xref: /linux-6.15/include/linux/netdevice.h (revision e3e29f99)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36 
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42 
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50 
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 #include <uapi/linux/if_bonding.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*rebuild)(struct sk_buff *skb);
265 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
266 	void	(*cache_update)(struct hh_cache *hh,
267 				const struct net_device *dev,
268 				const unsigned char *haddr);
269 };
270 
271 /* These flag bits are private to the generic network queueing
272  * layer, they may not be explicitly referenced by any other
273  * code.
274  */
275 
276 enum netdev_state_t {
277 	__LINK_STATE_START,
278 	__LINK_STATE_PRESENT,
279 	__LINK_STATE_NOCARRIER,
280 	__LINK_STATE_LINKWATCH_PENDING,
281 	__LINK_STATE_DORMANT,
282 };
283 
284 
285 /*
286  * This structure holds at boot time configured netdevice settings. They
287  * are then used in the device probing.
288  */
289 struct netdev_boot_setup {
290 	char name[IFNAMSIZ];
291 	struct ifmap map;
292 };
293 #define NETDEV_BOOT_SETUP_MAX 8
294 
295 int __init netdev_boot_setup(char *str);
296 
297 /*
298  * Structure for NAPI scheduling similar to tasklet but with weighting
299  */
300 struct napi_struct {
301 	/* The poll_list must only be managed by the entity which
302 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
303 	 * whoever atomically sets that bit can add this napi_struct
304 	 * to the per-cpu poll_list, and whoever clears that bit
305 	 * can remove from the list right before clearing the bit.
306 	 */
307 	struct list_head	poll_list;
308 
309 	unsigned long		state;
310 	int			weight;
311 	unsigned int		gro_count;
312 	int			(*poll)(struct napi_struct *, int);
313 #ifdef CONFIG_NETPOLL
314 	spinlock_t		poll_lock;
315 	int			poll_owner;
316 #endif
317 	struct net_device	*dev;
318 	struct sk_buff		*gro_list;
319 	struct sk_buff		*skb;
320 	struct hrtimer		timer;
321 	struct list_head	dev_list;
322 	struct hlist_node	napi_hash_node;
323 	unsigned int		napi_id;
324 };
325 
326 enum {
327 	NAPI_STATE_SCHED,	/* Poll is scheduled */
328 	NAPI_STATE_DISABLE,	/* Disable pending */
329 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
330 	NAPI_STATE_HASHED,	/* In NAPI hash */
331 };
332 
333 enum gro_result {
334 	GRO_MERGED,
335 	GRO_MERGED_FREE,
336 	GRO_HELD,
337 	GRO_NORMAL,
338 	GRO_DROP,
339 };
340 typedef enum gro_result gro_result_t;
341 
342 /*
343  * enum rx_handler_result - Possible return values for rx_handlers.
344  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
345  * further.
346  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
347  * case skb->dev was changed by rx_handler.
348  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
349  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350  *
351  * rx_handlers are functions called from inside __netif_receive_skb(), to do
352  * special processing of the skb, prior to delivery to protocol handlers.
353  *
354  * Currently, a net_device can only have a single rx_handler registered. Trying
355  * to register a second rx_handler will return -EBUSY.
356  *
357  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
358  * To unregister a rx_handler on a net_device, use
359  * netdev_rx_handler_unregister().
360  *
361  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
362  * do with the skb.
363  *
364  * If the rx_handler consumed to skb in some way, it should return
365  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
366  * the skb to be delivered in some other ways.
367  *
368  * If the rx_handler changed skb->dev, to divert the skb to another
369  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
370  * new device will be called if it exists.
371  *
372  * If the rx_handler consider the skb should be ignored, it should return
373  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
374  * are registered on exact device (ptype->dev == skb->dev).
375  *
376  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
377  * delivered, it should return RX_HANDLER_PASS.
378  *
379  * A device without a registered rx_handler will behave as if rx_handler
380  * returned RX_HANDLER_PASS.
381  */
382 
383 enum rx_handler_result {
384 	RX_HANDLER_CONSUMED,
385 	RX_HANDLER_ANOTHER,
386 	RX_HANDLER_EXACT,
387 	RX_HANDLER_PASS,
388 };
389 typedef enum rx_handler_result rx_handler_result_t;
390 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391 
392 void __napi_schedule(struct napi_struct *n);
393 void __napi_schedule_irqoff(struct napi_struct *n);
394 
395 static inline bool napi_disable_pending(struct napi_struct *n)
396 {
397 	return test_bit(NAPI_STATE_DISABLE, &n->state);
398 }
399 
400 /**
401  *	napi_schedule_prep - check if napi can be scheduled
402  *	@n: napi context
403  *
404  * Test if NAPI routine is already running, and if not mark
405  * it as running.  This is used as a condition variable
406  * insure only one NAPI poll instance runs.  We also make
407  * sure there is no pending NAPI disable.
408  */
409 static inline bool napi_schedule_prep(struct napi_struct *n)
410 {
411 	return !napi_disable_pending(n) &&
412 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
413 }
414 
415 /**
416  *	napi_schedule - schedule NAPI poll
417  *	@n: napi context
418  *
419  * Schedule NAPI poll routine to be called if it is not already
420  * running.
421  */
422 static inline void napi_schedule(struct napi_struct *n)
423 {
424 	if (napi_schedule_prep(n))
425 		__napi_schedule(n);
426 }
427 
428 /**
429  *	napi_schedule_irqoff - schedule NAPI poll
430  *	@n: napi context
431  *
432  * Variant of napi_schedule(), assuming hard irqs are masked.
433  */
434 static inline void napi_schedule_irqoff(struct napi_struct *n)
435 {
436 	if (napi_schedule_prep(n))
437 		__napi_schedule_irqoff(n);
438 }
439 
440 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
441 static inline bool napi_reschedule(struct napi_struct *napi)
442 {
443 	if (napi_schedule_prep(napi)) {
444 		__napi_schedule(napi);
445 		return true;
446 	}
447 	return false;
448 }
449 
450 void __napi_complete(struct napi_struct *n);
451 void napi_complete_done(struct napi_struct *n, int work_done);
452 /**
453  *	napi_complete - NAPI processing complete
454  *	@n: napi context
455  *
456  * Mark NAPI processing as complete.
457  * Consider using napi_complete_done() instead.
458  */
459 static inline void napi_complete(struct napi_struct *n)
460 {
461 	return napi_complete_done(n, 0);
462 }
463 
464 /**
465  *	napi_by_id - lookup a NAPI by napi_id
466  *	@napi_id: hashed napi_id
467  *
468  * lookup @napi_id in napi_hash table
469  * must be called under rcu_read_lock()
470  */
471 struct napi_struct *napi_by_id(unsigned int napi_id);
472 
473 /**
474  *	napi_hash_add - add a NAPI to global hashtable
475  *	@napi: napi context
476  *
477  * generate a new napi_id and store a @napi under it in napi_hash
478  */
479 void napi_hash_add(struct napi_struct *napi);
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: napi context
484  *
485  * Warning: caller must observe rcu grace period
486  * before freeing memory containing @napi
487  */
488 void napi_hash_del(struct napi_struct *napi);
489 
490 /**
491  *	napi_disable - prevent NAPI from scheduling
492  *	@n: napi context
493  *
494  * Stop NAPI from being scheduled on this context.
495  * Waits till any outstanding processing completes.
496  */
497 void napi_disable(struct napi_struct *n);
498 
499 /**
500  *	napi_enable - enable NAPI scheduling
501  *	@n: napi context
502  *
503  * Resume NAPI from being scheduled on this context.
504  * Must be paired with napi_disable.
505  */
506 static inline void napi_enable(struct napi_struct *n)
507 {
508 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
509 	smp_mb__before_atomic();
510 	clear_bit(NAPI_STATE_SCHED, &n->state);
511 }
512 
513 #ifdef CONFIG_SMP
514 /**
515  *	napi_synchronize - wait until NAPI is not running
516  *	@n: napi context
517  *
518  * Wait until NAPI is done being scheduled on this context.
519  * Waits till any outstanding processing completes but
520  * does not disable future activations.
521  */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 	while (test_bit(NAPI_STATE_SCHED, &n->state))
525 		msleep(1);
526 }
527 #else
528 # define napi_synchronize(n)	barrier()
529 #endif
530 
531 enum netdev_queue_state_t {
532 	__QUEUE_STATE_DRV_XOFF,
533 	__QUEUE_STATE_STACK_XOFF,
534 	__QUEUE_STATE_FROZEN,
535 };
536 
537 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
540 
541 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 					QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 
547 /*
548  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
549  * netif_tx_* functions below are used to manipulate this flag.  The
550  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551  * queue independently.  The netif_xmit_*stopped functions below are called
552  * to check if the queue has been stopped by the driver or stack (either
553  * of the XOFF bits are set in the state).  Drivers should not need to call
554  * netif_xmit*stopped functions, they should only be using netif_tx_*.
555  */
556 
557 struct netdev_queue {
558 /*
559  * read mostly part
560  */
561 	struct net_device	*dev;
562 	struct Qdisc __rcu	*qdisc;
563 	struct Qdisc		*qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 	struct kobject		kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 	int			numa_node;
569 #endif
570 /*
571  * write mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * please use this field instead of dev->trans_start
577 	 */
578 	unsigned long		trans_start;
579 
580 	/*
581 	 * Number of TX timeouts for this queue
582 	 * (/sys/class/net/DEV/Q/trans_timeout)
583 	 */
584 	unsigned long		trans_timeout;
585 
586 	unsigned long		state;
587 
588 #ifdef CONFIG_BQL
589 	struct dql		dql;
590 #endif
591 } ____cacheline_aligned_in_smp;
592 
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 	return q->numa_node;
597 #else
598 	return NUMA_NO_NODE;
599 #endif
600 }
601 
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 	q->numa_node = node;
606 #endif
607 }
608 
609 #ifdef CONFIG_RPS
610 /*
611  * This structure holds an RPS map which can be of variable length.  The
612  * map is an array of CPUs.
613  */
614 struct rps_map {
615 	unsigned int len;
616 	struct rcu_head rcu;
617 	u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620 
621 /*
622  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623  * tail pointer for that CPU's input queue at the time of last enqueue, and
624  * a hardware filter index.
625  */
626 struct rps_dev_flow {
627 	u16 cpu;
628 	u16 filter;
629 	unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632 
633 /*
634  * The rps_dev_flow_table structure contains a table of flow mappings.
635  */
636 struct rps_dev_flow_table {
637 	unsigned int mask;
638 	struct rcu_head rcu;
639 	struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642     ((_num) * sizeof(struct rps_dev_flow)))
643 
644 /*
645  * The rps_sock_flow_table contains mappings of flows to the last CPU
646  * on which they were processed by the application (set in recvmsg).
647  * Each entry is a 32bit value. Upper part is the high order bits
648  * of flow hash, lower part is cpu number.
649  * rps_cpu_mask is used to partition the space, depending on number of
650  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652  * meaning we use 32-6=26 bits for the hash.
653  */
654 struct rps_sock_flow_table {
655 	u32	mask;
656 
657 	u32	ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660 
661 #define RPS_NO_CPU 0xffff
662 
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 					u32 hash)
668 {
669 	if (table && hash) {
670 		unsigned int index = hash & table->mask;
671 		u32 val = hash & ~rps_cpu_mask;
672 
673 		/* We only give a hint, preemption can change cpu under us */
674 		val |= raw_smp_processor_id();
675 
676 		if (table->ents[index] != val)
677 			table->ents[index] = val;
678 	}
679 }
680 
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 			 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686 
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 	struct rps_map __rcu		*rps_map;
691 	struct rps_dev_flow_table __rcu	*rps_flow_table;
692 #endif
693 	struct kobject			kobj;
694 	struct net_device		*dev;
695 } ____cacheline_aligned_in_smp;
696 
697 /*
698  * RX queue sysfs structures and functions.
699  */
700 struct rx_queue_attribute {
701 	struct attribute attr;
702 	ssize_t (*show)(struct netdev_rx_queue *queue,
703 	    struct rx_queue_attribute *attr, char *buf);
704 	ssize_t (*store)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707 
708 #ifdef CONFIG_XPS
709 /*
710  * This structure holds an XPS map which can be of variable length.  The
711  * map is an array of queues.
712  */
713 struct xps_map {
714 	unsigned int len;
715 	unsigned int alloc_len;
716 	struct rcu_head rcu;
717 	u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
721     / sizeof(u16))
722 
723 /*
724  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
725  */
726 struct xps_dev_maps {
727 	struct rcu_head rcu;
728 	struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
731     (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733 
734 #define TC_MAX_QUEUE	16
735 #define TC_BITMASK	15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 	u16 count;
739 	u16 offset;
740 };
741 
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744  * This structure is to hold information about the device
745  * configured to run FCoE protocol stack.
746  */
747 struct netdev_fcoe_hbainfo {
748 	char	manufacturer[64];
749 	char	serial_number[64];
750 	char	hardware_version[64];
751 	char	driver_version[64];
752 	char	optionrom_version[64];
753 	char	firmware_version[64];
754 	char	model[256];
755 	char	model_description[256];
756 };
757 #endif
758 
759 #define MAX_PHYS_ITEM_ID_LEN 32
760 
761 /* This structure holds a unique identifier to identify some
762  * physical item (port for example) used by a netdevice.
763  */
764 struct netdev_phys_item_id {
765 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 	unsigned char id_len;
767 };
768 
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 				       struct sk_buff *skb);
771 
772 /*
773  * This structure defines the management hooks for network devices.
774  * The following hooks can be defined; unless noted otherwise, they are
775  * optional and can be filled with a null pointer.
776  *
777  * int (*ndo_init)(struct net_device *dev);
778  *     This function is called once when network device is registered.
779  *     The network device can use this to any late stage initializaton
780  *     or semantic validattion. It can fail with an error code which will
781  *     be propogated back to register_netdev
782  *
783  * void (*ndo_uninit)(struct net_device *dev);
784  *     This function is called when device is unregistered or when registration
785  *     fails. It is not called if init fails.
786  *
787  * int (*ndo_open)(struct net_device *dev);
788  *     This function is called when network device transistions to the up
789  *     state.
790  *
791  * int (*ndo_stop)(struct net_device *dev);
792  *     This function is called when network device transistions to the down
793  *     state.
