xref: /linux-6.15/include/linux/netdevice.h (revision ccb0b5e4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm_kern;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 struct ethtool_netdev_state;
83 struct phy_link_topology;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	u32			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	/* CPU actively polling if netpoll is configured */
364 	int			poll_owner;
365 #endif
366 	/* CPU on which NAPI has been scheduled for processing */
367 	int			list_owner;
368 	struct net_device	*dev;
369 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
370 	struct sk_buff		*skb;
371 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
372 	int			rx_count; /* length of rx_list */
373 	unsigned int		napi_id;
374 	struct hrtimer		timer;
375 	struct task_struct	*thread;
376 	/* control-path-only fields follow */
377 	struct list_head	dev_list;
378 	struct hlist_node	napi_hash_node;
379 	int			irq;
380 };
381 
382 enum {
383 	NAPI_STATE_SCHED,		/* Poll is scheduled */
384 	NAPI_STATE_MISSED,		/* reschedule a napi */
385 	NAPI_STATE_DISABLE,		/* Disable pending */
386 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
387 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
388 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
389 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
390 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
391 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
392 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
393 };
394 
395 enum {
396 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
397 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
398 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
399 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
400 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
401 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
402 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
403 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
404 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
405 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
406 };
407 
408 enum gro_result {
409 	GRO_MERGED,
410 	GRO_MERGED_FREE,
411 	GRO_HELD,
412 	GRO_NORMAL,
413 	GRO_CONSUMED,
414 };
415 typedef enum gro_result gro_result_t;
416 
417 /*
418  * enum rx_handler_result - Possible return values for rx_handlers.
419  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
420  * further.
421  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
422  * case skb->dev was changed by rx_handler.
423  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
424  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
425  *
426  * rx_handlers are functions called from inside __netif_receive_skb(), to do
427  * special processing of the skb, prior to delivery to protocol handlers.
428  *
429  * Currently, a net_device can only have a single rx_handler registered. Trying
430  * to register a second rx_handler will return -EBUSY.
431  *
432  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
433  * To unregister a rx_handler on a net_device, use
434  * netdev_rx_handler_unregister().
435  *
436  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
437  * do with the skb.
438  *
439  * If the rx_handler consumed the skb in some way, it should return
440  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
441  * the skb to be delivered in some other way.
442  *
443  * If the rx_handler changed skb->dev, to divert the skb to another
444  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
445  * new device will be called if it exists.
446  *
447  * If the rx_handler decides the skb should be ignored, it should return
448  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
449  * are registered on exact device (ptype->dev == skb->dev).
450  *
451  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
452  * delivered, it should return RX_HANDLER_PASS.
453  *
454  * A device without a registered rx_handler will behave as if rx_handler
455  * returned RX_HANDLER_PASS.
456  */
457 
458 enum rx_handler_result {
459 	RX_HANDLER_CONSUMED,
460 	RX_HANDLER_ANOTHER,
461 	RX_HANDLER_EXACT,
462 	RX_HANDLER_PASS,
463 };
464 typedef enum rx_handler_result rx_handler_result_t;
465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
466 
467 void __napi_schedule(struct napi_struct *n);
468 void __napi_schedule_irqoff(struct napi_struct *n);
469 
470 static inline bool napi_disable_pending(struct napi_struct *n)
471 {
472 	return test_bit(NAPI_STATE_DISABLE, &n->state);
473 }
474 
475 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
476 {
477 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
478 }
479 
480 /**
481  * napi_is_scheduled - test if NAPI is scheduled
482  * @n: NAPI context
483  *
484  * This check is "best-effort". With no locking implemented,
485  * a NAPI can be scheduled or terminate right after this check
486  * and produce not precise results.
487  *
488  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
489  * should not be used normally and napi_schedule should be
490  * used instead.
491  *
492  * Use only if the driver really needs to check if a NAPI
493  * is scheduled for example in the context of delayed timer
494  * that can be skipped if a NAPI is already scheduled.
495  *
496  * Return True if NAPI is scheduled, False otherwise.
497  */
498 static inline bool napi_is_scheduled(struct napi_struct *n)
499 {
500 	return test_bit(NAPI_STATE_SCHED, &n->state);
501 }
502 
503 bool napi_schedule_prep(struct napi_struct *n);
504 
505 /**
506  *	napi_schedule - schedule NAPI poll
507  *	@n: NAPI context
508  *
509  * Schedule NAPI poll routine to be called if it is not already
510  * running.
511  * Return true if we schedule a NAPI or false if not.
512  * Refer to napi_schedule_prep() for additional reason on why
513  * a NAPI might not be scheduled.
514  */
515 static inline bool napi_schedule(struct napi_struct *n)
516 {
517 	if (napi_schedule_prep(n)) {
518 		__napi_schedule(n);
519 		return true;
520 	}
521 
522 	return false;
523 }
524 
525 /**
526  *	napi_schedule_irqoff - schedule NAPI poll
527  *	@n: NAPI context
528  *
529  * Variant of napi_schedule(), assuming hard irqs are masked.
530  */
531 static inline void napi_schedule_irqoff(struct napi_struct *n)
532 {
533 	if (napi_schedule_prep(n))
534 		__napi_schedule_irqoff(n);
535 }
536 
537 /**
538  * napi_complete_done - NAPI processing complete
539  * @n: NAPI context
540  * @work_done: number of packets processed
541  *
542  * Mark NAPI processing as complete. Should only be called if poll budget
543  * has not been completely consumed.
