1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <linux/netdev_features.h> 44 #include <linux/neighbour.h> 45 #include <linux/netdevice_xmit.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm_kern; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 struct ethtool_netdev_state; 83 struct phy_link_topology; 84 85 typedef u32 xdp_features_t; 86 87 void synchronize_net(void); 88 void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92 /* Backlog congestion levels */ 93 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94 #define NET_RX_DROP 1 /* packet dropped */ 95 96 #define MAX_NEST_DEV 8 97 98 /* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115 /* qdisc ->enqueue() return codes. */ 116 #define NET_XMIT_SUCCESS 0x00 117 #define NET_XMIT_DROP 0x01 /* skb dropped */ 118 #define NET_XMIT_CN 0x02 /* congestion notification */ 119 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127 /* Driver transmit return codes */ 128 #define NETDEV_TX_MASK 0xf0 129 130 enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134 }; 135 typedef enum netdev_tx netdev_tx_t; 136 137 /* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141 static inline bool dev_xmit_complete(int rc) 142 { 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153 } 154 155 /* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160 #if defined(CONFIG_HYPERV_NET) 161 # define LL_MAX_HEADER 128 162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163 # if defined(CONFIG_MAC80211_MESH) 164 # define LL_MAX_HEADER 128 165 # else 166 # define LL_MAX_HEADER 96 167 # endif 168 #else 169 # define LL_MAX_HEADER 32 170 #endif 171 172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174 #define MAX_HEADER LL_MAX_HEADER 175 #else 176 #define MAX_HEADER (LL_MAX_HEADER + 48) 177 #endif 178 179 /* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184 #define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190 struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214 }; 215 #undef NET_DEV_STAT 216 217 /* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220 struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225 } __aligned(4 * sizeof(unsigned long)); 226 227 #include <linux/cache.h> 228 #include <linux/skbuff.h> 229 230 struct neighbour; 231 struct neigh_parms; 232 struct sk_buff; 233 234 struct netdev_hw_addr { 235 struct list_head list; 236 struct rb_node node; 237 unsigned char addr[MAX_ADDR_LEN]; 238 unsigned char type; 239 #define NETDEV_HW_ADDR_T_LAN 1 240 #define NETDEV_HW_ADDR_T_SAN 2 241 #define NETDEV_HW_ADDR_T_UNICAST 3 242 #define NETDEV_HW_ADDR_T_MULTICAST 4 243 bool global_use; 244 int sync_cnt; 245 int refcount; 246 int synced; 247 struct rcu_head rcu_head; 248 }; 249 250 struct netdev_hw_addr_list { 251 struct list_head list; 252 int count; 253 254 /* Auxiliary tree for faster lookup on addition and deletion */ 255 struct rb_root tree; 256 }; 257 258 #define netdev_hw_addr_list_count(l) ((l)->count) 259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 260 #define netdev_hw_addr_list_for_each(ha, l) \ 261 list_for_each_entry(ha, &(l)->list, list) 262 263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 265 #define netdev_for_each_uc_addr(ha, dev) \ 266 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 268 netdev_for_each_uc_addr((_ha), (_dev)) \ 269 if ((_ha)->sync_cnt) 270 271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 273 #define netdev_for_each_mc_addr(ha, dev) \ 274 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 276 netdev_for_each_mc_addr((_ha), (_dev)) \ 277 if ((_ha)->sync_cnt) 278 279 struct hh_cache { 280 unsigned int hh_len; 281 seqlock_t hh_lock; 282 283 /* cached hardware header; allow for machine alignment needs. */ 284 #define HH_DATA_MOD 16 285 #define HH_DATA_OFF(__len) \ 286 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 287 #define HH_DATA_ALIGN(__len) \ 288 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 289 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 290 }; 291 292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 293 * Alternative is: 294 * dev->hard_header_len ? (dev->hard_header_len + 295 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 296 * 297 * We could use other alignment values, but we must maintain the 298 * relationship HH alignment <= LL alignment. 299 */ 300 #define LL_RESERVED_SPACE(dev) \ 301 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 302 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 307 struct header_ops { 308 int (*create) (struct sk_buff *skb, struct net_device *dev, 309 unsigned short type, const void *daddr, 310 const void *saddr, unsigned int len); 311 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 312 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 313 void (*cache_update)(struct hh_cache *hh, 314 const struct net_device *dev, 315 const unsigned char *haddr); 316 bool (*validate)(const char *ll_header, unsigned int len); 317 __be16 (*parse_protocol)(const struct sk_buff *skb); 318 }; 319 320 /* These flag bits are private to the generic network queueing 321 * layer; they may not be explicitly referenced by any other 322 * code. 323 */ 324 325 enum netdev_state_t { 326 __LINK_STATE_START, 327 __LINK_STATE_PRESENT, 328 __LINK_STATE_NOCARRIER, 329 __LINK_STATE_LINKWATCH_PENDING, 330 __LINK_STATE_DORMANT, 331 __LINK_STATE_TESTING, 332 }; 333 334 struct gro_list { 335 struct list_head list; 336 int count; 337 }; 338 339 /* 340 * size of gro hash buckets, must less than bit number of 341 * napi_struct::gro_bitmask 342 */ 343 #define GRO_HASH_BUCKETS 8 344 345 /* 346 * Structure for NAPI scheduling similar to tasklet but with weighting 347 */ 348 struct napi_struct { 349 /* The poll_list must only be managed by the entity which 350 * changes the state of the NAPI_STATE_SCHED bit. This means 351 * whoever atomically sets that bit can add this napi_struct 352 * to the per-CPU poll_list, and whoever clears that bit 353 * can remove from the list right before clearing the bit. 354 */ 355 struct list_head poll_list; 356 357 unsigned long state; 358 int weight; 359 u32 defer_hard_irqs_count; 360 unsigned long gro_bitmask; 361 int (*poll)(struct napi_struct *, int); 362 #ifdef CONFIG_NETPOLL 363 /* CPU actively polling if netpoll is configured */ 364 int poll_owner; 365 #endif 366 /* CPU on which NAPI has been scheduled for processing */ 367 int list_owner; 368 struct net_device *dev; 369 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 370 struct sk_buff *skb; 371 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 372 int rx_count; /* length of rx_list */ 373 unsigned int napi_id; 374 struct hrtimer timer; 375 struct task_struct *thread; 376 /* control-path-only fields follow */ 377 struct list_head dev_list; 378 struct hlist_node napi_hash_node; 379 int irq; 380 }; 381 382 enum { 383 NAPI_STATE_SCHED, /* Poll is scheduled */ 384 NAPI_STATE_MISSED, /* reschedule a napi */ 385 NAPI_STATE_DISABLE, /* Disable pending */ 386 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 387 NAPI_STATE_LISTED, /* NAPI added to system lists */ 388 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 389 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 390 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 391 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 392 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 393 }; 394 395 enum { 396 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 397 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 398 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 399 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 400 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 401 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 402 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 403 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 404 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 405 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 406 }; 407 408 enum gro_result { 409 GRO_MERGED, 410 GRO_MERGED_FREE, 411 GRO_HELD, 412 GRO_NORMAL, 413 GRO_CONSUMED, 414 }; 415 typedef enum gro_result gro_result_t; 416 417 /* 418 * enum rx_handler_result - Possible return values for rx_handlers. 419 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 420 * further. 421 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 422 * case skb->dev was changed by rx_handler. 423 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 424 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 425 * 426 * rx_handlers are functions called from inside __netif_receive_skb(), to do 427 * special processing of the skb, prior to delivery to protocol handlers. 428 * 429 * Currently, a net_device can only have a single rx_handler registered. Trying 430 * to register a second rx_handler will return -EBUSY. 431 * 432 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 433 * To unregister a rx_handler on a net_device, use 434 * netdev_rx_handler_unregister(). 435 * 436 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 437 * do with the skb. 438 * 439 * If the rx_handler consumed the skb in some way, it should return 440 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 441 * the skb to be delivered in some other way. 442 * 443 * If the rx_handler changed skb->dev, to divert the skb to another 444 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 445 * new device will be called if it exists. 446 * 447 * If the rx_handler decides the skb should be ignored, it should return 448 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 449 * are registered on exact device (ptype->dev == skb->dev). 450 * 451 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 452 * delivered, it should return RX_HANDLER_PASS. 453 * 454 * A device without a registered rx_handler will behave as if rx_handler 455 * returned RX_HANDLER_PASS. 456 */ 457 458 enum rx_handler_result { 459 RX_HANDLER_CONSUMED, 460 RX_HANDLER_ANOTHER, 461 RX_HANDLER_EXACT, 462 RX_HANDLER_PASS, 463 }; 464 typedef enum rx_handler_result rx_handler_result_t; 465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 466 467 void __napi_schedule(struct napi_struct *n); 468 void __napi_schedule_irqoff(struct napi_struct *n); 469 470 static inline bool napi_disable_pending(struct napi_struct *n) 471 { 472 return test_bit(NAPI_STATE_DISABLE, &n->state); 473 } 474 475 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 476 { 477 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 478 } 479 480 /** 481 * napi_is_scheduled - test if NAPI is scheduled 482 * @n: NAPI context 483 * 484 * This check is "best-effort". With no locking implemented, 485 * a NAPI can be scheduled or terminate right after this check 486 * and produce not precise results. 487 * 488 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 489 * should not be used normally and napi_schedule should be 490 * used instead. 491 * 492 * Use only if the driver really needs to check if a NAPI 493 * is scheduled for example in the context of delayed timer 494 * that can be skipped if a NAPI is already scheduled. 495 * 496 * Return True if NAPI is scheduled, False otherwise. 497 */ 498 static inline bool napi_is_scheduled(struct napi_struct *n) 499 { 500 return test_bit(NAPI_STATE_SCHED, &n->state); 501 } 502 503 bool napi_schedule_prep(struct napi_struct *n); 504 505 /** 506 * napi_schedule - schedule NAPI poll 507 * @n: NAPI context 508 * 509 * Schedule NAPI poll routine to be called if it is not already 510 * running. 511 * Return true if we schedule a NAPI or false if not. 512 * Refer to napi_schedule_prep() for additional reason on why 513 * a NAPI might not be scheduled. 514 */ 515 static inline bool napi_schedule(struct napi_struct *n) 516 { 517 if (napi_schedule_prep(n)) { 518 __napi_schedule(n); 519 return true; 520 } 521 522 return false; 523 } 524 525 /** 526 * napi_schedule_irqoff - schedule NAPI poll 527 * @n: NAPI context 528 * 529 * Variant of napi_schedule(), assuming hard irqs are masked. 530 */ 531 static inline void napi_schedule_irqoff(struct napi_struct *n) 532 { 533 if (napi_schedule_prep(n)) 534 __napi_schedule_irqoff(n); 535 } 536 537 /** 538 * napi_complete_done - NAPI processing complete 539 * @n: NAPI context 540 * @work_done: number of packets processed 541 * 542 * Mark NAPI processing as complete. Should only be called if poll budget 543 * has not been completely consumed. 544 * Prefer over napi_complete(). 545 * Return false if device should avoid rearming interrupts. 546 */ 547 bool napi_complete_done(struct napi_struct *n, int work_done); 548 549 static inline bool napi_complete(struct napi_struct *n) 550 { 551 return napi_complete_done(n, 0); 552 } 553 554 int dev_set_threaded(struct net_device *dev, bool threaded); 555 556 /** 557 * napi_disable - prevent NAPI from scheduling 558 * @n: NAPI context 559 * 560 * Stop NAPI from being scheduled on this context. 561 * Waits till any outstanding processing completes. 562 */ 563 void napi_disable(struct napi_struct *n); 564 565 void napi_enable(struct napi_struct *n); 566 567 /** 568 * napi_synchronize - wait until NAPI is not running 569 * @n: NAPI context 570 * 571 * Wait until NAPI is done being scheduled on this context. 572 * Waits till any outstanding processing completes but 573 * does not disable future activations. 574 */ 575 static inline void napi_synchronize(const struct napi_struct *n) 576 { 577 if (IS_ENABLED(CONFIG_SMP)) 578 while (test_bit(NAPI_STATE_SCHED, &n->state)) 579 msleep(1); 580 else 581 barrier(); 582 } 583 584 /** 585 * napi_if_scheduled_mark_missed - if napi is running, set the 586 * NAPIF_STATE_MISSED 587 * @n: NAPI context 588 * 589 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 590 * NAPI is scheduled. 591 **/ 592 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 593 { 594 unsigned long val, new; 595 596 val = READ_ONCE(n->state); 597 do { 598 if (val & NAPIF_STATE_DISABLE) 599 return true; 600 601 if (!(val & NAPIF_STATE_SCHED)) 602 return false; 603 604 new = val | NAPIF_STATE_MISSED; 605 } while (!try_cmpxchg(&n->state, &val, new)); 606 607 return true; 608 } 609 610 enum netdev_queue_state_t { 611 __QUEUE_STATE_DRV_XOFF, 612 __QUEUE_STATE_STACK_XOFF, 613 __QUEUE_STATE_FROZEN, 614 }; 615 616 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 617 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 618 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 619 620 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 621 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 622 QUEUE_STATE_FROZEN) 623 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 624 QUEUE_STATE_FROZEN) 625 626 /* 627 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 628 * netif_tx_* functions below are used to manipulate this flag. The 629 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 630 * queue independently. The netif_xmit_*stopped functions below are called 631 * to check if the queue has been stopped by the driver or stack (either 632 * of the XOFF bits are set in the state). Drivers should not need to call 633 * netif_xmit*stopped functions, they should only be using netif_tx_*. 634 */ 635 636 struct netdev_queue { 637 /* 638 * read-mostly part 639 */ 640 struct net_device *dev; 641 netdevice_tracker dev_tracker; 642 643 struct Qdisc __rcu *qdisc; 644 struct Qdisc __rcu *qdisc_sleeping; 645 #ifdef CONFIG_SYSFS 646 struct kobject kobj; 647 #endif 648 unsigned long tx_maxrate; 649 /* 650 * Number of TX timeouts for this queue 651 * (/sys/class/net/DEV/Q/trans_timeout) 652 */ 653 atomic_long_t trans_timeout; 654 655 /* Subordinate device that the queue has been assigned to */ 656 struct net_device *sb_dev; 657 #ifdef CONFIG_XDP_SOCKETS 658 struct xsk_buff_pool *pool; 659 #endif 660 661 /* 662 * write-mostly part 663 */ 664 #ifdef CONFIG_BQL 665 struct dql dql; 666 #endif 667 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 668 int xmit_lock_owner; 669 /* 670 * Time (in jiffies) of last Tx 671 */ 672 unsigned long trans_start; 673 674 unsigned long state; 675 676 /* 677 * slow- / control-path part 678 */ 679 /* NAPI instance for the queue 680 * Readers and writers must hold RTNL 681 */ 682 struct napi_struct *napi; 683 684 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 685 int numa_node; 686 #endif 687 } ____cacheline_aligned_in_smp; 688 689 extern int sysctl_fb_tunnels_only_for_init_net; 690 extern int sysctl_devconf_inherit_init_net; 691 692 /* 693 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 694 * == 1 : For initns only 695 * == 2 : For none. 696 */ 697 static inline bool net_has_fallback_tunnels(const struct net *net) 698 { 699 #if IS_ENABLED(CONFIG_SYSCTL) 700 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 701 702 return !fb_tunnels_only_for_init_net || 703 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 704 #else 705 return true; 706 #endif 707 } 708 709 static inline int net_inherit_devconf(void) 710 { 711 #if IS_ENABLED(CONFIG_SYSCTL) 712 return READ_ONCE(sysctl_devconf_inherit_init_net); 713 #else 714 return 0; 715 #endif 716 } 717 718 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 719 { 720 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 721 return q->numa_node; 722 #else 723 return NUMA_NO_NODE; 724 #endif 725 } 726 727 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 728 { 729 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 730 q->numa_node = node; 731 #endif 732 } 733 734 #ifdef CONFIG_RFS_ACCEL 735 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 736 u16 filter_id); 737 #endif 738 739 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 740 enum xps_map_type { 741 XPS_CPUS = 0, 742 XPS_RXQS, 743 XPS_MAPS_MAX, 744 }; 745 746 #ifdef CONFIG_XPS 747 /* 748 * This structure holds an XPS map which can be of variable length. The 749 * map is an array of queues. 750 */ 751 struct xps_map { 752 unsigned int len; 753 unsigned int alloc_len; 754 struct rcu_head rcu; 755 u16 queues[]; 756 }; 757 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 758 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 759 - sizeof(struct xps_map)) / sizeof(u16)) 760 761 /* 762 * This structure holds all XPS maps for device. Maps are indexed by CPU. 763 * 764 * We keep track of the number of cpus/rxqs used when the struct is allocated, 765 * in nr_ids. This will help not accessing out-of-bound memory. 766 * 767 * We keep track of the number of traffic classes used when the struct is 768 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 769 * not crossing its upper bound, as the original dev->num_tc can be updated in 770 * the meantime. 771 */ 772 struct xps_dev_maps { 773 struct rcu_head rcu; 774 unsigned int nr_ids; 775 s16 num_tc; 776 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 777 }; 778 779 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 780 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 781 782 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 783 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 784 785 #endif /* CONFIG_XPS */ 786 787 #define TC_MAX_QUEUE 16 788 #define TC_BITMASK 15 789 /* HW offloaded queuing disciplines txq count and offset maps */ 790 struct netdev_tc_txq { 791 u16 count; 792 u16 offset; 793 }; 794 795 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 796 /* 797 * This structure is to hold information about the device 798 * configured to run FCoE protocol stack. 799 */ 800 struct netdev_fcoe_hbainfo { 801 char manufacturer[64]; 802 char serial_number[64]; 803 char hardware_version[64]; 804 char driver_version[64]; 805 char optionrom_version[64]; 806 char firmware_version[64]; 807 char model[256]; 808 char model_description[256]; 809 }; 810 #endif 811 812 #define MAX_PHYS_ITEM_ID_LEN 32 813 814 /* This structure holds a unique identifier to identify some 815 * physical item (port for example) used by a netdevice. 