xref: /linux-6.15/include/linux/netdevice.h (revision cd2a9e62)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64 
65 void netdev_set_default_ethtool_ops(struct net_device *dev,
66 				    const struct ethtool_ops *ops);
67 
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
70 #define NET_RX_DROP		1	/* packet dropped */
71 
72 /*
73  * Transmit return codes: transmit return codes originate from three different
74  * namespaces:
75  *
76  * - qdisc return codes
77  * - driver transmit return codes
78  * - errno values
79  *
80  * Drivers are allowed to return any one of those in their hard_start_xmit()
81  * function. Real network devices commonly used with qdiscs should only return
82  * the driver transmit return codes though - when qdiscs are used, the actual
83  * transmission happens asynchronously, so the value is not propagated to
84  * higher layers. Virtual network devices transmit synchronously; in this case
85  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
86  * others are propagated to higher layers.
87  */
88 
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS	0x00
91 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
92 #define NET_XMIT_CN		0x02	/* congestion notification	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 };
109 typedef enum netdev_tx netdev_tx_t;
110 
111 /*
112  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114  */
115 static inline bool dev_xmit_complete(int rc)
116 {
117 	/*
118 	 * Positive cases with an skb consumed by a driver:
119 	 * - successful transmission (rc == NETDEV_TX_OK)
120 	 * - error while transmitting (rc < 0)
121 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
122 	 */
123 	if (likely(rc < NET_XMIT_MASK))
124 		return true;
125 
126 	return false;
127 }
128 
129 /*
130  *	Compute the worst-case header length according to the protocols
131  *	used.
132  */
133 
134 #if defined(CONFIG_HYPERV_NET)
135 # define LL_MAX_HEADER 128
136 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
137 # if defined(CONFIG_MAC80211_MESH)
138 #  define LL_MAX_HEADER 128
139 # else
140 #  define LL_MAX_HEADER 96
141 # endif
142 #else
143 # define LL_MAX_HEADER 32
144 #endif
145 
146 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
147     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
148 #define MAX_HEADER LL_MAX_HEADER
149 #else
150 #define MAX_HEADER (LL_MAX_HEADER + 48)
151 #endif
152 
153 /*
154  *	Old network device statistics. Fields are native words
155  *	(unsigned long) so they can be read and written atomically.
156  */
157 
158 struct net_device_stats {
159 	unsigned long	rx_packets;
160 	unsigned long	tx_packets;
161 	unsigned long	rx_bytes;
162 	unsigned long	tx_bytes;
163 	unsigned long	rx_errors;
164 	unsigned long	tx_errors;
165 	unsigned long	rx_dropped;
166 	unsigned long	tx_dropped;
167 	unsigned long	multicast;
168 	unsigned long	collisions;
169 	unsigned long	rx_length_errors;
170 	unsigned long	rx_over_errors;
171 	unsigned long	rx_crc_errors;
172 	unsigned long	rx_frame_errors;
173 	unsigned long	rx_fifo_errors;
174 	unsigned long	rx_missed_errors;
175 	unsigned long	tx_aborted_errors;
176 	unsigned long	tx_carrier_errors;
177 	unsigned long	tx_fifo_errors;
178 	unsigned long	tx_heartbeat_errors;
179 	unsigned long	tx_window_errors;
180 	unsigned long	rx_compressed;
181 	unsigned long	tx_compressed;
182 };
183 
184 
185 #include <linux/cache.h>
186 #include <linux/skbuff.h>
187 
188 #ifdef CONFIG_RPS
189 #include <linux/static_key.h>
190 extern struct static_key rps_needed;
191 #endif
192 
193 struct neighbour;
194 struct neigh_parms;
195 struct sk_buff;
196 
197 struct netdev_hw_addr {
198 	struct list_head	list;
199 	unsigned char		addr[MAX_ADDR_LEN];
200 	unsigned char		type;
201 #define NETDEV_HW_ADDR_T_LAN		1
202 #define NETDEV_HW_ADDR_T_SAN		2
203 #define NETDEV_HW_ADDR_T_SLAVE		3
204 #define NETDEV_HW_ADDR_T_UNICAST	4
205 #define NETDEV_HW_ADDR_T_MULTICAST	5
206 	bool			global_use;
207 	int			sync_cnt;
208 	int			refcount;
209 	int			synced;
210 	struct rcu_head		rcu_head;
211 };
212 
213 struct netdev_hw_addr_list {
214 	struct list_head	list;
215 	int			count;
216 };
217 
218 #define netdev_hw_addr_list_count(l) ((l)->count)
219 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
220 #define netdev_hw_addr_list_for_each(ha, l) \
221 	list_for_each_entry(ha, &(l)->list, list)
222 
223 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
224 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
225 #define netdev_for_each_uc_addr(ha, dev) \
226 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
227 
228 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
229 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
230 #define netdev_for_each_mc_addr(ha, dev) \
231 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
232 
233 struct hh_cache {
234 	u16		hh_len;
235 	u16		__pad;
236 	seqlock_t	hh_lock;
237 
238 	/* cached hardware header; allow for machine alignment needs.        */
239 #define HH_DATA_MOD	16
240 #define HH_DATA_OFF(__len) \
241 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
242 #define HH_DATA_ALIGN(__len) \
243 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
244 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
245 };
246 
247 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
248  * Alternative is:
249  *   dev->hard_header_len ? (dev->hard_header_len +
250  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
251  *
252  * We could use other alignment values, but we must maintain the
253  * relationship HH alignment <= LL alignment.
254  */
255 #define LL_RESERVED_SPACE(dev) \
256 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
258 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259 
260 struct header_ops {
261 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
262 			   unsigned short type, const void *daddr,
263 			   const void *saddr, unsigned int len);
264 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
265 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
266 	void	(*cache_update)(struct hh_cache *hh,
267 				const struct net_device *dev,
268 				const unsigned char *haddr);
269 	bool	(*validate)(const char *ll_header, unsigned int len);
270 };
271 
272 /* These flag bits are private to the generic network queueing
273  * layer; they may not be explicitly referenced by any other
274  * code.
275  */
276 
277 enum netdev_state_t {
278 	__LINK_STATE_START,
279 	__LINK_STATE_PRESENT,
280 	__LINK_STATE_NOCARRIER,
281 	__LINK_STATE_LINKWATCH_PENDING,
282 	__LINK_STATE_DORMANT,
283 };
284 
285 
286 /*
287  * This structure holds boot-time configured netdevice settings. They
288  * are then used in the device probing.
289  */
290 struct netdev_boot_setup {
291 	char name[IFNAMSIZ];
292 	struct ifmap map;
293 };
294 #define NETDEV_BOOT_SETUP_MAX 8
295 
296 int __init netdev_boot_setup(char *str);
297 
298 /*
299  * Structure for NAPI scheduling similar to tasklet but with weighting
300  */
301 struct napi_struct {
302 	/* The poll_list must only be managed by the entity which
303 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
304 	 * whoever atomically sets that bit can add this napi_struct
305 	 * to the per-CPU poll_list, and whoever clears that bit
306 	 * can remove from the list right before clearing the bit.
307 	 */
308 	struct list_head	poll_list;
309 
310 	unsigned long		state;
311 	int			weight;
312 	unsigned int		gro_count;
313 	int			(*poll)(struct napi_struct *, int);
314 #ifdef CONFIG_NETPOLL
315 	spinlock_t		poll_lock;
316 	int			poll_owner;
317 #endif
318 	struct net_device	*dev;
319 	struct sk_buff		*gro_list;
320 	struct sk_buff		*skb;
321 	struct hrtimer		timer;
322 	struct list_head	dev_list;
323 	struct hlist_node	napi_hash_node;
324 	unsigned int		napi_id;
325 };
326 
327 enum {
328 	NAPI_STATE_SCHED,	/* Poll is scheduled */
329 	NAPI_STATE_DISABLE,	/* Disable pending */
330 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
331 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
332 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
333 };
334 
335 enum gro_result {
336 	GRO_MERGED,
337 	GRO_MERGED_FREE,
338 	GRO_HELD,
339 	GRO_NORMAL,
340 	GRO_DROP,
341 };
342 typedef enum gro_result gro_result_t;
343 
344 /*
345  * enum rx_handler_result - Possible return values for rx_handlers.
346  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347  * further.
348  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349  * case skb->dev was changed by rx_handler.
350  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
352  *
353  * rx_handlers are functions called from inside __netif_receive_skb(), to do
354  * special processing of the skb, prior to delivery to protocol handlers.
355  *
356  * Currently, a net_device can only have a single rx_handler registered. Trying
357  * to register a second rx_handler will return -EBUSY.
358  *
359  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360  * To unregister a rx_handler on a net_device, use
361  * netdev_rx_handler_unregister().
362  *
363  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364  * do with the skb.
365  *
366  * If the rx_handler consumed the skb in some way, it should return
367  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368  * the skb to be delivered in some other way.
369  *
370  * If the rx_handler changed skb->dev, to divert the skb to another
371  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372  * new device will be called if it exists.
373  *
374  * If the rx_handler decides the skb should be ignored, it should return
375  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376  * are registered on exact device (ptype->dev == skb->dev).
377  *
378  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
379  * delivered, it should return RX_HANDLER_PASS.
380  *
381  * A device without a registered rx_handler will behave as if rx_handler
382  * returned RX_HANDLER_PASS.
383  */
384 
385 enum rx_handler_result {
386 	RX_HANDLER_CONSUMED,
387 	RX_HANDLER_ANOTHER,
388 	RX_HANDLER_EXACT,
389 	RX_HANDLER_PASS,
390 };
391 typedef enum rx_handler_result rx_handler_result_t;
392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393 
394 void __napi_schedule(struct napi_struct *n);
395 void __napi_schedule_irqoff(struct napi_struct *n);
396 
397 static inline bool napi_disable_pending(struct napi_struct *n)
398 {
399 	return test_bit(NAPI_STATE_DISABLE, &n->state);
400 }
401 
402 /**
403  *	napi_schedule_prep - check if NAPI can be scheduled
404  *	@n: NAPI context
405  *
406  * Test if NAPI routine is already running, and if not mark
407  * it as running.  This is used as a condition variable to
408  * insure only one NAPI poll instance runs.  We also make
409  * sure there is no pending NAPI disable.
410  */
411 static inline bool napi_schedule_prep(struct napi_struct *n)
412 {
413 	return !napi_disable_pending(n) &&
414 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 }
416 
417 /**
418  *	napi_schedule - schedule NAPI poll
419  *	@n: NAPI context
420  *
421  * Schedule NAPI poll routine to be called if it is not already
422  * running.
423  */
424 static inline void napi_schedule(struct napi_struct *n)
425 {
426 	if (napi_schedule_prep(n))
427 		__napi_schedule(n);
428 }
429 
430 /**
431  *	napi_schedule_irqoff - schedule NAPI poll
432  *	@n: NAPI context
433  *
434  * Variant of napi_schedule(), assuming hard irqs are masked.
435  */
436 static inline void napi_schedule_irqoff(struct napi_struct *n)
437 {
438 	if (napi_schedule_prep(n))
439 		__napi_schedule_irqoff(n);
440 }
441 
442 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
443 static inline bool napi_reschedule(struct napi_struct *napi)
444 {
445 	if (napi_schedule_prep(napi)) {
446 		__napi_schedule(napi);
447 		return true;
448 	}
449 	return false;
450 }
451 
452 void __napi_complete(struct napi_struct *n);
453 void napi_complete_done(struct napi_struct *n, int work_done);
454 /**
455  *	napi_complete - NAPI processing complete
456  *	@n: NAPI context
457  *
458  * Mark NAPI processing as complete.
459  * Consider using napi_complete_done() instead.
460  */
461 static inline void napi_complete(struct napi_struct *n)
462 {
463 	return napi_complete_done(n, 0);
464 }
465 
466 /**
467  *	napi_hash_add - add a NAPI to global hashtable
468  *	@napi: NAPI context
469  *
470  * Generate a new napi_id and store a @napi under it in napi_hash.
471  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
472  * Note: This is normally automatically done from netif_napi_add(),
473  * so might disappear in a future Linux version.
474  */
475 void napi_hash_add(struct napi_struct *napi);
476 
477 /**
478  *	napi_hash_del - remove a NAPI from global table
479  *	@napi: NAPI context
480  *
481  * Warning: caller must observe RCU grace period
482  * before freeing memory containing @napi, if
483  * this function returns true.
484  * Note: core networking stack automatically calls it
485  * from netif_napi_del().
486  * Drivers might want to call this helper to combine all
487  * the needed RCU grace periods into a single one.
488  */
489 bool napi_hash_del(struct napi_struct *napi);
490 
491 /**
492  *	napi_disable - prevent NAPI from scheduling
493  *	@n: NAPI context
494  *
495  * Stop NAPI from being scheduled on this context.
496  * Waits till any outstanding processing completes.
497  */
498 void napi_disable(struct napi_struct *n);
499 
500 /**
501  *	napi_enable - enable NAPI scheduling
502  *	@n: NAPI context
503  *
504  * Resume NAPI from being scheduled on this context.
505  * Must be paired with napi_disable.
506  */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 	smp_mb__before_atomic();
511 	clear_bit(NAPI_STATE_SCHED, &n->state);
512 	clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: NAPI context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 enum netdev_queue_state_t {
533 	__QUEUE_STATE_DRV_XOFF,
534 	__QUEUE_STATE_STACK_XOFF,
535 	__QUEUE_STATE_FROZEN,
536 };
537 
538 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
539 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
540 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
541 
542 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
546 					QUEUE_STATE_FROZEN)
547 
548 /*
549  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
550  * netif_tx_* functions below are used to manipulate this flag.  The
551  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
552  * queue independently.  The netif_xmit_*stopped functions below are called
553  * to check if the queue has been stopped by the driver or stack (either
554  * of the XOFF bits are set in the state).  Drivers should not need to call
555  * netif_xmit*stopped functions, they should only be using netif_tx_*.
556  */
557 
558 struct netdev_queue {
559 /*
560  * read-mostly part
561  */
562 	struct net_device	*dev;
563 	struct Qdisc __rcu	*qdisc;
564 	struct Qdisc		*qdisc_sleeping;
565 #ifdef CONFIG_SYSFS
566 	struct kobject		kobj;
567 #endif
568 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
569 	int			numa_node;
570 #endif
571 	unsigned long		tx_maxrate;
572 	/*
573 	 * Number of TX timeouts for this queue
574 	 * (/sys/class/net/DEV/Q/trans_timeout)
575 	 */
576 	unsigned long		trans_timeout;
577 /*
578  * write-mostly part
579  */
580 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
581 	int			xmit_lock_owner;
582 	/*
583 	 * Time (in jiffies) of last Tx
584 	 */
585 	unsigned long		trans_start;
586 
587 	unsigned long		state;
588 
589 #ifdef CONFIG_BQL
590 	struct dql		dql;
591 #endif
592 } ____cacheline_aligned_in_smp;
593 
594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 	return q->numa_node;
598 #else
599 	return NUMA_NO_NODE;
600 #endif
601 }
602 
603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 	q->numa_node = node;
607 #endif
608 }
609 
610 #ifdef CONFIG_RPS
611 /*
612  * This structure holds an RPS map which can be of variable length.  The
613  * map is an array of CPUs.
614  */
615 struct rps_map {
616 	unsigned int len;
617 	struct rcu_head rcu;
618 	u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621 
622 /*
623  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624  * tail pointer for that CPU's input queue at the time of last enqueue, and
625  * a hardware filter index.
626  */
627 struct rps_dev_flow {
628 	u16 cpu;
629 	u16 filter;
630 	unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633 
634 /*
635  * The rps_dev_flow_table structure contains a table of flow mappings.
636  */
637 struct rps_dev_flow_table {
638 	unsigned int mask;
639 	struct rcu_head rcu;
640 	struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643     ((_num) * sizeof(struct rps_dev_flow)))
644 
645 /*
646  * The rps_sock_flow_table contains mappings of flows to the last CPU
647  * on which they were processed by the application (set in recvmsg).
648  * Each entry is a 32bit value. Upper part is the high-order bits
649  * of flow hash, lower part is CPU number.
650  * rps_cpu_mask is used to partition the space, depending on number of
651  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
653  * meaning we use 32-6=26 bits for the hash.