794  *
795  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796  *                               struct net_device *dev);
797  *	Called when a packet needs to be transmitted.
798  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
799  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
800  *	Required can not be NULL.
801  *
802  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
803  *                         void *accel_priv, select_queue_fallback_t fallback);
804  *	Called to decide which queue to when device supports multiple
805  *	transmit queues.
806  *
807  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
808  *	This function is called to allow device receiver to make
809  *	changes to configuration when multicast or promiscious is enabled.
810  *
811  * void (*ndo_set_rx_mode)(struct net_device *dev);
812  *	This function is called device changes address list filtering.
813  *	If driver handles unicast address filtering, it should set
814  *	IFF_UNICAST_FLT to its priv_flags.
815  *
816  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
817  *	This function  is called when the Media Access Control address
818  *	needs to be changed. If this interface is not defined, the
819  *	mac address can not be changed.
820  *
821  * int (*ndo_validate_addr)(struct net_device *dev);
822  *	Test if Media Access Control address is valid for the device.
823  *
824  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
825  *	Called when a user request an ioctl which can't be handled by
826  *	the generic interface code. If not defined ioctl's return
827  *	not supported error code.
828  *
829  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
830  *	Used to set network devices bus interface parameters. This interface
831  *	is retained for legacy reason, new devices should use the bus
832  *	interface (PCI) for low level management.
833  *
834  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
835  *	Called when a user wants to change the Maximum Transfer Unit
836  *	of a device. If not defined, any request to change MTU will
837  *	will return an error.
838  *
839  * void (*ndo_tx_timeout)(struct net_device *dev);
840  *	Callback uses when the transmitter has not made any progress
841  *	for dev->watchdog ticks.
842  *
843  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
844  *                      struct rtnl_link_stats64 *storage);
845  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
846  *	Called when a user wants to get the network device usage
847  *	statistics. Drivers must do one of the following:
848  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
849  *	   rtnl_link_stats64 structure passed by the caller.
850  *	2. Define @ndo_get_stats to update a net_device_stats structure
851  *	   (which should normally be dev->stats) and return a pointer to
852  *	   it. The structure may be changed asynchronously only if each
853  *	   field is written atomically.
854  *	3. Update dev->stats asynchronously and atomically, and define
855  *	   neither operation.
856  *
857  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
858  *	If device support VLAN filtering this function is called when a
859  *	VLAN id is registered.
860  *
861  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
862  *	If device support VLAN filtering this function is called when a
863  *	VLAN id is unregistered.
864  *
865  * void (*ndo_poll_controller)(struct net_device *dev);
866  *
867  *	SR-IOV management functions.
868  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
869  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
870  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
871  *			  int max_tx_rate);
872  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
873  * int (*ndo_get_vf_config)(struct net_device *dev,
874  *			    int vf, struct ifla_vf_info *ivf);
875  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
876  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
877  *			  struct nlattr *port[]);
878  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
879  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
880  * 	Called to setup 'tc' number of traffic classes in the net device. This
881  * 	is always called from the stack with the rtnl lock held and netif tx
882  * 	queues stopped. This allows the netdevice to perform queue management
883  * 	safely.
884  *
885  *	Fiber Channel over Ethernet (FCoE) offload functions.
886  * int (*ndo_fcoe_enable)(struct net_device *dev);
887  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
888  *	so the underlying device can perform whatever needed configuration or
889  *	initialization to support acceleration of FCoE traffic.
890  *
891  * int (*ndo_fcoe_disable)(struct net_device *dev);
892  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
893  *	so the underlying device can perform whatever needed clean-ups to
894  *	stop supporting acceleration of FCoE traffic.
895  *
896  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
897  *			     struct scatterlist *sgl, unsigned int sgc);
898  *	Called when the FCoE Initiator wants to initialize an I/O that
899  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
900  *	perform necessary setup and returns 1 to indicate the device is set up
901  *	successfully to perform DDP on this I/O, otherwise this returns 0.
902  *
903  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
904  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
905  *	indicated by the FC exchange id 'xid', so the underlying device can
906  *	clean up and reuse resources for later DDP requests.
907  *
908  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
909  *			      struct scatterlist *sgl, unsigned int sgc);
910  *	Called when the FCoE Target wants to initialize an I/O that
911  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
912  *	perform necessary setup and returns 1 to indicate the device is set up
913  *	successfully to perform DDP on this I/O, otherwise this returns 0.
914  *
915  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
916  *			       struct netdev_fcoe_hbainfo *hbainfo);
917  *	Called when the FCoE Protocol stack wants information on the underlying
918  *	device. This information is utilized by the FCoE protocol stack to
919  *	register attributes with Fiber Channel management service as per the
920  *	FC-GS Fabric Device Management Information(FDMI) specification.
921  *
922  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
923  *	Called when the underlying device wants to override default World Wide
924  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
925  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
926  *	protocol stack to use.
927  *
928  *	RFS acceleration.
929  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
930  *			    u16 rxq_index, u32 flow_id);
931  *	Set hardware filter for RFS.  rxq_index is the target queue index;
932  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
933  *	Return the filter ID on success, or a negative error code.
934  *
935  *	Slave management functions (for bridge, bonding, etc).
936  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
937  *	Called to make another netdev an underling.
938  *
939  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
940  *	Called to release previously enslaved netdev.
941  *
942  *      Feature/offload setting functions.
943  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
944  *		netdev_features_t features);
945  *	Adjusts the requested feature flags according to device-specific
946  *	constraints, and returns the resulting flags. Must not modify
947  *	the device state.
948  *
949  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
950  *	Called to update device configuration to new features. Passed
951  *	feature set might be less than what was returned by ndo_fix_features()).
952  *	Must return >0 or -errno if it changed dev->features itself.
953  *
954  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
955  *		      struct net_device *dev,
956  *		      const unsigned char *addr, u16 vid, u16 flags)
957  *	Adds an FDB entry to dev for addr.
958  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
959  *		      struct net_device *dev,
960  *		      const unsigned char *addr, u16 vid)
961  *	Deletes the FDB entry from dev coresponding to addr.
962  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
963  *		       struct net_device *dev, struct net_device *filter_dev,
964  *		       int idx)
965  *	Used to add FDB entries to dump requests. Implementers should add
966  *	entries to skb and update idx with the number of entries.
967  *
968  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
969  *			     u16 flags)
970  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
971  *			     struct net_device *dev, u32 filter_mask)
972  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
973  *			     u16 flags);
974  *
975  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
976  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
977  *	which do not represent real hardware may define this to allow their
978  *	userspace components to manage their virtual carrier state. Devices
979  *	that determine carrier state from physical hardware properties (eg
980  *	network cables) or protocol-dependent mechanisms (eg
981  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
982  *
983  * int (*ndo_get_phys_port_id)(struct net_device *dev,
984  *			       struct netdev_phys_item_id *ppid);
985  *	Called to get ID of physical port of this device. If driver does
986  *	not implement this, it is assumed that the hw is not able to have
987  *	multiple net devices on single physical port.
988  *
989  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
990  *			      sa_family_t sa_family, __be16 port);
991  *	Called by vxlan to notiy a driver about the UDP port and socket
992  *	address family that vxlan is listnening to. It is called only when
993  *	a new port starts listening. The operation is protected by the
994  *	vxlan_net->sock_lock.
995  *
996  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
997  *			      sa_family_t sa_family, __be16 port);
998  *	Called by vxlan to notify the driver about a UDP port and socket
999  *	address family that vxlan is not listening to anymore. The operation
1000  *	is protected by the vxlan_net->sock_lock.
1001  *
1002  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1003  *				 struct net_device *dev)
1004  *	Called by upper layer devices to accelerate switching or other
1005  *	station functionality into hardware. 'pdev is the lowerdev
1006  *	to use for the offload and 'dev' is the net device that will
1007  *	back the offload. Returns a pointer to the private structure
1008  *	the upper layer will maintain.
1009  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1010  *	Called by upper layer device to delete the station created
1011  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1012  *	the station and priv is the structure returned by the add
1013  *	operation.
1014  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1015  *				      struct net_device *dev,
1016  *				      void *priv);
1017  *	Callback to use for xmit over the accelerated station. This
1018  *	is used in place of ndo_start_xmit on accelerated net
1019  *	devices.
1020  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1021  *					    struct net_device *dev
1022  *					    netdev_features_t features);
1023  *	Called by core transmit path to determine if device is capable of
1024  *	performing offload operations on a given packet. This is to give
1025  *	the device an opportunity to implement any restrictions that cannot
1026  *	be otherwise expressed by feature flags. The check is called with
1027  *	the set of features that the stack has calculated and it returns
1028  *	those the driver believes to be appropriate.
1029  *
1030  * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1031  *				   struct netdev_phys_item_id *psid);
1032  *	Called to get an ID of the switch chip this port is part of.
1033  *	If driver implements this, it indicates that it represents a port
1034  *	of a switch chip.
1035  * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1036  *	Called to notify switch device port of bridge port STP
1037  *	state change.
1038  */
1039 struct net_device_ops {
1040 	int			(*ndo_init)(struct net_device *dev);
1041 	void			(*ndo_uninit)(struct net_device *dev);
1042 	int			(*ndo_open)(struct net_device *dev);
1043 	int			(*ndo_stop)(struct net_device *dev);
1044 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1045 						   struct net_device *dev);
1046 	u16			(*ndo_select_queue)(struct net_device *dev,
1047 						    struct sk_buff *skb,
1048 						    void *accel_priv,
1049 						    select_queue_fallback_t fallback);
1050 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1051 						       int flags);
1052 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1053 	int			(*ndo_set_mac_address)(struct net_device *dev,
1054 						       void *addr);
1055 	int			(*ndo_validate_addr)(struct net_device *dev);
1056 	int			(*ndo_do_ioctl)(struct net_device *dev,
1057 					        struct ifreq *ifr, int cmd);
1058 	int			(*ndo_set_config)(struct net_device *dev,
1059 					          struct ifmap *map);
1060 	int			(*ndo_change_mtu)(struct net_device *dev,
1061 						  int new_mtu);
1062 	int			(*ndo_neigh_setup)(struct net_device *dev,
1063 						   struct neigh_parms *);
1064 	void			(*ndo_tx_timeout) (struct net_device *dev);
1065 
1066 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1067 						     struct rtnl_link_stats64 *storage);
1068 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1069 
1070 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1071 						       __be16 proto, u16 vid);
1072 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1073 						        __be16 proto, u16 vid);
1074 #ifdef CONFIG_NET_POLL_CONTROLLER
1075 	void                    (*ndo_poll_controller)(struct net_device *dev);
1076 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1077 						     struct netpoll_info *info);
1078 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1079 #endif
1080 #ifdef CONFIG_NET_RX_BUSY_POLL
1081 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1082 #endif
1083 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1084 						  int queue, u8 *mac);
1085 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1086 						   int queue, u16 vlan, u8 qos);
1087 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1088 						   int vf, int min_tx_rate,
1089 						   int max_tx_rate);
1090 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1091 						       int vf, bool setting);
1092 	int			(*ndo_get_vf_config)(struct net_device *dev,
1093 						     int vf,
1094 						     struct ifla_vf_info *ivf);
1095 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1096 							 int vf, int link_state);
1097 	int			(*ndo_set_vf_port)(struct net_device *dev,
1098 						   int vf,
1099 						   struct nlattr *port[]);
1100 	int			(*ndo_get_vf_port)(struct net_device *dev,
1101 						   int vf, struct sk_buff *skb);
1102 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1103 #if IS_ENABLED(CONFIG_FCOE)
1104 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1105 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1106 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1107 						      u16 xid,
1108 						      struct scatterlist *sgl,
1109 						      unsigned int sgc);
1110 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1111 						     u16 xid);
1112 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1113 						       u16 xid,
1114 						       struct scatterlist *sgl,
1115 						       unsigned int sgc);
1116 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1117 							struct netdev_fcoe_hbainfo *hbainfo);
1118 #endif
1119 
1120 #if IS_ENABLED(CONFIG_LIBFCOE)
1121 #define NETDEV_FCOE_WWNN 0
1122 #define NETDEV_FCOE_WWPN 1
1123 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1124 						    u64 *wwn, int type);
1125 #endif
1126 
1127 #ifdef CONFIG_RFS_ACCEL
1128 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1129 						     const struct sk_buff *skb,
1130 						     u16 rxq_index,
1131 						     u32 flow_id);
1132 #endif
1133 	int			(*ndo_add_slave)(struct net_device *dev,
1134 						 struct net_device *slave_dev);
1135 	int			(*ndo_del_slave)(struct net_device *dev,
1136 						 struct net_device *slave_dev);
1137 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1138 						    netdev_features_t features);
1139 	int			(*ndo_set_features)(struct net_device *dev,
1140 						    netdev_features_t features);
1141 	int			(*ndo_neigh_construct)(struct neighbour *n);
1142 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1143 
1144 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1145 					       struct nlattr *tb[],
1146 					       struct net_device *dev,
1147 					       const unsigned char *addr,
1148 					       u16 vid,
1149 					       u16 flags);
1150 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1151 					       struct nlattr *tb[],
1152 					       struct net_device *dev,
1153 					       const unsigned char *addr,
1154 					       u16 vid);
1155 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1156 						struct netlink_callback *cb,
1157 						struct net_device *dev,
1158 						struct net_device *filter_dev,
1159 						int idx);
1160 
1161 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1162 						      struct nlmsghdr *nlh,
1163 						      u16 flags);
1164 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1165 						      u32 pid, u32 seq,
1166 						      struct net_device *dev,
1167 						      u32 filter_mask);
1168 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1169 						      struct nlmsghdr *nlh,
1170 						      u16 flags);
1171 	int			(*ndo_change_carrier)(struct net_device *dev,
1172 						      bool new_carrier);
1173 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1174 							struct netdev_phys_item_id *ppid);
1175 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1176 						      sa_family_t sa_family,
1177 						      __be16 port);
1178 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1179 						      sa_family_t sa_family,
1180 						      __be16 port);
1181 
1182 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1183 							struct net_device *dev);
1184 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1185 							void *priv);
1186 
1187 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1188 							struct net_device *dev,
1189 							void *priv);
1190 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1191 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1192 						       struct net_device *dev,
1193 						       netdev_features_t features);
1194 #ifdef CONFIG_NET_SWITCHDEV
1195 	int			(*ndo_switch_parent_id_get)(struct net_device *dev,
1196 							    struct netdev_phys_item_id *psid);
1197 	int			(*ndo_switch_port_stp_update)(struct net_device *dev,
1198 							      u8 state);
1199 #endif
1200 };
1201 
1202 /**
1203  * enum net_device_priv_flags - &struct net_device priv_flags
1204  *
1205  * These are the &struct net_device, they are only set internally
1206  * by drivers and used in the kernel. These flags are invisible to
1207  * userspace, this means that the order of these flags can change
1208  * during any kernel release.