816 */ 817 struct netdev_phys_item_id { 818 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 819 unsigned char id_len; 820 }; 821 822 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 823 struct netdev_phys_item_id *b) 824 { 825 return a->id_len == b->id_len && 826 memcmp(a->id, b->id, a->id_len) == 0; 827 } 828 829 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 830 struct sk_buff *skb, 831 struct net_device *sb_dev); 832 833 enum net_device_path_type { 834 DEV_PATH_ETHERNET = 0, 835 DEV_PATH_VLAN, 836 DEV_PATH_BRIDGE, 837 DEV_PATH_PPPOE, 838 DEV_PATH_DSA, 839 DEV_PATH_MTK_WDMA, 840 }; 841 842 struct net_device_path { 843 enum net_device_path_type type; 844 const struct net_device *dev; 845 union { 846 struct { 847 u16 id; 848 __be16 proto; 849 u8 h_dest[ETH_ALEN]; 850 } encap; 851 struct { 852 enum { 853 DEV_PATH_BR_VLAN_KEEP, 854 DEV_PATH_BR_VLAN_TAG, 855 DEV_PATH_BR_VLAN_UNTAG, 856 DEV_PATH_BR_VLAN_UNTAG_HW, 857 } vlan_mode; 858 u16 vlan_id; 859 __be16 vlan_proto; 860 } bridge; 861 struct { 862 int port; 863 u16 proto; 864 } dsa; 865 struct { 866 u8 wdma_idx; 867 u8 queue; 868 u16 wcid; 869 u8 bss; 870 u8 amsdu; 871 } mtk_wdma; 872 }; 873 }; 874 875 #define NET_DEVICE_PATH_STACK_MAX 5 876 #define NET_DEVICE_PATH_VLAN_MAX 2 877 878 struct net_device_path_stack { 879 int num_paths; 880 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 881 }; 882 883 struct net_device_path_ctx { 884 const struct net_device *dev; 885 u8 daddr[ETH_ALEN]; 886 887 int num_vlans; 888 struct { 889 u16 id; 890 __be16 proto; 891 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 892 }; 893 894 enum tc_setup_type { 895 TC_QUERY_CAPS, 896 TC_SETUP_QDISC_MQPRIO, 897 TC_SETUP_CLSU32, 898 TC_SETUP_CLSFLOWER, 899 TC_SETUP_CLSMATCHALL, 900 TC_SETUP_CLSBPF, 901 TC_SETUP_BLOCK, 902 TC_SETUP_QDISC_CBS, 903 TC_SETUP_QDISC_RED, 904 TC_SETUP_QDISC_PRIO, 905 TC_SETUP_QDISC_MQ, 906 TC_SETUP_QDISC_ETF, 907 TC_SETUP_ROOT_QDISC, 908 TC_SETUP_QDISC_GRED, 909 TC_SETUP_QDISC_TAPRIO, 910 TC_SETUP_FT, 911 TC_SETUP_QDISC_ETS, 912 TC_SETUP_QDISC_TBF, 913 TC_SETUP_QDISC_FIFO, 914 TC_SETUP_QDISC_HTB, 915 TC_SETUP_ACT, 916 }; 917 918 /* These structures hold the attributes of bpf state that are being passed 919 * to the netdevice through the bpf op. 920 */ 921 enum bpf_netdev_command { 922 /* Set or clear a bpf program used in the earliest stages of packet 923 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 924 * is responsible for calling bpf_prog_put on any old progs that are 925 * stored. In case of error, the callee need not release the new prog 926 * reference, but on success it takes ownership and must bpf_prog_put 927 * when it is no longer used. 928 */ 929 XDP_SETUP_PROG, 930 XDP_SETUP_PROG_HW, 931 /* BPF program for offload callbacks, invoked at program load time. */ 932 BPF_OFFLOAD_MAP_ALLOC, 933 BPF_OFFLOAD_MAP_FREE, 934 XDP_SETUP_XSK_POOL, 935 }; 936 937 struct bpf_prog_offload_ops; 938 struct netlink_ext_ack; 939 struct xdp_umem; 940 struct xdp_dev_bulk_queue; 941 struct bpf_xdp_link; 942 943 enum bpf_xdp_mode { 944 XDP_MODE_SKB = 0, 945 XDP_MODE_DRV = 1, 946 XDP_MODE_HW = 2, 947 __MAX_XDP_MODE 948 }; 949 950 struct bpf_xdp_entity { 951 struct bpf_prog *prog; 952 struct bpf_xdp_link *link; 953 }; 954 955 struct netdev_bpf { 956 enum bpf_netdev_command command; 957 union { 958 /* XDP_SETUP_PROG */ 959 struct { 960 u32 flags; 961 struct bpf_prog *prog; 962 struct netlink_ext_ack *extack; 963 }; 964 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 965 struct { 966 struct bpf_offloaded_map *offmap; 967 }; 968 /* XDP_SETUP_XSK_POOL */ 969 struct { 970 struct xsk_buff_pool *pool; 971 u16 queue_id; 972 } xsk; 973 }; 974 }; 975 976 /* Flags for ndo_xsk_wakeup. */ 977 #define XDP_WAKEUP_RX (1 << 0) 978 #define XDP_WAKEUP_TX (1 << 1) 979 980 #ifdef CONFIG_XFRM_OFFLOAD 981 struct xfrmdev_ops { 982 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 983 void (*xdo_dev_state_delete) (struct xfrm_state *x); 984 void (*xdo_dev_state_free) (struct xfrm_state *x); 985 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 986 struct xfrm_state *x); 987 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 988 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 989 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 990 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 991 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 992 }; 993 #endif 994 995 struct dev_ifalias { 996 struct rcu_head rcuhead; 997 char ifalias[]; 998 }; 999 1000 struct devlink; 1001 struct tlsdev_ops; 1002 1003 struct netdev_net_notifier { 1004 struct list_head list; 1005 struct notifier_block *nb; 1006 }; 1007 1008 /* 1009 * This structure defines the management hooks for network devices. 1010 * The following hooks can be defined; unless noted otherwise, they are 1011 * optional and can be filled with a null pointer. 1012 * 1013 * int (*ndo_init)(struct net_device *dev); 1014 * This function is called once when a network device is registered. 1015 * The network device can use this for any late stage initialization 1016 * or semantic validation. It can fail with an error code which will 1017 * be propagated back to register_netdev. 1018 * 1019 * void (*ndo_uninit)(struct net_device *dev); 1020 * This function is called when device is unregistered or when registration 1021 * fails. It is not called if init fails. 1022 * 1023 * int (*ndo_open)(struct net_device *dev); 1024 * This function is called when a network device transitions to the up 1025 * state. 1026 * 1027 * int (*ndo_stop)(struct net_device *dev); 1028 * This function is called when a network device transitions to the down 1029 * state. 1030 * 1031 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1032 * struct net_device *dev); 1033 * Called when a packet needs to be transmitted. 1034 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1035 * the queue before that can happen; it's for obsolete devices and weird 1036 * corner cases, but the stack really does a non-trivial amount 1037 * of useless work if you return NETDEV_TX_BUSY. 1038 * Required; cannot be NULL. 1039 * 1040 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1041 * struct net_device *dev 1042 * netdev_features_t features); 1043 * Called by core transmit path to determine if device is capable of 1044 * performing offload operations on a given packet. This is to give 1045 * the device an opportunity to implement any restrictions that cannot 1046 * be otherwise expressed by feature flags. The check is called with 1047 * the set of features that the stack has calculated and it returns 1048 * those the driver believes to be appropriate. 1049 * 1050 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1051 * struct net_device *sb_dev); 1052 * Called to decide which queue to use when device supports multiple 1053 * transmit queues. 1054 * 1055 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1056 * This function is called to allow device receiver to make 1057 * changes to configuration when multicast or promiscuous is enabled. 1058 * 1059 * void (*ndo_set_rx_mode)(struct net_device *dev); 1060 * This function is called device changes address list filtering. 1061 * If driver handles unicast address filtering, it should set 1062 * IFF_UNICAST_FLT in its priv_flags. 1063 * 1064 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1065 * This function is called when the Media Access Control address 1066 * needs to be changed. If this interface is not defined, the 1067 * MAC address can not be changed. 1068 * 1069 * int (*ndo_validate_addr)(struct net_device *dev); 1070 * Test if Media Access Control address is valid for the device. 1071 * 1072 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1073 * Old-style ioctl entry point. This is used internally by the 1074 * appletalk and ieee802154 subsystems but is no longer called by 1075 * the device ioctl handler. 1076 * 1077 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1078 * Used by the bonding driver for its device specific ioctls: 1079 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1080 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1081 * 1082 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1083 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1084 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1085 * 1086 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1087 * Used to set network devices bus interface parameters. This interface 1088 * is retained for legacy reasons; new devices should use the bus 1089 * interface (PCI) for low level management. 1090 * 1091 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1092 * Called when a user wants to change the Maximum Transfer Unit 1093 * of a device. 1094 * 1095 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1096 * Callback used when the transmitter has not made any progress 1097 * for dev->watchdog ticks. 1098 * 1099 * void (*ndo_get_stats64)(struct net_device *dev, 1100 * struct rtnl_link_stats64 *storage); 1101 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1102 * Called when a user wants to get the network device usage 1103 * statistics. Drivers must do one of the following: 1104 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1105 * rtnl_link_stats64 structure passed by the caller. 1106 * 2. Define @ndo_get_stats to update a net_device_stats structure 1107 * (which should normally be dev->stats) and return a pointer to 1108 * it. The structure may be changed asynchronously only if each 1109 * field is written atomically. 1110 * 3. Update dev->stats asynchronously and atomically, and define 1111 * neither operation. 1112 * 1113 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1114 * Return true if this device supports offload stats of this attr_id. 1115 * 1116 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1117 * void *attr_data) 1118 * Get statistics for offload operations by attr_id. Write it into the 1119 * attr_data pointer. 1120 * 1121 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1122 * If device supports VLAN filtering this function is called when a 1123 * VLAN id is registered. 1124 * 1125 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1126 * If device supports VLAN filtering this function is called when a 1127 * VLAN id is unregistered. 1128 * 1129 * void (*ndo_poll_controller)(struct net_device *dev); 1130 * 1131 * SR-IOV management functions. 1132 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1133 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1134 * u8 qos, __be16 proto); 1135 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1136 * int max_tx_rate); 1137 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1138 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1139 * int (*ndo_get_vf_config)(struct net_device *dev, 1140 * int vf, struct ifla_vf_info *ivf); 1141 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1142 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1143 * struct nlattr *port[]); 1144 * 1145 * Enable or disable the VF ability to query its RSS Redirection Table and 1146 * Hash Key. This is needed since on some devices VF share this information 1147 * with PF and querying it may introduce a theoretical security risk. 1148 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1149 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1150 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1151 * void *type_data); 1152 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1153 * This is always called from the stack with the rtnl lock held and netif 1154 * tx queues stopped. This allows the netdevice to perform queue 1155 * management safely. 1156 * 1157 * Fiber Channel over Ethernet (FCoE) offload functions. 1158 * int (*ndo_fcoe_enable)(struct net_device *dev); 1159 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1160 * so the underlying device can perform whatever needed configuration or 1161 * initialization to support acceleration of FCoE traffic. 1162 * 1163 * int (*ndo_fcoe_disable)(struct net_device *dev); 1164 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1165 * so the underlying device can perform whatever needed clean-ups to 1166 * stop supporting acceleration of FCoE traffic. 1167 * 1168 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1169 * struct scatterlist *sgl, unsigned int sgc); 1170 * Called when the FCoE Initiator wants to initialize an I/O that 1171 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1172 * perform necessary setup and returns 1 to indicate the device is set up 1173 * successfully to perform DDP on this I/O, otherwise this returns 0. 1174 * 1175 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1176 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1177 * indicated by the FC exchange id 'xid', so the underlying device can 1178 * clean up and reuse resources for later DDP requests. 1179 * 1180 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1181 * struct scatterlist *sgl, unsigned int sgc); 1182 * Called when the FCoE Target wants to initialize an I/O that 1183 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1184 * perform necessary setup and returns 1 to indicate the device is set up 1185 * successfully to perform DDP on this I/O, otherwise this returns 0. 1186 * 1187 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1188 * struct netdev_fcoe_hbainfo *hbainfo); 1189 * Called when the FCoE Protocol stack wants information on the underlying 1190 * device. This information is utilized by the FCoE protocol stack to 1191 * register attributes with Fiber Channel management service as per the 1192 * FC-GS Fabric Device Management Information(FDMI) specification. 1193 * 1194 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1195 * Called when the underlying device wants to override default World Wide 1196 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1197 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1198 * protocol stack to use. 1199 * 1200 * RFS acceleration. 1201 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1202 * u16 rxq_index, u32 flow_id); 1203 * Set hardware filter for RFS. rxq_index is the target queue index; 1204 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1205 * Return the filter ID on success, or a negative error code. 1206 * 1207 * Slave management functions (for bridge, bonding, etc). 1208 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1209 * Called to make another netdev an underling. 1210 * 1211 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1212 * Called to release previously enslaved netdev. 1213 * 1214 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1215 * struct sk_buff *skb, 1216 * bool all_slaves); 1217 * Get the xmit slave of master device. If all_slaves is true, function 1218 * assume all the slaves can transmit. 1219 * 1220 * Feature/offload setting functions. 1221 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1222 * netdev_features_t features); 1223 * Adjusts the requested feature flags according to device-specific 1224 * constraints, and returns the resulting flags. Must not modify 1225 * the device state. 1226 * 1227 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1228 * Called to update device configuration to new features. Passed 1229 * feature set might be less than what was returned by ndo_fix_features()). 1230 * Must return >0 or -errno if it changed dev->features itself. 1231 * 1232 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1233 * struct net_device *dev, 1234 * const unsigned char *addr, u16 vid, u16 flags, 1235 * struct netlink_ext_ack *extack); 1236 * Adds an FDB entry to dev for addr. 1237 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1238 * struct net_device *dev, 1239 * const unsigned char *addr, u16 vid) 1240 * Deletes the FDB entry from dev corresponding to addr. 1241 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1242 * struct netlink_ext_ack *extack); 1243 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1244 * struct net_device *dev, struct net_device *filter_dev, 1245 * int *idx) 1246 * Used to add FDB entries to dump requests. Implementers should add 1247 * entries to skb and update idx with the number of entries. 1248 * 1249 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1250 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1251 * Adds an MDB entry to dev. 1252 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1253 * struct netlink_ext_ack *extack); 1254 * Deletes the MDB entry from dev. 1255 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1256 * struct netlink_ext_ack *extack); 1257 * Bulk deletes MDB entries from dev. 1258 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1259 * struct netlink_callback *cb); 1260 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1261 * callback is used by core rtnetlink code. 1262 * 1263 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1264 * u16 flags, struct netlink_ext_ack *extack) 1265 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1266 * struct net_device *dev, u32 filter_mask, 1267 * int nlflags) 1268 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1269 * u16 flags); 1270 * 1271 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1272 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1273 * which do not represent real hardware may define this to allow their 1274 * userspace components to manage their virtual carrier state. Devices 1275 * that determine carrier state from physical hardware properties (eg 1276 * network cables) or protocol-dependent mechanisms (eg 1277 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1278 * 1279 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1280 * struct netdev_phys_item_id *ppid); 1281 * Called to get ID of physical port of this device. If driver does 1282 * not implement this, it is assumed that the hw is not able to have 1283 * multiple net devices on single physical port. 1284 * 1285 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1286 * struct netdev_phys_item_id *ppid) 1287 * Called to get the parent ID of the physical port of this device. 1288 * 1289 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1290 * struct net_device *dev) 1291 * Called by upper layer devices to accelerate switching or other 1292 * station functionality into hardware. 'pdev is the lowerdev 1293 * to use for the offload and 'dev' is the net device that will 1294 * back the offload. Returns a pointer to the private structure 1295 * the upper layer will maintain. 1296 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1297 * Called by upper layer device to delete the station created 1298 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1299 * the station and priv is the structure returned by the add 1300 * operation. 1301 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1302 * int queue_index, u32 maxrate); 1303 * Called when a user wants to set a max-rate limitation of specific 1304 * TX queue. 1305 * int (*ndo_get_iflink)(const struct net_device *dev); 1306 * Called to get the iflink value of this device. 1307 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1308 * This function is used to get egress tunnel information for given skb. 1309 * This is useful for retrieving outer tunnel header parameters while 1310 * sampling packet. 1311 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1312 * This function is used to specify the headroom that the skb must 1313 * consider when allocation skb during packet reception. Setting 1314 * appropriate rx headroom value allows avoiding skb head copy on 1315 * forward. Setting a negative value resets the rx headroom to the 1316 * default value. 1317 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1318 * This function is used to set or query state related to XDP on the 1319 * netdevice and manage BPF offload. See definition of 1320 * enum bpf_netdev_command for details. 1321 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1322 * u32 flags); 1323 * This function is used to submit @n XDP packets for transmit on a 1324 * netdevice. Returns number of frames successfully transmitted, frames 1325 * that got dropped are freed/returned via xdp_return_frame(). 1326 * Returns negative number, means general error invoking ndo, meaning 1327 * no frames were xmit'ed and core-caller will free all frames. 1328 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1329 * struct xdp_buff *xdp); 1330 * Get the xmit slave of master device based on the xdp_buff. 1331 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1332 * This function is used to wake up the softirq, ksoftirqd or kthread 1333 * responsible for sending and/or receiving packets on a specific 1334 * queue id bound to an AF_XDP socket. The flags field specifies if 1335 * only RX, only Tx, or both should be woken up using the flags 1336 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1337 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1338 * int cmd); 1339 * Add, change, delete or get information on an IPv4 tunnel. 1340 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1341 * If a device is paired with a peer device, return the peer instance. 1342 * The caller must be under RCU read context. 1343 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1344 * Get the forwarding path to reach the real device from the HW destination address 1345 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1346 * const struct skb_shared_hwtstamps *hwtstamps, 1347 * bool cycles); 1348 * Get hardware timestamp based on normal/adjustable time or free running 1349 * cycle counter. This function is required if physical clock supports a 1350 * free running cycle counter. 1351 * 1352 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1353 * struct kernel_hwtstamp_config *kernel_config); 1354 * Get the currently configured hardware timestamping parameters for the 1355 * NIC device. 1356 * 1357 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1358 * struct kernel_hwtstamp_config *kernel_config, 1359 * struct netlink_ext_ack *extack); 1360 * Change the hardware timestamping parameters for NIC device. 