654  */
655 struct rps_sock_flow_table {
656 	u32	mask;
657 
658 	u32	ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 
662 #define RPS_NO_CPU 0xffff
663 
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 					u32 hash)
669 {
670 	if (table && hash) {
671 		unsigned int index = hash & table->mask;
672 		u32 val = hash & ~rps_cpu_mask;
673 
674 		/* We only give a hint, preemption can change CPU under us */
675 		val |= raw_smp_processor_id();
676 
677 		if (table->ents[index] != val)
678 			table->ents[index] = val;
679 	}
680 }
681 
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 			 u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687 
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691 	struct rps_map __rcu		*rps_map;
692 	struct rps_dev_flow_table __rcu	*rps_flow_table;
693 #endif
694 	struct kobject			kobj;
695 	struct net_device		*dev;
696 } ____cacheline_aligned_in_smp;
697 
698 /*
699  * RX queue sysfs structures and functions.
700  */
701 struct rx_queue_attribute {
702 	struct attribute attr;
703 	ssize_t (*show)(struct netdev_rx_queue *queue,
704 	    struct rx_queue_attribute *attr, char *buf);
705 	ssize_t (*store)(struct netdev_rx_queue *queue,
706 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708 
709 #ifdef CONFIG_XPS
710 /*
711  * This structure holds an XPS map which can be of variable length.  The
712  * map is an array of queues.
713  */
714 struct xps_map {
715 	unsigned int len;
716 	unsigned int alloc_len;
717 	struct rcu_head rcu;
718 	u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
722        - sizeof(struct xps_map)) / sizeof(u16))
723 
724 /*
725  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
726  */
727 struct xps_dev_maps {
728 	struct rcu_head rcu;
729 	struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
732     (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734 
735 #define TC_MAX_QUEUE	16
736 #define TC_BITMASK	15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739 	u16 count;
740 	u16 offset;
741 };
742 
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745  * This structure is to hold information about the device
746  * configured to run FCoE protocol stack.
747  */
748 struct netdev_fcoe_hbainfo {
749 	char	manufacturer[64];
750 	char	serial_number[64];
751 	char	hardware_version[64];
752 	char	driver_version[64];
753 	char	optionrom_version[64];
754 	char	firmware_version[64];
755 	char	model[256];
756 	char	model_description[256];
757 };
758 #endif
759 
760 #define MAX_PHYS_ITEM_ID_LEN 32
761 
762 /* This structure holds a unique identifier to identify some
763  * physical item (port for example) used by a netdevice.
764  */
765 struct netdev_phys_item_id {
766 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 	unsigned char id_len;
768 };
769 
770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 					    struct netdev_phys_item_id *b)
772 {
773 	return a->id_len == b->id_len &&
774 	       memcmp(a->id, b->id, a->id_len) == 0;
775 }
776 
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 				       struct sk_buff *skb);
779 
780 /* These structures hold the attributes of qdisc and classifiers
781  * that are being passed to the netdevice through the setup_tc op.
782  */
783 enum {
784 	TC_SETUP_MQPRIO,
785 	TC_SETUP_CLSU32,
786 	TC_SETUP_CLSFLOWER,
787 };
788 
789 struct tc_cls_u32_offload;
790 
791 struct tc_to_netdev {
792 	unsigned int type;
793 	union {
794 		u8 tc;
795 		struct tc_cls_u32_offload *cls_u32;
796 		struct tc_cls_flower_offload *cls_flower;
797 	};
798 };
799 
800 
801 /*
802  * This structure defines the management hooks for network devices.
803  * The following hooks can be defined; unless noted otherwise, they are
804  * optional and can be filled with a null pointer.
805  *
806  * int (*ndo_init)(struct net_device *dev);
807  *     This function is called once when a network device is registered.
808  *     The network device can use this for any late stage initialization
809  *     or semantic validation. It can fail with an error code which will
810  *     be propagated back to register_netdev.
811  *
812  * void (*ndo_uninit)(struct net_device *dev);
813  *     This function is called when device is unregistered or when registration
814  *     fails. It is not called if init fails.
815  *
816  * int (*ndo_open)(struct net_device *dev);
817  *     This function is called when a network device transitions to the up
818  *     state.
819  *
820  * int (*ndo_stop)(struct net_device *dev);
821  *     This function is called when a network device transitions to the down
822  *     state.
823  *
824  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
825  *                               struct net_device *dev);
826  *	Called when a packet needs to be transmitted.
827  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
828  *	the queue before that can happen; it's for obsolete devices and weird
829  *	corner cases, but the stack really does a non-trivial amount
830  *	of useless work if you return NETDEV_TX_BUSY.
831  *	Required; cannot be NULL.
832  *
833  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
834  *		netdev_features_t features);
835  *	Adjusts the requested feature flags according to device-specific
836  *	constraints, and returns the resulting flags. Must not modify
837  *	the device state.
838  *
839  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
840  *                         void *accel_priv, select_queue_fallback_t fallback);
841  *	Called to decide which queue to use when device supports multiple
842  *	transmit queues.
843  *
844  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
845  *	This function is called to allow device receiver to make
846  *	changes to configuration when multicast or promiscuous is enabled.
847  *
848  * void (*ndo_set_rx_mode)(struct net_device *dev);
849  *	This function is called device changes address list filtering.
850  *	If driver handles unicast address filtering, it should set
851  *	IFF_UNICAST_FLT in its priv_flags.
852  *
853  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
854  *	This function  is called when the Media Access Control address
855  *	needs to be changed. If this interface is not defined, the
856  *	MAC address can not be changed.
857  *
858  * int (*ndo_validate_addr)(struct net_device *dev);
859  *	Test if Media Access Control address is valid for the device.
860  *
861  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
862  *	Called when a user requests an ioctl which can't be handled by
863  *	the generic interface code. If not defined ioctls return
864  *	not supported error code.
865  *
866  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
867  *	Used to set network devices bus interface parameters. This interface
868  *	is retained for legacy reasons; new devices should use the bus
869  *	interface (PCI) for low level management.
870  *
871  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
872  *	Called when a user wants to change the Maximum Transfer Unit
873  *	of a device. If not defined, any request to change MTU will
874  *	will return an error.
875  *
876  * void (*ndo_tx_timeout)(struct net_device *dev);
877  *	Callback used when the transmitter has not made any progress
878  *	for dev->watchdog ticks.
879  *
880  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
881  *                      struct rtnl_link_stats64 *storage);
882  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
883  *	Called when a user wants to get the network device usage
884  *	statistics. Drivers must do one of the following:
885  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
886  *	   rtnl_link_stats64 structure passed by the caller.
887  *	2. Define @ndo_get_stats to update a net_device_stats structure
888  *	   (which should normally be dev->stats) and return a pointer to
889  *	   it. The structure may be changed asynchronously only if each
890  *	   field is written atomically.
891  *	3. Update dev->stats asynchronously and atomically, and define
892  *	   neither operation.
893  *
894  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
895  *	If device supports VLAN filtering this function is called when a
896  *	VLAN id is registered.
897  *
898  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
899  *	If device supports VLAN filtering this function is called when a
900  *	VLAN id is unregistered.
901  *
902  * void (*ndo_poll_controller)(struct net_device *dev);
903  *
904  *	SR-IOV management functions.
905  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
906  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
907  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
908  *			  int max_tx_rate);
909  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
910  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
911  * int (*ndo_get_vf_config)(struct net_device *dev,
912  *			    int vf, struct ifla_vf_info *ivf);
913  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
914  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
915  *			  struct nlattr *port[]);
916  *
917  *      Enable or disable the VF ability to query its RSS Redirection Table and
918  *      Hash Key. This is needed since on some devices VF share this information
919  *      with PF and querying it may introduce a theoretical security risk.
920  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
921  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
922  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
923  * 	Called to setup 'tc' number of traffic classes in the net device. This
924  * 	is always called from the stack with the rtnl lock held and netif tx
925  * 	queues stopped. This allows the netdevice to perform queue management
926  * 	safely.
927  *
928  *	Fiber Channel over Ethernet (FCoE) offload functions.
929  * int (*ndo_fcoe_enable)(struct net_device *dev);
930  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
931  *	so the underlying device can perform whatever needed configuration or
932  *	initialization to support acceleration of FCoE traffic.
933  *
934  * int (*ndo_fcoe_disable)(struct net_device *dev);
935  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
936  *	so the underlying device can perform whatever needed clean-ups to
937  *	stop supporting acceleration of FCoE traffic.
938  *
939  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
940  *			     struct scatterlist *sgl, unsigned int sgc);
941  *	Called when the FCoE Initiator wants to initialize an I/O that
942  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
943  *	perform necessary setup and returns 1 to indicate the device is set up
944  *	successfully to perform DDP on this I/O, otherwise this returns 0.
945  *
946  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
947  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
948  *	indicated by the FC exchange id 'xid', so the underlying device can
949  *	clean up and reuse resources for later DDP requests.
950  *
951  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
952  *			      struct scatterlist *sgl, unsigned int sgc);
953  *	Called when the FCoE Target wants to initialize an I/O that
954  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
955  *	perform necessary setup and returns 1 to indicate the device is set up
956  *	successfully to perform DDP on this I/O, otherwise this returns 0.
957  *
958  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
959  *			       struct netdev_fcoe_hbainfo *hbainfo);
960  *	Called when the FCoE Protocol stack wants information on the underlying
961  *	device. This information is utilized by the FCoE protocol stack to
962  *	register attributes with Fiber Channel management service as per the
963  *	FC-GS Fabric Device Management Information(FDMI) specification.
964  *
965  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
966  *	Called when the underlying device wants to override default World Wide
967  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
968  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
969  *	protocol stack to use.
970  *
971  *	RFS acceleration.
972  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
973  *			    u16 rxq_index, u32 flow_id);
974  *	Set hardware filter for RFS.  rxq_index is the target queue index;
975  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
976  *	Return the filter ID on success, or a negative error code.
977  *
978  *	Slave management functions (for bridge, bonding, etc).
979  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
980  *	Called to make another netdev an underling.
981  *
982  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
983  *	Called to release previously enslaved netdev.
984  *
985  *      Feature/offload setting functions.
986  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
987  *	Called to update device configuration to new features. Passed
988  *	feature set might be less than what was returned by ndo_fix_features()).
989  *	Must return >0 or -errno if it changed dev->features itself.
990  *
991  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
992  *		      struct net_device *dev,
993  *		      const unsigned char *addr, u16 vid, u16 flags)
994  *	Adds an FDB entry to dev for addr.
995  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
996  *		      struct net_device *dev,
997  *		      const unsigned char *addr, u16 vid)
998  *	Deletes the FDB entry from dev coresponding to addr.
999  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1000  *		       struct net_device *dev, struct net_device *filter_dev,
1001  *		       int idx)
1002  *	Used to add FDB entries to dump requests. Implementers should add
1003  *	entries to skb and update idx with the number of entries.
1004  *
1005  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1006  *			     u16 flags)
1007  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1008  *			     struct net_device *dev, u32 filter_mask,
1009  *			     int nlflags)
1010  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1011  *			     u16 flags);
1012  *
1013  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1014  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1015  *	which do not represent real hardware may define this to allow their
1016  *	userspace components to manage their virtual carrier state. Devices
1017  *	that determine carrier state from physical hardware properties (eg
1018  *	network cables) or protocol-dependent mechanisms (eg
1019  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1020  *
1021  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1022  *			       struct netdev_phys_item_id *ppid);
1023  *	Called to get ID of physical port of this device. If driver does
1024  *	not implement this, it is assumed that the hw is not able to have
1025  *	multiple net devices on single physical port.
1026  *
1027  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1028  *			      sa_family_t sa_family, __be16 port);
1029  *	Called by vxlan to notify a driver about the UDP port and socket
1030  *	address family that vxlan is listening to. It is called only when
1031  *	a new port starts listening. The operation is protected by the
1032  *	vxlan_net->sock_lock.
1033  *
1034  * void (*ndo_add_geneve_port)(struct net_device *dev,
1035  *			       sa_family_t sa_family, __be16 port);
1036  *	Called by geneve to notify a driver about the UDP port and socket
1037  *	address family that geneve is listnening to. It is called only when
1038  *	a new port starts listening. The operation is protected by the
1039  *	geneve_net->sock_lock.
1040  *
1041  * void (*ndo_del_geneve_port)(struct net_device *dev,
1042  *			       sa_family_t sa_family, __be16 port);
1043  *	Called by geneve to notify the driver about a UDP port and socket
1044  *	address family that geneve is not listening to anymore. The operation
1045  *	is protected by the geneve_net->sock_lock.
1046  *
1047  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1048  *			      sa_family_t sa_family, __be16 port);
1049  *	Called by vxlan to notify the driver about a UDP port and socket
1050  *	address family that vxlan is not listening to anymore. The operation
1051  *	is protected by the vxlan_net->sock_lock.
1052  *
1053  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1054  *				 struct net_device *dev)
1055  *	Called by upper layer devices to accelerate switching or other
1056  *	station functionality into hardware. 'pdev is the lowerdev
1057  *	to use for the offload and 'dev' is the net device that will
1058  *	back the offload. Returns a pointer to the private structure
1059  *	the upper layer will maintain.
1060  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1061  *	Called by upper layer device to delete the station created
1062  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1063  *	the station and priv is the structure returned by the add
1064  *	operation.
1065  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1066  *				      struct net_device *dev,
1067  *				      void *priv);
1068  *	Callback to use for xmit over the accelerated station. This
1069  *	is used in place of ndo_start_xmit on accelerated net
1070  *	devices.
1071  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1072  *					   struct net_device *dev
1073  *					   netdev_features_t features);
1074  *	Called by core transmit path to determine if device is capable of
1075  *	performing offload operations on a given packet. This is to give
1076  *	the device an opportunity to implement any restrictions that cannot
1077  *	be otherwise expressed by feature flags. The check is called with
1078  *	the set of features that the stack has calculated and it returns
1079  *	those the driver believes to be appropriate.
1080  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1081  *			     int queue_index, u32 maxrate);
1082  *	Called when a user wants to set a max-rate limitation of specific
1083  *	TX queue.
1084  * int (*ndo_get_iflink)(const struct net_device *dev);
1085  *	Called to get the iflink value of this device.
1086  * void (*ndo_change_proto_down)(struct net_device *dev,
1087  *				 bool proto_down);
1088  *	This function is used to pass protocol port error state information
1089  *	to the switch driver. The switch driver can react to the proto_down
1090  *      by doing a phys down on the associated switch port.
1091  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1092  *	This function is used to get egress tunnel information for given skb.
1093  *	This is useful for retrieving outer tunnel header parameters while
1094  *	sampling packet.
1095  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1096  *	This function is used to specify the headroom that the skb must
1097  *	consider when allocation skb during packet reception. Setting
1098  *	appropriate rx headroom value allows avoiding skb head copy on
1099  *	forward. Setting a negative value resets the rx headroom to the
1100  *	default value.