1209  *
1210  * You should have a pretty good reason to be extending these flags.
1211  *
1212  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1213  * @IFF_EBRIDGE: Ethernet bridging device
1214  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1215  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1216  * @IFF_MASTER_ALB: bonding master, balance-alb
1217  * @IFF_BONDING: bonding master or slave
1218  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1219  * @IFF_ISATAP: ISATAP interface (RFC4214)
1220  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1221  * @IFF_WAN_HDLC: WAN HDLC device
1222  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1223  *	release skb->dst
1224  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1225  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1226  * @IFF_MACVLAN_PORT: device used as macvlan port
1227  * @IFF_BRIDGE_PORT: device used as bridge port
1228  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1229  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1230  * @IFF_UNICAST_FLT: Supports unicast filtering
1231  * @IFF_TEAM_PORT: device used as team port
1232  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1233  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1234  *	change when it's running
1235  * @IFF_MACVLAN: Macvlan device
1236  */
1237 enum netdev_priv_flags {
1238 	IFF_802_1Q_VLAN			= 1<<0,
1239 	IFF_EBRIDGE			= 1<<1,
1240 	IFF_SLAVE_INACTIVE		= 1<<2,
1241 	IFF_MASTER_8023AD		= 1<<3,
1242 	IFF_MASTER_ALB			= 1<<4,
1243 	IFF_BONDING			= 1<<5,
1244 	IFF_SLAVE_NEEDARP		= 1<<6,
1245 	IFF_ISATAP			= 1<<7,
1246 	IFF_MASTER_ARPMON		= 1<<8,
1247 	IFF_WAN_HDLC			= 1<<9,
1248 	IFF_XMIT_DST_RELEASE		= 1<<10,
1249 	IFF_DONT_BRIDGE			= 1<<11,
1250 	IFF_DISABLE_NETPOLL		= 1<<12,
1251 	IFF_MACVLAN_PORT		= 1<<13,
1252 	IFF_BRIDGE_PORT			= 1<<14,
1253 	IFF_OVS_DATAPATH		= 1<<15,
1254 	IFF_TX_SKB_SHARING		= 1<<16,
1255 	IFF_UNICAST_FLT			= 1<<17,
1256 	IFF_TEAM_PORT			= 1<<18,
1257 	IFF_SUPP_NOFCS			= 1<<19,
1258 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1259 	IFF_MACVLAN			= 1<<21,
1260 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1261 	IFF_IPVLAN_MASTER		= 1<<23,
1262 	IFF_IPVLAN_SLAVE		= 1<<24,
1263 };
1264 
1265 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1266 #define IFF_EBRIDGE			IFF_EBRIDGE
1267 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1268 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1269 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1270 #define IFF_BONDING			IFF_BONDING
1271 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1272 #define IFF_ISATAP			IFF_ISATAP
1273 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1274 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1275 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1276 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1277 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1278 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1279 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1280 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1281 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1282 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1283 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1284 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1285 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1286 #define IFF_MACVLAN			IFF_MACVLAN
1287 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1288 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1289 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1290 
1291 /**
1292  *	struct net_device - The DEVICE structure.
1293  *		Actually, this whole structure is a big mistake.  It mixes I/O
1294  *		data with strictly "high-level" data, and it has to know about
1295  *		almost every data structure used in the INET module.
1296  *
1297  *	@name:	This is the first field of the "visible" part of this structure
1298  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1299  *	 	of the interface.
1300  *
1301  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1302  *	@ifalias:	SNMP alias
1303  *	@mem_end:	Shared memory end
1304  *	@mem_start:	Shared memory start
1305  *	@base_addr:	Device I/O address
1306  *	@irq:		Device IRQ number
1307  *
1308  *	@state:		Generic network queuing layer state, see netdev_state_t
1309  *	@dev_list:	The global list of network devices
1310  *	@napi_list:	List entry, that is used for polling napi devices
1311  *	@unreg_list:	List entry, that is used, when we are unregistering the
1312  *			device, see the function unregister_netdev
1313  *	@close_list:	List entry, that is used, when we are closing the device
1314  *
1315  *	@adj_list:	Directly linked devices, like slaves for bonding
1316  *	@all_adj_list:	All linked devices, *including* neighbours
1317  *	@features:	Currently active device features
1318  *	@hw_features:	User-changeable features
1319  *
1320  *	@wanted_features:	User-requested features
1321  *	@vlan_features:		Mask of features inheritable by VLAN devices
1322  *
1323  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1324  *				This field indicates what encapsulation
1325  *				offloads the hardware is capable of doing,
1326  *				and drivers will need to set them appropriately.
1327  *
1328  *	@mpls_features:	Mask of features inheritable by MPLS
1329  *
1330  *	@ifindex:	interface index
1331  *	@iflink:	unique device identifier
1332  *
1333  *	@stats:		Statistics struct, which was left as a legacy, use
1334  *			rtnl_link_stats64 instead
1335  *
1336  *	@rx_dropped:	Dropped packets by core network,
1337  *			do not use this in drivers
1338  *	@tx_dropped:	Dropped packets by core network,
1339  *			do not use this in drivers
1340  *
1341  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1342  *
1343  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1344  *				instead of ioctl,
1345  *				see <net/iw_handler.h> for details.
1346  *	@wireless_data:	Instance data managed by the core of wireless extensions
1347  *
1348  *	@netdev_ops:	Includes several pointers to callbacks,
1349  *			if one wants to override the ndo_*() functions
1350  *	@ethtool_ops:	Management operations
1351  *	@fwd_ops:	Management operations
1352  *	@header_ops:	Includes callbacks for creating,parsing,rebuilding,etc
1353  *			of Layer 2 headers.
1354  *
1355  *	@flags:		Interface flags (a la BSD)
1356  *	@priv_flags:	Like 'flags' but invisible to userspace,
1357  *			see if.h for the definitions
1358  *	@gflags:	Global flags ( kept as legacy )
1359  *	@padded:	How much padding added by alloc_netdev()
1360  *	@operstate:	RFC2863 operstate
1361  *	@link_mode:	Mapping policy to operstate
1362  *	@if_port:	Selectable AUI, TP, ...
1363  *	@dma:		DMA channel
1364  *	@mtu:		Interface MTU value
1365  *	@type:		Interface hardware type
1366  *	@hard_header_len: Hardware header length
1367  *
1368  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1369  *			  cases can this be guaranteed
1370  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1371  *			  cases can this be guaranteed. Some cases also use
1372  *			  LL_MAX_HEADER instead to allocate the skb
1373  *
1374  *	interface address info:
1375  *
1376  * 	@perm_addr:		Permanent hw address
1377  * 	@addr_assign_type:	Hw address assignment type
1378  * 	@addr_len:		Hardware address length
1379  * 	@neigh_priv_len;	Used in neigh_alloc(),
1380  * 				initialized only in atm/clip.c
1381  * 	@dev_id:		Used to differentiate devices that share
1382  * 				the same link layer address
1383  * 	@dev_port:		Used to differentiate devices that share
1384  * 				the same function
1385  *	@addr_list_lock:	XXX: need comments on this one
1386  *	@uc:			unicast mac addresses
1387  *	@mc:			multicast mac addresses
1388  *	@dev_addrs:		list of device hw addresses
1389  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1390  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1391  *				has been enabled due to the need to listen to
1392  *				additional unicast addresses in a device that
1393  *				does not implement ndo_set_rx_mode()
1394  *	@promiscuity:		Number of times, the NIC is told to work in
1395  *				Promiscuous mode, if it becomes 0 the NIC will
1396  *				exit from working in Promiscuous mode
1397  *	@allmulti:		Counter, enables or disables allmulticast mode
1398  *
1399  *	@vlan_info:	VLAN info
1400  *	@dsa_ptr:	dsa specific data
1401  *	@tipc_ptr:	TIPC specific data
1402  *	@atalk_ptr:	AppleTalk link
1403  *	@ip_ptr:	IPv4 specific data
1404  *	@dn_ptr:	DECnet specific data
1405  *	@ip6_ptr:	IPv6 specific data
1406  *	@ax25_ptr:	AX.25 specific data
1407  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1408  *
1409  *	@last_rx:	Time of last Rx
1410  *	@dev_addr:	Hw address (before bcast,
1411  *			because most packets are unicast)
1412  *
1413  *	@_rx:			Array of RX queues
1414  *	@num_rx_queues:		Number of RX queues
1415  *				allocated at register_netdev() time
1416  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1417  *
1418  *	@rx_handler:		handler for received packets
1419  *	@rx_handler_data: 	XXX: need comments on this one
1420  *	@ingress_queue:		XXX: need comments on this one
1421  *	@broadcast:		hw bcast address
1422  *
1423  *	@_tx:			Array of TX queues
1424  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1425  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1426  *	@qdisc:			Root qdisc from userspace point of view
1427  *	@tx_queue_len:		Max frames per queue allowed
1428  *	@tx_global_lock: 	XXX: need comments on this one
1429  *
1430  *	@xps_maps:	XXX: need comments on this one
1431  *
1432  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1433  *			indexed by RX queue number. Assigned by driver.
1434  *			This must only be set if the ndo_rx_flow_steer
1435  *			operation is defined
1436  *
1437  *	@trans_start:		Time (in jiffies) of last Tx
1438  *	@watchdog_timeo:	Represents the timeout that is used by
1439  *				the watchdog ( see dev_watchdog() )
1440  *	@watchdog_timer:	List of timers
1441  *
1442  *	@pcpu_refcnt:		Number of references to this device
1443  *	@todo_list:		Delayed register/unregister
1444  *	@index_hlist:		Device index hash chain
1445  *	@link_watch_list:	XXX: need comments on this one
1446  *
1447  *	@reg_state:		Register/unregister state machine
1448  *	@dismantle:		Device is going to be freed
1449  *	@rtnl_link_state:	This enum represents the phases of creating
1450  *				a new link
1451  *
1452  *	@destructor:		Called from unregister,
1453  *				can be used to call free_netdev
1454  *	@npinfo:		XXX: need comments on this one
1455  * 	@nd_net:		Network namespace this network device is inside
1456  *
1457  * 	@ml_priv:	Mid-layer private
1458  * 	@lstats:	Loopback statistics
1459  * 	@tstats:	Tunnel statistics
1460  * 	@dstats:	Dummy statistics
1461  * 	@vstats:	Virtual ethernet statistics
1462  *
1463  *	@garp_port:	GARP
1464  *	@mrp_port:	MRP
1465  *
1466  *	@dev:		Class/net/name entry
1467  *	@sysfs_groups:	Space for optional device, statistics and wireless
1468  *			sysfs groups
1469  *
1470  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1471  *	@rtnl_link_ops:	Rtnl_link_ops
1472  *
1473  *	@gso_max_size:	Maximum size of generic segmentation offload
1474  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1475  *			NIC for GSO
1476  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1477  *			NIC for GSO
1478  *
1479  *	@dcbnl_ops:	Data Center Bridging netlink ops
1480  *	@num_tc:	Number of traffic classes in the net device
1481  *	@tc_to_txq:	XXX: need comments on this one
1482  *	@prio_tc_map	XXX: need comments on this one
1483  *
1484  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1485  *
1486  *	@priomap:	XXX: need comments on this one
1487  *	@phydev:	Physical device may attach itself
1488  *			for hardware timestamping
1489  *
1490  *	@qdisc_tx_busylock:	XXX: need comments on this one
1491  *
1492  *	@group:		The group, that the device belongs to
1493  *	@pm_qos_req:	Power Management QoS object
1494  *
1495  *	FIXME: cleanup struct net_device such that network protocol info
1496  *	moves out.
1497  */
1498 
1499 struct net_device {
1500 	char			name[IFNAMSIZ];
1501 	struct hlist_node	name_hlist;
1502 	char 			*ifalias;
1503 	/*
1504 	 *	I/O specific fields
1505 	 *	FIXME: Merge these and struct ifmap into one
1506 	 */
1507 	unsigned long		mem_end;
1508 	unsigned long		mem_start;
1509 	unsigned long		base_addr;
1510 	int			irq;
1511 
1512 	/*
1513 	 *	Some hardware also needs these fields (state,dev_list,
1514 	 *	napi_list,unreg_list,close_list) but they are not
1515 	 *	part of the usual set specified in Space.c.