544  * Prefer over napi_complete().
545  * Return false if device should avoid rearming interrupts.
546  */
547 bool napi_complete_done(struct napi_struct *n, int work_done);
548 
549 static inline bool napi_complete(struct napi_struct *n)
550 {
551 	return napi_complete_done(n, 0);
552 }
553 
554 int dev_set_threaded(struct net_device *dev, bool threaded);
555 
556 /**
557  *	napi_disable - prevent NAPI from scheduling
558  *	@n: NAPI context
559  *
560  * Stop NAPI from being scheduled on this context.
561  * Waits till any outstanding processing completes.
562  */
563 void napi_disable(struct napi_struct *n);
564 
565 void napi_enable(struct napi_struct *n);
566 
567 /**
568  *	napi_synchronize - wait until NAPI is not running
569  *	@n: NAPI context
570  *
571  * Wait until NAPI is done being scheduled on this context.
572  * Waits till any outstanding processing completes but
573  * does not disable future activations.
574  */
575 static inline void napi_synchronize(const struct napi_struct *n)
576 {
577 	if (IS_ENABLED(CONFIG_SMP))
578 		while (test_bit(NAPI_STATE_SCHED, &n->state))
579 			msleep(1);
580 	else
581 		barrier();
582 }
583 
584 /**
585  *	napi_if_scheduled_mark_missed - if napi is running, set the
586  *	NAPIF_STATE_MISSED
587  *	@n: NAPI context
588  *
589  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
590  * NAPI is scheduled.
591  **/
592 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
593 {
594 	unsigned long val, new;
595 
596 	val = READ_ONCE(n->state);
597 	do {
598 		if (val & NAPIF_STATE_DISABLE)
599 			return true;
600 
601 		if (!(val & NAPIF_STATE_SCHED))
602 			return false;
603 
604 		new = val | NAPIF_STATE_MISSED;
605 	} while (!try_cmpxchg(&n->state, &val, new));
606 
607 	return true;
608 }
609 
610 enum netdev_queue_state_t {
611 	__QUEUE_STATE_DRV_XOFF,
612 	__QUEUE_STATE_STACK_XOFF,
613 	__QUEUE_STATE_FROZEN,
614 };
615 
616 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
617 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
618 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
619 
620 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
621 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
622 					QUEUE_STATE_FROZEN)
623 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
624 					QUEUE_STATE_FROZEN)
625 
626 /*
627  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
628  * netif_tx_* functions below are used to manipulate this flag.  The
629  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
630  * queue independently.  The netif_xmit_*stopped functions below are called
631  * to check if the queue has been stopped by the driver or stack (either
632  * of the XOFF bits are set in the state).  Drivers should not need to call
633  * netif_xmit*stopped functions, they should only be using netif_tx_*.
634  */
635 
636 struct netdev_queue {
637 /*
638  * read-mostly part
639  */
640 	struct net_device	*dev;
641 	netdevice_tracker	dev_tracker;
642 
643 	struct Qdisc __rcu	*qdisc;
644 	struct Qdisc __rcu	*qdisc_sleeping;
645 #ifdef CONFIG_SYSFS
646 	struct kobject		kobj;
647 #endif
648 	unsigned long		tx_maxrate;
649 	/*
650 	 * Number of TX timeouts for this queue
651 	 * (/sys/class/net/DEV/Q/trans_timeout)
652 	 */
653 	atomic_long_t		trans_timeout;
654 
655 	/* Subordinate device that the queue has been assigned to */
656 	struct net_device	*sb_dev;
657 #ifdef CONFIG_XDP_SOCKETS
658 	struct xsk_buff_pool    *pool;
659 #endif
660 
661 /*
662  * write-mostly part
663  */
664 #ifdef CONFIG_BQL
665 	struct dql		dql;
666 #endif
667 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
668 	int			xmit_lock_owner;
669 	/*
670 	 * Time (in jiffies) of last Tx
671 	 */
672 	unsigned long		trans_start;
673 
674 	unsigned long		state;
675 
676 /*
677  * slow- / control-path part
678  */
679 	/* NAPI instance for the queue
680 	 * Readers and writers must hold RTNL
681 	 */
682 	struct napi_struct	*napi;
683 
684 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
685 	int			numa_node;
686 #endif
687 } ____cacheline_aligned_in_smp;
688 
689 extern int sysctl_fb_tunnels_only_for_init_net;
690 extern int sysctl_devconf_inherit_init_net;
691 
692 /*
693  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
694  *                                     == 1 : For initns only
695  *                                     == 2 : For none.
696  */
697 static inline bool net_has_fallback_tunnels(const struct net *net)
698 {
699 #if IS_ENABLED(CONFIG_SYSCTL)
700 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
701 
702 	return !fb_tunnels_only_for_init_net ||
703 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
704 #else
705 	return true;
706 #endif
707 }
708 
709 static inline int net_inherit_devconf(void)
710 {
711 #if IS_ENABLED(CONFIG_SYSCTL)
712 	return READ_ONCE(sysctl_devconf_inherit_init_net);
713 #else
714 	return 0;
715 #endif
716 }
717 
718 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
719 {
720 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
721 	return q->numa_node;
722 #else
723 	return NUMA_NO_NODE;
724 #endif
725 }
726 
727 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
728 {
729 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
730 	q->numa_node = node;
731 #endif
732 }
733 
734 #ifdef CONFIG_RFS_ACCEL
735 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
736 			 u16 filter_id);
737 #endif
738 
739 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
740 enum xps_map_type {
741 	XPS_CPUS = 0,
742 	XPS_RXQS,
743 	XPS_MAPS_MAX,
744 };
745 
746 #ifdef CONFIG_XPS
747 /*
748  * This structure holds an XPS map which can be of variable length.  The
749  * map is an array of queues.
