xref: /linux-6.15/include/linux/netdevice.h (revision d32f834c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,		/* Poll is scheduled */
354 	NAPI_STATE_MISSED,		/* reschedule a napi */
355 	NAPI_STATE_DISABLE,		/* Disable pending */
356 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
358 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
360 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
361 };
362 
363 enum {
364 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
365 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
366 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
367 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
368 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
369 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
370 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
371 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
372 };
373 
374 enum gro_result {
375 	GRO_MERGED,
376 	GRO_MERGED_FREE,
377 	GRO_HELD,
378 	GRO_NORMAL,
379 	GRO_CONSUMED,
380 };
381 typedef enum gro_result gro_result_t;
382 
383 /*
384  * enum rx_handler_result - Possible return values for rx_handlers.
385  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
386  * further.
387  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
388  * case skb->dev was changed by rx_handler.
389  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
390  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
391  *
392  * rx_handlers are functions called from inside __netif_receive_skb(), to do
393  * special processing of the skb, prior to delivery to protocol handlers.
394  *
395  * Currently, a net_device can only have a single rx_handler registered. Trying
396  * to register a second rx_handler will return -EBUSY.
397  *
398  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
399  * To unregister a rx_handler on a net_device, use
400  * netdev_rx_handler_unregister().
401  *
402  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
403  * do with the skb.
404  *
405  * If the rx_handler consumed the skb in some way, it should return
406  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
407  * the skb to be delivered in some other way.
408  *
409  * If the rx_handler changed skb->dev, to divert the skb to another
410  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
411  * new device will be called if it exists.
412  *
413  * If the rx_handler decides the skb should be ignored, it should return
414  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
415  * are registered on exact device (ptype->dev == skb->dev).
416  *
417  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
418  * delivered, it should return RX_HANDLER_PASS.
419  *
420  * A device without a registered rx_handler will behave as if rx_handler
421  * returned RX_HANDLER_PASS.
422  */
423 
424 enum rx_handler_result {
425 	RX_HANDLER_CONSUMED,
426 	RX_HANDLER_ANOTHER,
427 	RX_HANDLER_EXACT,
428 	RX_HANDLER_PASS,
429 };
430 typedef enum rx_handler_result rx_handler_result_t;
431 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
432 
433 void __napi_schedule(struct napi_struct *n);
434 void __napi_schedule_irqoff(struct napi_struct *n);
435 
436 static inline bool napi_disable_pending(struct napi_struct *n)
437 {
438 	return test_bit(NAPI_STATE_DISABLE, &n->state);
439 }
440 
441 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
442 {
443 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
444 }
445 
446 bool napi_schedule_prep(struct napi_struct *n);
447 
448 /**
449  *	napi_schedule - schedule NAPI poll
450  *	@n: NAPI context
451  *
452  * Schedule NAPI poll routine to be called if it is not already
453  * running.
454  */
455 static inline void napi_schedule(struct napi_struct *n)
456 {
457 	if (napi_schedule_prep(n))
458 		__napi_schedule(n);
459 }
460 
461 /**
462  *	napi_schedule_irqoff - schedule NAPI poll
463  *	@n: NAPI context
464  *
465  * Variant of napi_schedule(), assuming hard irqs are masked.
466  */
467 static inline void napi_schedule_irqoff(struct napi_struct *n)
468 {
469 	if (napi_schedule_prep(n))
470 		__napi_schedule_irqoff(n);
471 }
472 
473 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
474 static inline bool napi_reschedule(struct napi_struct *napi)
475 {
476 	if (napi_schedule_prep(napi)) {
477 		__napi_schedule(napi);
478 		return true;
479 	}
480 	return false;
481 }
482 
483 bool napi_complete_done(struct napi_struct *n, int work_done);
484 /**
485  *	napi_complete - NAPI processing complete
486  *	@n: NAPI context
487  *
488  * Mark NAPI processing as complete.
489  * Consider using napi_complete_done() instead.
490  * Return false if device should avoid rearming interrupts.
491  */
492 static inline bool napi_complete(struct napi_struct *n)
493 {
494 	return napi_complete_done(n, 0);
495 }
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xsk_buff_pool    *pool;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 extern int sysctl_devconf_inherit_init_net;
634 
635 /*
636  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
637  *                                     == 1 : For initns only
638  *                                     == 2 : For none.
639  */
640 static inline bool net_has_fallback_tunnels(const struct net *net)
641 {
642 	return !IS_ENABLED(CONFIG_SYSCTL) ||
643 	       !sysctl_fb_tunnels_only_for_init_net ||
644 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
645 }
646 
647 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
648 {
649 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
650 	return q->numa_node;
651 #else
652 	return NUMA_NO_NODE;
653 #endif
654 }
655 
656 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
657 {
658 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
659 	q->numa_node = node;
660 #endif
661 }
662 
663 #ifdef CONFIG_RPS
664 /*
665  * This structure holds an RPS map which can be of variable length.  The
666  * map is an array of CPUs.
667  */
668 struct rps_map {
669 	unsigned int len;
670 	struct rcu_head rcu;
671 	u16 cpus[];
672 };
673 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
674 
675 /*
676  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
677  * tail pointer for that CPU's input queue at the time of last enqueue, and
678  * a hardware filter index.
679  */
680 struct rps_dev_flow {
681 	u16 cpu;
682 	u16 filter;
683 	unsigned int last_qtail;
684 };
685 #define RPS_NO_FILTER 0xffff
686 
687 /*
688  * The rps_dev_flow_table structure contains a table of flow mappings.
689  */
690 struct rps_dev_flow_table {
691 	unsigned int mask;
692 	struct rcu_head rcu;
693 	struct rps_dev_flow flows[];
694 };
695 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
696     ((_num) * sizeof(struct rps_dev_flow)))
697 
698 /*
699  * The rps_sock_flow_table contains mappings of flows to the last CPU
700  * on which they were processed by the application (set in recvmsg).
701  * Each entry is a 32bit value. Upper part is the high-order bits
702  * of flow hash, lower part is CPU number.
703  * rps_cpu_mask is used to partition the space, depending on number of
704  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
705  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
706  * meaning we use 32-6=26 bits for the hash.
707  */
708 struct rps_sock_flow_table {
709 	u32	mask;
710 
711 	u32	ents[] ____cacheline_aligned_in_smp;
712 };
713 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
714 
715 #define RPS_NO_CPU 0xffff
716 
717 extern u32 rps_cpu_mask;
718 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
719 
720 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
721 					u32 hash)
722 {
723 	if (table && hash) {
724 		unsigned int index = hash & table->mask;
725 		u32 val = hash & ~rps_cpu_mask;
726 
727 		/* We only give a hint, preemption can change CPU under us */
728 		val |= raw_smp_processor_id();
729 
730 		if (table->ents[index] != val)
731 			table->ents[index] = val;
732 	}
733 }
734 
735 #ifdef CONFIG_RFS_ACCEL
736 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
737 			 u16 filter_id);
738 #endif
739 #endif /* CONFIG_RPS */
740 
741 /* This structure contains an instance of an RX queue. */
742 struct netdev_rx_queue {
743 #ifdef CONFIG_RPS
744 	struct rps_map __rcu		*rps_map;
745 	struct rps_dev_flow_table __rcu	*rps_flow_table;
746 #endif
747 	struct kobject			kobj;
748 	struct net_device		*dev;
749 	struct xdp_rxq_info		xdp_rxq;
750 #ifdef CONFIG_XDP_SOCKETS
751 	struct xsk_buff_pool            *pool;
752 #endif
753 } ____cacheline_aligned_in_smp;
754 
755 /*
756  * RX queue sysfs structures and functions.
757  */
758 struct rx_queue_attribute {
759 	struct attribute attr;
760 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
761 	ssize_t (*store)(struct netdev_rx_queue *queue,
762 			 const char *buf, size_t len);
763 };
764 
765 #ifdef CONFIG_XPS
766 /*
767  * This structure holds an XPS map which can be of variable length.  The
768  * map is an array of queues.
769  */
770 struct xps_map {
771 	unsigned int len;
772 	unsigned int alloc_len;
773 	struct rcu_head rcu;
774 	u16 queues[];
775 };
776 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
777 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
778        - sizeof(struct xps_map)) / sizeof(u16))
779 
780 /*
781  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
782  */
783 struct xps_dev_maps {
784 	struct rcu_head rcu;
785 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
786 };
787 
788 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
789 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
790 
791 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
792 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
793 
794 #endif /* CONFIG_XPS */
795 
796 #define TC_MAX_QUEUE	16
797 #define TC_BITMASK	15
798 /* HW offloaded queuing disciplines txq count and offset maps */
799 struct netdev_tc_txq {
800 	u16 count;
801 	u16 offset;
802 };
803 
804 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
805 /*
806  * This structure is to hold information about the device
807  * configured to run FCoE protocol stack.
808  */
809 struct netdev_fcoe_hbainfo {
810 	char	manufacturer[64];
811 	char	serial_number[64];
812 	char	hardware_version[64];
813 	char	driver_version[64];
814 	char	optionrom_version[64];
815 	char	firmware_version[64];
816 	char	model[256];
817 	char	model_description[256];
818 };
819 #endif
820 
821 #define MAX_PHYS_ITEM_ID_LEN 32
822 
823 /* This structure holds a unique identifier to identify some
824  * physical item (port for example) used by a netdevice.
825  */
826 struct netdev_phys_item_id {
827 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
828 	unsigned char id_len;
829 };
830 
831 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
832 					    struct netdev_phys_item_id *b)
833 {
834 	return a->id_len == b->id_len &&
835 	       memcmp(a->id, b->id, a->id_len) == 0;
836 }
837 
838 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
839 				       struct sk_buff *skb,
840 				       struct net_device *sb_dev);
841 
842 enum tc_setup_type {
843 	TC_SETUP_QDISC_MQPRIO,
844 	TC_SETUP_CLSU32,
845 	TC_SETUP_CLSFLOWER,
846 	TC_SETUP_CLSMATCHALL,
847 	TC_SETUP_CLSBPF,
848 	TC_SETUP_BLOCK,
849 	TC_SETUP_QDISC_CBS,
850 	TC_SETUP_QDISC_RED,
851 	TC_SETUP_QDISC_PRIO,
852 	TC_SETUP_QDISC_MQ,
853 	TC_SETUP_QDISC_ETF,
854 	TC_SETUP_ROOT_QDISC,
855 	TC_SETUP_QDISC_GRED,
856 	TC_SETUP_QDISC_TAPRIO,
857 	TC_SETUP_FT,
858 	TC_SETUP_QDISC_ETS,
859 	TC_SETUP_QDISC_TBF,
860 	TC_SETUP_QDISC_FIFO,
861 	TC_SETUP_QDISC_HTB,
862 };
863 
864 /* These structures hold the attributes of bpf state that are being passed
865  * to the netdevice through the bpf op.
866  */
867 enum bpf_netdev_command {
868 	/* Set or clear a bpf program used in the earliest stages of packet
869 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
870 	 * is responsible for calling bpf_prog_put on any old progs that are
871 	 * stored. In case of error, the callee need not release the new prog
872 	 * reference, but on success it takes ownership and must bpf_prog_put
873 	 * when it is no longer used.
874 	 */
875 	XDP_SETUP_PROG,
876 	XDP_SETUP_PROG_HW,
877 	/* BPF program for offload callbacks, invoked at program load time. */
878 	BPF_OFFLOAD_MAP_ALLOC,
879 	BPF_OFFLOAD_MAP_FREE,
880 	XDP_SETUP_XSK_POOL,
881 };
882 
883 struct bpf_prog_offload_ops;
884 struct netlink_ext_ack;
885 struct xdp_umem;
886 struct xdp_dev_bulk_queue;
887 struct bpf_xdp_link;
888 
889 enum bpf_xdp_mode {
890 	XDP_MODE_SKB = 0,
891 	XDP_MODE_DRV = 1,
892 	XDP_MODE_HW = 2,
893 	__MAX_XDP_MODE
894 };
895 
896 struct bpf_xdp_entity {
897 	struct bpf_prog *prog;
898 	struct bpf_xdp_link *link;
899 };
900 
901 struct netdev_bpf {
902 	enum bpf_netdev_command command;
903 	union {
904 		/* XDP_SETUP_PROG */
905 		struct {
906 			u32 flags;
907 			struct bpf_prog *prog;
908 			struct netlink_ext_ack *extack;
909 		};
910 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
911 		struct {
912 			struct bpf_offloaded_map *offmap;
913 		};
914 		/* XDP_SETUP_XSK_POOL */
915 		struct {
916 			struct xsk_buff_pool *pool;
917 			u16 queue_id;
918 		} xsk;
919 	};
920 };
921 
922 /* Flags for ndo_xsk_wakeup. */
923 #define XDP_WAKEUP_RX (1 << 0)
924 #define XDP_WAKEUP_TX (1 << 1)
925 
926 #ifdef CONFIG_XFRM_OFFLOAD
927 struct xfrmdev_ops {
928 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
929 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
930 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
931 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
932 				       struct xfrm_state *x);
933 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
934 };
935 #endif
936 
937 struct dev_ifalias {
938 	struct rcu_head rcuhead;
939 	char ifalias[];
940 };
941 
942 struct devlink;
943 struct tlsdev_ops;
944 
945 struct netdev_name_node {
946 	struct hlist_node hlist;
947 	struct list_head list;
948 	struct net_device *dev;
949 	const char *name;
950 };
951 
952 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
953 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
954 
955 struct netdev_net_notifier {
956 	struct list_head list;
957 	struct notifier_block *nb;
958 };
959 
960 /*
961  * This structure defines the management hooks for network devices.
962  * The following hooks can be defined; unless noted otherwise, they are
963  * optional and can be filled with a null pointer.
964  *
965  * int (*ndo_init)(struct net_device *dev);
966  *     This function is called once when a network device is registered.
967  *     The network device can use this for any late stage initialization
968  *     or semantic validation. It can fail with an error code which will
969  *     be propagated back to register_netdev.
970  *
971  * void (*ndo_uninit)(struct net_device *dev);
972  *     This function is called when device is unregistered or when registration
973  *     fails. It is not called if init fails.
974  *
975  * int (*ndo_open)(struct net_device *dev);
976  *     This function is called when a network device transitions to the up
977  *     state.
978  *
979  * int (*ndo_stop)(struct net_device *dev);
980  *     This function is called when a network device transitions to the down
981  *     state.
982  *
983  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
984  *                               struct net_device *dev);
985  *	Called when a packet needs to be transmitted.
986  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
987  *	the queue before that can happen; it's for obsolete devices and weird
988  *	corner cases, but the stack really does a non-trivial amount
989  *	of useless work if you return NETDEV_TX_BUSY.
990  *	Required; cannot be NULL.
991  *
992  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
993  *					   struct net_device *dev
994  *					   netdev_features_t features);
995  *	Called by core transmit path to determine if device is capable of
996  *	performing offload operations on a given packet. This is to give
997  *	the device an opportunity to implement any restrictions that cannot
998  *	be otherwise expressed by feature flags. The check is called with
999  *	the set of features that the stack has calculated and it returns
1000  *	those the driver believes to be appropriate.
1001  *
1002  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1003  *                         struct net_device *sb_dev);
1004  *	Called to decide which queue to use when device supports multiple
1005  *	transmit queues.
1006  *
1007  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1008  *	This function is called to allow device receiver to make
1009  *	changes to configuration when multicast or promiscuous is enabled.
1010  *
1011  * void (*ndo_set_rx_mode)(struct net_device *dev);
1012  *	This function is called device changes address list filtering.
1013  *	If driver handles unicast address filtering, it should set
1014  *	IFF_UNICAST_FLT in its priv_flags.
1015  *
1016  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1017  *	This function  is called when the Media Access Control address
1018  *	needs to be changed. If this interface is not defined, the
1019  *	MAC address can not be changed.
1020  *
1021  * int (*ndo_validate_addr)(struct net_device *dev);
1022  *	Test if Media Access Control address is valid for the device.
1023  *
1024  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1025  *	Called when a user requests an ioctl which can't be handled by
1026  *	the generic interface code. If not defined ioctls return
1027  *	not supported error code.
1028  *
1029  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1030  *	Used to set network devices bus interface parameters. This interface
1031  *	is retained for legacy reasons; new devices should use the bus
1032  *	interface (PCI) for low level management.
1033  *
1034  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1035  *	Called when a user wants to change the Maximum Transfer Unit
1036  *	of a device.
1037  *
1038  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1039  *	Callback used when the transmitter has not made any progress
1040  *	for dev->watchdog ticks.
1041  *
1042  * void (*ndo_get_stats64)(struct net_device *dev,
1043  *                         struct rtnl_link_stats64 *storage);
1044  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1045  *	Called when a user wants to get the network device usage
1046  *	statistics. Drivers must do one of the following:
1047  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1048  *	   rtnl_link_stats64 structure passed by the caller.
1049  *	2. Define @ndo_get_stats to update a net_device_stats structure
1050  *	   (which should normally be dev->stats) and return a pointer to
1051  *	   it. The structure may be changed asynchronously only if each
1052  *	   field is written atomically.
1053  *	3. Update dev->stats asynchronously and atomically, and define
1054  *	   neither operation.
1055  *
1056  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1057  *	Return true if this device supports offload stats of this attr_id.
1058  *
1059  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1060  *	void *attr_data)
1061  *	Get statistics for offload operations by attr_id. Write it into the
1062  *	attr_data pointer.
1063  *
1064  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1065  *	If device supports VLAN filtering this function is called when a
1066  *	VLAN id is registered.
1067  *
1068  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1069  *	If device supports VLAN filtering this function is called when a
1070  *	VLAN id is unregistered.
1071  *
1072  * void (*ndo_poll_controller)(struct net_device *dev);
1073  *
1074  *	SR-IOV management functions.
1075  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1076  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1077  *			  u8 qos, __be16 proto);
1078  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1079  *			  int max_tx_rate);
1080  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1081  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1082  * int (*ndo_get_vf_config)(struct net_device *dev,
1083  *			    int vf, struct ifla_vf_info *ivf);
1084  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1085  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1086  *			  struct nlattr *port[]);
1087  *
1088  *      Enable or disable the VF ability to query its RSS Redirection Table and
1089  *      Hash Key. This is needed since on some devices VF share this information
1090  *      with PF and querying it may introduce a theoretical security risk.
1091  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1092  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1093  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1094  *		       void *type_data);
1095  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1096  *	This is always called from the stack with the rtnl lock held and netif
1097  *	tx queues stopped. This allows the netdevice to perform queue
1098  *	management safely.
1099  *
1100  *	Fiber Channel over Ethernet (FCoE) offload functions.
