1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos_params.h> 35 #include <linux/timer.h> 36 #include <linux/delay.h> 37 #include <linux/mm.h> 38 #include <asm/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/device.h> 43 #include <linux/percpu.h> 44 #include <linux/rculist.h> 45 #include <linux/dmaengine.h> 46 #include <linux/workqueue.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 55 struct vlan_group; 56 struct netpoll_info; 57 struct phy_device; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* source back-compat hooks */ 61 #define SET_ETHTOOL_OPS(netdev,ops) \ 62 ( (netdev)->ethtool_ops = (ops) ) 63 64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev 65 functions are available. */ 66 #define HAVE_FREE_NETDEV /* free_netdev() */ 67 #define HAVE_NETDEV_PRIV /* netdev_priv() */ 68 69 /* hardware address assignment types */ 70 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously, in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), all 92 * others are propagated to higher layers. 93 */ 94 95 /* qdisc ->enqueue() return codes. */ 96 #define NET_XMIT_SUCCESS 0x00 97 #define NET_XMIT_DROP 0x01 /* skb dropped */ 98 #define NET_XMIT_CN 0x02 /* congestion notification */ 99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 116 }; 117 typedef enum netdev_tx netdev_tx_t; 118 119 /* 120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 122 */ 123 static inline bool dev_xmit_complete(int rc) 124 { 125 /* 126 * Positive cases with an skb consumed by a driver: 127 * - successful transmission (rc == NETDEV_TX_OK) 128 * - error while transmitting (rc < 0) 129 * - error while queueing to a different device (rc & NET_XMIT_MASK) 130 */ 131 if (likely(rc < NET_XMIT_MASK)) 132 return true; 133 134 return false; 135 } 136 137 #endif 138 139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 140 141 /* Initial net device group. All devices belong to group 0 by default. */ 142 #define INIT_NETDEV_GROUP 0 143 144 #ifdef __KERNEL__ 145 /* 146 * Compute the worst case header length according to the protocols 147 * used. 148 */ 149 150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 151 # if defined(CONFIG_MAC80211_MESH) 152 # define LL_MAX_HEADER 128 153 # else 154 # define LL_MAX_HEADER 96 155 # endif 156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 157 # define LL_MAX_HEADER 48 158 #else 159 # define LL_MAX_HEADER 32 160 #endif 161 162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 166 #define MAX_HEADER LL_MAX_HEADER 167 #else 168 #define MAX_HEADER (LL_MAX_HEADER + 48) 169 #endif 170 171 /* 172 * Old network device statistics. Fields are native words 173 * (unsigned long) so they can be read and written atomically. 174 */ 175 176 struct net_device_stats { 177 unsigned long rx_packets; 178 unsigned long tx_packets; 179 unsigned long rx_bytes; 180 unsigned long tx_bytes; 181 unsigned long rx_errors; 182 unsigned long tx_errors; 183 unsigned long rx_dropped; 184 unsigned long tx_dropped; 185 unsigned long multicast; 186 unsigned long collisions; 187 unsigned long rx_length_errors; 188 unsigned long rx_over_errors; 189 unsigned long rx_crc_errors; 190 unsigned long rx_frame_errors; 191 unsigned long rx_fifo_errors; 192 unsigned long rx_missed_errors; 193 unsigned long tx_aborted_errors; 194 unsigned long tx_carrier_errors; 195 unsigned long tx_fifo_errors; 196 unsigned long tx_heartbeat_errors; 197 unsigned long tx_window_errors; 198 unsigned long rx_compressed; 199 unsigned long tx_compressed; 200 }; 201 202 #endif /* __KERNEL__ */ 203 204 205 /* Media selection options. */ 206 enum { 207 IF_PORT_UNKNOWN = 0, 208 IF_PORT_10BASE2, 209 IF_PORT_10BASET, 210 IF_PORT_AUI, 211 IF_PORT_100BASET, 212 IF_PORT_100BASETX, 213 IF_PORT_100BASEFX 214 }; 215 216 #ifdef __KERNEL__ 217 218 #include <linux/cache.h> 219 #include <linux/skbuff.h> 220 221 struct neighbour; 222 struct neigh_parms; 223 struct sk_buff; 224 225 struct netdev_hw_addr { 226 struct list_head list; 227 unsigned char addr[MAX_ADDR_LEN]; 228 unsigned char type; 229 #define NETDEV_HW_ADDR_T_LAN 1 230 #define NETDEV_HW_ADDR_T_SAN 2 231 #define NETDEV_HW_ADDR_T_SLAVE 3 232 #define NETDEV_HW_ADDR_T_UNICAST 4 233 #define NETDEV_HW_ADDR_T_MULTICAST 5 234 bool synced; 235 bool global_use; 236 int refcount; 237 struct rcu_head rcu_head; 238 }; 239 240 struct netdev_hw_addr_list { 241 struct list_head list; 242 int count; 243 }; 244 245 #define netdev_hw_addr_list_count(l) ((l)->count) 246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 247 #define netdev_hw_addr_list_for_each(ha, l) \ 248 list_for_each_entry(ha, &(l)->list, list) 249 250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 252 #define netdev_for_each_uc_addr(ha, dev) \ 253 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 254 255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 257 #define netdev_for_each_mc_addr(ha, dev) \ 258 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 259 260 struct hh_cache { 261 struct hh_cache *hh_next; /* Next entry */ 262 atomic_t hh_refcnt; /* number of users */ 263 /* 264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate 265 * cache line on SMP. 266 * They are mostly read, but hh_refcnt may be changed quite frequently, 267 * incurring cache line ping pongs. 268 */ 269 __be16 hh_type ____cacheline_aligned_in_smp; 270 /* protocol identifier, f.e ETH_P_IP 271 * NOTE: For VLANs, this will be the 272 * encapuslated type. --BLG 273 */ 274 u16 hh_len; /* length of header */ 275 int (*hh_output)(struct sk_buff *skb); 276 seqlock_t hh_lock; 277 278 /* cached hardware header; allow for machine alignment needs. */ 279 #define HH_DATA_MOD 16 280 #define HH_DATA_OFF(__len) \ 281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 282 #define HH_DATA_ALIGN(__len) \ 283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 285 }; 286 287 static inline void hh_cache_put(struct hh_cache *hh) 288 { 289 if (atomic_dec_and_test(&hh->hh_refcnt)) 290 kfree(hh); 291 } 292 293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 294 * Alternative is: 295 * dev->hard_header_len ? (dev->hard_header_len + 296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 297 * 298 * We could use other alignment values, but we must maintain the 299 * relationship HH alignment <= LL alignment. 300 * 301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 302 * may need. 303 */ 304 #define LL_RESERVED_SPACE(dev) \ 305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 308 #define LL_ALLOCATED_SPACE(dev) \ 309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 311 struct header_ops { 312 int (*create) (struct sk_buff *skb, struct net_device *dev, 313 unsigned short type, const void *daddr, 314 const void *saddr, unsigned len); 315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 316 int (*rebuild)(struct sk_buff *skb); 317 #define HAVE_HEADER_CACHE 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 }; 323 324 /* These flag bits are private to the generic network queueing 325 * layer, they may not be explicitly referenced by any other 326 * code. 327 */ 328 329 enum netdev_state_t { 330 __LINK_STATE_START, 331 __LINK_STATE_PRESENT, 332 __LINK_STATE_NOCARRIER, 333 __LINK_STATE_LINKWATCH_PENDING, 334 __LINK_STATE_DORMANT, 335 }; 336 337 338 /* 339 * This structure holds at boot time configured netdevice settings. They 340 * are then used in the device probing. 341 */ 342 struct netdev_boot_setup { 343 char name[IFNAMSIZ]; 344 struct ifmap map; 345 }; 346 #define NETDEV_BOOT_SETUP_MAX 8 347 348 extern int __init netdev_boot_setup(char *str); 349 350 /* 351 * Structure for NAPI scheduling similar to tasklet but with weighting 352 */ 353 struct napi_struct { 354 /* The poll_list must only be managed by the entity which 355 * changes the state of the NAPI_STATE_SCHED bit. This means 356 * whoever atomically sets that bit can add this napi_struct 357 * to the per-cpu poll_list, and whoever clears that bit 358 * can remove from the list right before clearing the bit. 359 */ 360 struct list_head poll_list; 361 362 unsigned long state; 363 int weight; 364 int (*poll)(struct napi_struct *, int); 365 #ifdef CONFIG_NETPOLL 366 spinlock_t poll_lock; 367 int poll_owner; 368 #endif 369 370 unsigned int gro_count; 371 372 struct net_device *dev; 373 struct list_head dev_list; 374 struct sk_buff *gro_list; 375 struct sk_buff *skb; 376 }; 377 378 enum { 379 NAPI_STATE_SCHED, /* Poll is scheduled */ 380 NAPI_STATE_DISABLE, /* Disable pending */ 381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 382 }; 383 384 enum gro_result { 385 GRO_MERGED, 386 GRO_MERGED_FREE, 387 GRO_HELD, 388 GRO_NORMAL, 389 GRO_DROP, 390 }; 391 typedef enum gro_result gro_result_t; 392 393 /* 394 * enum rx_handler_result - Possible return values for rx_handlers. 395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 396 * further. 397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 398 * case skb->dev was changed by rx_handler. 399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 400 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 401 * 402 * rx_handlers are functions called from inside __netif_receive_skb(), to do 403 * special processing of the skb, prior to delivery to protocol handlers. 404 * 405 * Currently, a net_device can only have a single rx_handler registered. Trying 406 * to register a second rx_handler will return -EBUSY. 407 * 408 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 409 * To unregister a rx_handler on a net_device, use 410 * netdev_rx_handler_unregister(). 411 * 412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 413 * do with the skb. 414 * 415 * If the rx_handler consumed to skb in some way, it should return 416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 417 * the skb to be delivered in some other ways. 418 * 419 * If the rx_handler changed skb->dev, to divert the skb to another 420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 421 * new device will be called if it exists. 422 * 423 * If the rx_handler consider the skb should be ignored, it should return 424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 425 * are registred on exact device (ptype->dev == skb->dev). 426 * 427 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 428 * delivered, it should return RX_HANDLER_PASS. 429 * 430 * A device without a registered rx_handler will behave as if rx_handler 431 * returned RX_HANDLER_PASS. 432 */ 433 434 enum rx_handler_result { 435 RX_HANDLER_CONSUMED, 436 RX_HANDLER_ANOTHER, 437 RX_HANDLER_EXACT, 438 RX_HANDLER_PASS, 439 }; 440 typedef enum rx_handler_result rx_handler_result_t; 441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 442 443 extern void __napi_schedule(struct napi_struct *n); 444 445 static inline int napi_disable_pending(struct napi_struct *n) 446 { 447 return test_bit(NAPI_STATE_DISABLE, &n->state); 448 } 449 450 /** 451 * napi_schedule_prep - check if napi can be scheduled 452 * @n: napi context 453 * 454 * Test if NAPI routine is already running, and if not mark 455 * it as running. This is used as a condition variable 456 * insure only one NAPI poll instance runs. We also make 457 * sure there is no pending NAPI disable. 