750  */
751 struct xps_map {
752 	unsigned int len;
753 	unsigned int alloc_len;
754 	struct rcu_head rcu;
755 	u16 queues[];
756 };
757 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
758 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
759        - sizeof(struct xps_map)) / sizeof(u16))
760 
761 /*
762  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
763  *
764  * We keep track of the number of cpus/rxqs used when the struct is allocated,
765  * in nr_ids. This will help not accessing out-of-bound memory.
766  *
767  * We keep track of the number of traffic classes used when the struct is
768  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
769  * not crossing its upper bound, as the original dev->num_tc can be updated in
770  * the meantime.
771  */
772 struct xps_dev_maps {
773 	struct rcu_head rcu;
774 	unsigned int nr_ids;
775 	s16 num_tc;
776 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
777 };
778 
779 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
780 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
781 
782 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
783 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
784 
785 #endif /* CONFIG_XPS */
786 
787 #define TC_MAX_QUEUE	16
788 #define TC_BITMASK	15
789 /* HW offloaded queuing disciplines txq count and offset maps */
790 struct netdev_tc_txq {
791 	u16 count;
792 	u16 offset;
793 };
794 
795 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
796 /*
797  * This structure is to hold information about the device
798  * configured to run FCoE protocol stack.
799  */
800 struct netdev_fcoe_hbainfo {
801 	char	manufacturer[64];
802 	char	serial_number[64];
803 	char	hardware_version[64];
804 	char	driver_version[64];
805 	char	optionrom_version[64];
806 	char	firmware_version[64];
807 	char	model[256];
808 	char	model_description[256];
809 };
810 #endif
811 
812 #define MAX_PHYS_ITEM_ID_LEN 32
813 
814 /* This structure holds a unique identifier to identify some
815  * physical item (port for example) used by a netdevice.
816  */
817 struct netdev_phys_item_id {
818 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
819 	unsigned char id_len;
820 };
821 
822 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
823 					    struct netdev_phys_item_id *b)
824 {
825 	return a->id_len == b->id_len &&
826 	       memcmp(a->id, b->id, a->id_len) == 0;
827 }
828 
829 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
830 				       struct sk_buff *skb,
831 				       struct net_device *sb_dev);
832 
833 enum net_device_path_type {
834 	DEV_PATH_ETHERNET = 0,
835 	DEV_PATH_VLAN,
836 	DEV_PATH_BRIDGE,
837 	DEV_PATH_PPPOE,
838 	DEV_PATH_DSA,
839 	DEV_PATH_MTK_WDMA,
840 };
841 
842 struct net_device_path {
843 	enum net_device_path_type	type;
844 	const struct net_device		*dev;
845 	union {
846 		struct {
847 			u16		id;
848 			__be16		proto;
849 			u8		h_dest[ETH_ALEN];
850 		} encap;
851 		struct {
852 			enum {
853 				DEV_PATH_BR_VLAN_KEEP,
854 				DEV_PATH_BR_VLAN_TAG,
855 				DEV_PATH_BR_VLAN_UNTAG,
856 				DEV_PATH_BR_VLAN_UNTAG_HW,
857 			}		vlan_mode;
858 			u16		vlan_id;
859 			__be16		vlan_proto;
860 		} bridge;
861 		struct {
862 			int port;
863 			u16 proto;
864 		} dsa;
865 		struct {
866 			u8 wdma_idx;
867 			u8 queue;
868 			u16 wcid;
869 			u8 bss;
870 			u8 amsdu;
871 		} mtk_wdma;
872 	};
873 };
874 
875 #define NET_DEVICE_PATH_STACK_MAX	5
876 #define NET_DEVICE_PATH_VLAN_MAX	2
877 
878 struct net_device_path_stack {
879 	int			num_paths;
880 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
881 };
882 
883 struct net_device_path_ctx {
884 	const struct net_device *dev;
885 	u8			daddr[ETH_ALEN];
886 
887 	int			num_vlans;
888 	struct {
889 		u16		id;
890 		__be16		proto;
891 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
892 };
893 
894 enum tc_setup_type {
895 	TC_QUERY_CAPS,
896 	TC_SETUP_QDISC_MQPRIO,
897 	TC_SETUP_CLSU32,
898 	TC_SETUP_CLSFLOWER,
899 	TC_SETUP_CLSMATCHALL,
900 	TC_SETUP_CLSBPF,
901 	TC_SETUP_BLOCK,
902 	TC_SETUP_QDISC_CBS,
903 	TC_SETUP_QDISC_RED,
904 	TC_SETUP_QDISC_PRIO,
905 	TC_SETUP_QDISC_MQ,
906 	TC_SETUP_QDISC_ETF,
907 	TC_SETUP_ROOT_QDISC,
908 	TC_SETUP_QDISC_GRED,
909 	TC_SETUP_QDISC_TAPRIO,
910 	TC_SETUP_FT,
911 	TC_SETUP_QDISC_ETS,
912 	TC_SETUP_QDISC_TBF,
913 	TC_SETUP_QDISC_FIFO,
914 	TC_SETUP_QDISC_HTB,
915 	TC_SETUP_ACT,
916 };
917 
918 /* These structures hold the attributes of bpf state that are being passed
919  * to the netdevice through the bpf op.