1361 */ 1362 struct net_device_ops { 1363 int (*ndo_init)(struct net_device *dev); 1364 void (*ndo_uninit)(struct net_device *dev); 1365 int (*ndo_open)(struct net_device *dev); 1366 int (*ndo_stop)(struct net_device *dev); 1367 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1368 struct net_device *dev); 1369 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1370 struct net_device *dev, 1371 netdev_features_t features); 1372 u16 (*ndo_select_queue)(struct net_device *dev, 1373 struct sk_buff *skb, 1374 struct net_device *sb_dev); 1375 void (*ndo_change_rx_flags)(struct net_device *dev, 1376 int flags); 1377 void (*ndo_set_rx_mode)(struct net_device *dev); 1378 int (*ndo_set_mac_address)(struct net_device *dev, 1379 void *addr); 1380 int (*ndo_validate_addr)(struct net_device *dev); 1381 int (*ndo_do_ioctl)(struct net_device *dev, 1382 struct ifreq *ifr, int cmd); 1383 int (*ndo_eth_ioctl)(struct net_device *dev, 1384 struct ifreq *ifr, int cmd); 1385 int (*ndo_siocbond)(struct net_device *dev, 1386 struct ifreq *ifr, int cmd); 1387 int (*ndo_siocwandev)(struct net_device *dev, 1388 struct if_settings *ifs); 1389 int (*ndo_siocdevprivate)(struct net_device *dev, 1390 struct ifreq *ifr, 1391 void __user *data, int cmd); 1392 int (*ndo_set_config)(struct net_device *dev, 1393 struct ifmap *map); 1394 int (*ndo_change_mtu)(struct net_device *dev, 1395 int new_mtu); 1396 int (*ndo_neigh_setup)(struct net_device *dev, 1397 struct neigh_parms *); 1398 void (*ndo_tx_timeout) (struct net_device *dev, 1399 unsigned int txqueue); 1400 1401 void (*ndo_get_stats64)(struct net_device *dev, 1402 struct rtnl_link_stats64 *storage); 1403 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1404 int (*ndo_get_offload_stats)(int attr_id, 1405 const struct net_device *dev, 1406 void *attr_data); 1407 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1408 1409 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1410 __be16 proto, u16 vid); 1411 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1412 __be16 proto, u16 vid); 1413 #ifdef CONFIG_NET_POLL_CONTROLLER 1414 void (*ndo_poll_controller)(struct net_device *dev); 1415 int (*ndo_netpoll_setup)(struct net_device *dev, 1416 struct netpoll_info *info); 1417 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1418 #endif 1419 int (*ndo_set_vf_mac)(struct net_device *dev, 1420 int queue, u8 *mac); 1421 int (*ndo_set_vf_vlan)(struct net_device *dev, 1422 int queue, u16 vlan, 1423 u8 qos, __be16 proto); 1424 int (*ndo_set_vf_rate)(struct net_device *dev, 1425 int vf, int min_tx_rate, 1426 int max_tx_rate); 1427 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1428 int vf, bool setting); 1429 int (*ndo_set_vf_trust)(struct net_device *dev, 1430 int vf, bool setting); 1431 int (*ndo_get_vf_config)(struct net_device *dev, 1432 int vf, 1433 struct ifla_vf_info *ivf); 1434 int (*ndo_set_vf_link_state)(struct net_device *dev, 1435 int vf, int link_state); 1436 int (*ndo_get_vf_stats)(struct net_device *dev, 1437 int vf, 1438 struct ifla_vf_stats 1439 *vf_stats); 1440 int (*ndo_set_vf_port)(struct net_device *dev, 1441 int vf, 1442 struct nlattr *port[]); 1443 int (*ndo_get_vf_port)(struct net_device *dev, 1444 int vf, struct sk_buff *skb); 1445 int (*ndo_get_vf_guid)(struct net_device *dev, 1446 int vf, 1447 struct ifla_vf_guid *node_guid, 1448 struct ifla_vf_guid *port_guid); 1449 int (*ndo_set_vf_guid)(struct net_device *dev, 1450 int vf, u64 guid, 1451 int guid_type); 1452 int (*ndo_set_vf_rss_query_en)( 1453 struct net_device *dev, 1454 int vf, bool setting); 1455 int (*ndo_setup_tc)(struct net_device *dev, 1456 enum tc_setup_type type, 1457 void *type_data); 1458 #if IS_ENABLED(CONFIG_FCOE) 1459 int (*ndo_fcoe_enable)(struct net_device *dev); 1460 int (*ndo_fcoe_disable)(struct net_device *dev); 1461 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1462 u16 xid, 1463 struct scatterlist *sgl, 1464 unsigned int sgc); 1465 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1466 u16 xid); 1467 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1468 u16 xid, 1469 struct scatterlist *sgl, 1470 unsigned int sgc); 1471 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1472 struct netdev_fcoe_hbainfo *hbainfo); 1473 #endif 1474 1475 #if IS_ENABLED(CONFIG_LIBFCOE) 1476 #define NETDEV_FCOE_WWNN 0 1477 #define NETDEV_FCOE_WWPN 1 1478 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1479 u64 *wwn, int type); 1480 #endif 1481 1482 #ifdef CONFIG_RFS_ACCEL 1483 int (*ndo_rx_flow_steer)(struct net_device *dev, 1484 const struct sk_buff *skb, 1485 u16 rxq_index, 1486 u32 flow_id); 1487 #endif 1488 int (*ndo_add_slave)(struct net_device *dev, 1489 struct net_device *slave_dev, 1490 struct netlink_ext_ack *extack); 1491 int (*ndo_del_slave)(struct net_device *dev, 1492 struct net_device *slave_dev); 1493 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1494 struct sk_buff *skb, 1495 bool all_slaves); 1496 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1497 struct sock *sk); 1498 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1499 netdev_features_t features); 1500 int (*ndo_set_features)(struct net_device *dev, 1501 netdev_features_t features); 1502 int (*ndo_neigh_construct)(struct net_device *dev, 1503 struct neighbour *n); 1504 void (*ndo_neigh_destroy)(struct net_device *dev, 1505 struct neighbour *n); 1506 1507 int (*ndo_fdb_add)(struct ndmsg *ndm, 1508 struct nlattr *tb[], 1509 struct net_device *dev, 1510 const unsigned char *addr, 1511 u16 vid, 1512 u16 flags, 1513 struct netlink_ext_ack *extack); 1514 int (*ndo_fdb_del)(struct ndmsg *ndm, 1515 struct nlattr *tb[], 1516 struct net_device *dev, 1517 const unsigned char *addr, 1518 u16 vid, struct netlink_ext_ack *extack); 1519 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1520 struct net_device *dev, 1521 struct netlink_ext_ack *extack); 1522 int (*ndo_fdb_dump)(struct sk_buff *skb, 1523 struct netlink_callback *cb, 1524 struct net_device *dev, 1525 struct net_device *filter_dev, 1526 int *idx); 1527 int (*ndo_fdb_get)(struct sk_buff *skb, 1528 struct nlattr *tb[], 1529 struct net_device *dev, 1530 const unsigned char *addr, 1531 u16 vid, u32 portid, u32 seq, 1532 struct netlink_ext_ack *extack); 1533 int (*ndo_mdb_add)(struct net_device *dev, 1534 struct nlattr *tb[], 1535 u16 nlmsg_flags, 1536 struct netlink_ext_ack *extack); 1537 int (*ndo_mdb_del)(struct net_device *dev, 1538 struct nlattr *tb[], 1539 struct netlink_ext_ack *extack); 1540 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1541 struct nlattr *tb[], 1542 struct netlink_ext_ack *extack); 1543 int (*ndo_mdb_dump)(struct net_device *dev, 1544 struct sk_buff *skb, 1545 struct netlink_callback *cb); 1546 int (*ndo_mdb_get)(struct net_device *dev, 1547 struct nlattr *tb[], u32 portid, 1548 u32 seq, 1549 struct netlink_ext_ack *extack); 1550 int (*ndo_bridge_setlink)(struct net_device *dev, 1551 struct nlmsghdr *nlh, 1552 u16 flags, 1553 struct netlink_ext_ack *extack); 1554 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1555 u32 pid, u32 seq, 1556 struct net_device *dev, 1557 u32 filter_mask, 1558 int nlflags); 1559 int (*ndo_bridge_dellink)(struct net_device *dev, 1560 struct nlmsghdr *nlh, 1561 u16 flags); 1562 int (*ndo_change_carrier)(struct net_device *dev, 1563 bool new_carrier); 1564 int (*ndo_get_phys_port_id)(struct net_device *dev, 1565 struct netdev_phys_item_id *ppid); 1566 int (*ndo_get_port_parent_id)(struct net_device *dev, 1567 struct netdev_phys_item_id *ppid); 1568 int (*ndo_get_phys_port_name)(struct net_device *dev, 1569 char *name, size_t len); 1570 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1571 struct net_device *dev); 1572 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1573 void *priv); 1574 1575 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1576 int queue_index, 1577 u32 maxrate); 1578 int (*ndo_get_iflink)(const struct net_device *dev); 1579 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1580 struct sk_buff *skb); 1581 void (*ndo_set_rx_headroom)(struct net_device *dev, 1582 int needed_headroom); 1583 int (*ndo_bpf)(struct net_device *dev, 1584 struct netdev_bpf *bpf); 1585 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1586 struct xdp_frame **xdp, 1587 u32 flags); 1588 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1589 struct xdp_buff *xdp); 1590 int (*ndo_xsk_wakeup)(struct net_device *dev, 1591 u32 queue_id, u32 flags); 1592 int (*ndo_tunnel_ctl)(struct net_device *dev, 1593 struct ip_tunnel_parm_kern *p, 1594 int cmd); 1595 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1596 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1597 struct net_device_path *path); 1598 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1599 const struct skb_shared_hwtstamps *hwtstamps, 1600 bool cycles); 1601 int (*ndo_hwtstamp_get)(struct net_device *dev, 1602 struct kernel_hwtstamp_config *kernel_config); 1603 int (*ndo_hwtstamp_set)(struct net_device *dev, 1604 struct kernel_hwtstamp_config *kernel_config, 1605 struct netlink_ext_ack *extack); 1606 1607 #if IS_ENABLED(CONFIG_NET_SHAPER) 1608 /** 1609 * @net_shaper_ops: Device shaping offload operations 1610 * see include/net/net_shapers.h 1611 */ 1612 const struct net_shaper_ops *net_shaper_ops; 1613 #endif 1614 }; 1615 1616 /** 1617 * enum netdev_priv_flags - &struct net_device priv_flags 1618 * 1619 * These are the &struct net_device, they are only set internally 1620 * by drivers and used in the kernel. These flags are invisible to 1621 * userspace; this means that the order of these flags can change 1622 * during any kernel release. 1623 * 1624 * You should add bitfield booleans after either net_device::priv_flags 1625 * (hotpath) or ::threaded (slowpath) instead of extending these flags. 1626 * 1627 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1628 * @IFF_EBRIDGE: Ethernet bridging device 1629 * @IFF_BONDING: bonding master or slave 1630 * @IFF_ISATAP: ISATAP interface (RFC4214) 1631 * @IFF_WAN_HDLC: WAN HDLC device 1632 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1633 * release skb->dst 1634 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1635 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1636 * @IFF_MACVLAN_PORT: device used as macvlan port 1637 * @IFF_BRIDGE_PORT: device used as bridge port 1638 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1639 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1640 * @IFF_UNICAST_FLT: Supports unicast filtering 1641 * @IFF_TEAM_PORT: device used as team port 1642 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1643 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1644 * change when it's running 1645 * @IFF_MACVLAN: Macvlan device 1646 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1647 * underlying stacked devices 1648 * @IFF_L3MDEV_MASTER: device is an L3 master device 1649 * @IFF_NO_QUEUE: device can run without qdisc attached 1650 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1651 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1652 * @IFF_TEAM: device is a team device 1653 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1654 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1655 * entity (i.e. the master device for bridged veth) 1656 * @IFF_MACSEC: device is a MACsec device 1657 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1658 * @IFF_FAILOVER: device is a failover master device 1659 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1660 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1661 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1662 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1663 * skb_headlen(skb) == 0 (data starts from frag0) 1664 */ 1665 enum netdev_priv_flags { 1666 IFF_802_1Q_VLAN = 1<<0, 1667 IFF_EBRIDGE = 1<<1, 1668 IFF_BONDING = 1<<2, 1669 IFF_ISATAP = 1<<3, 1670 IFF_WAN_HDLC = 1<<4, 1671 IFF_XMIT_DST_RELEASE = 1<<5, 1672 IFF_DONT_BRIDGE = 1<<6, 1673 IFF_DISABLE_NETPOLL = 1<<7, 1674 IFF_MACVLAN_PORT = 1<<8, 1675 IFF_BRIDGE_PORT = 1<<9, 1676 IFF_OVS_DATAPATH = 1<<10, 1677 IFF_TX_SKB_SHARING = 1<<11, 1678 IFF_UNICAST_FLT = 1<<12, 1679 IFF_TEAM_PORT = 1<<13, 1680 IFF_SUPP_NOFCS = 1<<14, 1681 IFF_LIVE_ADDR_CHANGE = 1<<15, 1682 IFF_MACVLAN = 1<<16, 1683 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1684 IFF_L3MDEV_MASTER = 1<<18, 1685 IFF_NO_QUEUE = 1<<19, 1686 IFF_OPENVSWITCH = 1<<20, 1687 IFF_L3MDEV_SLAVE = 1<<21, 1688 IFF_TEAM = 1<<22, 1689 IFF_RXFH_CONFIGURED = 1<<23, 1690 IFF_PHONY_HEADROOM = 1<<24, 1691 IFF_MACSEC = 1<<25, 1692 IFF_NO_RX_HANDLER = 1<<26, 1693 IFF_FAILOVER = 1<<27, 1694 IFF_FAILOVER_SLAVE = 1<<28, 1695 IFF_L3MDEV_RX_HANDLER = 1<<29, 1696 IFF_NO_ADDRCONF = BIT_ULL(30), 1697 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1698 }; 1699 1700 /* Specifies the type of the struct net_device::ml_priv pointer */ 1701 enum netdev_ml_priv_type { 1702 ML_PRIV_NONE, 1703 ML_PRIV_CAN, 1704 }; 1705 1706 enum netdev_stat_type { 1707 NETDEV_PCPU_STAT_NONE, 1708 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1709 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1710 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1711 }; 1712 1713 enum netdev_reg_state { 1714 NETREG_UNINITIALIZED = 0, 1715 NETREG_REGISTERED, /* completed register_netdevice */ 1716 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1717 NETREG_UNREGISTERED, /* completed unregister todo */ 1718 NETREG_RELEASED, /* called free_netdev */ 1719 NETREG_DUMMY, /* dummy device for NAPI poll */ 1720 }; 1721 1722 /** 1723 * struct net_device - The DEVICE structure. 1724 * 1725 * Actually, this whole structure is a big mistake. It mixes I/O 1726 * data with strictly "high-level" data, and it has to know about 1727 * almost every data structure used in the INET module. 1728 * 1729 * @priv_flags: flags invisible to userspace defined as bits, see 1730 * enum netdev_priv_flags for the definitions 1731 * @lltx: device supports lockless Tx. Deprecated for real HW 1732 * drivers. Mainly used by logical interfaces, such as 1733 * bonding and tunnels 1734 * 1735 * @name: This is the first field of the "visible" part of this structure 1736 * (i.e. as seen by users in the "Space.c" file). It is the name 1737 * of the interface. 1738 * 1739 * @name_node: Name hashlist node 1740 * @ifalias: SNMP alias 1741 * @mem_end: Shared memory end 1742 * @mem_start: Shared memory start 1743 * @base_addr: Device I/O address 1744 * @irq: Device IRQ number 1745 * 1746 * @state: Generic network queuing layer state, see netdev_state_t 1747 * @dev_list: The global list of network devices 1748 * @napi_list: List entry used for polling NAPI devices 1749 * @unreg_list: List entry when we are unregistering the 1750 * device; see the function unregister_netdev 1751 * @close_list: List entry used when we are closing the device 1752 * @ptype_all: Device-specific packet handlers for all protocols 1753 * @ptype_specific: Device-specific, protocol-specific packet handlers 1754 * 1755 * @adj_list: Directly linked devices, like slaves for bonding 1756 * @features: Currently active device features 1757 * @hw_features: User-changeable features 1758 * 1759 * @wanted_features: User-requested features 1760 * @vlan_features: Mask of features inheritable by VLAN devices 1761 * 1762 * @hw_enc_features: Mask of features inherited by encapsulating devices 1763 * This field indicates what encapsulation 1764 * offloads the hardware is capable of doing, 1765 * and drivers will need to set them appropriately. 1766 * 1767 * @mpls_features: Mask of features inheritable by MPLS 1768 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1769 * 1770 * @ifindex: interface index 1771 * @group: The group the device belongs to 1772 * 1773 * @stats: Statistics struct, which was left as a legacy, use 1774 * rtnl_link_stats64 instead 1775 * 1776 * @core_stats: core networking counters, 1777 * do not use this in drivers 1778 * @carrier_up_count: Number of times the carrier has been up 1779 * @carrier_down_count: Number of times the carrier has been down 1780 * 1781 * @wireless_handlers: List of functions to handle Wireless Extensions, 1782 * instead of ioctl, 1783 * see <net/iw_handler.h> for details. 1784 * @wireless_data: Instance data managed by the core of wireless extensions 1785 * 1786 * @netdev_ops: Includes several pointers to callbacks, 1787 * if one wants to override the ndo_*() functions 1788 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1789 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1790 * @ethtool_ops: Management operations 1791 * @l3mdev_ops: Layer 3 master device operations 1792 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1793 * discovery handling. Necessary for e.g. 6LoWPAN. 1794 * @xfrmdev_ops: Transformation offload operations 1795 * @tlsdev_ops: Transport Layer Security offload operations 1796 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1797 * of Layer 2 headers. 1798 * 1799 * @flags: Interface flags (a la BSD) 1800 * @xdp_features: XDP capability supported by the device 1801 * @gflags: Global flags ( kept as legacy ) 1802 * @priv_len: Size of the ->priv flexible array 1803 * @priv: Flexible array containing private data 1804 * @operstate: RFC2863 operstate 1805 * @link_mode: Mapping policy to operstate 1806 * @if_port: Selectable AUI, TP, ... 1807 * @dma: DMA channel 1808 * @mtu: Interface MTU value 1809 * @min_mtu: Interface Minimum MTU value 1810 * @max_mtu: Interface Maximum MTU value 1811 * @type: Interface hardware type 1812 * @hard_header_len: Maximum hardware header length. 1813 * @min_header_len: Minimum hardware header length 1814 * 1815 * @needed_headroom: Extra headroom the hardware may need, but not in all 1816 * cases can this be guaranteed 1817 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1818 * cases can this be guaranteed. Some cases also use 1819 * LL_MAX_HEADER instead to allocate the skb 1820 * 1821 * interface address info: 1822 * 1823 * @perm_addr: Permanent hw address 1824 * @addr_assign_type: Hw address assignment type 1825 * @addr_len: Hardware address length 1826 * @upper_level: Maximum depth level of upper devices. 1827 * @lower_level: Maximum depth level of lower devices. 1828 * @neigh_priv_len: Used in neigh_alloc() 1829 * @dev_id: Used to differentiate devices that share 1830 * the same link layer address 1831 * @dev_port: Used to differentiate devices that share 1832 * the same function 1833 * @addr_list_lock: XXX: need comments on this one 1834 * @name_assign_type: network interface name assignment type 1835 * @uc_promisc: Counter that indicates promiscuous mode 1836 * has been enabled due to the need to listen to 1837 * additional unicast addresses in a device that 1838 * does not implement ndo_set_rx_mode() 1839 * @uc: unicast mac addresses 1840 * @mc: multicast mac addresses 1841 * @dev_addrs: list of device hw addresses 1842 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1843 * @promiscuity: Number of times the NIC is told to work in 1844 * promiscuous mode; if it becomes 0 the NIC will 1845 * exit promiscuous mode 1846 * @allmulti: Counter, enables or disables allmulticast mode 1847 * 1848 * @vlan_info: VLAN info 1849 * @dsa_ptr: dsa specific data 1850 * @tipc_ptr: TIPC specific data 1851 * @atalk_ptr: AppleTalk link 1852 * @ip_ptr: IPv4 specific data 1853 * @ip6_ptr: IPv6 specific data 1854 * @ax25_ptr: AX.25 specific data 1855 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1856 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1857 * device struct 1858 * @mpls_ptr: mpls_dev struct pointer 1859 * @mctp_ptr: MCTP specific data 1860 * 1861 * @dev_addr: Hw address (before bcast, 1862 * because most packets are unicast) 1863 * 1864 * @_rx: Array of RX queues 1865 * @num_rx_queues: Number of RX queues 1866 * allocated at register_netdev() time 1867 * @real_num_rx_queues: Number of RX queues currently active in device 1868 * @xdp_prog: XDP sockets filter program pointer 1869 * @gro_flush_timeout: timeout for GRO layer in NAPI 1870 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1871 * allow to avoid NIC hard IRQ, on busy queues. 1872 * 1873 * @rx_handler: handler for received packets 1874 * @rx_handler_data: XXX: need comments on this one 1875 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1876 * @ingress_queue: XXX: need comments on this one 1877 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1878 * @broadcast: hw bcast address 1879 * 1880 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1881 * indexed by RX queue number. Assigned by driver. 1882 * This must only be set if the ndo_rx_flow_steer 1883 * operation is defined 1884 * @index_hlist: Device index hash chain 1885 * 1886 * @_tx: Array of TX queues 1887 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1888 * @real_num_tx_queues: Number of TX queues currently active in device 1889 * @qdisc: Root qdisc from userspace point of view 1890 * @tx_queue_len: Max frames per queue allowed 1891 * @tx_global_lock: XXX: need comments on this one 1892 * @xdp_bulkq: XDP device bulk queue 1893 * @xps_maps: all CPUs/RXQs maps for XPS device 1894 * 1895 * @xps_maps: XXX: need comments on this one 1896 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1897 * @nf_hooks_egress: netfilter hooks executed for egress packets 1898 * @qdisc_hash: qdisc hash table 1899 * @watchdog_timeo: Represents the timeout that is used by 1900 * the watchdog (see dev_watchdog()) 1901 * @watchdog_timer: List of timers 1902 * 1903 * @proto_down_reason: reason a netdev interface is held down 1904 * @pcpu_refcnt: Number of references to this device 1905 * @dev_refcnt: Number of references to this device 1906 * @refcnt_tracker: Tracker directory for tracked references to this device 1907 * @todo_list: Delayed register/unregister 1908 * @link_watch_list: XXX: need comments on this one 1909 * 1910 * @reg_state: Register/unregister state machine 1911 * @dismantle: Device is going to be freed 1912 * @rtnl_link_state: This enum represents the phases of creating 1913 * a new link 1914 * 1915 * @needs_free_netdev: Should unregister perform free_netdev? 1916 * @priv_destructor: Called from unregister 1917 * @npinfo: XXX: need comments on this one 1918 * @nd_net: Network namespace this network device is inside 1919 * 1920 * @ml_priv: Mid-layer private 1921 * @ml_priv_type: Mid-layer private type 1922 * 1923 * @pcpu_stat_type: Type of device statistics which the core should 1924 * allocate/free: none, lstats, tstats, dstats. none 1925 * means the driver is handling statistics allocation/ 1926 * freeing internally. 