1101  * int (*ndo_fcoe_enable)(struct net_device *dev);
1102  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1103  *	so the underlying device can perform whatever needed configuration or
1104  *	initialization to support acceleration of FCoE traffic.
1105  *
1106  * int (*ndo_fcoe_disable)(struct net_device *dev);
1107  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1108  *	so the underlying device can perform whatever needed clean-ups to
1109  *	stop supporting acceleration of FCoE traffic.
1110  *
1111  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1112  *			     struct scatterlist *sgl, unsigned int sgc);
1113  *	Called when the FCoE Initiator wants to initialize an I/O that
1114  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1115  *	perform necessary setup and returns 1 to indicate the device is set up
1116  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1117  *
1118  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1119  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1120  *	indicated by the FC exchange id 'xid', so the underlying device can
1121  *	clean up and reuse resources for later DDP requests.
1122  *
1123  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1124  *			      struct scatterlist *sgl, unsigned int sgc);
1125  *	Called when the FCoE Target wants to initialize an I/O that
1126  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1127  *	perform necessary setup and returns 1 to indicate the device is set up
1128  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1129  *
1130  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1131  *			       struct netdev_fcoe_hbainfo *hbainfo);
1132  *	Called when the FCoE Protocol stack wants information on the underlying
1133  *	device. This information is utilized by the FCoE protocol stack to
1134  *	register attributes with Fiber Channel management service as per the
1135  *	FC-GS Fabric Device Management Information(FDMI) specification.
1136  *
1137  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1138  *	Called when the underlying device wants to override default World Wide
1139  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1140  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1141  *	protocol stack to use.
1142  *
1143  *	RFS acceleration.
1144  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1145  *			    u16 rxq_index, u32 flow_id);
1146  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1147  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1148  *	Return the filter ID on success, or a negative error code.
1149  *
1150  *	Slave management functions (for bridge, bonding, etc).
1151  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1152  *	Called to make another netdev an underling.
1153  *
1154  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1155  *	Called to release previously enslaved netdev.
1156  *
1157  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1158  *					    struct sk_buff *skb,
1159  *					    bool all_slaves);
1160  *	Get the xmit slave of master device. If all_slaves is true, function
1161  *	assume all the slaves can transmit.
1162  *
1163  *      Feature/offload setting functions.
1164  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1165  *		netdev_features_t features);
1166  *	Adjusts the requested feature flags according to device-specific
1167  *	constraints, and returns the resulting flags. Must not modify
1168  *	the device state.
1169  *
1170  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1171  *	Called to update device configuration to new features. Passed
1172  *	feature set might be less than what was returned by ndo_fix_features()).
1173  *	Must return >0 or -errno if it changed dev->features itself.
1174  *
1175  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1176  *		      struct net_device *dev,
1177  *		      const unsigned char *addr, u16 vid, u16 flags,
1178  *		      struct netlink_ext_ack *extack);
1179  *	Adds an FDB entry to dev for addr.
1180  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1181  *		      struct net_device *dev,
1182  *		      const unsigned char *addr, u16 vid)
1183  *	Deletes the FDB entry from dev coresponding to addr.
1184  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1185  *		       struct net_device *dev, struct net_device *filter_dev,
1186  *		       int *idx)
1187  *	Used to add FDB entries to dump requests. Implementers should add
1188  *	entries to skb and update idx with the number of entries.
1189  *
1190  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1191  *			     u16 flags, struct netlink_ext_ack *extack)
1192  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1193  *			     struct net_device *dev, u32 filter_mask,
1194  *			     int nlflags)
1195  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1196  *			     u16 flags);
1197  *
1198  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1199  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1200  *	which do not represent real hardware may define this to allow their
1201  *	userspace components to manage their virtual carrier state. Devices
1202  *	that determine carrier state from physical hardware properties (eg
1203  *	network cables) or protocol-dependent mechanisms (eg
1204  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1205  *
1206  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1207  *			       struct netdev_phys_item_id *ppid);
1208  *	Called to get ID of physical port of this device. If driver does
1209  *	not implement this, it is assumed that the hw is not able to have
1210  *	multiple net devices on single physical port.
1211  *
1212  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1213  *				 struct netdev_phys_item_id *ppid)
1214  *	Called to get the parent ID of the physical port of this device.
1215  *
1216  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1217  *				 struct net_device *dev)
1218  *	Called by upper layer devices to accelerate switching or other
1219  *	station functionality into hardware. 'pdev is the lowerdev
1220  *	to use for the offload and 'dev' is the net device that will
1221  *	back the offload. Returns a pointer to the private structure
1222  *	the upper layer will maintain.
1223  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1224  *	Called by upper layer device to delete the station created
1225  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1226  *	the station and priv is the structure returned by the add
1227  *	operation.
1228  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1229  *			     int queue_index, u32 maxrate);
1230  *	Called when a user wants to set a max-rate limitation of specific
1231  *	TX queue.
1232  * int (*ndo_get_iflink)(const struct net_device *dev);
1233  *	Called to get the iflink value of this device.
1234  * void (*ndo_change_proto_down)(struct net_device *dev,
1235  *				 bool proto_down);
1236  *	This function is used to pass protocol port error state information
1237  *	to the switch driver. The switch driver can react to the proto_down
1238  *      by doing a phys down on the associated switch port.
1239  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1240  *	This function is used to get egress tunnel information for given skb.
1241  *	This is useful for retrieving outer tunnel header parameters while
1242  *	sampling packet.
1243  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1244  *	This function is used to specify the headroom that the skb must
1245  *	consider when allocation skb during packet reception. Setting
1246  *	appropriate rx headroom value allows avoiding skb head copy on
1247  *	forward. Setting a negative value resets the rx headroom to the
1248  *	default value.
1249  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1250  *	This function is used to set or query state related to XDP on the
1251  *	netdevice and manage BPF offload. See definition of
1252  *	enum bpf_netdev_command for details.
1253  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1254  *			u32 flags);
1255  *	This function is used to submit @n XDP packets for transmit on a
1256  *	netdevice. Returns number of frames successfully transmitted, frames
1257  *	that got dropped are freed/returned via xdp_return_frame().
1258  *	Returns negative number, means general error invoking ndo, meaning
1259  *	no frames were xmit'ed and core-caller will free all frames.
1260  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1261  *      This function is used to wake up the softirq, ksoftirqd or kthread
1262  *	responsible for sending and/or receiving packets on a specific
1263  *	queue id bound to an AF_XDP socket. The flags field specifies if
1264  *	only RX, only Tx, or both should be woken up using the flags
1265  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1266  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1267  *	Get devlink port instance associated with a given netdev.
1268  *	Called with a reference on the netdevice and devlink locks only,
1269  *	rtnl_lock is not held.
1270  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1271  *			 int cmd);
1272  *	Add, change, delete or get information on an IPv4 tunnel.
1273  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1274  *	If a device is paired with a peer device, return the peer instance.
1275  *	The caller must be under RCU read context.
1276  */
1277 struct net_device_ops {
1278 	int			(*ndo_init)(struct net_device *dev);
1279 	void			(*ndo_uninit)(struct net_device *dev);
1280 	int			(*ndo_open)(struct net_device *dev);
1281 	int			(*ndo_stop)(struct net_device *dev);
1282 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1283 						  struct net_device *dev);
1284 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1285 						      struct net_device *dev,
1286 						      netdev_features_t features);
1287 	u16			(*ndo_select_queue)(struct net_device *dev,
1288 						    struct sk_buff *skb,
1289 						    struct net_device *sb_dev);
1290 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1291 						       int flags);
1292 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1293 	int			(*ndo_set_mac_address)(struct net_device *dev,
1294 						       void *addr);
1295 	int			(*ndo_validate_addr)(struct net_device *dev);
1296 	int			(*ndo_do_ioctl)(struct net_device *dev,
1297 					        struct ifreq *ifr, int cmd);
1298 	int			(*ndo_set_config)(struct net_device *dev,
1299 					          struct ifmap *map);
1300 	int			(*ndo_change_mtu)(struct net_device *dev,
1301 						  int new_mtu);
1302 	int			(*ndo_neigh_setup)(struct net_device *dev,
1303 						   struct neigh_parms *);
1304 	void			(*ndo_tx_timeout) (struct net_device *dev,
1305 						   unsigned int txqueue);
1306 
1307 	void			(*ndo_get_stats64)(struct net_device *dev,
1308 						   struct rtnl_link_stats64 *storage);
1309 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1310 	int			(*ndo_get_offload_stats)(int attr_id,
1311 							 const struct net_device *dev,
1312 							 void *attr_data);
1313 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1314 
1315 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1316 						       __be16 proto, u16 vid);
1317 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1318 						        __be16 proto, u16 vid);
1319 #ifdef CONFIG_NET_POLL_CONTROLLER
1320 	void                    (*ndo_poll_controller)(struct net_device *dev);
1321 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1322 						     struct netpoll_info *info);
1323 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1324 #endif
1325 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1326 						  int queue, u8 *mac);
1327 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1328 						   int queue, u16 vlan,
1329 						   u8 qos, __be16 proto);
1330 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1331 						   int vf, int min_tx_rate,
1332 						   int max_tx_rate);
1333 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1334 						       int vf, bool setting);
1335 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1336 						    int vf, bool setting);
1337 	int			(*ndo_get_vf_config)(struct net_device *dev,
1338 						     int vf,
1339 						     struct ifla_vf_info *ivf);
1340 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1341 							 int vf, int link_state);
1342 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1343 						    int vf,
1344 						    struct ifla_vf_stats
1345 						    *vf_stats);
1346 	int			(*ndo_set_vf_port)(struct net_device *dev,
1347 						   int vf,
1348 						   struct nlattr *port[]);
1349 	int			(*ndo_get_vf_port)(struct net_device *dev,
1350 						   int vf, struct sk_buff *skb);
1351 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1352 						   int vf,
1353 						   struct ifla_vf_guid *node_guid,
1354 						   struct ifla_vf_guid *port_guid);
1355 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1356 						   int vf, u64 guid,
1357 						   int guid_type);
1358 	int			(*ndo_set_vf_rss_query_en)(
1359 						   struct net_device *dev,
1360 						   int vf, bool setting);
1361 	int			(*ndo_setup_tc)(struct net_device *dev,
1362 						enum tc_setup_type type,
1363 						void *type_data);
1364 #if IS_ENABLED(CONFIG_FCOE)
1365 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1366 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1367 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1368 						      u16 xid,
1369 						      struct scatterlist *sgl,
1370 						      unsigned int sgc);
1371 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1372 						     u16 xid);
1373 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1374 						       u16 xid,
1375 						       struct scatterlist *sgl,
1376 						       unsigned int sgc);
1377 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1378 							struct netdev_fcoe_hbainfo *hbainfo);
1379 #endif
1380 
1381 #if IS_ENABLED(CONFIG_LIBFCOE)
1382 #define NETDEV_FCOE_WWNN 0
1383 #define NETDEV_FCOE_WWPN 1
1384 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1385 						    u64 *wwn, int type);
1386 #endif
1387 
1388 #ifdef CONFIG_RFS_ACCEL
1389 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1390 						     const struct sk_buff *skb,
1391 						     u16 rxq_index,
1392 						     u32 flow_id);
1393 #endif
1394 	int			(*ndo_add_slave)(struct net_device *dev,
1395 						 struct net_device *slave_dev,
1396 						 struct netlink_ext_ack *extack);
1397 	int			(*ndo_del_slave)(struct net_device *dev,
1398 						 struct net_device *slave_dev);
1399 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1400 						      struct sk_buff *skb,
1401 						      bool all_slaves);
1402 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1403 							struct sock *sk);
1404 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1405 						    netdev_features_t features);
1406 	int			(*ndo_set_features)(struct net_device *dev,
1407 						    netdev_features_t features);
1408 	int			(*ndo_neigh_construct)(struct net_device *dev,
1409 						       struct neighbour *n);
1410 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1411 						     struct neighbour *n);
1412 
1413 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1414 					       struct nlattr *tb[],
1415 					       struct net_device *dev,
1416 					       const unsigned char *addr,
1417 					       u16 vid,
1418 					       u16 flags,
1419 					       struct netlink_ext_ack *extack);
1420 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1421 					       struct nlattr *tb[],
1422 					       struct net_device *dev,
1423 					       const unsigned char *addr,
1424 					       u16 vid);
1425 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1426 						struct netlink_callback *cb,
1427 						struct net_device *dev,
1428 						struct net_device *filter_dev,
1429 						int *idx);
1430 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1431 					       struct nlattr *tb[],
1432 					       struct net_device *dev,
1433 					       const unsigned char *addr,
1434 					       u16 vid, u32 portid, u32 seq,
1435 					       struct netlink_ext_ack *extack);
1436 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1437 						      struct nlmsghdr *nlh,
1438 						      u16 flags,
1439 						      struct netlink_ext_ack *extack);
1440 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1441 						      u32 pid, u32 seq,
1442 						      struct net_device *dev,
1443 						      u32 filter_mask,
1444 						      int nlflags);
1445 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1446 						      struct nlmsghdr *nlh,
1447 						      u16 flags);
1448 	int			(*ndo_change_carrier)(struct net_device *dev,
1449 						      bool new_carrier);
1450 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1451 							struct netdev_phys_item_id *ppid);
1452 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1453 							  struct netdev_phys_item_id *ppid);
1454 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1455 							  char *name, size_t len);
1456 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1457 							struct net_device *dev);
1458 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1459 							void *priv);
1460 
1461 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1462 						      int queue_index,
1463 						      u32 maxrate);
1464 	int			(*ndo_get_iflink)(const struct net_device *dev);
1465 	int			(*ndo_change_proto_down)(struct net_device *dev,
1466 							 bool proto_down);
1467 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1468 						       struct sk_buff *skb);
1469 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1470 						       int needed_headroom);
1471 	int			(*ndo_bpf)(struct net_device *dev,
1472 					   struct netdev_bpf *bpf);
1473 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1474 						struct xdp_frame **xdp,
1475 						u32 flags);
1476 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1477 						  u32 queue_id, u32 flags);
1478 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1479 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1480 						  struct ip_tunnel_parm *p, int cmd);
1481 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1482 };
1483 
1484 /**
1485  * enum netdev_priv_flags - &struct net_device priv_flags
1486  *
1487  * These are the &struct net_device, they are only set internally
1488  * by drivers and used in the kernel. These flags are invisible to
1489  * userspace; this means that the order of these flags can change
1490  * during any kernel release.
1491  *
1492  * You should have a pretty good reason to be extending these flags.
1493  *
1494  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1495  * @IFF_EBRIDGE: Ethernet bridging device
1496  * @IFF_BONDING: bonding master or slave
1497  * @IFF_ISATAP: ISATAP interface (RFC4214)
1498  * @IFF_WAN_HDLC: WAN HDLC device
1499  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1500  *	release skb->dst
1501  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1502  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1503  * @IFF_MACVLAN_PORT: device used as macvlan port
1504  * @IFF_BRIDGE_PORT: device used as bridge port
1505  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1506  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1507  * @IFF_UNICAST_FLT: Supports unicast filtering
1508  * @IFF_TEAM_PORT: device used as team port
1509  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1510  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1511  *	change when it's running
1512  * @IFF_MACVLAN: Macvlan device
1513  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1514  *	underlying stacked devices
1515  * @IFF_L3MDEV_MASTER: device is an L3 master device
1516  * @IFF_NO_QUEUE: device can run without qdisc attached
1517  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1518  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1519  * @IFF_TEAM: device is a team device
1520  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1521  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1522  *	entity (i.e. the master device for bridged veth)
1523  * @IFF_MACSEC: device is a MACsec device
1524  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1525  * @IFF_FAILOVER: device is a failover master device
1526  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1527  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1528  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1529  */
1530 enum netdev_priv_flags {
1531 	IFF_802_1Q_VLAN			= 1<<0,
1532 	IFF_EBRIDGE			= 1<<1,
1533 	IFF_BONDING			= 1<<2,
1534 	IFF_ISATAP			= 1<<3,
1535 	IFF_WAN_HDLC			= 1<<4,
1536 	IFF_XMIT_DST_RELEASE		= 1<<5,
1537 	IFF_DONT_BRIDGE			= 1<<6,
1538 	IFF_DISABLE_NETPOLL		= 1<<7,
1539 	IFF_MACVLAN_PORT		= 1<<8,
1540 	IFF_BRIDGE_PORT			= 1<<9,
1541 	IFF_OVS_DATAPATH		= 1<<10,
1542 	IFF_TX_SKB_SHARING		= 1<<11,
1543 	IFF_UNICAST_FLT			= 1<<12,
1544 	IFF_TEAM_PORT			= 1<<13,
1545 	IFF_SUPP_NOFCS			= 1<<14,
1546 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1547 	IFF_MACVLAN			= 1<<16,
1548 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1549 	IFF_L3MDEV_MASTER		= 1<<18,
1550 	IFF_NO_QUEUE			= 1<<19,
1551 	IFF_OPENVSWITCH			= 1<<20,
1552 	IFF_L3MDEV_SLAVE		= 1<<21,
1553 	IFF_TEAM			= 1<<22,
1554 	IFF_RXFH_CONFIGURED		= 1<<23,
1555 	IFF_PHONY_HEADROOM		= 1<<24,
1556 	IFF_MACSEC			= 1<<25,
1557 	IFF_NO_RX_HANDLER		= 1<<26,
1558 	IFF_FAILOVER			= 1<<27,
1559 	IFF_FAILOVER_SLAVE		= 1<<28,
1560 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1561 	IFF_LIVE_RENAME_OK		= 1<<30,
1562 };
1563 
1564 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1565 #define IFF_EBRIDGE			IFF_EBRIDGE
1566 #define IFF_BONDING			IFF_BONDING
1567 #define IFF_ISATAP			IFF_ISATAP
1568 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1569 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1570 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1571 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1572 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1573 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1574 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1575 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1576 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1577 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1578 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1579 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1580 #define IFF_MACVLAN			IFF_MACVLAN
1581 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1582 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1583 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1584 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1585 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1586 #define IFF_TEAM			IFF_TEAM
1587 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1588 #define IFF_MACSEC			IFF_MACSEC
1589 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1590 #define IFF_FAILOVER			IFF_FAILOVER
1591 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1592 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1593 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1594 
1595 /**
1596  *	struct net_device - The DEVICE structure.
1597  *
1598  *	Actually, this whole structure is a big mistake.  It mixes I/O
1599  *	data with strictly "high-level" data, and it has to know about
1600  *	almost every data structure used in the INET module.
1601  *
1602  *	@name:	This is the first field of the "visible" part of this structure
1603  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1604  *		of the interface.
