xref: /linux-6.15/include/linux/netdevice.h (revision d89dffa9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/bug.h>
37 #include <linux/delay.h>
38 #include <linux/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41 
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55 
56 #include <linux/netdev_features.h>
57 #include <linux/neighbour.h>
58 
59 struct netpoll_info;
60 struct device;
61 struct phy_device;
62 /* 802.11 specific */
63 struct wireless_dev;
64 					/* source back-compat hooks */
65 #define SET_ETHTOOL_OPS(netdev,ops) \
66 	( (netdev)->ethtool_ops = (ops) )
67 
68 /* hardware address assignment types */
69 #define NET_ADDR_PERM		0	/* address is permanent (default) */
70 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
71 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 #endif
137 
138 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
139 
140 /* Initial net device group. All devices belong to group 0 by default. */
141 #define INIT_NETDEV_GROUP	0
142 
143 #ifdef  __KERNEL__
144 /*
145  *	Compute the worst case header length according to the protocols
146  *	used.
147  */
148 
149 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 #  define LL_MAX_HEADER 128
152 # else
153 #  define LL_MAX_HEADER 96
154 # endif
155 #elif IS_ENABLED(CONFIG_TR)
156 # define LL_MAX_HEADER 48
157 #else
158 # define LL_MAX_HEADER 32
159 #endif
160 
161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167 
168 /*
169  *	Old network device statistics. Fields are native words
170  *	(unsigned long) so they can be read and written atomically.
171  */
172 
173 struct net_device_stats {
174 	unsigned long	rx_packets;
175 	unsigned long	tx_packets;
176 	unsigned long	rx_bytes;
177 	unsigned long	tx_bytes;
178 	unsigned long	rx_errors;
179 	unsigned long	tx_errors;
180 	unsigned long	rx_dropped;
181 	unsigned long	tx_dropped;
182 	unsigned long	multicast;
183 	unsigned long	collisions;
184 	unsigned long	rx_length_errors;
185 	unsigned long	rx_over_errors;
186 	unsigned long	rx_crc_errors;
187 	unsigned long	rx_frame_errors;
188 	unsigned long	rx_fifo_errors;
189 	unsigned long	rx_missed_errors;
190 	unsigned long	tx_aborted_errors;
191 	unsigned long	tx_carrier_errors;
192 	unsigned long	tx_fifo_errors;
193 	unsigned long	tx_heartbeat_errors;
194 	unsigned long	tx_window_errors;
195 	unsigned long	rx_compressed;
196 	unsigned long	tx_compressed;
197 };
198 
199 #endif  /*  __KERNEL__  */
200 
201 
202 /* Media selection options. */
203 enum {
204         IF_PORT_UNKNOWN = 0,
205         IF_PORT_10BASE2,
206         IF_PORT_10BASET,
207         IF_PORT_AUI,
208         IF_PORT_100BASET,
209         IF_PORT_100BASETX,
210         IF_PORT_100BASEFX
211 };
212 
213 #ifdef __KERNEL__
214 
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217 
218 #ifdef CONFIG_RPS
219 #include <linux/static_key.h>
220 extern struct static_key rps_needed;
221 #endif
222 
223 struct neighbour;
224 struct neigh_parms;
225 struct sk_buff;
226 
227 struct netdev_hw_addr {
228 	struct list_head	list;
229 	unsigned char		addr[MAX_ADDR_LEN];
230 	unsigned char		type;
231 #define NETDEV_HW_ADDR_T_LAN		1
232 #define NETDEV_HW_ADDR_T_SAN		2
233 #define NETDEV_HW_ADDR_T_SLAVE		3
234 #define NETDEV_HW_ADDR_T_UNICAST	4
235 #define NETDEV_HW_ADDR_T_MULTICAST	5
236 	bool			synced;
237 	bool			global_use;
238 	int			refcount;
239 	struct rcu_head		rcu_head;
240 };
241 
242 struct netdev_hw_addr_list {
243 	struct list_head	list;
244 	int			count;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261 
262 struct hh_cache {
263 	u16		hh_len;
264 	u16		__pad;
265 	seqlock_t	hh_lock;
266 
267 	/* cached hardware header; allow for machine alignment needs.        */
268 #define HH_DATA_MOD	16
269 #define HH_DATA_OFF(__len) \
270 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271 #define HH_DATA_ALIGN(__len) \
272 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274 };
275 
276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277  * Alternative is:
278  *   dev->hard_header_len ? (dev->hard_header_len +
279  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280  *
281  * We could use other alignment values, but we must maintain the
282  * relationship HH alignment <= LL alignment.
283  */
284 #define LL_RESERVED_SPACE(dev) \
285 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288 
289 struct header_ops {
290 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
291 			   unsigned short type, const void *daddr,
292 			   const void *saddr, unsigned int len);
293 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 	int	(*rebuild)(struct sk_buff *skb);
295 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 	void	(*cache_update)(struct hh_cache *hh,
297 				const struct net_device *dev,
298 				const unsigned char *haddr);
299 };
300 
301 /* These flag bits are private to the generic network queueing
302  * layer, they may not be explicitly referenced by any other
303  * code.
304  */
305 
306 enum netdev_state_t {
307 	__LINK_STATE_START,
308 	__LINK_STATE_PRESENT,
309 	__LINK_STATE_NOCARRIER,
310 	__LINK_STATE_LINKWATCH_PENDING,
311 	__LINK_STATE_DORMANT,
312 };
313 
314 
315 /*
316  * This structure holds at boot time configured netdevice settings. They
317  * are then used in the device probing.
318  */
319 struct netdev_boot_setup {
320 	char name[IFNAMSIZ];
321 	struct ifmap map;
322 };
323 #define NETDEV_BOOT_SETUP_MAX 8
324 
325 extern int __init netdev_boot_setup(char *str);
326 
327 /*
328  * Structure for NAPI scheduling similar to tasklet but with weighting
329  */
330 struct napi_struct {
331 	/* The poll_list must only be managed by the entity which
332 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
333 	 * whoever atomically sets that bit can add this napi_struct
334 	 * to the per-cpu poll_list, and whoever clears that bit
335 	 * can remove from the list right before clearing the bit.
336 	 */
337 	struct list_head	poll_list;
338 
339 	unsigned long		state;
340 	int			weight;
341 	int			(*poll)(struct napi_struct *, int);
342 #ifdef CONFIG_NETPOLL
343 	spinlock_t		poll_lock;
344 	int			poll_owner;
345 #endif
346 
347 	unsigned int		gro_count;
348 
349 	struct net_device	*dev;
350 	struct list_head	dev_list;
351 	struct sk_buff		*gro_list;
352 	struct sk_buff		*skb;
353 };
354 
355 enum {
356 	NAPI_STATE_SCHED,	/* Poll is scheduled */
357 	NAPI_STATE_DISABLE,	/* Disable pending */
358 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
359 };
360 
361 enum gro_result {
362 	GRO_MERGED,
363 	GRO_MERGED_FREE,
364 	GRO_HELD,
365 	GRO_NORMAL,
366 	GRO_DROP,
367 };
368 typedef enum gro_result gro_result_t;
369 
370 /*
371  * enum rx_handler_result - Possible return values for rx_handlers.
372  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
373  * further.
374  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
375  * case skb->dev was changed by rx_handler.
376  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
377  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
378  *
379  * rx_handlers are functions called from inside __netif_receive_skb(), to do
380  * special processing of the skb, prior to delivery to protocol handlers.
381  *
382  * Currently, a net_device can only have a single rx_handler registered. Trying
383  * to register a second rx_handler will return -EBUSY.
384  *
385  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
386  * To unregister a rx_handler on a net_device, use
387  * netdev_rx_handler_unregister().
388  *
389  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
390  * do with the skb.
391  *
392  * If the rx_handler consumed to skb in some way, it should return
393  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
394  * the skb to be delivered in some other ways.
395  *
396  * If the rx_handler changed skb->dev, to divert the skb to another
397  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
398  * new device will be called if it exists.
399  *
400  * If the rx_handler consider the skb should be ignored, it should return
401  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
402  * are registred on exact device (ptype->dev == skb->dev).
403  *
404  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
405  * delivered, it should return RX_HANDLER_PASS.
406  *
407  * A device without a registered rx_handler will behave as if rx_handler
408  * returned RX_HANDLER_PASS.
409  */
410 
411 enum rx_handler_result {
412 	RX_HANDLER_CONSUMED,
413 	RX_HANDLER_ANOTHER,
414 	RX_HANDLER_EXACT,
415 	RX_HANDLER_PASS,
416 };
417 typedef enum rx_handler_result rx_handler_result_t;
418 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
419 
420 extern void __napi_schedule(struct napi_struct *n);
421 
422 static inline bool napi_disable_pending(struct napi_struct *n)
423 {
424 	return test_bit(NAPI_STATE_DISABLE, &n->state);
425 }
426 
427 /**
428  *	napi_schedule_prep - check if napi can be scheduled
429  *	@n: napi context
430  *
431  * Test if NAPI routine is already running, and if not mark
432  * it as running.  This is used as a condition variable
433  * insure only one NAPI poll instance runs.  We also make
434  * sure there is no pending NAPI disable.
435  */
436 static inline bool napi_schedule_prep(struct napi_struct *n)
437 {
438 	return !napi_disable_pending(n) &&
439 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
440 }
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: napi context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
456 static inline bool napi_reschedule(struct napi_struct *napi)
457 {
458 	if (napi_schedule_prep(napi)) {
459 		__napi_schedule(napi);
460 		return true;
461 	}
462 	return false;
463 }
464 
465 /**
466  *	napi_complete - NAPI processing complete
467  *	@n: napi context
468  *
469  * Mark NAPI processing as complete.
470  */
471 extern void __napi_complete(struct napi_struct *n);
472 extern void napi_complete(struct napi_struct *n);
473 
474 /**
475  *	napi_disable - prevent NAPI from scheduling
476  *	@n: napi context
477  *
478  * Stop NAPI from being scheduled on this context.
479  * Waits till any outstanding processing completes.
480  */
481 static inline void napi_disable(struct napi_struct *n)
482 {
483 	set_bit(NAPI_STATE_DISABLE, &n->state);
484 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
485 		msleep(1);
486 	clear_bit(NAPI_STATE_DISABLE, &n->state);
487 }
488 
489 /**
490  *	napi_enable - enable NAPI scheduling
491  *	@n: napi context
492  *
493  * Resume NAPI from being scheduled on this context.
