2281 #endif 2282 } 2283 2284 /** 2285 * netdev_sent_queue - report the number of bytes queued to hardware 2286 * @dev: network device 2287 * @bytes: number of bytes queued to the hardware device queue 2288 * 2289 * Report the number of bytes queued for sending/completion to the network 2290 * device hardware queue. @bytes should be a good approximation and should 2291 * exactly match netdev_completed_queue() @bytes 2292 */ 2293 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2294 { 2295 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2296 } 2297 2298 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2299 unsigned int pkts, unsigned int bytes) 2300 { 2301 #ifdef CONFIG_BQL 2302 if (unlikely(!bytes)) 2303 return; 2304 2305 dql_completed(&dev_queue->dql, bytes); 2306 2307 /* 2308 * Without the memory barrier there is a small possiblity that 2309 * netdev_tx_sent_queue will miss the update and cause the queue to 2310 * be stopped forever 2311 */ 2312 smp_mb(); 2313 2314 if (dql_avail(&dev_queue->dql) < 0) 2315 return; 2316 2317 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2318 netif_schedule_queue(dev_queue); 2319 #endif 2320 } 2321 2322 /** 2323 * netdev_completed_queue - report bytes and packets completed by device 2324 * @dev: network device 2325 * @pkts: actual number of packets sent over the medium 2326 * @bytes: actual number of bytes sent over the medium 2327 * 2328 * Report the number of bytes and packets transmitted by the network device 2329 * hardware queue over the physical medium, @bytes must exactly match the 2330 * @bytes amount passed to netdev_sent_queue() 2331 */ 2332 static inline void netdev_completed_queue(struct net_device *dev, 2333 unsigned int pkts, unsigned int bytes) 2334 { 2335 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2336 } 2337 2338 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2339 { 2340 #ifdef CONFIG_BQL 2341 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2342 dql_reset(&q->dql); 2343 #endif 2344 } 2345 2346 /** 2347 * netdev_reset_queue - reset the packets and bytes count of a network device 2348 * @dev_queue: network device 2349 * 2350 * Reset the bytes and packet count of a network device and clear the 2351 * software flow control OFF bit for this network device 2352 */ 2353 static inline void netdev_reset_queue(struct net_device *dev_queue) 2354 { 2355 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2356 } 2357 2358 /** 2359 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2360 * @dev: network device 2361 * @queue_index: given tx queue index 2362 * 2363 * Returns 0 if given tx queue index >= number of device tx queues, 2364 * otherwise returns the originally passed tx queue index. 2365 */ 2366 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2367 { 2368 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2369 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2370 dev->name, queue_index, 2371 dev->real_num_tx_queues); 2372 return 0; 2373 } 2374 2375 return queue_index; 2376 } 2377 2378 /** 2379 * netif_running - test if up 2380 * @dev: network device 2381 * 2382 * Test if the device has been brought up. 2383 */ 2384 static inline bool netif_running(const struct net_device *dev) 2385 { 2386 return test_bit(__LINK_STATE_START, &dev->state); 2387 } 2388 2389 /* 2390 * Routines to manage the subqueues on a device. We only need start 2391 * stop, and a check if it's stopped. All other device management is 2392 * done at the overall netdevice level. 2393 * Also test the device if we're multiqueue. 2394 */ 2395 2396 /** 2397 * netif_start_subqueue - allow sending packets on subqueue 2398 * @dev: network device 2399 * @queue_index: sub queue index 2400 * 2401 * Start individual transmit queue of a device with multiple transmit queues. 2402 */ 2403 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2404 { 2405 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2406 2407 netif_tx_start_queue(txq); 2408 } 2409 2410 /** 2411 * netif_stop_subqueue - stop sending packets on subqueue 2412 * @dev: network device 2413 * @queue_index: sub queue index 2414 * 2415 * Stop individual transmit queue of a device with multiple transmit queues. 2416 */ 2417 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2418 { 2419 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2420 netif_tx_stop_queue(txq); 2421 } 2422 2423 /** 2424 * netif_subqueue_stopped - test status of subqueue 2425 * @dev: network device 2426 * @queue_index: sub queue index 2427 * 2428 * Check individual transmit queue of a device with multiple transmit queues. 