1516 	 */
1517 
1518 	unsigned long		state;
1519 
1520 	struct list_head	dev_list;
1521 	struct list_head	napi_list;
1522 	struct list_head	unreg_list;
1523 	struct list_head	close_list;
1524 	struct list_head	ptype_all;
1525 	struct list_head	ptype_specific;
1526 
1527 	struct {
1528 		struct list_head upper;
1529 		struct list_head lower;
1530 	} adj_list;
1531 
1532 	struct {
1533 		struct list_head upper;
1534 		struct list_head lower;
1535 	} all_adj_list;
1536 
1537 	netdev_features_t	features;
1538 	netdev_features_t	hw_features;
1539 	netdev_features_t	wanted_features;
1540 	netdev_features_t	vlan_features;
1541 	netdev_features_t	hw_enc_features;
1542 	netdev_features_t	mpls_features;
1543 
1544 	int			ifindex;
1545 	int			iflink;
1546 
1547 	struct net_device_stats	stats;
1548 
1549 	atomic_long_t		rx_dropped;
1550 	atomic_long_t		tx_dropped;
1551 
1552 	atomic_t		carrier_changes;
1553 
1554 #ifdef CONFIG_WIRELESS_EXT
1555 	const struct iw_handler_def *	wireless_handlers;
1556 	struct iw_public_data *	wireless_data;
1557 #endif
1558 	const struct net_device_ops *netdev_ops;
1559 	const struct ethtool_ops *ethtool_ops;
1560 	const struct forwarding_accel_ops *fwd_ops;
1561 
1562 	const struct header_ops *header_ops;
1563 
1564 	unsigned int		flags;
1565 	unsigned int		priv_flags;
1566 
1567 	unsigned short		gflags;
1568 	unsigned short		padded;
1569 
1570 	unsigned char		operstate;
1571 	unsigned char		link_mode;
1572 
1573 	unsigned char		if_port;
1574 	unsigned char		dma;
1575 
1576 	unsigned int		mtu;
1577 	unsigned short		type;
1578 	unsigned short		hard_header_len;
1579 
1580 	unsigned short		needed_headroom;
1581 	unsigned short		needed_tailroom;
1582 
1583 	/* Interface address info. */
1584 	unsigned char		perm_addr[MAX_ADDR_LEN];
1585 	unsigned char		addr_assign_type;
1586 	unsigned char		addr_len;
1587 	unsigned short		neigh_priv_len;
1588 	unsigned short          dev_id;
1589 	unsigned short          dev_port;
1590 	spinlock_t		addr_list_lock;
1591 	struct netdev_hw_addr_list	uc;
1592 	struct netdev_hw_addr_list	mc;
1593 	struct netdev_hw_addr_list	dev_addrs;
1594 
1595 #ifdef CONFIG_SYSFS
1596 	struct kset		*queues_kset;
1597 #endif
1598 
1599 	unsigned char		name_assign_type;
1600 
1601 	bool			uc_promisc;
1602 	unsigned int		promiscuity;
1603 	unsigned int		allmulti;
1604 
1605 
1606 	/* Protocol specific pointers */
1607 
1608 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1609 	struct vlan_info __rcu	*vlan_info;
1610 #endif
1611 #if IS_ENABLED(CONFIG_NET_DSA)
1612 	struct dsa_switch_tree	*dsa_ptr;
1613 #endif
1614 #if IS_ENABLED(CONFIG_TIPC)
1615 	struct tipc_bearer __rcu *tipc_ptr;
1616 #endif
1617 	void 			*atalk_ptr;
1618 	struct in_device __rcu	*ip_ptr;
1619 	struct dn_dev __rcu     *dn_ptr;
1620 	struct inet6_dev __rcu	*ip6_ptr;
1621 	void			*ax25_ptr;
1622 	struct wireless_dev	*ieee80211_ptr;
1623 	struct wpan_dev		*ieee802154_ptr;
1624 
1625 /*
1626  * Cache lines mostly used on receive path (including eth_type_trans())
1627  */
1628 	unsigned long		last_rx;
1629 
1630 	/* Interface address info used in eth_type_trans() */
1631 	unsigned char		*dev_addr;
1632 
1633 
1634 #ifdef CONFIG_SYSFS
1635 	struct netdev_rx_queue	*_rx;
1636 
1637 	unsigned int		num_rx_queues;
1638 	unsigned int		real_num_rx_queues;
1639 
1640 #endif
1641 
1642 	unsigned long		gro_flush_timeout;
1643 	rx_handler_func_t __rcu	*rx_handler;
1644 	void __rcu		*rx_handler_data;
1645 
1646 	struct netdev_queue __rcu *ingress_queue;
1647 	unsigned char		broadcast[MAX_ADDR_LEN];
1648 
1649 
1650 /*
1651  * Cache lines mostly used on transmit path
1652  */
1653 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1654 	unsigned int		num_tx_queues;
1655 	unsigned int		real_num_tx_queues;
1656 	struct Qdisc		*qdisc;
1657 	unsigned long		tx_queue_len;
1658 	spinlock_t		tx_global_lock;
1659 
1660 #ifdef CONFIG_XPS
1661 	struct xps_dev_maps __rcu *xps_maps;
1662 #endif
1663 #ifdef CONFIG_RFS_ACCEL
1664 	struct cpu_rmap		*rx_cpu_rmap;
1665 #endif
1666 
1667 	/* These may be needed for future network-power-down code. */
1668 
1669 	/*
1670 	 * trans_start here is expensive for high speed devices on SMP,
1671 	 * please use netdev_queue->trans_start instead.
1672 	 */
1673 	unsigned long		trans_start;
1674 
1675 	int			watchdog_timeo;
1676 	struct timer_list	watchdog_timer;
1677 
1678 	int __percpu		*pcpu_refcnt;
1679 	struct list_head	todo_list;
1680 
1681 	struct hlist_node	index_hlist;
1682 	struct list_head	link_watch_list;
1683 
1684 	enum { NETREG_UNINITIALIZED=0,
1685 	       NETREG_REGISTERED,	/* completed register_netdevice */
1686 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1687 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1688 	       NETREG_RELEASED,		/* called free_netdev */
1689 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1690 	} reg_state:8;
1691 
1692 	bool dismantle;
1693 
1694 	enum {
1695 		RTNL_LINK_INITIALIZED,
1696 		RTNL_LINK_INITIALIZING,
1697 	} rtnl_link_state:16;
1698 
1699 	void (*destructor)(struct net_device *dev);
1700 
1701 #ifdef CONFIG_NETPOLL
1702 	struct netpoll_info __rcu	*npinfo;
1703 #endif
1704 
1705 #ifdef CONFIG_NET_NS
1706 	struct net		*nd_net;
1707 #endif
1708 
1709 	/* mid-layer private */
1710 	union {
1711 		void					*ml_priv;
1712 		struct pcpu_lstats __percpu		*lstats;
1713 		struct pcpu_sw_netstats __percpu	*tstats;
1714 		struct pcpu_dstats __percpu		*dstats;
1715 		struct pcpu_vstats __percpu		*vstats;
1716 	};
1717 
1718 	struct garp_port __rcu	*garp_port;
1719 	struct mrp_port __rcu	*mrp_port;
1720 
1721 	struct device	dev;
1722 	const struct attribute_group *sysfs_groups[4];
1723 	const struct attribute_group *sysfs_rx_queue_group;
1724 
1725 	const struct rtnl_link_ops *rtnl_link_ops;
1726 
1727 	/* for setting kernel sock attribute on TCP connection setup */
1728 #define GSO_MAX_SIZE		65536
1729 	unsigned int		gso_max_size;
1730 #define GSO_MAX_SEGS		65535
1731 	u16			gso_max_segs;
1732 	u16			gso_min_segs;
1733 #ifdef CONFIG_DCB
1734 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1735 #endif
1736 	u8 num_tc;
1737 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1738 	u8 prio_tc_map[TC_BITMASK + 1];
1739 
1740 #if IS_ENABLED(CONFIG_FCOE)
1741 	unsigned int		fcoe_ddp_xid;
1742 #endif
1743 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1744 	struct netprio_map __rcu *priomap;
1745 #endif
1746 	struct phy_device *phydev;
1747 	struct lock_class_key *qdisc_tx_busylock;
1748 	int group;
1749 	struct pm_qos_request	pm_qos_req;
1750 };
1751 #define to_net_dev(d) container_of(d, struct net_device, dev)
1752 
1753 #define	NETDEV_ALIGN		32
1754 
1755 static inline
1756 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1757 {
1758 	return dev->prio_tc_map[prio & TC_BITMASK];
1759 }
1760 
1761 static inline
1762 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1763 {
1764 	if (tc >= dev->num_tc)
1765 		return -EINVAL;
1766 
1767 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1768 	return 0;
1769 }
1770 
1771 static inline
1772 void netdev_reset_tc(struct net_device *dev)
1773 {
1774 	dev->num_tc = 0;
1775 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1776 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1777 }
1778 
1779 static inline
1780 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1781 {
1782 	if (tc >= dev->num_tc)
1783 		return -EINVAL;
1784 
1785 	dev->tc_to_txq[tc].count = count;
1786 	dev->tc_to_txq[tc].offset = offset;
1787 	return 0;
1788 }
1789 
1790 static inline
1791 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1792 {
1793 	if (num_tc > TC_MAX_QUEUE)
1794 		return -EINVAL;
1795 
1796 	dev->num_tc = num_tc;
1797 	return 0;
1798 }
1799 
1800 static inline
1801 int netdev_get_num_tc(struct net_device *dev)
1802 {
1803 	return dev->num_tc;
1804 }
1805 
1806 static inline
1807 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1808 					 unsigned int index)
1809 {
1810 	return &dev->_tx[index];
1811 }
1812 
1813 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1814 						    const struct sk_buff *skb)
1815 {
1816 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1817 }
1818 
1819 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1820 					    void (*f)(struct net_device *,
1821 						      struct netdev_queue *,
1822 						      void *),
1823 					    void *arg)
1824 {
1825 	unsigned int i;
1826 
1827 	for (i = 0; i < dev->num_tx_queues; i++)
1828 		f(dev, &dev->_tx[i], arg);
1829 }
1830 
1831 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1832 				    struct sk_buff *skb,
1833 				    void *accel_priv);
1834 
1835 /*
1836  * Net namespace inlines
1837  */
1838 static inline
1839 struct net *dev_net(const struct net_device *dev)
1840 {
1841 	return read_pnet(&dev->nd_net);
1842 }
1843 
1844 static inline
1845 void dev_net_set(struct net_device *dev, struct net *net)
1846 {
1847 #ifdef CONFIG_NET_NS
1848 	release_net(dev->nd_net);
1849 	dev->nd_net = hold_net(net);
1850 #endif
1851 }
1852 
1853 static inline bool netdev_uses_dsa(struct net_device *dev)
1854 {
1855 #if IS_ENABLED(CONFIG_NET_DSA)
1856 	if (dev->dsa_ptr != NULL)
1857 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1858 #endif
1859 	return false;
1860 }
1861 
1862 /**
1863  *	netdev_priv - access network device private data
1864  *	@dev: network device
1865  *
1866  * Get network device private data
1867  */
1868 static inline void *netdev_priv(const struct net_device *dev)
1869 {
1870 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1871 }
1872 
1873 /* Set the sysfs physical device reference for the network logical device
1874  * if set prior to registration will cause a symlink during initialization.
1875  */
1876 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1877 
1878 /* Set the sysfs device type for the network logical device to allow
1879  * fine-grained identification of different network device types. For
1880  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1881  */
1882 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1883 
1884 /* Default NAPI poll() weight
1885  * Device drivers are strongly advised to not use bigger value
1886  */
1887 #define NAPI_POLL_WEIGHT 64
1888 
1889 /**
1890  *	netif_napi_add - initialize a napi context
1891  *	@dev:  network device
1892  *	@napi: napi context
1893  *	@poll: polling function
1894  *	@weight: default weight
1895  *
1896  * netif_napi_add() must be used to initialize a napi context prior to calling
1897  * *any* of the other napi related functions.
1898  */
1899 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1900 		    int (*poll)(struct napi_struct *, int), int weight);
1901 
1902 /**
1903  *  netif_napi_del - remove a napi context
1904  *  @napi: napi context
1905  *
1906  *  netif_napi_del() removes a napi context from the network device napi list
1907  */
1908 void netif_napi_del(struct napi_struct *napi);
1909 
1910 struct napi_gro_cb {
1911 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1912 	void *frag0;
1913 
1914 	/* Length of frag0. */
1915 	unsigned int frag0_len;
1916 
1917 	/* This indicates where we are processing relative to skb->data. */
1918 	int data_offset;
1919 
1920 	/* This is non-zero if the packet cannot be merged with the new skb. */
1921 	u16	flush;
1922 
1923 	/* Save the IP ID here and check when we get to the transport layer */
1924 	u16	flush_id;
1925 
1926 	/* Number of segments aggregated. */
1927 	u16	count;
1928 
1929 	/* Start offset for remote checksum offload */
1930 	u16	gro_remcsum_start;
1931 
1932 	/* jiffies when first packet was created/queued */
1933 	unsigned long age;
1934 
1935 	/* Used in ipv6_gro_receive() and foo-over-udp */
1936 	u16	proto;
1937 
1938 	/* This is non-zero if the packet may be of the same flow. */
1939 	u8	same_flow:1;
1940 
1941 	/* Used in udp_gro_receive */
1942 	u8	udp_mark:1;
1943 
1944 	/* GRO checksum is valid */
1945 	u8	csum_valid:1;
1946 
1947 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1948 	u8	csum_cnt:3;
1949 
1950 	/* Free the skb? */
1951 	u8	free:2;
1952 #define NAPI_GRO_FREE		  1
1953 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1954 
1955 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1956 	u8	is_ipv6:1;
1957 
1958 	/* 7 bit hole */
1959 
1960 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1961 	__wsum	csum;
1962 
1963 	/* used in skb_gro_receive() slow path */
1964 	struct sk_buff *last;
1965 };
1966 
1967 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1968 
1969 struct packet_type {
1970 	__be16			type;	/* This is really htons(ether_type). */
1971 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1972 	int			(*func) (struct sk_buff *,
1973 					 struct net_device *,
1974 					 struct packet_type *,
1975 					 struct net_device *);
1976 	bool			(*id_match)(struct packet_type *ptype,
1977 					    struct sock *sk);
1978 	void			*af_packet_priv;
1979 	struct list_head	list;
1980 };
1981 
1982 struct offload_callbacks {
1983 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1984 						netdev_features_t features);
1985 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1986 						 struct sk_buff *skb);
1987 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1988 };
1989 
1990 struct packet_offload {
1991 	__be16			 type;	/* This is really htons(ether_type). */
1992 	struct offload_callbacks callbacks;
1993 	struct list_head	 list;
1994 };
1995 
1996 struct udp_offload;
1997 
1998 struct udp_offload_callbacks {
1999 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2000 						 struct sk_buff *skb,
2001 						 struct udp_offload *uoff);
2002 	int			(*gro_complete)(struct sk_buff *skb,
2003 						int nhoff,
2004 						struct udp_offload *uoff);
2005 };
2006 
2007 struct udp_offload {
2008 	__be16			 port;
2009 	u8			 ipproto;
2010 	struct udp_offload_callbacks callbacks;
2011 };
2012 
2013 /* often modified stats are per cpu, other are shared (netdev->stats) */
2014 struct pcpu_sw_netstats {
2015 	u64     rx_packets;
2016 	u64     rx_bytes;
2017 	u64     tx_packets;
2018 	u64     tx_bytes;
2019 	struct u64_stats_sync   syncp;
2020 };
2021 
2022 #define netdev_alloc_pcpu_stats(type)				\
2023 ({								\
2024 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2025 	if (pcpu_stats)	{					\
2026 		int i;						\
2027 		for_each_possible_cpu(i) {			\
2028 			typeof(type) *stat;			\
2029 			stat = per_cpu_ptr(pcpu_stats, i);	\
2030 			u64_stats_init(&stat->syncp);		\
2031 		}						\
2032 	}							\
2033 	pcpu_stats;						\
2034 })
2035 
2036 #include <linux/notifier.h>
2037 
2038 /* netdevice notifier chain. Please remember to update the rtnetlink
2039  * notification exclusion list in rtnetlink_event() when adding new
2040  * types.