494  * Must be paired with napi_disable.
495  */
496 static inline void napi_enable(struct napi_struct *n)
497 {
498 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
499 	smp_mb__before_clear_bit();
500 	clear_bit(NAPI_STATE_SCHED, &n->state);
501 }
502 
503 #ifdef CONFIG_SMP
504 /**
505  *	napi_synchronize - wait until NAPI is not running
506  *	@n: napi context
507  *
508  * Wait until NAPI is done being scheduled on this context.
509  * Waits till any outstanding processing completes but
510  * does not disable future activations.
511  */
512 static inline void napi_synchronize(const struct napi_struct *n)
513 {
514 	while (test_bit(NAPI_STATE_SCHED, &n->state))
515 		msleep(1);
516 }
517 #else
518 # define napi_synchronize(n)	barrier()
519 #endif
520 
521 enum netdev_queue_state_t {
522 	__QUEUE_STATE_DRV_XOFF,
523 	__QUEUE_STATE_STACK_XOFF,
524 	__QUEUE_STATE_FROZEN,
525 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
526 			      (1 << __QUEUE_STATE_STACK_XOFF))
527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
528 					(1 << __QUEUE_STATE_FROZEN))
529 };
530 /*
531  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
532  * netif_tx_* functions below are used to manipulate this flag.  The
533  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
534  * queue independently.  The netif_xmit_*stopped functions below are called
535  * to check if the queue has been stopped by the driver or stack (either
536  * of the XOFF bits are set in the state).  Drivers should not need to call
537  * netif_xmit*stopped functions, they should only be using netif_tx_*.
538  */
539 
540 struct netdev_queue {
541 /*
542  * read mostly part
543  */
544 	struct net_device	*dev;
545 	struct Qdisc		*qdisc;
546 	struct Qdisc		*qdisc_sleeping;
547 #ifdef CONFIG_SYSFS
548 	struct kobject		kobj;
549 #endif
550 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
551 	int			numa_node;
552 #endif
553 /*
554  * write mostly part
555  */
556 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
557 	int			xmit_lock_owner;
558 	/*
559 	 * please use this field instead of dev->trans_start
560 	 */
561 	unsigned long		trans_start;
562 
563 	/*
564 	 * Number of TX timeouts for this queue
565 	 * (/sys/class/net/DEV/Q/trans_timeout)
566 	 */
567 	unsigned long		trans_timeout;
568 
569 	unsigned long		state;
570 
571 #ifdef CONFIG_BQL
572 	struct dql		dql;
573 #endif
574 } ____cacheline_aligned_in_smp;
575 
576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577 {
578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 	return q->numa_node;
580 #else
581 	return NUMA_NO_NODE;
582 #endif
583 }
584 
585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586 {
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 	q->numa_node = node;
589 #endif
590 }
591 
592 #ifdef CONFIG_RPS
593 /*
594  * This structure holds an RPS map which can be of variable length.  The
595  * map is an array of CPUs.
596  */
597 struct rps_map {
598 	unsigned int len;
599 	struct rcu_head rcu;
600 	u16 cpus[0];
601 };
602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
603 
604 /*
605  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606  * tail pointer for that CPU's input queue at the time of last enqueue, and
607  * a hardware filter index.
608  */
609 struct rps_dev_flow {
610 	u16 cpu;
611 	u16 filter;
612 	unsigned int last_qtail;
613 };
614 #define RPS_NO_FILTER 0xffff
615 
616 /*
617  * The rps_dev_flow_table structure contains a table of flow mappings.
618  */
619 struct rps_dev_flow_table {
620 	unsigned int mask;
621 	struct rcu_head rcu;
622 	struct work_struct free_work;
623 	struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626     ((_num) * sizeof(struct rps_dev_flow)))
627 
628 /*
629  * The rps_sock_flow_table contains mappings of flows to the last CPU
630  * on which they were processed by the application (set in recvmsg).
631  */
632 struct rps_sock_flow_table {
633 	unsigned int mask;
634 	u16 ents[0];
635 };
636 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637     ((_num) * sizeof(u16)))
638 
639 #define RPS_NO_CPU 0xffff
640 
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 					u32 hash)
643 {
644 	if (table && hash) {
645 		unsigned int cpu, index = hash & table->mask;
646 
647 		/* We only give a hint, preemption can change cpu under us */
648 		cpu = raw_smp_processor_id();
649 
650 		if (table->ents[index] != cpu)
651 			table->ents[index] = cpu;
652 	}
653 }
654 
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 				       u32 hash)
657 {
658 	if (table && hash)
659 		table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661 
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663 
664 #ifdef CONFIG_RFS_ACCEL
665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 				u32 flow_id, u16 filter_id);
667 #endif
668 
669 /* This structure contains an instance of an RX queue. */
670 struct netdev_rx_queue {
671 	struct rps_map __rcu		*rps_map;
672 	struct rps_dev_flow_table __rcu	*rps_flow_table;
673 	struct kobject			kobj;
674 	struct net_device		*dev;
675 } ____cacheline_aligned_in_smp;
676 #endif /* CONFIG_RPS */
677 
678 #ifdef CONFIG_XPS
679 /*
680  * This structure holds an XPS map which can be of variable length.  The
681  * map is an array of queues.
682  */
683 struct xps_map {
684 	unsigned int len;
685 	unsigned int alloc_len;
686 	struct rcu_head rcu;
687 	u16 queues[0];
688 };
689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
691     / sizeof(u16))
692 
693 /*
694  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
695  */
696 struct xps_dev_maps {
697 	struct rcu_head rcu;
698 	struct xps_map __rcu *cpu_map[0];
699 };
700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
701     (nr_cpu_ids * sizeof(struct xps_map *)))
702 #endif /* CONFIG_XPS */
703 
704 #define TC_MAX_QUEUE	16
705 #define TC_BITMASK	15
706 /* HW offloaded queuing disciplines txq count and offset maps */
707 struct netdev_tc_txq {
708 	u16 count;
709 	u16 offset;
710 };
711 
712 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
713 /*
714  * This structure is to hold information about the device
715  * configured to run FCoE protocol stack.
716  */
717 struct netdev_fcoe_hbainfo {
718 	char	manufacturer[64];
719 	char	serial_number[64];
720 	char	hardware_version[64];
721 	char	driver_version[64];
722 	char	optionrom_version[64];
723 	char	firmware_version[64];
724 	char	model[256];
725 	char	model_description[256];
726 };
727 #endif
728 
729 /*
730  * This structure defines the management hooks for network devices.
731  * The following hooks can be defined; unless noted otherwise, they are
732  * optional and can be filled with a null pointer.
733  *
734  * int (*ndo_init)(struct net_device *dev);
735  *     This function is called once when network device is registered.
736  *     The network device can use this to any late stage initializaton
737  *     or semantic validattion. It can fail with an error code which will
738  *     be propogated back to register_netdev
739  *
740  * void (*ndo_uninit)(struct net_device *dev);
741  *     This function is called when device is unregistered or when registration
742  *     fails. It is not called if init fails.
743  *
744  * int (*ndo_open)(struct net_device *dev);
745  *     This function is called when network device transistions to the up
746  *     state.
747  *
748  * int (*ndo_stop)(struct net_device *dev);
749  *     This function is called when network device transistions to the down
750  *     state.
751  *
752  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
753  *                               struct net_device *dev);
754  *	Called when a packet needs to be transmitted.
755  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
756  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
757  *	Required can not be NULL.
758  *
759  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
760  *	Called to decide which queue to when device supports multiple
761  *	transmit queues.
762  *
763  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
764  *	This function is called to allow device receiver to make
765  *	changes to configuration when multicast or promiscious is enabled.
766  *
767  * void (*ndo_set_rx_mode)(struct net_device *dev);
768  *	This function is called device changes address list filtering.
769  *	If driver handles unicast address filtering, it should set
770  *	IFF_UNICAST_FLT to its priv_flags.
771  *
772  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
773  *	This function  is called when the Media Access Control address
774  *	needs to be changed. If this interface is not defined, the
775  *	mac address can not be changed.
776  *
777  * int (*ndo_validate_addr)(struct net_device *dev);
778  *	Test if Media Access Control address is valid for the device.
779  *
780  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
781  *	Called when a user request an ioctl which can't be handled by
782  *	the generic interface code. If not defined ioctl's return
783  *	not supported error code.
784  *
785  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
786  *	Used to set network devices bus interface parameters. This interface
787  *	is retained for legacy reason, new devices should use the bus
788  *	interface (PCI) for low level management.
789  *
790  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
791  *	Called when a user wants to change the Maximum Transfer Unit
792  *	of a device. If not defined, any request to change MTU will
793  *	will return an error.
794  *
795  * void (*ndo_tx_timeout)(struct net_device *dev);
796  *	Callback uses when the transmitter has not made any progress
797  *	for dev->watchdog ticks.
798  *
799  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
800  *                      struct rtnl_link_stats64 *storage);
801  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
802  *	Called when a user wants to get the network device usage
803  *	statistics. Drivers must do one of the following:
804  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
805  *	   rtnl_link_stats64 structure passed by the caller.
806  *	2. Define @ndo_get_stats to update a net_device_stats structure
807  *	   (which should normally be dev->stats) and return a pointer to
808  *	   it. The structure may be changed asynchronously only if each
809  *	   field is written atomically.
810  *	3. Update dev->stats asynchronously and atomically, and define
811  *	   neither operation.
812  *
813  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
814  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
815  *	this function is called when a VLAN id is registered.
816  *
817  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
818  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
819  *	this function is called when a VLAN id is unregistered.
820  *
821  * void (*ndo_poll_controller)(struct net_device *dev);
822  *
823  *	SR-IOV management functions.
824  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
825  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
826  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
827  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
828  * int (*ndo_get_vf_config)(struct net_device *dev,
829  *			    int vf, struct ifla_vf_info *ivf);
830  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
831  *			  struct nlattr *port[]);
832  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
833  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
834  * 	Called to setup 'tc' number of traffic classes in the net device. This
835  * 	is always called from the stack with the rtnl lock held and netif tx
836  * 	queues stopped. This allows the netdevice to perform queue management
837  * 	safely.
838  *
839  *	Fiber Channel over Ethernet (FCoE) offload functions.
840  * int (*ndo_fcoe_enable)(struct net_device *dev);
841  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
842  *	so the underlying device can perform whatever needed configuration or
843  *	initialization to support acceleration of FCoE traffic.