2429 */ 2430 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2431 u16 queue_index) 2432 { 2433 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2434 2435 return netif_tx_queue_stopped(txq); 2436 } 2437 2438 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2439 struct sk_buff *skb) 2440 { 2441 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2442 } 2443 2444 /** 2445 * netif_wake_subqueue - allow sending packets on subqueue 2446 * @dev: network device 2447 * @queue_index: sub queue index 2448 * 2449 * Resume individual transmit queue of a device with multiple transmit queues. 2450 */ 2451 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2452 { 2453 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2454 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2455 __netif_schedule(txq->qdisc); 2456 } 2457 2458 #ifdef CONFIG_XPS 2459 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2460 u16 index); 2461 #else 2462 static inline int netif_set_xps_queue(struct net_device *dev, 2463 const struct cpumask *mask, 2464 u16 index) 2465 { 2466 return 0; 2467 } 2468 #endif 2469 2470 /* 2471 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2472 * as a distribution range limit for the returned value. 2473 */ 2474 static inline u16 skb_tx_hash(const struct net_device *dev, 2475 const struct sk_buff *skb) 2476 { 2477 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2478 } 2479 2480 /** 2481 * netif_is_multiqueue - test if device has multiple transmit queues 2482 * @dev: network device 2483 * 2484 * Check if device has multiple transmit queues 2485 */ 2486 static inline bool netif_is_multiqueue(const struct net_device *dev) 2487 { 2488 return dev->num_tx_queues > 1; 2489 } 2490 2491 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2492 2493 #ifdef CONFIG_SYSFS 2494 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2495 #else 2496 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2497 unsigned int rxq) 2498 { 2499 return 0; 2500 } 2501 #endif 2502 2503 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2504 const struct net_device *from_dev) 2505 { 2506 int err; 2507 2508 err = netif_set_real_num_tx_queues(to_dev, 2509 from_dev->real_num_tx_queues); 2510 if (err) 2511 return err; 2512 #ifdef CONFIG_SYSFS 2513 return netif_set_real_num_rx_queues(to_dev, 2514 from_dev->real_num_rx_queues); 2515 #else 2516 return 0; 2517 #endif 2518 } 2519 2520 #ifdef CONFIG_SYSFS 2521 static inline unsigned int get_netdev_rx_queue_index( 2522 struct netdev_rx_queue *queue) 2523 { 2524 struct net_device *dev = queue->dev; 2525 int index = queue - dev->_rx; 2526 2527 BUG_ON(index >= dev->num_rx_queues); 2528 return index; 2529 } 2530 #endif 2531 2532 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2533 int netif_get_num_default_rss_queues(void); 2534 2535 enum skb_free_reason { 2536 SKB_REASON_CONSUMED, 2537 SKB_REASON_DROPPED, 2538 }; 2539 2540 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2541 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2542 2543 /* 2544 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2545 * interrupt context or with hardware interrupts being disabled. 2546 * (in_irq() || irqs_disabled()) 2547 * 2548 * We provide four helpers that can be used in following contexts : 2549 * 2550 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2551 * replacing kfree_skb(skb) 2552 * 2553 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2554 * Typically used in place of consume_skb(skb) in TX completion path 2555 * 2556 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2557 * replacing kfree_skb(skb) 2558 * 2559 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2560 * and consumed a packet. Used in place of consume_skb(skb) 2561 */ 2562 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2563 { 2564 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2565 } 2566 2567 static inline void dev_consume_skb_irq(struct sk_buff *skb) 2568 { 2569 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2570 } 2571 2572 static inline void dev_kfree_skb_any(struct sk_buff *skb) 2573 { 2574 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2575 } 2576 2577 static inline void dev_consume_skb_any(struct sk_buff *skb) 2578 { 2579 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2580 } 2581 2582 int netif_rx(struct sk_buff *skb); 2583 int netif_rx_ni(struct sk_buff *skb); 2584 int netif_receive_skb(struct sk_buff *skb); 2585 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2586 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2587 struct