2041  */
2042 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2043 #define NETDEV_DOWN	0x0002
2044 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2045 				   detected a hardware crash and restarted
2046 				   - we can use this eg to kick tcp sessions
2047 				   once done */
2048 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2049 #define NETDEV_REGISTER 0x0005
2050 #define NETDEV_UNREGISTER	0x0006
2051 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2052 #define NETDEV_CHANGEADDR	0x0008
2053 #define NETDEV_GOING_DOWN	0x0009
2054 #define NETDEV_CHANGENAME	0x000A
2055 #define NETDEV_FEAT_CHANGE	0x000B
2056 #define NETDEV_BONDING_FAILOVER 0x000C
2057 #define NETDEV_PRE_UP		0x000D
2058 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2059 #define NETDEV_POST_TYPE_CHANGE	0x000F
2060 #define NETDEV_POST_INIT	0x0010
2061 #define NETDEV_UNREGISTER_FINAL 0x0011
2062 #define NETDEV_RELEASE		0x0012
2063 #define NETDEV_NOTIFY_PEERS	0x0013
2064 #define NETDEV_JOIN		0x0014
2065 #define NETDEV_CHANGEUPPER	0x0015
2066 #define NETDEV_RESEND_IGMP	0x0016
2067 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2068 #define NETDEV_CHANGEINFODATA	0x0018
2069 #define NETDEV_BONDING_INFO	0x0019
2070 
2071 int register_netdevice_notifier(struct notifier_block *nb);
2072 int unregister_netdevice_notifier(struct notifier_block *nb);
2073 
2074 struct netdev_notifier_info {
2075 	struct net_device *dev;
2076 };
2077 
2078 struct netdev_notifier_change_info {
2079 	struct netdev_notifier_info info; /* must be first */
2080 	unsigned int flags_changed;
2081 };
2082 
2083 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2084 					     struct net_device *dev)
2085 {
2086 	info->dev = dev;
2087 }
2088 
2089 static inline struct net_device *
2090 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2091 {
2092 	return info->dev;
2093 }
2094 
2095 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2096 
2097 
2098 extern rwlock_t				dev_base_lock;		/* Device list lock */
2099 
2100 #define for_each_netdev(net, d)		\
2101 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2102 #define for_each_netdev_reverse(net, d)	\
2103 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2104 #define for_each_netdev_rcu(net, d)		\
2105 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2106 #define for_each_netdev_safe(net, d, n)	\
2107 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2108 #define for_each_netdev_continue(net, d)		\
2109 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2110 #define for_each_netdev_continue_rcu(net, d)		\
2111 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2112 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2113 		for_each_netdev_rcu(&init_net, slave)	\
2114 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2115 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2116 
2117 static inline struct net_device *next_net_device(struct net_device *dev)
2118 {
2119 	struct list_head *lh;
2120 	struct net *net;
2121 
2122 	net = dev_net(dev);
2123 	lh = dev->dev_list.next;
2124 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2125 }
2126 
2127 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2128 {
2129 	struct list_head *lh;
2130 	struct net *net;
2131 
2132 	net = dev_net(dev);
2133 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2134 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2135 }
2136 
2137 static inline struct net_device *first_net_device(struct net *net)
2138 {
2139 	return list_empty(&net->dev_base_head) ? NULL :
2140 		net_device_entry(net->dev_base_head.next);
2141 }
2142 
2143 static inline struct net_device *first_net_device_rcu(struct net *net)
2144 {
2145 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2146 
2147 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2148 }
2149 
2150 int netdev_boot_setup_check(struct net_device *dev);
2151 unsigned long netdev_boot_base(const char *prefix, int unit);
2152 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2153 				       const char *hwaddr);
2154 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2155 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2156 void dev_add_pack(struct packet_type *pt);
2157 void dev_remove_pack(struct packet_type *pt);
2158 void __dev_remove_pack(struct packet_type *pt);
2159 void dev_add_offload(struct packet_offload *po);
2160 void dev_remove_offload(struct packet_offload *po);
2161 
2162 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2163 				      unsigned short mask);
2164 struct net_device *dev_get_by_name(struct net *net, const char *name);
2165 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2166 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2167 int dev_alloc_name(struct net_device *dev, const char *name);
2168 int dev_open(struct net_device *dev);
2169 int dev_close(struct net_device *dev);
2170 void dev_disable_lro(struct net_device *dev);
2171 int dev_loopback_xmit(struct sk_buff *newskb);
2172 int dev_queue_xmit(struct sk_buff *skb);
2173 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2174 int register_netdevice(struct net_device *dev);
2175 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2176 void unregister_netdevice_many(struct list_head *head);
2177 static inline void unregister_netdevice(struct net_device *dev)
2178 {
2179 	unregister_netdevice_queue(dev, NULL);
2180 }
2181 
2182 int netdev_refcnt_read(const struct net_device *dev);
2183 void free_netdev(struct net_device *dev);
2184 void netdev_freemem(struct net_device *dev);
2185 void synchronize_net(void);
2186 int init_dummy_netdev(struct net_device *dev);
2187 
2188 DECLARE_PER_CPU(int, xmit_recursion);
2189 static inline int dev_recursion_level(void)
2190 {
2191 	return this_cpu_read(xmit_recursion);
2192 }
2193 
2194 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2195 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2196 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2197 int netdev_get_name(struct net *net, char *name, int ifindex);
2198 int dev_restart(struct net_device *dev);
2199 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2200 
2201 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2202 {
2203 	return NAPI_GRO_CB(skb)->data_offset;
2204 }
2205 
2206 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2207 {
2208 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2209 }
2210 
2211 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2212 {
2213 	NAPI_GRO_CB(skb)->data_offset += len;
2214 }
2215 
2216 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2217 					unsigned int offset)
2218 {
2219 	return NAPI_GRO_CB(skb)->frag0 + offset;
2220 }
2221 
2222 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2223 {
2224 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2225 }
2226 
2227 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2228 					unsigned int offset)
2229 {
2230 	if (!pskb_may_pull(skb, hlen))
2231 		return NULL;
2232 
2233 	NAPI_GRO_CB(skb)->frag0 = NULL;
2234 	NAPI_GRO_CB(skb)->frag0_len = 0;
2235 	return skb->data + offset;
2236 }
2237 
2238 static inline void *skb_gro_network_header(struct sk_buff *skb)
2239 {
2240 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2241 	       skb_network_offset(skb);
2242 }
2243 
2244 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2245 					const void *start, unsigned int len)
2246 {
2247 	if (NAPI_GRO_CB(skb)->csum_valid)
2248 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2249 						  csum_partial(start, len, 0));
2250 }
2251 
2252 /* GRO checksum functions. These are logical equivalents of the normal
2253  * checksum functions (in skbuff.h) except that they operate on the GRO
2254  * offsets and fields in sk_buff.
2255  */
2256 
2257 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2258 
2259 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2260 {
2261 	return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2262 		skb_gro_offset(skb));
2263 }
2264 
2265 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2266 						      bool zero_okay,
2267 						      __sum16 check)
2268 {
2269 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2270 		skb_checksum_start_offset(skb) <
2271 		 skb_gro_offset(skb)) &&
2272 		!skb_at_gro_remcsum_start(skb) &&
2273 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2274 		(!zero_okay || check));
2275 }
2276 
2277 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2278 							   __wsum psum)
2279 {
2280 	if (NAPI_GRO_CB(skb)->csum_valid &&
2281 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2282 		return 0;
2283 
2284 	NAPI_GRO_CB(skb)->csum = psum;
2285 
2286 	return __skb_gro_checksum_complete(skb);
2287 }
2288 
2289 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2290 {
2291 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2292 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2293 		NAPI_GRO_CB(skb)->csum_cnt--;
2294 	} else {
2295 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2296 		 * verified a new top level checksum or an encapsulated one
2297 		 * during GRO. This saves work if we fallback to normal path.
2298 		 */
2299 		__skb_incr_checksum_unnecessary(skb);
2300 	}
2301 }
2302 
2303 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2304 				    compute_pseudo)			\
2305 ({									\
2306 	__sum16 __ret = 0;						\
2307 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2308 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2309 				compute_pseudo(skb, proto));		\
2310 	if (__ret)							\
2311 		__skb_mark_checksum_bad(skb);				\
2312 	else								\
2313 		skb_gro_incr_csum_unnecessary(skb);			\
2314 	__ret;								\
2315 })
2316 
2317 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2318 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2319 
2320 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2321 					     compute_pseudo)		\
2322 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2323 
2324 #define skb_gro_checksum_simple_validate(skb)				\
2325 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2326 
2327 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2328 {
2329 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2330 		!NAPI_GRO_CB(skb)->csum_valid);
2331 }
2332 
2333 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2334 					      __sum16 check, __wsum pseudo)
2335 {
2336 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2337 	NAPI_GRO_CB(skb)->csum_valid = 1;
2338 }
2339 
2340 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2341 do {									\
2342 	if (__skb_gro_checksum_convert_check(skb))			\
2343 		__skb_gro_checksum_convert(skb, check,			\
2344 					   compute_pseudo(skb, proto));	\
2345 } while (0)
2346 
2347 struct gro_remcsum {
2348 	int offset;
2349 	__wsum delta;
2350 };
2351 
2352 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2353 {
2354 	grc->offset = 0;
2355 	grc->delta = 0;
2356 }
2357 
2358 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2359 					   int start, int offset,
2360 					   struct gro_remcsum *grc,
2361 					   bool nopartial)
2362 {
2363 	__wsum delta;
2364 
2365 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2366 
2367 	if (!nopartial) {
2368 		NAPI_GRO_CB(skb)->gro_remcsum_start =
2369 		    ((unsigned char *)ptr + start) - skb->head;
2370 		return;
2371 	}
2372 
2373 	delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2374 
2375 	/* Adjust skb->csum since we changed the packet */
2376 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2377 
2378 	grc->offset = (ptr + offset) - (void *)skb->head;
2379 	grc->delta = delta;
2380 }
2381 
2382 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2383 					   struct gro_remcsum *grc)
2384 {
2385 	if (!grc->delta)
2386 		return;
2387 
2388 	remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2389 }
2390 
2391 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2392 				  unsigned short type,
2393 				  const void *daddr, const void *saddr,
2394 				  unsigned int len)
2395 {
2396 	if (!dev->header_ops || !dev->header_ops->create)
2397 		return 0;
2398 
2399 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2400 }
2401 
2402 static inline int dev_parse_header(const struct sk_buff *skb,
2403 				   unsigned char *haddr)
2404 {
2405 	const struct net_device *dev = skb->dev;
2406 
2407 	if (!dev->header_ops || !dev->header_ops->parse)
2408 		return 0;
2409 	return dev->header_ops->parse(skb, haddr);
2410 }
2411 
2412 static inline int dev_rebuild_header(struct sk_buff *skb)
2413 {
2414 	const struct net_device *dev = skb->dev;
2415 
2416 	if (!dev->header_ops || !dev->header_ops->rebuild)
2417 		return 0;
2418 	return dev->header_ops->rebuild(skb);
2419 }
2420 
2421 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2422 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2423 static inline int unregister_gifconf(unsigned int family)
2424 {
2425 	return register_gifconf(family, NULL);
2426 }
2427 
2428 #ifdef CONFIG_NET_FLOW_LIMIT
2429 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2430 struct sd_flow_limit {
2431 	u64			count;
2432 	unsigned int		num_buckets;
2433 	unsigned int		history_head;
2434 	u16			history[FLOW_LIMIT_HISTORY];
2435 	u8			buckets[];
2436 };
2437 
2438 extern int netdev_flow_limit_table_len;
2439 #endif /* CONFIG_NET_FLOW_LIMIT */
2440 
2441 /*
2442  * Incoming packets are placed on per-cpu queues
2443  */
2444 struct softnet_data {
2445 	struct list_head	poll_list;
2446 	struct sk_buff_head	process_queue;
2447 
2448 	/* stats */
2449 	unsigned int		processed;
2450 	unsigned int		time_squeeze;
2451 	unsigned int		cpu_collision;
2452 	unsigned int		received_rps;
2453 #ifdef CONFIG_RPS
2454 	struct softnet_data	*rps_ipi_list;
2455 #endif
2456 #ifdef CONFIG_NET_FLOW_LIMIT
2457 	struct sd_flow_limit __rcu *flow_limit;
2458 #endif
2459 	struct Qdisc		*output_queue;
2460 	struct Qdisc		**output_queue_tailp;
2461 	struct sk_buff		*completion_queue;
2462 
2463 #ifdef CONFIG_RPS
2464 	/* Elements below can be accessed between CPUs for RPS */
2465 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2466 	struct softnet_data	*rps_ipi_next;
2467 	unsigned int		cpu;
2468 	unsigned int		input_queue_head;
2469 	unsigned int		input_queue_tail;
2470 #endif
2471 	unsigned int		dropped;
2472 	struct sk_buff_head	input_pkt_queue;
2473 	struct napi_struct	backlog;
2474 
2475 };
2476 
2477 static inline void input_queue_head_incr(struct softnet_data *sd)
2478 {
2479 #ifdef CONFIG_RPS
2480 	sd->input_queue_head++;
2481 #endif
2482 }
2483 
2484 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2485 					      unsigned int *qtail)
2486 {
2487 #ifdef CONFIG_RPS
2488 	*qtail = ++sd->input_queue_tail;
2489 #endif
2490 }
2491 
2492 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2493 
2494 void __netif_schedule(struct Qdisc *q);
2495 void netif_schedule_queue(struct netdev_queue *txq);
2496 
2497 static inline void netif_tx_schedule_all(struct net_device *dev)
2498 {
2499 	unsigned int i;
2500 
2501 	for (i = 0; i < dev->num_tx_queues; i++)
2502 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2503 }
2504 
2505 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2506 {
2507 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2508 }
2509 
2510 /**
2511  *	netif_start_queue - allow transmit
2512  *	@dev: network device
2513  *
2514  *	Allow upper layers to call the device hard_start_xmit routine.