844  *
845  * int (*ndo_fcoe_disable)(struct net_device *dev);
846  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
847  *	so the underlying device can perform whatever needed clean-ups to
848  *	stop supporting acceleration of FCoE traffic.
849  *
850  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
851  *			     struct scatterlist *sgl, unsigned int sgc);
852  *	Called when the FCoE Initiator wants to initialize an I/O that
853  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
854  *	perform necessary setup and returns 1 to indicate the device is set up
855  *	successfully to perform DDP on this I/O, otherwise this returns 0.
856  *
857  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
858  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
859  *	indicated by the FC exchange id 'xid', so the underlying device can
860  *	clean up and reuse resources for later DDP requests.
861  *
862  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
863  *			      struct scatterlist *sgl, unsigned int sgc);
864  *	Called when the FCoE Target wants to initialize an I/O that
865  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
866  *	perform necessary setup and returns 1 to indicate the device is set up
867  *	successfully to perform DDP on this I/O, otherwise this returns 0.
868  *
869  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
870  *			       struct netdev_fcoe_hbainfo *hbainfo);
871  *	Called when the FCoE Protocol stack wants information on the underlying
872  *	device. This information is utilized by the FCoE protocol stack to
873  *	register attributes with Fiber Channel management service as per the
874  *	FC-GS Fabric Device Management Information(FDMI) specification.
875  *
876  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
877  *	Called when the underlying device wants to override default World Wide
878  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
879  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
880  *	protocol stack to use.
881  *
882  *	RFS acceleration.
883  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
884  *			    u16 rxq_index, u32 flow_id);
885  *	Set hardware filter for RFS.  rxq_index is the target queue index;
886  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
887  *	Return the filter ID on success, or a negative error code.
888  *
889  *	Slave management functions (for bridge, bonding, etc). User should
890  *	call netdev_set_master() to set dev->master properly.
891  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
892  *	Called to make another netdev an underling.
893  *
894  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
895  *	Called to release previously enslaved netdev.
896  *
897  *      Feature/offload setting functions.
898  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
899  *		netdev_features_t features);
900  *	Adjusts the requested feature flags according to device-specific
901  *	constraints, and returns the resulting flags. Must not modify
902  *	the device state.
903  *
904  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
905  *	Called to update device configuration to new features. Passed
906  *	feature set might be less than what was returned by ndo_fix_features()).
907  *	Must return >0 or -errno if it changed dev->features itself.
908  *
909  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct net_device *dev,
910  *		      unsigned char *addr, u16 flags)
911  *	Adds an FDB entry to dev for addr.
912  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
913  *		      unsigned char *addr)
914  *	Deletes the FDB entry from dev coresponding to addr.
915  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
916  *		       struct net_device *dev, int idx)
917  *	Used to add FDB entries to dump requests. Implementers should add
918  *	entries to skb and update idx with the number of entries.
919  */
920 struct net_device_ops {
921 	int			(*ndo_init)(struct net_device *dev);
922 	void			(*ndo_uninit)(struct net_device *dev);
923 	int			(*ndo_open)(struct net_device *dev);
924 	int			(*ndo_stop)(struct net_device *dev);
925 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
926 						   struct net_device *dev);
927 	u16			(*ndo_select_queue)(struct net_device *dev,
928 						    struct sk_buff *skb);
929 	void			(*ndo_change_rx_flags)(struct net_device *dev,
930 						       int flags);
931 	void			(*ndo_set_rx_mode)(struct net_device *dev);
932 	int			(*ndo_set_mac_address)(struct net_device *dev,
933 						       void *addr);
934 	int			(*ndo_validate_addr)(struct net_device *dev);
935 	int			(*ndo_do_ioctl)(struct net_device *dev,
936 					        struct ifreq *ifr, int cmd);
937 	int			(*ndo_set_config)(struct net_device *dev,
938 					          struct ifmap *map);
939 	int			(*ndo_change_mtu)(struct net_device *dev,
940 						  int new_mtu);
941 	int			(*ndo_neigh_setup)(struct net_device *dev,
942 						   struct neigh_parms *);
943 	void			(*ndo_tx_timeout) (struct net_device *dev);
944 
945 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
946 						     struct rtnl_link_stats64 *storage);
947 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
948 
949 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
950 						       unsigned short vid);
951 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
952 						        unsigned short vid);
953 #ifdef CONFIG_NET_POLL_CONTROLLER
954 	void                    (*ndo_poll_controller)(struct net_device *dev);
955 	int			(*ndo_netpoll_setup)(struct net_device *dev,
956 						     struct netpoll_info *info);
957 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
958 #endif
959 	int			(*ndo_set_vf_mac)(struct net_device *dev,
960 						  int queue, u8 *mac);
961 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
962 						   int queue, u16 vlan, u8 qos);
963 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
964 						      int vf, int rate);
965 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
966 						       int vf, bool setting);
967 	int			(*ndo_get_vf_config)(struct net_device *dev,
968 						     int vf,
969 						     struct ifla_vf_info *ivf);
970 	int			(*ndo_set_vf_port)(struct net_device *dev,
971 						   int vf,
972 						   struct nlattr *port[]);
973 	int			(*ndo_get_vf_port)(struct net_device *dev,
974 						   int vf, struct sk_buff *skb);
975 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
976 #if IS_ENABLED(CONFIG_FCOE)
977 	int			(*ndo_fcoe_enable)(struct net_device *dev);
978 	int			(*ndo_fcoe_disable)(struct net_device *dev);
979 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
980 						      u16 xid,
981 						      struct scatterlist *sgl,
982 						      unsigned int sgc);
983 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
984 						     u16 xid);
985 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
986 						       u16 xid,
987 						       struct scatterlist *sgl,
988 						       unsigned int sgc);
989 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
990 							struct netdev_fcoe_hbainfo *hbainfo);
991 #endif
992 
993 #if IS_ENABLED(CONFIG_LIBFCOE)
994 #define NETDEV_FCOE_WWNN 0
995 #define NETDEV_FCOE_WWPN 1
996 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
997 						    u64 *wwn, int type);
998 #endif
999 
1000 #ifdef CONFIG_RFS_ACCEL
1001 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1002 						     const struct sk_buff *skb,
1003 						     u16 rxq_index,
1004 						     u32 flow_id);
1005 #endif
1006 	int			(*ndo_add_slave)(struct net_device *dev,
1007 						 struct net_device *slave_dev);
1008 	int			(*ndo_del_slave)(struct net_device *dev,
1009 						 struct net_device *slave_dev);
1010 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1011 						    netdev_features_t features);
1012 	int			(*ndo_set_features)(struct net_device *dev,
1013 						    netdev_features_t features);
1014 	int			(*ndo_neigh_construct)(struct neighbour *n);
1015 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1016 
1017 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1018 					       struct net_device *dev,
1019 					       unsigned char *addr,
1020 					       u16 flags);
1021 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1022 					       struct net_device *dev,
1023 					       unsigned char *addr);
1024 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1025 						struct netlink_callback *cb,
1026 						struct net_device *dev,
1027 						int idx);
1028 };
1029 
1030 /*
1031  *	The DEVICE structure.
1032  *	Actually, this whole structure is a big mistake.  It mixes I/O
1033  *	data with strictly "high-level" data, and it has to know about
1034  *	almost every data structure used in the INET module.
1035  *
1036  *	FIXME: cleanup struct net_device such that network protocol info
1037  *	moves out.
1038  */
1039 
1040 struct net_device {
1041 
1042 	/*
1043 	 * This is the first field of the "visible" part of this structure
1044 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1045 	 * of the interface.
1046 	 */
1047 	char			name[IFNAMSIZ];
1048 
1049 	/* device name hash chain, please keep it close to name[] */
1050 	struct hlist_node	name_hlist;
1051 
1052 	/* snmp alias */
1053 	char 			*ifalias;
1054 
1055 	/*
1056 	 *	I/O specific fields
1057 	 *	FIXME: Merge these and struct ifmap into one
1058 	 */
1059 	unsigned long		mem_end;	/* shared mem end	*/
1060 	unsigned long		mem_start;	/* shared mem start	*/
1061 	unsigned long		base_addr;	/* device I/O address	*/
1062 	unsigned int		irq;		/* device IRQ number	*/
1063 
1064 	/*
1065 	 *	Some hardware also needs these fields, but they are not
1066 	 *	part of the usual set specified in Space.c.
1067 	 */
1068 
1069 	unsigned long		state;
1070 
1071 	struct list_head	dev_list;
1072 	struct list_head	napi_list;
1073 	struct list_head	unreg_list;
1074 
1075 	/* currently active device features */
1076 	netdev_features_t	features;
1077 	/* user-changeable features */
1078 	netdev_features_t	hw_features;
1079 	/* user-requested features */
1080 	netdev_features_t	wanted_features;
1081 	/* mask of features inheritable by VLAN devices */
1082 	netdev_features_t	vlan_features;
1083 
1084 	/* Interface index. Unique device identifier	*/
1085 	int			ifindex;
1086 	int			iflink;
1087 
1088 	struct net_device_stats	stats;
1089 	atomic_long_t		rx_dropped; /* dropped packets by core network
1090 					     * Do not use this in drivers.
1091 					     */
1092 
1093 #ifdef CONFIG_WIRELESS_EXT
1094 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1095 	 * See <net/iw_handler.h> for details. Jean II */
1096 	const struct iw_handler_def *	wireless_handlers;
1097 	/* Instance data managed by the core of Wireless Extensions. */
1098 	struct iw_public_data *	wireless_data;
1099 #endif
1100 	/* Management operations */
1101 	const struct net_device_ops *netdev_ops;
1102 	const struct ethtool_ops *ethtool_ops;
1103 
1104 	/* Hardware header description */
1105 	const struct header_ops *header_ops;
1106 
1107 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1108 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1109 					     * See if.h for definitions. */
1110 	unsigned short		gflags;
1111 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1112 
1113 	unsigned char		operstate; /* RFC2863 operstate */
1114 	unsigned char		link_mode; /* mapping policy to operstate */
1115 
1116 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1117 	unsigned char		dma;		/* DMA channel		*/
1118 
1119 	unsigned int		mtu;	/* interface MTU value		*/
1120 	unsigned short		type;	/* interface hardware type	*/
1121 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1122 
1123 	/* extra head- and tailroom the hardware may need, but not in all cases
1124 	 * can this be guaranteed, especially tailroom. Some cases also use
1125 	 * LL_MAX_HEADER instead to allocate the skb.