1927 * @lstats: Loopback statistics: packets, bytes 1928 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1929 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1930 * 1931 * @garp_port: GARP 1932 * @mrp_port: MRP 1933 * 1934 * @dm_private: Drop monitor private 1935 * 1936 * @dev: Class/net/name entry 1937 * @sysfs_groups: Space for optional device, statistics and wireless 1938 * sysfs groups 1939 * 1940 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1941 * @rtnl_link_ops: Rtnl_link_ops 1942 * @stat_ops: Optional ops for queue-aware statistics 1943 * @queue_mgmt_ops: Optional ops for queue management 1944 * 1945 * @gso_max_size: Maximum size of generic segmentation offload 1946 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1947 * @gso_max_segs: Maximum number of segments that can be passed to the 1948 * NIC for GSO 1949 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1950 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1951 * for IPv4. 1952 * 1953 * @dcbnl_ops: Data Center Bridging netlink ops 1954 * @num_tc: Number of traffic classes in the net device 1955 * @tc_to_txq: XXX: need comments on this one 1956 * @prio_tc_map: XXX: need comments on this one 1957 * 1958 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1959 * 1960 * @priomap: XXX: need comments on this one 1961 * @link_topo: Physical link topology tracking attached PHYs 1962 * @phydev: Physical device may attach itself 1963 * for hardware timestamping 1964 * @sfp_bus: attached &struct sfp_bus structure. 1965 * 1966 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1967 * 1968 * @proto_down: protocol port state information can be sent to the 1969 * switch driver and used to set the phys state of the 1970 * switch port. 1971 * 1972 * @threaded: napi threaded mode is enabled 1973 * 1974 * @see_all_hwtstamp_requests: device wants to see calls to 1975 * ndo_hwtstamp_set() for all timestamp requests 1976 * regardless of source, even if those aren't 1977 * HWTSTAMP_SOURCE_NETDEV 1978 * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN 1979 * @netns_local: interface can't change network namespaces 1980 * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes 1981 * 1982 * @net_notifier_list: List of per-net netdev notifier block 1983 * that follow this device when it is moved 1984 * to another network namespace. 1985 * 1986 * @macsec_ops: MACsec offloading ops 1987 * 1988 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1989 * offload capabilities of the device 1990 * @udp_tunnel_nic: UDP tunnel offload state 1991 * @ethtool: ethtool related state 1992 * @xdp_state: stores info on attached XDP BPF programs 1993 * 1994 * @nested_level: Used as a parameter of spin_lock_nested() of 1995 * dev->addr_list_lock. 1996 * @unlink_list: As netif_addr_lock() can be called recursively, 1997 * keep a list of interfaces to be deleted. 1998 * @gro_max_size: Maximum size of aggregated packet in generic 1999 * receive offload (GRO) 2000 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2001 * receive offload (GRO), for IPv4. 2002 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2003 * zero copy driver 2004 * 2005 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2006 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2007 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2008 * @dev_registered_tracker: tracker for reference held while 2009 * registered 2010 * @offload_xstats_l3: L3 HW stats for this netdevice. 2011 * 2012 * @devlink_port: Pointer to related devlink port structure. 2013 * Assigned by a driver before netdev registration using 2014 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2015 * during the time netdevice is registered. 2016 * 2017 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2018 * where the clock is recovered. 2019 * 2020 * @max_pacing_offload_horizon: max EDT offload horizon in nsec. 2021 * 2022 * FIXME: cleanup struct net_device such that network protocol info 2023 * moves out. 2024 */ 2025 2026 struct net_device { 2027 /* Cacheline organization can be found documented in 2028 * Documentation/networking/net_cachelines/net_device.rst. 2029 * Please update the document when adding new fields. 2030 */ 2031 2032 /* TX read-mostly hotpath */ 2033 __cacheline_group_begin(net_device_read_tx); 2034 struct_group(priv_flags_fast, 2035 unsigned long priv_flags:32; 2036 unsigned long lltx:1; 2037 ); 2038 const struct net_device_ops *netdev_ops; 2039 const struct header_ops *header_ops; 2040 struct netdev_queue *_tx; 2041 netdev_features_t gso_partial_features; 2042 unsigned int real_num_tx_queues; 2043 unsigned int gso_max_size; 2044 unsigned int gso_ipv4_max_size; 2045 u16 gso_max_segs; 2046 s16 num_tc; 2047 /* Note : dev->mtu is often read without holding a lock. 2048 * Writers usually hold RTNL. 2049 * It is recommended to use READ_ONCE() to annotate the reads, 2050 * and to use WRITE_ONCE() to annotate the writes. 2051 */ 2052 unsigned int mtu; 2053 unsigned short needed_headroom; 2054 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2055 #ifdef CONFIG_XPS 2056 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2057 #endif 2058 #ifdef CONFIG_NETFILTER_EGRESS 2059 struct nf_hook_entries __rcu *nf_hooks_egress; 2060 #endif 2061 #ifdef CONFIG_NET_XGRESS 2062 struct bpf_mprog_entry __rcu *tcx_egress; 2063 #endif 2064 __cacheline_group_end(net_device_read_tx); 2065 2066 /* TXRX read-mostly hotpath */ 2067 __cacheline_group_begin(net_device_read_txrx); 2068 union { 2069 struct pcpu_lstats __percpu *lstats; 2070 struct pcpu_sw_netstats __percpu *tstats; 2071 struct pcpu_dstats __percpu *dstats; 2072 }; 2073 unsigned long state; 2074 unsigned int flags; 2075 unsigned short hard_header_len; 2076 netdev_features_t features; 2077 struct inet6_dev __rcu *ip6_ptr; 2078 __cacheline_group_end(net_device_read_txrx); 2079 2080 /* RX read-mostly hotpath */ 2081 __cacheline_group_begin(net_device_read_rx); 2082 struct bpf_prog __rcu *xdp_prog; 2083 struct list_head ptype_specific; 2084 int ifindex; 2085 unsigned int real_num_rx_queues; 2086 struct netdev_rx_queue *_rx; 2087 unsigned long gro_flush_timeout; 2088 u32 napi_defer_hard_irqs; 2089 unsigned int gro_max_size; 2090 unsigned int gro_ipv4_max_size; 2091 rx_handler_func_t __rcu *rx_handler; 2092 void __rcu *rx_handler_data; 2093 possible_net_t nd_net; 2094 #ifdef CONFIG_NETPOLL 2095 struct netpoll_info __rcu *npinfo; 2096 #endif 2097 #ifdef CONFIG_NET_XGRESS 2098 struct bpf_mprog_entry __rcu *tcx_ingress; 2099 #endif 2100 __cacheline_group_end(net_device_read_rx); 2101 2102 char name[IFNAMSIZ]; 2103 struct netdev_name_node *name_node; 2104 struct dev_ifalias __rcu *ifalias; 2105 /* 2106 * I/O specific fields 2107 * FIXME: Merge these and struct ifmap into one 2108 */ 2109 unsigned long mem_end; 2110 unsigned long mem_start; 2111 unsigned long base_addr; 2112 2113 /* 2114 * Some hardware also needs these fields (state,dev_list, 2115 * napi_list,unreg_list,close_list) but they are not 2116 * part of the usual set specified in Space.c. 2117 */ 2118 2119 2120 struct list_head dev_list; 2121 struct list_head napi_list; 2122 struct list_head unreg_list; 2123 struct list_head close_list; 2124 struct list_head ptype_all; 2125 2126 struct { 2127 struct list_head upper; 2128 struct list_head lower; 2129 } adj_list; 2130 2131 /* Read-mostly cache-line for fast-path access */ 2132 xdp_features_t xdp_features; 2133 const struct xdp_metadata_ops *xdp_metadata_ops; 2134 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2135 unsigned short gflags; 2136 2137 unsigned short needed_tailroom; 2138 2139 netdev_features_t hw_features; 2140 netdev_features_t wanted_features; 2141 netdev_features_t vlan_features; 2142 netdev_features_t hw_enc_features; 2143 netdev_features_t mpls_features; 2144 2145 unsigned int min_mtu; 2146 unsigned int max_mtu; 2147 unsigned short type; 2148 unsigned char min_header_len; 2149 unsigned char name_assign_type; 2150 2151 int group; 2152 2153 struct net_device_stats stats; /* not used by modern drivers */ 2154 2155 struct net_device_core_stats __percpu *core_stats; 2156 2157 /* Stats to monitor link on/off, flapping */ 2158 atomic_t carrier_up_count; 2159 atomic_t carrier_down_count; 2160 2161 #ifdef CONFIG_WIRELESS_EXT 2162 const struct iw_handler_def *wireless_handlers; 2163 struct iw_public_data *wireless_data; 2164 #endif 2165 const struct ethtool_ops *ethtool_ops; 2166 #ifdef CONFIG_NET_L3_MASTER_DEV 2167 const struct l3mdev_ops *l3mdev_ops; 2168 #endif 2169 #if IS_ENABLED(CONFIG_IPV6) 2170 const struct ndisc_ops *ndisc_ops; 2171 #endif 2172 2173 #ifdef CONFIG_XFRM_OFFLOAD 2174 const struct xfrmdev_ops *xfrmdev_ops; 2175 #endif 2176 2177 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2178 const struct tlsdev_ops *tlsdev_ops; 2179 #endif 2180 2181 unsigned int operstate; 2182 unsigned char link_mode; 2183 2184 unsigned char if_port; 2185 unsigned char dma; 2186 2187 /* Interface address info. */ 2188 unsigned char perm_addr[MAX_ADDR_LEN]; 2189 unsigned char addr_assign_type; 2190 unsigned char addr_len; 2191 unsigned char upper_level; 2192 unsigned char lower_level; 2193 2194 unsigned short neigh_priv_len; 2195 unsigned short dev_id; 2196 unsigned short dev_port; 2197 int irq; 2198 u32 priv_len; 2199 2200 spinlock_t addr_list_lock; 2201 2202 struct netdev_hw_addr_list uc; 2203 struct netdev_hw_addr_list mc; 2204 struct netdev_hw_addr_list dev_addrs; 2205 2206 #ifdef CONFIG_SYSFS 2207 struct kset *queues_kset; 2208 #endif 2209 #ifdef CONFIG_LOCKDEP 2210 struct list_head unlink_list; 2211 #endif 2212 unsigned int promiscuity; 2213 unsigned int allmulti; 2214 bool uc_promisc; 2215 #ifdef CONFIG_LOCKDEP 2216 unsigned char nested_level; 2217 #endif 2218 2219 2220 /* Protocol-specific pointers */ 2221 struct in_device __rcu *ip_ptr; 2222 /** @fib_nh_head: nexthops associated with this netdev */ 2223 struct hlist_head fib_nh_head; 2224 2225 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2226 struct vlan_info __rcu *vlan_info; 2227 #endif 2228 #if IS_ENABLED(CONFIG_NET_DSA) 2229 struct dsa_port *dsa_ptr; 2230 #endif 2231 #if IS_ENABLED(CONFIG_TIPC) 2232 struct tipc_bearer __rcu *tipc_ptr; 2233 #endif 2234 #if IS_ENABLED(CONFIG_ATALK) 2235 void *atalk_ptr; 2236 #endif 2237 #if IS_ENABLED(CONFIG_AX25) 2238 void *ax25_ptr; 2239 #endif 2240 #if IS_ENABLED(CONFIG_CFG80211) 2241 struct wireless_dev *ieee80211_ptr; 2242 #endif 2243 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2244 struct wpan_dev *ieee802154_ptr; 2245 #endif 2246 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2247 struct mpls_dev __rcu *mpls_ptr; 2248 #endif 2249 #if IS_ENABLED(CONFIG_MCTP) 2250 struct mctp_dev __rcu *mctp_ptr; 2251 #endif 2252 2253 /* 2254 * Cache lines mostly used on receive path (including eth_type_trans()) 2255 */ 2256 /* Interface address info used in eth_type_trans() */ 2257 const unsigned char *dev_addr; 2258 2259 unsigned int num_rx_queues; 2260 #define GRO_LEGACY_MAX_SIZE 65536u 2261 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2262 * and shinfo->gso_segs is a 16bit field. 2263 */ 2264 #define GRO_MAX_SIZE (8 * 65535u) 2265 unsigned int xdp_zc_max_segs; 2266 struct netdev_queue __rcu *ingress_queue; 2267 #ifdef CONFIG_NETFILTER_INGRESS 2268 struct nf_hook_entries __rcu *nf_hooks_ingress; 2269 #endif 2270 2271 unsigned char broadcast[MAX_ADDR_LEN]; 2272 #ifdef CONFIG_RFS_ACCEL 2273 struct cpu_rmap *rx_cpu_rmap; 2274 #endif 2275 struct hlist_node index_hlist; 2276 2277 /* 2278 * Cache lines mostly used on transmit path 2279 */ 2280 unsigned int num_tx_queues; 2281 struct Qdisc __rcu *qdisc; 2282 unsigned int tx_queue_len; 2283 spinlock_t tx_global_lock; 2284 2285 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2286 2287 #ifdef CONFIG_NET_SCHED 2288 DECLARE_HASHTABLE (qdisc_hash, 4); 2289 #endif 2290 /* These may be needed for future network-power-down code. */ 2291 struct timer_list watchdog_timer; 2292 int watchdog_timeo; 2293 2294 u32 proto_down_reason; 2295 2296 struct list_head todo_list; 2297 2298 #ifdef CONFIG_PCPU_DEV_REFCNT 2299 int __percpu *pcpu_refcnt; 2300 #else 2301 refcount_t dev_refcnt; 2302 #endif 2303 struct ref_tracker_dir refcnt_tracker; 2304 2305 struct list_head link_watch_list; 2306 2307 u8 reg_state; 2308 2309 bool dismantle; 2310 2311 enum { 2312 RTNL_LINK_INITIALIZED, 2313 RTNL_LINK_INITIALIZING, 2314 } rtnl_link_state:16; 2315 2316 bool needs_free_netdev; 2317 void (*priv_destructor)(struct net_device *dev); 2318 2319 /* mid-layer private */ 2320 void *ml_priv; 2321 enum netdev_ml_priv_type ml_priv_type; 2322 2323 enum netdev_stat_type pcpu_stat_type:8; 2324 2325 #if IS_ENABLED(CONFIG_GARP) 2326 struct garp_port __rcu *garp_port; 2327 #endif 2328 #if IS_ENABLED(CONFIG_MRP) 2329 struct mrp_port __rcu *mrp_port; 2330 #endif 2331 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2332 struct dm_hw_stat_delta __rcu *dm_private; 2333 #endif 2334 struct device dev; 2335 const struct attribute_group *sysfs_groups[4]; 2336 const struct attribute_group *sysfs_rx_queue_group; 2337 2338 const struct rtnl_link_ops *rtnl_link_ops; 2339 2340 const struct netdev_stat_ops *stat_ops; 2341 2342 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2343 2344 /* for setting kernel sock attribute on TCP connection setup */ 2345 #define GSO_MAX_SEGS 65535u 2346 #define GSO_LEGACY_MAX_SIZE 65536u 2347 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2348 * and shinfo->gso_segs is a 16bit field. 2349 */ 2350 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2351 2352 #define TSO_LEGACY_MAX_SIZE 65536 2353 #define TSO_MAX_SIZE UINT_MAX 2354 unsigned int tso_max_size; 2355 #define TSO_MAX_SEGS U16_MAX 2356 u16 tso_max_segs; 2357 2358 #ifdef CONFIG_DCB 2359 const struct dcbnl_rtnl_ops *dcbnl_ops; 2360 #endif 2361 u8 prio_tc_map[TC_BITMASK + 1]; 2362 2363 #if IS_ENABLED(CONFIG_FCOE) 2364 unsigned int fcoe_ddp_xid; 2365 #endif 2366 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2367 struct netprio_map __rcu *priomap; 2368 #endif 2369 struct phy_link_topology *link_topo; 2370 struct phy_device *phydev; 2371 struct sfp_bus *sfp_bus; 2372 struct lock_class_key *qdisc_tx_busylock; 2373 bool proto_down; 2374 bool threaded; 2375 2376 /* priv_flags_slow, ungrouped to save space */ 2377 unsigned long see_all_hwtstamp_requests:1; 2378 unsigned long change_proto_down:1; 2379 unsigned long netns_local:1; 2380 unsigned long fcoe_mtu:1; 2381 2382 struct list_head net_notifier_list; 2383 2384 #if IS_ENABLED(CONFIG_MACSEC) 2385 /* MACsec management functions */ 2386 const struct macsec_ops *macsec_ops; 2387 #endif 2388 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2389 struct udp_tunnel_nic *udp_tunnel_nic; 2390 2391 struct ethtool_netdev_state *ethtool; 2392 2393 /* protected by rtnl_lock */ 2394 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2395 2396 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2397 netdevice_tracker linkwatch_dev_tracker; 2398 netdevice_tracker watchdog_dev_tracker; 2399 netdevice_tracker dev_registered_tracker; 2400 struct rtnl_hw_stats64 *offload_xstats_l3; 2401 2402 struct devlink_port *devlink_port; 2403 2404 #if IS_ENABLED(CONFIG_DPLL) 2405 struct dpll_pin __rcu *dpll_pin; 2406 #endif 2407 #if IS_ENABLED(CONFIG_PAGE_POOL) 2408 /** @page_pools: page pools created for this netdevice */ 2409 struct hlist_head page_pools; 2410 #endif 2411 2412 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ 2413 struct dim_irq_moder *irq_moder; 2414 2415 u64 max_pacing_offload_horizon; 2416 2417 /** 2418 * @lock: protects @net_shaper_hierarchy, feel free to use for other 2419 * netdev-scope protection. Ordering: take after rtnl_lock. 2420 */ 2421 struct mutex lock; 2422 2423 #if IS_ENABLED(CONFIG_NET_SHAPER) 2424 /** 2425 * @net_shaper_hierarchy: data tracking the current shaper status 2426 * see include/net/net_shapers.h 2427 */ 2428 struct net_shaper_hierarchy *net_shaper_hierarchy; 2429 #endif 2430 u8 priv[] ____cacheline_aligned 2431 __counted_by(priv_len); 2432 } ____cacheline_aligned; 2433 #define to_net_dev(d) container_of(d, struct net_device, dev) 2434 2435 /* 2436 * Driver should use this to assign devlink port instance to a netdevice 2437 * before it registers the netdevice. Therefore devlink_port is static 2438 * during the netdev lifetime after it is registered. 2439 */ 2440 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2441 ({ \ 2442 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2443 ((dev)->devlink_port = (port)); \ 2444 }) 2445 2446 static inline bool netif_elide_gro(const struct net_device *dev) 2447 { 2448 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2449 return true; 2450 return false; 2451 } 2452 2453 #define NETDEV_ALIGN 32 2454 2455 static inline 2456 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2457 { 2458 return dev->prio_tc_map[prio & TC_BITMASK]; 2459 } 2460 2461 static inline 2462 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2463 { 2464 if (tc >= dev->num_tc) 2465 return -EINVAL; 2466 2467 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2468 return 0; 2469 } 2470 2471 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2472 void netdev_reset_tc(struct net_device *dev); 2473 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2474 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2475 2476 static inline 2477 int netdev_get_num_tc(struct net_device *dev) 2478 { 2479 return dev->num_tc; 2480 } 2481 2482 static inline void net_prefetch(void *p) 2483 { 2484 prefetch(p); 2485 #if L1_CACHE_BYTES < 128 2486 prefetch((u8 *)p + L1_CACHE_BYTES); 2487 #endif 2488 } 2489 2490 static inline void net_prefetchw(void *p) 2491 { 2492 prefetchw(p); 2493 #if L1_CACHE_BYTES < 128 2494 prefetchw((u8 *)p + L1_CACHE_BYTES); 2495 #endif 2496 } 2497 2498 void netdev_unbind_sb_channel(struct net_device *dev, 2499 struct net_device *sb_dev); 2500 int netdev_bind_sb_channel_queue(struct net_device *dev, 2501 struct net_device *sb_dev, 2502 u8 tc, u16 count, u16 offset); 2503 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2504 static inline int netdev_get_sb_channel(struct net_device *dev) 2505 { 2506 return max_t(int, -dev->num_tc, 0); 2507 } 2508 2509 static inline 2510 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2511 unsigned int index) 2512 { 2513 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2514 return &dev->_tx[index]; 2515 } 2516 2517 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2518 const struct sk_buff *skb) 2519 { 2520 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2521 } 2522 2523 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2524 void (*f)(struct net_device *, 2525 struct netdev_queue *, 2526 void *), 2527 void *arg) 2528 { 2529 unsigned int i; 2530 2531 for (i = 0; i < dev->num_tx_queues; i++) 2532 f(dev, &dev->_tx[i], arg); 2533 } 2534 2535 #define netdev_lockdep_set_classes(dev) \ 2536 { \ 2537 static struct lock_class_key qdisc_tx_busylock_key; \ 2538 static struct lock_class_key qdisc_xmit_lock_key; \ 2539 static struct lock_class_key dev_addr_list_lock_key; \ 2540 unsigned int i; \ 2541 \ 2542 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2543 lockdep_set_class(&(dev)->addr_list_lock, \ 2544 &dev_addr_list_lock_key); \ 2545 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2546 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2547 &qdisc_xmit_lock_key); \ 2548 } 2549 2550 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2551 struct net_device *sb_dev); 2552 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2553 struct sk_buff *skb, 2554 struct net_device *sb_dev); 2555 2556 /* returns the headroom that the master device needs to take in account 2557 * when forwarding to this dev 2558 */ 2559 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2560 { 2561 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2562 } 2563 2564 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2565 { 2566 if (dev->netdev_ops->ndo_set_rx_headroom) 2567 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2568 } 2569 2570 /* set the device rx headroom to the dev's default */ 2571 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2572 { 2573 netdev_set_rx_headroom(dev, -1); 2574 } 2575 2576 static inline void *netdev_get_ml_priv(struct net_device *dev, 2577 enum netdev_ml_priv_type type) 2578 { 2579 if (dev->ml_priv_type != type) 2580 return NULL; 2581 2582 return dev->ml_priv; 2583 } 2584 2585 static inline void netdev_set_ml_priv(struct net_device *dev, 2586 void *ml_priv, 2587 enum netdev_ml_priv_type type) 2588 { 2589 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2590 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2591 dev->ml_priv_type, type); 2592 WARN(!dev->ml_priv_type && dev->ml_priv, 2593 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2594 2595 dev->ml_priv = ml_priv; 2596 dev->ml_priv_type = type; 2597 } 2598 2599 /* 2600 * Net namespace inlines 2601 */ 2602 static inline 2603 struct net *dev_net(const struct net_device *dev) 2604 { 2605 return read_pnet(&dev->nd_net); 2606 } 2607 2608 static inline 2609 void dev_net_set(struct net_device *dev, struct net *net) 2610 { 2611 write_pnet(&dev->nd_net, net); 2612 } 2613 2614 /** 2615 * netdev_priv - access network device private data 2616 * @dev: network device 2617 * 2618 * Get network device private data 2619 */ 2620 static inline void *netdev_priv(const struct net_device *dev) 2621 { 2622 return (void *)dev->priv; 2623 } 2624 2625 /* Set the sysfs physical device reference for the network logical device 2626 * if set prior to registration will cause a symlink during initialization. 