2515  */
2516 static inline void netif_start_queue(struct net_device *dev)
2517 {
2518 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2519 }
2520 
2521 static inline void netif_tx_start_all_queues(struct net_device *dev)
2522 {
2523 	unsigned int i;
2524 
2525 	for (i = 0; i < dev->num_tx_queues; i++) {
2526 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2527 		netif_tx_start_queue(txq);
2528 	}
2529 }
2530 
2531 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2532 
2533 /**
2534  *	netif_wake_queue - restart transmit
2535  *	@dev: network device
2536  *
2537  *	Allow upper layers to call the device hard_start_xmit routine.
2538  *	Used for flow control when transmit resources are available.
2539  */
2540 static inline void netif_wake_queue(struct net_device *dev)
2541 {
2542 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2543 }
2544 
2545 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2546 {
2547 	unsigned int i;
2548 
2549 	for (i = 0; i < dev->num_tx_queues; i++) {
2550 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2551 		netif_tx_wake_queue(txq);
2552 	}
2553 }
2554 
2555 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2556 {
2557 	if (WARN_ON(!dev_queue)) {
2558 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2559 		return;
2560 	}
2561 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2562 }
2563 
2564 /**
2565  *	netif_stop_queue - stop transmitted packets
2566  *	@dev: network device
2567  *
2568  *	Stop upper layers calling the device hard_start_xmit routine.
2569  *	Used for flow control when transmit resources are unavailable.
2570  */
2571 static inline void netif_stop_queue(struct net_device *dev)
2572 {
2573 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2574 }
2575 
2576 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2577 {
2578 	unsigned int i;
2579 
2580 	for (i = 0; i < dev->num_tx_queues; i++) {
2581 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2582 		netif_tx_stop_queue(txq);
2583 	}
2584 }
2585 
2586 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2587 {
2588 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2589 }
2590 
2591 /**
2592  *	netif_queue_stopped - test if transmit queue is flowblocked
2593  *	@dev: network device
2594  *
2595  *	Test if transmit queue on device is currently unable to send.
2596  */
2597 static inline bool netif_queue_stopped(const struct net_device *dev)
2598 {
2599 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2600 }
2601 
2602 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2603 {
2604 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2605 }
2606 
2607 static inline bool
2608 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2609 {
2610 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2611 }
2612 
2613 static inline bool
2614 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2615 {
2616 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2617 }
2618 
2619 /**
2620  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2621  *	@dev_queue: pointer to transmit queue
2622  *
2623  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2624  * to give appropriate hint to the cpu.
2625  */
2626 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2627 {
2628 #ifdef CONFIG_BQL
2629 	prefetchw(&dev_queue->dql.num_queued);
2630 #endif
2631 }
2632 
2633 /**
2634  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2635  *	@dev_queue: pointer to transmit queue
2636  *
2637  * BQL enabled drivers might use this helper in their TX completion path,
2638  * to give appropriate hint to the cpu.
2639  */
2640 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2641 {
2642 #ifdef CONFIG_BQL
2643 	prefetchw(&dev_queue->dql.limit);
2644 #endif
2645 }
2646 
2647 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2648 					unsigned int bytes)
2649 {
2650 #ifdef CONFIG_BQL
2651 	dql_queued(&dev_queue->dql, bytes);
2652 
2653 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2654 		return;
2655 
2656 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2657 
2658 	/*
2659 	 * The XOFF flag must be set before checking the dql_avail below,
2660 	 * because in netdev_tx_completed_queue we update the dql_completed
2661 	 * before checking the XOFF flag.
2662 	 */
2663 	smp_mb();
2664 
2665 	/* check again in case another CPU has just made room avail */
2666 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2667 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2668 #endif
2669 }
2670 
2671 /**
2672  * 	netdev_sent_queue - report the number of bytes queued to hardware
2673  * 	@dev: network device
2674  * 	@bytes: number of bytes queued to the hardware device queue
2675  *
2676  * 	Report the number of bytes queued for sending/completion to the network
2677  * 	device hardware queue. @bytes should be a good approximation and should
2678  * 	exactly match netdev_completed_queue() @bytes
2679  */
2680 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2681 {
2682 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2683 }
2684 
2685 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2686 					     unsigned int pkts, unsigned int bytes)
2687 {
2688 #ifdef CONFIG_BQL
2689 	if (unlikely(!bytes))
2690 		return;
2691 
2692 	dql_completed(&dev_queue->dql, bytes);
2693 
2694 	/*
2695 	 * Without the memory barrier there is a small possiblity that
2696 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2697 	 * be stopped forever
2698 	 */
2699 	smp_mb();
2700 
2701 	if (dql_avail(&dev_queue->dql) < 0)
2702 		return;
2703 
2704 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2705 		netif_schedule_queue(dev_queue);
2706 #endif
2707 }
2708 
2709 /**
2710  * 	netdev_completed_queue - report bytes and packets completed by device
2711  * 	@dev: network device
2712  * 	@pkts: actual number of packets sent over the medium
2713  * 	@bytes: actual number of bytes sent over the medium
2714  *
2715  * 	Report the number of bytes and packets transmitted by the network device
2716  * 	hardware queue over the physical medium, @bytes must exactly match the
2717  * 	@bytes amount passed to netdev_sent_queue()
2718  */
2719 static inline void netdev_completed_queue(struct net_device *dev,
2720 					  unsigned int pkts, unsigned int bytes)
2721 {
2722 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2723 }
2724 
2725 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2726 {
2727 #ifdef CONFIG_BQL
2728 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2729 	dql_reset(&q->dql);
2730 #endif
2731 }
2732 
2733 /**
2734  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2735  * 	@dev_queue: network device
2736  *
2737  * 	Reset the bytes and packet count of a network device and clear the
2738  * 	software flow control OFF bit for this network device
2739  */
2740 static inline void netdev_reset_queue(struct net_device *dev_queue)
2741 {
2742 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2743 }
2744 
2745 /**
2746  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2747  * 	@dev: network device
2748  * 	@queue_index: given tx queue index
2749  *
2750  * 	Returns 0 if given tx queue index >= number of device tx queues,
2751  * 	otherwise returns the originally passed tx queue index.
2752  */
2753 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2754 {
2755 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2756 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2757 				     dev->name, queue_index,
2758 				     dev->real_num_tx_queues);
2759 		return 0;
2760 	}
2761 
2762 	return queue_index;
2763 }
2764 
2765 /**
2766  *	netif_running - test if up
2767  *	@dev: network device
2768  *
2769  *	Test if the device has been brought up.
2770  */
2771 static inline bool netif_running(const struct net_device *dev)
2772 {
2773 	return test_bit(__LINK_STATE_START, &dev->state);
2774 }
2775 
2776 /*
2777  * Routines to manage the subqueues on a device.  We only need start
2778  * stop, and a check if it's stopped.  All other device management is
2779  * done at the overall netdevice level.
2780  * Also test the device if we're multiqueue.
2781  */
2782 
2783 /**
2784  *	netif_start_subqueue - allow sending packets on subqueue
2785  *	@dev: network device
2786  *	@queue_index: sub queue index
2787  *
2788  * Start individual transmit queue of a device with multiple transmit queues.
2789  */
2790 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2791 {
2792 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2793 
2794 	netif_tx_start_queue(txq);
2795 }
2796 
2797 /**
2798  *	netif_stop_subqueue - stop sending packets on subqueue
2799  *	@dev: network device
2800  *	@queue_index: sub queue index
2801  *
2802  * Stop individual transmit queue of a device with multiple transmit queues.
2803  */
2804 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2805 {
2806 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2807 	netif_tx_stop_queue(txq);
2808 }
2809 
2810 /**
2811  *	netif_subqueue_stopped - test status of subqueue
2812  *	@dev: network device
2813  *	@queue_index: sub queue index
2814  *
2815  * Check individual transmit queue of a device with multiple transmit queues.
2816  */
2817 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2818 					    u16 queue_index)
2819 {
2820 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2821 
2822 	return netif_tx_queue_stopped(txq);
2823 }
2824 
2825 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2826 					  struct sk_buff *skb)
2827 {
2828 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2829 }
2830 
2831 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2832 
2833 #ifdef CONFIG_XPS
2834 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2835 			u16 index);
2836 #else
2837 static inline int netif_set_xps_queue(struct net_device *dev,
2838 				      const struct cpumask *mask,
2839 				      u16 index)
2840 {
2841 	return 0;
2842 }
2843 #endif
2844 
2845 /*
2846  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2847  * as a distribution range limit for the returned value.
2848  */
2849 static inline u16 skb_tx_hash(const struct net_device *dev,
2850 			      struct sk_buff *skb)
2851 {
2852 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2853 }
2854 
2855 /**
2856  *	netif_is_multiqueue - test if device has multiple transmit queues
2857  *	@dev: network device
2858  *
2859  * Check if device has multiple transmit queues
2860  */
2861 static inline bool netif_is_multiqueue(const struct net_device *dev)
2862 {
2863 	return dev->num_tx_queues > 1;
2864 }
2865 
2866 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2867 
2868 #ifdef CONFIG_SYSFS
2869 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2870 #else
2871 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2872 						unsigned int rxq)
2873 {
2874 	return 0;
2875 }
2876 #endif
2877 
2878 #ifdef CONFIG_SYSFS
2879 static inline unsigned int get_netdev_rx_queue_index(
2880 		struct netdev_rx_queue *queue)
2881 {
2882 	struct net_device *dev = queue->dev;
2883 	int index = queue - dev->_rx;
2884 
2885 	BUG_ON(index >= dev->num_rx_queues);
2886 	return index;
2887 }
2888 #endif
2889 
2890 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2891 int netif_get_num_default_rss_queues(void);
2892 
2893 enum skb_free_reason {
2894 	SKB_REASON_CONSUMED,
2895 	SKB_REASON_DROPPED,
2896 };
2897 
2898 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2899 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2900 
2901 /*
2902  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2903  * interrupt context or with hardware interrupts being disabled.
2904  * (in_irq() || irqs_disabled())
2905  *
2906  * We provide four helpers that can be used in following contexts :
2907  *
2908  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2909  *  replacing kfree_skb(skb)
2910  *
2911  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2912  *  Typically used in place of consume_skb(skb) in TX completion path
2913  *
2914  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2915  *  replacing kfree_skb(skb)
2916  *
2917  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2918  *  and consumed a packet. Used in place of consume_skb(skb)
2919  */
2920 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2921 {
2922 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2923 }
2924 
2925 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2926 {
2927 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2928 }
2929 
2930 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2931 {
2932 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2933 }
2934 
2935 static inline void dev_consume_skb_any(struct sk_buff *skb)
2936 {
2937 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2938 }
2939 
2940 int netif_rx(struct sk_buff *skb);
2941 int netif_rx_ni(struct sk_buff *skb);
2942 int netif_receive_skb(struct sk_buff *skb);
2943 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2944 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2945 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2946 gro_result_t napi_gro_frags(struct napi_struct *napi);
2947 struct packet_offload *gro_find_receive_by_type(__be16 type);
2948 struct packet_offload *gro_find_complete_by_type(__be16 type);
2949 
2950 static inline void napi_free_frags(struct napi_struct *napi)
2951 {
2952 	kfree_skb(napi->skb);
2953 	napi->skb = NULL;
2954 }
2955 
2956 int netdev_rx_handler_register(struct net_device *dev,
2957 			       rx_handler_func_t *rx_handler,
2958 			       void *rx_handler_data);
2959 void netdev_rx_handler_unregister(struct net_device *dev);
2960 
2961 bool dev_valid_name(const char *name);
2962 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2963 int dev_ethtool(struct net *net, struct ifreq *);
2964 unsigned int dev_get_flags(const struct net_device *);
2965 int __dev_change_flags(struct net_device *, unsigned int flags);
2966 int dev_change_flags(struct net_device *, unsigned int);
2967 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2968 			unsigned int gchanges);
2969 int dev_change_name(struct net_device *, const char *);
2970 int dev_set_alias(struct net_device *, const char *, size_t);
2971 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2972 int dev_set_mtu(struct net_device *, int);
2973 void dev_set_group(struct net_device *, int);
2974 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2975 int dev_change_carrier(struct net_device *, bool new_carrier);
2976 int dev_get_phys_port_id(struct net_device *dev,
2977 			 struct netdev_phys_item_id *ppid);
2978 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2979 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2980 				    struct netdev_queue *txq, int *ret);
2981 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2982 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2983 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2984 
2985 extern int		netdev_budget;
2986 
2987 /* Called by rtnetlink.c:rtnl_unlock() */
2988 void netdev_run_todo(void);
2989 
2990 /**
2991  *	dev_put - release reference to device
2992  *	@dev: network device
2993  *
2994  * Release reference to device to allow it to be freed.
2995  */
2996 static inline void dev_put(struct net_device *dev)
2997 {
2998 	this_cpu_dec(*dev->pcpu_refcnt);
2999 }
3000 
3001 /**
3002  *	dev_hold - get reference to device
3003  *	@dev: network device
3004  *
3005  * Hold reference to device to keep it from being freed.
3006  */
3007 static inline void dev_hold(struct net_device *dev)
3008 {
3009 	this_cpu_inc(*dev->pcpu_refcnt);
3010 }
3011 
3012 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3013  * and _off may be called from IRQ context, but it is caller
3014  * who is responsible for serialization of these calls.
3015  *
3016  * The name carrier is inappropriate, these functions should really be
3017  * called netif_lowerlayer_*() because they represent the state of any
3018  * kind of lower layer not just hardware media.
3019  */
3020 
3021 void linkwatch_init_dev(struct net_device *dev);
3022 void linkwatch_fire_event(struct net_device *dev);
3023 void linkwatch_forget_dev(struct net_device *dev);
3024 
3025 /**
3026  *	netif_carrier_ok - test if carrier present
3027  *	@dev: network device
3028  *
3029  * Check if carrier is present on device
3030  */
3031 static inline bool netif_carrier_ok(const struct net_device *dev)
3032 {
3033 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3034 }
3035 
3036 unsigned long dev_trans_start(struct net_device *dev);
3037 
3038 void __netdev_watchdog_up(struct net_device *dev);
3039 
3040 void netif_carrier_on(struct net_device *dev);
3041 
3042 void netif_carrier_off(struct net_device *dev);
3043 
3044 /**
3045  *	netif_dormant_on - mark device as dormant.