1101  *
1102  */
1103 struct net_device_ops {
1104 	int			(*ndo_init)(struct net_device *dev);
1105 	void			(*ndo_uninit)(struct net_device *dev);
1106 	int			(*ndo_open)(struct net_device *dev);
1107 	int			(*ndo_stop)(struct net_device *dev);
1108 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1109 						  struct net_device *dev);
1110 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1111 						      struct net_device *dev,
1112 						      netdev_features_t features);
1113 	u16			(*ndo_select_queue)(struct net_device *dev,
1114 						    struct sk_buff *skb,
1115 						    void *accel_priv,
1116 						    select_queue_fallback_t fallback);
1117 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1118 						       int flags);
1119 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1120 	int			(*ndo_set_mac_address)(struct net_device *dev,
1121 						       void *addr);
1122 	int			(*ndo_validate_addr)(struct net_device *dev);
1123 	int			(*ndo_do_ioctl)(struct net_device *dev,
1124 					        struct ifreq *ifr, int cmd);
1125 	int			(*ndo_set_config)(struct net_device *dev,
1126 					          struct ifmap *map);
1127 	int			(*ndo_change_mtu)(struct net_device *dev,
1128 						  int new_mtu);
1129 	int			(*ndo_neigh_setup)(struct net_device *dev,
1130 						   struct neigh_parms *);
1131 	void			(*ndo_tx_timeout) (struct net_device *dev);
1132 
1133 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1134 						     struct rtnl_link_stats64 *storage);
1135 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1136 
1137 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1138 						       __be16 proto, u16 vid);
1139 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1140 						        __be16 proto, u16 vid);
1141 #ifdef CONFIG_NET_POLL_CONTROLLER
1142 	void                    (*ndo_poll_controller)(struct net_device *dev);
1143 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1144 						     struct netpoll_info *info);
1145 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1146 #endif
1147 #ifdef CONFIG_NET_RX_BUSY_POLL
1148 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1149 #endif
1150 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1151 						  int queue, u8 *mac);
1152 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1153 						   int queue, u16 vlan, u8 qos);
1154 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1155 						   int vf, int min_tx_rate,
1156 						   int max_tx_rate);
1157 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1158 						       int vf, bool setting);
1159 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1160 						    int vf, bool setting);
1161 	int			(*ndo_get_vf_config)(struct net_device *dev,
1162 						     int vf,
1163 						     struct ifla_vf_info *ivf);
1164 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1165 							 int vf, int link_state);
1166 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1167 						    int vf,
1168 						    struct ifla_vf_stats
1169 						    *vf_stats);
1170 	int			(*ndo_set_vf_port)(struct net_device *dev,
1171 						   int vf,
1172 						   struct nlattr *port[]);
1173 	int			(*ndo_get_vf_port)(struct net_device *dev,
1174 						   int vf, struct sk_buff *skb);
1175 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1176 						   int vf, u64 guid,
1177 						   int guid_type);
1178 	int			(*ndo_set_vf_rss_query_en)(
1179 						   struct net_device *dev,
1180 						   int vf, bool setting);
1181 	int			(*ndo_setup_tc)(struct net_device *dev,
1182 						u32 handle,
1183 						__be16 protocol,
1184 						struct tc_to_netdev *tc);
1185 #if IS_ENABLED(CONFIG_FCOE)
1186 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1187 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1188 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1189 						      u16 xid,
1190 						      struct scatterlist *sgl,
1191 						      unsigned int sgc);
1192 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1193 						     u16 xid);
1194 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1195 						       u16 xid,
1196 						       struct scatterlist *sgl,
1197 						       unsigned int sgc);
1198 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1199 							struct netdev_fcoe_hbainfo *hbainfo);
1200 #endif
1201 
1202 #if IS_ENABLED(CONFIG_LIBFCOE)
1203 #define NETDEV_FCOE_WWNN 0
1204 #define NETDEV_FCOE_WWPN 1
1205 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1206 						    u64 *wwn, int type);
1207 #endif
1208 
1209 #ifdef CONFIG_RFS_ACCEL
1210 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1211 						     const struct sk_buff *skb,
1212 						     u16 rxq_index,
1213 						     u32 flow_id);
1214 #endif
1215 	int			(*ndo_add_slave)(struct net_device *dev,
1216 						 struct net_device *slave_dev);
1217 	int			(*ndo_del_slave)(struct net_device *dev,
1218 						 struct net_device *slave_dev);
1219 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1220 						    netdev_features_t features);
1221 	int			(*ndo_set_features)(struct net_device *dev,
1222 						    netdev_features_t features);
1223 	int			(*ndo_neigh_construct)(struct neighbour *n);
1224 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1225 
1226 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1227 					       struct nlattr *tb[],
1228 					       struct net_device *dev,
1229 					       const unsigned char *addr,
1230 					       u16 vid,
1231 					       u16 flags);
1232 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1233 					       struct nlattr *tb[],
1234 					       struct net_device *dev,
1235 					       const unsigned char *addr,
1236 					       u16 vid);
1237 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1238 						struct netlink_callback *cb,
1239 						struct net_device *dev,
1240 						struct net_device *filter_dev,
1241 						int idx);
1242 
1243 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1244 						      struct nlmsghdr *nlh,
1245 						      u16 flags);
1246 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1247 						      u32 pid, u32 seq,
1248 						      struct net_device *dev,
1249 						      u32 filter_mask,
1250 						      int nlflags);
1251 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1252 						      struct nlmsghdr *nlh,
1253 						      u16 flags);
1254 	int			(*ndo_change_carrier)(struct net_device *dev,
1255 						      bool new_carrier);
1256 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1257 							struct netdev_phys_item_id *ppid);
1258 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1259 							  char *name, size_t len);
1260 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1261 						      sa_family_t sa_family,
1262 						      __be16 port);
1263 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1264 						      sa_family_t sa_family,
1265 						      __be16 port);
1266 	void			(*ndo_add_geneve_port)(struct  net_device *dev,
1267 						       sa_family_t sa_family,
1268 						       __be16 port);
1269 	void			(*ndo_del_geneve_port)(struct  net_device *dev,
1270 						       sa_family_t sa_family,
1271 						       __be16 port);
1272 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1273 							struct net_device *dev);
1274 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1275 							void *priv);
1276 
1277 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1278 							struct net_device *dev,
1279 							void *priv);
1280 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1281 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1282 						      int queue_index,
1283 						      u32 maxrate);
1284 	int			(*ndo_get_iflink)(const struct net_device *dev);
1285 	int			(*ndo_change_proto_down)(struct net_device *dev,
1286 							 bool proto_down);
1287 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1288 						       struct sk_buff *skb);
1289 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1290 						       int needed_headroom);
1291 };
1292 
1293 /**
1294  * enum net_device_priv_flags - &struct net_device priv_flags
1295  *
1296  * These are the &struct net_device, they are only set internally
1297  * by drivers and used in the kernel. These flags are invisible to
1298  * userspace; this means that the order of these flags can change
1299  * during any kernel release.
1300  *
1301  * You should have a pretty good reason to be extending these flags.
1302  *
1303  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1304  * @IFF_EBRIDGE: Ethernet bridging device
1305  * @IFF_BONDING: bonding master or slave
1306  * @IFF_ISATAP: ISATAP interface (RFC4214)
1307  * @IFF_WAN_HDLC: WAN HDLC device
1308  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1309  *	release skb->dst
1310  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1311  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1312  * @IFF_MACVLAN_PORT: device used as macvlan port
1313  * @IFF_BRIDGE_PORT: device used as bridge port
1314  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1315  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1316  * @IFF_UNICAST_FLT: Supports unicast filtering
1317  * @IFF_TEAM_PORT: device used as team port
1318  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1319  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1320  *	change when it's running
1321  * @IFF_MACVLAN: Macvlan device
1322  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1323  *	underlying stacked devices
1324  * @IFF_IPVLAN_MASTER: IPvlan master device
1325  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1326  * @IFF_L3MDEV_MASTER: device is an L3 master device
1327  * @IFF_NO_QUEUE: device can run without qdisc attached
1328  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1329  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1330  * @IFF_TEAM: device is a team device
1331  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1332  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1333  *	entity (i.e. the master device for bridged veth)
1334  * @IFF_MACSEC: device is a MACsec device
1335  */
1336 enum netdev_priv_flags {
1337 	IFF_802_1Q_VLAN			= 1<<0,
1338 	IFF_EBRIDGE			= 1<<1,
1339 	IFF_BONDING			= 1<<2,
1340 	IFF_ISATAP			= 1<<3,
1341 	IFF_WAN_HDLC			= 1<<4,
1342 	IFF_XMIT_DST_RELEASE		= 1<<5,
1343 	IFF_DONT_BRIDGE			= 1<<6,
1344 	IFF_DISABLE_NETPOLL		= 1<<7,
1345 	IFF_MACVLAN_PORT		= 1<<8,
1346 	IFF_BRIDGE_PORT			= 1<<9,
1347 	IFF_OVS_DATAPATH		= 1<<10,
1348 	IFF_TX_SKB_SHARING		= 1<<11,
1349 	IFF_UNICAST_FLT			= 1<<12,
1350 	IFF_TEAM_PORT			= 1<<13,
1351 	IFF_SUPP_NOFCS			= 1<<14,
1352 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1353 	IFF_MACVLAN			= 1<<16,
1354 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1355 	IFF_IPVLAN_MASTER		= 1<<18,
1356 	IFF_IPVLAN_SLAVE		= 1<<19,
1357 	IFF_L3MDEV_MASTER		= 1<<20,
1358 	IFF_NO_QUEUE			= 1<<21,
1359 	IFF_OPENVSWITCH			= 1<<22,
1360 	IFF_L3MDEV_SLAVE		= 1<<23,
1361 	IFF_TEAM			= 1<<24,
1362 	IFF_RXFH_CONFIGURED		= 1<<25,
1363 	IFF_PHONY_HEADROOM		= 1<<26,
1364 	IFF_MACSEC			= 1<<27,
1365 };
1366 
1367 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1368 #define IFF_EBRIDGE			IFF_EBRIDGE
1369 #define IFF_BONDING			IFF_BONDING
1370 #define IFF_ISATAP			IFF_ISATAP
1371 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1372 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1373 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1374 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1375 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1376 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1377 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1378 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1379 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1380 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1381 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1382 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1383 #define IFF_MACVLAN			IFF_MACVLAN
1384 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1385 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1386 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1387 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1388 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1389 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1390 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1391 #define IFF_TEAM			IFF_TEAM
1392 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1393 #define IFF_MACSEC			IFF_MACSEC
1394 
1395 /**
1396  *	struct net_device - The DEVICE structure.
1397  *		Actually, this whole structure is a big mistake.  It mixes I/O
1398  *		data with strictly "high-level" data, and it has to know about
1399  *		almost every data structure used in the INET module.
1400  *
1401  *	@name:	This is the first field of the "visible" part of this structure
1402  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1403  *	 	of the interface.
1404  *
1405  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1406  *	@ifalias:	SNMP alias
1407  *	@mem_end:	Shared memory end
1408  *	@mem_start:	Shared memory start
1409  *	@base_addr:	Device I/O address
1410  *	@irq:		Device IRQ number
1411  *
1412  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1413  *
1414  *	@state:		Generic network queuing layer state, see netdev_state_t
1415  *	@dev_list:	The global list of network devices
1416  *	@napi_list:	List entry used for polling NAPI devices
1417  *	@unreg_list:	List entry  when we are unregistering the
1418  *			device; see the function unregister_netdev
1419  *	@close_list:	List entry used when we are closing the device
1420  *	@ptype_all:     Device-specific packet handlers for all protocols
1421  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1422  *
1423  *	@adj_list:	Directly linked devices, like slaves for bonding
1424  *	@all_adj_list:	All linked devices, *including* neighbours
1425  *	@features:	Currently active device features
1426  *	@hw_features:	User-changeable features
1427  *
1428  *	@wanted_features:	User-requested features
1429  *	@vlan_features:		Mask of features inheritable by VLAN devices
1430  *
1431  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1432  *				This field indicates what encapsulation
1433  *				offloads the hardware is capable of doing,
1434  *				and drivers will need to set them appropriately.
1435  *
1436  *	@mpls_features:	Mask of features inheritable by MPLS
1437  *
1438  *	@ifindex:	interface index
1439  *	@group:		The group the device belongs to
1440  *
1441  *	@stats:		Statistics struct, which was left as a legacy, use
1442  *			rtnl_link_stats64 instead
1443  *
1444  *	@rx_dropped:	Dropped packets by core network,
1445  *			do not use this in drivers
1446  *	@tx_dropped:	Dropped packets by core network,
1447  *			do not use this in drivers
1448  *	@rx_nohandler:	nohandler dropped packets by core network on
1449  *			inactive devices, do not use this in drivers
1450  *
1451  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1452  *				instead of ioctl,
1453  *				see <net/iw_handler.h> for details.
1454  *	@wireless_data:	Instance data managed by the core of wireless extensions
1455  *
1456  *	@netdev_ops:	Includes several pointers to callbacks,
1457  *			if one wants to override the ndo_*() functions
1458  *	@ethtool_ops:	Management operations
1459  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1460  *			of Layer 2 headers.
1461  *
1462  *	@flags:		Interface flags (a la BSD)
1463  *	@priv_flags:	Like 'flags' but invisible to userspace,
1464  *			see if.h for the definitions
1465  *	@gflags:	Global flags ( kept as legacy )
1466  *	@padded:	How much padding added by alloc_netdev()
1467  *	@operstate:	RFC2863 operstate
1468  *	@link_mode:	Mapping policy to operstate
1469  *	@if_port:	Selectable AUI, TP, ...
1470  *	@dma:		DMA channel
1471  *	@mtu:		Interface MTU value
1472  *	@type:		Interface hardware type
1473  *	@hard_header_len: Maximum hardware header length.
1474  *
1475  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1476  *			  cases can this be guaranteed
1477  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1478  *			  cases can this be guaranteed. Some cases also use
1479  *			  LL_MAX_HEADER instead to allocate the skb
1480  *
1481  *	interface address info:
1482  *
1483  * 	@perm_addr:		Permanent hw address
1484  * 	@addr_assign_type:	Hw address assignment type
1485  * 	@addr_len:		Hardware address length
1486  * 	@neigh_priv_len;	Used in neigh_alloc(),
1487  * 				initialized only in atm/clip.c
1488  * 	@dev_id:		Used to differentiate devices that share
1489  * 				the same link layer address
1490  * 	@dev_port:		Used to differentiate devices that share
1491  * 				the same function
1492  *	@addr_list_lock:	XXX: need comments on this one
1493  *	@uc_promisc:		Counter that indicates promiscuous mode
1494  *				has been enabled due to the need to listen to
1495  *				additional unicast addresses in a device that
1496  *				does not implement ndo_set_rx_mode()
1497  *	@uc:			unicast mac addresses
1498  *	@mc:			multicast mac addresses
1499  *	@dev_addrs:		list of device hw addresses
1500  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1501  *	@promiscuity:		Number of times the NIC is told to work in
1502  *				promiscuous mode; if it becomes 0 the NIC will
1503  *				exit promiscuous mode
1504  *	@allmulti:		Counter, enables or disables allmulticast mode
1505  *
1506  *	@vlan_info:	VLAN info
1507  *	@dsa_ptr:	dsa specific data
1508  *	@tipc_ptr:	TIPC specific data
1509  *	@atalk_ptr:	AppleTalk link
1510  *	@ip_ptr:	IPv4 specific data
1511  *	@dn_ptr:	DECnet specific data
1512  *	@ip6_ptr:	IPv6 specific data
1513  *	@ax25_ptr:	AX.25 specific data
1514  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1515  *
1516  *	@last_rx:	Time of last Rx
1517  *	@dev_addr:	Hw address (before bcast,
1518  *			because most packets are unicast)
1519  *
1520  *	@_rx:			Array of RX queues
1521  *	@num_rx_queues:		Number of RX queues
1522  *				allocated at register_netdev() time
1523  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1524  *
1525  *	@rx_handler:		handler for received packets
1526  *	@rx_handler_data: 	XXX: need comments on this one
1527  *	@ingress_queue:		XXX: need comments on this one
1528  *	@broadcast:		hw bcast address
1529  *
1530  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1531  *			indexed by RX queue number. Assigned by driver.
1532  *			This must only be set if the ndo_rx_flow_steer
1533  *			operation is defined
1534  *	@index_hlist:		Device index hash chain
1535  *
1536  *	@_tx:			Array of TX queues
1537  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1538  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1539  *	@qdisc:			Root qdisc from userspace point of view
1540  *	@tx_queue_len:		Max frames per queue allowed
1541  *	@tx_global_lock: 	XXX: need comments on this one
1542  *
1543  *	@xps_maps:	XXX: need comments on this one
1544  *
1545  *	@offload_fwd_mark:	Offload device fwding mark
1546  *
1547  *	@watchdog_timeo:	Represents the timeout that is used by
1548  *				the watchdog (see dev_watchdog())
1549  *	@watchdog_timer:	List of timers
1550  *
1551  *	@pcpu_refcnt:		Number of references to this device
1552  *	@todo_list:		Delayed register/unregister
1553  *	@link_watch_list:	XXX: need comments on this one
1554  *
1555  *	@reg_state:		Register/unregister state machine
1556  *	@dismantle:		Device is going to be freed
1557  *	@rtnl_link_state:	This enum represents the phases of creating
1558  *				a new link
1559  *
1560  *	@destructor:		Called from unregister,
1561  *				can be used to call free_netdev
1562  *	@npinfo:		XXX: need comments on this one
1563  * 	@nd_net:		Network namespace this network device is inside
1564  *
1565  * 	@ml_priv:	Mid-layer private
1566  * 	@lstats:	Loopback statistics
1567  * 	@tstats:	Tunnel statistics
1568  * 	@dstats:	Dummy statistics
1569  * 	@vstats:	Virtual ethernet statistics
1570  *
1571  *	@garp_port:	GARP
1572  *	@mrp_port:	MRP
1573  *
1574  *	@dev:		Class/net/name entry
1575  *	@sysfs_groups:	Space for optional device, statistics and wireless
1576  *			sysfs groups
1577  *
1578  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1579  *	@rtnl_link_ops:	Rtnl_link_ops
1580  *
1581  *	@gso_max_size:	Maximum size of generic segmentation offload
1582  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1583  *			NIC for GSO
1584  *
1585  *	@dcbnl_ops:	Data Center Bridging netlink ops
1586  *	@num_tc:	Number of traffic classes in the net device
1587  *	@tc_to_txq:	XXX: need comments on this one
1588  *	@prio_tc_map	XXX: need comments on this one
1589  *
1590  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1591  *
1592  *	@priomap:	XXX: need comments on this one
1593  *	@phydev:	Physical device may attach itself
1594  *			for hardware timestamping
1595  *
1596  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1597  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1598  *
1599  *	@proto_down:	protocol port state information can be sent to the
1600  *			switch driver and used to set the phys state of the
1601  *			switch port.