458 */ 459 static inline int napi_schedule_prep(struct napi_struct *n) 460 { 461 return !napi_disable_pending(n) && 462 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 463 } 464 465 /** 466 * napi_schedule - schedule NAPI poll 467 * @n: napi context 468 * 469 * Schedule NAPI poll routine to be called if it is not already 470 * running. 471 */ 472 static inline void napi_schedule(struct napi_struct *n) 473 { 474 if (napi_schedule_prep(n)) 475 __napi_schedule(n); 476 } 477 478 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 479 static inline int napi_reschedule(struct napi_struct *napi) 480 { 481 if (napi_schedule_prep(napi)) { 482 __napi_schedule(napi); 483 return 1; 484 } 485 return 0; 486 } 487 488 /** 489 * napi_complete - NAPI processing complete 490 * @n: napi context 491 * 492 * Mark NAPI processing as complete. 493 */ 494 extern void __napi_complete(struct napi_struct *n); 495 extern void napi_complete(struct napi_struct *n); 496 497 /** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: napi context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504 static inline void napi_disable(struct napi_struct *n) 505 { 506 set_bit(NAPI_STATE_DISABLE, &n->state); 507 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 508 msleep(1); 509 clear_bit(NAPI_STATE_DISABLE, &n->state); 510 } 511 512 /** 513 * napi_enable - enable NAPI scheduling 514 * @n: napi context 515 * 516 * Resume NAPI from being scheduled on this context. 517 * Must be paired with napi_disable. 518 */ 519 static inline void napi_enable(struct napi_struct *n) 520 { 521 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 522 smp_mb__before_clear_bit(); 523 clear_bit(NAPI_STATE_SCHED, &n->state); 524 } 525 526 #ifdef CONFIG_SMP 527 /** 528 * napi_synchronize - wait until NAPI is not running 529 * @n: napi context 530 * 531 * Wait until NAPI is done being scheduled on this context. 532 * Waits till any outstanding processing completes but 533 * does not disable future activations. 534 */ 535 static inline void napi_synchronize(const struct napi_struct *n) 536 { 537 while (test_bit(NAPI_STATE_SCHED, &n->state)) 538 msleep(1); 539 } 540 #else 541 # define napi_synchronize(n) barrier() 542 #endif 543 544 enum netdev_queue_state_t { 545 __QUEUE_STATE_XOFF, 546 __QUEUE_STATE_FROZEN, 547 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \ 548 (1 << __QUEUE_STATE_FROZEN)) 549 }; 550 551 struct netdev_queue { 552 /* 553 * read mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc *qdisc; 557 unsigned long state; 558 struct Qdisc *qdisc_sleeping; 559 #ifdef CONFIG_RPS 560 struct kobject kobj; 561 #endif 562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 int numa_node; 564 #endif 565 /* 566 * write mostly part 567 */ 568 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 569 int xmit_lock_owner; 570 /* 571 * please use this field instead of dev->trans_start 572 */ 573 unsigned long trans_start; 574 } ____cacheline_aligned_in_smp; 575 576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 577 { 578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 579 return q->numa_node; 580 #else 581 return NUMA_NO_NODE; 582 #endif 583 } 584 585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 586 { 587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 588 q->numa_node = node; 589 #endif 590 } 591 592 #ifdef CONFIG_RPS 593 /* 594 * This structure holds an RPS map which can be of variable length. The 595 * map is an array of CPUs. 596 */ 597 struct rps_map { 598 unsigned int len; 599 struct rcu_head rcu; 600 u16 cpus[0]; 601 }; 602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) 603 604 /* 605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 606 * tail pointer for that CPU's input queue at the time of last enqueue, and 607 * a hardware filter index. 608 */ 609 struct rps_dev_flow { 610 u16 cpu; 611 u16 filter; 612 unsigned int last_qtail; 613 }; 614 #define RPS_NO_FILTER 0xffff 615 616 /* 617 * The rps_dev_flow_table structure contains a table of flow mappings. 618 */ 619 struct rps_dev_flow_table { 620 unsigned int mask; 621 struct rcu_head rcu; 622 struct work_struct free_work; 623 struct rps_dev_flow flows[0]; 624 }; 625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 626 (_num * sizeof(struct rps_dev_flow))) 627 628 /* 629 * The rps_sock_flow_table contains mappings of flows to the last CPU 630 * on which they were processed by the application (set in recvmsg). 631 */ 632 struct rps_sock_flow_table { 633 unsigned int mask; 634 u16 ents[0]; 635 }; 636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 637 (_num * sizeof(u16))) 638 639 #define RPS_NO_CPU 0xffff 640 641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 642 u32 hash) 643 { 644 if (table && hash) { 645 unsigned int cpu, index = hash & table->mask; 646 647 /* We only give a hint, preemption can change cpu under us */ 648 cpu = raw_smp_processor_id(); 649 650 if (table->ents[index] != cpu) 651 table->ents[index] = cpu; 652 } 653 } 654 655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 656 u32 hash) 657 { 658 if (table && hash) 659 table->ents[hash & table->mask] = RPS_NO_CPU; 660 } 661 662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 663 664 #ifdef CONFIG_RFS_ACCEL 665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 666 u32 flow_id, u16 filter_id); 667 #endif 668 669 /* This structure contains an instance of an RX queue. */ 670 struct netdev_rx_queue { 671 struct rps_map __rcu *rps_map; 672 struct rps_dev_flow_table __rcu *rps_flow_table; 673 struct kobject kobj; 674 struct net_device *dev; 675 } ____cacheline_aligned_in_smp; 676 #endif /* CONFIG_RPS */ 677 678 #ifdef CONFIG_XPS 679 /* 680 * This structure holds an XPS map which can be of variable length. The 681 * map is an array of queues. 682 */ 683 struct xps_map { 684 unsigned int len; 685 unsigned int alloc_len; 686 struct rcu_head rcu; 687 u16 queues[0]; 688 }; 689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16))) 690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 691 / sizeof(u16)) 692 693 /* 694 * This structure holds all XPS maps for device. Maps are indexed by CPU. 695 */ 696 struct xps_dev_maps { 697 struct rcu_head rcu; 698 struct xps_map __rcu *cpu_map[0]; 699 }; 700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 701 (nr_cpu_ids * sizeof(struct xps_map *))) 702 #endif /* CONFIG_XPS */ 703 704 #define TC_MAX_QUEUE 16 705 #define TC_BITMASK 15 706 /* HW offloaded queuing disciplines txq count and offset maps */ 707 struct netdev_tc_txq { 708 u16 count; 709 u16 offset; 710 }; 711 712 /* 713 * This structure defines the management hooks for network devices. 714 * The following hooks can be defined; unless noted otherwise, they are 715 * optional and can be filled with a null pointer. 716 * 717 * int (*ndo_init)(struct net_device *dev); 718 * This function is called once when network device is registered. 719 * The network device can use this to any late stage initializaton 720 * or semantic validattion. It can fail with an error code which will 721 * be propogated back to register_netdev 722 * 723 * void (*ndo_uninit)(struct net_device *dev); 724 * This function is called when device is unregistered or when registration 725 * fails. It is not called if init fails. 726 * 727 * int (*ndo_open)(struct net_device *dev); 728 * This function is called when network device transistions to the up 729 * state. 730 * 731 * int (*ndo_stop)(struct net_device *dev); 732 * This function is called when network device transistions to the down 733 * state. 734 * 735 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 736 * struct net_device *dev); 737 * Called when a packet needs to be transmitted. 738 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 739 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 740 * Required can not be NULL. 741 * 742 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 743 * Called to decide which queue to when device supports multiple 744 * transmit queues. 745 * 746 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 747 * This function is called to allow device receiver to make 748 * changes to configuration when multicast or promiscious is enabled. 749 * 750 * void (*ndo_set_rx_mode)(struct net_device *dev); 751 * This function is called device changes address list filtering. 752 * 753 * void (*ndo_set_multicast_list)(struct net_device *dev); 754 * This function is called when the multicast address list changes. 755 * 756 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 757 * This function is called when the Media Access Control address 758 * needs to be changed. If this interface is not defined, the 759 * mac address can not be changed. 760 * 761 * int (*ndo_validate_addr)(struct net_device *dev); 762 * Test if Media Access Control address is valid for the device. 763 * 764 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 765 * Called when a user request an ioctl which can't be handled by 766 * the generic interface code. If not defined ioctl's return 767 * not supported error code. 768 * 769 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 770 * Used to set network devices bus interface parameters. This interface 771 * is retained for legacy reason, new devices should use the bus 772 * interface (PCI) for low level management. 773 * 774 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 775 * Called when a user wants to change the Maximum Transfer Unit 776 * of a device. If not defined, any request to change MTU will 777 * will return an error. 778 * 779 * void (*ndo_tx_timeout)(struct net_device *dev); 780 * Callback uses when the transmitter has not made any progress 781 * for dev->watchdog ticks. 782 * 783 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 784 * struct rtnl_link_stats64 *storage); 785 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 786 * Called when a user wants to get the network device usage 787 * statistics. Drivers must do one of the following: 788 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 789 * rtnl_link_stats64 structure passed by the caller. 790 * 2. Define @ndo_get_stats to update a net_device_stats structure 791 * (which should normally be dev->stats) and return a pointer to 792 * it. The structure may be changed asynchronously only if each 793 * field is written atomically. 794 * 3. Update dev->stats asynchronously and atomically, and define 795 * neither operation. 