sk_buff *napi_get_frags(struct napi_struct *napi); 2588 gro_result_t napi_gro_frags(struct napi_struct *napi); 2589 struct packet_offload *gro_find_receive_by_type(__be16 type); 2590 struct packet_offload *gro_find_complete_by_type(__be16 type); 2591 2592 static inline void napi_free_frags(struct napi_struct *napi) 2593 { 2594 kfree_skb(napi->skb); 2595 napi->skb = NULL; 2596 } 2597 2598 int netdev_rx_handler_register(struct net_device *dev, 2599 rx_handler_func_t *rx_handler, 2600 void *rx_handler_data); 2601 void netdev_rx_handler_unregister(struct net_device *dev); 2602 2603 bool dev_valid_name(const char *name); 2604 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2605 int dev_ethtool(struct net *net, struct ifreq *); 2606 unsigned int dev_get_flags(const struct net_device *); 2607 int __dev_change_flags(struct net_device *, unsigned int flags); 2608 int dev_change_flags(struct net_device *, unsigned int); 2609 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2610 unsigned int gchanges); 2611 int dev_change_name(struct net_device *, const char *); 2612 int dev_set_alias(struct net_device *, const char *, size_t); 2613 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2614 int dev_set_mtu(struct net_device *, int); 2615 void dev_set_group(struct net_device *, int); 2616 int dev_set_mac_address(struct net_device *, struct sockaddr *); 2617 int dev_change_carrier(struct net_device *, bool new_carrier); 2618 int dev_get_phys_port_id(struct net_device *dev, 2619 struct netdev_phys_port_id *ppid); 2620 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2621 struct netdev_queue *txq); 2622 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2623 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 2624 2625 extern int netdev_budget; 2626 2627 /* Called by rtnetlink.c:rtnl_unlock() */ 2628 void netdev_run_todo(void); 2629 2630 /** 2631 * dev_put - release reference to device 2632 * @dev: network device 2633 * 2634 * Release reference to device to allow it to be freed. 2635 */ 2636 static inline void dev_put(struct net_device *dev) 2637 { 2638 this_cpu_dec(*dev->pcpu_refcnt); 2639 } 2640 2641 /** 2642 * dev_hold - get reference to device 2643 * @dev: network device 2644 * 2645 * Hold reference to device to keep it from being freed. 2646 */ 2647 static inline void dev_hold(struct net_device *dev) 2648 { 2649 this_cpu_inc(*dev->pcpu_refcnt); 2650 } 2651 2652 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2653 * and _off may be called from IRQ context, but it is caller 2654 * who is responsible for serialization of these calls. 2655 * 2656 * The name carrier is inappropriate, these functions should really be 2657 * called netif_lowerlayer_*() because they represent the state of any 2658 * kind of lower layer not just hardware media. 2659 */ 2660 2661 void linkwatch_init_dev(struct net_device *dev); 2662 void linkwatch_fire_event(struct net_device *dev); 2663 void linkwatch_forget_dev(struct net_device *dev); 2664 2665 /** 2666 * netif_carrier_ok - test if carrier present 2667 * @dev: network device 2668 * 2669 * Check if carrier is present on device 2670 */ 2671 static inline bool netif_carrier_ok(const struct net_device *dev) 2672 { 2673 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2674 } 2675 2676 unsigned long dev_trans_start(struct net_device *dev); 2677 2678 void __netdev_watchdog_up(struct net_device *dev); 2679 2680 void netif_carrier_on(struct net_device *dev); 2681 2682 void netif_carrier_off(struct net_device *dev); 2683 2684 /** 2685 * netif_dormant_on - mark device as dormant. 2686 * @dev: network device 2687 * 2688 * Mark device as dormant (as per RFC2863). 2689 * 2690 * The dormant state indicates that the relevant interface is not 2691 * actually in a condition to pass packets (i.e., it is not 'up') but is 2692 * in a "pending" state, waiting for some external event. For "on- 2693 * demand" interfaces, this new state identifies the situation where the 2694 * interface is waiting for events to place it in the up state. 2695 * 2696 */ 2697 static inline void netif_dormant_on(struct net_device *dev) 2698 { 2699 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2700 linkwatch_fire_event(dev); 2701 } 2702 2703 /** 2704 * netif_dormant_off - set device as not dormant. 2705 * @dev: network device 2706 * 2707 * Device is not in dormant state. 