2627 */ 2628 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2629 2630 /* Set the sysfs device type for the network logical device to allow 2631 * fine-grained identification of different network device types. For 2632 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2633 */ 2634 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2635 2636 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2637 enum netdev_queue_type type, 2638 struct napi_struct *napi); 2639 2640 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2641 { 2642 napi->irq = irq; 2643 } 2644 2645 /* Default NAPI poll() weight 2646 * Device drivers are strongly advised to not use bigger value 2647 */ 2648 #define NAPI_POLL_WEIGHT 64 2649 2650 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2651 int (*poll)(struct napi_struct *, int), int weight); 2652 2653 /** 2654 * netif_napi_add() - initialize a NAPI context 2655 * @dev: network device 2656 * @napi: NAPI context 2657 * @poll: polling function 2658 * 2659 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2660 * *any* of the other NAPI-related functions. 2661 */ 2662 static inline void 2663 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2664 int (*poll)(struct napi_struct *, int)) 2665 { 2666 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2667 } 2668 2669 static inline void 2670 netif_napi_add_tx_weight(struct net_device *dev, 2671 struct napi_struct *napi, 2672 int (*poll)(struct napi_struct *, int), 2673 int weight) 2674 { 2675 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2676 netif_napi_add_weight(dev, napi, poll, weight); 2677 } 2678 2679 /** 2680 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2681 * @dev: network device 2682 * @napi: NAPI context 2683 * @poll: polling function 2684 * 2685 * This variant of netif_napi_add() should be used from drivers using NAPI 2686 * to exclusively poll a TX queue. 2687 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2688 */ 2689 static inline void netif_napi_add_tx(struct net_device *dev, 2690 struct napi_struct *napi, 2691 int (*poll)(struct napi_struct *, int)) 2692 { 2693 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2694 } 2695 2696 /** 2697 * __netif_napi_del - remove a NAPI context 2698 * @napi: NAPI context 2699 * 2700 * Warning: caller must observe RCU grace period before freeing memory 2701 * containing @napi. Drivers might want to call this helper to combine 2702 * all the needed RCU grace periods into a single one. 2703 */ 2704 void __netif_napi_del(struct napi_struct *napi); 2705 2706 /** 2707 * netif_napi_del - remove a NAPI context 2708 * @napi: NAPI context 2709 * 2710 * netif_napi_del() removes a NAPI context from the network device NAPI list 2711 */ 2712 static inline void netif_napi_del(struct napi_struct *napi) 2713 { 2714 __netif_napi_del(napi); 2715 synchronize_net(); 2716 } 2717 2718 struct packet_type { 2719 __be16 type; /* This is really htons(ether_type). */ 2720 bool ignore_outgoing; 2721 struct net_device *dev; /* NULL is wildcarded here */ 2722 netdevice_tracker dev_tracker; 2723 int (*func) (struct sk_buff *, 2724 struct net_device *, 2725 struct packet_type *, 2726 struct net_device *); 2727 void (*list_func) (struct list_head *, 2728 struct packet_type *, 2729 struct net_device *); 2730 bool (*id_match)(struct packet_type *ptype, 2731 struct sock *sk); 2732 struct net *af_packet_net; 2733 void *af_packet_priv; 2734 struct list_head list; 2735 }; 2736 2737 struct offload_callbacks { 2738 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2739 netdev_features_t features); 2740 struct sk_buff *(*gro_receive)(struct list_head *head, 2741 struct sk_buff *skb); 2742 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2743 }; 2744 2745 struct packet_offload { 2746 __be16 type; /* This is really htons(ether_type). */ 2747 u16 priority; 2748 struct offload_callbacks callbacks; 2749 struct list_head list; 2750 }; 2751 2752 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2753 struct pcpu_sw_netstats { 2754 u64_stats_t rx_packets; 2755 u64_stats_t rx_bytes; 2756 u64_stats_t tx_packets; 2757 u64_stats_t tx_bytes; 2758 struct u64_stats_sync syncp; 2759 } __aligned(4 * sizeof(u64)); 2760 2761 struct pcpu_dstats { 2762 u64_stats_t rx_packets; 2763 u64_stats_t rx_bytes; 2764 u64_stats_t rx_drops; 2765 u64_stats_t tx_packets; 2766 u64_stats_t tx_bytes; 2767 u64_stats_t tx_drops; 2768 struct u64_stats_sync syncp; 2769 } __aligned(8 * sizeof(u64)); 2770 2771 struct pcpu_lstats { 2772 u64_stats_t packets; 2773 u64_stats_t bytes; 2774 struct u64_stats_sync syncp; 2775 } __aligned(2 * sizeof(u64)); 2776 2777 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2778 2779 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2780 { 2781 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2782 2783 u64_stats_update_begin(&tstats->syncp); 2784 u64_stats_add(&tstats->rx_bytes, len); 2785 u64_stats_inc(&tstats->rx_packets); 2786 u64_stats_update_end(&tstats->syncp); 2787 } 2788 2789 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2790 unsigned int packets, 2791 unsigned int len) 2792 { 2793 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2794 2795 u64_stats_update_begin(&tstats->syncp); 2796 u64_stats_add(&tstats->tx_bytes, len); 2797 u64_stats_add(&tstats->tx_packets, packets); 2798 u64_stats_update_end(&tstats->syncp); 2799 } 2800 2801 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2802 { 2803 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2804 2805 u64_stats_update_begin(&lstats->syncp); 2806 u64_stats_add(&lstats->bytes, len); 2807 u64_stats_inc(&lstats->packets); 2808 u64_stats_update_end(&lstats->syncp); 2809 } 2810 2811 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2812 ({ \ 2813 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2814 if (pcpu_stats) { \ 2815 int __cpu; \ 2816 for_each_possible_cpu(__cpu) { \ 2817 typeof(type) *stat; \ 2818 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2819 u64_stats_init(&stat->syncp); \ 2820 } \ 2821 } \ 2822 pcpu_stats; \ 2823 }) 2824 2825 #define netdev_alloc_pcpu_stats(type) \ 2826 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2827 2828 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2829 ({ \ 2830 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2831 if (pcpu_stats) { \ 2832 int __cpu; \ 2833 for_each_possible_cpu(__cpu) { \ 2834 typeof(type) *stat; \ 2835 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2836 u64_stats_init(&stat->syncp); \ 2837 } \ 2838 } \ 2839 pcpu_stats; \ 2840 }) 2841 2842 enum netdev_lag_tx_type { 2843 NETDEV_LAG_TX_TYPE_UNKNOWN, 2844 NETDEV_LAG_TX_TYPE_RANDOM, 2845 NETDEV_LAG_TX_TYPE_BROADCAST, 2846 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2847 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2848 NETDEV_LAG_TX_TYPE_HASH, 2849 }; 2850 2851 enum netdev_lag_hash { 2852 NETDEV_LAG_HASH_NONE, 2853 NETDEV_LAG_HASH_L2, 2854 NETDEV_LAG_HASH_L34, 2855 NETDEV_LAG_HASH_L23, 2856 NETDEV_LAG_HASH_E23, 2857 NETDEV_LAG_HASH_E34, 2858 NETDEV_LAG_HASH_VLAN_SRCMAC, 2859 NETDEV_LAG_HASH_UNKNOWN, 2860 }; 2861 2862 struct netdev_lag_upper_info { 2863 enum netdev_lag_tx_type tx_type; 2864 enum netdev_lag_hash hash_type; 2865 }; 2866 2867 struct netdev_lag_lower_state_info { 2868 u8 link_up : 1, 2869 tx_enabled : 1; 2870 }; 2871 2872 #include <linux/notifier.h> 2873 2874 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2875 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2876 * adding new types. 2877 */ 2878 enum netdev_cmd { 2879 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2880 NETDEV_DOWN, 2881 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2882 detected a hardware crash and restarted 2883 - we can use this eg to kick tcp sessions 2884 once done */ 2885 NETDEV_CHANGE, /* Notify device state change */ 2886 NETDEV_REGISTER, 2887 NETDEV_UNREGISTER, 2888 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2889 NETDEV_CHANGEADDR, /* notify after the address change */ 2890 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2891 NETDEV_GOING_DOWN, 2892 NETDEV_CHANGENAME, 2893 NETDEV_FEAT_CHANGE, 2894 NETDEV_BONDING_FAILOVER, 2895 NETDEV_PRE_UP, 2896 NETDEV_PRE_TYPE_CHANGE, 2897 NETDEV_POST_TYPE_CHANGE, 2898 NETDEV_POST_INIT, 2899 NETDEV_PRE_UNINIT, 2900 NETDEV_RELEASE, 2901 NETDEV_NOTIFY_PEERS, 2902 NETDEV_JOIN, 2903 NETDEV_CHANGEUPPER, 2904 NETDEV_RESEND_IGMP, 2905 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2906 NETDEV_CHANGEINFODATA, 2907 NETDEV_BONDING_INFO, 2908 NETDEV_PRECHANGEUPPER, 2909 NETDEV_CHANGELOWERSTATE, 2910 NETDEV_UDP_TUNNEL_PUSH_INFO, 2911 NETDEV_UDP_TUNNEL_DROP_INFO, 2912 NETDEV_CHANGE_TX_QUEUE_LEN, 2913 NETDEV_CVLAN_FILTER_PUSH_INFO, 2914 NETDEV_CVLAN_FILTER_DROP_INFO, 2915 NETDEV_SVLAN_FILTER_PUSH_INFO, 2916 NETDEV_SVLAN_FILTER_DROP_INFO, 2917 NETDEV_OFFLOAD_XSTATS_ENABLE, 2918 NETDEV_OFFLOAD_XSTATS_DISABLE, 2919 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2920 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2921 NETDEV_XDP_FEAT_CHANGE, 2922 }; 2923 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2924 2925 int register_netdevice_notifier(struct notifier_block *nb); 2926 int unregister_netdevice_notifier(struct notifier_block *nb); 2927 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2928 int unregister_netdevice_notifier_net(struct net *net, 2929 struct notifier_block *nb); 2930 int register_netdevice_notifier_dev_net(struct net_device *dev, 2931 struct notifier_block *nb, 2932 struct netdev_net_notifier *nn); 2933 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2934 struct notifier_block *nb, 2935 struct netdev_net_notifier *nn); 2936 2937 struct netdev_notifier_info { 2938 struct net_device *dev; 2939 struct netlink_ext_ack *extack; 2940 }; 2941 2942 struct netdev_notifier_info_ext { 2943 struct netdev_notifier_info info; /* must be first */ 2944 union { 2945 u32 mtu; 2946 } ext; 2947 }; 2948 2949 struct netdev_notifier_change_info { 2950 struct netdev_notifier_info info; /* must be first */ 2951 unsigned int flags_changed; 2952 }; 2953 2954 struct netdev_notifier_changeupper_info { 2955 struct netdev_notifier_info info; /* must be first */ 2956 struct net_device *upper_dev; /* new upper dev */ 2957 bool master; /* is upper dev master */ 2958 bool linking; /* is the notification for link or unlink */ 2959 void *upper_info; /* upper dev info */ 2960 }; 2961 2962 struct netdev_notifier_changelowerstate_info { 2963 struct netdev_notifier_info info; /* must be first */ 2964 void *lower_state_info; /* is lower dev state */ 2965 }; 2966 2967 struct netdev_notifier_pre_changeaddr_info { 2968 struct netdev_notifier_info info; /* must be first */ 2969 const unsigned char *dev_addr; 2970 }; 2971 2972 enum netdev_offload_xstats_type { 2973 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2974 }; 2975 2976 struct netdev_notifier_offload_xstats_info { 2977 struct netdev_notifier_info info; /* must be first */ 2978 enum netdev_offload_xstats_type type; 2979 2980 union { 2981 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2982 struct netdev_notifier_offload_xstats_rd *report_delta; 2983 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2984 struct netdev_notifier_offload_xstats_ru *report_used; 2985 }; 2986 }; 2987 2988 int netdev_offload_xstats_enable(struct net_device *dev, 2989 enum netdev_offload_xstats_type type, 2990 struct netlink_ext_ack *extack); 2991 int netdev_offload_xstats_disable(struct net_device *dev, 2992 enum netdev_offload_xstats_type type); 2993 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2994 enum netdev_offload_xstats_type type); 2995 int netdev_offload_xstats_get(struct net_device *dev, 2996 enum netdev_offload_xstats_type type, 2997 struct rtnl_hw_stats64 *stats, bool *used, 2998 struct netlink_ext_ack *extack); 2999 void 3000 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3001 const struct rtnl_hw_stats64 *stats); 3002 void 3003 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3004 void netdev_offload_xstats_push_delta(struct net_device *dev, 3005 enum netdev_offload_xstats_type type, 3006 const struct rtnl_hw_stats64 *stats); 3007 3008 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3009 struct net_device *dev) 3010 { 3011 info->dev = dev; 3012 info->extack = NULL; 3013 } 3014 3015 static inline struct net_device * 3016 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3017 { 3018 return info->dev; 3019 } 3020 3021 static inline struct netlink_ext_ack * 3022 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3023 { 3024 return info->extack; 3025 } 3026 3027 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3028 int call_netdevice_notifiers_info(unsigned long val, 3029 struct netdev_notifier_info *info); 3030 3031 #define for_each_netdev(net, d) \ 3032 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3033 #define for_each_netdev_reverse(net, d) \ 3034 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3035 #define for_each_netdev_rcu(net, d) \ 3036 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3037 #define for_each_netdev_safe(net, d, n) \ 3038 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3039 #define for_each_netdev_continue(net, d) \ 3040 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3041 #define for_each_netdev_continue_reverse(net, d) \ 3042 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3043 dev_list) 3044 #define for_each_netdev_continue_rcu(net, d) \ 3045 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3046 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3047 for_each_netdev_rcu(&init_net, slave) \ 3048 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3049 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3050 3051 #define for_each_netdev_dump(net, d, ifindex) \ 3052 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ 3053 ULONG_MAX, XA_PRESENT)); ifindex++) 3054 3055 static inline struct net_device *next_net_device(struct net_device *dev) 3056 { 3057 struct list_head *lh; 3058 struct net *net; 3059 3060 net = dev_net(dev); 3061 lh = dev->dev_list.next; 3062 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3063 } 3064 3065 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3066 { 3067 struct list_head *lh; 3068 struct net *net; 3069 3070 net = dev_net(dev); 3071 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3072 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3073 } 3074 3075 static inline struct net_device *first_net_device(struct net *net) 3076 { 3077 return list_empty(&net->dev_base_head) ? NULL : 3078 net_device_entry(net->dev_base_head.next); 3079 } 3080 3081 static inline struct net_device *first_net_device_rcu(struct net *net) 3082 { 3083 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3084 3085 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3086 } 3087 3088 int netdev_boot_setup_check(struct net_device *dev); 3089 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3090 const char *hwaddr); 3091 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3092 void dev_add_pack(struct packet_type *pt); 3093 void dev_remove_pack(struct packet_type *pt); 3094 void __dev_remove_pack(struct packet_type *pt); 3095 void dev_add_offload(struct packet_offload *po); 3096 void dev_remove_offload(struct packet_offload *po); 3097 3098 int dev_get_iflink(const struct net_device *dev); 3099 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3100 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3101 struct net_device_path_stack *stack); 3102 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3103 unsigned short mask); 3104 struct net_device *dev_get_by_name(struct net *net, const char *name); 3105 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3106 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3107 bool netdev_name_in_use(struct net *net, const char *name); 3108 int dev_alloc_name(struct net_device *dev, const char *name); 3109 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3110 void dev_close(struct net_device *dev); 3111 void dev_close_many(struct list_head *head, bool unlink); 3112 void dev_disable_lro(struct net_device *dev); 3113 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3114 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3115 struct net_device *sb_dev); 3116 3117 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3118 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3119 3120 static inline int dev_queue_xmit(struct sk_buff *skb) 3121 { 3122 return __dev_queue_xmit(skb, NULL); 3123 } 3124 3125 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3126 struct net_device *sb_dev) 3127 { 3128 return __dev_queue_xmit(skb, sb_dev); 3129 } 3130 3131 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3132 { 3133 int ret; 3134 3135 ret = __dev_direct_xmit(skb, queue_id); 3136 if (!dev_xmit_complete(ret)) 3137 kfree_skb(skb); 3138 return ret; 3139 } 3140 3141 int register_netdevice(struct net_device *dev); 3142 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3143 void unregister_netdevice_many(struct list_head *head); 3144 static inline void unregister_netdevice(struct net_device *dev) 3145 { 3146 unregister_netdevice_queue(dev, NULL); 3147 } 3148 3149 int netdev_refcnt_read(const struct net_device *dev); 3150 void free_netdev(struct net_device *dev); 3151 void init_dummy_netdev(struct net_device *dev); 3152 3153 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3154 struct sk_buff *skb, 3155 bool all_slaves); 3156 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3157 struct sock *sk); 3158 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3159 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3160 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3161 netdevice_tracker *tracker, gfp_t gfp); 3162 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3163 netdevice_tracker *tracker, gfp_t gfp); 3164 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3165 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3166 void netdev_copy_name(struct net_device *dev, char *name); 3167 3168 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3169 unsigned short type, 3170 const void *daddr, const void *saddr, 3171 unsigned int len) 3172 { 3173 if (!dev->header_ops || !dev->header_ops->create) 3174 return 0; 3175 3176 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3177 } 3178 3179 static inline int dev_parse_header(const struct sk_buff *skb, 3180 unsigned char *haddr) 3181 { 3182 const struct net_device *dev = skb->dev; 3183 3184 if (!dev->header_ops || !dev->header_ops->parse) 3185 return 0; 3186 return dev->header_ops->parse(skb, haddr); 3187 } 3188 3189 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3190 { 3191 const struct net_device *dev = skb->dev; 3192 3193 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3194 return 0; 3195 return dev->header_ops->parse_protocol(skb); 3196 } 3197 3198 /* ll_header must have at least hard_header_len allocated */ 3199 static inline bool dev_validate_header(const struct net_device *dev, 3200 char *ll_header, int len) 3201 { 3202 if (likely(len >= dev->hard_header_len)) 3203 return true; 3204 if (len < dev->min_header_len) 3205 return false; 3206 3207 if (capable(CAP_SYS_RAWIO)) { 3208 memset(ll_header + len, 0, dev->hard_header_len - len); 3209 return true; 3210 } 3211 3212 if (dev->header_ops && dev->header_ops->validate) 3213 return dev->header_ops->validate(ll_header, len); 3214 3215 return false; 3216 } 3217 3218 static inline bool dev_has_header(const struct net_device *dev) 3219 { 3220 return dev->header_ops && dev->header_ops->create; 3221 } 3222 3223 /* 3224 * Incoming packets are placed on per-CPU queues 3225 */ 3226 struct softnet_data { 3227 struct list_head poll_list; 3228 struct sk_buff_head process_queue; 3229 local_lock_t process_queue_bh_lock; 3230 3231 /* stats */ 3232 unsigned int processed; 3233 unsigned int time_squeeze; 3234 #ifdef CONFIG_RPS 3235 struct softnet_data *rps_ipi_list; 3236 #endif 3237 3238 unsigned int received_rps; 3239 bool in_net_rx_action; 3240 bool in_napi_threaded_poll; 3241 3242 #ifdef CONFIG_NET_FLOW_LIMIT 3243 struct sd_flow_limit __rcu *flow_limit; 3244 #endif 3245 struct Qdisc *output_queue; 3246 struct Qdisc **output_queue_tailp; 3247 struct sk_buff *completion_queue; 3248 #ifdef CONFIG_XFRM_OFFLOAD 3249 struct sk_buff_head xfrm_backlog; 3250 #endif 3251 /* written and read only by owning cpu: */ 3252 struct netdev_xmit xmit; 3253 #ifdef CONFIG_RPS 3254 /* input_queue_head should be written by cpu owning this struct, 3255 * and only read by other cpus. Worth using a cache line. 3256 */ 3257 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3258 3259 /* Elements below can be accessed between CPUs for RPS/RFS */ 3260 call_single_data_t csd ____cacheline_aligned_in_smp; 3261 struct softnet_data *rps_ipi_next; 3262 unsigned int cpu; 3263 unsigned int input_queue_tail; 3264 #endif 3265 struct sk_buff_head input_pkt_queue; 3266 struct napi_struct backlog; 3267 3268 atomic_t dropped ____cacheline_aligned_in_smp; 3269 3270 /* Another possibly contended cache line */ 3271 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3272 int defer_count; 3273 int defer_ipi_scheduled; 3274 struct sk_buff *defer_list; 3275 call_single_data_t defer_csd; 3276 }; 3277 3278 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3279 3280 #ifndef CONFIG_PREEMPT_RT 3281 static inline int dev_recursion_level(void) 3282 { 3283 return this_cpu_read(softnet_data.xmit.recursion); 3284 } 3285 #else 3286 static inline int dev_recursion_level(void) 3287 { 3288 return current->net_xmit.recursion; 3289 } 3290 3291 #endif 3292 3293 void __netif_schedule(struct Qdisc *q); 3294 void netif_schedule_queue(struct netdev_queue *txq); 3295 3296 static inline void netif_tx_schedule_all(struct net_device *dev) 3297 { 3298 unsigned int i; 3299 3300 for (i = 0; i < dev->num_tx_queues; i++) 3301 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3302 } 3303 3304 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3305 { 3306 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3307 } 3308 3309 /** 3310 * netif_start_queue - allow transmit 3311 * @dev: network device 3312 * 3313 * Allow upper layers to call the device hard_start_xmit routine. 