1126 	 */
1127 	unsigned short		needed_headroom;
1128 	unsigned short		needed_tailroom;
1129 
1130 	/* Interface address info. */
1131 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1132 	unsigned char		addr_assign_type; /* hw address assignment type */
1133 	unsigned char		addr_len;	/* hardware address length	*/
1134 	unsigned char		neigh_priv_len;
1135 	unsigned short          dev_id;		/* for shared network cards */
1136 
1137 	spinlock_t		addr_list_lock;
1138 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1139 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1140 	bool			uc_promisc;
1141 	unsigned int		promiscuity;
1142 	unsigned int		allmulti;
1143 
1144 
1145 	/* Protocol specific pointers */
1146 
1147 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1148 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1149 #endif
1150 #if IS_ENABLED(CONFIG_NET_DSA)
1151 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1152 #endif
1153 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1154 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1155 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1156 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1157 	void			*ax25_ptr;	/* AX.25 specific data */
1158 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1159 						   assign before registering */
1160 
1161 /*
1162  * Cache lines mostly used on receive path (including eth_type_trans())
1163  */
1164 	unsigned long		last_rx;	/* Time of last Rx
1165 						 * This should not be set in
1166 						 * drivers, unless really needed,
1167 						 * because network stack (bonding)
1168 						 * use it if/when necessary, to
1169 						 * avoid dirtying this cache line.
1170 						 */
1171 
1172 	struct net_device	*master; /* Pointer to master device of a group,
1173 					  * which this device is member of.
1174 					  */
1175 
1176 	/* Interface address info used in eth_type_trans() */
1177 	unsigned char		*dev_addr;	/* hw address, (before bcast
1178 						   because most packets are
1179 						   unicast) */
1180 
1181 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1182 						      hw addresses */
1183 
1184 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1185 
1186 #ifdef CONFIG_SYSFS
1187 	struct kset		*queues_kset;
1188 #endif
1189 
1190 #ifdef CONFIG_RPS
1191 	struct netdev_rx_queue	*_rx;
1192 
1193 	/* Number of RX queues allocated at register_netdev() time */
1194 	unsigned int		num_rx_queues;
1195 
1196 	/* Number of RX queues currently active in device */
1197 	unsigned int		real_num_rx_queues;
1198 
1199 #ifdef CONFIG_RFS_ACCEL
1200 	/* CPU reverse-mapping for RX completion interrupts, indexed
1201 	 * by RX queue number.  Assigned by driver.  This must only be
1202 	 * set if the ndo_rx_flow_steer operation is defined. */
1203 	struct cpu_rmap		*rx_cpu_rmap;
1204 #endif
1205 #endif
1206 
1207 	rx_handler_func_t __rcu	*rx_handler;
1208 	void __rcu		*rx_handler_data;
1209 
1210 	struct netdev_queue __rcu *ingress_queue;
1211 
1212 /*
1213  * Cache lines mostly used on transmit path
1214  */
1215 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1216 
1217 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1218 	unsigned int		num_tx_queues;
1219 
1220 	/* Number of TX queues currently active in device  */
1221 	unsigned int		real_num_tx_queues;
1222 
1223 	/* root qdisc from userspace point of view */
1224 	struct Qdisc		*qdisc;
1225 
1226 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1227 	spinlock_t		tx_global_lock;
1228 
1229 #ifdef CONFIG_XPS
1230 	struct xps_dev_maps __rcu *xps_maps;
1231 #endif
1232 
1233 	/* These may be needed for future network-power-down code. */
1234 
1235 	/*
1236 	 * trans_start here is expensive for high speed devices on SMP,
1237 	 * please use netdev_queue->trans_start instead.
1238 	 */
1239 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1240 
1241 	int			watchdog_timeo; /* used by dev_watchdog() */
1242 	struct timer_list	watchdog_timer;
1243 
1244 	/* Number of references to this device */
1245 	int __percpu		*pcpu_refcnt;
1246 
1247 	/* delayed register/unregister */
1248 	struct list_head	todo_list;
1249 	/* device index hash chain */
1250 	struct hlist_node	index_hlist;
1251 
1252 	struct list_head	link_watch_list;
1253 
1254 	/* register/unregister state machine */
1255 	enum { NETREG_UNINITIALIZED=0,
1256 	       NETREG_REGISTERED,	/* completed register_netdevice */
1257 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1258 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1259 	       NETREG_RELEASED,		/* called free_netdev */
1260 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1261 	} reg_state:8;
1262 
1263 	bool dismantle; /* device is going do be freed */
1264 
1265 	enum {
1266 		RTNL_LINK_INITIALIZED,
1267 		RTNL_LINK_INITIALIZING,
1268 	} rtnl_link_state:16;
1269 
1270 	/* Called from unregister, can be used to call free_netdev */
1271 	void (*destructor)(struct net_device *dev);
1272 
1273 #ifdef CONFIG_NETPOLL
1274 	struct netpoll_info	*npinfo;
1275 #endif
1276 
1277 #ifdef CONFIG_NET_NS
1278 	/* Network namespace this network device is inside */
1279 	struct net		*nd_net;
1280 #endif
1281 
1282 	/* mid-layer private */
1283 	union {
1284 		void				*ml_priv;
1285 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1286 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1287 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1288 	};
1289 	/* GARP */
1290 	struct garp_port __rcu	*garp_port;
1291 
1292 	/* class/net/name entry */
1293 	struct device		dev;
1294 	/* space for optional device, statistics, and wireless sysfs groups */
1295 	const struct attribute_group *sysfs_groups[4];
1296 
1297 	/* rtnetlink link ops */
1298 	const struct rtnl_link_ops *rtnl_link_ops;
1299 
1300 	/* for setting kernel sock attribute on TCP connection setup */
1301 #define GSO_MAX_SIZE		65536
1302 	unsigned int		gso_max_size;
1303 
1304 #ifdef CONFIG_DCB
1305 	/* Data Center Bridging netlink ops */
1306 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1307 #endif
1308 	u8 num_tc;
1309 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1310 	u8 prio_tc_map[TC_BITMASK + 1];
1311 
1312 #if IS_ENABLED(CONFIG_FCOE)
1313 	/* max exchange id for FCoE LRO by ddp */
1314 	unsigned int		fcoe_ddp_xid;
1315 #endif
1316 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1317 	struct netprio_map __rcu *priomap;
1318 #endif
1319 	/* phy device may attach itself for hardware timestamping */
1320 	struct phy_device *phydev;
1321 
1322 	/* group the device belongs to */
1323 	int group;
1324 
1325 	struct pm_qos_request	pm_qos_req;
1326 };
1327 #define to_net_dev(d) container_of(d, struct net_device, dev)
1328 
1329 #define	NETDEV_ALIGN		32
1330 
1331 static inline
1332 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1333 {
1334 	return dev->prio_tc_map[prio & TC_BITMASK];
1335 }
1336 
1337 static inline
1338 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1339 {
1340 	if (tc >= dev->num_tc)
1341 		return -EINVAL;
1342 
1343 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1344 	return 0;
1345 }
1346 
1347 static inline
1348 void netdev_reset_tc(struct net_device *dev)
1349 {
1350 	dev->num_tc = 0;
1351 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1352 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1353 }
1354 
1355 static inline
1356 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1357 {
1358 	if (tc >= dev->num_tc)
1359 		return -EINVAL;
1360 
1361 	dev->tc_to_txq[tc].count = count;
1362 	dev->tc_to_txq[tc].offset = offset;
1363 	return 0;
1364 }
1365 
1366 static inline
1367 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1368 {
1369 	if (num_tc > TC_MAX_QUEUE)
1370 		return -EINVAL;
1371 
1372 	dev->num_tc = num_tc;
1373 	return 0;
1374 }
1375 
1376 static inline
1377 int netdev_get_num_tc(struct net_device *dev)
1378 {
1379 	return dev->num_tc;
1380 }
1381 
1382 static inline
1383 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1384 					 unsigned int index)
1385 {
1386 	return &dev->_tx[index];
1387 }
1388 
1389 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1390 					    void (*f)(struct net_device *,
1391 						      struct netdev_queue *,
1392 						      void *),
1393 					    void *arg)
1394 {
1395 	unsigned int i;
1396 
1397 	for (i = 0; i < dev->num_tx_queues; i++)
1398 		f(dev, &dev->_tx[i], arg);
1399 }
1400 
1401 /*
1402  * Net namespace inlines
1403  */
1404 static inline
1405 struct net *dev_net(const struct net_device *dev)
1406 {
1407 	return read_pnet(&dev->nd_net);
1408 }
1409 
1410 static inline
1411 void dev_net_set(struct net_device *dev, struct net *net)
1412 {
1413 #ifdef CONFIG_NET_NS
1414 	release_net(dev->nd_net);
1415 	dev->nd_net = hold_net(net);
1416 #endif
1417 }
1418 
1419 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1420 {
1421 #ifdef CONFIG_NET_DSA_TAG_DSA
1422 	if (dev->dsa_ptr != NULL)
1423 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1424 #endif
1425 
1426 	return 0;
1427 }
1428 
1429 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1430 {
1431 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1432 	if (dev->dsa_ptr != NULL)
1433 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1434 #endif
1435 
1436 	return 0;
1437 }
1438 
1439 /**
1440  *	netdev_priv - access network device private data
1441  *	@dev: network device
1442  *
1443  * Get network device private data
1444  */
1445 static inline void *netdev_priv(const struct net_device *dev)
1446 {
1447 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1448 }
1449 
1450 /* Set the sysfs physical device reference for the network logical device
1451  * if set prior to registration will cause a symlink during initialization.
1452  */
1453 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1454 
1455 /* Set the sysfs device type for the network logical device to allow
1456  * fin grained indentification of different network device types. For
1457  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1458  */
1459 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1460 
1461 /**
1462  *	netif_napi_add - initialize a napi context
1463  *	@dev:  network device
1464  *	@napi: napi context
1465  *	@poll: polling function
1466  *	@weight: default weight
1467  *
1468  * netif_napi_add() must be used to initialize a napi context prior to calling
1469  * *any* of the other napi related functions.