2708 */ 2709 static inline void netif_dormant_off(struct net_device *dev) 2710 { 2711 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2712 linkwatch_fire_event(dev); 2713 } 2714 2715 /** 2716 * netif_dormant - test if carrier present 2717 * @dev: network device 2718 * 2719 * Check if carrier is present on device 2720 */ 2721 static inline bool netif_dormant(const struct net_device *dev) 2722 { 2723 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2724 } 2725 2726 2727 /** 2728 * netif_oper_up - test if device is operational 2729 * @dev: network device 2730 * 2731 * Check if carrier is operational 2732 */ 2733 static inline bool netif_oper_up(const struct net_device *dev) 2734 { 2735 return (dev->operstate == IF_OPER_UP || 2736 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2737 } 2738 2739 /** 2740 * netif_device_present - is device available or removed 2741 * @dev: network device 2742 * 2743 * Check if device has not been removed from system. 2744 */ 2745 static inline bool netif_device_present(struct net_device *dev) 2746 { 2747 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2748 } 2749 2750 void netif_device_detach(struct net_device *dev); 2751 2752 void netif_device_attach(struct net_device *dev); 2753 2754 /* 2755 * Network interface message level settings 2756 */ 2757 2758 enum { 2759 NETIF_MSG_DRV = 0x0001, 2760 NETIF_MSG_PROBE = 0x0002, 2761 NETIF_MSG_LINK = 0x0004, 2762 NETIF_MSG_TIMER = 0x0008, 2763 NETIF_MSG_IFDOWN = 0x0010, 2764 NETIF_MSG_IFUP = 0x0020, 2765 NETIF_MSG_RX_ERR = 0x0040, 2766 NETIF_MSG_TX_ERR = 0x0080, 2767 NETIF_MSG_TX_QUEUED = 0x0100, 2768 NETIF_MSG_INTR = 0x0200, 2769 NETIF_MSG_TX_DONE = 0x0400, 2770 NETIF_MSG_RX_STATUS = 0x0800, 2771 NETIF_MSG_PKTDATA = 0x1000, 2772 NETIF_MSG_HW = 0x2000, 2773 NETIF_MSG_WOL = 0x4000, 2774 }; 2775 2776 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2777 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2778 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2779 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2780 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2781 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2782 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2783 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2784 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2785 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2786 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2787 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2788 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2789 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2790 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2791 2792 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2793 { 2794 /* use default */ 2795 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2796 return default_msg_enable_bits; 2797 if (debug_value == 0) /* no output */ 2798 return 0; 2799 /* set low N bits */ 2800 return (1 << debug_value) - 1; 2801 } 2802 2803 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2804 { 2805 spin_lock(&txq->_xmit_lock); 2806 txq->xmit_lock_owner = cpu; 2807 } 2808 2809 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2810 { 2811 spin_lock_bh(&txq->_xmit_lock); 2812 txq->xmit_lock_owner = smp_processor_id(); 2813 } 2814 2815 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2816 { 2817 bool ok = spin_trylock(&txq->_xmit_lock); 2818 if (likely(ok)) 2819 txq->xmit_lock_owner = smp_processor_id(); 2820 return ok; 2821 } 2822 2823 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2824 { 2825 txq->xmit_lock_owner = -1; 2826 spin_unlock(&txq->_xmit_lock); 2827 } 2828 2829 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2830 { 2831 txq->xmit_lock_owner = -1; 2832 spin_unlock_bh(&txq->_xmit_lock); 2833 } 2834 2835 static inline void txq_trans_update(struct netdev_queue *txq) 2836 { 2837 if (txq->xmit_lock_owner != -1) 2838 txq->trans_start = jiffies; 2839 } 2840 2841 /** 2842 * netif_tx_lock - grab network device transmit lock 2843 * @dev: network device 2844 * 2845 * Get network device transmit lock 2846 */ 2847 static inline void netif_tx_lock(struct net_device *dev) 2848 { 2849 unsigned int i; 2850 int cpu; 2851 2852 spin_lock(&dev->tx_global_lock); 2853 cpu = smp_processor_id(); 2854 for (i = 0; i < dev->num_tx_queues; i++) { 2855 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2856 2857 /* We are the only thread of execution doing a 2858 * freeze, but we have to grab the _xmit_lock in 2859 * order to synchronize with threads which are in 2860 * the ->hard_start_xmit() handler and already 2861 * checked the frozen bit. 2862 */ 2863 __netif_tx_lock(txq, cpu); 2864 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2865 __netif_tx_unlock(txq); 2866 } 2867 } 2868 2869 static inline void netif_tx_lock_bh(struct net_device *dev) 2870 { 2871 local_bh_disable(); 2872 netif_tx_lock(dev); 2873 } 2874 2875 static inline void netif_tx_unlock(struct net_device *dev) 2876 { 2877 unsigned int i; 2878 2879 for (i = 0; i < dev->num_tx_queues; i++) { 2880 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2881 2882 /* No need to grab the _xmit_lock here. If the 2883 * queue is not stopped for another reason, we 2884 * force a schedule. 