920  */
921 enum bpf_netdev_command {
922 	/* Set or clear a bpf program used in the earliest stages of packet
923 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
924 	 * is responsible for calling bpf_prog_put on any old progs that are
925 	 * stored. In case of error, the callee need not release the new prog
926 	 * reference, but on success it takes ownership and must bpf_prog_put
927 	 * when it is no longer used.
928 	 */
929 	XDP_SETUP_PROG,
930 	XDP_SETUP_PROG_HW,
931 	/* BPF program for offload callbacks, invoked at program load time. */
932 	BPF_OFFLOAD_MAP_ALLOC,
933 	BPF_OFFLOAD_MAP_FREE,
934 	XDP_SETUP_XSK_POOL,
935 };
936 
937 struct bpf_prog_offload_ops;
938 struct netlink_ext_ack;
939 struct xdp_umem;
940 struct xdp_dev_bulk_queue;
941 struct bpf_xdp_link;
942 
943 enum bpf_xdp_mode {
944 	XDP_MODE_SKB = 0,
945 	XDP_MODE_DRV = 1,
946 	XDP_MODE_HW = 2,
947 	__MAX_XDP_MODE
948 };
949 
950 struct bpf_xdp_entity {
951 	struct bpf_prog *prog;
952 	struct bpf_xdp_link *link;
953 };
954 
955 struct netdev_bpf {
956 	enum bpf_netdev_command command;
957 	union {
958 		/* XDP_SETUP_PROG */
959 		struct {
960 			u32 flags;
961 			struct bpf_prog *prog;
962 			struct netlink_ext_ack *extack;
963 		};
964 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
965 		struct {
966 			struct bpf_offloaded_map *offmap;
967 		};
968 		/* XDP_SETUP_XSK_POOL */
969 		struct {
970 			struct xsk_buff_pool *pool;
971 			u16 queue_id;
972 		} xsk;
973 	};
974 };
975 
976 /* Flags for ndo_xsk_wakeup. */
977 #define XDP_WAKEUP_RX (1 << 0)
978 #define XDP_WAKEUP_TX (1 << 1)
979 
980 #ifdef CONFIG_XFRM_OFFLOAD
981 struct xfrmdev_ops {
982 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
983 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
984 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
985 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
986 				       struct xfrm_state *x);
987 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
988 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
989 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
990 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
991 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
992 };
993 #endif
994 
995 struct dev_ifalias {
996 	struct rcu_head rcuhead;
997 	char ifalias[];
998 };
999 
1000 struct devlink;
1001 struct tlsdev_ops;
1002 
1003 struct netdev_net_notifier {
1004 	struct list_head list;
1005 	struct notifier_block *nb;
1006 };
1007 
1008 /*
1009  * This structure defines the management hooks for network devices.
1010  * The following hooks can be defined; unless noted otherwise, they are
1011  * optional and can be filled with a null pointer.
1012  *
1013  * int (*ndo_init)(struct net_device *dev);
1014  *     This function is called once when a network device is registered.
1015  *     The network device can use this for any late stage initialization
1016  *     or semantic validation. It can fail with an error code which will
1017  *     be propagated back to register_netdev.
1018  *
1019  * void (*ndo_uninit)(struct net_device *dev);
1020  *     This function is called when device is unregistered or when registration
1021  *     fails. It is not called if init fails.
1022  *
1023  * int (*ndo_open)(struct net_device *dev);
1024  *     This function is called when a network device transitions to the up
1025  *     state.
1026  *
1027  * int (*ndo_stop)(struct net_device *dev);
1028  *     This function is called when a network device transitions to the down
1029  *     state.
1030  *
1031  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1032  *                               struct net_device *dev);
1033  *	Called when a packet needs to be transmitted.
1034  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1035  *	the queue before that can happen; it's for obsolete devices and weird
1036  *	corner cases, but the stack really does a non-trivial amount
1037  *	of useless work if you return NETDEV_TX_BUSY.
1038  *	Required; cannot be NULL.
1039  *
1040  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1041  *					   struct net_device *dev
1042  *					   netdev_features_t features);
1043  *	Called by core transmit path to determine if device is capable of
1044  *	performing offload operations on a given packet. This is to give
1045  *	the device an opportunity to implement any restrictions that cannot
1046  *	be otherwise expressed by feature flags. The check is called with
1047  *	the set of features that the stack has calculated and it returns
1048  *	those the driver believes to be appropriate.
1049  *
1050  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1051  *                         struct net_device *sb_dev);
1052  *	Called to decide which queue to use when device supports multiple
1053  *	transmit queues.
1054  *
1055  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1056  *	This function is called to allow device receiver to make
1057  *	changes to configuration when multicast or promiscuous is enabled.
1058  *
1059  * void (*ndo_set_rx_mode)(struct net_device *dev);
1060  *	This function is called device changes address list filtering.
1061  *	If driver handles unicast address filtering, it should set
1062  *	IFF_UNICAST_FLT in its priv_flags.
1063  *
1064  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1065  *	This function  is called when the Media Access Control address
1066  *	needs to be changed. If this interface is not defined, the
1067  *	MAC address can not be changed.
1068  *
1069  * int (*ndo_validate_addr)(struct net_device *dev);
1070  *	Test if Media Access Control address is valid for the device.