1470  */
1471 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1472 		    int (*poll)(struct napi_struct *, int), int weight);
1473 
1474 /**
1475  *  netif_napi_del - remove a napi context
1476  *  @napi: napi context
1477  *
1478  *  netif_napi_del() removes a napi context from the network device napi list
1479  */
1480 void netif_napi_del(struct napi_struct *napi);
1481 
1482 struct napi_gro_cb {
1483 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1484 	void *frag0;
1485 
1486 	/* Length of frag0. */
1487 	unsigned int frag0_len;
1488 
1489 	/* This indicates where we are processing relative to skb->data. */
1490 	int data_offset;
1491 
1492 	/* This is non-zero if the packet may be of the same flow. */
1493 	int same_flow;
1494 
1495 	/* This is non-zero if the packet cannot be merged with the new skb. */
1496 	int flush;
1497 
1498 	/* Number of segments aggregated. */
1499 	int count;
1500 
1501 	/* Free the skb? */
1502 	int free;
1503 #define NAPI_GRO_FREE		  1
1504 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1505 };
1506 
1507 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1508 
1509 struct packet_type {
1510 	__be16			type;	/* This is really htons(ether_type). */
1511 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1512 	int			(*func) (struct sk_buff *,
1513 					 struct net_device *,
1514 					 struct packet_type *,
1515 					 struct net_device *);
1516 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1517 						netdev_features_t features);
1518 	int			(*gso_send_check)(struct sk_buff *skb);
1519 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1520 					       struct sk_buff *skb);
1521 	int			(*gro_complete)(struct sk_buff *skb);
1522 	void			*af_packet_priv;
1523 	struct list_head	list;
1524 };
1525 
1526 #include <linux/notifier.h>
1527 
1528 /* netdevice notifier chain. Please remember to update the rtnetlink
1529  * notification exclusion list in rtnetlink_event() when adding new
1530  * types.
1531  */
1532 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1533 #define NETDEV_DOWN	0x0002
1534 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1535 				   detected a hardware crash and restarted
1536 				   - we can use this eg to kick tcp sessions
1537 				   once done */
1538 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1539 #define NETDEV_REGISTER 0x0005
1540 #define NETDEV_UNREGISTER	0x0006
1541 #define NETDEV_CHANGEMTU	0x0007
1542 #define NETDEV_CHANGEADDR	0x0008
1543 #define NETDEV_GOING_DOWN	0x0009
1544 #define NETDEV_CHANGENAME	0x000A
1545 #define NETDEV_FEAT_CHANGE	0x000B
1546 #define NETDEV_BONDING_FAILOVER 0x000C
1547 #define NETDEV_PRE_UP		0x000D
1548 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1549 #define NETDEV_POST_TYPE_CHANGE	0x000F
1550 #define NETDEV_POST_INIT	0x0010
1551 #define NETDEV_UNREGISTER_BATCH 0x0011
1552 #define NETDEV_RELEASE		0x0012
1553 #define NETDEV_NOTIFY_PEERS	0x0013
1554 #define NETDEV_JOIN		0x0014
1555 
1556 extern int register_netdevice_notifier(struct notifier_block *nb);
1557 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1558 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1559 
1560 
1561 extern rwlock_t				dev_base_lock;		/* Device list lock */
1562 
1563 
1564 #define for_each_netdev(net, d)		\
1565 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1566 #define for_each_netdev_reverse(net, d)	\
1567 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1568 #define for_each_netdev_rcu(net, d)		\
1569 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1570 #define for_each_netdev_safe(net, d, n)	\
1571 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1572 #define for_each_netdev_continue(net, d)		\
1573 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1574 #define for_each_netdev_continue_rcu(net, d)		\
1575 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1576 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1577 
1578 static inline struct net_device *next_net_device(struct net_device *dev)
1579 {
1580 	struct list_head *lh;
1581 	struct net *net;
1582 
1583 	net = dev_net(dev);
1584 	lh = dev->dev_list.next;
1585 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1586 }
1587 
1588 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1589 {
1590 	struct list_head *lh;
1591 	struct net *net;
1592 
1593 	net = dev_net(dev);
1594 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1595 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1596 }
1597 
1598 static inline struct net_device *first_net_device(struct net *net)
1599 {
1600 	return list_empty(&net->dev_base_head) ? NULL :
1601 		net_device_entry(net->dev_base_head.next);
1602 }
1603 
1604 static inline struct net_device *first_net_device_rcu(struct net *net)
1605 {
1606 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1607 
1608 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1609 }
1610 
1611 extern int 			netdev_boot_setup_check(struct net_device *dev);
1612 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1613 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1614 					      const char *hwaddr);
1615 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1616 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1617 extern void		dev_add_pack(struct packet_type *pt);
1618 extern void		dev_remove_pack(struct packet_type *pt);
1619 extern void		__dev_remove_pack(struct packet_type *pt);
1620 
1621 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1622 						      unsigned short mask);
1623 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1624 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1625 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1626 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1627 extern int		dev_open(struct net_device *dev);
1628 extern int		dev_close(struct net_device *dev);
1629 extern void		dev_disable_lro(struct net_device *dev);
1630 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1631 extern int		dev_queue_xmit(struct sk_buff *skb);
1632 extern int		register_netdevice(struct net_device *dev);
1633 extern void		unregister_netdevice_queue(struct net_device *dev,
1634 						   struct list_head *head);
1635 extern void		unregister_netdevice_many(struct list_head *head);
1636 static inline void unregister_netdevice(struct net_device *dev)
1637 {
1638 	unregister_netdevice_queue(dev, NULL);
1639 }
1640 
1641 extern int 		netdev_refcnt_read(const struct net_device *dev);
1642 extern void		free_netdev(struct net_device *dev);
1643 extern void		synchronize_net(void);
1644 extern int		init_dummy_netdev(struct net_device *dev);
1645 extern void		netdev_resync_ops(struct net_device *dev);
1646 
1647 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1648 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1649 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1650 extern int		dev_restart(struct net_device *dev);
1651 #ifdef CONFIG_NETPOLL_TRAP
1652 extern int		netpoll_trap(void);
1653 #endif
1654 extern int	       skb_gro_receive(struct sk_buff **head,
1655 				       struct sk_buff *skb);
1656 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1657 
1658 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1659 {
1660 	return NAPI_GRO_CB(skb)->data_offset;
1661 }
1662 
1663 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1664 {
1665 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1666 }
1667 
1668 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1669 {
1670 	NAPI_GRO_CB(skb)->data_offset += len;
1671 }
1672 
1673 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1674 					unsigned int offset)
1675 {
1676 	return NAPI_GRO_CB(skb)->frag0 + offset;
1677 }
1678 
1679 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1680 {
1681 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1682 }
1683 
1684 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1685 					unsigned int offset)
1686 {
1687 	if (!pskb_may_pull(skb, hlen))
1688 		return NULL;
1689 
1690 	NAPI_GRO_CB(skb)->frag0 = NULL;
1691 	NAPI_GRO_CB(skb)->frag0_len = 0;
1692 	return skb->data + offset;
1693 }
1694 
1695 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1696 {
1697 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1698 }
1699 
1700 static inline void *skb_gro_network_header(struct sk_buff *skb)
1701 {
1702 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1703 	       skb_network_offset(skb);
1704 }
1705 
1706 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1707 				  unsigned short type,
1708 				  const void *daddr, const void *saddr,
1709 				  unsigned int len)
1710 {
1711 	if (!dev->header_ops || !dev->header_ops->create)
1712 		return 0;
1713 
1714 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1715 }
1716 
1717 static inline int dev_parse_header(const struct sk_buff *skb,
1718 				   unsigned char *haddr)
1719 {
1720 	const struct net_device *dev = skb->dev;
1721 
1722 	if (!dev->header_ops || !dev->header_ops->parse)
1723 		return 0;
1724 	return dev->header_ops->parse(skb, haddr);
1725 }
1726 
1727 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1728 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1729 static inline int unregister_gifconf(unsigned int family)
1730 {
1731 	return register_gifconf(family, NULL);
1732 }
1733 
1734 /*
1735  * Incoming packets are placed on per-cpu queues
1736  */
1737 struct softnet_data {
1738 	struct Qdisc		*output_queue;
1739 	struct Qdisc		**output_queue_tailp;
1740 	struct list_head	poll_list;
1741 	struct sk_buff		*completion_queue;
1742 	struct sk_buff_head	process_queue;
1743 
1744 	/* stats */
1745 	unsigned int		processed;
1746 	unsigned int		time_squeeze;
1747 	unsigned int		cpu_collision;
1748 	unsigned int		received_rps;
1749 
1750 #ifdef CONFIG_RPS
1751 	struct softnet_data	*rps_ipi_list;
1752 
1753 	/* Elements below can be accessed between CPUs for RPS */
1754 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1755 	struct softnet_data	*rps_ipi_next;
1756 	unsigned int		cpu;
1757 	unsigned int		input_queue_head;
1758 	unsigned int		input_queue_tail;
1759 #endif
1760 	unsigned int		dropped;
1761 	struct sk_buff_head	input_pkt_queue;
1762 	struct napi_struct	backlog;
1763 };
1764 
1765 static inline void input_queue_head_incr(struct softnet_data *sd)
1766 {
1767 #ifdef CONFIG_RPS
1768 	sd->input_queue_head++;
1769 #endif
1770 }
1771 
1772 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1773 					      unsigned int *qtail)
1774 {
1775 #ifdef CONFIG_RPS
1776 	*qtail = ++sd->input_queue_tail;
1777 #endif
1778 }
1779 
1780 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1781 
1782 extern void __netif_schedule(struct Qdisc *q);
1783 
1784 static inline void netif_schedule_queue(struct netdev_queue *txq)
1785 {
1786 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1787 		__netif_schedule(txq->qdisc);
1788 }
1789 
1790 static inline void netif_tx_schedule_all(struct net_device *dev)
1791 {
1792 	unsigned int i;
1793 
1794 	for (i = 0; i < dev->num_tx_queues; i++)
1795 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1796 }
1797 
1798 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1799 {
1800 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1801 }
1802 
1803 /**
1804  *	netif_start_queue - allow transmit
1805  *	@dev: network device
1806  *
1807  *	Allow upper layers to call the device hard_start_xmit routine.