2885 */ 2886 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2887 netif_schedule_queue(txq); 2888 } 2889 spin_unlock(&dev->tx_global_lock); 2890 } 2891 2892 static inline void netif_tx_unlock_bh(struct net_device *dev) 2893 { 2894 netif_tx_unlock(dev); 2895 local_bh_enable(); 2896 } 2897 2898 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2899 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2900 __netif_tx_lock(txq, cpu); \ 2901 } \ 2902 } 2903 2904 #define HARD_TX_TRYLOCK(dev, txq) \ 2905 (((dev->features & NETIF_F_LLTX) == 0) ? \ 2906 __netif_tx_trylock(txq) : \ 2907 true ) 2908 2909 #define HARD_TX_UNLOCK(dev, txq) { \ 2910 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2911 __netif_tx_unlock(txq); \ 2912 } \ 2913 } 2914 2915 static inline void netif_tx_disable(struct net_device *dev) 2916 { 2917 unsigned int i; 2918 int cpu; 2919 2920 local_bh_disable(); 2921 cpu = smp_processor_id(); 2922 for (i = 0; i < dev->num_tx_queues; i++) { 2923 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2924 2925 __netif_tx_lock(txq, cpu); 2926 netif_tx_stop_queue(txq); 2927 __netif_tx_unlock(txq); 2928 } 2929 local_bh_enable(); 2930 } 2931 2932 static inline void netif_addr_lock(struct net_device *dev) 2933 { 2934 spin_lock(&dev->addr_list_lock); 2935 } 2936 2937 static inline void netif_addr_lock_nested(struct net_device *dev) 2938 { 2939 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2940 } 2941 2942 static inline void netif_addr_lock_bh(struct net_device *dev) 2943 { 2944 spin_lock_bh(&dev->addr_list_lock); 2945 } 2946 2947 static inline void netif_addr_unlock(struct net_device *dev) 2948 { 2949 spin_unlock(&dev->addr_list_lock); 2950 } 2951 2952 static inline void netif_addr_unlock_bh(struct net_device *dev) 2953 { 2954 spin_unlock_bh(&dev->addr_list_lock); 2955 } 2956 2957 /* 2958 * dev_addrs walker. Should be used only for read access. Call with 2959 * rcu_read_lock held. 2960 */ 2961 #define for_each_dev_addr(dev, ha) \ 2962 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2963 2964 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2965 2966 void ether_setup(struct net_device *dev); 2967 2968 /* Support for loadable net-drivers */ 2969 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2970 void (*setup)(struct net_device *), 2971 unsigned int txqs, unsigned int rxqs); 2972 #define alloc_netdev(sizeof_priv, name, setup) \ 2973 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2974 2975 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2976 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2977 2978 int register_netdev(struct net_device *dev); 2979 void unregister_netdev(struct net_device *dev); 2980 2981 /* General hardware address lists handling functions */ 2982 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2983 struct netdev_hw_addr_list *from_list, int addr_len); 2984 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2985 struct netdev_hw_addr_list *from_list, int addr_len); 2986 void __hw_addr_init(struct netdev_hw_addr_list *list); 2987 2988 /* Functions used for device addresses handling */ 2989 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 2990 unsigned char addr_type); 2991 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 2992 unsigned char addr_type); 2993 void dev_addr_flush(struct net_device *dev); 2994 int dev_addr_init(struct net_device *dev); 2995 2996 /* Functions used for unicast addresses handling */ 2997 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 2998 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 2999 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3000 int dev_uc_sync(struct net_device *to, struct net_device *from); 3001 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3002 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3003 void dev_uc_flush(struct net_device *dev); 3004 void dev_uc_init(struct net_device *dev); 3005 3006 /* Functions used for multicast addresses handling */ 3007 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3008 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3009 