1602  *
1603  *	FIXME: cleanup struct net_device such that network protocol info
1604  *	moves out.
1605  */
1606 
1607 struct net_device {
1608 	char			name[IFNAMSIZ];
1609 	struct hlist_node	name_hlist;
1610 	char 			*ifalias;
1611 	/*
1612 	 *	I/O specific fields
1613 	 *	FIXME: Merge these and struct ifmap into one
1614 	 */
1615 	unsigned long		mem_end;
1616 	unsigned long		mem_start;
1617 	unsigned long		base_addr;
1618 	int			irq;
1619 
1620 	atomic_t		carrier_changes;
1621 
1622 	/*
1623 	 *	Some hardware also needs these fields (state,dev_list,
1624 	 *	napi_list,unreg_list,close_list) but they are not
1625 	 *	part of the usual set specified in Space.c.
1626 	 */
1627 
1628 	unsigned long		state;
1629 
1630 	struct list_head	dev_list;
1631 	struct list_head	napi_list;
1632 	struct list_head	unreg_list;
1633 	struct list_head	close_list;
1634 	struct list_head	ptype_all;
1635 	struct list_head	ptype_specific;
1636 
1637 	struct {
1638 		struct list_head upper;
1639 		struct list_head lower;
1640 	} adj_list;
1641 
1642 	struct {
1643 		struct list_head upper;
1644 		struct list_head lower;
1645 	} all_adj_list;
1646 
1647 	netdev_features_t	features;
1648 	netdev_features_t	hw_features;
1649 	netdev_features_t	wanted_features;
1650 	netdev_features_t	vlan_features;
1651 	netdev_features_t	hw_enc_features;
1652 	netdev_features_t	mpls_features;
1653 	netdev_features_t	gso_partial_features;
1654 
1655 	int			ifindex;
1656 	int			group;
1657 
1658 	struct net_device_stats	stats;
1659 
1660 	atomic_long_t		rx_dropped;
1661 	atomic_long_t		tx_dropped;
1662 	atomic_long_t		rx_nohandler;
1663 
1664 #ifdef CONFIG_WIRELESS_EXT
1665 	const struct iw_handler_def *wireless_handlers;
1666 	struct iw_public_data	*wireless_data;
1667 #endif
1668 	const struct net_device_ops *netdev_ops;
1669 	const struct ethtool_ops *ethtool_ops;
1670 #ifdef CONFIG_NET_SWITCHDEV
1671 	const struct switchdev_ops *switchdev_ops;
1672 #endif
1673 #ifdef CONFIG_NET_L3_MASTER_DEV
1674 	const struct l3mdev_ops	*l3mdev_ops;
1675 #endif
1676 
1677 	const struct header_ops *header_ops;
1678 
1679 	unsigned int		flags;
1680 	unsigned int		priv_flags;
1681 
1682 	unsigned short		gflags;
1683 	unsigned short		padded;
1684 
1685 	unsigned char		operstate;
1686 	unsigned char		link_mode;
1687 
1688 	unsigned char		if_port;
1689 	unsigned char		dma;
1690 
1691 	unsigned int		mtu;
1692 	unsigned short		type;
1693 	unsigned short		hard_header_len;
1694 
1695 	unsigned short		needed_headroom;
1696 	unsigned short		needed_tailroom;
1697 
1698 	/* Interface address info. */
1699 	unsigned char		perm_addr[MAX_ADDR_LEN];
1700 	unsigned char		addr_assign_type;
1701 	unsigned char		addr_len;
1702 	unsigned short		neigh_priv_len;
1703 	unsigned short          dev_id;
1704 	unsigned short          dev_port;
1705 	spinlock_t		addr_list_lock;
1706 	unsigned char		name_assign_type;
1707 	bool			uc_promisc;
1708 	struct netdev_hw_addr_list	uc;
1709 	struct netdev_hw_addr_list	mc;
1710 	struct netdev_hw_addr_list	dev_addrs;
1711 
1712 #ifdef CONFIG_SYSFS
1713 	struct kset		*queues_kset;
1714 #endif
1715 	unsigned int		promiscuity;
1716 	unsigned int		allmulti;
1717 
1718 
1719 	/* Protocol-specific pointers */
1720 
1721 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1722 	struct vlan_info __rcu	*vlan_info;
1723 #endif
1724 #if IS_ENABLED(CONFIG_NET_DSA)
1725 	struct dsa_switch_tree	*dsa_ptr;
1726 #endif
1727 #if IS_ENABLED(CONFIG_TIPC)
1728 	struct tipc_bearer __rcu *tipc_ptr;
1729 #endif
1730 	void 			*atalk_ptr;
1731 	struct in_device __rcu	*ip_ptr;
1732 	struct dn_dev __rcu     *dn_ptr;
1733 	struct inet6_dev __rcu	*ip6_ptr;
1734 	void			*ax25_ptr;
1735 	struct wireless_dev	*ieee80211_ptr;
1736 	struct wpan_dev		*ieee802154_ptr;
1737 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1738 	struct mpls_dev __rcu	*mpls_ptr;
1739 #endif
1740 
1741 /*
1742  * Cache lines mostly used on receive path (including eth_type_trans())
1743  */
1744 	unsigned long		last_rx;
1745 
1746 	/* Interface address info used in eth_type_trans() */
1747 	unsigned char		*dev_addr;
1748 
1749 #ifdef CONFIG_SYSFS
1750 	struct netdev_rx_queue	*_rx;
1751 
1752 	unsigned int		num_rx_queues;
1753 	unsigned int		real_num_rx_queues;
1754 #endif
1755 
1756 	unsigned long		gro_flush_timeout;
1757 	rx_handler_func_t __rcu	*rx_handler;
1758 	void __rcu		*rx_handler_data;
1759 
1760 #ifdef CONFIG_NET_CLS_ACT
1761 	struct tcf_proto __rcu  *ingress_cl_list;
1762 #endif
1763 	struct netdev_queue __rcu *ingress_queue;
1764 #ifdef CONFIG_NETFILTER_INGRESS
1765 	struct list_head	nf_hooks_ingress;
1766 #endif
1767 
1768 	unsigned char		broadcast[MAX_ADDR_LEN];
1769 #ifdef CONFIG_RFS_ACCEL
1770 	struct cpu_rmap		*rx_cpu_rmap;
1771 #endif
1772 	struct hlist_node	index_hlist;
1773 
1774 /*
1775  * Cache lines mostly used on transmit path
1776  */
1777 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1778 	unsigned int		num_tx_queues;
1779 	unsigned int		real_num_tx_queues;
1780 	struct Qdisc		*qdisc;
1781 	unsigned long		tx_queue_len;
1782 	spinlock_t		tx_global_lock;
1783 	int			watchdog_timeo;
1784 
1785 #ifdef CONFIG_XPS
1786 	struct xps_dev_maps __rcu *xps_maps;
1787 #endif
1788 #ifdef CONFIG_NET_CLS_ACT
1789 	struct tcf_proto __rcu  *egress_cl_list;
1790 #endif
1791 #ifdef CONFIG_NET_SWITCHDEV
1792 	u32			offload_fwd_mark;
1793 #endif
1794 
1795 	/* These may be needed for future network-power-down code. */
1796 	struct timer_list	watchdog_timer;
1797 
1798 	int __percpu		*pcpu_refcnt;
1799 	struct list_head	todo_list;
1800 
1801 	struct list_head	link_watch_list;
1802 
1803 	enum { NETREG_UNINITIALIZED=0,
1804 	       NETREG_REGISTERED,	/* completed register_netdevice */
1805 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1806 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1807 	       NETREG_RELEASED,		/* called free_netdev */
1808 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1809 	} reg_state:8;
1810 
1811 	bool dismantle;
1812 
1813 	enum {
1814 		RTNL_LINK_INITIALIZED,
1815 		RTNL_LINK_INITIALIZING,
1816 	} rtnl_link_state:16;
1817 
1818 	void (*destructor)(struct net_device *dev);
1819 
1820 #ifdef CONFIG_NETPOLL
1821 	struct netpoll_info __rcu	*npinfo;
1822 #endif
1823 
1824 	possible_net_t			nd_net;
1825 
1826 	/* mid-layer private */
1827 	union {
1828 		void					*ml_priv;
1829 		struct pcpu_lstats __percpu		*lstats;
1830 		struct pcpu_sw_netstats __percpu	*tstats;
1831 		struct pcpu_dstats __percpu		*dstats;
1832 		struct pcpu_vstats __percpu		*vstats;
1833 	};
1834 
1835 	struct garp_port __rcu	*garp_port;
1836 	struct mrp_port __rcu	*mrp_port;
1837 
1838 	struct device		dev;
1839 	const struct attribute_group *sysfs_groups[4];
1840 	const struct attribute_group *sysfs_rx_queue_group;
1841 
1842 	const struct rtnl_link_ops *rtnl_link_ops;
1843 
1844 	/* for setting kernel sock attribute on TCP connection setup */
1845 #define GSO_MAX_SIZE		65536
1846 	unsigned int		gso_max_size;
1847 #define GSO_MAX_SEGS		65535
1848 	u16			gso_max_segs;
1849 
1850 #ifdef CONFIG_DCB
1851 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1852 #endif
1853 	u8			num_tc;
1854 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1855 	u8			prio_tc_map[TC_BITMASK + 1];
1856 
1857 #if IS_ENABLED(CONFIG_FCOE)
1858 	unsigned int		fcoe_ddp_xid;
1859 #endif
1860 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1861 	struct netprio_map __rcu *priomap;
1862 #endif
1863 	struct phy_device	*phydev;
1864 	struct lock_class_key	*qdisc_tx_busylock;
1865 	struct lock_class_key	*qdisc_running_key;
1866 	bool			proto_down;
1867 };
1868 #define to_net_dev(d) container_of(d, struct net_device, dev)
1869 
1870 #define	NETDEV_ALIGN		32
1871 
1872 static inline
1873 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1874 {
1875 	return dev->prio_tc_map[prio & TC_BITMASK];
1876 }
1877 
1878 static inline
1879 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1880 {
1881 	if (tc >= dev->num_tc)
1882 		return -EINVAL;
1883 
1884 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1885 	return 0;
1886 }
1887 
1888 static inline
1889 void netdev_reset_tc(struct net_device *dev)
1890 {
1891 	dev->num_tc = 0;
1892 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1893 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1894 }
1895 
1896 static inline
1897 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1898 {
1899 	if (tc >= dev->num_tc)
1900 		return -EINVAL;
1901 
1902 	dev->tc_to_txq[tc].count = count;
1903 	dev->tc_to_txq[tc].offset = offset;
1904 	return 0;
1905 }
1906 
1907 static inline
1908 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1909 {
1910 	if (num_tc > TC_MAX_QUEUE)
1911 		return -EINVAL;
1912 
1913 	dev->num_tc = num_tc;
1914 	return 0;
1915 }
1916 
1917 static inline
1918 int netdev_get_num_tc(struct net_device *dev)
1919 {
1920 	return dev->num_tc;
1921 }
1922 
1923 static inline
1924 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1925 					 unsigned int index)
1926 {
1927 	return &dev->_tx[index];
1928 }
1929 
1930 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1931 						    const struct sk_buff *skb)
1932 {
1933 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1934 }
1935 
1936 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1937 					    void (*f)(struct net_device *,
1938 						      struct netdev_queue *,
1939 						      void *),
1940 					    void *arg)
1941 {
1942 	unsigned int i;
1943 
1944 	for (i = 0; i < dev->num_tx_queues; i++)
1945 		f(dev, &dev->_tx[i], arg);
1946 }
1947 
1948 #define netdev_lockdep_set_classes(dev)				\
1949 {								\
1950 	static struct lock_class_key qdisc_tx_busylock_key;	\
1951 	static struct lock_class_key qdisc_running_key;		\
1952 	static struct lock_class_key qdisc_xmit_lock_key;	\
1953 	static struct lock_class_key dev_addr_list_lock_key;	\
1954 	unsigned int i;						\
1955 								\
1956 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1957 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1958 	lockdep_set_class(&(dev)->addr_list_lock,		\
1959 			  &dev_addr_list_lock_key); 		\
1960 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1961 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1962 				  &qdisc_xmit_lock_key);	\
1963 }
1964 
1965 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1966 				    struct sk_buff *skb,
1967 				    void *accel_priv);
1968 
1969 /* returns the headroom that the master device needs to take in account
1970  * when forwarding to this dev
1971  */
1972 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1973 {
1974 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1975 }
1976 
1977 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1978 {
1979 	if (dev->netdev_ops->ndo_set_rx_headroom)
1980 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1981 }
1982 
1983 /* set the device rx headroom to the dev's default */
1984 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1985 {
1986 	netdev_set_rx_headroom(dev, -1);
1987 }
1988 
1989 /*
1990  * Net namespace inlines
1991  */
1992 static inline
1993 struct net *dev_net(const struct net_device *dev)
1994 {
1995 	return read_pnet(&dev->nd_net);
1996 }
1997 
1998 static inline
1999 void dev_net_set(struct net_device *dev, struct net *net)
2000 {
2001 	write_pnet(&dev->nd_net, net);
2002 }
2003 
2004 static inline bool netdev_uses_dsa(struct net_device *dev)
2005 {
2006 #if IS_ENABLED(CONFIG_NET_DSA)
2007 	if (dev->dsa_ptr != NULL)
2008 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2009 #endif
2010 	return false;
2011 }
2012 
2013 /**
2014  *	netdev_priv - access network device private data
2015  *	@dev: network device
2016  *
2017  * Get network device private data
2018  */
2019 static inline void *netdev_priv(const struct net_device *dev)
2020 {
2021 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2022 }
2023 
2024 /* Set the sysfs physical device reference for the network logical device
2025  * if set prior to registration will cause a symlink during initialization.
2026  */
2027 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2028 
2029 /* Set the sysfs device type for the network logical device to allow
2030  * fine-grained identification of different network device types. For
2031  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2032  */
2033 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2034 
2035 /* Default NAPI poll() weight
2036  * Device drivers are strongly advised to not use bigger value
2037  */
2038 #define NAPI_POLL_WEIGHT 64
2039 
2040 /**
2041  *	netif_napi_add - initialize a NAPI context
2042  *	@dev:  network device
2043  *	@napi: NAPI context
2044  *	@poll: polling function
2045  *	@weight: default weight
2046  *
2047  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2048  * *any* of the other NAPI-related functions.
2049  */
2050 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2051 		    int (*poll)(struct napi_struct *, int), int weight);
2052 
2053 /**
2054  *	netif_tx_napi_add - initialize a NAPI context
2055  *	@dev:  network device
2056  *	@napi: NAPI context
2057  *	@poll: polling function
2058  *	@weight: default weight
2059  *
2060  * This variant of netif_napi_add() should be used from drivers using NAPI
2061  * to exclusively poll a TX queue.