796 * 797 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); 798 * If device support VLAN receive acceleration 799 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called 800 * when vlan groups for the device changes. Note: grp is NULL 801 * if no vlan's groups are being used. 802 * 803 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 804 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 805 * this function is called when a VLAN id is registered. 806 * 807 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 808 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 809 * this function is called when a VLAN id is unregistered. 810 * 811 * void (*ndo_poll_controller)(struct net_device *dev); 812 * 813 * SR-IOV management functions. 814 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 815 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 816 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 817 * int (*ndo_get_vf_config)(struct net_device *dev, 818 * int vf, struct ifla_vf_info *ivf); 819 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 820 * struct nlattr *port[]); 821 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 822 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 823 * Called to setup 'tc' number of traffic classes in the net device. This 824 * is always called from the stack with the rtnl lock held and netif tx 825 * queues stopped. This allows the netdevice to perform queue management 826 * safely. 827 * 828 * Fiber Channel over Ethernet (FCoE) offload functions. 829 * int (*ndo_fcoe_enable)(struct net_device *dev); 830 * Called when the FCoE protocol stack wants to start using LLD for FCoE 831 * so the underlying device can perform whatever needed configuration or 832 * initialization to support acceleration of FCoE traffic. 833 * 834 * int (*ndo_fcoe_disable)(struct net_device *dev); 835 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 836 * so the underlying device can perform whatever needed clean-ups to 837 * stop supporting acceleration of FCoE traffic. 838 * 839 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 840 * struct scatterlist *sgl, unsigned int sgc); 841 * Called when the FCoE Initiator wants to initialize an I/O that 842 * is a possible candidate for Direct Data Placement (DDP). The LLD can 843 * perform necessary setup and returns 1 to indicate the device is set up 844 * successfully to perform DDP on this I/O, otherwise this returns 0. 845 * 846 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 847 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 848 * indicated by the FC exchange id 'xid', so the underlying device can 849 * clean up and reuse resources for later DDP requests. 850 * 851 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 852 * struct scatterlist *sgl, unsigned int sgc); 853 * Called when the FCoE Target wants to initialize an I/O that 854 * is a possible candidate for Direct Data Placement (DDP). The LLD can 855 * perform necessary setup and returns 1 to indicate the device is set up 856 * successfully to perform DDP on this I/O, otherwise this returns 0. 857 * 858 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 859 * Called when the underlying device wants to override default World Wide 860 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 861 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 862 * protocol stack to use. 863 * 864 * RFS acceleration. 865 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 866 * u16 rxq_index, u32 flow_id); 867 * Set hardware filter for RFS. rxq_index is the target queue index; 868 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 869 * Return the filter ID on success, or a negative error code. 870 * 871 * Slave management functions (for bridge, bonding, etc). User should 872 * call netdev_set_master() to set dev->master properly. 873 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 874 * Called to make another netdev an underling. 875 * 876 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 877 * Called to release previously enslaved netdev. 878 * 879 * Feature/offload setting functions. 880 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features); 881 * Adjusts the requested feature flags according to device-specific 882 * constraints, and returns the resulting flags. Must not modify 883 * the device state. 884 * 885 * int (*ndo_set_features)(struct net_device *dev, u32 features); 886 * Called to update device configuration to new features. Passed 887 * feature set might be less than what was returned by ndo_fix_features()). 888 * Must return >0 or -errno if it changed dev->features itself. 889 * 890 */ 891 #define HAVE_NET_DEVICE_OPS 892 struct net_device_ops { 893 int (*ndo_init)(struct net_device *dev); 894 void (*ndo_uninit)(struct net_device *dev); 895 int (*ndo_open)(struct net_device *dev); 896 int (*ndo_stop)(struct net_device *dev); 897 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 898 struct net_device *dev); 899 u16 (*ndo_select_queue)(struct net_device *dev, 900 struct sk_buff *skb); 901 void (*ndo_change_rx_flags)(struct net_device *dev, 902 int flags); 903 void (*ndo_set_rx_mode)(struct net_device *dev); 904 void (*ndo_set_multicast_list)(struct net_device *dev); 905 int (*ndo_set_mac_address)(struct net_device *dev, 906 void *addr); 907 int (*ndo_validate_addr)(struct net_device *dev); 908 int (*ndo_do_ioctl)(struct net_device *dev, 909 struct ifreq *ifr, int cmd); 910 int (*ndo_set_config)(struct net_device *dev, 911 struct ifmap *map); 912 int (*ndo_change_mtu)(struct net_device *dev, 913 int new_mtu); 914 int (*ndo_neigh_setup)(struct net_device *dev, 915 struct neigh_parms *); 916 void (*ndo_tx_timeout) (struct net_device *dev); 917 918 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 919 struct rtnl_link_stats64 *storage); 920 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 921 922 void (*ndo_vlan_rx_register)(struct net_device *dev, 923 struct vlan_group *grp); 924 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 925 unsigned short vid); 926 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 927 unsigned short vid); 928 #ifdef CONFIG_NET_POLL_CONTROLLER 929 void (*ndo_poll_controller)(struct net_device *dev); 930 int (*ndo_netpoll_setup)(struct net_device *dev, 931 struct netpoll_info *info); 932 void (*ndo_netpoll_cleanup)(struct net_device *dev); 933 #endif 934 int (*ndo_set_vf_mac)(struct net_device *dev, 935 int queue, u8 *mac); 936 int (*ndo_set_vf_vlan)(struct net_device *dev, 937 int queue, u16 vlan, u8 qos); 938 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 939 int vf, int rate); 940 int (*ndo_get_vf_config)(struct net_device *dev, 941 int vf, 942 struct ifla_vf_info *ivf); 943 int (*ndo_set_vf_port)(struct net_device *dev, 944 int vf, 945 struct nlattr *port[]); 946 int (*ndo_get_vf_port)(struct net_device *dev, 947 int vf, struct sk_buff *skb); 948 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 949 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 950 int (*ndo_fcoe_enable)(struct net_device *dev); 951 int (*ndo_fcoe_disable)(struct net_device *dev); 952 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 953 u16 xid, 954 struct scatterlist *sgl, 955 unsigned int sgc); 956 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 957 u16 xid); 958 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 959 u16 xid, 960 struct scatterlist *sgl, 961 unsigned int sgc); 962 #define NETDEV_FCOE_WWNN 0 963 #define NETDEV_FCOE_WWPN 1 964 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 965 u64 *wwn, int type); 966 #endif 967 #ifdef CONFIG_RFS_ACCEL 968 int (*ndo_rx_flow_steer)(struct net_device *dev, 969 const struct sk_buff *skb, 970 u16 rxq_index, 971 u32 flow_id); 972 #endif 973 int (*ndo_add_slave)(struct net_device *dev, 974 struct net_device *slave_dev); 975 int (*ndo_del_slave)(struct net_device *dev, 976 struct net_device *slave_dev); 977 u32 (*ndo_fix_features)(struct net_device *dev, 978 u32 features); 979 int (*ndo_set_features)(struct net_device *dev, 980 u32 features); 981 }; 982 983 /* 984 * The DEVICE structure. 985 * Actually, this whole structure is a big mistake. It mixes I/O 986 * data with strictly "high-level" data, and it has to know about 987 * almost every data structure used in the INET module. 988 * 989 * FIXME: cleanup struct net_device such that network protocol info 990 * moves out. 991 */ 992 993 struct net_device { 994 995 /* 996 * This is the first field of the "visible" part of this structure 997 * (i.e. as seen by users in the "Space.c" file). It is the name 998 * of the interface. 999 */ 1000 char name[IFNAMSIZ]; 1001 1002 struct pm_qos_request_list pm_qos_req; 1003 1004 /* device name hash chain */ 1005 struct hlist_node name_hlist; 1006 /* snmp alias */ 1007 char *ifalias; 1008 1009 /* 1010 * I/O specific fields 1011 * FIXME: Merge these and struct ifmap into one 1012 */ 1013 unsigned long mem_end; /* shared mem end */ 1014 unsigned long mem_start; /* shared mem start */ 1015 unsigned long base_addr; /* device I/O address */ 1016 unsigned int irq; /* device IRQ number */ 1017 1018 /* 1019 * Some hardware also needs these fields, but they are not 1020 * part of the usual set specified in Space.c. 1021 */ 1022 1023 unsigned char if_port; /* Selectable AUI, TP,..*/ 1024 unsigned char dma; /* DMA channel */ 1025 1026 unsigned long state; 1027 1028 struct list_head dev_list; 1029 struct list_head napi_list; 1030 struct list_head unreg_list; 1031 1032 /* currently active device features */ 1033 u32 features; 1034 /* user-changeable features */ 1035 u32 hw_features; 1036 /* user-requested features */ 1037 u32 wanted_features; 1038 /* mask of features inheritable by VLAN devices */ 1039 u32 vlan_features; 1040 1041 /* Net device feature bits; if you change something, 1042 * also update netdev_features_strings[] in ethtool.c */ 1043 1044 #define NETIF_F_SG 1 /* Scatter/gather IO. */ 1045 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 1046 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 1047 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 1048 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 1049 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 1050 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 1051 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 1052 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 1053 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 1054 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 1055 #define NETIF_F_GSO 2048 /* Enable software GSO. */ 1056 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 1057 /* do not use LLTX in new drivers */ 1058 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 1059 #define NETIF_F_GRO 16384 /* Generic receive offload */ 1060 #define NETIF_F_LRO 32768 /* large receive offload */ 1061 1062 /* the GSO_MASK reserves bits 16 through 23 */ 1063 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 1064 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 1065 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 