3314 */ 3315 static inline void netif_start_queue(struct net_device *dev) 3316 { 3317 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3318 } 3319 3320 static inline void netif_tx_start_all_queues(struct net_device *dev) 3321 { 3322 unsigned int i; 3323 3324 for (i = 0; i < dev->num_tx_queues; i++) { 3325 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3326 netif_tx_start_queue(txq); 3327 } 3328 } 3329 3330 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3331 3332 /** 3333 * netif_wake_queue - restart transmit 3334 * @dev: network device 3335 * 3336 * Allow upper layers to call the device hard_start_xmit routine. 3337 * Used for flow control when transmit resources are available. 3338 */ 3339 static inline void netif_wake_queue(struct net_device *dev) 3340 { 3341 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3342 } 3343 3344 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3345 { 3346 unsigned int i; 3347 3348 for (i = 0; i < dev->num_tx_queues; i++) { 3349 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3350 netif_tx_wake_queue(txq); 3351 } 3352 } 3353 3354 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3355 { 3356 /* Must be an atomic op see netif_txq_try_stop() */ 3357 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3358 } 3359 3360 /** 3361 * netif_stop_queue - stop transmitted packets 3362 * @dev: network device 3363 * 3364 * Stop upper layers calling the device hard_start_xmit routine. 3365 * Used for flow control when transmit resources are unavailable. 3366 */ 3367 static inline void netif_stop_queue(struct net_device *dev) 3368 { 3369 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3370 } 3371 3372 void netif_tx_stop_all_queues(struct net_device *dev); 3373 3374 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3375 { 3376 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3377 } 3378 3379 /** 3380 * netif_queue_stopped - test if transmit queue is flowblocked 3381 * @dev: network device 3382 * 3383 * Test if transmit queue on device is currently unable to send. 3384 */ 3385 static inline bool netif_queue_stopped(const struct net_device *dev) 3386 { 3387 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3388 } 3389 3390 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3391 { 3392 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3393 } 3394 3395 static inline bool 3396 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3397 { 3398 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3399 } 3400 3401 static inline bool 3402 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3403 { 3404 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3405 } 3406 3407 /** 3408 * netdev_queue_set_dql_min_limit - set dql minimum limit 3409 * @dev_queue: pointer to transmit queue 3410 * @min_limit: dql minimum limit 3411 * 3412 * Forces xmit_more() to return true until the minimum threshold 3413 * defined by @min_limit is reached (or until the tx queue is 3414 * empty). Warning: to be use with care, misuse will impact the 3415 * latency. 3416 */ 3417 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3418 unsigned int min_limit) 3419 { 3420 #ifdef CONFIG_BQL 3421 dev_queue->dql.min_limit = min_limit; 3422 #endif 3423 } 3424 3425 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3426 { 3427 #ifdef CONFIG_BQL 3428 /* Non-BQL migrated drivers will return 0, too. */ 3429 return dql_avail(&txq->dql); 3430 #else 3431 return 0; 3432 #endif 3433 } 3434 3435 /** 3436 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3437 * @dev_queue: pointer to transmit queue 3438 * 3439 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3440 * to give appropriate hint to the CPU. 3441 */ 3442 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3443 { 3444 #ifdef CONFIG_BQL 3445 prefetchw(&dev_queue->dql.num_queued); 3446 #endif 3447 } 3448 3449 /** 3450 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3451 * @dev_queue: pointer to transmit queue 3452 * 3453 * BQL enabled drivers might use this helper in their TX completion path, 3454 * to give appropriate hint to the CPU. 3455 */ 3456 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3457 { 3458 #ifdef CONFIG_BQL 3459 prefetchw(&dev_queue->dql.limit); 3460 #endif 3461 } 3462 3463 /** 3464 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3465 * @dev_queue: network device queue 3466 * @bytes: number of bytes queued to the device queue 3467 * 3468 * Report the number of bytes queued for sending/completion to the network 3469 * device hardware queue. @bytes should be a good approximation and should 3470 * exactly match netdev_completed_queue() @bytes. 3471 * This is typically called once per packet, from ndo_start_xmit(). 3472 */ 3473 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3474 unsigned int bytes) 3475 { 3476 #ifdef CONFIG_BQL 3477 dql_queued(&dev_queue->dql, bytes); 3478 3479 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3480 return; 3481 3482 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3483 3484 /* 3485 * The XOFF flag must be set before checking the dql_avail below, 3486 * because in netdev_tx_completed_queue we update the dql_completed 3487 * before checking the XOFF flag. 3488 */ 3489 smp_mb(); 3490 3491 /* check again in case another CPU has just made room avail */ 3492 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3493 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3494 #endif 3495 } 3496 3497 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3498 * that they should not test BQL status themselves. 3499 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3500 * skb of a batch. 3501 * Returns true if the doorbell must be used to kick the NIC. 3502 */ 3503 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3504 unsigned int bytes, 3505 bool xmit_more) 3506 { 3507 if (xmit_more) { 3508 #ifdef CONFIG_BQL 3509 dql_queued(&dev_queue->dql, bytes); 3510 #endif 3511 return netif_tx_queue_stopped(dev_queue); 3512 } 3513 netdev_tx_sent_queue(dev_queue, bytes); 3514 return true; 3515 } 3516 3517 /** 3518 * netdev_sent_queue - report the number of bytes queued to hardware 3519 * @dev: network device 3520 * @bytes: number of bytes queued to the hardware device queue 3521 * 3522 * Report the number of bytes queued for sending/completion to the network 3523 * device hardware queue#0. @bytes should be a good approximation and should 3524 * exactly match netdev_completed_queue() @bytes. 3525 * This is typically called once per packet, from ndo_start_xmit(). 3526 */ 3527 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3528 { 3529 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3530 } 3531 3532 static inline bool __netdev_sent_queue(struct net_device *dev, 3533 unsigned int bytes, 3534 bool xmit_more) 3535 { 3536 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3537 xmit_more); 3538 } 3539 3540 /** 3541 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3542 * @dev_queue: network device queue 3543 * @pkts: number of packets (currently ignored) 3544 * @bytes: number of bytes dequeued from the device queue 3545 * 3546 * Must be called at most once per TX completion round (and not per 3547 * individual packet), so that BQL can adjust its limits appropriately. 3548 */ 3549 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3550 unsigned int pkts, unsigned int bytes) 3551 { 3552 #ifdef CONFIG_BQL 3553 if (unlikely(!bytes)) 3554 return; 3555 3556 dql_completed(&dev_queue->dql, bytes); 3557 3558 /* 3559 * Without the memory barrier there is a small possibility that 3560 * netdev_tx_sent_queue will miss the update and cause the queue to 3561 * be stopped forever 3562 */ 3563 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3564 3565 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3566 return; 3567 3568 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3569 netif_schedule_queue(dev_queue); 3570 #endif 3571 } 3572 3573 /** 3574 * netdev_completed_queue - report bytes and packets completed by device 3575 * @dev: network device 3576 * @pkts: actual number of packets sent over the medium 3577 * @bytes: actual number of bytes sent over the medium 3578 * 3579 * Report the number of bytes and packets transmitted by the network device 3580 * hardware queue over the physical medium, @bytes must exactly match the 3581 * @bytes amount passed to netdev_sent_queue() 3582 */ 3583 static inline void netdev_completed_queue(struct net_device *dev, 3584 unsigned int pkts, unsigned int bytes) 3585 { 3586 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3587 } 3588 3589 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3590 { 3591 #ifdef CONFIG_BQL 3592 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3593 dql_reset(&q->dql); 3594 #endif 3595 } 3596 3597 /** 3598 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue 3599 * @dev: network device 3600 * @qid: stack index of the queue to reset 3601 */ 3602 static inline void netdev_tx_reset_subqueue(const struct net_device *dev, 3603 u32 qid) 3604 { 3605 netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid)); 3606 } 3607 3608 /** 3609 * netdev_reset_queue - reset the packets and bytes count of a network device 3610 * @dev_queue: network device 3611 * 3612 * Reset the bytes and packet count of a network device and clear the 3613 * software flow control OFF bit for this network device 3614 */ 3615 static inline void netdev_reset_queue(struct net_device *dev_queue) 3616 { 3617 netdev_tx_reset_subqueue(dev_queue, 0); 3618 } 3619 3620 /** 3621 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3622 * @dev: network device 3623 * @queue_index: given tx queue index 3624 * 3625 * Returns 0 if given tx queue index >= number of device tx queues, 3626 * otherwise returns the originally passed tx queue index. 3627 */ 3628 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3629 { 3630 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3631 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3632 dev->name, queue_index, 3633 dev->real_num_tx_queues); 3634 return 0; 3635 } 3636 3637 return queue_index; 3638 } 3639 3640 /** 3641 * netif_running - test if up 3642 * @dev: network device 3643 * 3644 * Test if the device has been brought up. 3645 */ 3646 static inline bool netif_running(const struct net_device *dev) 3647 { 3648 return test_bit(__LINK_STATE_START, &dev->state); 3649 } 3650 3651 /* 3652 * Routines to manage the subqueues on a device. We only need start, 3653 * stop, and a check if it's stopped. All other device management is 3654 * done at the overall netdevice level. 3655 * Also test the device if we're multiqueue. 3656 */ 3657 3658 /** 3659 * netif_start_subqueue - allow sending packets on subqueue 3660 * @dev: network device 3661 * @queue_index: sub queue index 3662 * 3663 * Start individual transmit queue of a device with multiple transmit queues. 3664 */ 3665 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3666 { 3667 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3668 3669 netif_tx_start_queue(txq); 3670 } 3671 3672 /** 3673 * netif_stop_subqueue - stop sending packets on subqueue 3674 * @dev: network device 3675 * @queue_index: sub queue index 3676 * 3677 * Stop individual transmit queue of a device with multiple transmit queues. 3678 */ 3679 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3680 { 3681 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3682 netif_tx_stop_queue(txq); 3683 } 3684 3685 /** 3686 * __netif_subqueue_stopped - test status of subqueue 3687 * @dev: network device 3688 * @queue_index: sub queue index 3689 * 3690 * Check individual transmit queue of a device with multiple transmit queues. 3691 */ 3692 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3693 u16 queue_index) 3694 { 3695 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3696 3697 return netif_tx_queue_stopped(txq); 3698 } 3699 3700 /** 3701 * netif_subqueue_stopped - test status of subqueue 3702 * @dev: network device 3703 * @skb: sub queue buffer pointer 3704 * 3705 * Check individual transmit queue of a device with multiple transmit queues. 3706 */ 3707 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3708 struct sk_buff *skb) 3709 { 3710 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3711 } 3712 3713 /** 3714 * netif_wake_subqueue - allow sending packets on subqueue 3715 * @dev: network device 3716 * @queue_index: sub queue index 3717 * 3718 * Resume individual transmit queue of a device with multiple transmit queues. 3719 */ 3720 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3721 { 3722 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3723 3724 netif_tx_wake_queue(txq); 3725 } 3726 3727 #ifdef CONFIG_XPS 3728 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3729 u16 index); 3730 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3731 u16 index, enum xps_map_type type); 3732 3733 /** 3734 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3735 * @j: CPU/Rx queue index 3736 * @mask: bitmask of all cpus/rx queues 3737 * @nr_bits: number of bits in the bitmask 3738 * 3739 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3740 */ 3741 static inline bool netif_attr_test_mask(unsigned long j, 3742 const unsigned long *mask, 3743 unsigned int nr_bits) 3744 { 3745 cpu_max_bits_warn(j, nr_bits); 3746 return test_bit(j, mask); 3747 } 3748 3749 /** 3750 * netif_attr_test_online - Test for online CPU/Rx queue 3751 * @j: CPU/Rx queue index 3752 * @online_mask: bitmask for CPUs/Rx queues that are online 3753 * @nr_bits: number of bits in the bitmask 3754 * 3755 * Returns true if a CPU/Rx queue is online. 3756 */ 3757 static inline bool netif_attr_test_online(unsigned long j, 3758 const unsigned long *online_mask, 3759 unsigned int nr_bits) 3760 { 3761 cpu_max_bits_warn(j, nr_bits); 3762 3763 if (online_mask) 3764 return test_bit(j, online_mask); 3765 3766 return (j < nr_bits); 3767 } 3768 3769 /** 3770 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3771 * @n: CPU/Rx queue index 3772 * @srcp: the cpumask/Rx queue mask pointer 3773 * @nr_bits: number of bits in the bitmask 3774 * 3775 * Returns >= nr_bits if no further CPUs/Rx queues set. 3776 */ 3777 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3778 unsigned int nr_bits) 3779 { 3780 /* -1 is a legal arg here. */ 3781 if (n != -1) 3782 cpu_max_bits_warn(n, nr_bits); 3783 3784 if (srcp) 3785 return find_next_bit(srcp, nr_bits, n + 1); 3786 3787 return n + 1; 3788 } 3789 3790 /** 3791 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3792 * @n: CPU/Rx queue index 3793 * @src1p: the first CPUs/Rx queues mask pointer 3794 * @src2p: the second CPUs/Rx queues mask pointer 3795 * @nr_bits: number of bits in the bitmask 3796 * 3797 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3798 */ 3799 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3800 const unsigned long *src2p, 3801 unsigned int nr_bits) 3802 { 3803 /* -1 is a legal arg here. */ 3804 if (n != -1) 3805 cpu_max_bits_warn(n, nr_bits); 3806 3807 if (src1p && src2p) 3808 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3809 else if (src1p) 3810 return find_next_bit(src1p, nr_bits, n + 1); 3811 else if (src2p) 3812 return find_next_bit(src2p, nr_bits, n + 1); 3813 3814 return n + 1; 3815 } 3816 #else 3817 static inline int netif_set_xps_queue(struct net_device *dev, 3818 const struct cpumask *mask, 3819 u16 index) 3820 { 3821 return 0; 3822 } 3823 3824 static inline int __netif_set_xps_queue(struct net_device *dev, 3825 const unsigned long *mask, 3826 u16 index, enum xps_map_type type) 3827 { 3828 return 0; 3829 } 3830 #endif 3831 3832 /** 3833 * netif_is_multiqueue - test if device has multiple transmit queues 3834 * @dev: network device 3835 * 3836 * Check if device has multiple transmit queues 3837 */ 3838 static inline bool netif_is_multiqueue(const struct net_device *dev) 3839 { 3840 return dev->num_tx_queues > 1; 3841 } 3842 3843 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3844 3845 #ifdef CONFIG_SYSFS 3846 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3847 #else 3848 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3849 unsigned int rxqs) 3850 { 3851 dev->real_num_rx_queues = rxqs; 3852 return 0; 3853 } 3854 #endif 3855 int netif_set_real_num_queues(struct net_device *dev, 3856 unsigned int txq, unsigned int rxq); 3857 3858 int netif_get_num_default_rss_queues(void); 3859 3860 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3861 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3862 3863 /* 3864 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3865 * interrupt context or with hardware interrupts being disabled. 3866 * (in_hardirq() || irqs_disabled()) 3867 * 3868 * We provide four helpers that can be used in following contexts : 3869 * 3870 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3871 * replacing kfree_skb(skb) 3872 * 3873 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3874 * Typically used in place of consume_skb(skb) in TX completion path 3875 * 3876 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3877 * replacing kfree_skb(skb) 3878 * 3879 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3880 * and consumed a packet. Used in place of consume_skb(skb) 3881 */ 3882 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3883 { 3884 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3885 } 3886 3887 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3888 { 3889 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3890 } 3891 3892 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3893 { 3894 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3895 } 3896 3897 static inline void dev_consume_skb_any(struct sk_buff *skb) 3898 { 3899 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3900 } 3901 3902 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3903 struct bpf_prog *xdp_prog); 3904 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3905 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb); 3906 int netif_rx(struct sk_buff *skb); 3907 int __netif_rx(struct sk_buff *skb); 3908 3909 int netif_receive_skb(struct sk_buff *skb); 3910 int netif_receive_skb_core(struct sk_buff *skb); 3911 void netif_receive_skb_list_internal(struct list_head *head); 3912 void netif_receive_skb_list(struct list_head *head); 3913 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3914 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3915 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3916 void napi_get_frags_check(struct napi_struct *napi); 3917 gro_result_t napi_gro_frags(struct napi_struct *napi); 3918 3919 static inline void napi_free_frags(struct napi_struct *napi) 3920 { 3921 kfree_skb(napi->skb); 3922 napi->skb = NULL; 3923 } 3924 3925 bool netdev_is_rx_handler_busy(struct net_device *dev); 3926 int netdev_rx_handler_register(struct net_device *dev, 3927 rx_handler_func_t *rx_handler, 3928 void *rx_handler_data); 3929 void netdev_rx_handler_unregister(struct net_device *dev); 3930 3931 bool dev_valid_name(const char *name); 3932 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3933 { 3934 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3935 } 3936 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3937 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3938 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3939 void __user *data, bool *need_copyout); 3940 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3941 int generic_hwtstamp_get_lower(struct net_device *dev, 3942 struct kernel_hwtstamp_config *kernel_cfg); 3943 int generic_hwtstamp_set_lower(struct net_device *dev, 3944 struct kernel_hwtstamp_config *kernel_cfg, 3945 struct netlink_ext_ack *extack); 3946 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3947 unsigned int dev_get_flags(const struct net_device *); 3948 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3949 struct netlink_ext_ack *extack); 3950 int dev_change_flags(struct net_device *dev, unsigned int flags, 3951 struct netlink_ext_ack *extack); 3952 int dev_set_alias(struct net_device *, const char *, size_t); 3953 int dev_get_alias(const struct net_device *, char *, size_t); 3954 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3955 const char *pat, int new_ifindex); 3956 static inline 3957 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3958 const char *pat) 3959 { 3960 return __dev_change_net_namespace(dev, net, pat, 0); 3961 } 3962 int __dev_set_mtu(struct net_device *, int); 3963 int dev_set_mtu(struct net_device *, int); 3964 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3965 struct netlink_ext_ack *extack); 3966 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3967 struct netlink_ext_ack *extack); 3968 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3969 struct netlink_ext_ack *extack); 3970 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3971 int dev_get_port_parent_id(struct net_device *dev, 3972 struct netdev_phys_item_id *ppid, bool recurse); 3973 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3974 3975 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3976 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3977 struct netdev_queue *txq, int *ret); 3978 3979 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3980 u8 dev_xdp_prog_count(struct net_device *dev); 3981 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 3982 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3983 3984 u32 dev_get_min_mp_channel_count(const struct net_device *dev); 3985 3986 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3987 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3988 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3989 bool is_skb_forwardable(const struct net_device *dev, 3990 const struct sk_buff *skb); 3991 3992 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3993 const struct sk_buff *skb, 3994 const bool check_mtu) 3995 { 3996 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3997 unsigned int len; 3998 3999 if (!