1071  *
1072  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1073  *	Old-style ioctl entry point. This is used internally by the
1074  *	appletalk and ieee802154 subsystems but is no longer called by
1075  *	the device ioctl handler.
1076  *
1077  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1078  *	Used by the bonding driver for its device specific ioctls:
1079  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1080  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1081  *
1082  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1083  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1084  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1085  *
1086  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1087  *	Used to set network devices bus interface parameters. This interface
1088  *	is retained for legacy reasons; new devices should use the bus
1089  *	interface (PCI) for low level management.
1090  *
1091  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1092  *	Called when a user wants to change the Maximum Transfer Unit
1093  *	of a device.
1094  *
1095  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1096  *	Callback used when the transmitter has not made any progress
1097  *	for dev->watchdog ticks.
1098  *
1099  * void (*ndo_get_stats64)(struct net_device *dev,
1100  *                         struct rtnl_link_stats64 *storage);
1101  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1102  *	Called when a user wants to get the network device usage
1103  *	statistics. Drivers must do one of the following:
1104  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1105  *	   rtnl_link_stats64 structure passed by the caller.
1106  *	2. Define @ndo_get_stats to update a net_device_stats structure
1107  *	   (which should normally be dev->stats) and return a pointer to
1108  *	   it. The structure may be changed asynchronously only if each
1109  *	   field is written atomically.
1110  *	3. Update dev->stats asynchronously and atomically, and define
1111  *	   neither operation.
1112  *
1113  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1114  *	Return true if this device supports offload stats of this attr_id.
1115  *
1116  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1117  *	void *attr_data)
1118  *	Get statistics for offload operations by attr_id. Write it into the
1119  *	attr_data pointer.
1120  *
1121  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1122  *	If device supports VLAN filtering this function is called when a
1123  *	VLAN id is registered.
1124  *
1125  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1126  *	If device supports VLAN filtering this function is called when a
1127  *	VLAN id is unregistered.
1128  *
1129  * void (*ndo_poll_controller)(struct net_device *dev);
1130  *
1131  *	SR-IOV management functions.
1132  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1133  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1134  *			  u8 qos, __be16 proto);
1135  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1136  *			  int max_tx_rate);
1137  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1138  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1139  * int (*ndo_get_vf_config)(struct net_device *dev,
1140  *			    int vf, struct ifla_vf_info *ivf);
1141  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1142  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1143  *			  struct nlattr *port[]);
1144  *
1145  *      Enable or disable the VF ability to query its RSS Redirection Table and
1146  *      Hash Key. This is needed since on some devices VF share this information
1147  *      with PF and querying it may introduce a theoretical security risk.
1148  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1149  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1150  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1151  *		       void *type_data);
1152  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1153  *	This is always called from the stack with the rtnl lock held and netif
1154  *	tx queues stopped. This allows the netdevice to perform queue
1155  *	management safely.
1156  *
1157  *	Fiber Channel over Ethernet (FCoE) offload functions.
1158  * int (*ndo_fcoe_enable)(struct net_device *dev);
1159  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1160  *	so the underlying device can perform whatever needed configuration or
1161  *	initialization to support acceleration of FCoE traffic.
1162  *
1163  * int (*ndo_fcoe_disable)(struct net_device *dev);
1164  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1165  *	so the underlying device can perform whatever needed clean-ups to
1166  *	stop supporting acceleration of FCoE traffic.
1167  *
1168  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1169  *			     struct scatterlist *sgl, unsigned int sgc);
1170  *	Called when the FCoE Initiator wants to initialize an I/O that
1171  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1172  *	perform necessary setup and returns 1 to indicate the device is set up
1173  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1174  *
1175  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1176  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1177  *	indicated by the FC exchange id 'xid', so the underlying device can
1178  *	clean up and reuse resources for later DDP requests.
1179  *
1180  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1181  *			      struct scatterlist *sgl, unsigned int sgc);
1182  *	Called when the FCoE Target wants to initialize an I/O that
1183  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1184  *	perform necessary setup and returns 1 to indicate the device is set up
1185  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1186  *
1187  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1188  *			       struct netdev_fcoe_hbainfo *hbainfo);
1189  *	Called when the FCoE Protocol stack wants information on the underlying
1190  *	device. This information is utilized by the FCoE protocol stack to
1191  *	register attributes with Fiber Channel management service as per the
1192  *	FC-GS Fabric Device Management Information(FDMI) specification.
1193  *
1194  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1195  *	Called when the underlying device wants to override default World Wide
1196  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1197  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1198  *	protocol stack to use.
1199  *
1200  *	RFS acceleration.
1201  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1202  *			    u16 rxq_index, u32 flow_id);
1203  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1204  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1205  *	Return the filter ID on success, or a negative error code.
1206  *
1207  *	Slave management functions (for bridge, bonding, etc).
1208  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1209  *	Called to make another netdev an underling.
1210  *
1211  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1212  *	Called to release previously enslaved netdev.
1213  *
1214  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1215  *					    struct sk_buff *skb,
1216  *					    bool all_slaves);
1217  *	Get the xmit slave of master device. If all_slaves is true, function
1218  *	assume all the slaves can transmit.
1219  *
1220  *      Feature/offload setting functions.
1221  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1222  *		netdev_features_t features);
1223  *	Adjusts the requested feature flags according to device-specific
1224  *	constraints, and returns the resulting flags. Must not modify
1225  *	the device state.
1226  *
1227  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1228  *	Called to update device configuration to new features. Passed
1229  *	feature set might be less than what was returned by ndo_fix_features()).