1066 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ 1067 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ 1068 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */ 1069 #define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */ 1070 1071 /* Segmentation offload features */ 1072 #define NETIF_F_GSO_SHIFT 16 1073 #define NETIF_F_GSO_MASK 0x00ff0000 1074 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 1075 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 1076 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 1077 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 1078 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 1079 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 1080 1081 /* Features valid for ethtool to change */ 1082 /* = all defined minus driver/device-class-related */ 1083 #define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \ 1084 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL) 1085 #define NETIF_F_ETHTOOL_BITS (0x7f3fffff & ~NETIF_F_NEVER_CHANGE) 1086 1087 /* List of features with software fallbacks. */ 1088 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ 1089 NETIF_F_TSO6 | NETIF_F_UFO) 1090 1091 1092 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 1093 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 1094 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 1095 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 1096 1097 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1098 1099 #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \ 1100 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ 1101 NETIF_F_HIGHDMA | \ 1102 NETIF_F_SCTP_CSUM | NETIF_F_FCOE_CRC) 1103 1104 /* 1105 * If one device supports one of these features, then enable them 1106 * for all in netdev_increment_features. 1107 */ 1108 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 1109 NETIF_F_SG | NETIF_F_HIGHDMA | \ 1110 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED) 1111 /* 1112 * If one device doesn't support one of these features, then disable it 1113 * for all in netdev_increment_features. 1114 */ 1115 #define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO) 1116 1117 /* changeable features with no special hardware requirements */ 1118 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO) 1119 1120 /* Interface index. Unique device identifier */ 1121 int ifindex; 1122 int iflink; 1123 1124 struct net_device_stats stats; 1125 atomic_long_t rx_dropped; /* dropped packets by core network 1126 * Do not use this in drivers. 1127 */ 1128 1129 #ifdef CONFIG_WIRELESS_EXT 1130 /* List of functions to handle Wireless Extensions (instead of ioctl). 1131 * See <net/iw_handler.h> for details. Jean II */ 1132 const struct iw_handler_def * wireless_handlers; 1133 /* Instance data managed by the core of Wireless Extensions. */ 1134 struct iw_public_data * wireless_data; 1135 #endif 1136 /* Management operations */ 1137 const struct net_device_ops *netdev_ops; 1138 const struct ethtool_ops *ethtool_ops; 1139 1140 /* Hardware header description */ 1141 const struct header_ops *header_ops; 1142 1143 unsigned int flags; /* interface flags (a la BSD) */ 1144 unsigned short gflags; 1145 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 1146 unsigned short padded; /* How much padding added by alloc_netdev() */ 1147 1148 unsigned char operstate; /* RFC2863 operstate */ 1149 unsigned char link_mode; /* mapping policy to operstate */ 1150 1151 unsigned int mtu; /* interface MTU value */ 1152 unsigned short type; /* interface hardware type */ 1153 unsigned short hard_header_len; /* hardware hdr length */ 1154 1155 /* extra head- and tailroom the hardware may need, but not in all cases 1156 * can this be guaranteed, especially tailroom. Some cases also use 1157 * LL_MAX_HEADER instead to allocate the skb. 1158 */ 1159 unsigned short needed_headroom; 1160 unsigned short needed_tailroom; 1161 1162 /* Interface address info. */ 1163 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1164 unsigned char addr_assign_type; /* hw address assignment type */ 1165 unsigned char addr_len; /* hardware address length */ 1166 unsigned short dev_id; /* for shared network cards */ 1167 1168 spinlock_t addr_list_lock; 1169 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1170 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1171 int uc_promisc; 1172 unsigned int promiscuity; 1173 unsigned int allmulti; 1174 1175 1176 /* Protocol specific pointers */ 1177 1178 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1179 struct vlan_group __rcu *vlgrp; /* VLAN group */ 1180 #endif 1181 #ifdef CONFIG_NET_DSA 1182 void *dsa_ptr; /* dsa specific data */ 1183 #endif 1184 void *atalk_ptr; /* AppleTalk link */ 1185 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1186 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1187 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1188 void *ec_ptr; /* Econet specific data */ 1189 void *ax25_ptr; /* AX.25 specific data */ 1190 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1191 assign before registering */ 1192 1193 /* 1194 * Cache lines mostly used on receive path (including eth_type_trans()) 1195 */ 1196 unsigned long last_rx; /* Time of last Rx 1197 * This should not be set in 1198 * drivers, unless really needed, 1199 * because network stack (bonding) 1200 * use it if/when necessary, to 1201 * avoid dirtying this cache line. 1202 */ 1203 1204 struct net_device *master; /* Pointer to master device of a group, 1205 * which this device is member of. 1206 */ 1207 1208 /* Interface address info used in eth_type_trans() */ 1209 unsigned char *dev_addr; /* hw address, (before bcast 1210 because most packets are 1211 unicast) */ 1212 1213 struct netdev_hw_addr_list dev_addrs; /* list of device 1214 hw addresses */ 1215 1216 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1217 1218 #ifdef CONFIG_RPS 1219 struct kset *queues_kset; 1220 1221 struct netdev_rx_queue *_rx; 1222 1223 /* Number of RX queues allocated at register_netdev() time */ 1224 unsigned int num_rx_queues; 1225 1226 /* Number of RX queues currently active in device */ 1227 unsigned int real_num_rx_queues; 1228 1229 #ifdef CONFIG_RFS_ACCEL 1230 /* CPU reverse-mapping for RX completion interrupts, indexed 1231 * by RX queue number. Assigned by driver. This must only be 1232 * set if the ndo_rx_flow_steer operation is defined. */ 1233 struct cpu_rmap *rx_cpu_rmap; 1234 #endif 1235 #endif 1236 1237 rx_handler_func_t __rcu *rx_handler; 1238 void __rcu *rx_handler_data; 1239 1240 struct netdev_queue __rcu *ingress_queue; 1241 1242 /* 1243 * Cache lines mostly used on transmit path 1244 */ 1245 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1246 1247 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1248 unsigned int num_tx_queues; 1249 1250 /* Number of TX queues currently active in device */ 1251 unsigned int real_num_tx_queues; 1252 1253 /* root qdisc from userspace point of view */ 1254 struct Qdisc *qdisc; 1255 1256 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1257 spinlock_t tx_global_lock; 1258 1259 #ifdef CONFIG_XPS 1260 struct xps_dev_maps __rcu *xps_maps; 1261 #endif 1262 1263 /* These may be needed for future network-power-down code. */ 1264 1265 /* 1266 * trans_start here is expensive for high speed devices on SMP, 1267 * please use netdev_queue->trans_start instead. 1268 */ 1269 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1270 1271 int watchdog_timeo; /* used by dev_watchdog() */ 1272 struct timer_list watchdog_timer; 1273 1274 /* Number of references to this device */ 1275 int __percpu *pcpu_refcnt; 1276 1277 /* delayed register/unregister */ 1278 struct list_head todo_list; 1279 /* device index hash chain */ 1280 struct hlist_node index_hlist; 1281 1282 struct list_head link_watch_list; 1283 1284 /* register/unregister state machine */ 1285 enum { NETREG_UNINITIALIZED=0, 1286 NETREG_REGISTERED, /* completed register_netdevice */ 1287 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1288 NETREG_UNREGISTERED, /* completed unregister todo */ 1289 NETREG_RELEASED, /* called free_netdev */ 1290 NETREG_DUMMY, /* dummy device for NAPI poll */ 1291 } reg_state:16; 1292 1293 enum { 1294 RTNL_LINK_INITIALIZED, 1295 RTNL_LINK_INITIALIZING, 1296 } rtnl_link_state:16; 1297 1298 /* Called from unregister, can be used to call free_netdev */ 1299 void (*destructor)(struct net_device *dev); 1300 1301 #ifdef CONFIG_NETPOLL 1302 struct netpoll_info *npinfo; 1303 #endif 1304 1305 #ifdef CONFIG_NET_NS 1306 /* Network namespace this network device is inside */ 1307 struct net *nd_net; 1308 #endif 1309 1310 /* mid-layer private */ 1311 union { 1312 void *ml_priv; 1313 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1314 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1315 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1316 }; 1317 /* GARP */ 1318 struct garp_port __rcu *garp_port; 1319 1320 /* class/net/name entry */ 1321 struct device dev; 1322 /* space for optional device, statistics, and wireless sysfs groups */ 1323 const struct attribute_group *sysfs_groups[4]; 1324 1325 /* rtnetlink link ops */ 1326 const struct rtnl_link_ops *rtnl_link_ops; 1327 1328 /* for setting kernel sock attribute on TCP connection setup */ 1329 #define GSO_MAX_SIZE 65536 1330 unsigned int gso_max_size; 1331 1332 #ifdef CONFIG_DCB 1333 /* Data Center Bridging netlink ops */ 1334 const struct dcbnl_rtnl_ops *dcbnl_ops; 1335 #endif 1336 u8 num_tc; 1337 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1338 u8 prio_tc_map[TC_BITMASK + 1]; 1339 1340 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 1341 /* max exchange id for FCoE LRO by ddp */ 1342 unsigned int fcoe_ddp_xid; 1343 #endif 1344 /* n-tuple filter list attached to this device */ 1345 struct ethtool_rx_ntuple_list ethtool_ntuple_list; 1346 1347 /* phy device may attach itself for hardware timestamping */ 1348 struct phy_device *phydev; 1349 1350 /* group the device belongs to */ 1351 int group; 1352 }; 1353 #define to_net_dev(d) container_of(d, struct net_device, dev) 1354 1355 #define NETDEV_ALIGN 32 1356 1357 static inline 1358 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1359 { 1360 return dev->prio_tc_map[prio & TC_BITMASK]; 1361 } 1362 1363 static inline 1364 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1365 { 1366 if (tc >= dev->num_tc) 1367 return -EINVAL; 1368 1369 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1370 return 0; 1371 } 1372 1373 static inline 1374 void netdev_reset_tc(struct net_device *dev) 1375 { 1376 dev->num_tc = 0; 1377 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1378 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1379 } 1380 1381 static inline 1382 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1383 { 1384 if (tc >= dev->num_tc) 1385 return -EINVAL; 1386 1387 dev->tc_to_txq[tc].count = count; 1388 dev->tc_to_txq[tc].offset = offset; 1389 return 0; 1390 } 1391 1392 static inline 1393 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1394 { 1395 if (num_tc > TC_MAX_QUEUE) 1396 return -EINVAL; 1397 1398 dev->num_tc = num_tc; 1399 return 0; 1400 } 1401 1402 static inline 1403 int netdev_get_num_tc(struct net_device *dev) 1404 { 1405 return dev->num_tc; 1406 } 1407 1408 static inline 1409 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1410 unsigned int index) 1411 { 1412 return &dev->_tx[index]; 1413 } 1414 1415 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1416 void (*f)(struct net_device *, 1417 struct netdev_queue *, 1418 void *), 1419 void *arg) 1420 { 1421 unsigned int i; 1422 1423 for (i = 0; i < dev->num_tx_queues; i++) 1424 f(dev, &dev->_tx[i], arg); 1425 } 1426 1427 /* 1428 * Net namespace inlines 1429 */ 1430 static inline 1431 struct net *dev_net(const struct net_device *dev) 1432 { 1433 return read_pnet(&dev->nd_net); 1434 } 1435 1436 static inline 1437 void dev_net_set(struct net_device *dev, struct net *net) 1438 { 1439 #ifdef CONFIG_NET_NS 1440 release_net(dev->nd_net); 1441 dev->nd_net = hold_net(net); 1442 #endif 1443 } 1444 1445 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1446 { 1447 #ifdef CONFIG_NET_DSA_TAG_DSA 1448 if (dev->dsa_ptr != NULL) 1449 return dsa_uses_dsa_tags(dev->dsa_ptr); 1450 #endif 1451 1452 return 0; 1453 } 1454 1455 #ifndef CONFIG_NET_NS 1456 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1457 { 1458 skb->dev = dev; 1459 } 1460 #else /* CONFIG_NET_NS */ 1461 void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1462 #endif 1463 1464 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1465 { 1466 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1467 if (dev->dsa_ptr != NULL) 1468 return dsa_uses_trailer_tags(dev->dsa_ptr); 1469 #endif 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * netdev_priv - access network device private data 1476 * @dev: network device 1477 * 1478 * Get network device private data 1479 */ 1480 static inline void *netdev_priv(const struct net_device *dev) 1481 { 1482 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1483 } 1484 1485 /* Set the sysfs physical device reference for the network logical device 1486 * if set prior to registration will cause a symlink during initialization. 1487 */ 1488 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1489 1490 /* Set the sysfs device type for the network logical device to allow 1491 * fin grained indentification of different network device types. For 1492 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1493 */ 1494 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1495 1496 /** 1497 * netif_napi_add - initialize a napi context 1498 * @dev: network device 1499 * @napi: napi context 1500 * @poll: polling function 1501 * @weight: default weight 1502 * 1503 * netif_napi_add() must be used to initialize a napi context prior to calling 1504 * *any* of the other napi related functions. 1505 */ 1506 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1507 int (*poll)(struct napi_struct *, int), int weight); 1508 1509 /** 1510 * netif_napi_del - remove a napi context 1511 * @napi: napi context 1512 * 1513 * netif_napi_del() removes a napi context from the network device napi list 1514 */ 1515 void netif_napi_del(struct napi_struct *napi); 1516 1517 struct napi_gro_cb { 1518 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1519 void *frag0; 1520 1521 /* Length of frag0. */ 1522 unsigned int frag0_len; 1523 1524 /* This indicates where we are processing relative to skb->data. */ 1525 int data_offset; 1526 1527 /* This is non-zero if the packet may be of the same flow. */ 1528 int same_flow; 1529 1530 /* This is non-zero if the packet cannot be merged with the new skb. */ 1531 int flush; 1532 1533 /* Number of segments aggregated. */ 1534 int count; 1535 1536 /* Free the skb? */ 1537 int free; 1538 }; 1539 1540 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1541 1542 struct packet_type { 1543 __be16 type; /* This is really htons(ether_type). */ 1544 struct net_device *dev; /* NULL is wildcarded here */ 1545 int (*func) (struct sk_buff *, 1546 struct net_device *, 1547 struct packet_type *, 1548 struct net_device *); 1549 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1550 u32 features); 1551 int (*gso_send_check)(struct sk_buff *skb); 1552 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1553 struct sk_buff *skb); 1554 int (*gro_complete)(struct sk_buff *skb); 1555 void *af_packet_priv; 1556 struct list_head list; 1557 }; 1558 1559 #include <linux/interrupt.h> 1560 #include <linux/notifier.h> 1561 1562 extern rwlock_t dev_base_lock; /* Device list lock */ 1563 1564 1565 #define for_each_netdev(net, d) \ 1566 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1567 #define for_each_netdev_reverse(net, d) \ 1568 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1569 #define for_each_netdev_rcu(net, d) \ 1570 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1571 #define for_each_netdev_safe(net, d, n) \ 1572 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1573 #define for_each_netdev_continue(net, d) \ 1574 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1575 #define for_each_netdev_continue_rcu(net, d) \ 1576 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1577 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1578 1579 static inline struct net_device *next_net_device(struct net_device *dev) 1580 { 1581 struct list_head *lh; 1582 struct net *net; 1583 1584 net = dev_net(dev); 1585 lh = dev->dev_list.next; 1586 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1587 } 1588 1589 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1590 { 1591 struct list_head *lh; 1592 struct net *net; 1593 1594 net = dev_net(dev); 1595 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1596 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1597 } 1598 1599 static inline struct net_device *first_net_device(struct net *net) 1600 { 1601 return list_empty(&net->dev_base_head) ? NULL : 1602 net_device_entry(net->dev_base_head.next); 1603 } 1604 1605 static inline struct net_device *first_net_device_rcu(struct net *net) 1606 { 1607 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1608 1609 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1610 } 1611 1612 extern int netdev_boot_setup_check(struct net_device *dev); 1613 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1614 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1615 const char *hwaddr); 1616 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1617 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1618 extern void dev_add_pack(struct packet_type *pt); 1619 extern void dev_remove_pack(struct packet_type *pt); 1620 extern void __dev_remove_pack(struct packet_type *pt); 1621 1622 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1623 unsigned short mask); 1624 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1625 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1626 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1627 extern int dev_alloc_name(struct net_device *dev, const char *name); 1628 extern int dev_open(struct net_device *dev); 1629 extern int dev_close(struct net_device *dev); 1630 extern void dev_disable_lro(struct net_device *dev); 1631 extern int dev_queue_xmit(struct sk_buff *skb); 1632 extern int register_netdevice(struct net_device *dev); 1633 extern void unregister_netdevice_queue(struct net_device *dev, 1634 struct list_head *head); 1635 extern void unregister_netdevice_many(struct list_head *head); 1636 static inline void unregister_netdevice(struct net_device *dev) 1637 { 1638 unregister_netdevice_queue(dev, NULL); 1639 } 1640 1641 extern int netdev_refcnt_read(const struct net_device *dev); 1642 extern void free_netdev(struct net_device *dev); 1643 extern void synchronize_net(void); 1644 extern int register_netdevice_notifier(struct notifier_block *nb); 1645 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1646 extern int init_dummy_netdev(struct net_device *dev); 1647 extern void netdev_resync_ops(struct net_device *dev); 1648 1649 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1650 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1651 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1652 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1653 extern int dev_restart(struct net_device *dev); 1654 #ifdef CONFIG_NETPOLL_TRAP 1655 extern int netpoll_trap(void); 1656 #endif 1657 extern int skb_gro_receive(struct sk_buff **head, 1658 struct sk_buff *skb); 1659 extern void skb_gro_reset_offset(struct sk_buff *skb); 1660 1661 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1662 { 1663 return NAPI_GRO_CB(skb)->data_offset; 1664 } 1665 1666 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1667 { 1668 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1669 } 1670 1671 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1672 { 1673 NAPI_GRO_CB(skb)->data_offset += len; 1674 } 1675 1676 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1677 unsigned int offset) 1678 { 1679 return NAPI_GRO_CB(skb)->frag0 + offset; 1680 } 1681 1682 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1683 { 1684 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1685 } 1686 1687 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1688 unsigned int offset) 1689 { 1690 NAPI_GRO_CB(skb)->frag0 = NULL; 1691 NAPI_GRO_CB(skb)->frag0_len = 0; 1692 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 1693 } 1694 1695 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1696 { 1697 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1698 } 1699 1700 static inline void *skb_gro_network_header(struct sk_buff *skb) 1701 { 1702 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1703 skb_network_offset(skb); 1704 } 1705 1706 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1707 unsigned short type, 1708 const void *daddr, const void *saddr, 1709 unsigned len) 1710 { 1711 if (!dev->header_ops || !dev->header_ops->create) 1712 return 0; 1713 1714 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1715 } 1716 1717 static inline int dev_parse_header(const struct sk_buff *skb, 1718 unsigned char *haddr) 1719 { 1720 const struct net_device *dev = skb->dev; 1721 1722 if (!dev->header_ops || !dev->header_ops->parse) 1723 return 0; 1724 return dev->header_ops->parse(skb, haddr); 1725 } 1726 1727 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1728 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1729 static inline int unregister_gifconf(unsigned int family) 1730 { 1731 return register_gifconf(family, NULL); 1732 } 1733 1734 /* 1735 * Incoming packets are placed on per-cpu queues 1736 */ 1737 struct softnet_data { 1738 struct Qdisc *output_queue; 1739 struct Qdisc **output_queue_tailp; 1740 