1605  *
1606  *	@name_node:	Name hashlist node
1607  *	@ifalias:	SNMP alias
1608  *	@mem_end:	Shared memory end
1609  *	@mem_start:	Shared memory start
1610  *	@base_addr:	Device I/O address
1611  *	@irq:		Device IRQ number
1612  *
1613  *	@state:		Generic network queuing layer state, see netdev_state_t
1614  *	@dev_list:	The global list of network devices
1615  *	@napi_list:	List entry used for polling NAPI devices
1616  *	@unreg_list:	List entry  when we are unregistering the
1617  *			device; see the function unregister_netdev
1618  *	@close_list:	List entry used when we are closing the device
1619  *	@ptype_all:     Device-specific packet handlers for all protocols
1620  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1621  *
1622  *	@adj_list:	Directly linked devices, like slaves for bonding
1623  *	@features:	Currently active device features
1624  *	@hw_features:	User-changeable features
1625  *
1626  *	@wanted_features:	User-requested features
1627  *	@vlan_features:		Mask of features inheritable by VLAN devices
1628  *
1629  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1630  *				This field indicates what encapsulation
1631  *				offloads the hardware is capable of doing,
1632  *				and drivers will need to set them appropriately.
1633  *
1634  *	@mpls_features:	Mask of features inheritable by MPLS
1635  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1636  *
1637  *	@ifindex:	interface index
1638  *	@group:		The group the device belongs to
1639  *
1640  *	@stats:		Statistics struct, which was left as a legacy, use
1641  *			rtnl_link_stats64 instead
1642  *
1643  *	@rx_dropped:	Dropped packets by core network,
1644  *			do not use this in drivers
1645  *	@tx_dropped:	Dropped packets by core network,
1646  *			do not use this in drivers
1647  *	@rx_nohandler:	nohandler dropped packets by core network on
1648  *			inactive devices, do not use this in drivers
1649  *	@carrier_up_count:	Number of times the carrier has been up
1650  *	@carrier_down_count:	Number of times the carrier has been down
1651  *
1652  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1653  *				instead of ioctl,
1654  *				see <net/iw_handler.h> for details.
1655  *	@wireless_data:	Instance data managed by the core of wireless extensions
1656  *
1657  *	@netdev_ops:	Includes several pointers to callbacks,
1658  *			if one wants to override the ndo_*() functions
1659  *	@ethtool_ops:	Management operations
1660  *	@l3mdev_ops:	Layer 3 master device operations
1661  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1662  *			discovery handling. Necessary for e.g. 6LoWPAN.
1663  *	@xfrmdev_ops:	Transformation offload operations
1664  *	@tlsdev_ops:	Transport Layer Security offload operations
1665  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1666  *			of Layer 2 headers.
1667  *
1668  *	@flags:		Interface flags (a la BSD)
1669  *	@priv_flags:	Like 'flags' but invisible to userspace,
1670  *			see if.h for the definitions
1671  *	@gflags:	Global flags ( kept as legacy )
1672  *	@padded:	How much padding added by alloc_netdev()
1673  *	@operstate:	RFC2863 operstate
1674  *	@link_mode:	Mapping policy to operstate
1675  *	@if_port:	Selectable AUI, TP, ...
1676  *	@dma:		DMA channel
1677  *	@mtu:		Interface MTU value
1678  *	@min_mtu:	Interface Minimum MTU value
1679  *	@max_mtu:	Interface Maximum MTU value
1680  *	@type:		Interface hardware type
1681  *	@hard_header_len: Maximum hardware header length.
1682  *	@min_header_len:  Minimum hardware header length
1683  *
1684  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1685  *			  cases can this be guaranteed
1686  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1687  *			  cases can this be guaranteed. Some cases also use
1688  *			  LL_MAX_HEADER instead to allocate the skb
1689  *
1690  *	interface address info:
1691  *
1692  * 	@perm_addr:		Permanent hw address
1693  * 	@addr_assign_type:	Hw address assignment type
1694  * 	@addr_len:		Hardware address length
1695  *	@upper_level:		Maximum depth level of upper devices.
1696  *	@lower_level:		Maximum depth level of lower devices.
1697  *	@neigh_priv_len:	Used in neigh_alloc()
1698  * 	@dev_id:		Used to differentiate devices that share
1699  * 				the same link layer address
1700  * 	@dev_port:		Used to differentiate devices that share
1701  * 				the same function
1702  *	@addr_list_lock:	XXX: need comments on this one
1703  *	@name_assign_type:	network interface name assignment type
1704  *	@uc_promisc:		Counter that indicates promiscuous mode
1705  *				has been enabled due to the need to listen to
1706  *				additional unicast addresses in a device that
1707  *				does not implement ndo_set_rx_mode()
1708  *	@uc:			unicast mac addresses
1709  *	@mc:			multicast mac addresses
1710  *	@dev_addrs:		list of device hw addresses
1711  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1712  *	@promiscuity:		Number of times the NIC is told to work in
1713  *				promiscuous mode; if it becomes 0 the NIC will
1714  *				exit promiscuous mode
1715  *	@allmulti:		Counter, enables or disables allmulticast mode
1716  *
1717  *	@vlan_info:	VLAN info
1718  *	@dsa_ptr:	dsa specific data
1719  *	@tipc_ptr:	TIPC specific data
1720  *	@atalk_ptr:	AppleTalk link
1721  *	@ip_ptr:	IPv4 specific data
1722  *	@dn_ptr:	DECnet specific data
1723  *	@ip6_ptr:	IPv6 specific data
1724  *	@ax25_ptr:	AX.25 specific data
1725  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1726  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1727  *			 device struct
1728  *	@mpls_ptr:	mpls_dev struct pointer
1729  *
1730  *	@dev_addr:	Hw address (before bcast,
1731  *			because most packets are unicast)
1732  *
1733  *	@_rx:			Array of RX queues
1734  *	@num_rx_queues:		Number of RX queues
1735  *				allocated at register_netdev() time
1736  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1737  *	@xdp_prog:		XDP sockets filter program pointer
1738  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1739  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1740  *				allow to avoid NIC hard IRQ, on busy queues.
1741  *
1742  *	@rx_handler:		handler for received packets
1743  *	@rx_handler_data: 	XXX: need comments on this one
1744  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1745  *				ingress processing
1746  *	@ingress_queue:		XXX: need comments on this one
1747  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1748  *	@broadcast:		hw bcast address
1749  *
1750  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1751  *			indexed by RX queue number. Assigned by driver.
1752  *			This must only be set if the ndo_rx_flow_steer
1753  *			operation is defined
1754  *	@index_hlist:		Device index hash chain
1755  *
1756  *	@_tx:			Array of TX queues
1757  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1758  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1759  *	@qdisc:			Root qdisc from userspace point of view
1760  *	@tx_queue_len:		Max frames per queue allowed
1761  *	@tx_global_lock: 	XXX: need comments on this one
1762  *	@xdp_bulkq:		XDP device bulk queue
1763  *	@xps_cpus_map:		all CPUs map for XPS device
1764  *	@xps_rxqs_map:		all RXQs map for XPS device
1765  *
1766  *	@xps_maps:	XXX: need comments on this one
1767  *	@miniq_egress:		clsact qdisc specific data for
1768  *				egress processing
1769  *	@qdisc_hash:		qdisc hash table
1770  *	@watchdog_timeo:	Represents the timeout that is used by
1771  *				the watchdog (see dev_watchdog())
1772  *	@watchdog_timer:	List of timers
1773  *
1774  *	@proto_down_reason:	reason a netdev interface is held down
1775  *	@pcpu_refcnt:		Number of references to this device
1776  *	@todo_list:		Delayed register/unregister
1777  *	@link_watch_list:	XXX: need comments on this one
1778  *
1779  *	@reg_state:		Register/unregister state machine
1780  *	@dismantle:		Device is going to be freed
1781  *	@rtnl_link_state:	This enum represents the phases of creating
1782  *				a new link
1783  *
1784  *	@needs_free_netdev:	Should unregister perform free_netdev?
1785  *	@priv_destructor:	Called from unregister
1786  *	@npinfo:		XXX: need comments on this one
1787  * 	@nd_net:		Network namespace this network device is inside
1788  *
1789  * 	@ml_priv:	Mid-layer private
1790  * 	@lstats:	Loopback statistics
1791  * 	@tstats:	Tunnel statistics
1792  * 	@dstats:	Dummy statistics
1793  * 	@vstats:	Virtual ethernet statistics
1794  *
1795  *	@garp_port:	GARP
1796  *	@mrp_port:	MRP
1797  *
1798  *	@dev:		Class/net/name entry
1799  *	@sysfs_groups:	Space for optional device, statistics and wireless
1800  *			sysfs groups
1801  *
1802  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1803  *	@rtnl_link_ops:	Rtnl_link_ops
1804  *
1805  *	@gso_max_size:	Maximum size of generic segmentation offload
1806  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1807  *			NIC for GSO
1808  *
1809  *	@dcbnl_ops:	Data Center Bridging netlink ops
1810  *	@num_tc:	Number of traffic classes in the net device
1811  *	@tc_to_txq:	XXX: need comments on this one
1812  *	@prio_tc_map:	XXX: need comments on this one
1813  *
1814  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1815  *
1816  *	@priomap:	XXX: need comments on this one
1817  *	@phydev:	Physical device may attach itself
1818  *			for hardware timestamping
1819  *	@sfp_bus:	attached &struct sfp_bus structure.
1820  *
1821  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1822  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1823  *
1824  *	@proto_down:	protocol port state information can be sent to the
1825  *			switch driver and used to set the phys state of the
1826  *			switch port.
1827  *
1828  *	@wol_enabled:	Wake-on-LAN is enabled
1829  *
1830  *	@net_notifier_list:	List of per-net netdev notifier block
1831  *				that follow this device when it is moved
1832  *				to another network namespace.
1833  *
1834  *	@macsec_ops:    MACsec offloading ops
1835  *
1836  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1837  *				offload capabilities of the device
1838  *	@udp_tunnel_nic:	UDP tunnel offload state
1839  *	@xdp_state:		stores info on attached XDP BPF programs
1840  *
1841  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1842  *			dev->addr_list_lock.
1843  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1844  *			keep a list of interfaces to be deleted.
1845  *
1846  *	FIXME: cleanup struct net_device such that network protocol info
1847  *	moves out.
1848  */
1849 
1850 struct net_device {
1851 	char			name[IFNAMSIZ];
1852 	struct netdev_name_node	*name_node;
1853 	struct dev_ifalias	__rcu *ifalias;
1854 	/*
1855 	 *	I/O specific fields
1856 	 *	FIXME: Merge these and struct ifmap into one
1857 	 */
1858 	unsigned long		mem_end;
1859 	unsigned long		mem_start;
1860 	unsigned long		base_addr;
1861 	int			irq;
1862 
1863 	/*
1864 	 *	Some hardware also needs these fields (state,dev_list,
1865 	 *	napi_list,unreg_list,close_list) but they are not
1866 	 *	part of the usual set specified in Space.c.
1867 	 */
1868 
1869 	unsigned long		state;
1870 
1871 	struct list_head	dev_list;
1872 	struct list_head	napi_list;
1873 	struct list_head	unreg_list;
1874 	struct list_head	close_list;
1875 	struct list_head	ptype_all;
1876 	struct list_head	ptype_specific;
1877 
1878 	struct {
1879 		struct list_head upper;
1880 		struct list_head lower;
1881 	} adj_list;
1882 
1883 	netdev_features_t	features;
1884 	netdev_features_t	hw_features;
1885 	netdev_features_t	wanted_features;
1886 	netdev_features_t	vlan_features;
1887 	netdev_features_t	hw_enc_features;
1888 	netdev_features_t	mpls_features;
1889 	netdev_features_t	gso_partial_features;
1890 
1891 	int			ifindex;
1892 	int			group;
1893 
1894 	struct net_device_stats	stats;
1895 
1896 	atomic_long_t		rx_dropped;
1897 	atomic_long_t		tx_dropped;
1898 	atomic_long_t		rx_nohandler;
1899 
1900 	/* Stats to monitor link on/off, flapping */
1901 	atomic_t		carrier_up_count;
1902 	atomic_t		carrier_down_count;
1903 
1904 #ifdef CONFIG_WIRELESS_EXT
1905 	const struct iw_handler_def *wireless_handlers;
1906 	struct iw_public_data	*wireless_data;
1907 #endif
1908 	const struct net_device_ops *netdev_ops;
1909 	const struct ethtool_ops *ethtool_ops;
1910 #ifdef CONFIG_NET_L3_MASTER_DEV
1911 	const struct l3mdev_ops	*l3mdev_ops;
1912 #endif
1913 #if IS_ENABLED(CONFIG_IPV6)
1914 	const struct ndisc_ops *ndisc_ops;
1915 #endif
1916 
1917 #ifdef CONFIG_XFRM_OFFLOAD
1918 	const struct xfrmdev_ops *xfrmdev_ops;
1919 #endif
1920 
1921 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1922 	const struct tlsdev_ops *tlsdev_ops;
1923 #endif
1924 
1925 	const struct header_ops *header_ops;
1926 
1927 	unsigned int		flags;
1928 	unsigned int		priv_flags;
1929 
1930 	unsigned short		gflags;
1931 	unsigned short		padded;
1932 
1933 	unsigned char		operstate;
1934 	unsigned char		link_mode;
1935 
1936 	unsigned char		if_port;
1937 	unsigned char		dma;
1938 
1939 	/* Note : dev->mtu is often read without holding a lock.
1940 	 * Writers usually hold RTNL.
1941 	 * It is recommended to use READ_ONCE() to annotate the reads,
1942 	 * and to use WRITE_ONCE() to annotate the writes.