(dev->flags & IFF_UP)) 4000 return false; 4001 4002 if (!check_mtu) 4003 return true; 4004 4005 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4006 if (skb->len <= len) 4007 return true; 4008 4009 /* if TSO is enabled, we don't care about the length as the packet 4010 * could be forwarded without being segmented before 4011 */ 4012 if (skb_is_gso(skb)) 4013 return true; 4014 4015 return false; 4016 } 4017 4018 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4019 4020 #define DEV_CORE_STATS_INC(FIELD) \ 4021 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4022 { \ 4023 netdev_core_stats_inc(dev, \ 4024 offsetof(struct net_device_core_stats, FIELD)); \ 4025 } 4026 DEV_CORE_STATS_INC(rx_dropped) 4027 DEV_CORE_STATS_INC(tx_dropped) 4028 DEV_CORE_STATS_INC(rx_nohandler) 4029 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4030 #undef DEV_CORE_STATS_INC 4031 4032 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4033 struct sk_buff *skb, 4034 const bool check_mtu) 4035 { 4036 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4037 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4038 dev_core_stats_rx_dropped_inc(dev); 4039 kfree_skb(skb); 4040 return NET_RX_DROP; 4041 } 4042 4043 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4044 skb->priority = 0; 4045 return 0; 4046 } 4047 4048 bool dev_nit_active(struct net_device *dev); 4049 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4050 4051 static inline void __dev_put(struct net_device *dev) 4052 { 4053 if (dev) { 4054 #ifdef CONFIG_PCPU_DEV_REFCNT 4055 this_cpu_dec(*dev->pcpu_refcnt); 4056 #else 4057 refcount_dec(&dev->dev_refcnt); 4058 #endif 4059 } 4060 } 4061 4062 static inline void __dev_hold(struct net_device *dev) 4063 { 4064 if (dev) { 4065 #ifdef CONFIG_PCPU_DEV_REFCNT 4066 this_cpu_inc(*dev->pcpu_refcnt); 4067 #else 4068 refcount_inc(&dev->dev_refcnt); 4069 #endif 4070 } 4071 } 4072 4073 static inline void __netdev_tracker_alloc(struct net_device *dev, 4074 netdevice_tracker *tracker, 4075 gfp_t gfp) 4076 { 4077 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4078 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4079 #endif 4080 } 4081 4082 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4083 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4084 */ 4085 static inline void netdev_tracker_alloc(struct net_device *dev, 4086 netdevice_tracker *tracker, gfp_t gfp) 4087 { 4088 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4089 refcount_dec(&dev->refcnt_tracker.no_tracker); 4090 __netdev_tracker_alloc(dev, tracker, gfp); 4091 #endif 4092 } 4093 4094 static inline void netdev_tracker_free(struct net_device *dev, 4095 netdevice_tracker *tracker) 4096 { 4097 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4098 ref_tracker_free(&dev->refcnt_tracker, tracker); 4099 #endif 4100 } 4101 4102 static inline void netdev_hold(struct net_device *dev, 4103 netdevice_tracker *tracker, gfp_t gfp) 4104 { 4105 if (dev) { 4106 __dev_hold(dev); 4107 __netdev_tracker_alloc(dev, tracker, gfp); 4108 } 4109 } 4110 4111 static inline void netdev_put(struct net_device *dev, 4112 netdevice_tracker *tracker) 4113 { 4114 if (dev) { 4115 netdev_tracker_free(dev, tracker); 4116 __dev_put(dev); 4117 } 4118 } 4119 4120 /** 4121 * dev_hold - get reference to device 4122 * @dev: network device 4123 * 4124 * Hold reference to device to keep it from being freed. 4125 * Try using netdev_hold() instead. 4126 */ 4127 static inline void dev_hold(struct net_device *dev) 4128 { 4129 netdev_hold(dev, NULL, GFP_ATOMIC); 4130 } 4131 4132 /** 4133 * dev_put - release reference to device 4134 * @dev: network device 4135 * 4136 * Release reference to device to allow it to be freed. 4137 * Try using netdev_put() instead. 4138 */ 4139 static inline void dev_put(struct net_device *dev) 4140 { 4141 netdev_put(dev, NULL); 4142 } 4143 4144 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4145 4146 static inline void netdev_ref_replace(struct net_device *odev, 4147 struct net_device *ndev, 4148 netdevice_tracker *tracker, 4149 gfp_t gfp) 4150 { 4151 if (odev) 4152 netdev_tracker_free(odev, tracker); 4153 4154 __dev_hold(ndev); 4155 __dev_put(odev); 4156 4157 if (ndev) 4158 __netdev_tracker_alloc(ndev, tracker, gfp); 4159 } 4160 4161 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4162 * and _off may be called from IRQ context, but it is caller 4163 * who is responsible for serialization of these calls. 4164 * 4165 * The name carrier is inappropriate, these functions should really be 4166 * called netif_lowerlayer_*() because they represent the state of any 4167 * kind of lower layer not just hardware media. 4168 */ 4169 void linkwatch_fire_event(struct net_device *dev); 4170 4171 /** 4172 * linkwatch_sync_dev - sync linkwatch for the given device 4173 * @dev: network device to sync linkwatch for 4174 * 4175 * Sync linkwatch for the given device, removing it from the 4176 * pending work list (if queued). 4177 */ 4178 void linkwatch_sync_dev(struct net_device *dev); 4179 4180 /** 4181 * netif_carrier_ok - test if carrier present 4182 * @dev: network device 4183 * 4184 * Check if carrier is present on device 4185 */ 4186 static inline bool netif_carrier_ok(const struct net_device *dev) 4187 { 4188 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4189 } 4190 4191 unsigned long dev_trans_start(struct net_device *dev); 4192 4193 void __netdev_watchdog_up(struct net_device *dev); 4194 4195 void netif_carrier_on(struct net_device *dev); 4196 void netif_carrier_off(struct net_device *dev); 4197 void netif_carrier_event(struct net_device *dev); 4198 4199 /** 4200 * netif_dormant_on - mark device as dormant. 4201 * @dev: network device 4202 * 4203 * Mark device as dormant (as per RFC2863). 4204 * 4205 * The dormant state indicates that the relevant interface is not 4206 * actually in a condition to pass packets (i.e., it is not 'up') but is 4207 * in a "pending" state, waiting for some external event. For "on- 4208 * demand" interfaces, this new state identifies the situation where the 4209 * interface is waiting for events to place it in the up state. 4210 */ 4211 static inline void netif_dormant_on(struct net_device *dev) 4212 { 4213 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4214 linkwatch_fire_event(dev); 4215 } 4216 4217 /** 4218 * netif_dormant_off - set device as not dormant. 4219 * @dev: network device 4220 * 4221 * Device is not in dormant state. 4222 */ 4223 static inline void netif_dormant_off(struct net_device *dev) 4224 { 4225 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4226 linkwatch_fire_event(dev); 4227 } 4228 4229 /** 4230 * netif_dormant - test if device is dormant 4231 * @dev: network device 4232 * 4233 * Check if device is dormant. 4234 */ 4235 static inline bool netif_dormant(const struct net_device *dev) 4236 { 4237 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4238 } 4239 4240 4241 /** 4242 * netif_testing_on - mark device as under test. 4243 * @dev: network device 4244 * 4245 * Mark device as under test (as per RFC2863). 4246 * 4247 * The testing state indicates that some test(s) must be performed on 4248 * the interface. After completion, of the test, the interface state 4249 * will change to up, dormant, or down, as appropriate. 4250 */ 4251 static inline void netif_testing_on(struct net_device *dev) 4252 { 4253 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4254 linkwatch_fire_event(dev); 4255 } 4256 4257 /** 4258 * netif_testing_off - set device as not under test. 4259 * @dev: network device 4260 * 4261 * Device is not in testing state. 4262 */ 4263 static inline void netif_testing_off(struct net_device *dev) 4264 { 4265 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4266 linkwatch_fire_event(dev); 4267 } 4268 4269 /** 4270 * netif_testing - test if device is under test 4271 * @dev: network device 4272 * 4273 * Check if device is under test 4274 */ 4275 static inline bool netif_testing(const struct net_device *dev) 4276 { 4277 return test_bit(__LINK_STATE_TESTING, &dev->state); 4278 } 4279 4280 4281 /** 4282 * netif_oper_up - test if device is operational 4283 * @dev: network device 4284 * 4285 * Check if carrier is operational 4286 */ 4287 static inline bool netif_oper_up(const struct net_device *dev) 4288 { 4289 unsigned int operstate = READ_ONCE(dev->operstate); 4290 4291 return operstate == IF_OPER_UP || 4292 operstate == IF_OPER_UNKNOWN /* backward compat */; 4293 } 4294 4295 /** 4296 * netif_device_present - is device available or removed 4297 * @dev: network device 4298 * 4299 * Check if device has not been removed from system. 4300 */ 4301 static inline bool netif_device_present(const struct net_device *dev) 4302 { 4303 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4304 } 4305 4306 void netif_device_detach(struct net_device *dev); 4307 4308 void netif_device_attach(struct net_device *dev); 4309 4310 /* 4311 * Network interface message level settings 4312 */ 4313 4314 enum { 4315 NETIF_MSG_DRV_BIT, 4316 NETIF_MSG_PROBE_BIT, 4317 NETIF_MSG_LINK_BIT, 4318 NETIF_MSG_TIMER_BIT, 4319 NETIF_MSG_IFDOWN_BIT, 4320 NETIF_MSG_IFUP_BIT, 4321 NETIF_MSG_RX_ERR_BIT, 4322 NETIF_MSG_TX_ERR_BIT, 4323 NETIF_MSG_TX_QUEUED_BIT, 4324 NETIF_MSG_INTR_BIT, 4325 NETIF_MSG_TX_DONE_BIT, 4326 NETIF_MSG_RX_STATUS_BIT, 4327 NETIF_MSG_PKTDATA_BIT, 4328 NETIF_MSG_HW_BIT, 4329 NETIF_MSG_WOL_BIT, 4330 4331 /* When you add a new bit above, update netif_msg_class_names array 4332 * in net/ethtool/common.c 4333 */ 4334 NETIF_MSG_CLASS_COUNT, 4335 }; 4336 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4337 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4338 4339 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4340 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4341 4342 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4343 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4344 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4345 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4346 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4347 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4348 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4349 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4350 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4351 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4352 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4353 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4354 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4355 #define NETIF_MSG_HW __NETIF_MSG(HW) 4356 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4357 4358 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4359 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4360 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4361 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4362 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4363 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4364 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4365 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4366 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4367 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4368 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4369 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4370 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4371 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4372 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4373 4374 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4375 { 4376 /* use default */ 4377 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4378 return default_msg_enable_bits; 4379 if (debug_value == 0) /* no output */ 4380 return 0; 4381 /* set low N bits */ 4382 return (1U << debug_value) - 1; 4383 } 4384 4385 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4386 { 4387 spin_lock(&txq->_xmit_lock); 4388 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4389 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4390 } 4391 4392 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4393 { 4394 __acquire(&txq->_xmit_lock); 4395 return true; 4396 } 4397 4398 static inline void __netif_tx_release(struct netdev_queue *txq) 4399 { 4400 __release(&txq->_xmit_lock); 4401 } 4402 4403 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4404 { 4405 spin_lock_bh(&txq->_xmit_lock); 4406 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4407 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4408 } 4409 4410 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4411 { 4412 bool ok = spin_trylock(&txq->_xmit_lock); 4413 4414 if (likely(ok)) { 4415 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4416 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4417 } 4418 return ok; 4419 } 4420 4421 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4422 { 4423 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4424 WRITE_ONCE(txq->xmit_lock_owner, -1); 4425 spin_unlock(&txq->_xmit_lock); 4426 } 4427 4428 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4429 { 4430 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4431 WRITE_ONCE(txq->xmit_lock_owner, -1); 4432 spin_unlock_bh(&txq->_xmit_lock); 4433 } 4434 4435 /* 4436 * txq->trans_start can be read locklessly from dev_watchdog() 4437 */ 4438 static inline void txq_trans_update(struct netdev_queue *txq) 4439 { 4440 if (txq->xmit_lock_owner != -1) 4441 WRITE_ONCE(txq->trans_start, jiffies); 4442 } 4443 4444 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4445 { 4446 unsigned long now = jiffies; 4447 4448 if (READ_ONCE(txq->trans_start) != now) 4449 WRITE_ONCE(txq->trans_start, now); 4450 } 4451 4452 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4453 static inline void netif_trans_update(struct net_device *dev) 4454 { 4455 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4456 4457 txq_trans_cond_update(txq); 4458 } 4459 4460 /** 4461 * netif_tx_lock - grab network device transmit lock 4462 * @dev: network device 4463 * 4464 * Get network device transmit lock 4465 */ 4466 void netif_tx_lock(struct net_device *dev); 4467 4468 static inline void netif_tx_lock_bh(struct net_device *dev) 4469 { 4470 local_bh_disable(); 4471 netif_tx_lock(dev); 4472 } 4473 4474 void netif_tx_unlock(struct net_device *dev); 4475 4476 static inline void netif_tx_unlock_bh(struct net_device *dev) 4477 { 4478 netif_tx_unlock(dev); 4479 local_bh_enable(); 4480 } 4481 4482 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4483 if (!(dev)->lltx) { \ 4484 __netif_tx_lock(txq, cpu); \ 4485 } else { \ 4486 __netif_tx_acquire(txq); \ 4487 } \ 4488 } 4489 4490 #define HARD_TX_TRYLOCK(dev, txq) \ 4491 (!(dev)->lltx ? \ 4492 __netif_tx_trylock(txq) : \ 4493 __netif_tx_acquire(txq)) 4494 4495 #define HARD_TX_UNLOCK(dev, txq) { \ 4496 if (!(dev)->lltx) { \ 4497 __netif_tx_unlock(txq); \ 4498 } else { \ 4499 __netif_tx_release(txq); \ 4500 } \ 4501 } 4502 4503 static inline void netif_tx_disable(struct net_device *dev) 4504 { 4505 unsigned int i; 4506 int cpu; 4507 4508 local_bh_disable(); 4509 cpu = smp_processor_id(); 4510 spin_lock(&dev->tx_global_lock); 4511 for (i = 0; i < dev->num_tx_queues; i++) { 4512 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4513 4514 __netif_tx_lock(txq, cpu); 4515 netif_tx_stop_queue(txq); 4516 __netif_tx_unlock(txq); 4517 } 4518 spin_unlock(&dev->tx_global_lock); 4519 local_bh_enable(); 4520 } 4521 4522 static inline void netif_addr_lock(struct net_device *dev) 4523 { 4524 unsigned char nest_level = 0; 4525 4526 #ifdef CONFIG_LOCKDEP 4527 nest_level = dev->nested_level; 4528 #endif 4529 spin_lock_nested(&dev->addr_list_lock, nest_level); 4530 } 4531 4532 static inline void netif_addr_lock_bh(struct net_device *dev) 4533 { 4534 unsigned char nest_level = 0; 4535 4536 #ifdef CONFIG_LOCKDEP 4537 nest_level = dev->nested_level; 4538 #endif 4539 local_bh_disable(); 4540 spin_lock_nested(&dev->addr_list_lock, nest_level); 4541 } 4542 4543 static inline void netif_addr_unlock(struct net_device *dev) 4544 { 4545 spin_unlock(&dev->addr_list_lock); 4546 } 4547 4548 static inline void netif_addr_unlock_bh(struct net_device *dev) 4549 { 4550 spin_unlock_bh(&dev->addr_list_lock); 4551 } 4552 4553 /* 4554 * dev_addrs walker. Should be used only for read access. Call with 4555 * rcu_read_lock held. 4556 */ 4557 #define for_each_dev_addr(dev, ha) \ 4558 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4559 4560 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4561 4562 void ether_setup(struct net_device *dev); 4563 4564 /* Allocate dummy net_device */ 4565 struct net_device *alloc_netdev_dummy(int sizeof_priv); 4566 4567 /* Support for loadable net-drivers */ 4568 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4569 unsigned char name_assign_type, 4570 void (*setup)(struct net_device *), 4571 unsigned int txqs, unsigned int rxqs); 4572 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4573 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4574 4575 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4576 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4577 count) 4578 4579 int register_netdev(struct net_device *dev); 4580 void unregister_netdev(struct net_device *dev); 4581 4582 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4583 4584 /* General hardware address lists handling functions */ 4585 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4586 struct netdev_hw_addr_list *from_list, int addr_len); 4587 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4588 struct netdev_hw_addr_list *from_list, int addr_len); 4589 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4590 struct net_device *dev, 4591 int (*sync)(struct net_device *, const unsigned char *), 4592 int (*unsync)(struct net_device *, 4593 const unsigned char *)); 4594 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4595 struct net_device *dev, 4596 int (*sync)(struct net_device *, 4597 const unsigned char *, int), 4598 int (*unsync)(struct net_device *, 4599 const unsigned char *, int)); 4600 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4601 struct net_device *dev, 4602 int (*unsync)(struct net_device *, 4603 const unsigned char *, int)); 4604 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4605 struct net_device *dev, 4606 int (*unsync)(struct net_device *, 4607 const unsigned char *)); 4608 void __hw_addr_init(struct netdev_hw_addr_list *list); 4609 4610 /* Functions used for device addresses handling */ 4611 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4612 const void *addr, size_t len); 4613 4614 static inline void 4615 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4616 { 4617 dev_addr_mod(dev, 0, addr, len); 4618 } 4619 4620 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4621 { 4622 __dev_addr_set(dev, addr, dev->addr_len); 4623 } 4624 4625 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4626 unsigned char addr_type); 4627 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4628 unsigned char addr_type); 4629 4630 /* Functions used for unicast addresses handling */ 4631 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4632 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4633 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4634 int dev_uc_sync(struct net_device *to, struct net_device *from); 4635 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4636 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4637 void dev_uc_flush(struct net_device *dev); 4638 void dev_uc_init(struct net_device *dev); 4639 4640 /** 4641 * __dev_uc_sync - Synchronize device's unicast list 4642 * @dev: device to sync 4643 * @sync: function to call if address should be added 4644 * @unsync: function to call if address should be removed 4645 * 4646 * Add newly added addresses to the interface, and release 4647 * addresses that have been deleted. 