struct list_head poll_list; 1741 struct sk_buff *completion_queue; 1742 struct sk_buff_head process_queue; 1743 1744 /* stats */ 1745 unsigned int processed; 1746 unsigned int time_squeeze; 1747 unsigned int cpu_collision; 1748 unsigned int received_rps; 1749 1750 #ifdef CONFIG_RPS 1751 struct softnet_data *rps_ipi_list; 1752 1753 /* Elements below can be accessed between CPUs for RPS */ 1754 struct call_single_data csd ____cacheline_aligned_in_smp; 1755 struct softnet_data *rps_ipi_next; 1756 unsigned int cpu; 1757 unsigned int input_queue_head; 1758 unsigned int input_queue_tail; 1759 #endif 1760 unsigned dropped; 1761 struct sk_buff_head input_pkt_queue; 1762 struct napi_struct backlog; 1763 }; 1764 1765 static inline void input_queue_head_incr(struct softnet_data *sd) 1766 { 1767 #ifdef CONFIG_RPS 1768 sd->input_queue_head++; 1769 #endif 1770 } 1771 1772 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1773 unsigned int *qtail) 1774 { 1775 #ifdef CONFIG_RPS 1776 *qtail = ++sd->input_queue_tail; 1777 #endif 1778 } 1779 1780 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1781 1782 #define HAVE_NETIF_QUEUE 1783 1784 extern void __netif_schedule(struct Qdisc *q); 1785 1786 static inline void netif_schedule_queue(struct netdev_queue *txq) 1787 { 1788 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1789 __netif_schedule(txq->qdisc); 1790 } 1791 1792 static inline void netif_tx_schedule_all(struct net_device *dev) 1793 { 1794 unsigned int i; 1795 1796 for (i = 0; i < dev->num_tx_queues; i++) 1797 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1798 } 1799 1800 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1801 { 1802 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1803 } 1804 1805 /** 1806 * netif_start_queue - allow transmit 1807 * @dev: network device 1808 * 1809 * Allow upper layers to call the device hard_start_xmit routine. 1810 */ 1811 static inline void netif_start_queue(struct net_device *dev) 1812 { 1813 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1814 } 1815 1816 static inline void netif_tx_start_all_queues(struct net_device *dev) 1817 { 1818 unsigned int i; 1819 1820 for (i = 0; i < dev->num_tx_queues; i++) { 1821 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1822 netif_tx_start_queue(txq); 1823 } 1824 } 1825 1826 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1827 { 1828 #ifdef CONFIG_NETPOLL_TRAP 1829 if (netpoll_trap()) { 1830 netif_tx_start_queue(dev_queue); 1831 return; 1832 } 1833 #endif 1834 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1835 __netif_schedule(dev_queue->qdisc); 1836 } 1837 1838 /** 1839 * netif_wake_queue - restart transmit 1840 * @dev: network device 1841 * 1842 * Allow upper layers to call the device hard_start_xmit routine. 1843 * Used for flow control when transmit resources are available. 1844 */ 1845 static inline void netif_wake_queue(struct net_device *dev) 1846 { 1847 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1848 } 1849 1850 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1851 { 1852 unsigned int i; 1853 1854 for (i = 0; i < dev->num_tx_queues; i++) { 1855 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1856 netif_tx_wake_queue(txq); 1857 } 1858 } 1859 1860 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1861 { 1862 if (WARN_ON(!dev_queue)) { 1863 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1864 return; 1865 } 1866 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1867 } 1868 1869 /** 1870 * netif_stop_queue - stop transmitted packets 1871 * @dev: network device 1872 * 1873 * Stop upper layers calling the device hard_start_xmit routine. 1874 * Used for flow control when transmit resources are unavailable. 1875 */ 1876 static inline void netif_stop_queue(struct net_device *dev) 1877 { 1878 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1879 } 1880 1881 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1882 { 1883 unsigned int i; 1884 1885 for (i = 0; i < dev->num_tx_queues; i++) { 1886 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1887 netif_tx_stop_queue(txq); 1888 } 1889 } 1890 1891 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1892 { 1893 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1894 } 1895 1896 /** 1897 * netif_queue_stopped - test if transmit queue is flowblocked 1898 * @dev: network device 1899 * 1900 * Test if transmit queue on device is currently unable to send. 1901 */ 1902 static inline int netif_queue_stopped(const struct net_device *dev) 1903 { 1904 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1905 } 1906 1907 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue) 1908 { 1909 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN; 1910 } 1911 1912 /** 1913 * netif_running - test if up 1914 * @dev: network device 1915 * 1916 * Test if the device has been brought up. 1917 */ 1918 static inline int netif_running(const struct net_device *dev) 1919 { 1920 return test_bit(__LINK_STATE_START, &dev->state); 1921 } 1922 1923 /* 1924 * Routines to manage the subqueues on a device. We only need start 1925 * stop, and a check if it's stopped. All other device management is 1926 * done at the overall netdevice level. 1927 * Also test the device if we're multiqueue. 1928 */ 1929 1930 /** 1931 * netif_start_subqueue - allow sending packets on subqueue 1932 * @dev: network device 1933 * @queue_index: sub queue index 1934 * 1935 * Start individual transmit queue of a device with multiple transmit queues. 1936 */ 1937 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1938 { 1939 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1940 1941 netif_tx_start_queue(txq); 1942 } 1943 1944 /** 1945 * netif_stop_subqueue - stop sending packets on subqueue 1946 * @dev: network device 1947 * @queue_index: sub queue index 1948 * 1949 * Stop individual transmit queue of a device with multiple transmit queues. 1950 */ 1951 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1952 { 1953 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1954 #ifdef CONFIG_NETPOLL_TRAP 1955 if (netpoll_trap()) 1956 return; 1957 #endif 1958 netif_tx_stop_queue(txq); 1959 } 1960 1961 /** 1962 * netif_subqueue_stopped - test status of subqueue 1963 * @dev: network device 1964 * @queue_index: sub queue index 1965 * 1966 * Check individual transmit queue of a device with multiple transmit queues. 1967 */ 1968 static inline int __netif_subqueue_stopped(const struct net_device *dev, 1969 u16 queue_index) 1970 { 1971 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1972 1973 return netif_tx_queue_stopped(txq); 1974 } 1975 1976 static inline int netif_subqueue_stopped(const struct net_device *dev, 1977 struct sk_buff *skb) 1978 { 1979 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1980 } 1981 1982 /** 1983 * netif_wake_subqueue - allow sending packets on subqueue 1984 * @dev: network device 1985 * @queue_index: sub queue index 1986 * 1987 * Resume individual transmit queue of a device with multiple transmit queues. 1988 */ 1989 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1990 { 1991 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1992 #ifdef CONFIG_NETPOLL_TRAP 1993 if (netpoll_trap()) 1994 return; 1995 #endif 1996 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 1997 __netif_schedule(txq->qdisc); 1998 } 1999 2000 /* 2001 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2002 * as a distribution range limit for the returned value. 2003 */ 2004 static inline u16 skb_tx_hash(const struct net_device *dev, 2005 const struct sk_buff *skb) 2006 { 2007 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2008 } 2009 2010 /** 2011 * netif_is_multiqueue - test if device has multiple transmit queues 2012 * @dev: network device 2013 * 2014 * Check if device has multiple transmit queues 2015 */ 2016 static inline int netif_is_multiqueue(const struct net_device *dev) 2017 { 2018 return dev->num_tx_queues > 1; 2019 } 2020 2021 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2022 unsigned int txq); 2023 2024 #ifdef CONFIG_RPS 2025 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2026 unsigned int rxq); 2027 #else 2028 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2029 unsigned int rxq) 2030 { 2031 return 0; 2032 } 2033 #endif 2034 2035 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2036 const struct net_device *from_dev) 2037 { 2038 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2039 #ifdef CONFIG_RPS 2040 return netif_set_real_num_rx_queues(to_dev, 2041 from_dev->real_num_rx_queues); 2042 #else 2043 return 0; 2044 #endif 2045 } 2046 2047 /* Use this variant when it is known for sure that it 2048 * is executing from hardware interrupt context or with hardware interrupts 2049 * disabled. 2050 */ 2051 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2052 2053 /* Use this variant in places where it could be invoked 2054 * from either hardware interrupt or other context, with hardware interrupts 2055 * either disabled or enabled. 2056 */ 2057 extern void dev_kfree_skb_any(struct sk_buff *skb); 2058 2059 #define HAVE_NETIF_RX 1 2060 extern int netif_rx(struct sk_buff *skb); 2061 extern int netif_rx_ni(struct sk_buff *skb); 2062 #define HAVE_NETIF_RECEIVE_SKB 1 2063 extern int netif_receive_skb(struct sk_buff *skb); 2064 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2065 struct sk_buff *skb); 2066 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2067 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2068 struct sk_buff *skb); 2069 extern void napi_gro_flush(struct napi_struct *napi); 2070 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2071 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2072 struct sk_buff *skb, 2073 gro_result_t ret); 2074 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2075 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2076 2077 static inline void napi_free_frags(struct napi_struct *napi) 2078 { 2079 kfree_skb(napi->skb); 2080 napi->skb = NULL; 2081 } 2082 2083 extern int netdev_rx_handler_register(struct net_device *dev, 2084 rx_handler_func_t *rx_handler, 2085 void *rx_handler_data); 2086 extern void netdev_rx_handler_unregister(struct net_device *dev); 2087 2088 extern int dev_valid_name(const char *name); 2089 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2090 extern int dev_ethtool(struct net *net, struct ifreq *); 2091 extern unsigned dev_get_flags(const struct net_device *); 2092 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2093 extern int dev_change_flags(struct net_device *, unsigned); 2094 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2095 extern int dev_change_name(struct net_device *, const char *); 2096 extern int dev_set_alias(struct net_device *, const char *, size_t); 2097 extern int dev_change_net_namespace(struct net_device *, 2098 struct net *, const char *); 2099 extern int dev_set_mtu(struct net_device *, int); 2100 extern void dev_set_group(struct net_device *, int); 2101 extern int dev_set_mac_address(struct net_device *, 2102 struct sockaddr *); 2103 extern int dev_hard_start_xmit(struct sk_buff *skb, 2104 struct net_device *dev, 2105 struct netdev_queue *txq); 2106 extern int dev_forward_skb(struct net_device *dev, 2107 struct sk_buff *skb); 2108 2109 extern int netdev_budget; 2110 2111 /* Called by rtnetlink.c:rtnl_unlock() */ 2112 extern void netdev_run_todo(void); 2113 2114 /** 2115 * dev_put - release reference to device 2116 * @dev: network device 2117 * 2118 * Release reference to device to allow it to be freed. 