2062  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2063  */
2064 static inline void netif_tx_napi_add(struct net_device *dev,
2065 				     struct napi_struct *napi,
2066 				     int (*poll)(struct napi_struct *, int),
2067 				     int weight)
2068 {
2069 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2070 	netif_napi_add(dev, napi, poll, weight);
2071 }
2072 
2073 /**
2074  *  netif_napi_del - remove a NAPI context
2075  *  @napi: NAPI context
2076  *
2077  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2078  */
2079 void netif_napi_del(struct napi_struct *napi);
2080 
2081 struct napi_gro_cb {
2082 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2083 	void	*frag0;
2084 
2085 	/* Length of frag0. */
2086 	unsigned int frag0_len;
2087 
2088 	/* This indicates where we are processing relative to skb->data. */
2089 	int	data_offset;
2090 
2091 	/* This is non-zero if the packet cannot be merged with the new skb. */
2092 	u16	flush;
2093 
2094 	/* Save the IP ID here and check when we get to the transport layer */
2095 	u16	flush_id;
2096 
2097 	/* Number of segments aggregated. */
2098 	u16	count;
2099 
2100 	/* Start offset for remote checksum offload */
2101 	u16	gro_remcsum_start;
2102 
2103 	/* jiffies when first packet was created/queued */
2104 	unsigned long age;
2105 
2106 	/* Used in ipv6_gro_receive() and foo-over-udp */
2107 	u16	proto;
2108 
2109 	/* This is non-zero if the packet may be of the same flow. */
2110 	u8	same_flow:1;
2111 
2112 	/* Used in tunnel GRO receive */
2113 	u8	encap_mark:1;
2114 
2115 	/* GRO checksum is valid */
2116 	u8	csum_valid:1;
2117 
2118 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2119 	u8	csum_cnt:3;
2120 
2121 	/* Free the skb? */
2122 	u8	free:2;
2123 #define NAPI_GRO_FREE		  1
2124 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2125 
2126 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2127 	u8	is_ipv6:1;
2128 
2129 	/* Used in GRE, set in fou/gue_gro_receive */
2130 	u8	is_fou:1;
2131 
2132 	/* Used to determine if flush_id can be ignored */
2133 	u8	is_atomic:1;
2134 
2135 	/* 5 bit hole */
2136 
2137 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2138 	__wsum	csum;
2139 
2140 	/* used in skb_gro_receive() slow path */
2141 	struct sk_buff *last;
2142 };
2143 
2144 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2145 
2146 struct packet_type {
2147 	__be16			type;	/* This is really htons(ether_type). */
2148 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2149 	int			(*func) (struct sk_buff *,
2150 					 struct net_device *,
2151 					 struct packet_type *,
2152 					 struct net_device *);
2153 	bool			(*id_match)(struct packet_type *ptype,
2154 					    struct sock *sk);
2155 	void			*af_packet_priv;
2156 	struct list_head	list;
2157 };
2158 
2159 struct offload_callbacks {
2160 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2161 						netdev_features_t features);
2162 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2163 						 struct sk_buff *skb);
2164 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2165 };
2166 
2167 struct packet_offload {
2168 	__be16			 type;	/* This is really htons(ether_type). */
2169 	u16			 priority;
2170 	struct offload_callbacks callbacks;
2171 	struct list_head	 list;
2172 };
2173 
2174 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2175 struct pcpu_sw_netstats {
2176 	u64     rx_packets;
2177 	u64     rx_bytes;
2178 	u64     tx_packets;
2179 	u64     tx_bytes;
2180 	struct u64_stats_sync   syncp;
2181 };
2182 
2183 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2184 ({									\
2185 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2186 	if (pcpu_stats)	{						\
2187 		int __cpu;						\
2188 		for_each_possible_cpu(__cpu) {				\
2189 			typeof(type) *stat;				\
2190 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2191 			u64_stats_init(&stat->syncp);			\
2192 		}							\
2193 	}								\
2194 	pcpu_stats;							\
2195 })
2196 
2197 #define netdev_alloc_pcpu_stats(type)					\
2198 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2199 
2200 enum netdev_lag_tx_type {
2201 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2202 	NETDEV_LAG_TX_TYPE_RANDOM,
2203 	NETDEV_LAG_TX_TYPE_BROADCAST,
2204 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2205 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2206 	NETDEV_LAG_TX_TYPE_HASH,
2207 };
2208 
2209 struct netdev_lag_upper_info {
2210 	enum netdev_lag_tx_type tx_type;
2211 };
2212 
2213 struct netdev_lag_lower_state_info {
2214 	u8 link_up : 1,
2215 	   tx_enabled : 1;
2216 };
2217 
2218 #include <linux/notifier.h>
2219 
2220 /* netdevice notifier chain. Please remember to update the rtnetlink
2221  * notification exclusion list in rtnetlink_event() when adding new
2222  * types.
2223  */
2224 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2225 #define NETDEV_DOWN	0x0002
2226 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2227 				   detected a hardware crash and restarted
2228 				   - we can use this eg to kick tcp sessions
2229 				   once done */
2230 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2231 #define NETDEV_REGISTER 0x0005
2232 #define NETDEV_UNREGISTER	0x0006
2233 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2234 #define NETDEV_CHANGEADDR	0x0008
2235 #define NETDEV_GOING_DOWN	0x0009
2236 #define NETDEV_CHANGENAME	0x000A
2237 #define NETDEV_FEAT_CHANGE	0x000B
2238 #define NETDEV_BONDING_FAILOVER 0x000C
2239 #define NETDEV_PRE_UP		0x000D
2240 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2241 #define NETDEV_POST_TYPE_CHANGE	0x000F
2242 #define NETDEV_POST_INIT	0x0010
2243 #define NETDEV_UNREGISTER_FINAL 0x0011
2244 #define NETDEV_RELEASE		0x0012
2245 #define NETDEV_NOTIFY_PEERS	0x0013
2246 #define NETDEV_JOIN		0x0014
2247 #define NETDEV_CHANGEUPPER	0x0015
2248 #define NETDEV_RESEND_IGMP	0x0016
2249 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2250 #define NETDEV_CHANGEINFODATA	0x0018
2251 #define NETDEV_BONDING_INFO	0x0019
2252 #define NETDEV_PRECHANGEUPPER	0x001A
2253 #define NETDEV_CHANGELOWERSTATE	0x001B
2254 #define NETDEV_OFFLOAD_PUSH_VXLAN	0x001C
2255 #define NETDEV_OFFLOAD_PUSH_GENEVE	0x001D
2256 
2257 int register_netdevice_notifier(struct notifier_block *nb);
2258 int unregister_netdevice_notifier(struct notifier_block *nb);
2259 
2260 struct netdev_notifier_info {
2261 	struct net_device *dev;
2262 };
2263 
2264 struct netdev_notifier_change_info {
2265 	struct netdev_notifier_info info; /* must be first */
2266 	unsigned int flags_changed;
2267 };
2268 
2269 struct netdev_notifier_changeupper_info {
2270 	struct netdev_notifier_info info; /* must be first */
2271 	struct net_device *upper_dev; /* new upper dev */
2272 	bool master; /* is upper dev master */
2273 	bool linking; /* is the notification for link or unlink */
2274 	void *upper_info; /* upper dev info */
2275 };
2276 
2277 struct netdev_notifier_changelowerstate_info {
2278 	struct netdev_notifier_info info; /* must be first */
2279 	void *lower_state_info; /* is lower dev state */
2280 };
2281 
2282 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2283 					     struct net_device *dev)
2284 {
2285 	info->dev = dev;
2286 }
2287 
2288 static inline struct net_device *
2289 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2290 {
2291 	return info->dev;
2292 }
2293 
2294 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2295 
2296 
2297 extern rwlock_t				dev_base_lock;		/* Device list lock */
2298 
2299 #define for_each_netdev(net, d)		\
2300 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2301 #define for_each_netdev_reverse(net, d)	\
2302 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2303 #define for_each_netdev_rcu(net, d)		\
2304 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2305 #define for_each_netdev_safe(net, d, n)	\
2306 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2307 #define for_each_netdev_continue(net, d)		\
2308 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2309 #define for_each_netdev_continue_rcu(net, d)		\
2310 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2311 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2312 		for_each_netdev_rcu(&init_net, slave)	\
2313 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2314 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2315 
2316 static inline struct net_device *next_net_device(struct net_device *dev)
2317 {
2318 	struct list_head *lh;
2319 	struct net *net;
2320 
2321 	net = dev_net(dev);
2322 	lh = dev->dev_list.next;
2323 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2324 }
2325 
2326 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2327 {
2328 	struct list_head *lh;
2329 	struct net *net;
2330 
2331 	net = dev_net(dev);
2332 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2333 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2334 }
2335 
2336 static inline struct net_device *first_net_device(struct net *net)
2337 {
2338 	return list_empty(&net->dev_base_head) ? NULL :
2339 		net_device_entry(net->dev_base_head.next);
2340 }
2341 
2342 static inline struct net_device *first_net_device_rcu(struct net *net)
2343 {
2344 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2345 
2346 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2347 }
2348 
2349 int netdev_boot_setup_check(struct net_device *dev);
2350 unsigned long netdev_boot_base(const char *prefix, int unit);
2351 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2352 				       const char *hwaddr);
2353 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2354 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2355 void dev_add_pack(struct packet_type *pt);
2356 void dev_remove_pack(struct packet_type *pt);
2357 void __dev_remove_pack(struct packet_type *pt);
2358 void dev_add_offload(struct packet_offload *po);
2359 void dev_remove_offload(struct packet_offload *po);
2360 
2361 int dev_get_iflink(const struct net_device *dev);
2362 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2363 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2364 				      unsigned short mask);
2365 struct net_device *dev_get_by_name(struct net *net, const char *name);
2366 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2367 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2368 int dev_alloc_name(struct net_device *dev, const char *name);
2369 int dev_open(struct net_device *dev);
2370 int dev_close(struct net_device *dev);
2371 int dev_close_many(struct list_head *head, bool unlink);
2372 void dev_disable_lro(struct net_device *dev);
2373 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2374 int dev_queue_xmit(struct sk_buff *skb);
2375 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2376 int register_netdevice(struct net_device *dev);
2377 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2378 void unregister_netdevice_many(struct list_head *head);
2379 static inline void unregister_netdevice(struct net_device *dev)
2380 {
2381 	unregister_netdevice_queue(dev, NULL);
2382 }
2383 
2384 int netdev_refcnt_read(const struct net_device *dev);
2385 void free_netdev(struct net_device *dev);
2386 void netdev_freemem(struct net_device *dev);
2387 void synchronize_net(void);
2388 int init_dummy_netdev(struct net_device *dev);
2389 
2390 DECLARE_PER_CPU(int, xmit_recursion);
2391 #define XMIT_RECURSION_LIMIT	10
2392 
2393 static inline int dev_recursion_level(void)
2394 {
2395 	return this_cpu_read(xmit_recursion);
2396 }
2397 
2398 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2399 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2400 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2401 int netdev_get_name(struct net *net, char *name, int ifindex);
2402 int dev_restart(struct net_device *dev);
2403 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2404 
2405 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2406 {
2407 	return NAPI_GRO_CB(skb)->data_offset;
2408 }
2409 
2410 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2411 {
2412 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2413 }
2414 
2415 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2416 {
2417 	NAPI_GRO_CB(skb)->data_offset += len;
2418 }
2419 
2420 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2421 					unsigned int offset)
2422 {
2423 	return NAPI_GRO_CB(skb)->frag0 + offset;
2424 }
2425 
2426 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2427 {
2428 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2429 }
2430 
2431 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2432 					unsigned int offset)
2433 {
2434 	if (!pskb_may_pull(skb, hlen))
2435 		return NULL;
2436 
2437 	NAPI_GRO_CB(skb)->frag0 = NULL;
2438 	NAPI_GRO_CB(skb)->frag0_len = 0;
2439 	return skb->data + offset;
2440 }
2441 
2442 static inline void *skb_gro_network_header(struct sk_buff *skb)
2443 {
2444 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2445 	       skb_network_offset(skb);
2446 }
2447 
2448 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2449 					const void *start, unsigned int len)
2450 {
2451 	if (NAPI_GRO_CB(skb)->csum_valid)
2452 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2453 						  csum_partial(start, len, 0));
2454 }
2455 
2456 /* GRO checksum functions. These are logical equivalents of the normal
2457  * checksum functions (in skbuff.h) except that they operate on the GRO
2458  * offsets and fields in sk_buff.
2459  */
2460 
2461 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2462 
2463 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2464 {
2465 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2466 }
2467 
2468 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2469 						      bool zero_okay,
2470 						      __sum16 check)
2471 {
2472 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2473 		skb_checksum_start_offset(skb) <
2474 		 skb_gro_offset(skb)) &&
2475 		!skb_at_gro_remcsum_start(skb) &&
2476 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2477 		(!zero_okay || check));
2478 }
2479 
2480 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2481 							   __wsum psum)
2482 {
2483 	if (NAPI_GRO_CB(skb)->csum_valid &&
2484 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2485 		return 0;
2486 
2487 	NAPI_GRO_CB(skb)->csum = psum;
2488 
2489 	return __skb_gro_checksum_complete(skb);
2490 }
2491 
2492 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2493 {
2494 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2495 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2496 		NAPI_GRO_CB(skb)->csum_cnt--;
2497 	} else {
2498 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2499 		 * verified a new top level checksum or an encapsulated one
2500 		 * during GRO. This saves work if we fallback to normal path.
2501 		 */
2502 		__skb_incr_checksum_unnecessary(skb);
2503 	}
2504 }
2505 
2506 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2507 				    compute_pseudo)			\
2508 ({									\
2509 	__sum16 __ret = 0;						\
2510 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2511 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2512 				compute_pseudo(skb, proto));		\
2513 	if (__ret)							\
2514 		__skb_mark_checksum_bad(skb);				\
2515 	else								\
2516 		skb_gro_incr_csum_unnecessary(skb);			\
2517 	__ret;								\
2518 })
2519 
2520 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2521 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2522 
2523 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2524 					     compute_pseudo)		\
2525 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2526 
2527 #define skb_gro_checksum_simple_validate(skb)				\
2528 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2529 
2530 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2531 {
2532 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2533 		!NAPI_GRO_CB(skb)->csum_valid);
2534 }
2535 
2536 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2537 					      __sum16 check, __wsum pseudo)
2538 {
2539 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2540 	NAPI_GRO_CB(skb)->csum_valid = 1;
2541 }
2542 
2543 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2544 do {									\
2545 	if (__skb_gro_checksum_convert_check(skb))			\
2546 		__skb_gro_checksum_convert(skb, check,			\
2547 					   compute_pseudo(skb, proto));	\
2548 } while (0)
2549 
2550 struct gro_remcsum {
2551 	int offset;
2552 	__wsum delta;
2553 };
2554 
2555 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2556 {
2557 	grc->offset = 0;
2558 	grc->delta = 0;
2559 }
2560 
2561 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2562 					    unsigned int off, size_t hdrlen,
2563 					    int start, int offset,
2564 					    struct gro_remcsum *grc,
2565 					    bool nopartial)
2566 {
2567 	__wsum delta;
2568 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2569 
2570 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2571 
2572 	if (!nopartial) {
2573 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2574 		return ptr;
2575 	}
2576 
2577 	ptr = skb_gro_header_fast(skb, off);
2578 	if (skb_gro_header_hard(skb, off + plen)) {
2579 		ptr = skb_gro_header_slow(skb, off + plen, off);
2580 		if (!ptr)
2581 			return NULL;
2582 	}
2583 
2584 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2585 			       start, offset);
2586 
2587 	/* Adjust skb->csum since we changed the packet */
2588 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2589 
2590 	grc->offset = off + hdrlen + offset;
2591 	grc->delta = delta;
2592 
2593 	return ptr;
2594 }
2595 
2596 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2597 					   struct gro_remcsum *grc)
2598 {
2599 	void *ptr;
2600 	size_t plen = grc->offset + sizeof(u16);
2601 
2602 	if (!grc->delta)
2603 		return;
2604 
2605 	ptr = skb_gro_header_fast(skb, grc->offset);
2606 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2607 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2608 		if (!ptr)
2609 			return;
2610 	}
2611 
2612 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2613 }
2614 
2615 struct skb_csum_offl_spec {
2616 	__u16		ipv4_okay:1,
2617 			ipv6_okay:1,
2618 			encap_okay:1,
2619 			ip_options_okay:1,
2620 			ext_hdrs_okay:1,
2621 			tcp_okay:1,
2622 			udp_okay:1,
2623 			sctp_okay:1,
2624 			vlan_okay:1,
2625 			no_encapped_ipv6:1,
2626 			no_not_encapped:1;
2627 };
2628 
2629 bool __skb_csum_offload_chk(struct sk_buff *skb,
2630 			    const struct skb_csum_offl_spec *spec,
2631 			    bool *csum_encapped,
2632 			    bool csum_help);
2633 
2634 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2635 					const struct skb_csum_offl_spec *spec,
2636 					bool *csum_encapped,
2637 					bool csum_help)
2638 {
2639 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2640 		return false;
2641 
2642 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2643 }
2644 
2645 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2646 					     const struct skb_csum_offl_spec *spec)
2647 {
2648 	bool csum_encapped;
2649 
2650 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2651 }
2652 
2653 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2654 {
2655 	static const struct skb_csum_offl_spec csum_offl_spec = {
2656 		.ipv4_okay = 1,
2657 		.ip_options_okay = 1,
2658 		.ipv6_okay = 1,
2659 		.vlan_okay = 1,
2660 		.tcp_okay = 1,
2661 		.udp_okay = 1,
2662 	};
2663 
2664 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2665 }
2666 
2667 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2668 {
2669 	static const struct skb_csum_offl_spec csum_offl_spec = {
2670 		.ipv4_okay = 1,
2671 		.ip_options_okay = 1,
2672 		.tcp_okay = 1,
2673 		.udp_okay = 1,
2674 		.vlan_okay = 1,
2675 	};
2676 
2677 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2678 }
2679 
2680 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2681 				  unsigned short type,
2682 				  const void *daddr, const void *saddr,
2683 				  unsigned int len)
2684 {
2685 	if (!dev->header_ops || !dev->header_ops->create)
2686 		return 0;
2687 
2688 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2689 }
2690 
2691 static inline int dev_parse_header(const struct sk_buff *skb,
2692 				   unsigned char *haddr)
2693 {
2694 	const struct net_device *dev = skb->dev;
2695 
2696 	if (!dev->header_ops || !dev->header_ops->parse)
2697 		return 0;
2698 	return dev->header_ops->parse(skb, haddr);
2699 }
2700 
2701 /* ll_header must have at least hard_header_len allocated */
2702 static inline bool dev_validate_header(const struct net_device *dev,
2703 				       char *ll_header, int len)
2704 {
2705 	if (likely(len >= dev->hard_header_len))
2706 		return true;
2707 
2708 	if (capable(CAP_SYS_RAWIO)) {
2709 		memset(ll_header + len, 0, dev->hard_header_len - len);
2710 		return true;
2711 	}
2712 
2713 	if (dev->header_ops && dev->header_ops->validate)
2714 		return dev->header_ops->validate(ll_header, len);
2715 
2716 	return false;
2717 }
2718 
2719 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2720 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2721 static inline int unregister_gifconf(unsigned int family)
2722 {
2723 	return register_gifconf(family, NULL);
2724 }
2725 
2726 #ifdef CONFIG_NET_FLOW_LIMIT
2727 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2728 struct sd_flow_limit {
2729 	u64			count;
2730 	unsigned int		num_buckets;
2731 	unsigned int		history_head;
2732 	u16			history[FLOW_LIMIT_HISTORY];
2733 	u8			buckets[];
2734 };
2735 
2736 extern int netdev_flow_limit_table_len;
2737 #endif /* CONFIG_NET_FLOW_LIMIT */
2738 
2739 /*
2740  * Incoming packets are placed on per-CPU queues
2741  */
2742 struct softnet_data {
2743 	struct list_head	poll_list;
2744 	struct sk_buff_head	process_queue;
2745 
2746 	/* stats */
2747 	unsigned int		processed;
2748 	unsigned int		time_squeeze;
2749 	unsigned int		received_rps;
2750 #ifdef CONFIG_RPS
2751 	struct softnet_data	*rps_ipi_list;
2752 #endif
2753 #ifdef CONFIG_NET_FLOW_LIMIT
2754 	struct sd_flow_limit __rcu *flow_limit;
2755 #endif
2756 	struct Qdisc		*output_queue;
2757 	struct Qdisc		**output_queue_tailp;
2758 	struct sk_buff		*completion_queue;
2759 
2760 #ifdef CONFIG_RPS
2761 	/* input_queue_head should be written by cpu owning this struct,
2762 	 * and only read by other cpus. Worth using a cache line.