1808  */
1809 static inline void netif_start_queue(struct net_device *dev)
1810 {
1811 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1812 }
1813 
1814 static inline void netif_tx_start_all_queues(struct net_device *dev)
1815 {
1816 	unsigned int i;
1817 
1818 	for (i = 0; i < dev->num_tx_queues; i++) {
1819 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1820 		netif_tx_start_queue(txq);
1821 	}
1822 }
1823 
1824 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1825 {
1826 #ifdef CONFIG_NETPOLL_TRAP
1827 	if (netpoll_trap()) {
1828 		netif_tx_start_queue(dev_queue);
1829 		return;
1830 	}
1831 #endif
1832 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1833 		__netif_schedule(dev_queue->qdisc);
1834 }
1835 
1836 /**
1837  *	netif_wake_queue - restart transmit
1838  *	@dev: network device
1839  *
1840  *	Allow upper layers to call the device hard_start_xmit routine.
1841  *	Used for flow control when transmit resources are available.
1842  */
1843 static inline void netif_wake_queue(struct net_device *dev)
1844 {
1845 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1846 }
1847 
1848 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1849 {
1850 	unsigned int i;
1851 
1852 	for (i = 0; i < dev->num_tx_queues; i++) {
1853 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1854 		netif_tx_wake_queue(txq);
1855 	}
1856 }
1857 
1858 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1859 {
1860 	if (WARN_ON(!dev_queue)) {
1861 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1862 		return;
1863 	}
1864 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1865 }
1866 
1867 /**
1868  *	netif_stop_queue - stop transmitted packets
1869  *	@dev: network device
1870  *
1871  *	Stop upper layers calling the device hard_start_xmit routine.
1872  *	Used for flow control when transmit resources are unavailable.
1873  */
1874 static inline void netif_stop_queue(struct net_device *dev)
1875 {
1876 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1877 }
1878 
1879 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1880 {
1881 	unsigned int i;
1882 
1883 	for (i = 0; i < dev->num_tx_queues; i++) {
1884 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1885 		netif_tx_stop_queue(txq);
1886 	}
1887 }
1888 
1889 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1890 {
1891 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1892 }
1893 
1894 /**
1895  *	netif_queue_stopped - test if transmit queue is flowblocked
1896  *	@dev: network device
1897  *
1898  *	Test if transmit queue on device is currently unable to send.
1899  */
1900 static inline bool netif_queue_stopped(const struct net_device *dev)
1901 {
1902 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1903 }
1904 
1905 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1906 {
1907 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1908 }
1909 
1910 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1911 {
1912 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1913 }
1914 
1915 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1916 					unsigned int bytes)
1917 {
1918 #ifdef CONFIG_BQL
1919 	dql_queued(&dev_queue->dql, bytes);
1920 
1921 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1922 		return;
1923 
1924 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1925 
1926 	/*
1927 	 * The XOFF flag must be set before checking the dql_avail below,
1928 	 * because in netdev_tx_completed_queue we update the dql_completed
1929 	 * before checking the XOFF flag.
1930 	 */
1931 	smp_mb();
1932 
1933 	/* check again in case another CPU has just made room avail */
1934 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1935 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1936 #endif
1937 }
1938 
1939 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1940 {
1941 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1942 }
1943 
1944 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1945 					     unsigned int pkts, unsigned int bytes)
1946 {
1947 #ifdef CONFIG_BQL
1948 	if (unlikely(!bytes))
1949 		return;
1950 
1951 	dql_completed(&dev_queue->dql, bytes);
1952 
1953 	/*
1954 	 * Without the memory barrier there is a small possiblity that
1955 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1956 	 * be stopped forever
1957 	 */
1958 	smp_mb();
1959 
1960 	if (dql_avail(&dev_queue->dql) < 0)
1961 		return;
1962 
1963 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1964 		netif_schedule_queue(dev_queue);
1965 #endif
1966 }
1967 
1968 static inline void netdev_completed_queue(struct net_device *dev,
1969 					  unsigned int pkts, unsigned int bytes)
1970 {
1971 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1972 }
1973 
1974 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1975 {
1976 #ifdef CONFIG_BQL
1977 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1978 	dql_reset(&q->dql);
1979 #endif
1980 }
1981 
1982 static inline void netdev_reset_queue(struct net_device *dev_queue)
1983 {
1984 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1985 }
1986 
1987 /**
1988  *	netif_running - test if up
1989  *	@dev: network device
1990  *
1991  *	Test if the device has been brought up.
1992  */
1993 static inline bool netif_running(const struct net_device *dev)
1994 {
1995 	return test_bit(__LINK_STATE_START, &dev->state);
1996 }
1997 
1998 /*
1999  * Routines to manage the subqueues on a device.  We only need start
2000  * stop, and a check if it's stopped.  All other device management is
2001  * done at the overall netdevice level.
2002  * Also test the device if we're multiqueue.
2003  */
2004 
2005 /**
2006  *	netif_start_subqueue - allow sending packets on subqueue
2007  *	@dev: network device
2008  *	@queue_index: sub queue index
2009  *
2010  * Start individual transmit queue of a device with multiple transmit queues.
2011  */
2012 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2013 {
2014 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2015 
2016 	netif_tx_start_queue(txq);
2017 }
2018 
2019 /**
2020  *	netif_stop_subqueue - stop sending packets on subqueue
2021  *	@dev: network device
2022  *	@queue_index: sub queue index
2023  *
2024  * Stop individual transmit queue of a device with multiple transmit queues.
2025  */
2026 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2027 {
2028 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2029 #ifdef CONFIG_NETPOLL_TRAP
2030 	if (netpoll_trap())
2031 		return;
2032 #endif
2033 	netif_tx_stop_queue(txq);
2034 }
2035 
2036 /**
2037  *	netif_subqueue_stopped - test status of subqueue
2038  *	@dev: network device
2039  *	@queue_index: sub queue index
2040  *
2041  * Check individual transmit queue of a device with multiple transmit queues.
2042  */
2043 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2044 					    u16 queue_index)
2045 {
2046 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2047 
2048 	return netif_tx_queue_stopped(txq);
2049 }
2050 
2051 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2052 					  struct sk_buff *skb)
2053 {
2054 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2055 }
2056 
2057 /**
2058  *	netif_wake_subqueue - allow sending packets on subqueue
2059  *	@dev: network device
2060  *	@queue_index: sub queue index
2061  *
2062  * Resume individual transmit queue of a device with multiple transmit queues.
2063  */
2064 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2065 {
2066 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2067 #ifdef CONFIG_NETPOLL_TRAP
2068 	if (netpoll_trap())
2069 		return;
2070 #endif
2071 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2072 		__netif_schedule(txq->qdisc);
2073 }
2074 
2075 /*
2076  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2077  * as a distribution range limit for the returned value.
2078  */
2079 static inline u16 skb_tx_hash(const struct net_device *dev,
2080 			      const struct sk_buff *skb)
2081 {
2082 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2083 }
2084 
2085 /**
2086  *	netif_is_multiqueue - test if device has multiple transmit queues
2087  *	@dev: network device
2088  *
2089  * Check if device has multiple transmit queues
2090  */
2091 static inline bool netif_is_multiqueue(const struct net_device *dev)
2092 {
2093 	return dev->num_tx_queues > 1;
2094 }
2095 
2096 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2097 					unsigned int txq);
2098 
2099 #ifdef CONFIG_RPS
2100 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2101 					unsigned int rxq);
2102 #else
2103 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2104 						unsigned int rxq)
2105 {
2106 	return 0;
2107 }
2108 #endif
2109 
2110 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2111 					     const struct net_device *from_dev)
2112 {
2113 	int err;
2114 
2115 	err = netif_set_real_num_tx_queues(to_dev,
2116 					   from_dev->real_num_tx_queues);
2117 	if (err)
2118 		return err;
2119 #ifdef CONFIG_RPS
2120 	return netif_set_real_num_rx_queues(to_dev,
2121 					    from_dev->real_num_rx_queues);
2122 #else
2123 	return 0;
2124 #endif
2125 }
2126 
2127 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2128 extern int netif_get_num_default_rss_queues(void);
2129 
2130 /* Use this variant when it is known for sure that it
2131  * is executing from hardware interrupt context or with hardware interrupts
2132  * disabled.
2133  */
2134 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2135 
2136 /* Use this variant in places where it could be invoked
2137  * from either hardware interrupt or other context, with hardware interrupts
2138  * either disabled or enabled.
2139  */
2140 extern void dev_kfree_skb_any(struct sk_buff *skb);
2141 
2142 extern int		netif_rx(struct sk_buff *skb);
2143 extern int		netif_rx_ni(struct sk_buff *skb);
2144 extern int		netif_receive_skb(struct sk_buff *skb);
2145 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2146 					struct sk_buff *skb);
2147 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2148 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2149 					 struct sk_buff *skb);
2150 extern void		napi_gro_flush(struct napi_struct *napi);
2151 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2152 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2153 					  struct sk_buff *skb,
2154 					  gro_result_t ret);
2155 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2156 
2157 static inline void napi_free_frags(struct napi_struct *napi)
2158 {
2159 	kfree_skb(napi->skb);
2160 	napi->skb = NULL;
2161 }
2162 
2163 extern int netdev_rx_handler_register(struct net_device *dev,
2164 				      rx_handler_func_t *rx_handler,
2165 				      void *rx_handler_data);
2166 extern void netdev_rx_handler_unregister(struct net_device *dev);
2167 
2168 extern bool		dev_valid_name(const char *name);
2169 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2170 extern int		dev_ethtool(struct net *net, struct ifreq *);
2171 extern unsigned int	dev_get_flags(const struct net_device *);
2172 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2173 extern int		dev_change_flags(struct net_device *, unsigned int);
2174 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2175 extern int		dev_change_name(struct net_device *, const char *);
2176 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2177 extern int		dev_change_net_namespace(struct net_device *,
2178 						 struct net *, const char *);
2179 extern int		dev_set_mtu(struct net_device *, int);
2180 extern void		dev_set_group(struct net_device *, int);
2181 extern int		dev_set_mac_address(struct net_device *,
2182 					    struct sockaddr *);
2183 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2184 					    struct net_device *dev,
2185 					    struct netdev_queue *txq);
2186 extern int		dev_forward_skb(struct net_device *dev,
2187 					struct sk_buff *skb);
2188 
2189 extern int		netdev_budget;
2190 
2191 /* Called by rtnetlink.c:rtnl_unlock() */
2192 extern void netdev_run_todo(void);
2193 
2194 /**
2195  *	dev_put - release reference to device
2196  *	@dev: network device
2197  *
2198  * Release reference to device to allow it to be freed.