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3010 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3011 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3012 int dev_mc_sync(struct net_device *to, struct net_device *from); 3013 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3014 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3015 void dev_mc_flush(struct net_device *dev); 3016 void dev_mc_init(struct net_device *dev); 3017 3018 /* Functions used for secondary unicast and multicast support */ 3019 void dev_set_rx_mode(struct net_device *dev); 3020 void __dev_set_rx_mode(struct net_device *dev); 3021 int dev_set_promiscuity(struct net_device *dev, int inc); 3022 int dev_set_allmulti(struct net_device *dev, int inc); 3023 void netdev_state_change(struct net_device *dev); 3024 void netdev_notify_peers(struct net_device *dev); 3025 void netdev_features_change(struct net_device *dev); 3026 /* Load a device via the kmod */ 3027 void dev_load(struct net *net, const char *name); 3028 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3029 struct rtnl_link_stats64 *storage); 3030 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3031 const struct net_device_stats *netdev_stats); 3032 3033 extern int netdev_max_backlog; 3034 extern int netdev_tstamp_prequeue; 3035 extern int weight_p; 3036 extern int bpf_jit_enable; 3037 3038 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3039 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3040 struct list_head **iter); 3041 3042 /* iterate through upper list, must be called under RCU read lock */ 3043 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3044 for (iter = &(dev)->all_adj_list.upper, \ 3045 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3046 updev; \ 3047 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3048 3049 void *netdev_lower_get_next_private(struct net_device *dev, 3050 struct list_head **iter); 3051 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3052 struct list_head **iter); 3053 3054 #define netdev_for_each_lower_private(dev, priv, iter) \ 3055 for (iter = (dev)->adj_list.lower.next, \ 3056 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3057 priv; \ 3058 priv = netdev_lower_get_next_private(dev, &(iter))) 3059 3060 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3061 for (iter = &(dev)->adj_list.lower, \ 3062 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3063 priv; \ 3064 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3065 3066 void *netdev_adjacent_get_private(struct list_head *adj_list); 3067 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3068 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3069 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3070 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3071 int netdev_master_upper_dev_link(struct net_device *dev, 3072 struct net_device *upper_dev); 3073 int netdev_master_upper_dev_link_private(struct net_device *dev, 3074 struct net_device *upper_dev, 3075 void *private); 3076 void netdev_upper_dev_unlink(struct net_device *dev, 3077 struct net_device *upper_dev); 3078 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3079 void *netdev_lower_dev_get_private(struct net_device *dev, 3080 struct net_device *lower_dev); 3081 int skb_checksum_help(struct sk_buff *skb); 3082 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3083 netdev_features_t features, bool tx_path); 3084 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3085 netdev_features_t features); 3086 3087 static inline 3088 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3089 { 3090 return __skb_gso_segment(skb, features, true); 3091 } 3092 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3093 3094 static inline bool can_checksum_protocol(netdev_features_t features, 3095 __be16 protocol) 3096 { 3097 return ((features & NETIF_F_GEN_CSUM) || 3098 ((features & NETIF_F_V4_CSUM) && 3099 protocol == htons(ETH_P_IP)) || 3100 ((features & NETIF_F_V6_CSUM) && 3101 protocol == htons(ETH_P_IPV6)) || 3102 ((features & NETIF_F_FCOE_CRC) && 3103 protocol == htons(ETH_P_FCOE))); 3104 } 3105 3106 #ifdef CONFIG_BUG 3107 void netdev_rx_csum_fault(struct net_device *dev); 3108 #else 3109 static inline void netdev_rx_csum_fault(struct net_device *dev) 3110 { 3111 } 3112 #endif 3113 /* rx skb timestamps */ 3114 void net_enable_timestamp(void); 3115 void net_disable_timestamp(void); 3116 3117 #ifdef CONFIG_PROC_FS 3118 int __init dev_proc_init(void); 3119 #else 3120 #define dev_proc_init() 0 3121 #endif 3122 3123 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3124 