2763 	 */
2764 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2765 
2766 	/* Elements below can be accessed between CPUs for RPS/RFS */
2767 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2768 	struct softnet_data	*rps_ipi_next;
2769 	unsigned int		cpu;
2770 	unsigned int		input_queue_tail;
2771 #endif
2772 	unsigned int		dropped;
2773 	struct sk_buff_head	input_pkt_queue;
2774 	struct napi_struct	backlog;
2775 
2776 };
2777 
2778 static inline void input_queue_head_incr(struct softnet_data *sd)
2779 {
2780 #ifdef CONFIG_RPS
2781 	sd->input_queue_head++;
2782 #endif
2783 }
2784 
2785 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2786 					      unsigned int *qtail)
2787 {
2788 #ifdef CONFIG_RPS
2789 	*qtail = ++sd->input_queue_tail;
2790 #endif
2791 }
2792 
2793 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2794 
2795 void __netif_schedule(struct Qdisc *q);
2796 void netif_schedule_queue(struct netdev_queue *txq);
2797 
2798 static inline void netif_tx_schedule_all(struct net_device *dev)
2799 {
2800 	unsigned int i;
2801 
2802 	for (i = 0; i < dev->num_tx_queues; i++)
2803 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2804 }
2805 
2806 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2807 {
2808 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2809 }
2810 
2811 /**
2812  *	netif_start_queue - allow transmit
2813  *	@dev: network device
2814  *
2815  *	Allow upper layers to call the device hard_start_xmit routine.
2816  */
2817 static inline void netif_start_queue(struct net_device *dev)
2818 {
2819 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2820 }
2821 
2822 static inline void netif_tx_start_all_queues(struct net_device *dev)
2823 {
2824 	unsigned int i;
2825 
2826 	for (i = 0; i < dev->num_tx_queues; i++) {
2827 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2828 		netif_tx_start_queue(txq);
2829 	}
2830 }
2831 
2832 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2833 
2834 /**
2835  *	netif_wake_queue - restart transmit
2836  *	@dev: network device
2837  *
2838  *	Allow upper layers to call the device hard_start_xmit routine.
2839  *	Used for flow control when transmit resources are available.
2840  */
2841 static inline void netif_wake_queue(struct net_device *dev)
2842 {
2843 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2844 }
2845 
2846 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2847 {
2848 	unsigned int i;
2849 
2850 	for (i = 0; i < dev->num_tx_queues; i++) {
2851 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2852 		netif_tx_wake_queue(txq);
2853 	}
2854 }
2855 
2856 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2857 {
2858 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2859 }
2860 
2861 /**
2862  *	netif_stop_queue - stop transmitted packets
2863  *	@dev: network device
2864  *
2865  *	Stop upper layers calling the device hard_start_xmit routine.
2866  *	Used for flow control when transmit resources are unavailable.
2867  */
2868 static inline void netif_stop_queue(struct net_device *dev)
2869 {
2870 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2871 }
2872 
2873 void netif_tx_stop_all_queues(struct net_device *dev);
2874 
2875 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2876 {
2877 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2878 }
2879 
2880 /**
2881  *	netif_queue_stopped - test if transmit queue is flowblocked
2882  *	@dev: network device
2883  *
2884  *	Test if transmit queue on device is currently unable to send.
2885  */
2886 static inline bool netif_queue_stopped(const struct net_device *dev)
2887 {
2888 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2889 }
2890 
2891 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2892 {
2893 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2894 }
2895 
2896 static inline bool
2897 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2898 {
2899 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2900 }
2901 
2902 static inline bool
2903 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2904 {
2905 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2906 }
2907 
2908 /**
2909  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2910  *	@dev_queue: pointer to transmit queue
2911  *
2912  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2913  * to give appropriate hint to the CPU.
2914  */
2915 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2916 {
2917 #ifdef CONFIG_BQL
2918 	prefetchw(&dev_queue->dql.num_queued);
2919 #endif
2920 }
2921 
2922 /**
2923  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2924  *	@dev_queue: pointer to transmit queue
2925  *
2926  * BQL enabled drivers might use this helper in their TX completion path,
2927  * to give appropriate hint to the CPU.
2928  */
2929 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2930 {
2931 #ifdef CONFIG_BQL
2932 	prefetchw(&dev_queue->dql.limit);
2933 #endif
2934 }
2935 
2936 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2937 					unsigned int bytes)
2938 {
2939 #ifdef CONFIG_BQL
2940 	dql_queued(&dev_queue->dql, bytes);
2941 
2942 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2943 		return;
2944 
2945 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2946 
2947 	/*
2948 	 * The XOFF flag must be set before checking the dql_avail below,
2949 	 * because in netdev_tx_completed_queue we update the dql_completed
2950 	 * before checking the XOFF flag.
2951 	 */
2952 	smp_mb();
2953 
2954 	/* check again in case another CPU has just made room avail */
2955 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2956 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2957 #endif
2958 }
2959 
2960 /**
2961  * 	netdev_sent_queue - report the number of bytes queued to hardware
2962  * 	@dev: network device
2963  * 	@bytes: number of bytes queued to the hardware device queue
2964  *
2965  * 	Report the number of bytes queued for sending/completion to the network
2966  * 	device hardware queue. @bytes should be a good approximation and should
2967  * 	exactly match netdev_completed_queue() @bytes
2968  */
2969 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2970 {
2971 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2972 }
2973 
2974 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2975 					     unsigned int pkts, unsigned int bytes)
2976 {
2977 #ifdef CONFIG_BQL
2978 	if (unlikely(!bytes))
2979 		return;
2980 
2981 	dql_completed(&dev_queue->dql, bytes);
2982 
2983 	/*
2984 	 * Without the memory barrier there is a small possiblity that
2985 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2986 	 * be stopped forever
2987 	 */
2988 	smp_mb();
2989 
2990 	if (dql_avail(&dev_queue->dql) < 0)
2991 		return;
2992 
2993 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2994 		netif_schedule_queue(dev_queue);
2995 #endif
2996 }
2997 
2998 /**
2999  * 	netdev_completed_queue - report bytes and packets completed by device
3000  * 	@dev: network device
3001  * 	@pkts: actual number of packets sent over the medium
3002  * 	@bytes: actual number of bytes sent over the medium
3003  *
3004  * 	Report the number of bytes and packets transmitted by the network device
3005  * 	hardware queue over the physical medium, @bytes must exactly match the
3006  * 	@bytes amount passed to netdev_sent_queue()
3007  */
3008 static inline void netdev_completed_queue(struct net_device *dev,
3009 					  unsigned int pkts, unsigned int bytes)
3010 {
3011 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3012 }
3013 
3014 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3015 {
3016 #ifdef CONFIG_BQL
3017 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3018 	dql_reset(&q->dql);
3019 #endif
3020 }
3021 
3022 /**
3023  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3024  * 	@dev_queue: network device
3025  *
3026  * 	Reset the bytes and packet count of a network device and clear the
3027  * 	software flow control OFF bit for this network device
3028  */
3029 static inline void netdev_reset_queue(struct net_device *dev_queue)
3030 {
3031 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3032 }
3033 
3034 /**
3035  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3036  * 	@dev: network device
3037  * 	@queue_index: given tx queue index
3038  *
3039  * 	Returns 0 if given tx queue index >= number of device tx queues,
3040  * 	otherwise returns the originally passed tx queue index.
3041  */
3042 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3043 {
3044 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3045 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3046 				     dev->name, queue_index,
3047 				     dev->real_num_tx_queues);
3048 		return 0;
3049 	}
3050 
3051 	return queue_index;
3052 }
3053 
3054 /**
3055  *	netif_running - test if up
3056  *	@dev: network device
3057  *
3058  *	Test if the device has been brought up.
3059  */
3060 static inline bool netif_running(const struct net_device *dev)
3061 {
3062 	return test_bit(__LINK_STATE_START, &dev->state);
3063 }
3064 
3065 /*
3066  * Routines to manage the subqueues on a device.  We only need start,
3067  * stop, and a check if it's stopped.  All other device management is
3068  * done at the overall netdevice level.
3069  * Also test the device if we're multiqueue.
3070  */
3071 
3072 /**
3073  *	netif_start_subqueue - allow sending packets on subqueue
3074  *	@dev: network device
3075  *	@queue_index: sub queue index
3076  *
3077  * Start individual transmit queue of a device with multiple transmit queues.
3078  */
3079 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3080 {
3081 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3082 
3083 	netif_tx_start_queue(txq);
3084 }
3085 
3086 /**
3087  *	netif_stop_subqueue - stop sending packets on subqueue
3088  *	@dev: network device
3089  *	@queue_index: sub queue index
3090  *
3091  * Stop individual transmit queue of a device with multiple transmit queues.
3092  */
3093 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3094 {
3095 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3096 	netif_tx_stop_queue(txq);
3097 }
3098 
3099 /**
3100  *	netif_subqueue_stopped - test status of subqueue
3101  *	@dev: network device
3102  *	@queue_index: sub queue index
3103  *
3104  * Check individual transmit queue of a device with multiple transmit queues.
3105  */
3106 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3107 					    u16 queue_index)
3108 {
3109 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3110 
3111 	return netif_tx_queue_stopped(txq);
3112 }
3113 
3114 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3115 					  struct sk_buff *skb)
3116 {
3117 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3118 }
3119 
3120 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3121 
3122 #ifdef CONFIG_XPS
3123 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3124 			u16 index);
3125 #else
3126 static inline int netif_set_xps_queue(struct net_device *dev,
3127 				      const struct cpumask *mask,
3128 				      u16 index)
3129 {
3130 	return 0;
3131 }
3132 #endif
3133 
3134 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3135 		  unsigned int num_tx_queues);
3136 
3137 /*
3138  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3139  * as a distribution range limit for the returned value.
3140  */
3141 static inline u16 skb_tx_hash(const struct net_device *dev,
3142 			      struct sk_buff *skb)
3143 {
3144 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3145 }
3146 
3147 /**
3148  *	netif_is_multiqueue - test if device has multiple transmit queues
3149  *	@dev: network device
3150  *
3151  * Check if device has multiple transmit queues
3152  */
3153 static inline bool netif_is_multiqueue(const struct net_device *dev)
3154 {
3155 	return dev->num_tx_queues > 1;
3156 }
3157 
3158 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3159 
3160 #ifdef CONFIG_SYSFS
3161 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3162 #else
3163 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3164 						unsigned int rxq)
3165 {
3166 	return 0;
3167 }
3168 #endif
3169 
3170 #ifdef CONFIG_SYSFS
3171 static inline unsigned int get_netdev_rx_queue_index(
3172 		struct netdev_rx_queue *queue)
3173 {
3174 	struct net_device *dev = queue->dev;
3175 	int index = queue - dev->_rx;
3176 
3177 	BUG_ON(index >= dev->num_rx_queues);
3178 	return index;
3179 }
3180 #endif
3181 
3182 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3183 int netif_get_num_default_rss_queues(void);
3184 
3185 enum skb_free_reason {
3186 	SKB_REASON_CONSUMED,
3187 	SKB_REASON_DROPPED,
3188 };
3189 
3190 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3191 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3192 
3193 /*
3194  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3195  * interrupt context or with hardware interrupts being disabled.
3196  * (in_irq() || irqs_disabled())
3197  *
3198  * We provide four helpers that can be used in following contexts :
3199  *
3200  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3201  *  replacing kfree_skb(skb)
3202  *
3203  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3204  *  Typically used in place of consume_skb(skb) in TX completion path
3205  *
3206  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3207  *  replacing kfree_skb(skb)
3208  *
3209  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3210  *  and consumed a packet. Used in place of consume_skb(skb)
3211  */
3212 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3213 {
3214 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3215 }
3216 
3217 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3218 {
3219 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3220 }
3221 
3222 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3223 {
3224 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3225 }
3226 
3227 static inline void dev_consume_skb_any(struct sk_buff *skb)
3228 {
3229 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3230 }
3231 
3232 int netif_rx(struct sk_buff *skb);
3233 int netif_rx_ni(struct sk_buff *skb);
3234 int netif_receive_skb(struct sk_buff *skb);
3235 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3236 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3237 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3238 gro_result_t napi_gro_frags(struct napi_struct *napi);
3239 struct packet_offload *gro_find_receive_by_type(__be16 type);
3240 struct packet_offload *gro_find_complete_by_type(__be16 type);
3241 
3242 static inline void napi_free_frags(struct napi_struct *napi)
3243 {
3244 	kfree_skb(napi->skb);
3245 	napi->skb = NULL;
3246 }
3247 
3248 int netdev_rx_handler_register(struct net_device *dev,
3249 			       rx_handler_func_t *rx_handler,
3250 			       void *rx_handler_data);
3251 void netdev_rx_handler_unregister(struct net_device *dev);
3252 
3253 bool dev_valid_name(const char *name);
3254 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3255 int dev_ethtool(struct net *net, struct ifreq *);
3256 unsigned int dev_get_flags(const struct net_device *);
3257 int __dev_change_flags(struct net_device *, unsigned int flags);
3258 int dev_change_flags(struct net_device *, unsigned int);
3259 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3260 			unsigned int gchanges);
3261 int dev_change_name(struct net_device *, const char *);
3262 int dev_set_alias(struct net_device *, const char *, size_t);
3263 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3264 int dev_set_mtu(struct net_device *, int);
3265 void dev_set_group(struct net_device *, int);
3266 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3267 int dev_change_carrier(struct net_device *, bool new_carrier);
3268 int dev_get_phys_port_id(struct net_device *dev,
3269 			 struct netdev_phys_item_id *ppid);
3270 int dev_get_phys_port_name(struct net_device *dev,
3271 			   char *name, size_t len);
3272 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3273 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3274 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3275 				    struct netdev_queue *txq, int *ret);
3276 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3277 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3278 bool is_skb_forwardable(const struct net_device *dev,
3279 			const struct sk_buff *skb);
3280 
3281 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3282 
3283 extern int		netdev_budget;
3284 
3285 /* Called by rtnetlink.c:rtnl_unlock() */
3286 void netdev_run_todo(void);
3287 
3288 /**
3289  *	dev_put - release reference to device
3290  *	@dev: network device
3291  *
3292  * Release reference to device to allow it to be freed.