2199  */
2200 static inline void dev_put(struct net_device *dev)
2201 {
2202 	this_cpu_dec(*dev->pcpu_refcnt);
2203 }
2204 
2205 /**
2206  *	dev_hold - get reference to device
2207  *	@dev: network device
2208  *
2209  * Hold reference to device to keep it from being freed.
2210  */
2211 static inline void dev_hold(struct net_device *dev)
2212 {
2213 	this_cpu_inc(*dev->pcpu_refcnt);
2214 }
2215 
2216 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2217  * and _off may be called from IRQ context, but it is caller
2218  * who is responsible for serialization of these calls.
2219  *
2220  * The name carrier is inappropriate, these functions should really be
2221  * called netif_lowerlayer_*() because they represent the state of any
2222  * kind of lower layer not just hardware media.
2223  */
2224 
2225 extern void linkwatch_fire_event(struct net_device *dev);
2226 extern void linkwatch_forget_dev(struct net_device *dev);
2227 
2228 /**
2229  *	netif_carrier_ok - test if carrier present
2230  *	@dev: network device
2231  *
2232  * Check if carrier is present on device
2233  */
2234 static inline bool netif_carrier_ok(const struct net_device *dev)
2235 {
2236 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2237 }
2238 
2239 extern unsigned long dev_trans_start(struct net_device *dev);
2240 
2241 extern void __netdev_watchdog_up(struct net_device *dev);
2242 
2243 extern void netif_carrier_on(struct net_device *dev);
2244 
2245 extern void netif_carrier_off(struct net_device *dev);
2246 
2247 extern void netif_notify_peers(struct net_device *dev);
2248 
2249 /**
2250  *	netif_dormant_on - mark device as dormant.
2251  *	@dev: network device
2252  *
2253  * Mark device as dormant (as per RFC2863).
2254  *
2255  * The dormant state indicates that the relevant interface is not
2256  * actually in a condition to pass packets (i.e., it is not 'up') but is
2257  * in a "pending" state, waiting for some external event.  For "on-
2258  * demand" interfaces, this new state identifies the situation where the
2259  * interface is waiting for events to place it in the up state.
2260  *
2261  */
2262 static inline void netif_dormant_on(struct net_device *dev)
2263 {
2264 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2265 		linkwatch_fire_event(dev);
2266 }
2267 
2268 /**
2269  *	netif_dormant_off - set device as not dormant.
2270  *	@dev: network device
2271  *
2272  * Device is not in dormant state.
2273  */
2274 static inline void netif_dormant_off(struct net_device *dev)
2275 {
2276 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2277 		linkwatch_fire_event(dev);
2278 }
2279 
2280 /**
2281  *	netif_dormant - test if carrier present
2282  *	@dev: network device
2283  *
2284  * Check if carrier is present on device
2285  */
2286 static inline bool netif_dormant(const struct net_device *dev)
2287 {
2288 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2289 }
2290 
2291 
2292 /**
2293  *	netif_oper_up - test if device is operational
2294  *	@dev: network device
2295  *
2296  * Check if carrier is operational
2297  */
2298 static inline bool netif_oper_up(const struct net_device *dev)
2299 {
2300 	return (dev->operstate == IF_OPER_UP ||
2301 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2302 }
2303 
2304 /**
2305  *	netif_device_present - is device available or removed
2306  *	@dev: network device
2307  *
2308  * Check if device has not been removed from system.
2309  */
2310 static inline bool netif_device_present(struct net_device *dev)
2311 {
2312 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2313 }
2314 
2315 extern void netif_device_detach(struct net_device *dev);
2316 
2317 extern void netif_device_attach(struct net_device *dev);
2318 
2319 /*
2320  * Network interface message level settings
2321  */
2322 
2323 enum {
2324 	NETIF_MSG_DRV		= 0x0001,
2325 	NETIF_MSG_PROBE		= 0x0002,
2326 	NETIF_MSG_LINK		= 0x0004,
2327 	NETIF_MSG_TIMER		= 0x0008,
2328 	NETIF_MSG_IFDOWN	= 0x0010,
2329 	NETIF_MSG_IFUP		= 0x0020,
2330 	NETIF_MSG_RX_ERR	= 0x0040,
2331 	NETIF_MSG_TX_ERR	= 0x0080,
2332 	NETIF_MSG_TX_QUEUED	= 0x0100,
2333 	NETIF_MSG_INTR		= 0x0200,
2334 	NETIF_MSG_TX_DONE	= 0x0400,
2335 	NETIF_MSG_RX_STATUS	= 0x0800,
2336 	NETIF_MSG_PKTDATA	= 0x1000,
2337 	NETIF_MSG_HW		= 0x2000,
2338 	NETIF_MSG_WOL		= 0x4000,
2339 };
2340 
2341 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2342 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2343 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2344 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2345 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2346 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2347 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2348 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2349 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2350 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2351 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2352 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2353 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2354 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2355 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2356 
2357 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2358 {
2359 	/* use default */
2360 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2361 		return default_msg_enable_bits;
2362 	if (debug_value == 0)	/* no output */
2363 		return 0;
2364 	/* set low N bits */
2365 	return (1 << debug_value) - 1;
2366 }
2367 
2368 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2369 {
2370 	spin_lock(&txq->_xmit_lock);
2371 	txq->xmit_lock_owner = cpu;
2372 }
2373 
2374 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2375 {
2376 	spin_lock_bh(&txq->_xmit_lock);
2377 	txq->xmit_lock_owner = smp_processor_id();
2378 }
2379 
2380 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2381 {
2382 	bool ok = spin_trylock(&txq->_xmit_lock);
2383 	if (likely(ok))
2384 		txq->xmit_lock_owner = smp_processor_id();
2385 	return ok;
2386 }
2387 
2388 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2389 {
2390 	txq->xmit_lock_owner = -1;
2391 	spin_unlock(&txq->_xmit_lock);
2392 }
2393 
2394 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2395 {
2396 	txq->xmit_lock_owner = -1;
2397 	spin_unlock_bh(&txq->_xmit_lock);
2398 }
2399 
2400 static inline void txq_trans_update(struct netdev_queue *txq)
2401 {
2402 	if (txq->xmit_lock_owner != -1)
2403 		txq->trans_start = jiffies;
2404 }
2405 
2406 /**
2407  *	netif_tx_lock - grab network device transmit lock
2408  *	@dev: network device
2409  *
2410  * Get network device transmit lock
2411  */
2412 static inline void netif_tx_lock(struct net_device *dev)
2413 {
2414 	unsigned int i;
2415 	int cpu;
2416 
2417 	spin_lock(&dev->tx_global_lock);
2418 	cpu = smp_processor_id();
2419 	for (i = 0; i < dev->num_tx_queues; i++) {
2420 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2421 
2422 		/* We are the only thread of execution doing a
2423 		 * freeze, but we have to grab the _xmit_lock in
2424 		 * order to synchronize with threads which are in
2425 		 * the ->hard_start_xmit() handler and already
2426 		 * checked the frozen bit.
2427 		 */
2428 		__netif_tx_lock(txq, cpu);
2429 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2430 		__netif_tx_unlock(txq);
2431 	}
2432 }
2433 
2434 static inline void netif_tx_lock_bh(struct net_device *dev)
2435 {
2436 	local_bh_disable();
2437 	netif_tx_lock(dev);
2438 }
2439 
2440 static inline void netif_tx_unlock(struct net_device *dev)
2441 {
2442 	unsigned int i;
2443 
2444 	for (i = 0; i < dev->num_tx_queues; i++) {
2445 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2446 
2447 		/* No need to grab the _xmit_lock here.  If the
2448 		 * queue is not stopped for another reason, we
2449 		 * force a schedule.
2450 		 */
2451 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2452 		netif_schedule_queue(txq);
2453 	}
2454 	spin_unlock(&dev->tx_global_lock);
2455 }
2456 
2457 static inline void netif_tx_unlock_bh(struct net_device *dev)
2458 {
2459 	netif_tx_unlock(dev);
2460 	local_bh_enable();
2461 }
2462 
2463 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2464 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2465 		__netif_tx_lock(txq, cpu);		\
2466 	}						\
2467 }
2468 
2469 #define HARD_TX_UNLOCK(dev, txq) {			\
2470 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2471 		__netif_tx_unlock(txq);			\
2472 	}						\
2473 }
2474 
2475 static inline void netif_tx_disable(struct net_device *dev)
2476 {
2477 	unsigned int i;
2478 	int cpu;
2479 
2480 	local_bh_disable();
2481 	cpu = smp_processor_id();
2482 	for (i = 0; i < dev->num_tx_queues; i++) {
2483 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2484 
2485 		__netif_tx_lock(txq, cpu);
2486 		netif_tx_stop_queue(txq);
2487 		__netif_tx_unlock(txq);
2488 	}
2489 	local_bh_enable();
2490 }
2491 
2492 static inline void netif_addr_lock(struct net_device *dev)
2493 {
2494 	spin_lock(&dev->addr_list_lock);
2495 }
2496 
2497 static inline void netif_addr_lock_nested(struct net_device *dev)
2498 {
2499 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2500 }
2501 
2502 static inline void netif_addr_lock_bh(struct net_device *dev)
2503 {
2504 	spin_lock_bh(&dev->addr_list_lock);
2505 }
2506 
2507 static inline void netif_addr_unlock(struct net_device *dev)
2508 {
2509 	spin_unlock(&dev->addr_list_lock);
2510 }
2511 
2512 static inline void netif_addr_unlock_bh(struct net_device *dev)
2513 {
2514 	spin_unlock_bh(&dev->addr_list_lock);
2515 }
2516 
2517 /*
2518  * dev_addrs walker. Should be used only for read access. Call with
2519  * rcu_read_lock held.