1943 	 */
1944 	unsigned int		mtu;
1945 	unsigned int		min_mtu;
1946 	unsigned int		max_mtu;
1947 	unsigned short		type;
1948 	unsigned short		hard_header_len;
1949 	unsigned char		min_header_len;
1950 	unsigned char		name_assign_type;
1951 
1952 	unsigned short		needed_headroom;
1953 	unsigned short		needed_tailroom;
1954 
1955 	/* Interface address info. */
1956 	unsigned char		perm_addr[MAX_ADDR_LEN];
1957 	unsigned char		addr_assign_type;
1958 	unsigned char		addr_len;
1959 	unsigned char		upper_level;
1960 	unsigned char		lower_level;
1961 
1962 	unsigned short		neigh_priv_len;
1963 	unsigned short          dev_id;
1964 	unsigned short          dev_port;
1965 	spinlock_t		addr_list_lock;
1966 
1967 	struct netdev_hw_addr_list	uc;
1968 	struct netdev_hw_addr_list	mc;
1969 	struct netdev_hw_addr_list	dev_addrs;
1970 
1971 #ifdef CONFIG_SYSFS
1972 	struct kset		*queues_kset;
1973 #endif
1974 #ifdef CONFIG_LOCKDEP
1975 	struct list_head	unlink_list;
1976 #endif
1977 	unsigned int		promiscuity;
1978 	unsigned int		allmulti;
1979 	bool			uc_promisc;
1980 #ifdef CONFIG_LOCKDEP
1981 	unsigned char		nested_level;
1982 #endif
1983 
1984 
1985 	/* Protocol-specific pointers */
1986 
1987 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1988 	struct vlan_info __rcu	*vlan_info;
1989 #endif
1990 #if IS_ENABLED(CONFIG_NET_DSA)
1991 	struct dsa_port		*dsa_ptr;
1992 #endif
1993 #if IS_ENABLED(CONFIG_TIPC)
1994 	struct tipc_bearer __rcu *tipc_ptr;
1995 #endif
1996 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1997 	void 			*atalk_ptr;
1998 #endif
1999 	struct in_device __rcu	*ip_ptr;
2000 #if IS_ENABLED(CONFIG_DECNET)
2001 	struct dn_dev __rcu     *dn_ptr;
2002 #endif
2003 	struct inet6_dev __rcu	*ip6_ptr;
2004 #if IS_ENABLED(CONFIG_AX25)
2005 	void			*ax25_ptr;
2006 #endif
2007 	struct wireless_dev	*ieee80211_ptr;
2008 	struct wpan_dev		*ieee802154_ptr;
2009 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2010 	struct mpls_dev __rcu	*mpls_ptr;
2011 #endif
2012 
2013 /*
2014  * Cache lines mostly used on receive path (including eth_type_trans())
2015  */
2016 	/* Interface address info used in eth_type_trans() */
2017 	unsigned char		*dev_addr;
2018 
2019 	struct netdev_rx_queue	*_rx;
2020 	unsigned int		num_rx_queues;
2021 	unsigned int		real_num_rx_queues;
2022 
2023 	struct bpf_prog __rcu	*xdp_prog;
2024 	unsigned long		gro_flush_timeout;
2025 	int			napi_defer_hard_irqs;
2026 	rx_handler_func_t __rcu	*rx_handler;
2027 	void __rcu		*rx_handler_data;
2028 
2029 #ifdef CONFIG_NET_CLS_ACT
2030 	struct mini_Qdisc __rcu	*miniq_ingress;
2031 #endif
2032 	struct netdev_queue __rcu *ingress_queue;
2033 #ifdef CONFIG_NETFILTER_INGRESS
2034 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2035 #endif
2036 
2037 	unsigned char		broadcast[MAX_ADDR_LEN];
2038 #ifdef CONFIG_RFS_ACCEL
2039 	struct cpu_rmap		*rx_cpu_rmap;
2040 #endif
2041 	struct hlist_node	index_hlist;
2042 
2043 /*
2044  * Cache lines mostly used on transmit path
2045  */
2046 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2047 	unsigned int		num_tx_queues;
2048 	unsigned int		real_num_tx_queues;
2049 	struct Qdisc		*qdisc;
2050 	unsigned int		tx_queue_len;
2051 	spinlock_t		tx_global_lock;
2052 
2053 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2054 
2055 #ifdef CONFIG_XPS
2056 	struct xps_dev_maps __rcu *xps_cpus_map;
2057 	struct xps_dev_maps __rcu *xps_rxqs_map;
2058 #endif
2059 #ifdef CONFIG_NET_CLS_ACT
2060 	struct mini_Qdisc __rcu	*miniq_egress;
2061 #endif
2062 
2063 #ifdef CONFIG_NET_SCHED
2064 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2065 #endif
2066 	/* These may be needed for future network-power-down code. */
2067 	struct timer_list	watchdog_timer;
2068 	int			watchdog_timeo;
2069 
2070 	u32                     proto_down_reason;
2071 
2072 	struct list_head	todo_list;
2073 	int __percpu		*pcpu_refcnt;
2074 
2075 	struct list_head	link_watch_list;
2076 
2077 	enum { NETREG_UNINITIALIZED=0,
2078 	       NETREG_REGISTERED,	/* completed register_netdevice */
2079 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2080 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2081 	       NETREG_RELEASED,		/* called free_netdev */
2082 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2083 	} reg_state:8;
2084 
2085 	bool dismantle;
2086 
2087 	enum {
2088 		RTNL_LINK_INITIALIZED,
2089 		RTNL_LINK_INITIALIZING,
2090 	} rtnl_link_state:16;
2091 
2092 	bool needs_free_netdev;
2093 	void (*priv_destructor)(struct net_device *dev);
2094 
2095 #ifdef CONFIG_NETPOLL
2096 	struct netpoll_info __rcu	*npinfo;
2097 #endif
2098 
2099 	possible_net_t			nd_net;
2100 
2101 	/* mid-layer private */
2102 	union {
2103 		void					*ml_priv;
2104 		struct pcpu_lstats __percpu		*lstats;
2105 		struct pcpu_sw_netstats __percpu	*tstats;
2106 		struct pcpu_dstats __percpu		*dstats;
2107 	};
2108 
2109 #if IS_ENABLED(CONFIG_GARP)
2110 	struct garp_port __rcu	*garp_port;
2111 #endif
2112 #if IS_ENABLED(CONFIG_MRP)
2113 	struct mrp_port __rcu	*mrp_port;
2114 #endif
2115 
2116 	struct device		dev;
2117 	const struct attribute_group *sysfs_groups[4];
2118 	const struct attribute_group *sysfs_rx_queue_group;
2119 
2120 	const struct rtnl_link_ops *rtnl_link_ops;
2121 
2122 	/* for setting kernel sock attribute on TCP connection setup */
2123 #define GSO_MAX_SIZE		65536
2124 	unsigned int		gso_max_size;
2125 #define GSO_MAX_SEGS		65535
2126 	u16			gso_max_segs;
2127 
2128 #ifdef CONFIG_DCB
2129 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2130 #endif
2131 	s16			num_tc;
2132 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2133 	u8			prio_tc_map[TC_BITMASK + 1];
2134 
2135 #if IS_ENABLED(CONFIG_FCOE)
2136 	unsigned int		fcoe_ddp_xid;
2137 #endif
2138 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2139 	struct netprio_map __rcu *priomap;
2140 #endif
2141 	struct phy_device	*phydev;
2142 	struct sfp_bus		*sfp_bus;
2143 	struct lock_class_key	*qdisc_tx_busylock;
2144 	struct lock_class_key	*qdisc_running_key;
2145 	bool			proto_down;
2146 	unsigned		wol_enabled:1;
2147 
2148 	struct list_head	net_notifier_list;
2149 
2150 #if IS_ENABLED(CONFIG_MACSEC)
2151 	/* MACsec management functions */
2152 	const struct macsec_ops *macsec_ops;
2153 #endif
2154 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2155 	struct udp_tunnel_nic	*udp_tunnel_nic;
2156 
2157 	/* protected by rtnl_lock */
2158 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2159 };
2160 #define to_net_dev(d) container_of(d, struct net_device, dev)
2161 
2162 static inline bool netif_elide_gro(const struct net_device *dev)
2163 {
2164 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2165 		return true;
2166 	return false;
2167 }
2168 
2169 #define	NETDEV_ALIGN		32
2170 
2171 static inline
2172 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2173 {
2174 	return dev->prio_tc_map[prio & TC_BITMASK];
2175 }
2176 
2177 static inline
2178 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2179 {
2180 	if (tc >= dev->num_tc)
2181 		return -EINVAL;
2182 
2183 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2184 	return 0;
2185 }
2186 
2187 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2188 void netdev_reset_tc(struct net_device *dev);
2189 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2190 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2191 
2192 static inline
2193 int netdev_get_num_tc(struct net_device *dev)
2194 {
2195 	return dev->num_tc;
2196 }
2197 
2198 static inline void net_prefetch(void *p)
2199 {
2200 	prefetch(p);
2201 #if L1_CACHE_BYTES < 128
2202 	prefetch((u8 *)p + L1_CACHE_BYTES);
2203 #endif
2204 }
2205 
2206 static inline void net_prefetchw(void *p)
2207 {
2208 	prefetchw(p);
2209 #if L1_CACHE_BYTES < 128
2210 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2211 #endif
2212 }
2213 
2214 void netdev_unbind_sb_channel(struct net_device *dev,
2215 			      struct net_device *sb_dev);
2216 int netdev_bind_sb_channel_queue(struct net_device *dev,
2217 				 struct net_device *sb_dev,
2218 				 u8 tc, u16 count, u16 offset);
2219 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2220 static inline int netdev_get_sb_channel(struct net_device *dev)
2221 {
2222 	return max_t(int, -dev->num_tc, 0);
2223 }
2224 
2225 static inline
2226 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2227 					 unsigned int index)
2228 {
2229 	return &dev->_tx[index];
2230 }
2231 
2232 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2233 						    const struct sk_buff *skb)
2234 {
2235 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2236 }
2237 
2238 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2239 					    void (*f)(struct net_device *,
2240 						      struct netdev_queue *,
2241 						      void *),
2242 					    void *arg)
2243 {
2244 	unsigned int i;
2245 
2246 	for (i = 0; i < dev->num_tx_queues; i++)
2247 		f(dev, &dev->_tx[i], arg);
2248 }
2249 
2250 #define netdev_lockdep_set_classes(dev)				\
2251 {								\
2252 	static struct lock_class_key qdisc_tx_busylock_key;	\
2253 	static struct lock_class_key qdisc_running_key;		\
2254 	static struct lock_class_key qdisc_xmit_lock_key;	\
2255 	static struct lock_class_key dev_addr_list_lock_key;	\
2256 	unsigned int i;						\
2257 								\
2258 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2259 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2260 	lockdep_set_class(&(dev)->addr_list_lock,		\
2261 			  &dev_addr_list_lock_key);		\
2262 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2263 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2264 				  &qdisc_xmit_lock_key);	\
2265 }
2266 
2267 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2268 		     struct net_device *sb_dev);
2269 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2270 					 struct sk_buff *skb,
2271 					 struct net_device *sb_dev);
2272 
2273 /* returns the headroom that the master device needs to take in account
2274  * when forwarding to this dev
2275  */
2276 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2277 {
2278 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2279 }
2280 
2281 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2282 {
2283 	if (dev->netdev_ops->ndo_set_rx_headroom)
2284 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2285 }
2286 
2287 /* set the device rx headroom to the dev's default */
2288 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2289 {
2290 	netdev_set_rx_headroom(dev, -1);
2291 }
2292 
2293 /*
2294  * Net namespace inlines
2295  */
2296 static inline
2297 struct net *dev_net(const struct net_device *dev)
2298 {
2299 	return read_pnet(&dev->nd_net);
2300 }
2301 
2302 static inline
2303 void dev_net_set(struct net_device *dev, struct net *net)
2304 {
2305 	write_pnet(&dev->nd_net, net);
2306 }
2307 
2308 /**
2309  *	netdev_priv - access network device private data
2310  *	@dev: network device
2311  *
2312  * Get network device private data
2313  */
2314 static inline void *netdev_priv(const struct net_device *dev)
2315 {
2316 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2317 }
2318 
2319 /* Set the sysfs physical device reference for the network logical device
2320  * if set prior to registration will cause a symlink during initialization.
2321  */
2322 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2323 
2324 /* Set the sysfs device type for the network logical device to allow
2325  * fine-grained identification of different network device types. For
2326  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2327  */
2328 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2329 
2330 /* Default NAPI poll() weight
2331  * Device drivers are strongly advised to not use bigger value
2332  */
2333 #define NAPI_POLL_WEIGHT 64
2334 
2335 /**
2336  *	netif_napi_add - initialize a NAPI context
2337  *	@dev:  network device
2338  *	@napi: NAPI context
2339  *	@poll: polling function
2340  *	@weight: default weight
2341  *
2342  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2343  * *any* of the other NAPI-related functions.
2344  */
2345 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2346 		    int (*poll)(struct napi_struct *, int), int weight);
2347 
2348 /**
2349  *	netif_tx_napi_add - initialize a NAPI context
2350  *	@dev:  network device
2351  *	@napi: NAPI context
2352  *	@poll: polling function
2353  *	@weight: default weight
2354  *
2355  * This variant of netif_napi_add() should be used from drivers using NAPI
2356  * to exclusively poll a TX queue.
2357  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2358  */
2359 static inline void netif_tx_napi_add(struct net_device *dev,
2360 				     struct napi_struct *napi,
2361 				     int (*poll)(struct napi_struct *, int),
2362 				     int weight)
2363 {
2364 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2365 	netif_napi_add(dev, napi, poll, weight);
2366 }
2367 
2368 /**
2369  *  __netif_napi_del - remove a NAPI context
2370  *  @napi: NAPI context
2371  *
2372  * Warning: caller must observe RCU grace period before freeing memory
2373  * containing @napi. Drivers might want to call this helper to combine
2374  * all the needed RCU grace periods into a single one.
2375  */
2376 void __netif_napi_del(struct napi_struct *napi);
2377 
2378 /**
2379  *  netif_napi_del - remove a NAPI context
2380  *  @napi: NAPI context
2381  *
2382  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2383  */
2384 static inline void netif_napi_del(struct napi_struct *napi)
2385 {
2386 	__netif_napi_del(napi);
2387 	synchronize_net();
2388 }
2389 
2390 struct napi_gro_cb {
2391 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2392 	void	*frag0;
2393 
2394 	/* Length of frag0. */
2395 	unsigned int frag0_len;
2396 
2397 	/* This indicates where we are processing relative to skb->data. */
2398 	int	data_offset;
2399 
2400 	/* This is non-zero if the packet cannot be merged with the new skb. */
2401 	u16	flush;
2402 
2403 	/* Save the IP ID here and check when we get to the transport layer */
2404 	u16	flush_id;
2405 
2406 	/* Number of segments aggregated. */
2407 	u16	count;
2408 
2409 	/* Start offset for remote checksum offload */
2410 	u16	gro_remcsum_start;
2411 
2412 	/* jiffies when first packet was created/queued */
2413 	unsigned long age;
2414 
2415 	/* Used in ipv6_gro_receive() and foo-over-udp */
2416 	u16	proto;
2417 
2418 	/* This is non-zero if the packet may be of the same flow. */
2419 	u8	same_flow:1;
2420 
2421 	/* Used in tunnel GRO receive */
2422 	u8	encap_mark:1;
2423 
2424 	/* GRO checksum is valid */
2425 	u8	csum_valid:1;
2426 
2427 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2428 	u8	csum_cnt:3;
2429 
2430 	/* Free the skb? */
2431 	u8	free:2;
2432 #define NAPI_GRO_FREE		  1
2433 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2434 
2435 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2436 	u8	is_ipv6:1;
2437 
2438 	/* Used in GRE, set in fou/gue_gro_receive */
2439 	u8	is_fou:1;
2440 
2441 	/* Used to determine if flush_id can be ignored */
2442 	u8	is_atomic:1;
2443 
2444 	/* Number of gro_receive callbacks this packet already went through */
2445 	u8 recursion_counter:4;
2446 
2447 	/* GRO is done by frag_list pointer chaining. */
2448 	u8	is_flist:1;
2449 
2450 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2451 	__wsum	csum;
2452 
2453 	/* used in skb_gro_receive() slow path */
2454 	struct sk_buff *last;
2455 };
2456 
2457 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2458 
2459 #define GRO_RECURSION_LIMIT 15
2460 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2461 {
2462 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2463 }
2464 
2465 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2466 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2467 					       struct list_head *head,
2468 					       struct sk_buff *skb)
2469 {
2470 	if (unlikely(gro_recursion_inc_test(skb))) {
2471 		NAPI_GRO_CB(skb)->flush |= 1;
2472 		return NULL;
2473 	}
2474 
2475 	return cb(head, skb);
2476 }
2477 
2478 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2479 					    struct sk_buff *);
2480 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2481 						  struct sock *sk,
2482 						  struct list_head *head,
2483 						  struct sk_buff *skb)
2484 {
2485 	if (unlikely(gro_recursion_inc_test(skb))) {
2486 		NAPI_GRO_CB(skb)->flush |= 1;
2487 		return NULL;
2488 	}
2489 
2490 	return cb(sk, head, skb);
2491 }
2492 
2493 struct packet_type {
2494 	__be16			type;	/* This is really htons(ether_type). */
2495 	bool			ignore_outgoing;
2496 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2497 	int			(*func) (struct sk_buff *,
2498 					 struct net_device *,
2499 					 struct packet_type *,
2500 					 struct net_device *);
2501 	void			(*list_func) (struct list_head *,
2502 					      struct packet_type *,
2503 					      struct net_device *);
2504 	bool			(*id_match)(struct packet_type *ptype,
2505 					    struct sock *sk);
2506 	void			*af_packet_priv;
2507 	struct list_head	list;
2508 };
2509 
2510 struct offload_callbacks {
2511 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2512 						netdev_features_t features);
2513 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2514 						struct sk_buff *skb);
2515 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2516 };
2517 
2518 struct packet_offload {
2519 	__be16			 type;	/* This is really htons(ether_type). */
2520 	u16			 priority;
2521 	struct offload_callbacks callbacks;
2522 	struct list_head	 list;
2523 };
2524 
2525 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2526 struct pcpu_sw_netstats {
2527 	u64     rx_packets;
2528 	u64     rx_bytes;
2529 	u64     tx_packets;
2530 	u64     tx_bytes;
2531 	struct u64_stats_sync   syncp;
2532 } __aligned(4 * sizeof(u64));
2533 
2534 struct pcpu_lstats {
2535 	u64_stats_t packets;
2536 	u64_stats_t bytes;
2537 	struct u64_stats_sync syncp;
2538 } __aligned(2 * sizeof(u64));
2539 
2540 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2541 
2542 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2543 {
2544 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2545 
2546 	u64_stats_update_begin(&tstats->syncp);
2547 	tstats->rx_bytes += len;
2548 	tstats->rx_packets++;
2549 	u64_stats_update_end(&tstats->syncp);
2550 }
2551 
2552 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2553 					  unsigned int packets,
2554 					  unsigned int len)
2555 {
2556 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2557 
2558 	u64_stats_update_begin(&tstats->syncp);
2559 	tstats->tx_bytes += len;
2560 	tstats->tx_packets += packets;
2561 	u64_stats_update_end(&tstats->syncp);
2562 }
2563 
2564 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2565 {
2566 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2567 
2568 	u64_stats_update_begin(&lstats->syncp);
2569 	u64_stats_add(&lstats->bytes, len);
2570 	u64_stats_inc(&lstats->packets);
2571 	u64_stats_update_end(&lstats->syncp);
2572 }
2573 
2574 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2575 ({									\
2576 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2577 	if (pcpu_stats)	{						\
2578 		int __cpu;						\
2579 		for_each_possible_cpu(__cpu) {				\
2580 			typeof(type) *stat;				\
2581 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2582 			u64_stats_init(&stat->syncp);			\
2583 		}							\
2584 	}								\
2585 	pcpu_stats;							\
2586 })
2587 
2588 #define netdev_alloc_pcpu_stats(type)					\
2589 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2590 
2591 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2592 ({									\
2593 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2594 	if (pcpu_stats) {						\
2595 		int __cpu;						\
2596 		for_each_possible_cpu(__cpu) {				\
2597 			typeof(type) *stat;				\
2598 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2599 			u64_stats_init(&stat->syncp);			\
2600 		}							\
2601 	}								\
2602 	pcpu_stats;							\
2603 })
2604 
2605 enum netdev_lag_tx_type {
2606 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2607 	NETDEV_LAG_TX_TYPE_RANDOM,
2608 	NETDEV_LAG_TX_TYPE_BROADCAST,
2609 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2610 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2611 	NETDEV_LAG_TX_TYPE_HASH,
2612 };
2613 
2614 enum netdev_lag_hash {
2615 	NETDEV_LAG_HASH_NONE,
2616 	NETDEV_LAG_HASH_L2,
2617 	NETDEV_LAG_HASH_L34,
2618 	NETDEV_LAG_HASH_L23,
2619 	NETDEV_LAG_HASH_E23,
2620 	NETDEV_LAG_HASH_E34,
2621 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2622 	NETDEV_LAG_HASH_UNKNOWN,
2623 };
2624 
2625 struct netdev_lag_upper_info {
2626 	enum netdev_lag_tx_type tx_type;
2627 	enum netdev_lag_hash hash_type;
2628 };
2629 
2630 struct netdev_lag_lower_state_info {
2631 	u8 link_up : 1,
2632 	   tx_enabled : 1;
2633 };
2634 
2635 #include <linux/notifier.h>
2636 
2637 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2638  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2639  * adding new types.