3293  */
3294 static inline void dev_put(struct net_device *dev)
3295 {
3296 	this_cpu_dec(*dev->pcpu_refcnt);
3297 }
3298 
3299 /**
3300  *	dev_hold - get reference to device
3301  *	@dev: network device
3302  *
3303  * Hold reference to device to keep it from being freed.
3304  */
3305 static inline void dev_hold(struct net_device *dev)
3306 {
3307 	this_cpu_inc(*dev->pcpu_refcnt);
3308 }
3309 
3310 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3311  * and _off may be called from IRQ context, but it is caller
3312  * who is responsible for serialization of these calls.
3313  *
3314  * The name carrier is inappropriate, these functions should really be
3315  * called netif_lowerlayer_*() because they represent the state of any
3316  * kind of lower layer not just hardware media.
3317  */
3318 
3319 void linkwatch_init_dev(struct net_device *dev);
3320 void linkwatch_fire_event(struct net_device *dev);
3321 void linkwatch_forget_dev(struct net_device *dev);
3322 
3323 /**
3324  *	netif_carrier_ok - test if carrier present
3325  *	@dev: network device
3326  *
3327  * Check if carrier is present on device
3328  */
3329 static inline bool netif_carrier_ok(const struct net_device *dev)
3330 {
3331 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3332 }
3333 
3334 unsigned long dev_trans_start(struct net_device *dev);
3335 
3336 void __netdev_watchdog_up(struct net_device *dev);
3337 
3338 void netif_carrier_on(struct net_device *dev);
3339 
3340 void netif_carrier_off(struct net_device *dev);
3341 
3342 /**
3343  *	netif_dormant_on - mark device as dormant.
3344  *	@dev: network device
3345  *
3346  * Mark device as dormant (as per RFC2863).
3347  *
3348  * The dormant state indicates that the relevant interface is not
3349  * actually in a condition to pass packets (i.e., it is not 'up') but is
3350  * in a "pending" state, waiting for some external event.  For "on-
3351  * demand" interfaces, this new state identifies the situation where the
3352  * interface is waiting for events to place it in the up state.
3353  */
3354 static inline void netif_dormant_on(struct net_device *dev)
3355 {
3356 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3357 		linkwatch_fire_event(dev);
3358 }
3359 
3360 /**
3361  *	netif_dormant_off - set device as not dormant.
3362  *	@dev: network device
3363  *
3364  * Device is not in dormant state.
3365  */
3366 static inline void netif_dormant_off(struct net_device *dev)
3367 {
3368 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3369 		linkwatch_fire_event(dev);
3370 }
3371 
3372 /**
3373  *	netif_dormant - test if carrier present
3374  *	@dev: network device
3375  *
3376  * Check if carrier is present on device
3377  */
3378 static inline bool netif_dormant(const struct net_device *dev)
3379 {
3380 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3381 }
3382 
3383 
3384 /**
3385  *	netif_oper_up - test if device is operational
3386  *	@dev: network device
3387  *
3388  * Check if carrier is operational
3389  */
3390 static inline bool netif_oper_up(const struct net_device *dev)
3391 {
3392 	return (dev->operstate == IF_OPER_UP ||
3393 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3394 }
3395 
3396 /**
3397  *	netif_device_present - is device available or removed
3398  *	@dev: network device
3399  *
3400  * Check if device has not been removed from system.
3401  */
3402 static inline bool netif_device_present(struct net_device *dev)
3403 {
3404 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3405 }
3406 
3407 void netif_device_detach(struct net_device *dev);
3408 
3409 void netif_device_attach(struct net_device *dev);
3410 
3411 /*
3412  * Network interface message level settings
3413  */
3414 
3415 enum {
3416 	NETIF_MSG_DRV		= 0x0001,
3417 	NETIF_MSG_PROBE		= 0x0002,
3418 	NETIF_MSG_LINK		= 0x0004,
3419 	NETIF_MSG_TIMER		= 0x0008,
3420 	NETIF_MSG_IFDOWN	= 0x0010,
3421 	NETIF_MSG_IFUP		= 0x0020,
3422 	NETIF_MSG_RX_ERR	= 0x0040,
3423 	NETIF_MSG_TX_ERR	= 0x0080,
3424 	NETIF_MSG_TX_QUEUED	= 0x0100,
3425 	NETIF_MSG_INTR		= 0x0200,
3426 	NETIF_MSG_TX_DONE	= 0x0400,
3427 	NETIF_MSG_RX_STATUS	= 0x0800,
3428 	NETIF_MSG_PKTDATA	= 0x1000,
3429 	NETIF_MSG_HW		= 0x2000,
3430 	NETIF_MSG_WOL		= 0x4000,
3431 };
3432 
3433 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3434 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3435 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3436 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3437 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3438 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3439 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3440 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3441 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3442 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3443 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3444 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3445 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3446 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3447 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3448 
3449 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3450 {
3451 	/* use default */
3452 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3453 		return default_msg_enable_bits;
3454 	if (debug_value == 0)	/* no output */
3455 		return 0;
3456 	/* set low N bits */
3457 	return (1 << debug_value) - 1;
3458 }
3459 
3460 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3461 {
3462 	spin_lock(&txq->_xmit_lock);
3463 	txq->xmit_lock_owner = cpu;
3464 }
3465 
3466 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3467 {
3468 	spin_lock_bh(&txq->_xmit_lock);
3469 	txq->xmit_lock_owner = smp_processor_id();
3470 }
3471 
3472 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3473 {
3474 	bool ok = spin_trylock(&txq->_xmit_lock);
3475 	if (likely(ok))
3476 		txq->xmit_lock_owner = smp_processor_id();
3477 	return ok;
3478 }
3479 
3480 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3481 {
3482 	txq->xmit_lock_owner = -1;
3483 	spin_unlock(&txq->_xmit_lock);
3484 }
3485 
3486 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3487 {
3488 	txq->xmit_lock_owner = -1;
3489 	spin_unlock_bh(&txq->_xmit_lock);
3490 }
3491 
3492 static inline void txq_trans_update(struct netdev_queue *txq)
3493 {
3494 	if (txq->xmit_lock_owner != -1)
3495 		txq->trans_start = jiffies;
3496 }
3497 
3498 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3499 static inline void netif_trans_update(struct net_device *dev)
3500 {
3501 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3502 
3503 	if (txq->trans_start != jiffies)
3504 		txq->trans_start = jiffies;
3505 }
3506 
3507 /**
3508  *	netif_tx_lock - grab network device transmit lock
3509  *	@dev: network device
3510  *
3511  * Get network device transmit lock
3512  */
3513 static inline void netif_tx_lock(struct net_device *dev)
3514 {
3515 	unsigned int i;
3516 	int cpu;
3517 
3518 	spin_lock(&dev->tx_global_lock);
3519 	cpu = smp_processor_id();
3520 	for (i = 0; i < dev->num_tx_queues; i++) {
3521 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3522 
3523 		/* We are the only thread of execution doing a
3524 		 * freeze, but we have to grab the _xmit_lock in
3525 		 * order to synchronize with threads which are in
3526 		 * the ->hard_start_xmit() handler and already
3527 		 * checked the frozen bit.
3528 		 */
3529 		__netif_tx_lock(txq, cpu);
3530 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3531 		__netif_tx_unlock(txq);
3532 	}
3533 }
3534 
3535 static inline void netif_tx_lock_bh(struct net_device *dev)
3536 {
3537 	local_bh_disable();
3538 	netif_tx_lock(dev);
3539 }
3540 
3541 static inline void netif_tx_unlock(struct net_device *dev)
3542 {
3543 	unsigned int i;
3544 
3545 	for (i = 0; i < dev->num_tx_queues; i++) {
3546 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3547 
3548 		/* No need to grab the _xmit_lock here.  If the
3549 		 * queue is not stopped for another reason, we
3550 		 * force a schedule.
3551 		 */
3552 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3553 		netif_schedule_queue(txq);
3554 	}
3555 	spin_unlock(&dev->tx_global_lock);
3556 }
3557 
3558 static inline void netif_tx_unlock_bh(struct net_device *dev)
3559 {
3560 	netif_tx_unlock(dev);
3561 	local_bh_enable();
3562 }
3563 
3564 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3565 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3566 		__netif_tx_lock(txq, cpu);		\
3567 	}						\
3568 }
3569 
3570 #define HARD_TX_TRYLOCK(dev, txq)			\
3571 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3572 		__netif_tx_trylock(txq) :		\
3573 		true )
3574 
3575 #define HARD_TX_UNLOCK(dev, txq) {			\
3576 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3577 		__netif_tx_unlock(txq);			\
3578 	}						\
3579 }
3580 
3581 static inline void netif_tx_disable(struct net_device *dev)
3582 {
3583 	unsigned int i;
3584 	int cpu;
3585 
3586 	local_bh_disable();
3587 	cpu = smp_processor_id();
3588 	for (i = 0; i < dev->num_tx_queues; i++) {
3589 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3590 
3591 		__netif_tx_lock(txq, cpu);
3592 		netif_tx_stop_queue(txq);
3593 		__netif_tx_unlock(txq);
3594 	}
3595 	local_bh_enable();
3596 }
3597 
3598 static inline void netif_addr_lock(struct net_device *dev)
3599 {
3600 	spin_lock(&dev->addr_list_lock);
3601 }
3602 
3603 static inline void netif_addr_lock_nested(struct net_device *dev)
3604 {
3605 	int subclass = SINGLE_DEPTH_NESTING;
3606 
3607 	if (dev->netdev_ops->ndo_get_lock_subclass)
3608 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3609 
3610 	spin_lock_nested(&dev->addr_list_lock, subclass);
3611 }
3612 
3613 static inline void netif_addr_lock_bh(struct net_device *dev)
3614 {
3615 	spin_lock_bh(&dev->addr_list_lock);
3616 }
3617 
3618 static inline void netif_addr_unlock(struct net_device *dev)
3619 {
3620 	spin_unlock(&dev->addr_list_lock);
3621 }
3622 
3623 static inline void netif_addr_unlock_bh(struct net_device *dev)
3624 {
3625 	spin_unlock_bh(&dev->addr_list_lock);
3626 }
3627 
3628 /*
3629  * dev_addrs walker. Should be used only for read access. Call with
3630  * rcu_read_lock held.
3631  */
3632 #define for_each_dev_addr(dev, ha) \
3633 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3634 
3635 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3636 
3637 void ether_setup(struct net_device *dev);
3638 
3639 /* Support for loadable net-drivers */
3640 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3641 				    unsigned char name_assign_type,
3642 				    void (*setup)(struct net_device *),
3643 				    unsigned int txqs, unsigned int rxqs);
3644 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3645 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3646 
3647 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3648 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3649 			 count)
3650 
3651 int register_netdev(struct net_device *dev);
3652 void unregister_netdev(struct net_device *dev);
3653 
3654 /* General hardware address lists handling functions */
3655 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3656 		   struct netdev_hw_addr_list *from_list, int addr_len);
3657 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3658 		      struct netdev_hw_addr_list *from_list, int addr_len);
3659 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3660 		       struct net_device *dev,
3661 		       int (*sync)(struct net_device *, const unsigned char *),
3662 		       int (*unsync)(struct net_device *,
3663 				     const unsigned char *));
3664 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3665 			  struct net_device *dev,
3666 			  int (*unsync)(struct net_device *,
3667 					const unsigned char *));
3668 void __hw_addr_init(struct netdev_hw_addr_list *list);
3669 
3670 /* Functions used for device addresses handling */
3671 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3672 		 unsigned char addr_type);
3673 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3674 		 unsigned char addr_type);
3675 void dev_addr_flush(struct net_device *dev);
3676 int dev_addr_init(struct net_device *dev);
3677 
3678 /* Functions used for unicast addresses handling */
3679 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3680 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3681 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3682 int dev_uc_sync(struct net_device *to, struct net_device *from);
3683 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3684 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3685 void dev_uc_flush(struct net_device *dev);
3686 void dev_uc_init(struct net_device *dev);
3687 
3688 /**
3689  *  __dev_uc_sync - Synchonize device's unicast list
3690  *  @dev:  device to sync
3691  *  @sync: function to call if address should be added
3692  *  @unsync: function to call if address should be removed
3693  *
3694  *  Add newly added addresses to the interface, and release
3695  *  addresses that have been deleted.
3696  */
3697 static inline int __dev_uc_sync(struct net_device *dev,
3698 				int (*sync)(struct net_device *,
3699 					    const unsigned char *),
3700 				int (*unsync)(struct net_device *,
3701 					      const unsigned char *))
3702 {
3703 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3704 }
3705 
3706 /**
3707  *  __dev_uc_unsync - Remove synchronized addresses from device
3708  *  @dev:  device to sync
3709  *  @unsync: function to call if address should be removed
3710  *
3711  *  Remove all addresses that were added to the device by dev_uc_sync().
3712  */
3713 static inline void __dev_uc_unsync(struct net_device *dev,
3714 				   int (*unsync)(struct net_device *,
3715 						 const unsigned char *))
3716 {
3717 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3718 }
3719 
3720 /* Functions used for multicast addresses handling */
3721 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3722 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3723 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3724 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3725 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3726 int dev_mc_sync(struct net_device *to, struct net_device *from);
3727 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3728 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3729 void dev_mc_flush(struct net_device *dev);
3730 void dev_mc_init(struct net_device *dev);
3731 
3732 /**
3733  *  __dev_mc_sync - Synchonize device's multicast list
3734  *  @dev:  device to sync
3735  *  @sync: function to call if address should be added
3736  *  @unsync: function to call if address should be removed
3737  *
3738  *  Add newly added addresses to the interface, and release
3739  *  addresses that have been deleted.
3740  */
3741 static inline int __dev_mc_sync(struct net_device *dev,
3742 				int (*sync)(struct net_device *,
3743 					    const unsigned char *),
3744 				int (*unsync)(struct net_device *,
3745 					      const unsigned char *))
3746 {
3747 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3748 }
3749 
3750 /**
3751  *  __dev_mc_unsync - Remove synchronized addresses from device
3752  *  @dev:  device to sync
3753  *  @unsync: function to call if address should be removed
3754  *
3755  *  Remove all addresses that were added to the device by dev_mc_sync().