1230  *	Must return >0 or -errno if it changed dev->features itself.
1231  *
1232  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1233  *		      struct net_device *dev,
1234  *		      const unsigned char *addr, u16 vid, u16 flags,
1235  *		      struct netlink_ext_ack *extack);
1236  *	Adds an FDB entry to dev for addr.
1237  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1238  *		      struct net_device *dev,
1239  *		      const unsigned char *addr, u16 vid)
1240  *	Deletes the FDB entry from dev corresponding to addr.
1241  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1242  *			   struct netlink_ext_ack *extack);
1243  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1244  *		       struct net_device *dev, struct net_device *filter_dev,
1245  *		       int *idx)
1246  *	Used to add FDB entries to dump requests. Implementers should add
1247  *	entries to skb and update idx with the number of entries.
1248  *
1249  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1250  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1251  *	Adds an MDB entry to dev.
1252  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1253  *		      struct netlink_ext_ack *extack);
1254  *	Deletes the MDB entry from dev.
1255  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1256  *			   struct netlink_ext_ack *extack);
1257  *	Bulk deletes MDB entries from dev.
1258  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1259  *		       struct netlink_callback *cb);
1260  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1261  *	callback is used by core rtnetlink code.
1262  *
1263  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1264  *			     u16 flags, struct netlink_ext_ack *extack)
1265  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1266  *			     struct net_device *dev, u32 filter_mask,
1267  *			     int nlflags)
1268  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1269  *			     u16 flags);
1270  *
1271  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1272  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1273  *	which do not represent real hardware may define this to allow their
1274  *	userspace components to manage their virtual carrier state. Devices
1275  *	that determine carrier state from physical hardware properties (eg
1276  *	network cables) or protocol-dependent mechanisms (eg
1277  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1278  *
1279  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1280  *			       struct netdev_phys_item_id *ppid);
1281  *	Called to get ID of physical port of this device. If driver does
1282  *	not implement this, it is assumed that the hw is not able to have
1283  *	multiple net devices on single physical port.
1284  *
1285  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1286  *				 struct netdev_phys_item_id *ppid)
1287  *	Called to get the parent ID of the physical port of this device.
1288  *
1289  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1290  *				 struct net_device *dev)
1291  *	Called by upper layer devices to accelerate switching or other
1292  *	station functionality into hardware. 'pdev is the lowerdev
1293  *	to use for the offload and 'dev' is the net device that will
1294  *	back the offload. Returns a pointer to the private structure
1295  *	the upper layer will maintain.
1296  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1297  *	Called by upper layer device to delete the station created
1298  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1299  *	the station and priv is the structure returned by the add
1300  *	operation.
1301  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1302  *			     int queue_index, u32 maxrate);
1303  *	Called when a user wants to set a max-rate limitation of specific
1304  *	TX queue.
1305  * int (*ndo_get_iflink)(const struct net_device *dev);
1306  *	Called to get the iflink value of this device.
1307  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1308  *	This function is used to get egress tunnel information for given skb.
1309  *	This is useful for retrieving outer tunnel header parameters while
1310  *	sampling packet.
1311  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1312  *	This function is used to specify the headroom that the skb must
1313  *	consider when allocation skb during packet reception. Setting
1314  *	appropriate rx headroom value allows avoiding skb head copy on
1315  *	forward. Setting a negative value resets the rx headroom to the
1316  *	default value.
1317  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1318  *	This function is used to set or query state related to XDP on the
1319  *	netdevice and manage BPF offload. See definition of
1320  *	enum bpf_netdev_command for details.
1321  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1322  *			u32 flags);
1323  *	This function is used to submit @n XDP packets for transmit on a
1324  *	netdevice. Returns number of frames successfully transmitted, frames
1325  *	that got dropped are freed/returned via xdp_return_frame().
1326  *	Returns negative number, means general error invoking ndo, meaning
1327  *	no frames were xmit'ed and core-caller will free all frames.
1328  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1329  *					        struct xdp_buff *xdp);
1330  *      Get the xmit slave of master device based on the xdp_buff.
1331  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1332  *      This function is used to wake up the softirq, ksoftirqd or kthread
1333  *	responsible for sending and/or receiving packets on a specific
1334  *	queue id bound to an AF_XDP socket. The flags field specifies if
1335  *	only RX, only Tx, or both should be woken up using the flags
1336  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1337  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1338  *			 int cmd);
1339  *	Add, change, delete or get information on an IPv4 tunnel.
1340  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1341  *	If a device is paired with a peer device, return the peer instance.
1342  *	The caller must be under RCU read context.
1343  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1344  *     Get the forwarding path to reach the real device from the HW destination address
1345  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1346  *			     const struct skb_shared_hwtstamps *hwtstamps,
1347  *			     bool cycles);
1348  *	Get hardware timestamp based on normal/adjustable time or free running
1349  *	cycle counter. This function is required if physical clock supports a
1350  *	free running cycle counter.
1351  *
1352  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1353  *			   struct kernel_hwtstamp_config *kernel_config);
1354  *	Get the currently configured hardware timestamping parameters for the
1355  *	NIC device.
1356  *
1357  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1358  *			   struct kernel_hwtstamp_config *kernel_config,
1359  *			   struct netlink_ext_ack *extack);
1360  *	Change the hardware timestamping parameters for NIC device.