2520  */
2521 #define for_each_dev_addr(dev, ha) \
2522 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2523 
2524 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2525 
2526 extern void		ether_setup(struct net_device *dev);
2527 
2528 /* Support for loadable net-drivers */
2529 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2530 				       void (*setup)(struct net_device *),
2531 				       unsigned int txqs, unsigned int rxqs);
2532 #define alloc_netdev(sizeof_priv, name, setup) \
2533 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2534 
2535 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2536 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2537 
2538 extern int		register_netdev(struct net_device *dev);
2539 extern void		unregister_netdev(struct net_device *dev);
2540 
2541 /* General hardware address lists handling functions */
2542 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2543 				  struct netdev_hw_addr_list *from_list,
2544 				  int addr_len, unsigned char addr_type);
2545 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2546 				   struct netdev_hw_addr_list *from_list,
2547 				   int addr_len, unsigned char addr_type);
2548 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2549 			  struct netdev_hw_addr_list *from_list,
2550 			  int addr_len);
2551 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2552 			     struct netdev_hw_addr_list *from_list,
2553 			     int addr_len);
2554 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2555 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2556 
2557 /* Functions used for device addresses handling */
2558 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2559 			unsigned char addr_type);
2560 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2561 			unsigned char addr_type);
2562 extern int dev_addr_add_multiple(struct net_device *to_dev,
2563 				 struct net_device *from_dev,
2564 				 unsigned char addr_type);
2565 extern int dev_addr_del_multiple(struct net_device *to_dev,
2566 				 struct net_device *from_dev,
2567 				 unsigned char addr_type);
2568 extern void dev_addr_flush(struct net_device *dev);
2569 extern int dev_addr_init(struct net_device *dev);
2570 
2571 /* Functions used for unicast addresses handling */
2572 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2573 extern int dev_uc_add_excl(struct net_device *dev, unsigned char *addr);
2574 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2575 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2576 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2577 extern void dev_uc_flush(struct net_device *dev);
2578 extern void dev_uc_init(struct net_device *dev);
2579 
2580 /* Functions used for multicast addresses handling */
2581 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2582 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2583 extern int dev_mc_add_excl(struct net_device *dev, unsigned char *addr);
2584 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2585 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2586 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2587 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2588 extern void dev_mc_flush(struct net_device *dev);
2589 extern void dev_mc_init(struct net_device *dev);
2590 
2591 /* Functions used for secondary unicast and multicast support */
2592 extern void		dev_set_rx_mode(struct net_device *dev);
2593 extern void		__dev_set_rx_mode(struct net_device *dev);
2594 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2595 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2596 extern void		netdev_state_change(struct net_device *dev);
2597 extern int		netdev_bonding_change(struct net_device *dev,
2598 					      unsigned long event);
2599 extern void		netdev_features_change(struct net_device *dev);
2600 /* Load a device via the kmod */
2601 extern void		dev_load(struct net *net, const char *name);
2602 extern void		dev_mcast_init(void);
2603 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2604 					       struct rtnl_link_stats64 *storage);
2605 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2606 				    const struct net_device_stats *netdev_stats);
2607 
2608 extern int		netdev_max_backlog;
2609 extern int		netdev_tstamp_prequeue;
2610 extern int		weight_p;
2611 extern int		bpf_jit_enable;
2612 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2613 extern int netdev_set_bond_master(struct net_device *dev,
2614 				  struct net_device *master);
2615 extern int skb_checksum_help(struct sk_buff *skb);
2616 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2617 	netdev_features_t features);
2618 #ifdef CONFIG_BUG
2619 extern void netdev_rx_csum_fault(struct net_device *dev);
2620 #else
2621 static inline void netdev_rx_csum_fault(struct net_device *dev)
2622 {
2623 }
2624 #endif
2625 /* rx skb timestamps */
2626 extern void		net_enable_timestamp(void);
2627 extern void		net_disable_timestamp(void);
2628 
2629 #ifdef CONFIG_PROC_FS
2630 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2631 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2632 extern void dev_seq_stop(struct seq_file *seq, void *v);
2633 #endif
2634 
2635 extern int netdev_class_create_file(struct class_attribute *class_attr);
2636 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2637 
2638 extern struct kobj_ns_type_operations net_ns_type_operations;
2639 
2640 extern const char *netdev_drivername(const struct net_device *dev);
2641 
2642 extern void linkwatch_run_queue(void);
2643 
2644 static inline netdev_features_t netdev_get_wanted_features(
2645 	struct net_device *dev)
2646 {
2647 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2648 }
2649 netdev_features_t netdev_increment_features(netdev_features_t all,
2650 	netdev_features_t one, netdev_features_t mask);
2651 int __netdev_update_features(struct net_device *dev);
2652 void netdev_update_features(struct net_device *dev);
2653 void netdev_change_features(struct net_device *dev);
2654 
2655 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2656 					struct net_device *dev);
2657 
2658 netdev_features_t netif_skb_features(struct sk_buff *skb);
2659 
2660 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2661 {
2662 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2663 
2664 	/* check flags correspondence */
2665 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2666 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2667 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2668 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2669 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2670 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2671 
2672 	return (features & feature) == feature;
2673 }
2674 
2675 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2676 {
2677 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2678 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2679 }
2680 
2681 static inline bool netif_needs_gso(struct sk_buff *skb,
2682 				   netdev_features_t features)
2683 {
2684 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2685 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2686 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2687 }
2688 
2689 static inline void netif_set_gso_max_size(struct net_device *dev,
2690 					  unsigned int size)
2691 {
2692 	dev->gso_max_size = size;
2693 }
2694 
2695 static inline bool netif_is_bond_slave(struct net_device *dev)
2696 {
2697 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2698 }
2699 
2700 static inline bool netif_supports_nofcs(struct net_device *dev)
2701 {
2702 	return dev->priv_flags & IFF_SUPP_NOFCS;
2703 }
2704 
2705 extern struct pernet_operations __net_initdata loopback_net_ops;
2706 
2707 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2708 
2709 /* netdev_printk helpers, similar to dev_printk */
2710 
2711 static inline const char *netdev_name(const struct net_device *dev)
2712 {
2713 	if (dev->reg_state != NETREG_REGISTERED)
2714 		return "(unregistered net_device)";
2715 	return dev->name;
2716 }
2717 
2718 extern int __netdev_printk(const char *level, const struct net_device *dev,
2719 			struct va_format *vaf);
2720 
2721 extern __printf(3, 4)
2722 int netdev_printk(const char *level, const struct net_device *dev,
2723 		  const char *format, ...);
2724 extern __printf(2, 3)
2725 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2726 extern __printf(2, 3)
2727 int netdev_alert(const struct net_device *dev, const char *format, ...);
2728 extern __printf(2, 3)
2729 int netdev_crit(const struct net_device *dev, const char *format, ...);
2730 extern __printf(2, 3)
2731 int netdev_err(const struct net_device *dev, const char *format, ...);
2732 extern __printf(2, 3)
2733 int netdev_warn(const struct net_device *dev, const char *format, ...);
2734 extern __printf(2, 3)
2735 int netdev_notice(const struct net_device *dev, const char *format, ...);
2736 extern __printf(2, 3)
2737 int netdev_info(const struct net_device *dev, const char *format, ...);
2738 
2739 #define MODULE_ALIAS_NETDEV(device) \
2740 	MODULE_ALIAS("netdev-" device)
2741 
2742 #if defined(CONFIG_DYNAMIC_DEBUG)
2743 #define netdev_dbg(__dev, format, args...)			\
2744 do {								\
2745 	dynamic_netdev_dbg(__dev, format, ##args);		\
2746 } while (0)
2747 #elif defined(DEBUG)
2748 #define netdev_dbg(__dev, format, args...)			\
2749 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2750 #else
2751 #define netdev_dbg(__dev, format, args...)			\
2752 ({								\
2753 	if (0)							\
2754 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2755 	0;							\
2756 })
2757 #endif
2758 
2759 #if defined(VERBOSE_DEBUG)
2760 #define netdev_vdbg	netdev_dbg
2761 #else
2762 
2763 #define netdev_vdbg(dev, format, args...)			\
2764 ({								\
2765 	if (0)							\
2766 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2767 	0;							\
2768 })
2769 #endif
2770 
2771 /*
2772  * netdev_WARN() acts like dev_printk(), but with the key difference
2773  * of using a WARN/WARN_ON to get the message out, including the
2774  * file/line information and a backtrace.
2775  */
2776 #define netdev_WARN(dev, format, args...)			\
2777 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2778 
2779 /* netif printk helpers, similar to netdev_printk */
2780 
2781 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2782 do {					  			\
2783 	if (netif_msg_##type(priv))				\
2784 		netdev_printk(level, (dev), fmt, ##args);	\
2785 } while (0)
2786 
2787 #define netif_level(level, priv, type, dev, fmt, args...)	\
2788 do {								\
2789 	if (netif_msg_##type(priv))				\
2790 		netdev_##level(dev, fmt, ##args);		\
2791 } while (0)
2792 
2793 #define netif_emerg(priv, type, dev, fmt, args...)		\
2794 	netif_level(emerg, priv, type, dev, fmt, ##args)
2795 #define netif_alert(priv, type, dev, fmt, args...)		\
2796 	netif_level(alert, priv, type, dev, fmt, ##args)
2797 #define netif_crit(priv, type, dev, fmt, args...)		\
2798 	netif_level(crit, priv, type, dev, fmt, ##args)
2799 #define netif_err(priv, type, dev, fmt, args...)		\
2800 	netif_level(err, priv, type, dev, fmt, ##args)
2801 #define netif_warn(priv, type, dev, fmt, args...)		\
2802 	netif_level(warn, priv, type, dev, fmt, ##args)
2803 #define netif_notice(priv, type, dev, fmt, args...)		\
2804 	netif_level(notice, priv, type, dev, fmt, ##args)
2805 #define netif_info(priv, type, dev, fmt, args...)		\
2806 	netif_level(info, priv, type, dev, fmt, ##args)
2807 
2808 #if defined(CONFIG_DYNAMIC_DEBUG)
2809 #define netif_dbg(priv, type, netdev, format, args...)		\
2810 do {								\
2811 	if (netif_msg_##type(priv))				\
2812 		dynamic_netdev_dbg(netdev, format, ##args);	\
2813 } while (0)
2814 #elif defined(DEBUG)
2815 #define netif_dbg(priv, type, dev, format, args...)		\
2816 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2817 #else
2818 #define netif_dbg(priv, type, dev, format, args...)			\
2819 ({									\
2820 	if (0)								\
2821 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2822 	0;								\
2823 })
2824 #endif
2825 
2826 #if defined(VERBOSE_DEBUG)
2827 #define netif_vdbg	netif_dbg
2828 #else
2829 #define netif_vdbg(priv, type, dev, format, args...)		\
2830 ({								\
2831 	if (0)							\
2832 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2833 	0;							\
2834 })
2835 #endif
2836 
2837 #endif /* __KERNEL__ */
2838 
2839 #endif	/* _LINUX_NETDEVICE_H */
2840