const void *ns); 3125 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3126 const void *ns); 3127 3128 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3129 { 3130 return netdev_class_create_file_ns(class_attr, NULL); 3131 } 3132 3133 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3134 { 3135 netdev_class_remove_file_ns(class_attr, NULL); 3136 } 3137 3138 extern struct kobj_ns_type_operations net_ns_type_operations; 3139 3140 const char *netdev_drivername(const struct net_device *dev); 3141 3142 void linkwatch_run_queue(void); 3143 3144 static inline netdev_features_t netdev_get_wanted_features( 3145 struct net_device *dev) 3146 { 3147 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3148 } 3149 netdev_features_t netdev_increment_features(netdev_features_t all, 3150 netdev_features_t one, netdev_features_t mask); 3151 3152 /* Allow TSO being used on stacked device : 3153 * Performing the GSO segmentation before last device 3154 * is a performance improvement. 3155 */ 3156 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3157 netdev_features_t mask) 3158 { 3159 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3160 } 3161 3162 int __netdev_update_features(struct net_device *dev); 3163 void netdev_update_features(struct net_device *dev); 3164 void netdev_change_features(struct net_device *dev); 3165 3166 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3167 struct net_device *dev); 3168 3169 netdev_features_t netif_skb_dev_features(struct sk_buff *skb, 3170 const struct net_device *dev); 3171 static inline netdev_features_t netif_skb_features(struct sk_buff *skb) 3172 { 3173 return netif_skb_dev_features(skb, skb->dev); 3174 } 3175 3176 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3177 { 3178 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3179 3180 /* check flags correspondence */ 3181 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3182 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3183 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3184 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3185 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3186 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3187 3188 return (features & feature) == feature; 3189 } 3190 3191 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3192 { 3193 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3194 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3195 } 3196 3197 static inline bool netif_needs_gso(struct sk_buff *skb, 3198 netdev_features_t features) 3199 { 3200 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3201 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3202 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3203 } 3204 3205 static inline void netif_set_gso_max_size(struct net_device *dev, 3206 unsigned int size) 3207 { 3208 dev->gso_max_size = size; 3209 } 3210 3211 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3212 int pulled_hlen, u16 mac_offset, 3213 int mac_len) 3214 { 3215 skb->protocol = protocol; 3216 skb->encapsulation = 1; 3217 skb_push(skb, pulled_hlen); 3218 skb_reset_transport_header(skb); 3219 skb->mac_header = mac_offset; 3220 skb->network_header = skb->mac_header + mac_len; 3221 skb->mac_len = mac_len; 3222 } 3223 3224 static inline bool netif_is_macvlan(struct net_device *dev) 3225 { 3226 return dev->priv_flags & IFF_MACVLAN; 3227 } 3228 3229 static inline bool netif_is_bond_master(struct net_device *dev) 3230 { 3231 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3232 } 3233 3234 static inline bool netif_is_bond_slave(struct net_device *dev) 3235 { 3236 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3237 } 3238 3239 static inline bool netif_supports_nofcs(struct net_device *dev) 3240 { 3241 return dev->priv_flags & IFF_SUPP_NOFCS; 3242 } 3243 3244 extern struct pernet_operations __net_initdata loopback_net_ops; 3245 3246 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 3247 3248 /* netdev_printk helpers, similar to dev_printk */ 3249 3250 static inline const char *netdev_name(const struct net_device *dev) 3251 { 3252 if (dev->reg_state != NETREG_REGISTERED) 3253 return "(unregistered net_device)"; 3254 return dev->name; 3255 } 3256 3257 __printf(3, 4) 3258 int netdev_printk(const char *level, const struct net_device *dev, 3259 const char *format, ...); 3260 __printf(2, 3) 3261 int netdev_emerg(const struct net_device *dev, const char *format, ...); 3262 __printf(2, 3) 3263 int netdev_alert(const struct net_device *dev, const char *format, ...); 3264 __printf(2, 3) 3265 int