2640  */
2641 enum netdev_cmd {
2642 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2643 	NETDEV_DOWN,
2644 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2645 				   detected a hardware crash and restarted
2646 				   - we can use this eg to kick tcp sessions
2647 				   once done */
2648 	NETDEV_CHANGE,		/* Notify device state change */
2649 	NETDEV_REGISTER,
2650 	NETDEV_UNREGISTER,
2651 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2652 	NETDEV_CHANGEADDR,	/* notify after the address change */
2653 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2654 	NETDEV_GOING_DOWN,
2655 	NETDEV_CHANGENAME,
2656 	NETDEV_FEAT_CHANGE,
2657 	NETDEV_BONDING_FAILOVER,
2658 	NETDEV_PRE_UP,
2659 	NETDEV_PRE_TYPE_CHANGE,
2660 	NETDEV_POST_TYPE_CHANGE,
2661 	NETDEV_POST_INIT,
2662 	NETDEV_RELEASE,
2663 	NETDEV_NOTIFY_PEERS,
2664 	NETDEV_JOIN,
2665 	NETDEV_CHANGEUPPER,
2666 	NETDEV_RESEND_IGMP,
2667 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2668 	NETDEV_CHANGEINFODATA,
2669 	NETDEV_BONDING_INFO,
2670 	NETDEV_PRECHANGEUPPER,
2671 	NETDEV_CHANGELOWERSTATE,
2672 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2673 	NETDEV_UDP_TUNNEL_DROP_INFO,
2674 	NETDEV_CHANGE_TX_QUEUE_LEN,
2675 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2676 	NETDEV_CVLAN_FILTER_DROP_INFO,
2677 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2678 	NETDEV_SVLAN_FILTER_DROP_INFO,
2679 };
2680 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2681 
2682 int register_netdevice_notifier(struct notifier_block *nb);
2683 int unregister_netdevice_notifier(struct notifier_block *nb);
2684 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2685 int unregister_netdevice_notifier_net(struct net *net,
2686 				      struct notifier_block *nb);
2687 int register_netdevice_notifier_dev_net(struct net_device *dev,
2688 					struct notifier_block *nb,
2689 					struct netdev_net_notifier *nn);
2690 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2691 					  struct notifier_block *nb,
2692 					  struct netdev_net_notifier *nn);
2693 
2694 struct netdev_notifier_info {
2695 	struct net_device	*dev;
2696 	struct netlink_ext_ack	*extack;
2697 };
2698 
2699 struct netdev_notifier_info_ext {
2700 	struct netdev_notifier_info info; /* must be first */
2701 	union {
2702 		u32 mtu;
2703 	} ext;
2704 };
2705 
2706 struct netdev_notifier_change_info {
2707 	struct netdev_notifier_info info; /* must be first */
2708 	unsigned int flags_changed;
2709 };
2710 
2711 struct netdev_notifier_changeupper_info {
2712 	struct netdev_notifier_info info; /* must be first */
2713 	struct net_device *upper_dev; /* new upper dev */
2714 	bool master; /* is upper dev master */
2715 	bool linking; /* is the notification for link or unlink */
2716 	void *upper_info; /* upper dev info */
2717 };
2718 
2719 struct netdev_notifier_changelowerstate_info {
2720 	struct netdev_notifier_info info; /* must be first */
2721 	void *lower_state_info; /* is lower dev state */
2722 };
2723 
2724 struct netdev_notifier_pre_changeaddr_info {
2725 	struct netdev_notifier_info info; /* must be first */
2726 	const unsigned char *dev_addr;
2727 };
2728 
2729 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2730 					     struct net_device *dev)
2731 {
2732 	info->dev = dev;
2733 	info->extack = NULL;
2734 }
2735 
2736 static inline struct net_device *
2737 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2738 {
2739 	return info->dev;
2740 }
2741 
2742 static inline struct netlink_ext_ack *
2743 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2744 {
2745 	return info->extack;
2746 }
2747 
2748 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2749 
2750 
2751 extern rwlock_t				dev_base_lock;		/* Device list lock */
2752 
2753 #define for_each_netdev(net, d)		\
2754 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2755 #define for_each_netdev_reverse(net, d)	\
2756 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2757 #define for_each_netdev_rcu(net, d)		\
2758 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2759 #define for_each_netdev_safe(net, d, n)	\
2760 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2761 #define for_each_netdev_continue(net, d)		\
2762 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2763 #define for_each_netdev_continue_reverse(net, d)		\
2764 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2765 						     dev_list)
2766 #define for_each_netdev_continue_rcu(net, d)		\
2767 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2768 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2769 		for_each_netdev_rcu(&init_net, slave)	\
2770 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2771 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2772 
2773 static inline struct net_device *next_net_device(struct net_device *dev)
2774 {
2775 	struct list_head *lh;
2776 	struct net *net;
2777 
2778 	net = dev_net(dev);
2779 	lh = dev->dev_list.next;
2780 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2781 }
2782 
2783 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2784 {
2785 	struct list_head *lh;
2786 	struct net *net;
2787 
2788 	net = dev_net(dev);
2789 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2790 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2791 }
2792 
2793 static inline struct net_device *first_net_device(struct net *net)
2794 {
2795 	return list_empty(&net->dev_base_head) ? NULL :
2796 		net_device_entry(net->dev_base_head.next);
2797 }
2798 
2799 static inline struct net_device *first_net_device_rcu(struct net *net)
2800 {
2801 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2802 
2803 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2804 }
2805 
2806 int netdev_boot_setup_check(struct net_device *dev);
2807 unsigned long netdev_boot_base(const char *prefix, int unit);
2808 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2809 				       const char *hwaddr);
2810 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2811 void dev_add_pack(struct packet_type *pt);
2812 void dev_remove_pack(struct packet_type *pt);
2813 void __dev_remove_pack(struct packet_type *pt);
2814 void dev_add_offload(struct packet_offload *po);
2815 void dev_remove_offload(struct packet_offload *po);
2816 
2817 int dev_get_iflink(const struct net_device *dev);
2818 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2819 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2820 				      unsigned short mask);
2821 struct net_device *dev_get_by_name(struct net *net, const char *name);
2822 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2823 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2824 int dev_alloc_name(struct net_device *dev, const char *name);
2825 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2826 void dev_close(struct net_device *dev);
2827 void dev_close_many(struct list_head *head, bool unlink);
2828 void dev_disable_lro(struct net_device *dev);
2829 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2830 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2831 		     struct net_device *sb_dev);
2832 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2833 		       struct net_device *sb_dev);
2834 
2835 int dev_queue_xmit(struct sk_buff *skb);
2836 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2837 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2838 
2839 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2840 {
2841 	int ret;
2842 
2843 	ret = __dev_direct_xmit(skb, queue_id);
2844 	if (!dev_xmit_complete(ret))
2845 		kfree_skb(skb);
2846 	return ret;
2847 }
2848 
2849 int register_netdevice(struct net_device *dev);
2850 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2851 void unregister_netdevice_many(struct list_head *head);
2852 static inline void unregister_netdevice(struct net_device *dev)
2853 {
2854 	unregister_netdevice_queue(dev, NULL);
2855 }
2856 
2857 int netdev_refcnt_read(const struct net_device *dev);
2858 void free_netdev(struct net_device *dev);
2859 void netdev_freemem(struct net_device *dev);
2860 int init_dummy_netdev(struct net_device *dev);
2861 
2862 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2863 					 struct sk_buff *skb,
2864 					 bool all_slaves);
2865 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2866 					    struct sock *sk);
2867 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2868 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2869 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2870 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2871 int netdev_get_name(struct net *net, char *name, int ifindex);
2872 int dev_restart(struct net_device *dev);
2873 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2874 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2875 
2876 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2877 {
2878 	return NAPI_GRO_CB(skb)->data_offset;
2879 }
2880 
2881 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2882 {
2883 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2884 }
2885 
2886 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2887 {
2888 	NAPI_GRO_CB(skb)->data_offset += len;
2889 }
2890 
2891 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2892 					unsigned int offset)
2893 {
2894 	return NAPI_GRO_CB(skb)->frag0 + offset;
2895 }
2896 
2897 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2898 {
2899 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2900 }
2901 
2902 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2903 {
2904 	NAPI_GRO_CB(skb)->frag0 = NULL;
2905 	NAPI_GRO_CB(skb)->frag0_len = 0;
2906 }
2907 
2908 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2909 					unsigned int offset)
2910 {
2911 	if (!pskb_may_pull(skb, hlen))
2912 		return NULL;
2913 
2914 	skb_gro_frag0_invalidate(skb);
2915 	return skb->data + offset;
2916 }
2917 
2918 static inline void *skb_gro_network_header(struct sk_buff *skb)
2919 {
2920 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2921 	       skb_network_offset(skb);
2922 }
2923 
2924 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2925 					const void *start, unsigned int len)
2926 {
2927 	if (NAPI_GRO_CB(skb)->csum_valid)
2928 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2929 						  csum_partial(start, len, 0));
2930 }
2931 
2932 /* GRO checksum functions. These are logical equivalents of the normal
2933  * checksum functions (in skbuff.h) except that they operate on the GRO
2934  * offsets and fields in sk_buff.
2935  */
2936 
2937 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2938 
2939 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2940 {
2941 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2942 }
2943 
2944 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2945 						      bool zero_okay,
2946 						      __sum16 check)
2947 {
2948 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2949 		skb_checksum_start_offset(skb) <
2950 		 skb_gro_offset(skb)) &&
2951 		!skb_at_gro_remcsum_start(skb) &&
2952 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2953 		(!zero_okay || check));
2954 }
2955 
2956 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2957 							   __wsum psum)
2958 {
2959 	if (NAPI_GRO_CB(skb)->csum_valid &&
2960 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2961 		return 0;
2962 
2963 	NAPI_GRO_CB(skb)->csum = psum;
2964 
2965 	return __skb_gro_checksum_complete(skb);
2966 }
2967 
2968 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2969 {
2970 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2971 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2972 		NAPI_GRO_CB(skb)->csum_cnt--;
2973 	} else {
2974 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2975 		 * verified a new top level checksum or an encapsulated one
2976 		 * during GRO. This saves work if we fallback to normal path.
2977 		 */
2978 		__skb_incr_checksum_unnecessary(skb);
2979 	}
2980 }
2981 
2982 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2983 				    compute_pseudo)			\
2984 ({									\
2985 	__sum16 __ret = 0;						\
2986 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2987 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2988 				compute_pseudo(skb, proto));		\
2989 	if (!__ret)							\
2990 		skb_gro_incr_csum_unnecessary(skb);			\
2991 	__ret;								\
2992 })
2993 
2994 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2995 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2996 
2997 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2998 					     compute_pseudo)		\
2999 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3000 
3001 #define skb_gro_checksum_simple_validate(skb)				\
3002 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3003 
3004 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3005 {
3006 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3007 		!NAPI_GRO_CB(skb)->csum_valid);
3008 }
3009 
3010 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3011 					      __wsum pseudo)
3012 {
3013 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3014 	NAPI_GRO_CB(skb)->csum_valid = 1;
3015 }
3016 
3017 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3018 do {									\
3019 	if (__skb_gro_checksum_convert_check(skb))			\
3020 		__skb_gro_checksum_convert(skb, 			\
3021 					   compute_pseudo(skb, proto));	\
3022 } while (0)
3023 
3024 struct gro_remcsum {
3025 	int offset;
3026 	__wsum delta;
3027 };
3028 
3029 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3030 {
3031 	grc->offset = 0;
3032 	grc->delta = 0;
3033 }
3034 
3035 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3036 					    unsigned int off, size_t hdrlen,
3037 					    int start, int offset,
3038 					    struct gro_remcsum *grc,
3039 					    bool nopartial)
3040 {
3041 	__wsum delta;
3042 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3043 
3044 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3045 
3046 	if (!nopartial) {
3047 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3048 		return ptr;
3049 	}
3050 
3051 	ptr = skb_gro_header_fast(skb, off);
3052 	if (skb_gro_header_hard(skb, off + plen)) {
3053 		ptr = skb_gro_header_slow(skb, off + plen, off);
3054 		if (!ptr)
3055 			return NULL;
3056 	}
3057 
3058 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3059 			       start, offset);
3060 
3061 	/* Adjust skb->csum since we changed the packet */
3062 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3063 
3064 	grc->offset = off + hdrlen + offset;
3065 	grc->delta = delta;
3066 
3067 	return ptr;
3068 }
3069 
3070 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3071 					   struct gro_remcsum *grc)
3072 {
3073 	void *ptr;
3074 	size_t plen = grc->offset + sizeof(u16);
3075 
3076 	if (!grc->delta)
3077 		return;
3078 
3079 	ptr = skb_gro_header_fast(skb, grc->offset);
3080 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3081 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3082 		if (!ptr)
3083 			return;
3084 	}
3085 
3086 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3087 }
3088 
3089 #ifdef CONFIG_XFRM_OFFLOAD
3090 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3091 {
3092 	if (PTR_ERR(pp) != -EINPROGRESS)
3093 		NAPI_GRO_CB(skb)->flush |= flush;
3094 }
3095 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3096 					       struct sk_buff *pp,
3097 					       int flush,
3098 					       struct gro_remcsum *grc)
3099 {
3100 	if (PTR_ERR(pp) != -EINPROGRESS) {
3101 		NAPI_GRO_CB(skb)->flush |= flush;
3102 		skb_gro_remcsum_cleanup(skb, grc);
3103 		skb->remcsum_offload = 0;
3104 	}
3105 }
3106 #else
3107 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3108 {
3109 	NAPI_GRO_CB(skb)->flush |= flush;
3110 }
3111 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3112 					       struct sk_buff *pp,
3113 					       int flush,
3114 					       struct gro_remcsum *grc)
3115 {
3116 	NAPI_GRO_CB(skb)->flush |= flush;
3117 	skb_gro_remcsum_cleanup(skb, grc);
3118 	skb->remcsum_offload = 0;
3119 }
3120 #endif
3121 
3122 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3123 				  unsigned short type,
3124 				  const void *daddr, const void *saddr,
3125 				  unsigned int len)
3126 {
3127 	if (!dev->header_ops || !dev->header_ops->create)
3128 		return 0;
3129 
3130 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3131 }
3132 
3133 static inline int dev_parse_header(const struct sk_buff *skb,
3134 				   unsigned char *haddr)
3135 {
3136 	const struct net_device *dev = skb->dev;
3137 
3138 	if (!dev->header_ops || !dev->header_ops->parse)
3139 		return 0;
3140 	return dev->header_ops->parse(skb, haddr);
3141 }
3142 
3143 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3144 {
3145 	const struct net_device *dev = skb->dev;
3146 
3147 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3148 		return 0;
3149 	return dev->header_ops->parse_protocol(skb);
3150 }
3151 
3152 /* ll_header must have at least hard_header_len allocated */
3153 static inline bool dev_validate_header(const struct net_device *dev,
3154 				       char *ll_header, int len)
3155 {
3156 	if (likely(len >= dev->hard_header_len))
3157 		return true;
3158 	if (len < dev->min_header_len)
3159 		return false;
3160 
3161 	if (capable(CAP_SYS_RAWIO)) {
3162 		memset(ll_header + len, 0, dev->hard_header_len - len);
3163 		return true;
3164 	}
3165 
3166 	if (dev->header_ops && dev->header_ops->validate)
3167 		return dev->header_ops->validate(ll_header, len);
3168 
3169 	return false;
3170 }
3171 
3172 static inline bool dev_has_header(const struct net_device *dev)
3173 {
3174 	return dev->header_ops && dev->header_ops->create;
3175 }
3176 
3177 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3178 			   int len, int size);
3179 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3180 static inline int unregister_gifconf(unsigned int family)
3181 {
3182 	return register_gifconf(family, NULL);
3183 }
3184 
3185 #ifdef CONFIG_NET_FLOW_LIMIT
3186 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3187 struct sd_flow_limit {
3188 	u64			count;
3189 	unsigned int		num_buckets;
3190 	unsigned int		history_head;
3191 	u16			history[FLOW_LIMIT_HISTORY];
3192 	u8			buckets[];
3193 };
3194 
3195 extern int netdev_flow_limit_table_len;
3196 #endif /* CONFIG_NET_FLOW_LIMIT */
3197 
3198 /*
3199  * Incoming packets are placed on per-CPU queues
3200  */
3201 struct softnet_data {
3202 	struct list_head	poll_list;
3203 	struct sk_buff_head	process_queue;
3204 
3205 	/* stats */
3206 	unsigned int		processed;
3207 	unsigned int		time_squeeze;
3208 	unsigned int		received_rps;
3209 #ifdef CONFIG_RPS
3210 	struct softnet_data	*rps_ipi_list;
3211 #endif
3212 #ifdef CONFIG_NET_FLOW_LIMIT
3213 	struct sd_flow_limit __rcu *flow_limit;
3214 #endif
3215 	struct Qdisc		*output_queue;
3216 	struct Qdisc		**output_queue_tailp;
3217 	struct sk_buff		*completion_queue;
3218 #ifdef CONFIG_XFRM_OFFLOAD
3219 	struct sk_buff_head	xfrm_backlog;
3220 #endif
3221 	/* written and read only by owning cpu: */
3222 	struct {
3223 		u16 recursion;
3224 		u8  more;
3225 	} xmit;
3226 #ifdef CONFIG_RPS
3227 	/* input_queue_head should be written by cpu owning this struct,
3228 	 * and only read by other cpus. Worth using a cache line.
3229 	 */
3230 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3231 
3232 	/* Elements below can be accessed between CPUs for RPS/RFS */
3233 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3234 	struct softnet_data	*rps_ipi_next;
3235 	unsigned int		cpu;
3236 	unsigned int		input_queue_tail;
3237 #endif
3238 	unsigned int		dropped;
3239 	struct sk_buff_head	input_pkt_queue;
3240 	struct napi_struct	backlog;
3241 
3242 };
3243 
3244 static inline void input_queue_head_incr(struct softnet_data *sd)
3245 {
3246 #ifdef CONFIG_RPS
3247 	sd->input_queue_head++;
3248 #endif
3249 }
3250 
3251 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3252 					      unsigned int *qtail)
3253 {
3254 #ifdef CONFIG_RPS
3255 	*qtail = ++sd->input_queue_tail;
3256 #endif
3257 }
3258 
3259 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3260 
3261 static inline int dev_recursion_level(void)
3262 {
3263 	return this_cpu_read(softnet_data.xmit.recursion);
3264 }
3265 
3266 #define XMIT_RECURSION_LIMIT	8
3267 static inline bool dev_xmit_recursion(void)
3268 {
3269 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3270 			XMIT_RECURSION_LIMIT);
3271 }
3272 
3273 static inline void dev_xmit_recursion_inc(void)
3274 {
3275 	__this_cpu_inc(softnet_data.xmit.recursion);
3276 }
3277 
3278 static inline void dev_xmit_recursion_dec(void)
3279 {
3280 	__this_cpu_dec(softnet_data.xmit.recursion);
3281 }
3282 
3283 void __netif_schedule(struct Qdisc *q);
3284 void netif_schedule_queue(struct netdev_queue *txq);
3285 
3286 static inline void netif_tx_schedule_all(struct net_device *dev)
3287 {
3288 	unsigned int i;
3289 
3290 	for (i = 0; i < dev->num_tx_queues; i++)
3291 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3292 }
3293 
3294 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3295 {
3296 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3297 }
3298 
3299 /**
3300  *	netif_start_queue - allow transmit
3301  *	@dev: network device
3302  *
3303  *	Allow upper layers to call the device hard_start_xmit routine.
3304  */
3305 static inline void netif_start_queue(struct net_device *dev)
3306 {
3307 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3308 }
3309 
3310 static inline void netif_tx_start_all_queues(struct net_device *dev)
3311 {
3312 	unsigned int i;
3313 
3314 	for (i = 0; i < dev->num_tx_queues; i++) {
3315 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3316 		netif_tx_start_queue(txq);
3317 	}
3318 }
3319 
3320 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3321 
3322 /**
3323  *	netif_wake_queue - restart transmit
3324  *	@dev: network device
3325  *
3326  *	Allow upper layers to call the device hard_start_xmit routine.
3327  *	Used for flow control when transmit resources are available.
3328  */
3329 static inline void netif_wake_queue(struct net_device *dev)
3330 {
3331 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3332 }
3333 
3334 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3335 {
3336 	unsigned int i;
3337 
3338 	for (i = 0; i < dev->num_tx_queues; i++) {
3339 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3340 		netif_tx_wake_queue(txq);
3341 	}
3342 }
3343 
3344 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3345 {
3346 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3347 }
3348 
3349 /**
3350  *	netif_stop_queue - stop transmitted packets
3351  *	@dev: network device
3352  *
3353  *	Stop upper layers calling the device hard_start_xmit routine.