4648 */ 4649 static inline int __dev_uc_sync(struct net_device *dev, 4650 int (*sync)(struct net_device *, 4651 const unsigned char *), 4652 int (*unsync)(struct net_device *, 4653 const unsigned char *)) 4654 { 4655 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4656 } 4657 4658 /** 4659 * __dev_uc_unsync - Remove synchronized addresses from device 4660 * @dev: device to sync 4661 * @unsync: function to call if address should be removed 4662 * 4663 * Remove all addresses that were added to the device by dev_uc_sync(). 4664 */ 4665 static inline void __dev_uc_unsync(struct net_device *dev, 4666 int (*unsync)(struct net_device *, 4667 const unsigned char *)) 4668 { 4669 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4670 } 4671 4672 /* Functions used for multicast addresses handling */ 4673 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4674 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4675 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4676 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4677 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4678 int dev_mc_sync(struct net_device *to, struct net_device *from); 4679 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4680 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4681 void dev_mc_flush(struct net_device *dev); 4682 void dev_mc_init(struct net_device *dev); 4683 4684 /** 4685 * __dev_mc_sync - Synchronize device's multicast list 4686 * @dev: device to sync 4687 * @sync: function to call if address should be added 4688 * @unsync: function to call if address should be removed 4689 * 4690 * Add newly added addresses to the interface, and release 4691 * addresses that have been deleted. 4692 */ 4693 static inline int __dev_mc_sync(struct net_device *dev, 4694 int (*sync)(struct net_device *, 4695 const unsigned char *), 4696 int (*unsync)(struct net_device *, 4697 const unsigned char *)) 4698 { 4699 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4700 } 4701 4702 /** 4703 * __dev_mc_unsync - Remove synchronized addresses from device 4704 * @dev: device to sync 4705 * @unsync: function to call if address should be removed 4706 * 4707 * Remove all addresses that were added to the device by dev_mc_sync(). 4708 */ 4709 static inline void __dev_mc_unsync(struct net_device *dev, 4710 int (*unsync)(struct net_device *, 4711 const unsigned char *)) 4712 { 4713 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4714 } 4715 4716 /* Functions used for secondary unicast and multicast support */ 4717 void dev_set_rx_mode(struct net_device *dev); 4718 int dev_set_promiscuity(struct net_device *dev, int inc); 4719 int dev_set_allmulti(struct net_device *dev, int inc); 4720 void netdev_state_change(struct net_device *dev); 4721 void __netdev_notify_peers(struct net_device *dev); 4722 void netdev_notify_peers(struct net_device *dev); 4723 void netdev_features_change(struct net_device *dev); 4724 /* Load a device via the kmod */ 4725 void dev_load(struct net *net, const char *name); 4726 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4727 struct rtnl_link_stats64 *storage); 4728 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4729 const struct net_device_stats *netdev_stats); 4730 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4731 const struct pcpu_sw_netstats __percpu *netstats); 4732 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4733 4734 enum { 4735 NESTED_SYNC_IMM_BIT, 4736 NESTED_SYNC_TODO_BIT, 4737 }; 4738 4739 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4740 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4741 4742 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4743 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4744 4745 struct netdev_nested_priv { 4746 unsigned char flags; 4747 void *data; 4748 }; 4749 4750 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4751 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4752 struct list_head **iter); 4753 4754 /* iterate through upper list, must be called under RCU read lock */ 4755 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4756 for (iter = &(dev)->adj_list.upper, \ 4757 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4758 updev; \ 4759 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4760 4761 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4762 int (*fn)(struct net_device *upper_dev, 4763 struct netdev_nested_priv *priv), 4764 struct netdev_nested_priv *priv); 4765 4766 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4767 struct net_device *upper_dev); 4768 4769 bool netdev_has_any_upper_dev(struct net_device *dev); 4770 4771 void *netdev_lower_get_next_private(struct net_device *dev, 4772 struct list_head **iter); 4773 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4774 struct list_head **iter); 4775 4776 #define netdev_for_each_lower_private(dev, priv, iter) \ 4777 for (iter = (dev)->adj_list.lower.next, \ 4778 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4779 priv; \ 4780 priv = netdev_lower_get_next_private(dev, &(iter))) 4781 4782 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4783 for (iter = &(dev)->adj_list.lower, \ 4784 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4785 priv; \ 4786 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4787 4788 void *netdev_lower_get_next(struct net_device *dev, 4789 struct list_head **iter); 4790 4791 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4792 for (iter = (dev)->adj_list.lower.next, \ 4793 ldev = netdev_lower_get_next(dev, &(iter)); \ 4794 ldev; \ 4795 ldev = netdev_lower_get_next(dev, &(iter))) 4796 4797 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4798 struct list_head **iter); 4799 int netdev_walk_all_lower_dev(struct net_device *dev, 4800 int (*fn)(struct net_device *lower_dev, 4801 struct netdev_nested_priv *priv), 4802 struct netdev_nested_priv *priv); 4803 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4804 int (*fn)(struct net_device *lower_dev, 4805 struct netdev_nested_priv *priv), 4806 struct netdev_nested_priv *priv); 4807 4808 void *netdev_adjacent_get_private(struct list_head *adj_list); 4809 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4810 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4811 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4812 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4813 struct netlink_ext_ack *extack); 4814 int netdev_master_upper_dev_link(struct net_device *dev, 4815 struct net_device *upper_dev, 4816 void *upper_priv, void *upper_info, 4817 struct netlink_ext_ack *extack); 4818 void netdev_upper_dev_unlink(struct net_device *dev, 4819 struct net_device *upper_dev); 4820 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4821 struct net_device *new_dev, 4822 struct net_device *dev, 4823 struct netlink_ext_ack *extack); 4824 void netdev_adjacent_change_commit(struct net_device *old_dev, 4825 struct net_device *new_dev, 4826 struct net_device *dev); 4827 void netdev_adjacent_change_abort(struct net_device *old_dev, 4828 struct net_device *new_dev, 4829 struct net_device *dev); 4830 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4831 void *netdev_lower_dev_get_private(struct net_device *dev, 4832 struct net_device *lower_dev); 4833 void netdev_lower_state_changed(struct net_device *lower_dev, 4834 void *lower_state_info); 4835 4836 /* RSS keys are 40 or 52 bytes long */ 4837 #define NETDEV_RSS_KEY_LEN 52 4838 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4839 void netdev_rss_key_fill(void *buffer, size_t len); 4840 4841 int skb_checksum_help(struct sk_buff *skb); 4842 int skb_crc32c_csum_help(struct sk_buff *skb); 4843 int skb_csum_hwoffload_help(struct sk_buff *skb, 4844 const netdev_features_t features); 4845 4846 struct netdev_bonding_info { 4847 ifslave slave; 4848 ifbond master; 4849 }; 4850 4851 struct netdev_notifier_bonding_info { 4852 struct netdev_notifier_info info; /* must be first */ 4853 struct netdev_bonding_info bonding_info; 4854 }; 4855 4856 void netdev_bonding_info_change(struct net_device *dev, 4857 struct netdev_bonding_info *bonding_info); 4858 4859 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4860 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4861 #else 4862 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4863 const void *data) 4864 { 4865 } 4866 #endif 4867 4868 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4869 4870 static inline bool can_checksum_protocol(netdev_features_t features, 4871 __be16 protocol) 4872 { 4873 if (protocol == htons(ETH_P_FCOE)) 4874 return !!(features & NETIF_F_FCOE_CRC); 4875 4876 /* Assume this is an IP checksum (not SCTP CRC) */ 4877 4878 if (features & NETIF_F_HW_CSUM) { 4879 /* Can checksum everything */ 4880 return true; 4881 } 4882 4883 switch (protocol) { 4884 case htons(ETH_P_IP): 4885 return !!(features & NETIF_F_IP_CSUM); 4886 case htons(ETH_P_IPV6): 4887 return !!(features & NETIF_F_IPV6_CSUM); 4888 default: 4889 return false; 4890 } 4891 } 4892 4893 #ifdef CONFIG_BUG 4894 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4895 #else 4896 static inline void netdev_rx_csum_fault(struct net_device *dev, 4897 struct sk_buff *skb) 4898 { 4899 } 4900 #endif 4901 /* rx skb timestamps */ 4902 void net_enable_timestamp(void); 4903 void net_disable_timestamp(void); 4904 4905 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4906 const struct skb_shared_hwtstamps *hwtstamps, 4907 bool cycles) 4908 { 4909 const struct net_device_ops *ops = dev->netdev_ops; 4910 4911 if (ops->ndo_get_tstamp) 4912 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4913 4914 return hwtstamps->hwtstamp; 4915 } 4916 4917 #ifndef CONFIG_PREEMPT_RT 4918 static inline void netdev_xmit_set_more(bool more) 4919 { 4920 __this_cpu_write(softnet_data.xmit.more, more); 4921 } 4922 4923 static inline bool netdev_xmit_more(void) 4924 { 4925 return __this_cpu_read(softnet_data.xmit.more); 4926 } 4927 #else 4928 static inline void netdev_xmit_set_more(bool more) 4929 { 4930 current->net_xmit.more = more; 4931 } 4932 4933 static inline bool netdev_xmit_more(void) 4934 { 4935 return current->net_xmit.more; 4936 } 4937 #endif 4938 4939 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4940 struct sk_buff *skb, struct net_device *dev, 4941 bool more) 4942 { 4943 netdev_xmit_set_more(more); 4944 return ops->ndo_start_xmit(skb, dev); 4945 } 4946 4947 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4948 struct netdev_queue *txq, bool more) 4949 { 4950 const struct net_device_ops *ops = dev->netdev_ops; 4951 netdev_tx_t rc; 4952 4953 rc = __netdev_start_xmit(ops, skb, dev, more); 4954 if (rc == NETDEV_TX_OK) 4955 txq_trans_update(txq); 4956 4957 return rc; 4958 } 4959 4960 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4961 const void *ns); 4962 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4963 const void *ns); 4964 4965 extern const struct kobj_ns_type_operations net_ns_type_operations; 4966 4967 const char *netdev_drivername(const struct net_device *dev); 4968 4969 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4970 netdev_features_t f2) 4971 { 4972 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4973 if (f1 & NETIF_F_HW_CSUM) 4974 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4975 else 4976 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4977 } 4978 4979 return f1 & f2; 4980 } 4981 4982 static inline netdev_features_t netdev_get_wanted_features( 4983 struct net_device *dev) 4984 { 4985 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4986 } 4987 netdev_features_t netdev_increment_features(netdev_features_t all, 4988 netdev_features_t one, netdev_features_t mask); 4989 4990 /* Allow TSO being used on stacked device : 4991 * Performing the GSO segmentation before last device 4992 * is a performance improvement. 4993 */ 4994 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4995 netdev_features_t mask) 4996 { 4997 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4998 } 4999 5000 int __netdev_update_features(struct net_device *dev); 5001 void netdev_update_features(struct net_device *dev); 5002 void netdev_change_features(struct net_device *dev); 5003 5004 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5005 struct net_device *dev); 5006 5007 netdev_features_t passthru_features_check(struct sk_buff *skb, 5008 struct net_device *dev, 5009 netdev_features_t features); 5010 netdev_features_t netif_skb_features(struct sk_buff *skb); 5011 void skb_warn_bad_offload(const struct sk_buff *skb); 5012 5013 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5014 { 5015 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5016 5017 /* check flags correspondence */ 5018 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5019 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5020 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5021 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5022 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5023 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5024 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5025 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5026 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5027 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5028 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5029 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5030 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5031 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5032 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5033 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5034 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5035 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5036 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5037 5038 return (features & feature) == feature; 5039 } 5040 5041 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5042 { 5043 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5044 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5045 } 5046 5047 static inline bool netif_needs_gso(struct sk_buff *skb, 5048 netdev_features_t features) 5049 { 5050 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5051 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5052 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5053 } 5054 5055 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5056 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5057 void netif_inherit_tso_max(struct net_device *to, 5058 const struct net_device *from); 5059 5060 static inline unsigned int 5061 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) 5062 { 5063 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ 5064 return skb->protocol == htons(ETH_P_IPV6) ? 5065 READ_ONCE(dev->gro_max_size) : 5066 READ_ONCE(dev->gro_ipv4_max_size); 5067 } 5068 5069 static inline unsigned int 5070 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) 5071 { 5072 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 5073 return skb->protocol == htons(ETH_P_IPV6) ? 5074 READ_ONCE(dev->gso_max_size) : 5075 READ_ONCE(dev->gso_ipv4_max_size); 5076 } 5077 5078 static inline bool netif_is_macsec(const struct net_device *dev) 5079 { 5080 return dev->priv_flags & IFF_MACSEC; 5081 } 5082 5083 static inline bool netif_is_macvlan(const struct net_device *dev) 5084 { 5085 return dev->priv_flags & IFF_MACVLAN; 5086 } 5087 5088 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5089 { 5090 return dev->priv_flags & IFF_MACVLAN_PORT; 5091 } 5092 5093 static inline bool netif_is_bond_master(const struct net_device *dev) 5094 { 5095 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5096 } 5097 5098 static inline bool netif_is_bond_slave(const struct net_device *dev) 5099 { 5100 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5101 } 5102 5103 static inline bool netif_supports_nofcs(struct net_device *dev) 5104 { 5105 return dev->priv_flags & IFF_SUPP_NOFCS; 5106 } 5107 5108 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5109 { 5110 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5111 } 5112 5113 static inline bool netif_is_l3_master(const struct net_device *dev) 5114 { 5115 return dev->priv_flags & IFF_L3MDEV_MASTER; 5116 } 5117 5118 static inline bool netif_is_l3_slave(const struct net_device *dev) 5119 { 5120 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5121 } 5122 5123 static inline int dev_sdif(const struct net_device *dev) 5124 { 5125 #ifdef CONFIG_NET_L3_MASTER_DEV 5126 if (netif_is_l3_slave(dev)) 5127 return dev->ifindex; 5128 #endif 5129 return 0; 5130 } 5131 5132 static inline bool netif_is_bridge_master(const struct net_device *dev) 5133 { 5134 return dev->priv_flags & IFF_EBRIDGE; 5135 } 5136 5137 static inline bool netif_is_bridge_port(const struct net_device *dev) 5138 { 5139 return dev->priv_flags & IFF_BRIDGE_PORT; 5140 } 5141 5142 static inline bool netif_is_ovs_master(const struct net_device *dev) 5143 { 5144 return dev->priv_flags & IFF_OPENVSWITCH; 5145 } 5146 5147 static inline bool netif_is_ovs_port(const struct net_device *dev) 5148 { 5149 return dev->priv_flags & IFF_OVS_DATAPATH; 5150 } 5151 5152 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5153 { 5154 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5155 } 5156 5157 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5158 { 5159 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5160 } 5161 5162 static inline bool netif_is_team_master(const struct net_device *dev) 5163 { 5164 return dev->priv_flags & IFF_TEAM; 5165 } 5166 5167 static inline bool netif_is_team_port(const struct net_device *dev) 5168 { 5169 return dev->priv_flags & IFF_TEAM_PORT; 5170 } 5171 5172 static inline bool netif_is_lag_master(const struct net_device *dev) 5173 { 5174 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5175 } 5176 5177 static inline bool netif_is_lag_port(const struct net_device *dev) 5178 { 5179 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5180 } 5181 5182 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5183 { 5184 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5185 } 5186 5187 static inline bool netif_is_failover(const struct net_device *dev) 5188 { 5189 return dev->priv_flags & IFF_FAILOVER; 5190 } 5191 5192 static inline bool netif_is_failover_slave(const struct net_device *dev) 5193 { 5194 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5195 } 5196 5197 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5198 static inline void netif_keep_dst(struct net_device *dev) 5199 { 5200 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5201 } 5202 5203 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5204 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5205 { 5206 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5207 return netif_is_macsec(dev); 5208 } 5209 5210 extern struct pernet_operations __net_initdata loopback_net_ops; 5211 5212 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5213 5214 /* netdev_printk helpers, similar to dev_printk */ 5215 5216 static inline const char *netdev_name(const struct net_device *dev) 5217 { 5218 if (!dev->name[0] || strchr(dev->name, '%')) 5219 return "(unnamed net_device)"; 5220 return dev->name; 5221 } 5222 5223 static inline const char *netdev_reg_state(const struct net_device *dev) 5224 { 5225 u8 reg_state = READ_ONCE(dev->reg_state); 5226 5227 switch (reg_state) { 5228 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5229 case NETREG_REGISTERED: return ""; 5230 case NETREG_UNREGISTERING: return " (unregistering)"; 5231 case NETREG_UNREGISTERED: return " (unregistered)"; 5232 case NETREG_RELEASED: return " (released)"; 5233 case NETREG_DUMMY: return " (dummy)"; 5234 } 5235 5236 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5237 return " (unknown)"; 5238 } 5239 5240 #define MODULE_ALIAS_NETDEV(device) \ 5241 MODULE_ALIAS("netdev-" device) 5242 5243 /* 5244 * netdev_WARN() acts like dev_printk(), but with the key difference 5245 * of using a WARN/WARN_ON to get the message out, including the 5246 * file/line information and a backtrace. 5247 */ 5248 #define netdev_WARN(dev, format, args...) \ 5249 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5250 netdev_reg_state(dev), ##args) 5251 5252 #define netdev_WARN_ONCE(dev, format, args...) \ 5253 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5254 netdev_reg_state(dev), ##args) 5255 5256 /* 5257 * The list of packet types we will receive (as opposed to discard) 5258 * and the routines to invoke. 5259 * 5260 * Why 16. Because with 16 the only overlap we get on a hash of the 5261 * low nibble of the protocol value is RARP/SNAP/X.25. 5262 * 5263 * 0800 IP 5264 * 0001 802.3 5265 * 0002 AX.25 5266 * 0004 802.2 5267 * 8035 RARP 5268 * 0005 SNAP 5269 * 0805 X.25 5270 * 0806 ARP 5271 * 8137 IPX 5272 * 0009 Localtalk 5273 * 86DD IPv6 5274 */ 5275 #define PTYPE_HASH_SIZE (16) 5276 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5277 5278 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5279 5280 extern struct net_device *blackhole_netdev; 5281 5282 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5283 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5284 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5285 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5286 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5287 5288 #endif /* _LINUX_NETDEVICE_H */ 5289