2119 */ 2120 static inline void dev_put(struct net_device *dev) 2121 { 2122 irqsafe_cpu_dec(*dev->pcpu_refcnt); 2123 } 2124 2125 /** 2126 * dev_hold - get reference to device 2127 * @dev: network device 2128 * 2129 * Hold reference to device to keep it from being freed. 2130 */ 2131 static inline void dev_hold(struct net_device *dev) 2132 { 2133 irqsafe_cpu_inc(*dev->pcpu_refcnt); 2134 } 2135 2136 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2137 * and _off may be called from IRQ context, but it is caller 2138 * who is responsible for serialization of these calls. 2139 * 2140 * The name carrier is inappropriate, these functions should really be 2141 * called netif_lowerlayer_*() because they represent the state of any 2142 * kind of lower layer not just hardware media. 2143 */ 2144 2145 extern void linkwatch_fire_event(struct net_device *dev); 2146 extern void linkwatch_forget_dev(struct net_device *dev); 2147 2148 /** 2149 * netif_carrier_ok - test if carrier present 2150 * @dev: network device 2151 * 2152 * Check if carrier is present on device 2153 */ 2154 static inline int netif_carrier_ok(const struct net_device *dev) 2155 { 2156 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2157 } 2158 2159 extern unsigned long dev_trans_start(struct net_device *dev); 2160 2161 extern void __netdev_watchdog_up(struct net_device *dev); 2162 2163 extern void netif_carrier_on(struct net_device *dev); 2164 2165 extern void netif_carrier_off(struct net_device *dev); 2166 2167 extern void netif_notify_peers(struct net_device *dev); 2168 2169 /** 2170 * netif_dormant_on - mark device as dormant. 2171 * @dev: network device 2172 * 2173 * Mark device as dormant (as per RFC2863). 2174 * 2175 * The dormant state indicates that the relevant interface is not 2176 * actually in a condition to pass packets (i.e., it is not 'up') but is 2177 * in a "pending" state, waiting for some external event. For "on- 2178 * demand" interfaces, this new state identifies the situation where the 2179 * interface is waiting for events to place it in the up state. 2180 * 2181 */ 2182 static inline void netif_dormant_on(struct net_device *dev) 2183 { 2184 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2185 linkwatch_fire_event(dev); 2186 } 2187 2188 /** 2189 * netif_dormant_off - set device as not dormant. 2190 * @dev: network device 2191 * 2192 * Device is not in dormant state. 2193 */ 2194 static inline void netif_dormant_off(struct net_device *dev) 2195 { 2196 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2197 linkwatch_fire_event(dev); 2198 } 2199 2200 /** 2201 * netif_dormant - test if carrier present 2202 * @dev: network device 2203 * 2204 * Check if carrier is present on device 2205 */ 2206 static inline int netif_dormant(const struct net_device *dev) 2207 { 2208 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2209 } 2210 2211 2212 /** 2213 * netif_oper_up - test if device is operational 2214 * @dev: network device 2215 * 2216 * Check if carrier is operational 2217 */ 2218 static inline int netif_oper_up(const struct net_device *dev) 2219 { 2220 return (dev->operstate == IF_OPER_UP || 2221 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2222 } 2223 2224 /** 2225 * netif_device_present - is device available or removed 2226 * @dev: network device 2227 * 2228 * Check if device has not been removed from system. 2229 */ 2230 static inline int netif_device_present(struct net_device *dev) 2231 { 2232 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2233 } 2234 2235 extern void netif_device_detach(struct net_device *dev); 2236 2237 extern void netif_device_attach(struct net_device *dev); 2238 2239 /* 2240 * Network interface message level settings 2241 */ 2242 #define HAVE_NETIF_MSG 1 2243 2244 enum { 2245 NETIF_MSG_DRV = 0x0001, 2246 NETIF_MSG_PROBE = 0x0002, 2247 NETIF_MSG_LINK = 0x0004, 2248 NETIF_MSG_TIMER = 0x0008, 2249 NETIF_MSG_IFDOWN = 0x0010, 2250 NETIF_MSG_IFUP = 0x0020, 2251 NETIF_MSG_RX_ERR = 0x0040, 2252 NETIF_MSG_TX_ERR = 0x0080, 2253 NETIF_MSG_TX_QUEUED = 0x0100, 2254 NETIF_MSG_INTR = 0x0200, 2255 NETIF_MSG_TX_DONE = 0x0400, 2256 NETIF_MSG_RX_STATUS = 0x0800, 2257 NETIF_MSG_PKTDATA = 0x1000, 2258 NETIF_MSG_HW = 0x2000, 2259 NETIF_MSG_WOL = 0x4000, 2260 }; 2261 2262 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2263 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2264 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2265 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2266 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2267 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2268 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2269 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2270 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2271 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2272 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2273 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2274 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2275 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2276 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2277 2278 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2279 { 2280 /* use default */ 2281 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2282 return default_msg_enable_bits; 2283 if (debug_value == 0) /* no output */ 2284 return 0; 2285 /* set low N bits */ 2286 return (1 << debug_value) - 1; 2287 } 2288 2289 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2290 { 2291 spin_lock(&txq->_xmit_lock); 2292 txq->xmit_lock_owner = cpu; 2293 } 2294 2295 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2296 { 2297 spin_lock_bh(&txq->_xmit_lock); 2298 txq->xmit_lock_owner = smp_processor_id(); 2299 } 2300 2301 static inline int __netif_tx_trylock(struct netdev_queue *txq) 2302 { 2303 int ok = spin_trylock(&txq->_xmit_lock); 2304 if (likely(ok)) 2305 txq->xmit_lock_owner = smp_processor_id(); 2306 return ok; 2307 } 2308 2309 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2310 { 2311 txq->xmit_lock_owner = -1; 2312 spin_unlock(&txq->_xmit_lock); 2313 } 2314 2315 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2316 { 2317 txq->xmit_lock_owner = -1; 2318 spin_unlock_bh(&txq->_xmit_lock); 2319 } 2320 2321 static inline void txq_trans_update(struct netdev_queue *txq) 2322 { 2323 if (txq->xmit_lock_owner != -1) 2324 txq->trans_start = jiffies; 2325 } 2326 2327 /** 2328 * netif_tx_lock - grab network device transmit lock 2329 * @dev: network device 2330 * 2331 * Get network device transmit lock 2332 */ 2333 static inline void netif_tx_lock(struct net_device *dev) 2334 { 2335 unsigned int i; 2336 int cpu; 2337 2338 spin_lock(&dev->tx_global_lock); 2339 cpu = smp_processor_id(); 2340 for (i = 0; i < dev->num_tx_queues; i++) { 2341 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2342 2343 /* We are the only thread of execution doing a 2344 * freeze, but we have to grab the _xmit_lock in 2345 * order to synchronize with threads which are in 2346 * the ->hard_start_xmit() handler and already 2347 * checked the frozen bit. 2348 */ 2349 __netif_tx_lock(txq, cpu); 2350 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2351 __netif_tx_unlock(txq); 2352 } 2353 } 2354 2355 static inline void netif_tx_lock_bh(struct net_device *dev) 2356 { 2357 local_bh_disable(); 2358 netif_tx_lock(dev); 2359 } 2360 2361 static inline void netif_tx_unlock(struct net_device *dev) 2362 { 2363 unsigned int i; 2364 2365 for (i = 0; i < dev->num_tx_queues; i++) { 2366 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2367 2368 /* No need to grab the _xmit_lock here. If the 2369 * queue is not stopped for another reason, we 2370 * force a schedule. 2371 */ 2372 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2373 netif_schedule_queue(txq); 2374 } 2375 spin_unlock(&dev->tx_global_lock); 2376 } 2377 2378 static inline void netif_tx_unlock_bh(struct net_device *dev) 2379 { 2380 netif_tx_unlock(dev); 2381 local_bh_enable(); 2382 } 2383 2384 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2385 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2386 __netif_tx_lock(txq, cpu); \ 2387 } \ 2388 } 2389 2390 #define HARD_TX_UNLOCK(dev, txq) { \ 2391 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2392 __netif_tx_unlock(txq); \ 2393 } \ 2394 } 2395 2396 static inline void netif_tx_disable(struct net_device *dev) 2397 { 2398 unsigned int i; 2399 int cpu; 2400 2401 local_bh_disable(); 2402 cpu = smp_processor_id(); 2403 for (i = 0; i < dev->num_tx_queues; i++) { 2404 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2405 2406 __netif_tx_lock(txq, cpu); 2407 netif_tx_stop_queue(txq); 2408 __netif_tx_unlock(txq); 2409 } 2410 local_bh_enable(); 2411 } 2412 2413 static inline void netif_addr_lock(struct net_device *dev) 2414 { 2415 spin_lock(&dev->addr_list_lock); 2416 } 2417 2418 static inline void netif_addr_lock_bh(struct net_device *dev) 2419 { 2420 spin_lock_bh(&dev->addr_list_lock); 2421 } 2422 2423 static inline void netif_addr_unlock(struct net_device *dev) 2424 { 2425 spin_unlock(&dev->addr_list_lock); 2426 } 2427 2428 static inline void netif_addr_unlock_bh(struct net_device *dev) 2429 { 2430 spin_unlock_bh(&dev->addr_list_lock); 2431 } 2432 2433 /* 2434 * dev_addrs walker. Should be used only for read access. Call with 2435 * rcu_read_lock held. 2436 */ 2437 #define for_each_dev_addr(dev, ha) \ 2438 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2439 2440 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2441 2442 extern void ether_setup(struct net_device *dev); 2443 2444 /* Support for loadable net-drivers */ 2445 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2446 void (*setup)(struct net_device *), 2447 unsigned int txqs, unsigned int rxqs); 2448 #define alloc_netdev(sizeof_priv, name, setup) \ 2449 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2450 2451 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2452 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2453 2454 extern int register_netdev(struct net_device *dev); 2455 extern void unregister_netdev(struct net_device *dev); 2456 2457 /* General hardware address lists handling functions */ 2458 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2459 struct netdev_hw_addr_list *from_list, 2460 int addr_len, unsigned char addr_type); 2461 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2462 struct netdev_hw_addr_list *from_list, 2463 int addr_len, unsigned char addr_type); 2464 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2465 struct netdev_hw_addr_list *from_list, 2466 int addr_len); 2467 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2468 struct netdev_hw_addr_list *from_list, 2469 int addr_len); 2470 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2471 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2472 2473 /* Functions used for device addresses handling */ 2474 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2475 unsigned char addr_type); 2476 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2477 unsigned char addr_type); 2478 extern int dev_addr_add_multiple(struct net_device *to_dev, 2479 struct net_device *from_dev, 2480 unsigned char addr_type); 2481 extern int dev_addr_del_multiple(struct net_device *to_dev, 2482 struct net_device *from_dev, 2483 unsigned char addr_type); 2484 extern void dev_addr_flush(struct net_device *dev); 2485 extern int dev_addr_init(struct net_device *dev); 2486 2487 /* Functions used for unicast addresses handling */ 2488 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2489 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2490 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2491 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2492 extern void dev_uc_flush(struct net_device *dev); 2493 extern void dev_uc_init(struct net_device *dev); 2494 2495 /* Functions used for multicast addresses handling */ 2496 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2497 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2498 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2499 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2500 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2501 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2502 extern void dev_mc_flush(struct net_device *dev); 2503 extern void dev_mc_init(struct net_device *dev); 2504 2505 /* Functions used for secondary unicast and multicast support */ 2506 extern void dev_set_rx_mode(struct net_device *dev); 2507 extern void __dev_set_rx_mode(struct net_device *dev); 2508 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2509 extern int dev_set_allmulti(struct net_device *dev, int inc); 2510 extern void netdev_state_change(struct net_device *dev); 2511 extern int netdev_bonding_change(struct net_device *dev, 2512 unsigned long event); 2513 extern void netdev_features_change(struct net_device *dev); 2514 /* Load a device via the kmod */ 2515 extern void dev_load(struct net *net, const char *name); 2516 extern void dev_mcast_init(void); 2517 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2518 struct rtnl_link_stats64 *storage); 2519 2520 extern int netdev_max_backlog; 2521 extern int netdev_tstamp_prequeue; 2522 extern int weight_p; 2523 extern int bpf_jit_enable; 2524 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2525 extern int netdev_set_bond_master(struct net_device *dev, 2526 struct net_device *master); 2527 extern int skb_checksum_help(struct sk_buff *skb); 2528 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features); 2529 #ifdef CONFIG_BUG 2530 extern void netdev_rx_csum_fault(struct net_device *dev); 2531 #else 2532 static inline void netdev_rx_csum_fault(struct net_device *dev) 2533 { 2534 } 2535 #endif 2536 /* rx skb timestamps */ 2537 extern void net_enable_timestamp(void); 2538 extern void net_disable_timestamp(void); 2539 2540 #ifdef CONFIG_PROC_FS 2541 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2542 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2543 extern void dev_seq_stop(struct seq_file *seq, void *v); 2544 #endif 2545 2546 extern int netdev_class_create_file(struct class_attribute *class_attr); 2547 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2548 2549 extern struct kobj_ns_type_operations net_ns_type_operations; 2550 2551 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len); 2552 2553 extern void linkwatch_run_queue(void); 2554 2555 static inline u32 netdev_get_wanted_features(struct net_device *dev) 2556 { 2557 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2558 } 2559 u32 netdev_increment_features(u32 all, u32 one, u32 mask); 2560 u32 netdev_fix_features(struct net_device *dev, u32 features); 2561 int __netdev_update_features(struct net_device *dev); 2562 void netdev_update_features(struct net_device *dev); 2563 2564 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2565 struct net_device *dev); 2566 2567 u32 netif_skb_features(struct sk_buff *skb); 2568 2569 static inline int net_gso_ok(u32 features, int gso_type) 2570 { 2571 int feature = gso_type << NETIF_F_GSO_SHIFT; 2572 return (features & feature) == feature; 2573 } 2574 2575 static inline int skb_gso_ok(struct sk_buff *skb, u32 features) 2576 { 2577 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2578 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2579 } 2580 2581 static inline int netif_needs_gso(struct sk_buff *skb, int features) 2582 { 2583 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2584 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2585 } 2586 2587 static inline void netif_set_gso_max_size(struct net_device *dev, 2588 unsigned int size) 2589 { 2590 dev->gso_max_size = size; 2591 } 2592 2593 static inline int netif_is_bond_slave(struct net_device *dev) 2594 { 2595 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2596 } 2597 2598 extern struct pernet_operations __net_initdata loopback_net_ops; 2599 2600 int dev_ethtool_get_settings(struct net_device *dev, 2601 struct ethtool_cmd *cmd); 2602 2603 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2604 { 2605 if (dev->features & NETIF_F_RXCSUM) 2606 return 1; 2607 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2608 return 0; 2609 return dev->ethtool_ops->get_rx_csum(dev); 2610 } 2611 2612 static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2613 { 2614 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2615 return 0; 2616 return dev->ethtool_ops->get_flags(dev); 2617 } 2618 2619 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2620 2621 /* netdev_printk helpers, similar to dev_printk */ 2622 2623 static inline const char *netdev_name(const struct net_device *dev) 2624 { 2625 if (dev->reg_state != NETREG_REGISTERED) 2626 return "(unregistered net_device)"; 2627 return dev->name; 2628 } 2629 2630 extern int netdev_printk(const char *level, const struct net_device *dev, 2631 const char *format, ...) 2632 __attribute__ ((format (printf, 3, 4))); 2633 extern int netdev_emerg(const struct net_device *dev, const char *format, ...) 2634 __attribute__ ((format (printf, 2, 3))); 2635 extern int netdev_alert(const struct net_device *dev, const char *format, ...) 2636 __attribute__ ((format (printf, 2, 3))); 2637 extern int netdev_crit(const struct net_device *dev, const char *format, ...) 2638 __attribute__ ((format (printf, 2, 3))); 2639 extern int netdev_err(const struct net_device *dev, const char *format, ...) 2640 __attribute__ ((format (printf, 2, 3))); 2641 extern int netdev_warn(const struct net_device *dev, const char *format, ...) 2642 __attribute__ ((format (printf, 2, 3))); 2643 extern int netdev_notice(const struct net_device *dev, const char *format, ...) 2644 __attribute__ ((format (printf, 2, 3))); 2645 extern int netdev_info(const struct net_device *dev, const char *format, ...) 2646 __attribute__ ((format (printf, 2, 3))); 2647 2648 #define MODULE_ALIAS_NETDEV(device) \ 2649 MODULE_ALIAS("netdev-" device) 2650 2651 #if defined(DEBUG) 2652 #define netdev_dbg(__dev, format, args...) \ 2653 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2654 #elif defined(CONFIG_DYNAMIC_DEBUG) 2655 #define netdev_dbg(__dev, format, args...) \ 2656 do { \ 2657 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ 2658 netdev_name(__dev), ##args); \ 2659 } while (0) 2660 #else 2661 #define netdev_dbg(__dev, format, args...) \ 2662 ({ \ 2663 if (0) \ 2664 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2665 0; \ 2666 }) 2667 #endif 2668 2669 #if defined(VERBOSE_DEBUG) 2670 #define netdev_vdbg netdev_dbg 2671 #else 2672 2673 #define netdev_vdbg(dev, format, args...) \ 2674 ({ \ 2675 if (0) \ 2676 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2677 0; \ 2678 }) 2679 #endif 2680 2681 /* 2682 * netdev_WARN() acts like dev_printk(), but with the key difference 2683 * of using a WARN/WARN_ON to get the message out, including the 2684 * file/line information and a backtrace. 2685 */ 2686 #define netdev_WARN(dev, format, args...) \ 2687 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2688 2689 /* netif printk helpers, similar to netdev_printk */ 2690 2691 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2692 do { \ 2693 if (netif_msg_##type(priv)) \ 2694 netdev_printk(level, (dev), fmt, ##args); \ 2695 } while (0) 2696 2697 #define netif_level(level, priv, type, dev, fmt, args...) \ 2698 do { \ 2699 if (netif_msg_##type(priv)) \ 2700 netdev_##level(dev, fmt, ##args); \ 2701 } while (0) 2702 2703 #define netif_emerg(priv, type, dev, fmt, args...) \ 2704 netif_level(emerg, priv, type, dev, fmt, ##args) 2705 #define netif_alert(priv, type, dev, fmt, args...) \ 2706 netif_level(alert, priv, type, dev, fmt, ##args) 2707 #define netif_crit(priv, type, dev, fmt, args...) \ 2708 netif_level(crit, priv, type, dev, fmt, ##args) 2709 #define netif_err(priv, type, dev, fmt, args...) \ 2710 netif_level(err, priv, type, dev, fmt, ##args) 2711 #define netif_warn(priv, type, dev, fmt, args...) \ 2712 netif_level(warn, priv, type, dev, fmt, ##args) 2713 #define netif_notice(priv, type, dev, fmt, args...) \ 2714 netif_level(notice, priv, type, dev, fmt, ##args) 2715 #define netif_info(priv, type, dev, fmt, args...) \ 2716 netif_level(info, priv, type, dev, fmt, ##args) 2717 2718 #if defined(DEBUG) 2719 #define netif_dbg(priv, type, dev, format, args...) \ 2720 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2721 #elif defined(CONFIG_DYNAMIC_DEBUG) 2722 #define netif_dbg(priv, type, netdev, format, args...) \ 2723 do { \ 2724 if (netif_msg_##type(priv)) \ 2725 dynamic_dev_dbg((netdev)->dev.parent, \ 2726 "%s: " format, \ 2727 netdev_name(netdev), ##args); \ 2728 } while (0) 2729 #else 2730 #define netif_dbg(priv, type, dev, format, args...) \ 2731 ({ \ 2732 if (0) \ 2733 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2734 0; \ 2735 }) 2736 #endif 2737 2738 #if defined(VERBOSE_DEBUG) 2739 #define netif_vdbg netif_dbg 2740 #else 2741 #define netif_vdbg(priv, type, dev, format, args...) \ 2742 ({ \ 2743 if (0) \ 2744 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2745 0; \ 2746 }) 2747 #endif 2748 2749 #endif /* __KERNEL__ */ 2750 2751 #endif /* _LINUX_NETDEVICE_H */ 2752