3756  */
3757 static inline void __dev_mc_unsync(struct net_device *dev,
3758 				   int (*unsync)(struct net_device *,
3759 						 const unsigned char *))
3760 {
3761 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3762 }
3763 
3764 /* Functions used for secondary unicast and multicast support */
3765 void dev_set_rx_mode(struct net_device *dev);
3766 void __dev_set_rx_mode(struct net_device *dev);
3767 int dev_set_promiscuity(struct net_device *dev, int inc);
3768 int dev_set_allmulti(struct net_device *dev, int inc);
3769 void netdev_state_change(struct net_device *dev);
3770 void netdev_notify_peers(struct net_device *dev);
3771 void netdev_features_change(struct net_device *dev);
3772 /* Load a device via the kmod */
3773 void dev_load(struct net *net, const char *name);
3774 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3775 					struct rtnl_link_stats64 *storage);
3776 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3777 			     const struct net_device_stats *netdev_stats);
3778 
3779 extern int		netdev_max_backlog;
3780 extern int		netdev_tstamp_prequeue;
3781 extern int		weight_p;
3782 
3783 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3784 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3785 						     struct list_head **iter);
3786 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3787 						     struct list_head **iter);
3788 
3789 /* iterate through upper list, must be called under RCU read lock */
3790 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3791 	for (iter = &(dev)->adj_list.upper, \
3792 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3793 	     updev; \
3794 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3795 
3796 /* iterate through upper list, must be called under RCU read lock */
3797 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3798 	for (iter = &(dev)->all_adj_list.upper, \
3799 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3800 	     updev; \
3801 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3802 
3803 void *netdev_lower_get_next_private(struct net_device *dev,
3804 				    struct list_head **iter);
3805 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3806 					struct list_head **iter);
3807 
3808 #define netdev_for_each_lower_private(dev, priv, iter) \
3809 	for (iter = (dev)->adj_list.lower.next, \
3810 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3811 	     priv; \
3812 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3813 
3814 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3815 	for (iter = &(dev)->adj_list.lower, \
3816 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3817 	     priv; \
3818 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3819 
3820 void *netdev_lower_get_next(struct net_device *dev,
3821 				struct list_head **iter);
3822 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3823 	for (iter = (dev)->adj_list.lower.next, \
3824 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3825 	     ldev; \
3826 	     ldev = netdev_lower_get_next(dev, &(iter)))
3827 
3828 void *netdev_adjacent_get_private(struct list_head *adj_list);
3829 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3830 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3831 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3832 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3833 int netdev_master_upper_dev_link(struct net_device *dev,
3834 				 struct net_device *upper_dev,
3835 				 void *upper_priv, void *upper_info);
3836 void netdev_upper_dev_unlink(struct net_device *dev,
3837 			     struct net_device *upper_dev);
3838 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3839 void *netdev_lower_dev_get_private(struct net_device *dev,
3840 				   struct net_device *lower_dev);
3841 void netdev_lower_state_changed(struct net_device *lower_dev,
3842 				void *lower_state_info);
3843 
3844 /* RSS keys are 40 or 52 bytes long */
3845 #define NETDEV_RSS_KEY_LEN 52
3846 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3847 void netdev_rss_key_fill(void *buffer, size_t len);
3848 
3849 int dev_get_nest_level(struct net_device *dev,
3850 		       bool (*type_check)(const struct net_device *dev));
3851 int skb_checksum_help(struct sk_buff *skb);
3852 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3853 				  netdev_features_t features, bool tx_path);
3854 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3855 				    netdev_features_t features);
3856 
3857 struct netdev_bonding_info {
3858 	ifslave	slave;
3859 	ifbond	master;
3860 };
3861 
3862 struct netdev_notifier_bonding_info {
3863 	struct netdev_notifier_info info; /* must be first */
3864 	struct netdev_bonding_info  bonding_info;
3865 };
3866 
3867 void netdev_bonding_info_change(struct net_device *dev,
3868 				struct netdev_bonding_info *bonding_info);
3869 
3870 static inline
3871 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3872 {
3873 	return __skb_gso_segment(skb, features, true);
3874 }
3875 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3876 
3877 static inline bool can_checksum_protocol(netdev_features_t features,
3878 					 __be16 protocol)
3879 {
3880 	if (protocol == htons(ETH_P_FCOE))
3881 		return !!(features & NETIF_F_FCOE_CRC);
3882 
3883 	/* Assume this is an IP checksum (not SCTP CRC) */
3884 
3885 	if (features & NETIF_F_HW_CSUM) {
3886 		/* Can checksum everything */
3887 		return true;
3888 	}
3889 
3890 	switch (protocol) {
3891 	case htons(ETH_P_IP):
3892 		return !!(features & NETIF_F_IP_CSUM);
3893 	case htons(ETH_P_IPV6):
3894 		return !!(features & NETIF_F_IPV6_CSUM);
3895 	default:
3896 		return false;
3897 	}
3898 }
3899 
3900 /* Map an ethertype into IP protocol if possible */
3901 static inline int eproto_to_ipproto(int eproto)
3902 {
3903 	switch (eproto) {
3904 	case htons(ETH_P_IP):
3905 		return IPPROTO_IP;
3906 	case htons(ETH_P_IPV6):
3907 		return IPPROTO_IPV6;
3908 	default:
3909 		return -1;
3910 	}
3911 }
3912 
3913 #ifdef CONFIG_BUG
3914 void netdev_rx_csum_fault(struct net_device *dev);
3915 #else
3916 static inline void netdev_rx_csum_fault(struct net_device *dev)
3917 {
3918 }
3919 #endif
3920 /* rx skb timestamps */
3921 void net_enable_timestamp(void);
3922 void net_disable_timestamp(void);
3923 
3924 #ifdef CONFIG_PROC_FS
3925 int __init dev_proc_init(void);
3926 #else
3927 #define dev_proc_init() 0
3928 #endif
3929 
3930 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3931 					      struct sk_buff *skb, struct net_device *dev,
3932 					      bool more)
3933 {
3934 	skb->xmit_more = more ? 1 : 0;
3935 	return ops->ndo_start_xmit(skb, dev);
3936 }
3937 
3938 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3939 					    struct netdev_queue *txq, bool more)
3940 {
3941 	const struct net_device_ops *ops = dev->netdev_ops;
3942 	int rc;
3943 
3944 	rc = __netdev_start_xmit(ops, skb, dev, more);
3945 	if (rc == NETDEV_TX_OK)
3946 		txq_trans_update(txq);
3947 
3948 	return rc;
3949 }
3950 
3951 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3952 				const void *ns);
3953 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3954 				 const void *ns);
3955 
3956 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3957 {
3958 	return netdev_class_create_file_ns(class_attr, NULL);
3959 }
3960 
3961 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3962 {
3963 	netdev_class_remove_file_ns(class_attr, NULL);
3964 }
3965 
3966 extern struct kobj_ns_type_operations net_ns_type_operations;
3967 
3968 const char *netdev_drivername(const struct net_device *dev);
3969 
3970 void linkwatch_run_queue(void);
3971 
3972 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3973 							  netdev_features_t f2)
3974 {
3975 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3976 		if (f1 & NETIF_F_HW_CSUM)
3977 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3978 		else
3979 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3980 	}
3981 
3982 	return f1 & f2;
3983 }
3984 
3985 static inline netdev_features_t netdev_get_wanted_features(
3986 	struct net_device *dev)
3987 {
3988 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3989 }
3990 netdev_features_t netdev_increment_features(netdev_features_t all,
3991 	netdev_features_t one, netdev_features_t mask);
3992 
3993 /* Allow TSO being used on stacked device :
3994  * Performing the GSO segmentation before last device
3995  * is a performance improvement.
3996  */
3997 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3998 							netdev_features_t mask)
3999 {
4000 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4001 }
4002 
4003 int __netdev_update_features(struct net_device *dev);
4004 void netdev_update_features(struct net_device *dev);
4005 void netdev_change_features(struct net_device *dev);
4006 
4007 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4008 					struct net_device *dev);
4009 
4010 netdev_features_t passthru_features_check(struct sk_buff *skb,
4011 					  struct net_device *dev,
4012 					  netdev_features_t features);
4013 netdev_features_t netif_skb_features(struct sk_buff *skb);
4014 
4015 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4016 {
4017 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4018 
4019 	/* check flags correspondence */
4020 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4021 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4022 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4023 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4024 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4025 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4026 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4027 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4028 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4029 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4030 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4031 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4032 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4033 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4034 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4035 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4036 
4037 	return (features & feature) == feature;
4038 }
4039 
4040 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4041 {
4042 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4043 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4044 }
4045 
4046 static inline bool netif_needs_gso(struct sk_buff *skb,
4047 				   netdev_features_t features)
4048 {
4049 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4050 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4051 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4052 }
4053 
4054 static inline void netif_set_gso_max_size(struct net_device *dev,
4055 					  unsigned int size)
4056 {
4057 	dev->gso_max_size = size;
4058 }
4059 
4060 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4061 					int pulled_hlen, u16 mac_offset,
4062 					int mac_len)
4063 {
4064 	skb->protocol = protocol;
4065 	skb->encapsulation = 1;
4066 	skb_push(skb, pulled_hlen);
4067 	skb_reset_transport_header(skb);
4068 	skb->mac_header = mac_offset;
4069 	skb->network_header = skb->mac_header + mac_len;
4070 	skb->mac_len = mac_len;
4071 }
4072 
4073 static inline bool netif_is_macsec(const struct net_device *dev)
4074 {
4075 	return dev->priv_flags & IFF_MACSEC;
4076 }
4077 
4078 static inline bool netif_is_macvlan(const struct net_device *dev)
4079 {
4080 	return dev->priv_flags & IFF_MACVLAN;
4081 }
4082 
4083 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4084 {
4085 	return dev->priv_flags & IFF_MACVLAN_PORT;
4086 }
4087 
4088 static inline bool netif_is_ipvlan(const struct net_device *dev)
4089 {
4090 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4091 }
4092 
4093 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4094 {
4095 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4096 }
4097 
4098 static inline bool netif_is_bond_master(const struct net_device *dev)
4099 {
4100 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4101 }
4102 
4103 static inline bool netif_is_bond_slave(const struct net_device *dev)
4104 {
4105 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4106 }
4107 
4108 static inline bool netif_supports_nofcs(struct net_device *dev)
4109 {
4110 	return dev->priv_flags & IFF_SUPP_NOFCS;
4111 }
4112 
4113 static inline bool netif_is_l3_master(const struct net_device *dev)
4114 {
4115 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4116 }
4117 
4118 static inline bool netif_is_l3_slave(const struct net_device *dev)
4119 {
4120 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4121 }
4122 
4123 static inline bool netif_is_bridge_master(const struct net_device *dev)
4124 {
4125 	return dev->priv_flags & IFF_EBRIDGE;
4126 }
4127 
4128 static inline bool netif_is_bridge_port(const struct net_device *dev)
4129 {
4130 	return dev->priv_flags & IFF_BRIDGE_PORT;
4131 }
4132 
4133 static inline bool netif_is_ovs_master(const struct net_device *dev)
4134 {
4135 	return dev->priv_flags & IFF_OPENVSWITCH;
4136 }
4137 
4138 static inline bool netif_is_team_master(const struct net_device *dev)
4139 {
4140 	return dev->priv_flags & IFF_TEAM;
4141 }
4142 
4143 static inline bool netif_is_team_port(const struct net_device *dev)
4144 {
4145 	return dev->priv_flags & IFF_TEAM_PORT;
4146 }
4147 
4148 static inline bool netif_is_lag_master(const struct net_device *dev)
4149 {
4150 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4151 }
4152 
4153 static inline bool netif_is_lag_port(const struct net_device *dev)
4154 {
4155 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4156 }
4157 
4158 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4159 {
4160 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4161 }
4162 
4163 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4164 static inline void netif_keep_dst(struct net_device *dev)
4165 {
4166 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4167 }
4168 
4169 extern struct pernet_operations __net_initdata loopback_net_ops;
4170 
4171 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4172 
4173 /* netdev_printk helpers, similar to dev_printk */
4174 
4175 static inline const char *netdev_name(const struct net_device *dev)
4176 {
4177 	if (!dev->name[0] || strchr(dev->name, '%'))
4178 		return "(unnamed net_device)";
4179 	return dev->name;
4180 }
4181 
4182 static inline const char *netdev_reg_state(const struct net_device *dev)
4183 {
4184 	switch (dev->reg_state) {
4185 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4186 	case NETREG_REGISTERED: return "";
4187 	case NETREG_UNREGISTERING: return " (unregistering)";
4188 	case NETREG_UNREGISTERED: return " (unregistered)";
4189 	case NETREG_RELEASED: return " (released)";
4190 	case NETREG_DUMMY: return " (dummy)";
4191 	}
4192 
4193 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4194 	return " (unknown)";
4195 }
4196 
4197 __printf(3, 4)
4198 void netdev_printk(const char *level, const struct net_device *dev,
4199 		   const char *format, ...);
4200 __printf(2, 3)
4201 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4202 __printf(2, 3)
4203 void netdev_alert(const struct net_device *dev, const char *format, ...);
4204 __printf(2, 3)
4205 void netdev_crit(const struct net_device *dev, const char *format, ...);
4206 __printf(2, 3)
4207 void netdev_err(const struct net_device *dev, const char *format, ...);
4208 __printf(2, 3)
4209 void netdev_warn(const struct net_device *dev, const char *format, ...);
4210 __printf(2, 3)
4211 void netdev_notice(const struct net_device *dev, const char *format, ...);
4212 __printf(2, 3)
4213 void netdev_info(const struct net_device *dev, const char *format, ...);
4214 
4215 #define MODULE_ALIAS_NETDEV(device) \
4216 	MODULE_ALIAS("netdev-" device)
4217 
4218 #if defined(CONFIG_DYNAMIC_DEBUG)
4219 #define netdev_dbg(__dev, format, args...)			\
4220 do {								\
4221 	dynamic_netdev_dbg(__dev, format, ##args);		\
4222 } while (0)
4223 #elif defined(DEBUG)
4224 #define netdev_dbg(__dev, format, args...)			\
4225 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4226 #else
4227 #define netdev_dbg(__dev, format, args...)			\
4228 ({								\
4229 	if (0)							\
4230 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4231 })
4232 #endif
4233 
4234 #if defined(VERBOSE_DEBUG)
4235 #define netdev_vdbg	netdev_dbg
4236 #else
4237 
4238 #define netdev_vdbg(dev, format, args...)			\
4239 ({								\
4240 	if (0)							\
4241 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4242 	0;							\
4243 })
4244 #endif
4245 
4246 /*
4247  * netdev_WARN() acts like dev_printk(), but with the key difference
4248  * of using a WARN/WARN_ON to get the message out, including the
4249  * file/line information and a backtrace.
4250  */
4251 #define netdev_WARN(dev, format, args...)			\
4252 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4253 	     netdev_reg_state(dev), ##args)
4254 
4255 /* netif printk helpers, similar to netdev_printk */
4256 
4257 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4258 do {					  			\
4259 	if (netif_msg_##type(priv))				\
4260 		netdev_printk(level, (dev), fmt, ##args);	\
4261 } while (0)
4262 
4263 #define netif_level(level, priv, type, dev, fmt, args...)	\
4264 do {								\
4265 	if (netif_msg_##type(priv))				\
4266 		netdev_##level(dev, fmt, ##args);		\
4267 } while (0)
4268 
4269 #define netif_emerg(priv, type, dev, fmt, args...)		\
4270 	netif_level(emerg, priv, type, dev, fmt, ##args)
4271 #define netif_alert(priv, type, dev, fmt, args...)		\
4272 	netif_level(alert, priv, type, dev, fmt, ##args)
4273 #define netif_crit(priv, type, dev, fmt, args...)		\
4274 	netif_level(crit, priv, type, dev, fmt, ##args)
4275 #define netif_err(priv, type, dev, fmt, args...)		\
4276 	netif_level(err, priv, type, dev, fmt, ##args)
4277 #define netif_warn(priv, type, dev, fmt, args...)		\
4278 	netif_level(warn, priv, type, dev, fmt, ##args)
4279 #define netif_notice(priv, type, dev, fmt, args...)		\
4280 	netif_level(notice, priv, type, dev, fmt, ##args)
4281 #define netif_info(priv, type, dev, fmt, args...)		\
4282 	netif_level(info, priv, type, dev, fmt, ##args)
4283 
4284 #if defined(CONFIG_DYNAMIC_DEBUG)
4285 #define netif_dbg(priv, type, netdev, format, args...)		\
4286 do {								\
4287 	if (netif_msg_##type(priv))				\
4288 		dynamic_netdev_dbg(netdev, format, ##args);	\
4289 } while (0)
4290 #elif defined(DEBUG)
4291 #define netif_dbg(priv, type, dev, format, args...)		\
4292 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4293 #else
4294 #define netif_dbg(priv, type, dev, format, args...)			\
4295 ({									\
4296 	if (0)								\
4297 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4298 	0;								\
4299 })
4300 #endif
4301 
4302 #if defined(VERBOSE_DEBUG)
4303 #define netif_vdbg	netif_dbg
4304 #else
4305 #define netif_vdbg(priv, type, dev, format, args...)		\
4306 ({								\
4307 	if (0)							\
4308 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4309 	0;							\
4310 })
4311 #endif
4312 
4313 /*
4314  *	The list of packet types we will receive (as opposed to discard)
4315  *	and the routines to invoke.
4316  *
4317  *	Why 16. Because with 16 the only overlap we get on a hash of the
4318  *	low nibble of the protocol value is RARP/SNAP/X.25.
4319  *
4320  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4321  *             sure which should go first, but I bet it won't make much
4322  *             difference if we are running VLANs.  The good news is that
4323  *             this protocol won't be in the list unless compiled in, so
4324  *             the average user (w/out VLANs) will not be adversely affected.
4325  *             --BLG
4326  *
4327  *		0800	IP
4328  *		8100    802.1Q VLAN
4329  *		0001	802.3
4330  *		0002	AX.25
4331  *		0004	802.2
4332  *		8035	RARP
4333  *		0005	SNAP
4334  *		0805	X.25
4335  *		0806	ARP
4336  *		8137	IPX
4337  *		0009	Localtalk
4338  *		86DD	IPv6
4339  */
4340 #define PTYPE_HASH_SIZE	(16)
4341 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4342 
4343 #endif	/* _LINUX_NETDEVICE_H */
4344