netdev_crit(const struct net_device *dev, const char *format, ...); 3266 __printf(2, 3) 3267 int netdev_err(const struct net_device *dev, const char *format, ...); 3268 __printf(2, 3) 3269 int netdev_warn(const struct net_device *dev, const char *format, ...); 3270 __printf(2, 3) 3271 int netdev_notice(const struct net_device *dev, const char *format, ...); 3272 __printf(2, 3) 3273 int netdev_info(const struct net_device *dev, const char *format, ...); 3274 3275 #define MODULE_ALIAS_NETDEV(device) \ 3276 MODULE_ALIAS("netdev-" device) 3277 3278 #if defined(CONFIG_DYNAMIC_DEBUG) 3279 #define netdev_dbg(__dev, format, args...) \ 3280 do { \ 3281 dynamic_netdev_dbg(__dev, format, ##args); \ 3282 } while (0) 3283 #elif defined(DEBUG) 3284 #define netdev_dbg(__dev, format, args...) \ 3285 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3286 #else 3287 #define netdev_dbg(__dev, format, args...) \ 3288 ({ \ 3289 if (0) \ 3290 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3291 0; \ 3292 }) 3293 #endif 3294 3295 #if defined(VERBOSE_DEBUG) 3296 #define netdev_vdbg netdev_dbg 3297 #else 3298 3299 #define netdev_vdbg(dev, format, args...) \ 3300 ({ \ 3301 if (0) \ 3302 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3303 0; \ 3304 }) 3305 #endif 3306 3307 /* 3308 * netdev_WARN() acts like dev_printk(), but with the key difference 3309 * of using a WARN/WARN_ON to get the message out, including the 3310 * file/line information and a backtrace. 3311 */ 3312 #define netdev_WARN(dev, format, args...) \ 3313 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args) 3314 3315 /* netif printk helpers, similar to netdev_printk */ 3316 3317 #define netif_printk(priv, type, level, dev, fmt, args...) \ 3318 do { \ 3319 if (netif_msg_##type(priv)) \ 3320 netdev_printk(level, (dev), fmt, ##args); \ 3321 } while (0) 3322 3323 #define netif_level(level, priv, type, dev, fmt, args...) \ 3324 do { \ 3325 if (netif_msg_##type(priv)) \ 3326 netdev_##level(dev, fmt, ##args); \ 3327 } while (0) 3328 3329 #define netif_emerg(priv, type, dev, fmt, args...) \ 3330 netif_level(emerg, priv, type, dev, fmt, ##args) 3331 #define netif_alert(priv, type, dev, fmt, args...) \ 3332 netif_level(alert, priv, type, dev, fmt, ##args) 3333 #define netif_crit(priv, type, dev, fmt, args...) \ 3334 netif_level(crit, priv, type, dev, fmt, ##args) 3335 #define netif_err(priv, type, dev, fmt, args...) \ 3336 netif_level(err, priv, type, dev, fmt, ##args) 3337 #define netif_warn(priv, type, dev, fmt, args...) \ 3338 netif_level(warn, priv, type, dev, fmt, ##args) 3339 #define netif_notice(priv, type, dev, fmt, args...) \ 3340 netif_level(notice, priv, type, dev, fmt, ##args) 3341 #define netif_info(priv, type, dev, fmt, args...) \ 3342 netif_level(info, priv, type, dev, fmt, ##args) 3343 3344 #if defined(CONFIG_DYNAMIC_DEBUG) 3345 #define netif_dbg(priv, type, netdev, format, args...) \ 3346 do { \ 3347 if (netif_msg_##type(priv)) \ 3348 dynamic_netdev_dbg(netdev, format, ##args); \ 3349 } while (0) 3350 #elif defined(DEBUG) 3351 #define netif_dbg(priv, type, dev, format, args...) \ 3352 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3353 #else 3354 #define netif_dbg(priv, type, dev, format, args...) \ 3355 ({ \ 3356 if (0) \ 3357 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3358 0; \ 3359 }) 3360 #endif 3361 3362 #if defined(VERBOSE_DEBUG) 3363 #define netif_vdbg netif_dbg 3364 #else 3365 #define netif_vdbg(priv, type, dev, format, args...) \ 3366 ({ \ 3367 if (0) \ 3368 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3369 0; \ 3370 }) 3371 #endif 3372 3373 /* 3374 * The list of packet types we will receive (as opposed to discard) 3375 * and the routines to invoke. 3376 * 3377 * Why 16. Because with 16 the only overlap we get on a hash of the 3378 * low nibble of the protocol value is RARP/SNAP/X.25. 3379 * 3380 * NOTE: That is no longer true with the addition of VLAN tags. Not 3381 * sure which should go first, but I bet it won't make much 3382 * difference if we are running VLANs. The good news is that 3383 * this protocol won't be in the list unless compiled in, so 3384 * the average user (w/out VLANs) will not be adversely affected. 3385 * --BLG 3386 * 3387 * 0800 IP 3388 * 8100 802.1Q VLAN 3389 * 0001 802.3 3390 * 0002 AX.25 3391 * 0004 802.2 3392 * 8035 RARP 3393 * 0005 SNAP 3394 * 0805 X.25 3395 * 0806 ARP 3396 * 8137 IPX 3397 * 0009 Localtalk 3398 * 86DD IPv6 3399 */ 3400 #define PTYPE_HASH_SIZE (16) 3401 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3402 3403 #endif /* _LINUX_NETDEVICE_H */ 3404