1361  */
1362 struct net_device_ops {
1363 	int			(*ndo_init)(struct net_device *dev);
1364 	void			(*ndo_uninit)(struct net_device *dev);
1365 	int			(*ndo_open)(struct net_device *dev);
1366 	int			(*ndo_stop)(struct net_device *dev);
1367 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1368 						  struct net_device *dev);
1369 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1370 						      struct net_device *dev,
1371 						      netdev_features_t features);
1372 	u16			(*ndo_select_queue)(struct net_device *dev,
1373 						    struct sk_buff *skb,
1374 						    struct net_device *sb_dev);
1375 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1376 						       int flags);
1377 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1378 	int			(*ndo_set_mac_address)(struct net_device *dev,
1379 						       void *addr);
1380 	int			(*ndo_validate_addr)(struct net_device *dev);
1381 	int			(*ndo_do_ioctl)(struct net_device *dev,
1382 					        struct ifreq *ifr, int cmd);
1383 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1384 						 struct ifreq *ifr, int cmd);
1385 	int			(*ndo_siocbond)(struct net_device *dev,
1386 						struct ifreq *ifr, int cmd);
1387 	int			(*ndo_siocwandev)(struct net_device *dev,
1388 						  struct if_settings *ifs);
1389 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1390 						      struct ifreq *ifr,
1391 						      void __user *data, int cmd);
1392 	int			(*ndo_set_config)(struct net_device *dev,
1393 					          struct ifmap *map);
1394 	int			(*ndo_change_mtu)(struct net_device *dev,
1395 						  int new_mtu);
1396 	int			(*ndo_neigh_setup)(struct net_device *dev,
1397 						   struct neigh_parms *);
1398 	void			(*ndo_tx_timeout) (struct net_device *dev,
1399 						   unsigned int txqueue);
1400 
1401 	void			(*ndo_get_stats64)(struct net_device *dev,
1402 						   struct rtnl_link_stats64 *storage);
1403 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1404 	int			(*ndo_get_offload_stats)(int attr_id,
1405 							 const struct net_device *dev,
1406 							 void *attr_data);
1407 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1408 
1409 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1410 						       __be16 proto, u16 vid);
1411 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1412 						        __be16 proto, u16 vid);
1413 #ifdef CONFIG_NET_POLL_CONTROLLER
1414 	void                    (*ndo_poll_controller)(struct net_device *dev);
1415 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1416 						     struct netpoll_info *info);
1417 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1418 #endif
1419 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1420 						  int queue, u8 *mac);
1421 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1422 						   int queue, u16 vlan,
1423 						   u8 qos, __be16 proto);
1424 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1425 						   int vf, int min_tx_rate,
1426 						   int max_tx_rate);
1427 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1428 						       int vf, bool setting);
1429 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1430 						    int vf, bool setting);
1431 	int			(*ndo_get_vf_config)(struct net_device *dev,
1432 						     int vf,
1433 						     struct ifla_vf_info *ivf);
1434 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1435 							 int vf, int link_state);
1436 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1437 						    int vf,
1438 						    struct ifla_vf_stats
1439 						    *vf_stats);
1440 	int			(*ndo_set_vf_port)(struct net_device *dev,
1441 						   int vf,
1442 						   struct nlattr *port[]);
1443 	int			(*ndo_get_vf_port)(struct net_device *dev,
1444 						   int vf, struct sk_buff *skb);
1445 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1446 						   int vf,
1447 						   struct ifla_vf_guid *node_guid,
1448 						   struct ifla_vf_guid *port_guid);
1449 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1450 						   int vf, u64 guid,
1451 						   int guid_type);
1452 	int			(*ndo_set_vf_rss_query_en)(
1453 						   struct net_device *dev,
1454 						   int vf, bool setting);
1455 	int			(*ndo_setup_tc)(struct net_device *dev,
1456 						enum tc_setup_type type,
1457 						void *type_data);
1458 #if IS_ENABLED(CONFIG_FCOE)
1459 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1460 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1461 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1462 						      u16 xid,
1463 						      struct scatterlist *sgl,
1464 						      unsigned int sgc);
1465 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1466 						     u16 xid);
1467 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1468 						       u16 xid,
1469 						       struct scatterlist *sgl,
1470 						       unsigned int sgc);
1471 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1472 							struct netdev_fcoe_hbainfo *hbainfo);
1473 #endif
1474 
1475 #if IS_ENABLED(CONFIG_LIBFCOE)
1476 #define NETDEV_FCOE_WWNN 0
1477 #define NETDEV_FCOE_WWPN 1
1478 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1479 						    u64 *wwn, int type);
1480 #endif
1481 
1482 #ifdef CONFIG_RFS_ACCEL
1483 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1484 						     const struct sk_buff *skb,
1485 						     u16 rxq_index,
1486 						     u32 flow_id);
1487 #endif
1488 	int			(*ndo_add_slave)(struct net_device *dev,
1489 						 struct net_device *slave_dev,
1490 						 struct netlink_ext_ack *extack);
1491 	int			(*ndo_del_slave)(struct net_device *dev,
1492 						 struct net_device *slave_dev);
1493 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1494 						      struct sk_buff *skb,
1495 						      bool all_slaves);
1496 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1497 							struct sock *sk);
1498 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1499 						    netdev_features_t features);
1500 	int			(*ndo_set_features)(struct net_device *dev,
1501 						    netdev_features_t features);
1502 	int			(*ndo_neigh_construct)(struct net_device *dev,
1503 						       struct neighbour *n);
1504 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1505 						     struct neighbour *n);
1506 
1507 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1508 					       struct nlattr *tb[],
1509 					       struct net_device *dev,
1510 					       const unsigned char *addr,
1511 					       u16 vid,
1512 					       u16 flags,
1513 					       struct netlink_ext_ack *extack);
1514 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1515 					       struct nlattr *tb[],