3354  *	Used for flow control when transmit resources are unavailable.
3355  */
3356 static inline void netif_stop_queue(struct net_device *dev)
3357 {
3358 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3359 }
3360 
3361 void netif_tx_stop_all_queues(struct net_device *dev);
3362 
3363 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3364 {
3365 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3366 }
3367 
3368 /**
3369  *	netif_queue_stopped - test if transmit queue is flowblocked
3370  *	@dev: network device
3371  *
3372  *	Test if transmit queue on device is currently unable to send.
3373  */
3374 static inline bool netif_queue_stopped(const struct net_device *dev)
3375 {
3376 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3377 }
3378 
3379 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3380 {
3381 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3382 }
3383 
3384 static inline bool
3385 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3386 {
3387 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3388 }
3389 
3390 static inline bool
3391 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3392 {
3393 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3394 }
3395 
3396 /**
3397  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3398  *	@dev_queue: pointer to transmit queue
3399  *
3400  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3401  * to give appropriate hint to the CPU.
3402  */
3403 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3404 {
3405 #ifdef CONFIG_BQL
3406 	prefetchw(&dev_queue->dql.num_queued);
3407 #endif
3408 }
3409 
3410 /**
3411  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3412  *	@dev_queue: pointer to transmit queue
3413  *
3414  * BQL enabled drivers might use this helper in their TX completion path,
3415  * to give appropriate hint to the CPU.
3416  */
3417 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3418 {
3419 #ifdef CONFIG_BQL
3420 	prefetchw(&dev_queue->dql.limit);
3421 #endif
3422 }
3423 
3424 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3425 					unsigned int bytes)
3426 {
3427 #ifdef CONFIG_BQL
3428 	dql_queued(&dev_queue->dql, bytes);
3429 
3430 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3431 		return;
3432 
3433 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3434 
3435 	/*
3436 	 * The XOFF flag must be set before checking the dql_avail below,
3437 	 * because in netdev_tx_completed_queue we update the dql_completed
3438 	 * before checking the XOFF flag.
3439 	 */
3440 	smp_mb();
3441 
3442 	/* check again in case another CPU has just made room avail */
3443 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3444 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3445 #endif
3446 }
3447 
3448 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3449  * that they should not test BQL status themselves.
3450  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3451  * skb of a batch.
3452  * Returns true if the doorbell must be used to kick the NIC.
3453  */
3454 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3455 					  unsigned int bytes,
3456 					  bool xmit_more)
3457 {
3458 	if (xmit_more) {
3459 #ifdef CONFIG_BQL
3460 		dql_queued(&dev_queue->dql, bytes);
3461 #endif
3462 		return netif_tx_queue_stopped(dev_queue);
3463 	}
3464 	netdev_tx_sent_queue(dev_queue, bytes);
3465 	return true;
3466 }
3467 
3468 /**
3469  * 	netdev_sent_queue - report the number of bytes queued to hardware
3470  * 	@dev: network device
3471  * 	@bytes: number of bytes queued to the hardware device queue
3472  *
3473  * 	Report the number of bytes queued for sending/completion to the network
3474  * 	device hardware queue. @bytes should be a good approximation and should
3475  * 	exactly match netdev_completed_queue() @bytes
3476  */
3477 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3478 {
3479 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3480 }
3481 
3482 static inline bool __netdev_sent_queue(struct net_device *dev,
3483 				       unsigned int bytes,
3484 				       bool xmit_more)
3485 {
3486 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3487 				      xmit_more);
3488 }
3489 
3490 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3491 					     unsigned int pkts, unsigned int bytes)
3492 {
3493 #ifdef CONFIG_BQL
3494 	if (unlikely(!bytes))
3495 		return;
3496 
3497 	dql_completed(&dev_queue->dql, bytes);
3498 
3499 	/*
3500 	 * Without the memory barrier there is a small possiblity that
3501 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3502 	 * be stopped forever
3503 	 */
3504 	smp_mb();
3505 
3506 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3507 		return;
3508 
3509 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3510 		netif_schedule_queue(dev_queue);
3511 #endif
3512 }
3513 
3514 /**
3515  * 	netdev_completed_queue - report bytes and packets completed by device
3516  * 	@dev: network device
3517  * 	@pkts: actual number of packets sent over the medium
3518  * 	@bytes: actual number of bytes sent over the medium
3519  *
3520  * 	Report the number of bytes and packets transmitted by the network device
3521  * 	hardware queue over the physical medium, @bytes must exactly match the
3522  * 	@bytes amount passed to netdev_sent_queue()
3523  */
3524 static inline void netdev_completed_queue(struct net_device *dev,
3525 					  unsigned int pkts, unsigned int bytes)
3526 {
3527 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3528 }
3529 
3530 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3531 {
3532 #ifdef CONFIG_BQL
3533 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3534 	dql_reset(&q->dql);
3535 #endif
3536 }
3537 
3538 /**
3539  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3540  * 	@dev_queue: network device
3541  *
3542  * 	Reset the bytes and packet count of a network device and clear the
3543  * 	software flow control OFF bit for this network device
3544  */
3545 static inline void netdev_reset_queue(struct net_device *dev_queue)
3546 {
3547 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3548 }
3549 
3550 /**
3551  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3552  * 	@dev: network device
3553  * 	@queue_index: given tx queue index
3554  *
3555  * 	Returns 0 if given tx queue index >= number of device tx queues,
3556  * 	otherwise returns the originally passed tx queue index.
3557  */
3558 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3559 {
3560 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3561 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3562 				     dev->name, queue_index,
3563 				     dev->real_num_tx_queues);
3564 		return 0;
3565 	}
3566 
3567 	return queue_index;
3568 }
3569 
3570 /**
3571  *	netif_running - test if up
3572  *	@dev: network device
3573  *
3574  *	Test if the device has been brought up.
3575  */
3576 static inline bool netif_running(const struct net_device *dev)
3577 {
3578 	return test_bit(__LINK_STATE_START, &dev->state);
3579 }
3580 
3581 /*
3582  * Routines to manage the subqueues on a device.  We only need start,
3583  * stop, and a check if it's stopped.  All other device management is
3584  * done at the overall netdevice level.
3585  * Also test the device if we're multiqueue.
3586  */
3587 
3588 /**
3589  *	netif_start_subqueue - allow sending packets on subqueue
3590  *	@dev: network device
3591  *	@queue_index: sub queue index
3592  *
3593  * Start individual transmit queue of a device with multiple transmit queues.
3594  */
3595 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3596 {
3597 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3598 
3599 	netif_tx_start_queue(txq);
3600 }
3601 
3602 /**
3603  *	netif_stop_subqueue - stop sending packets on subqueue
3604  *	@dev: network device
3605  *	@queue_index: sub queue index
3606  *
3607  * Stop individual transmit queue of a device with multiple transmit queues.
3608  */
3609 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3610 {
3611 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3612 	netif_tx_stop_queue(txq);
3613 }
3614 
3615 /**
3616  *	__netif_subqueue_stopped - test status of subqueue
3617  *	@dev: network device
3618  *	@queue_index: sub queue index
3619  *
3620  * Check individual transmit queue of a device with multiple transmit queues.
3621  */
3622 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3623 					    u16 queue_index)
3624 {
3625 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3626 
3627 	return netif_tx_queue_stopped(txq);
3628 }
3629 
3630 /**
3631  *	netif_subqueue_stopped - test status of subqueue
3632  *	@dev: network device
3633  *	@skb: sub queue buffer pointer
3634  *
3635  * Check individual transmit queue of a device with multiple transmit queues.
3636  */
3637 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3638 					  struct sk_buff *skb)
3639 {
3640 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3641 }
3642 
3643 /**
3644  *	netif_wake_subqueue - allow sending packets on subqueue
3645  *	@dev: network device
3646  *	@queue_index: sub queue index
3647  *
3648  * Resume individual transmit queue of a device with multiple transmit queues.
3649  */
3650 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3651 {
3652 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3653 
3654 	netif_tx_wake_queue(txq);
3655 }
3656 
3657 #ifdef CONFIG_XPS
3658 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3659 			u16 index);
3660 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3661 			  u16 index, bool is_rxqs_map);
3662 
3663 /**
3664  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3665  *	@j: CPU/Rx queue index
3666  *	@mask: bitmask of all cpus/rx queues
3667  *	@nr_bits: number of bits in the bitmask
3668  *
3669  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3670  */
3671 static inline bool netif_attr_test_mask(unsigned long j,
3672 					const unsigned long *mask,
3673 					unsigned int nr_bits)
3674 {
3675 	cpu_max_bits_warn(j, nr_bits);
3676 	return test_bit(j, mask);
3677 }
3678 
3679 /**
3680  *	netif_attr_test_online - Test for online CPU/Rx queue
3681  *	@j: CPU/Rx queue index
3682  *	@online_mask: bitmask for CPUs/Rx queues that are online
3683  *	@nr_bits: number of bits in the bitmask
3684  *
3685  * Returns true if a CPU/Rx queue is online.
3686  */
3687 static inline bool netif_attr_test_online(unsigned long j,
3688 					  const unsigned long *online_mask,
3689 					  unsigned int nr_bits)
3690 {
3691 	cpu_max_bits_warn(j, nr_bits);
3692 
3693 	if (online_mask)
3694 		return test_bit(j, online_mask);
3695 
3696 	return (j < nr_bits);
3697 }
3698 
3699 /**
3700  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3701  *	@n: CPU/Rx queue index
3702  *	@srcp: the cpumask/Rx queue mask pointer
3703  *	@nr_bits: number of bits in the bitmask
3704  *
3705  * Returns >= nr_bits if no further CPUs/Rx queues set.
3706  */
3707 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3708 					       unsigned int nr_bits)
3709 {
3710 	/* -1 is a legal arg here. */
3711 	if (n != -1)
3712 		cpu_max_bits_warn(n, nr_bits);
3713 
3714 	if (srcp)
3715 		return find_next_bit(srcp, nr_bits, n + 1);
3716 
3717 	return n + 1;
3718 }
3719 
3720 /**
3721  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3722  *	@n: CPU/Rx queue index
3723  *	@src1p: the first CPUs/Rx queues mask pointer
3724  *	@src2p: the second CPUs/Rx queues mask pointer
3725  *	@nr_bits: number of bits in the bitmask
3726  *
3727  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3728  */
3729 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3730 					  const unsigned long *src2p,
3731 					  unsigned int nr_bits)
3732 {
3733 	/* -1 is a legal arg here. */
3734 	if (n != -1)
3735 		cpu_max_bits_warn(n, nr_bits);
3736 
3737 	if (src1p && src2p)
3738 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3739 	else if (src1p)
3740 		return find_next_bit(src1p, nr_bits, n + 1);
3741 	else if (src2p)
3742 		return find_next_bit(src2p, nr_bits, n + 1);
3743 
3744 	return n + 1;
3745 }
3746 #else
3747 static inline int netif_set_xps_queue(struct net_device *dev,
3748 				      const struct cpumask *mask,
3749 				      u16 index)
3750 {
3751 	return 0;
3752 }
3753 
3754 static inline int __netif_set_xps_queue(struct net_device *dev,
3755 					const unsigned long *mask,
3756 					u16 index, bool is_rxqs_map)
3757 {
3758 	return 0;
3759 }
3760 #endif
3761 
3762 /**
3763  *	netif_is_multiqueue - test if device has multiple transmit queues
3764  *	@dev: network device
3765  *
3766  * Check if device has multiple transmit queues
3767  */
3768 static inline bool netif_is_multiqueue(const struct net_device *dev)
3769 {
3770 	return dev->num_tx_queues > 1;
3771 }
3772 
3773 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3774 
3775 #ifdef CONFIG_SYSFS
3776 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3777 #else
3778 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3779 						unsigned int rxqs)
3780 {
3781 	dev->real_num_rx_queues = rxqs;
3782 	return 0;
3783 }
3784 #endif
3785 
3786 static inline struct netdev_rx_queue *
3787 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3788 {
3789 	return dev->_rx + rxq;
3790 }
3791 
3792 #ifdef CONFIG_SYSFS
3793 static inline unsigned int get_netdev_rx_queue_index(
3794 		struct netdev_rx_queue *queue)
3795 {
3796 	struct net_device *dev = queue->dev;
3797 	int index = queue - dev->_rx;
3798 
3799 	BUG_ON(index >= dev->num_rx_queues);
3800 	return index;
3801 }
3802 #endif
3803 
3804 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3805 int netif_get_num_default_rss_queues(void);
3806 
3807 enum skb_free_reason {
3808 	SKB_REASON_CONSUMED,
3809 	SKB_REASON_DROPPED,
3810 };
3811 
3812 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3813 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3814 
3815 /*
3816  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3817  * interrupt context or with hardware interrupts being disabled.
3818  * (in_irq() || irqs_disabled())
3819  *
3820  * We provide four helpers that can be used in following contexts :
3821  *
3822  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3823  *  replacing kfree_skb(skb)
3824  *
3825  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3826  *  Typically used in place of consume_skb(skb) in TX completion path
3827  *
3828  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3829  *  replacing kfree_skb(skb)
3830  *
3831  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3832  *  and consumed a packet. Used in place of consume_skb(skb)
3833  */
3834 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3835 {
3836 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3837 }
3838 
3839 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3840 {
3841 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3842 }
3843 
3844 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3845 {
3846 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3847 }
3848 
3849 static inline void dev_consume_skb_any(struct sk_buff *skb)
3850 {
3851 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3852 }
3853 
3854 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3855 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3856 int netif_rx(struct sk_buff *skb);
3857 int netif_rx_ni(struct sk_buff *skb);
3858 int netif_rx_any_context(struct sk_buff *skb);
3859 int netif_receive_skb(struct sk_buff *skb);
3860 int netif_receive_skb_core(struct sk_buff *skb);
3861 void netif_receive_skb_list(struct list_head *head);
3862 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3863 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3864 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3865 gro_result_t napi_gro_frags(struct napi_struct *napi);
3866 struct packet_offload *gro_find_receive_by_type(__be16 type);
3867 struct packet_offload *gro_find_complete_by_type(__be16 type);
3868 
3869 static inline void napi_free_frags(struct napi_struct *napi)
3870 {
3871 	kfree_skb(napi->skb);
3872 	napi->skb = NULL;
3873 }
3874 
3875 bool netdev_is_rx_handler_busy(struct net_device *dev);
3876 int netdev_rx_handler_register(struct net_device *dev,
3877 			       rx_handler_func_t *rx_handler,
3878 			       void *rx_handler_data);
3879 void netdev_rx_handler_unregister(struct net_device *dev);
3880 
3881 bool dev_valid_name(const char *name);
3882 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3883 		bool *need_copyout);
3884 int dev_ifconf(struct net *net, struct ifconf *, int);
3885 int dev_ethtool(struct net *net, struct ifreq *);
3886 unsigned int dev_get_flags(const struct net_device *);
3887 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3888 		       struct netlink_ext_ack *extack);
3889 int dev_change_flags(struct net_device *dev, unsigned int flags,
3890 		     struct netlink_ext_ack *extack);
3891 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3892 			unsigned int gchanges);
3893 int dev_change_name(struct net_device *, const char *);
3894 int dev_set_alias(struct net_device *, const char *, size_t);
3895 int dev_get_alias(const struct net_device *, char *, size_t);
3896 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3897 int __dev_set_mtu(struct net_device *, int);
3898 int dev_validate_mtu(struct net_device *dev, int mtu,
3899 		     struct netlink_ext_ack *extack);
3900 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3901 		    struct netlink_ext_ack *extack);
3902 int dev_set_mtu(struct net_device *, int);
3903 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3904 void dev_set_group(struct net_device *, int);
3905 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3906 			      struct netlink_ext_ack *extack);
3907 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3908 			struct netlink_ext_ack *extack);
3909 int dev_change_carrier(struct net_device *, bool new_carrier);
3910 int dev_get_phys_port_id(struct net_device *dev,
3911 			 struct netdev_phys_item_id *ppid);
3912 int dev_get_phys_port_name(struct net_device *dev,
3913 			   char *name, size_t len);
3914 int dev_get_port_parent_id(struct net_device *dev,
3915 			   struct netdev_phys_item_id *ppid, bool recurse);
3916 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3917 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3918 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3919 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3920 				  u32 value);
3921 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3922 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3923 				    struct netdev_queue *txq, int *ret);
3924 
3925 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3926 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3927 		      int fd, int expected_fd, u32 flags);
3928 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3929 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3930 
3931 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3932 
3933 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3934 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3935 bool is_skb_forwardable(const struct net_device *dev,
3936 			const struct sk_buff *skb);
3937 
3938 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3939 					       struct sk_buff *skb)
3940 {
3941 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3942 	    unlikely(!is_skb_forwardable(dev, skb))) {
3943 		atomic_long_inc(&dev->rx_dropped);
3944 		kfree_skb(skb);
3945 		return NET_RX_DROP;
3946 	}
3947 
3948 	skb_scrub_packet(skb, true);
3949 	skb->priority = 0;
3950 	return 0;
3951 }
3952 
3953 bool dev_nit_active(struct net_device *dev);
3954 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3955 
3956 extern int		netdev_budget;
3957 extern unsigned int	netdev_budget_usecs;
3958 
3959 /* Called by rtnetlink.c:rtnl_unlock() */
3960 void netdev_run_todo(void);
3961 
3962 /**
3963  *	dev_put - release reference to device
3964  *	@dev: network device
3965  *
3966  * Release reference to device to allow it to be freed.
3967  */
3968 static inline void dev_put(struct net_device *dev)
3969 {
3970 	this_cpu_dec(*dev->pcpu_refcnt);
3971 }
3972 
3973 /**
3974  *	dev_hold - get reference to device
3975  *	@dev: network device
3976  *
3977  * Hold reference to device to keep it from being freed.
3978  */
3979 static inline void dev_hold(struct net_device *dev)
3980 {
3981 	this_cpu_inc(*dev->pcpu_refcnt);
3982 }
3983 
3984 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3985  * and _off may be called from IRQ context, but it is caller
3986  * who is responsible for serialization of these calls.
3987  *
3988  * The name carrier is inappropriate, these functions should really be
3989  * called netif_lowerlayer_*() because they represent the state of any
3990  * kind of lower layer not just hardware media.