3046  *	@dev: network device
3047  *
3048  * Mark device as dormant (as per RFC2863).
3049  *
3050  * The dormant state indicates that the relevant interface is not
3051  * actually in a condition to pass packets (i.e., it is not 'up') but is
3052  * in a "pending" state, waiting for some external event.  For "on-
3053  * demand" interfaces, this new state identifies the situation where the
3054  * interface is waiting for events to place it in the up state.
3055  *
3056  */
3057 static inline void netif_dormant_on(struct net_device *dev)
3058 {
3059 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3060 		linkwatch_fire_event(dev);
3061 }
3062 
3063 /**
3064  *	netif_dormant_off - set device as not dormant.
3065  *	@dev: network device
3066  *
3067  * Device is not in dormant state.
3068  */
3069 static inline void netif_dormant_off(struct net_device *dev)
3070 {
3071 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3072 		linkwatch_fire_event(dev);
3073 }
3074 
3075 /**
3076  *	netif_dormant - test if carrier present
3077  *	@dev: network device
3078  *
3079  * Check if carrier is present on device
3080  */
3081 static inline bool netif_dormant(const struct net_device *dev)
3082 {
3083 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3084 }
3085 
3086 
3087 /**
3088  *	netif_oper_up - test if device is operational
3089  *	@dev: network device
3090  *
3091  * Check if carrier is operational
3092  */
3093 static inline bool netif_oper_up(const struct net_device *dev)
3094 {
3095 	return (dev->operstate == IF_OPER_UP ||
3096 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3097 }
3098 
3099 /**
3100  *	netif_device_present - is device available or removed
3101  *	@dev: network device
3102  *
3103  * Check if device has not been removed from system.
3104  */
3105 static inline bool netif_device_present(struct net_device *dev)
3106 {
3107 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3108 }
3109 
3110 void netif_device_detach(struct net_device *dev);
3111 
3112 void netif_device_attach(struct net_device *dev);
3113 
3114 /*
3115  * Network interface message level settings
3116  */
3117 
3118 enum {
3119 	NETIF_MSG_DRV		= 0x0001,
3120 	NETIF_MSG_PROBE		= 0x0002,
3121 	NETIF_MSG_LINK		= 0x0004,
3122 	NETIF_MSG_TIMER		= 0x0008,
3123 	NETIF_MSG_IFDOWN	= 0x0010,
3124 	NETIF_MSG_IFUP		= 0x0020,
3125 	NETIF_MSG_RX_ERR	= 0x0040,
3126 	NETIF_MSG_TX_ERR	= 0x0080,
3127 	NETIF_MSG_TX_QUEUED	= 0x0100,
3128 	NETIF_MSG_INTR		= 0x0200,
3129 	NETIF_MSG_TX_DONE	= 0x0400,
3130 	NETIF_MSG_RX_STATUS	= 0x0800,
3131 	NETIF_MSG_PKTDATA	= 0x1000,
3132 	NETIF_MSG_HW		= 0x2000,
3133 	NETIF_MSG_WOL		= 0x4000,
3134 };
3135 
3136 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3137 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3138 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3139 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3140 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3141 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3142 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3143 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3144 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3145 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3146 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3147 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3148 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3149 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3150 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3151 
3152 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3153 {
3154 	/* use default */
3155 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3156 		return default_msg_enable_bits;
3157 	if (debug_value == 0)	/* no output */
3158 		return 0;
3159 	/* set low N bits */
3160 	return (1 << debug_value) - 1;
3161 }
3162 
3163 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3164 {
3165 	spin_lock(&txq->_xmit_lock);
3166 	txq->xmit_lock_owner = cpu;
3167 }
3168 
3169 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3170 {
3171 	spin_lock_bh(&txq->_xmit_lock);
3172 	txq->xmit_lock_owner = smp_processor_id();
3173 }
3174 
3175 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3176 {
3177 	bool ok = spin_trylock(&txq->_xmit_lock);
3178 	if (likely(ok))
3179 		txq->xmit_lock_owner = smp_processor_id();
3180 	return ok;
3181 }
3182 
3183 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3184 {
3185 	txq->xmit_lock_owner = -1;
3186 	spin_unlock(&txq->_xmit_lock);
3187 }
3188 
3189 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3190 {
3191 	txq->xmit_lock_owner = -1;
3192 	spin_unlock_bh(&txq->_xmit_lock);
3193 }
3194 
3195 static inline void txq_trans_update(struct netdev_queue *txq)
3196 {
3197 	if (txq->xmit_lock_owner != -1)
3198 		txq->trans_start = jiffies;
3199 }
3200 
3201 /**
3202  *	netif_tx_lock - grab network device transmit lock
3203  *	@dev: network device
3204  *
3205  * Get network device transmit lock
3206  */
3207 static inline void netif_tx_lock(struct net_device *dev)
3208 {
3209 	unsigned int i;
3210 	int cpu;
3211 
3212 	spin_lock(&dev->tx_global_lock);
3213 	cpu = smp_processor_id();
3214 	for (i = 0; i < dev->num_tx_queues; i++) {
3215 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3216 
3217 		/* We are the only thread of execution doing a
3218 		 * freeze, but we have to grab the _xmit_lock in
3219 		 * order to synchronize with threads which are in
3220 		 * the ->hard_start_xmit() handler and already
3221 		 * checked the frozen bit.
3222 		 */
3223 		__netif_tx_lock(txq, cpu);
3224 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3225 		__netif_tx_unlock(txq);
3226 	}
3227 }
3228 
3229 static inline void netif_tx_lock_bh(struct net_device *dev)
3230 {
3231 	local_bh_disable();
3232 	netif_tx_lock(dev);
3233 }
3234 
3235 static inline void netif_tx_unlock(struct net_device *dev)
3236 {
3237 	unsigned int i;
3238 
3239 	for (i = 0; i < dev->num_tx_queues; i++) {
3240 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3241 
3242 		/* No need to grab the _xmit_lock here.  If the
3243 		 * queue is not stopped for another reason, we
3244 		 * force a schedule.
3245 		 */
3246 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3247 		netif_schedule_queue(txq);
3248 	}
3249 	spin_unlock(&dev->tx_global_lock);
3250 }
3251 
3252 static inline void netif_tx_unlock_bh(struct net_device *dev)
3253 {
3254 	netif_tx_unlock(dev);
3255 	local_bh_enable();
3256 }
3257 
3258 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3259 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3260 		__netif_tx_lock(txq, cpu);		\
3261 	}						\
3262 }
3263 
3264 #define HARD_TX_TRYLOCK(dev, txq)			\
3265 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3266 		__netif_tx_trylock(txq) :		\
3267 		true )
3268 
3269 #define HARD_TX_UNLOCK(dev, txq) {			\
3270 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3271 		__netif_tx_unlock(txq);			\
3272 	}						\
3273 }
3274 
3275 static inline void netif_tx_disable(struct net_device *dev)
3276 {
3277 	unsigned int i;
3278 	int cpu;
3279 
3280 	local_bh_disable();
3281 	cpu = smp_processor_id();
3282 	for (i = 0; i < dev->num_tx_queues; i++) {
3283 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3284 
3285 		__netif_tx_lock(txq, cpu);
3286 		netif_tx_stop_queue(txq);
3287 		__netif_tx_unlock(txq);
3288 	}
3289 	local_bh_enable();
3290 }
3291 
3292 static inline void netif_addr_lock(struct net_device *dev)
3293 {
3294 	spin_lock(&dev->addr_list_lock);
3295 }
3296 
3297 static inline void netif_addr_lock_nested(struct net_device *dev)
3298 {
3299 	int subclass = SINGLE_DEPTH_NESTING;
3300 
3301 	if (dev->netdev_ops->ndo_get_lock_subclass)
3302 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3303 
3304 	spin_lock_nested(&dev->addr_list_lock, subclass);
3305 }
3306 
3307 static inline void netif_addr_lock_bh(struct net_device *dev)
3308 {
3309 	spin_lock_bh(&dev->addr_list_lock);
3310 }
3311 
3312 static inline void netif_addr_unlock(struct net_device *dev)
3313 {
3314 	spin_unlock(&dev->addr_list_lock);
3315 }
3316 
3317 static inline void netif_addr_unlock_bh(struct net_device *dev)
3318 {
3319 	spin_unlock_bh(&dev->addr_list_lock);
3320 }
3321 
3322 /*
3323  * dev_addrs walker. Should be used only for read access. Call with
3324  * rcu_read_lock held.
3325  */
3326 #define for_each_dev_addr(dev, ha) \
3327 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3328 
3329 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3330 
3331 void ether_setup(struct net_device *dev);
3332 
3333 /* Support for loadable net-drivers */
3334 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3335 				    unsigned char name_assign_type,
3336 				    void (*setup)(struct net_device *),
3337 				    unsigned int txqs, unsigned int rxqs);
3338 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3339 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3340 
3341 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3342 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3343 			 count)
3344 
3345 int register_netdev(struct net_device *dev);
3346 void unregister_netdev(struct net_device *dev);
3347 
3348 /* General hardware address lists handling functions */
3349 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3350 		   struct netdev_hw_addr_list *from_list, int addr_len);
3351 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3352 		      struct netdev_hw_addr_list *from_list, int addr_len);
3353 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3354 		       struct net_device *dev,
3355 		       int (*sync)(struct net_device *, const unsigned char *),
3356 		       int (*unsync)(struct net_device *,
3357 				     const unsigned char *));
3358 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3359 			  struct net_device *dev,
3360 			  int (*unsync)(struct net_device *,
3361 					const unsigned char *));
3362 void __hw_addr_init(struct netdev_hw_addr_list *list);
3363 
3364 /* Functions used for device addresses handling */
3365 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3366 		 unsigned char addr_type);
3367 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3368 		 unsigned char addr_type);
3369 void dev_addr_flush(struct net_device *dev);
3370 int dev_addr_init(struct net_device *dev);
3371 
3372 /* Functions used for unicast addresses handling */
3373 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3374 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3375 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3376 int dev_uc_sync(struct net_device *to, struct net_device *from);
3377 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3378 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3379 void dev_uc_flush(struct net_device *dev);
3380 void dev_uc_init(struct net_device *dev);
3381 
3382 /**
3383  *  __dev_uc_sync - Synchonize device's unicast list
3384  *  @dev:  device to sync
3385  *  @sync: function to call if address should be added
3386  *  @unsync: function to call if address should be removed
3387  *
3388  *  Add newly added addresses to the interface, and release
3389  *  addresses that have been deleted.
3390  **/
3391 static inline int __dev_uc_sync(struct net_device *dev,
3392 				int (*sync)(struct net_device *,
3393 					    const unsigned char *),
3394 				int (*unsync)(struct net_device *,
3395 					      const unsigned char *))
3396 {
3397 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3398 }
3399 
3400 /**
3401  *  __dev_uc_unsync - Remove synchronized addresses from device
3402  *  @dev:  device to sync
3403  *  @unsync: function to call if address should be removed
3404  *
3405  *  Remove all addresses that were added to the device by dev_uc_sync().
3406  **/
3407 static inline void __dev_uc_unsync(struct net_device *dev,
3408 				   int (*unsync)(struct net_device *,
3409 						 const unsigned char *))
3410 {
3411 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3412 }
3413 
3414 /* Functions used for multicast addresses handling */
3415 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3416 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3417 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3418 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3419 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3420 int dev_mc_sync(struct net_device *to, struct net_device *from);
3421 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3422 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3423 void dev_mc_flush(struct net_device *dev);
3424 void dev_mc_init(struct net_device *dev);
3425 
3426 /**
3427  *  __dev_mc_sync - Synchonize device's multicast list
3428  *  @dev:  device to sync
3429  *  @sync: function to call if address should be added
3430  *  @unsync: function to call if address should be removed
3431  *
3432  *  Add newly added addresses to the interface, and release
3433  *  addresses that have been deleted.
3434  **/
3435 static inline int __dev_mc_sync(struct net_device *dev,
3436 				int (*sync)(struct net_device *,
3437 					    const unsigned char *),
3438 				int (*unsync)(struct net_device *,
3439 					      const unsigned char *))
3440 {
3441 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3442 }
3443 
3444 /**
3445  *  __dev_mc_unsync - Remove synchronized addresses from device
3446  *  @dev:  device to sync
3447  *  @unsync: function to call if address should be removed
3448  *
3449  *  Remove all addresses that were added to the device by dev_mc_sync().