3991  */
3992 
3993 void linkwatch_init_dev(struct net_device *dev);
3994 void linkwatch_fire_event(struct net_device *dev);
3995 void linkwatch_forget_dev(struct net_device *dev);
3996 
3997 /**
3998  *	netif_carrier_ok - test if carrier present
3999  *	@dev: network device
4000  *
4001  * Check if carrier is present on device
4002  */
4003 static inline bool netif_carrier_ok(const struct net_device *dev)
4004 {
4005 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4006 }
4007 
4008 unsigned long dev_trans_start(struct net_device *dev);
4009 
4010 void __netdev_watchdog_up(struct net_device *dev);
4011 
4012 void netif_carrier_on(struct net_device *dev);
4013 
4014 void netif_carrier_off(struct net_device *dev);
4015 
4016 /**
4017  *	netif_dormant_on - mark device as dormant.
4018  *	@dev: network device
4019  *
4020  * Mark device as dormant (as per RFC2863).
4021  *
4022  * The dormant state indicates that the relevant interface is not
4023  * actually in a condition to pass packets (i.e., it is not 'up') but is
4024  * in a "pending" state, waiting for some external event.  For "on-
4025  * demand" interfaces, this new state identifies the situation where the
4026  * interface is waiting for events to place it in the up state.
4027  */
4028 static inline void netif_dormant_on(struct net_device *dev)
4029 {
4030 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4031 		linkwatch_fire_event(dev);
4032 }
4033 
4034 /**
4035  *	netif_dormant_off - set device as not dormant.
4036  *	@dev: network device
4037  *
4038  * Device is not in dormant state.
4039  */
4040 static inline void netif_dormant_off(struct net_device *dev)
4041 {
4042 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4043 		linkwatch_fire_event(dev);
4044 }
4045 
4046 /**
4047  *	netif_dormant - test if device is dormant
4048  *	@dev: network device
4049  *
4050  * Check if device is dormant.
4051  */
4052 static inline bool netif_dormant(const struct net_device *dev)
4053 {
4054 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4055 }
4056 
4057 
4058 /**
4059  *	netif_testing_on - mark device as under test.
4060  *	@dev: network device
4061  *
4062  * Mark device as under test (as per RFC2863).
4063  *
4064  * The testing state indicates that some test(s) must be performed on
4065  * the interface. After completion, of the test, the interface state
4066  * will change to up, dormant, or down, as appropriate.
4067  */
4068 static inline void netif_testing_on(struct net_device *dev)
4069 {
4070 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4071 		linkwatch_fire_event(dev);
4072 }
4073 
4074 /**
4075  *	netif_testing_off - set device as not under test.
4076  *	@dev: network device
4077  *
4078  * Device is not in testing state.
4079  */
4080 static inline void netif_testing_off(struct net_device *dev)
4081 {
4082 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4083 		linkwatch_fire_event(dev);
4084 }
4085 
4086 /**
4087  *	netif_testing - test if device is under test
4088  *	@dev: network device
4089  *
4090  * Check if device is under test
4091  */
4092 static inline bool netif_testing(const struct net_device *dev)
4093 {
4094 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4095 }
4096 
4097 
4098 /**
4099  *	netif_oper_up - test if device is operational
4100  *	@dev: network device
4101  *
4102  * Check if carrier is operational
4103  */
4104 static inline bool netif_oper_up(const struct net_device *dev)
4105 {
4106 	return (dev->operstate == IF_OPER_UP ||
4107 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4108 }
4109 
4110 /**
4111  *	netif_device_present - is device available or removed
4112  *	@dev: network device
4113  *
4114  * Check if device has not been removed from system.
4115  */
4116 static inline bool netif_device_present(struct net_device *dev)
4117 {
4118 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4119 }
4120 
4121 void netif_device_detach(struct net_device *dev);
4122 
4123 void netif_device_attach(struct net_device *dev);
4124 
4125 /*
4126  * Network interface message level settings
4127  */
4128 
4129 enum {
4130 	NETIF_MSG_DRV_BIT,
4131 	NETIF_MSG_PROBE_BIT,
4132 	NETIF_MSG_LINK_BIT,
4133 	NETIF_MSG_TIMER_BIT,
4134 	NETIF_MSG_IFDOWN_BIT,
4135 	NETIF_MSG_IFUP_BIT,
4136 	NETIF_MSG_RX_ERR_BIT,
4137 	NETIF_MSG_TX_ERR_BIT,
4138 	NETIF_MSG_TX_QUEUED_BIT,
4139 	NETIF_MSG_INTR_BIT,
4140 	NETIF_MSG_TX_DONE_BIT,
4141 	NETIF_MSG_RX_STATUS_BIT,
4142 	NETIF_MSG_PKTDATA_BIT,
4143 	NETIF_MSG_HW_BIT,
4144 	NETIF_MSG_WOL_BIT,
4145 
4146 	/* When you add a new bit above, update netif_msg_class_names array
4147 	 * in net/ethtool/common.c
4148 	 */
4149 	NETIF_MSG_CLASS_COUNT,
4150 };
4151 /* Both ethtool_ops interface and internal driver implementation use u32 */
4152 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4153 
4154 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4155 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4156 
4157 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4158 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4159 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4160 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4161 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4162 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4163 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4164 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4165 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4166 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4167 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4168 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4169 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4170 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4171 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4172 
4173 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4174 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4175 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4176 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4177 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4178 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4179 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4180 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4181 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4182 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4183 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4184 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4185 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4186 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4187 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4188 
4189 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4190 {
4191 	/* use default */
4192 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4193 		return default_msg_enable_bits;
4194 	if (debug_value == 0)	/* no output */
4195 		return 0;
4196 	/* set low N bits */
4197 	return (1U << debug_value) - 1;
4198 }
4199 
4200 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4201 {
4202 	spin_lock(&txq->_xmit_lock);
4203 	txq->xmit_lock_owner = cpu;
4204 }
4205 
4206 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4207 {
4208 	__acquire(&txq->_xmit_lock);
4209 	return true;
4210 }
4211 
4212 static inline void __netif_tx_release(struct netdev_queue *txq)
4213 {
4214 	__release(&txq->_xmit_lock);
4215 }
4216 
4217 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4218 {
4219 	spin_lock_bh(&txq->_xmit_lock);
4220 	txq->xmit_lock_owner = smp_processor_id();
4221 }
4222 
4223 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4224 {
4225 	bool ok = spin_trylock(&txq->_xmit_lock);
4226 	if (likely(ok))
4227 		txq->xmit_lock_owner = smp_processor_id();
4228 	return ok;
4229 }
4230 
4231 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4232 {
4233 	txq->xmit_lock_owner = -1;
4234 	spin_unlock(&txq->_xmit_lock);
4235 }
4236 
4237 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4238 {
4239 	txq->xmit_lock_owner = -1;
4240 	spin_unlock_bh(&txq->_xmit_lock);
4241 }
4242 
4243 static inline void txq_trans_update(struct netdev_queue *txq)
4244 {
4245 	if (txq->xmit_lock_owner != -1)
4246 		txq->trans_start = jiffies;
4247 }
4248 
4249 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4250 static inline void netif_trans_update(struct net_device *dev)
4251 {
4252 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4253 
4254 	if (txq->trans_start != jiffies)
4255 		txq->trans_start = jiffies;
4256 }
4257 
4258 /**
4259  *	netif_tx_lock - grab network device transmit lock
4260  *	@dev: network device
4261  *
4262  * Get network device transmit lock
4263  */
4264 static inline void netif_tx_lock(struct net_device *dev)
4265 {
4266 	unsigned int i;
4267 	int cpu;
4268 
4269 	spin_lock(&dev->tx_global_lock);
4270 	cpu = smp_processor_id();
4271 	for (i = 0; i < dev->num_tx_queues; i++) {
4272 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4273 
4274 		/* We are the only thread of execution doing a
4275 		 * freeze, but we have to grab the _xmit_lock in
4276 		 * order to synchronize with threads which are in
4277 		 * the ->hard_start_xmit() handler and already
4278 		 * checked the frozen bit.
4279 		 */
4280 		__netif_tx_lock(txq, cpu);
4281 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4282 		__netif_tx_unlock(txq);
4283 	}
4284 }
4285 
4286 static inline void netif_tx_lock_bh(struct net_device *dev)
4287 {
4288 	local_bh_disable();
4289 	netif_tx_lock(dev);
4290 }
4291 
4292 static inline void netif_tx_unlock(struct net_device *dev)
4293 {
4294 	unsigned int i;
4295 
4296 	for (i = 0; i < dev->num_tx_queues; i++) {
4297 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4298 
4299 		/* No need to grab the _xmit_lock here.  If the
4300 		 * queue is not stopped for another reason, we
4301 		 * force a schedule.
4302 		 */
4303 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4304 		netif_schedule_queue(txq);
4305 	}
4306 	spin_unlock(&dev->tx_global_lock);
4307 }
4308 
4309 static inline void netif_tx_unlock_bh(struct net_device *dev)
4310 {
4311 	netif_tx_unlock(dev);
4312 	local_bh_enable();
4313 }
4314 
4315 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4316 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4317 		__netif_tx_lock(txq, cpu);		\
4318 	} else {					\
4319 		__netif_tx_acquire(txq);		\
4320 	}						\
4321 }
4322 
4323 #define HARD_TX_TRYLOCK(dev, txq)			\
4324 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4325 		__netif_tx_trylock(txq) :		\
4326 		__netif_tx_acquire(txq))
4327 
4328 #define HARD_TX_UNLOCK(dev, txq) {			\
4329 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4330 		__netif_tx_unlock(txq);			\
4331 	} else {					\
4332 		__netif_tx_release(txq);		\
4333 	}						\
4334 }
4335 
4336 static inline void netif_tx_disable(struct net_device *dev)
4337 {
4338 	unsigned int i;
4339 	int cpu;
4340 
4341 	local_bh_disable();
4342 	cpu = smp_processor_id();
4343 	for (i = 0; i < dev->num_tx_queues; i++) {
4344 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4345 
4346 		__netif_tx_lock(txq, cpu);
4347 		netif_tx_stop_queue(txq);
4348 		__netif_tx_unlock(txq);
4349 	}
4350 	local_bh_enable();
4351 }
4352 
4353 static inline void netif_addr_lock(struct net_device *dev)
4354 {
4355 	unsigned char nest_level = 0;
4356 
4357 #ifdef CONFIG_LOCKDEP
4358 	nest_level = dev->nested_level;
4359 #endif
4360 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4361 }
4362 
4363 static inline void netif_addr_lock_bh(struct net_device *dev)
4364 {
4365 	unsigned char nest_level = 0;
4366 
4367 #ifdef CONFIG_LOCKDEP
4368 	nest_level = dev->nested_level;
4369 #endif
4370 	local_bh_disable();
4371 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4372 }
4373 
4374 static inline void netif_addr_unlock(struct net_device *dev)
4375 {
4376 	spin_unlock(&dev->addr_list_lock);
4377 }
4378 
4379 static inline void netif_addr_unlock_bh(struct net_device *dev)
4380 {
4381 	spin_unlock_bh(&dev->addr_list_lock);
4382 }
4383 
4384 /*
4385  * dev_addrs walker. Should be used only for read access. Call with
4386  * rcu_read_lock held.
4387  */
4388 #define for_each_dev_addr(dev, ha) \
4389 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4390 
4391 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4392 
4393 void ether_setup(struct net_device *dev);
4394 
4395 /* Support for loadable net-drivers */
4396 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4397 				    unsigned char name_assign_type,
4398 				    void (*setup)(struct net_device *),
4399 				    unsigned int txqs, unsigned int rxqs);
4400 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4401 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4402 
4403 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4404 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4405 			 count)
4406 
4407 int register_netdev(struct net_device *dev);
4408 void unregister_netdev(struct net_device *dev);
4409 
4410 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4411 
4412 /* General hardware address lists handling functions */
4413 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4414 		   struct netdev_hw_addr_list *from_list, int addr_len);
4415 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4416 		      struct netdev_hw_addr_list *from_list, int addr_len);
4417 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4418 		       struct net_device *dev,
4419 		       int (*sync)(struct net_device *, const unsigned char *),
4420 		       int (*unsync)(struct net_device *,
4421 				     const unsigned char *));
4422 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4423 			   struct net_device *dev,
4424 			   int (*sync)(struct net_device *,
4425 				       const unsigned char *, int),
4426 			   int (*unsync)(struct net_device *,
4427 					 const unsigned char *, int));
4428 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4429 			      struct net_device *dev,
4430 			      int (*unsync)(struct net_device *,
4431 					    const unsigned char *, int));
4432 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4433 			  struct net_device *dev,
4434 			  int (*unsync)(struct net_device *,
4435 					const unsigned char *));
4436 void __hw_addr_init(struct netdev_hw_addr_list *list);
4437 
4438 /* Functions used for device addresses handling */
4439 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4440 		 unsigned char addr_type);
4441 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4442 		 unsigned char addr_type);
4443 void dev_addr_flush(struct net_device *dev);
4444 int dev_addr_init(struct net_device *dev);
4445 
4446 /* Functions used for unicast addresses handling */
4447 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4448 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4449 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4450 int dev_uc_sync(struct net_device *to, struct net_device *from);
4451 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4452 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4453 void dev_uc_flush(struct net_device *dev);
4454 void dev_uc_init(struct net_device *dev);
4455 
4456 /**
4457  *  __dev_uc_sync - Synchonize device's unicast list
4458  *  @dev:  device to sync
4459  *  @sync: function to call if address should be added
4460  *  @unsync: function to call if address should be removed
4461  *
4462  *  Add newly added addresses to the interface, and release
4463  *  addresses that have been deleted.
4464  */
4465 static inline int __dev_uc_sync(struct net_device *dev,
4466 				int (*sync)(struct net_device *,
4467 					    const unsigned char *),
4468 				int (*unsync)(struct net_device *,
4469 					      const unsigned char *))
4470 {
4471 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4472 }
4473 
4474 /**
4475  *  __dev_uc_unsync - Remove synchronized addresses from device
4476  *  @dev:  device to sync
4477  *  @unsync: function to call if address should be removed
4478  *
4479  *  Remove all addresses that were added to the device by dev_uc_sync().
4480  */
4481 static inline void __dev_uc_unsync(struct net_device *dev,
4482 				   int (*unsync)(struct net_device *,
4483 						 const unsigned char *))
4484 {
4485 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4486 }
4487 
4488 /* Functions used for multicast addresses handling */
4489 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4490 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4491 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4492 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4493 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4494 int dev_mc_sync(struct net_device *to, struct net_device *from);
4495 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4496 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4497 void dev_mc_flush(struct net_device *dev);
4498 void dev_mc_init(struct net_device *dev);
4499 
4500 /**
4501  *  __dev_mc_sync - Synchonize device's multicast list
4502  *  @dev:  device to sync
4503  *  @sync: function to call if address should be added
4504  *  @unsync: function to call if address should be removed
4505  *
4506  *  Add newly added addresses to the interface, and release
4507  *  addresses that have been deleted.
4508  */
4509 static inline int __dev_mc_sync(struct net_device *dev,
4510 				int (*sync)(struct net_device *,
4511 					    const unsigned char *),
4512 				int (*unsync)(struct net_device *,
4513 					      const unsigned char *))
4514 {
4515 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4516 }
4517 
4518 /**
4519  *  __dev_mc_unsync - Remove synchronized addresses from device
4520  *  @dev:  device to sync
4521  *  @unsync: function to call if address should be removed
4522  *
4523  *  Remove all addresses that were added to the device by dev_mc_sync().
4524  */
4525 static inline void __dev_mc_unsync(struct net_device *dev,
4526 				   int (*unsync)(struct net_device *,
4527 						 const unsigned char *))
4528 {
4529 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4530 }
4531 
4532 /* Functions used for secondary unicast and multicast support */
4533 void dev_set_rx_mode(struct net_device *dev);
4534 void __dev_set_rx_mode(struct net_device *dev);
4535 int dev_set_promiscuity(struct net_device *dev, int inc);
4536 int dev_set_allmulti(struct net_device *dev, int inc);
4537 void netdev_state_change(struct net_device *dev);
4538 void __netdev_notify_peers(struct net_device *dev);
4539 void netdev_notify_peers(struct net_device *dev);
4540 void netdev_features_change(struct net_device *dev);
4541 /* Load a device via the kmod */
4542 void dev_load(struct net *net, const char *name);
4543 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4544 					struct rtnl_link_stats64 *storage);
4545 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4546 			     const struct net_device_stats *netdev_stats);
4547 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4548 			   const struct pcpu_sw_netstats __percpu *netstats);
4549 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4550 
4551 extern int		netdev_max_backlog;
4552 extern int		netdev_tstamp_prequeue;
4553 extern int		weight_p;
4554 extern int		dev_weight_rx_bias;
4555 extern int		dev_weight_tx_bias;
4556 extern int		dev_rx_weight;
4557 extern int		dev_tx_weight;
4558 extern int		gro_normal_batch;
4559 
4560 enum {
4561 	NESTED_SYNC_IMM_BIT,
4562 	NESTED_SYNC_TODO_BIT,
4563 };
4564 
4565 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4566 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4567 
4568 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4569 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4570 
4571 struct netdev_nested_priv {
4572 	unsigned char flags;
4573 	void *data;
4574 };
4575 
4576 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4577 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4578 						     struct list_head **iter);
4579 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4580 						     struct list_head **iter);
4581 
4582 #ifdef CONFIG_LOCKDEP
4583 static LIST_HEAD(net_unlink_list);
4584 
4585 static inline void net_unlink_todo(struct net_device *dev)
4586 {
4587 	if (list_empty(&dev->unlink_list))
4588 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4589 }
4590 #endif
4591 
4592 /* iterate through upper list, must be called under RCU read lock */
4593 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4594 	for (iter = &(dev)->adj_list.upper, \
4595 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4596 	     updev; \
4597 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4598 
4599 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4600 				  int (*fn)(struct net_device *upper_dev,
4601 					    struct netdev_nested_priv *priv),
4602 				  struct netdev_nested_priv *priv);
4603 
4604 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4605 				  struct net_device *upper_dev);
4606 
4607 bool netdev_has_any_upper_dev(struct net_device *dev);
4608 
4609 void *netdev_lower_get_next_private(struct net_device *dev,
4610 				    struct list_head **iter);
4611 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4612 					struct list_head **iter);
4613 
4614 #define netdev_for_each_lower_private(dev, priv, iter) \
4615 	for (iter = (dev)->adj_list.lower.next, \
4616 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4617 	     priv; \
4618 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4619 
4620 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4621 	for (iter = &(dev)->adj_list.lower, \
4622 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4623 	     priv; \
4624 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4625 
4626 void *netdev_lower_get_next(struct net_device *dev,
4627 				struct list_head **iter);
4628 
4629 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4630 	for (iter = (dev)->adj_list.lower.next, \
4631 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4632 	     ldev; \
4633 	     ldev = netdev_lower_get_next(dev, &(iter)))
4634 
4635 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4636 					     struct list_head **iter);
4637 int netdev_walk_all_lower_dev(struct net_device *dev,
4638 			      int (*fn)(struct net_device *lower_dev,
4639 					struct netdev_nested_priv *priv),
4640 			      struct netdev_nested_priv *priv);
4641 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4642 				  int (*fn)(struct net_device *lower_dev,
4643 					    struct netdev_nested_priv *priv),
4644 				  struct netdev_nested_priv *priv);
4645 
4646 void *netdev_adjacent_get_private(struct list_head *adj_list);
4647 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4648 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4649 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4650 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4651 			  struct netlink_ext_ack *extack);
4652 int netdev_master_upper_dev_link(struct net_device *dev,
4653 				 struct net_device *upper_dev,
4654 				 void *upper_priv, void *upper_info,
4655 				 struct netlink_ext_ack *extack);
4656 void netdev_upper_dev_unlink(struct net_device *dev,
4657 			     struct net_device *upper_dev);
4658 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4659 				   struct net_device *new_dev,
4660 				   struct net_device *dev,
4661 				   struct netlink_ext_ack *extack);
4662 void netdev_adjacent_change_commit(struct net_device *old_dev,
4663 				   struct net_device *new_dev,
4664 				   struct net_device *dev);
4665 void netdev_adjacent_change_abort(struct net_device *old_dev,
4666 				  struct net_device *new_dev,
4667 				  struct net_device *dev);
4668 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4669 void *netdev_lower_dev_get_private(struct net_device *dev,
4670 				   struct net_device *lower_dev);
4671 void netdev_lower_state_changed(struct net_device *lower_dev,
4672 				void *lower_state_info);
4673 
4674 /* RSS keys are 40 or 52 bytes long */
4675 #define NETDEV_RSS_KEY_LEN 52
4676 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4677 void netdev_rss_key_fill(void *buffer, size_t len);
4678 
4679 int skb_checksum_help(struct sk_buff *skb);
4680 int skb_crc32c_csum_help(struct sk_buff *skb);
4681 int skb_csum_hwoffload_help(struct sk_buff *skb,
4682 			    const netdev_features_t features);
4683 
4684 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4685 				  netdev_features_t features, bool tx_path);
4686 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4687 				    netdev_features_t features);
4688 
4689 struct netdev_bonding_info {
4690 	ifslave	slave;
4691 	ifbond	master;
4692 };
4693 
4694 struct netdev_notifier_bonding_info {
4695 	struct netdev_notifier_info info; /* must be first */
4696 	struct netdev_bonding_info  bonding_info;
4697 };
4698 
4699 void netdev_bonding_info_change(struct net_device *dev,
4700 				struct netdev_bonding_info *bonding_info);
4701 
4702 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4703 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4704 #else
4705 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4706 				  const void *data)
4707 {
4708 }
4709 #endif
4710 
4711 static inline
4712 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4713 {
4714 	return __skb_gso_segment(skb, features, true);
4715 }
4716 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4717 
4718 static inline bool can_checksum_protocol(netdev_features_t features,
4719 					 __be16 protocol)
4720 {
4721 	if (protocol == htons(ETH_P_FCOE))
4722 		return !!(features & NETIF_F_FCOE_CRC);
4723 
4724 	/* Assume this is an IP checksum (not SCTP CRC) */
4725 
4726 	if (features & NETIF_F_HW_CSUM) {
4727 		/* Can checksum everything */
4728 		return true;
4729 	}
4730 
4731 	switch (protocol) {
4732 	case htons(ETH_P_IP):
4733 		return !!(features & NETIF_F_IP_CSUM);
4734 	case htons(ETH_P_IPV6):
4735 		return !!(features & NETIF_F_IPV6_CSUM);
4736 	default:
4737 		return false;
4738 	}
4739 }
4740 
4741 #ifdef CONFIG_BUG
4742 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4743 #else
4744 static inline void netdev_rx_csum_fault(struct net_device *dev,
4745 					struct sk_buff *skb)
4746 {
4747 }
4748 #endif
4749 /* rx skb timestamps */
4750 void net_enable_timestamp(void);
4751 void net_disable_timestamp(void);
4752 
4753 #ifdef CONFIG_PROC_FS
4754 int __init dev_proc_init(void);
4755 #else
4756 #define dev_proc_init() 0
4757 #endif
4758 
4759 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4760 					      struct sk_buff *skb, struct net_device *dev,
4761 					      bool more)
4762 {
4763 	__this_cpu_write(softnet_data.xmit.more, more);
4764 	return ops->ndo_start_xmit(skb, dev);
4765 }
4766 
4767 static inline bool netdev_xmit_more(void)
4768 {
4769 	return __this_cpu_read(softnet_data.xmit.more);
4770 }
4771 
4772 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4773 					    struct netdev_queue *txq, bool more)
4774 {
4775 	const struct net_device_ops *ops = dev->netdev_ops;
4776 	netdev_tx_t rc;
4777 
4778 	rc = __netdev_start_xmit(ops, skb, dev, more);
4779 	if (rc == NETDEV_TX_OK)
4780 		txq_trans_update(txq);
4781 
4782 	return rc;
4783 }
4784 
4785 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4786 				const void *ns);
4787 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4788 				 const void *ns);
4789 
4790 extern const struct kobj_ns_type_operations net_ns_type_operations;
4791 
4792 const char *netdev_drivername(const struct net_device *dev);
4793 
4794 void linkwatch_run_queue(void);
4795 
4796 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4797 							  netdev_features_t f2)
4798 {
4799 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4800 		if (f1 & NETIF_F_HW_CSUM)
4801 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4802 		else
4803 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4804 	}
4805 
4806 	return f1 & f2;
4807 }
4808 
4809 static inline netdev_features_t netdev_get_wanted_features(
4810 	struct net_device *dev)
4811 {
4812 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4813 }
4814 netdev_features_t netdev_increment_features(netdev_features_t all,
4815 	netdev_features_t one, netdev_features_t mask);
4816 
4817 /* Allow TSO being used on stacked device :
4818  * Performing the GSO segmentation before last device
4819  * is a performance improvement.
4820  */
4821 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4822 							netdev_features_t mask)
4823 {
4824 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4825 }
4826 
4827 int __netdev_update_features(struct net_device *dev);
4828 void netdev_update_features(struct net_device *dev);
4829 void netdev_change_features(struct net_device *dev);
4830 
4831 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4832 					struct net_device *dev);
4833 
4834 netdev_features_t passthru_features_check(struct sk_buff *skb,
4835 					  struct net_device *dev,
4836 					  netdev_features_t features);
4837 netdev_features_t netif_skb_features(struct sk_buff *skb);
4838 
4839 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4840 {
4841 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4842 
4843 	/* check flags correspondence */
4844 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4845 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4846 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4847 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4848 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4849 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4850 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4851 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4852 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4853 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4854 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4855 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4856 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4857 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4858 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4859 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4860 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4861 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4862 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4863 
4864 	return (features & feature) == feature;
4865 }
4866 
4867 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4868 {
4869 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4870 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4871 }
4872 
4873 static inline bool netif_needs_gso(struct sk_buff *skb,
4874 				   netdev_features_t features)
4875 {
4876 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4877 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4878 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4879 }
4880 
4881 static inline void netif_set_gso_max_size(struct net_device *dev,
4882 					  unsigned int size)
4883 {
4884 	dev->gso_max_size = size;
4885 }
4886 
4887 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4888 					int pulled_hlen, u16 mac_offset,
4889 					int mac_len)
4890 {
4891 	skb->protocol = protocol;
4892 	skb->encapsulation = 1;
4893 	skb_push(skb, pulled_hlen);
4894 	skb_reset_transport_header(skb);
4895 	skb->mac_header = mac_offset;
4896 	skb->network_header = skb->mac_header + mac_len;
4897 	skb->mac_len = mac_len;
4898 }
4899 
4900 static inline bool netif_is_macsec(const struct net_device *dev)
4901 {
4902 	return dev->priv_flags & IFF_MACSEC;
4903 }
4904 
4905 static inline bool netif_is_macvlan(const struct net_device *dev)
4906 {
4907 	return dev->priv_flags & IFF_MACVLAN;
4908 }
4909 
4910 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4911 {
4912 	return dev->priv_flags & IFF_MACVLAN_PORT;
4913 }
4914 
4915 static inline bool netif_is_bond_master(const struct net_device *dev)
4916 {
4917 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4918 }
4919 
4920 static inline bool netif_is_bond_slave(const struct net_device *dev)
4921 {
4922 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4923 }
4924 
4925 static inline bool netif_supports_nofcs(struct net_device *dev)
4926 {
4927 	return dev->priv_flags & IFF_SUPP_NOFCS;
4928 }
4929 
4930 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4931 {
4932 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4933 }
4934 
4935 static inline bool netif_is_l3_master(const struct net_device *dev)
4936 {
4937 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4938 }
4939 
4940 static inline bool netif_is_l3_slave(const struct net_device *dev)
4941 {
4942 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4943 }
4944 
4945 static inline bool netif_is_bridge_master(const struct net_device *dev)
4946 {
4947 	return dev->priv_flags & IFF_EBRIDGE;
4948 }
4949 
4950 static inline bool netif_is_bridge_port(const struct net_device *dev)
4951 {
4952 	return dev->priv_flags & IFF_BRIDGE_PORT;
4953 }
4954 
4955 static inline bool netif_is_ovs_master(const struct net_device *dev)
4956 {
4957 	return dev->priv_flags & IFF_OPENVSWITCH;
4958 }
4959 
4960 static inline bool netif_is_ovs_port(const struct net_device *dev)
4961 {
4962 	return dev->priv_flags & IFF_OVS_DATAPATH;
4963 }
4964 
4965 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4966 {
4967 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4968 }
4969 
4970 static inline bool netif_is_team_master(const struct net_device *dev)
4971 {
4972 	return dev->priv_flags & IFF_TEAM;
4973 }
4974 
4975 static inline bool netif_is_team_port(const struct net_device *dev)
4976 {
4977 	return dev->priv_flags & IFF_TEAM_PORT;
4978 }
4979 
4980 static inline bool netif_is_lag_master(const struct net_device *dev)
4981 {
4982 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4983 }
4984 
4985 static inline bool netif_is_lag_port(const struct net_device *dev)
4986 {
4987 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4988 }
4989 
4990 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4991 {
4992 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4993 }
4994 
4995 static inline bool netif_is_failover(const struct net_device *dev)
4996 {
4997 	return dev->priv_flags & IFF_FAILOVER;
4998 }
4999 
5000 static inline bool netif_is_failover_slave(const struct net_device *dev)
5001 {
5002 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5003 }
5004 
5005 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5006 static inline void netif_keep_dst(struct net_device *dev)
5007 {
5008 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5009 }
5010 
5011 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5012 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5013 {
5014 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5015 	return dev->priv_flags & IFF_MACSEC;
5016 }
5017 
5018 extern struct pernet_operations __net_initdata loopback_net_ops;
5019 
5020 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5021 
5022 /* netdev_printk helpers, similar to dev_printk */
5023 
5024 static inline const char *netdev_name(const struct net_device *dev)
5025 {
5026 	if (!dev->name[0] || strchr(dev->name, '%'))
5027 		return "(unnamed net_device)";
5028 	return dev->name;
5029 }
5030 
5031 static inline bool netdev_unregistering(const struct net_device *dev)
5032 {
5033 	return dev->reg_state == NETREG_UNREGISTERING;
5034 }
5035 
5036 static inline const char *netdev_reg_state(const struct net_device *dev)
5037 {
5038 	switch (dev->reg_state) {
5039 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5040 	case NETREG_REGISTERED: return "";
5041 	case NETREG_UNREGISTERING: return " (unregistering)";
5042 	case NETREG_UNREGISTERED: return " (unregistered)";
5043 	case NETREG_RELEASED: return " (released)";
5044 	case NETREG_DUMMY: return " (dummy)";
5045 	}
5046 
5047 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5048 	return " (unknown)";
5049 }
5050 
5051 __printf(3, 4) __cold
5052 void netdev_printk(const char *level, const struct net_device *dev,
5053 		   const char *format, ...);
5054 __printf(2, 3) __cold
5055 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5056 __printf(2, 3) __cold
5057 void netdev_alert(const struct net_device *dev, const char *format, ...);
5058 __printf(2, 3) __cold
5059 void netdev_crit(const struct net_device *dev, const char *format, ...);
5060 __printf(2, 3) __cold
5061 void netdev_err(const struct net_device *dev, const char *format, ...);
5062 __printf(2, 3) __cold
5063 void netdev_warn(const struct net_device *dev, const char *format, ...);
5064 __printf(2, 3) __cold
5065 void netdev_notice(const struct net_device *dev, const char *format, ...);
5066 __printf(2, 3) __cold
5067 void netdev_info(const struct net_device *dev, const char *format, ...);
5068 
5069 #define netdev_level_once(level, dev, fmt, ...)			\
5070 do {								\
5071 	static bool __print_once __read_mostly;			\
5072 								\
5073 	if (!__print_once) {					\
5074 		__print_once = true;				\
5075 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5076 	}							\
5077 } while (0)
5078 
5079 #define netdev_emerg_once(dev, fmt, ...) \
5080 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5081 #define netdev_alert_once(dev, fmt, ...) \
5082 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5083 #define netdev_crit_once(dev, fmt, ...) \
5084 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5085 #define netdev_err_once(dev, fmt, ...) \
5086 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5087 #define netdev_warn_once(dev, fmt, ...) \
5088 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5089 #define netdev_notice_once(dev, fmt, ...) \
5090 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5091 #define netdev_info_once(dev, fmt, ...) \
5092 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5093 
5094 #define MODULE_ALIAS_NETDEV(device) \
5095 	MODULE_ALIAS("netdev-" device)
5096 
5097 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5098 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5099 #define netdev_dbg(__dev, format, args...)			\
5100 do {								\
5101 	dynamic_netdev_dbg(__dev, format, ##args);		\
5102 } while (0)
5103 #elif defined(DEBUG)
5104 #define netdev_dbg(__dev, format, args...)			\
5105 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5106 #else
5107 #define netdev_dbg(__dev, format, args...)			\
5108 ({								\
5109 	if (0)							\
5110 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5111 })
5112 #endif
5113 
5114 #if defined(VERBOSE_DEBUG)
5115 #define netdev_vdbg	netdev_dbg
5116 #else
5117 
5118 #define netdev_vdbg(dev, format, args...)			\
5119 ({								\
5120 	if (0)							\
5121 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5122 	0;							\
5123 })
5124 #endif
5125 
5126 /*
5127  * netdev_WARN() acts like dev_printk(), but with the key difference
5128  * of using a WARN/WARN_ON to get the message out, including the
5129  * file/line information and a backtrace.
5130  */
5131 #define netdev_WARN(dev, format, args...)			\
5132 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5133 	     netdev_reg_state(dev), ##args)
5134 
5135 #define netdev_WARN_ONCE(dev, format, args...)				\
5136 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5137 		  netdev_reg_state(dev), ##args)
5138 
5139 /* netif printk helpers, similar to netdev_printk */
5140 
5141 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5142 do {					  			\
5143 	if (netif_msg_##type(priv))				\
5144 		netdev_printk(level, (dev), fmt, ##args);	\
5145 } while (0)
5146 
5147 #define netif_level(level, priv, type, dev, fmt, args...)	\
5148 do {								\
5149 	if (netif_msg_##type(priv))				\
5150 		netdev_##level(dev, fmt, ##args);		\
5151 } while (0)
5152 
5153 #define netif_emerg(priv, type, dev, fmt, args...)		\
5154 	netif_level(emerg, priv, type, dev, fmt, ##args)
5155 #define netif_alert(priv, type, dev, fmt, args...)		\
5156 	netif_level(alert, priv, type, dev, fmt, ##args)
5157 #define netif_crit(priv, type, dev, fmt, args...)		\
5158 	netif_level(crit, priv, type, dev, fmt, ##args)
5159 #define netif_err(priv, type, dev, fmt, args...)		\
5160 	netif_level(err, priv, type, dev, fmt, ##args)
5161 #define netif_warn(priv, type, dev, fmt, args...)		\
5162 	netif_level(warn, priv, type, dev, fmt, ##args)
5163 #define netif_notice(priv, type, dev, fmt, args...)		\
5164 	netif_level(notice, priv, type, dev, fmt, ##args)
5165 #define netif_info(priv, type, dev, fmt, args...)		\
5166 	netif_level(info, priv, type, dev, fmt, ##args)
5167 
5168 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5169 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5170 #define netif_dbg(priv, type, netdev, format, args...)		\
5171 do {								\
5172 	if (netif_msg_##type(priv))				\
5173 		dynamic_netdev_dbg(netdev, format, ##args);	\
5174 } while (0)
5175 #elif defined(DEBUG)
5176 #define netif_dbg(priv, type, dev, format, args...)		\
5177 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5178 #else
5179 #define netif_dbg(priv, type, dev, format, args...)			\
5180 ({									\
5181 	if (0)								\
5182 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5183 	0;								\
5184 })
5185 #endif
5186 
5187 /* if @cond then downgrade to debug, else print at @level */
5188 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5189 	do {                                                              \
5190 		if (cond)                                                 \
5191 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5192 		else                                                      \
5193 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5194 	} while (0)
5195 
5196 #if defined(VERBOSE_DEBUG)
5197 #define netif_vdbg	netif_dbg
5198 #else
5199 #define netif_vdbg(priv, type, dev, format, args...)		\
5200 ({								\
5201 	if (0)							\
5202 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5203 	0;							\
5204 })
5205 #endif
5206 
5207 /*
5208  *	The list of packet types we will receive (as opposed to discard)
5209  *	and the routines to invoke.
5210  *
5211  *	Why 16. Because with 16 the only overlap we get on a hash of the
5212  *	low nibble of the protocol value is RARP/SNAP/X.25.
5213  *
5214  *		0800	IP
5215  *		0001	802.3
5216  *		0002	AX.25
5217  *		0004	802.2
5218  *		8035	RARP
5219  *		0005	SNAP
5220  *		0805	X.25
5221  *		0806	ARP
5222  *		8137	IPX
5223  *		0009	Localtalk
5224  *		86DD	IPv6
5225  */
5226 #define PTYPE_HASH_SIZE	(16)
5227 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5228 
5229 extern struct net_device *blackhole_netdev;
5230 
5231 #endif	/* _LINUX_NETDEVICE_H */
5232