3450  **/
3451 static inline void __dev_mc_unsync(struct net_device *dev,
3452 				   int (*unsync)(struct net_device *,
3453 						 const unsigned char *))
3454 {
3455 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3456 }
3457 
3458 /* Functions used for secondary unicast and multicast support */
3459 void dev_set_rx_mode(struct net_device *dev);
3460 void __dev_set_rx_mode(struct net_device *dev);
3461 int dev_set_promiscuity(struct net_device *dev, int inc);
3462 int dev_set_allmulti(struct net_device *dev, int inc);
3463 void netdev_state_change(struct net_device *dev);
3464 void netdev_notify_peers(struct net_device *dev);
3465 void netdev_features_change(struct net_device *dev);
3466 /* Load a device via the kmod */
3467 void dev_load(struct net *net, const char *name);
3468 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3469 					struct rtnl_link_stats64 *storage);
3470 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3471 			     const struct net_device_stats *netdev_stats);
3472 
3473 extern int		netdev_max_backlog;
3474 extern int		netdev_tstamp_prequeue;
3475 extern int		weight_p;
3476 extern int		bpf_jit_enable;
3477 
3478 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3479 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3480 						     struct list_head **iter);
3481 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3482 						     struct list_head **iter);
3483 
3484 /* iterate through upper list, must be called under RCU read lock */
3485 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3486 	for (iter = &(dev)->adj_list.upper, \
3487 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3488 	     updev; \
3489 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3490 
3491 /* iterate through upper list, must be called under RCU read lock */
3492 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3493 	for (iter = &(dev)->all_adj_list.upper, \
3494 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3495 	     updev; \
3496 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3497 
3498 void *netdev_lower_get_next_private(struct net_device *dev,
3499 				    struct list_head **iter);
3500 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3501 					struct list_head **iter);
3502 
3503 #define netdev_for_each_lower_private(dev, priv, iter) \
3504 	for (iter = (dev)->adj_list.lower.next, \
3505 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3506 	     priv; \
3507 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3508 
3509 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3510 	for (iter = &(dev)->adj_list.lower, \
3511 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3512 	     priv; \
3513 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3514 
3515 void *netdev_lower_get_next(struct net_device *dev,
3516 				struct list_head **iter);
3517 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3518 	for (iter = &(dev)->adj_list.lower, \
3519 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3520 	     ldev; \
3521 	     ldev = netdev_lower_get_next(dev, &(iter)))
3522 
3523 void *netdev_adjacent_get_private(struct list_head *adj_list);
3524 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3525 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3526 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3527 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3528 int netdev_master_upper_dev_link(struct net_device *dev,
3529 				 struct net_device *upper_dev);
3530 int netdev_master_upper_dev_link_private(struct net_device *dev,
3531 					 struct net_device *upper_dev,
3532 					 void *private);
3533 void netdev_upper_dev_unlink(struct net_device *dev,
3534 			     struct net_device *upper_dev);
3535 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3536 void *netdev_lower_dev_get_private(struct net_device *dev,
3537 				   struct net_device *lower_dev);
3538 
3539 /* RSS keys are 40 or 52 bytes long */
3540 #define NETDEV_RSS_KEY_LEN 52
3541 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3542 void netdev_rss_key_fill(void *buffer, size_t len);
3543 
3544 int dev_get_nest_level(struct net_device *dev,
3545 		       bool (*type_check)(struct net_device *dev));
3546 int skb_checksum_help(struct sk_buff *skb);
3547 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3548 				  netdev_features_t features, bool tx_path);
3549 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3550 				    netdev_features_t features);
3551 
3552 struct netdev_bonding_info {
3553 	ifslave	slave;
3554 	ifbond	master;
3555 };
3556 
3557 struct netdev_notifier_bonding_info {
3558 	struct netdev_notifier_info info; /* must be first */
3559 	struct netdev_bonding_info  bonding_info;
3560 };
3561 
3562 void netdev_bonding_info_change(struct net_device *dev,
3563 				struct netdev_bonding_info *bonding_info);
3564 
3565 static inline
3566 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3567 {
3568 	return __skb_gso_segment(skb, features, true);
3569 }
3570 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3571 
3572 static inline bool can_checksum_protocol(netdev_features_t features,
3573 					 __be16 protocol)
3574 {
3575 	return ((features & NETIF_F_GEN_CSUM) ||
3576 		((features & NETIF_F_V4_CSUM) &&
3577 		 protocol == htons(ETH_P_IP)) ||
3578 		((features & NETIF_F_V6_CSUM) &&
3579 		 protocol == htons(ETH_P_IPV6)) ||
3580 		((features & NETIF_F_FCOE_CRC) &&
3581 		 protocol == htons(ETH_P_FCOE)));
3582 }
3583 
3584 #ifdef CONFIG_BUG
3585 void netdev_rx_csum_fault(struct net_device *dev);
3586 #else
3587 static inline void netdev_rx_csum_fault(struct net_device *dev)
3588 {
3589 }
3590 #endif
3591 /* rx skb timestamps */
3592 void net_enable_timestamp(void);
3593 void net_disable_timestamp(void);
3594 
3595 #ifdef CONFIG_PROC_FS
3596 int __init dev_proc_init(void);
3597 #else
3598 #define dev_proc_init() 0
3599 #endif
3600 
3601 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3602 					      struct sk_buff *skb, struct net_device *dev,
3603 					      bool more)
3604 {
3605 	skb->xmit_more = more ? 1 : 0;
3606 	return ops->ndo_start_xmit(skb, dev);
3607 }
3608 
3609 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3610 					    struct netdev_queue *txq, bool more)
3611 {
3612 	const struct net_device_ops *ops = dev->netdev_ops;
3613 	int rc;
3614 
3615 	rc = __netdev_start_xmit(ops, skb, dev, more);
3616 	if (rc == NETDEV_TX_OK)
3617 		txq_trans_update(txq);
3618 
3619 	return rc;
3620 }
3621 
3622 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3623 				const void *ns);
3624 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3625 				 const void *ns);
3626 
3627 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3628 {
3629 	return netdev_class_create_file_ns(class_attr, NULL);
3630 }
3631 
3632 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3633 {
3634 	netdev_class_remove_file_ns(class_attr, NULL);
3635 }
3636 
3637 extern struct kobj_ns_type_operations net_ns_type_operations;
3638 
3639 const char *netdev_drivername(const struct net_device *dev);
3640 
3641 void linkwatch_run_queue(void);
3642 
3643 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3644 							  netdev_features_t f2)
3645 {
3646 	if (f1 & NETIF_F_GEN_CSUM)
3647 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3648 	if (f2 & NETIF_F_GEN_CSUM)
3649 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3650 	f1 &= f2;
3651 	if (f1 & NETIF_F_GEN_CSUM)
3652 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3653 
3654 	return f1;
3655 }
3656 
3657 static inline netdev_features_t netdev_get_wanted_features(
3658 	struct net_device *dev)
3659 {
3660 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3661 }
3662 netdev_features_t netdev_increment_features(netdev_features_t all,
3663 	netdev_features_t one, netdev_features_t mask);
3664 
3665 /* Allow TSO being used on stacked device :
3666  * Performing the GSO segmentation before last device
3667  * is a performance improvement.
3668  */
3669 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3670 							netdev_features_t mask)
3671 {
3672 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3673 }
3674 
3675 int __netdev_update_features(struct net_device *dev);
3676 void netdev_update_features(struct net_device *dev);
3677 void netdev_change_features(struct net_device *dev);
3678 
3679 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3680 					struct net_device *dev);
3681 
3682 netdev_features_t netif_skb_features(struct sk_buff *skb);
3683 
3684 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3685 {
3686 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3687 
3688 	/* check flags correspondence */
3689 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3690 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3691 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3692 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3693 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3694 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3695 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3696 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3697 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3698 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3699 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3700 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3701 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3702 
3703 	return (features & feature) == feature;
3704 }
3705 
3706 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3707 {
3708 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3709 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3710 }
3711 
3712 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3713 				   netdev_features_t features)
3714 {
3715 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3716 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3717 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3718 }
3719 
3720 static inline void netif_set_gso_max_size(struct net_device *dev,
3721 					  unsigned int size)
3722 {
3723 	dev->gso_max_size = size;
3724 }
3725 
3726 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3727 					int pulled_hlen, u16 mac_offset,
3728 					int mac_len)
3729 {
3730 	skb->protocol = protocol;
3731 	skb->encapsulation = 1;
3732 	skb_push(skb, pulled_hlen);
3733 	skb_reset_transport_header(skb);
3734 	skb->mac_header = mac_offset;
3735 	skb->network_header = skb->mac_header + mac_len;
3736 	skb->mac_len = mac_len;
3737 }
3738 
3739 static inline bool netif_is_macvlan(struct net_device *dev)
3740 {
3741 	return dev->priv_flags & IFF_MACVLAN;
3742 }
3743 
3744 static inline bool netif_is_macvlan_port(struct net_device *dev)
3745 {
3746 	return dev->priv_flags & IFF_MACVLAN_PORT;
3747 }
3748 
3749 static inline bool netif_is_ipvlan(struct net_device *dev)
3750 {
3751 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3752 }
3753 
3754 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3755 {
3756 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3757 }
3758 
3759 static inline bool netif_is_bond_master(struct net_device *dev)
3760 {
3761 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3762 }
3763 
3764 static inline bool netif_is_bond_slave(struct net_device *dev)
3765 {
3766 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3767 }
3768 
3769 static inline bool netif_supports_nofcs(struct net_device *dev)
3770 {
3771 	return dev->priv_flags & IFF_SUPP_NOFCS;
3772 }
3773 
3774 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3775 static inline void netif_keep_dst(struct net_device *dev)
3776 {
3777 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3778 }
3779 
3780 extern struct pernet_operations __net_initdata loopback_net_ops;
3781 
3782 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3783 
3784 /* netdev_printk helpers, similar to dev_printk */
3785 
3786 static inline const char *netdev_name(const struct net_device *dev)
3787 {
3788 	if (!dev->name[0] || strchr(dev->name, '%'))
3789 		return "(unnamed net_device)";
3790 	return dev->name;
3791 }
3792 
3793 static inline const char *netdev_reg_state(const struct net_device *dev)
3794 {
3795 	switch (dev->reg_state) {
3796 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3797 	case NETREG_REGISTERED: return "";
3798 	case NETREG_UNREGISTERING: return " (unregistering)";
3799 	case NETREG_UNREGISTERED: return " (unregistered)";
3800 	case NETREG_RELEASED: return " (released)";
3801 	case NETREG_DUMMY: return " (dummy)";
3802 	}
3803 
3804 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3805 	return " (unknown)";
3806 }
3807 
3808 __printf(3, 4)
3809 void netdev_printk(const char *level, const struct net_device *dev,
3810 		   const char *format, ...);
3811 __printf(2, 3)
3812 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3813 __printf(2, 3)
3814 void netdev_alert(const struct net_device *dev, const char *format, ...);
3815 __printf(2, 3)
3816 void netdev_crit(const struct net_device *dev, const char *format, ...);
3817 __printf(2, 3)
3818 void netdev_err(const struct net_device *dev, const char *format, ...);
3819 __printf(2, 3)
3820 void netdev_warn(const struct net_device *dev, const char *format, ...);
3821 __printf(2, 3)
3822 void netdev_notice(const struct net_device *dev, const char *format, ...);
3823 __printf(2, 3)
3824 void netdev_info(const struct net_device *dev, const char *format, ...);
3825 
3826 #define MODULE_ALIAS_NETDEV(device) \
3827 	MODULE_ALIAS("netdev-" device)
3828 
3829 #if defined(CONFIG_DYNAMIC_DEBUG)
3830 #define netdev_dbg(__dev, format, args...)			\
3831 do {								\
3832 	dynamic_netdev_dbg(__dev, format, ##args);		\
3833 } while (0)
3834 #elif defined(DEBUG)
3835 #define netdev_dbg(__dev, format, args...)			\
3836 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3837 #else
3838 #define netdev_dbg(__dev, format, args...)			\
3839 ({								\
3840 	if (0)							\
3841 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3842 })
3843 #endif
3844 
3845 #if defined(VERBOSE_DEBUG)
3846 #define netdev_vdbg	netdev_dbg
3847 #else
3848 
3849 #define netdev_vdbg(dev, format, args...)			\
3850 ({								\
3851 	if (0)							\
3852 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3853 	0;							\
3854 })
3855 #endif
3856 
3857 /*
3858  * netdev_WARN() acts like dev_printk(), but with the key difference
3859  * of using a WARN/WARN_ON to get the message out, including the
3860  * file/line information and a backtrace.
3861  */
3862 #define netdev_WARN(dev, format, args...)			\
3863 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3864 	     netdev_reg_state(dev), ##args)
3865 
3866 /* netif printk helpers, similar to netdev_printk */
3867 
3868 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3869 do {					  			\
3870 	if (netif_msg_##type(priv))				\
3871 		netdev_printk(level, (dev), fmt, ##args);	\
3872 } while (0)
3873 
3874 #define netif_level(level, priv, type, dev, fmt, args...)	\
3875 do {								\
3876 	if (netif_msg_##type(priv))				\
3877 		netdev_##level(dev, fmt, ##args);		\
3878 } while (0)
3879 
3880 #define netif_emerg(priv, type, dev, fmt, args...)		\
3881 	netif_level(emerg, priv, type, dev, fmt, ##args)
3882 #define netif_alert(priv, type, dev, fmt, args...)		\
3883 	netif_level(alert, priv, type, dev, fmt, ##args)
3884 #define netif_crit(priv, type, dev, fmt, args...)		\
3885 	netif_level(crit, priv, type, dev, fmt, ##args)
3886 #define netif_err(priv, type, dev, fmt, args...)		\
3887 	netif_level(err, priv, type, dev, fmt, ##args)
3888 #define netif_warn(priv, type, dev, fmt, args...)		\
3889 	netif_level(warn, priv, type, dev, fmt, ##args)
3890 #define netif_notice(priv, type, dev, fmt, args...)		\
3891 	netif_level(notice, priv, type, dev, fmt, ##args)
3892 #define netif_info(priv, type, dev, fmt, args...)		\
3893 	netif_level(info, priv, type, dev, fmt, ##args)
3894 
3895 #if defined(CONFIG_DYNAMIC_DEBUG)
3896 #define netif_dbg(priv, type, netdev, format, args...)		\
3897 do {								\
3898 	if (netif_msg_##type(priv))				\
3899 		dynamic_netdev_dbg(netdev, format, ##args);	\
3900 } while (0)
3901 #elif defined(DEBUG)
3902 #define netif_dbg(priv, type, dev, format, args...)		\
3903 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3904 #else
3905 #define netif_dbg(priv, type, dev, format, args...)			\
3906 ({									\
3907 	if (0)								\
3908 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3909 	0;								\
3910 })
3911 #endif
3912 
3913 #if defined(VERBOSE_DEBUG)
3914 #define netif_vdbg	netif_dbg
3915 #else
3916 #define netif_vdbg(priv, type, dev, format, args...)		\
3917 ({								\
3918 	if (0)							\
3919 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3920 	0;							\
3921 })
3922 #endif
3923 
3924 /*
3925  *	The list of packet types we will receive (as opposed to discard)
3926  *	and the routines to invoke.
3927  *
3928  *	Why 16. Because with 16 the only overlap we get on a hash of the
3929  *	low nibble of the protocol value is RARP/SNAP/X.25.
3930  *
3931  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3932  *             sure which should go first, but I bet it won't make much
3933  *             difference if we are running VLANs.  The good news is that
3934  *             this protocol won't be in the list unless compiled in, so
3935  *             the average user (w/out VLANs) will not be adversely affected.
3936  *             --BLG
3937  *
3938  *		0800	IP
3939  *		8100    802.1Q VLAN
3940  *		0001	802.3
3941  *		0002	AX.25
3942  *		0004	802.2
3943  *		8035	RARP
3944  *		0005	SNAP
3945  *		0805	X.25
3946  *		0806	ARP
3947  *		8137	IPX
3948  *		0009	Localtalk
3949  *		86DD	IPv6
3950  */
3951 #define PTYPE_HASH_SIZE	(16)
3952 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3953 
3954 #endif	/* _LINUX_NETDEVICE_H */
3955