1516 					       struct net_device *dev,
1517 					       const unsigned char *addr,
1518 					       u16 vid, struct netlink_ext_ack *extack);
1519 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1520 						    struct net_device *dev,
1521 						    struct netlink_ext_ack *extack);
1522 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1523 						struct netlink_callback *cb,
1524 						struct net_device *dev,
1525 						struct net_device *filter_dev,
1526 						int *idx);
1527 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1528 					       struct nlattr *tb[],
1529 					       struct net_device *dev,
1530 					       const unsigned char *addr,
1531 					       u16 vid, u32 portid, u32 seq,
1532 					       struct netlink_ext_ack *extack);
1533 	int			(*ndo_mdb_add)(struct net_device *dev,
1534 					       struct nlattr *tb[],
1535 					       u16 nlmsg_flags,
1536 					       struct netlink_ext_ack *extack);
1537 	int			(*ndo_mdb_del)(struct net_device *dev,
1538 					       struct nlattr *tb[],
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1541 						    struct nlattr *tb[],
1542 						    struct netlink_ext_ack *extack);
1543 	int			(*ndo_mdb_dump)(struct net_device *dev,
1544 						struct sk_buff *skb,
1545 						struct netlink_callback *cb);
1546 	int			(*ndo_mdb_get)(struct net_device *dev,
1547 					       struct nlattr *tb[], u32 portid,
1548 					       u32 seq,
1549 					       struct netlink_ext_ack *extack);
1550 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1551 						      struct nlmsghdr *nlh,
1552 						      u16 flags,
1553 						      struct netlink_ext_ack *extack);
1554 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1555 						      u32 pid, u32 seq,
1556 						      struct net_device *dev,
1557 						      u32 filter_mask,
1558 						      int nlflags);
1559 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1560 						      struct nlmsghdr *nlh,
1561 						      u16 flags);
1562 	int			(*ndo_change_carrier)(struct net_device *dev,
1563 						      bool new_carrier);
1564 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1565 							struct netdev_phys_item_id *ppid);
1566 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1567 							  struct netdev_phys_item_id *ppid);
1568 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1569 							  char *name, size_t len);
1570 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1571 							struct net_device *dev);
1572 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1573 							void *priv);
1574 
1575 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1576 						      int queue_index,
1577 						      u32 maxrate);
1578 	int			(*ndo_get_iflink)(const struct net_device *dev);
1579 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1580 						       struct sk_buff *skb);
1581 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1582 						       int needed_headroom);
1583 	int			(*ndo_bpf)(struct net_device *dev,
1584 					   struct netdev_bpf *bpf);
1585 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1586 						struct xdp_frame **xdp,
1587 						u32 flags);
1588 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1589 							  struct xdp_buff *xdp);
1590 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1591 						  u32 queue_id, u32 flags);
1592 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1593 						  struct ip_tunnel_parm_kern *p,
1594 						  int cmd);
1595 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1596 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1597                                                          struct net_device_path *path);
1598 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1599 						  const struct skb_shared_hwtstamps *hwtstamps,
1600 						  bool cycles);
1601 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1602 						    struct kernel_hwtstamp_config *kernel_config);
1603 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1604 						    struct kernel_hwtstamp_config *kernel_config,
1605 						    struct netlink_ext_ack *extack);
1606 };
1607 
1608 /**
1609  * enum netdev_priv_flags - &struct net_device priv_flags
1610  *
1611  * These are the &struct net_device, they are only set internally
1612  * by drivers and used in the kernel. These flags are invisible to
1613  * userspace; this means that the order of these flags can change
1614  * during any kernel release.
1615  *
1616  * You should add bitfield booleans after either net_device::priv_flags
1617  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1618  *
1619  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1620  * @IFF_EBRIDGE: Ethernet bridging device
1621  * @IFF_BONDING: bonding master or slave
1622  * @IFF_ISATAP: ISATAP interface (RFC4214)
1623  * @IFF_WAN_HDLC: WAN HDLC device
1624  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1625  *	release skb->dst
1626  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1627  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1628  * @IFF_MACVLAN_PORT: device used as macvlan port
1629  * @IFF_BRIDGE_PORT: device used as bridge port
1630  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1631  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1632  * @IFF_UNICAST_FLT: Supports unicast filtering
1633  * @IFF_TEAM_PORT: device used as team port
1634  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1635  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1636  *	change when it's running
1637  * @IFF_MACVLAN: Macvlan device
1638  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1639  *	underlying stacked devices
1640  * @IFF_L3MDEV_MASTER: device is an L3 master device
1641  * @IFF_NO_QUEUE: device can run without qdisc attached
1642  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1643  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1644  * @IFF_TEAM: device is a team device
1645  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1646  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1647  *	entity (i.e. the master device for bridged veth)
1648  * @IFF_MACSEC: device is a MACsec device
1649  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1650  * @IFF_FAILOVER: device is a failover master device
1651  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1652  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1653  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1654  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1655  *	skb_headlen(skb) == 0 (data starts from frag0)
1656  */
1657 enum netdev_priv_flags {
1658 	IFF_802_1Q_VLAN			= 1<<0,
1659 	IFF_EBRIDGE			= 1<<1,
1660 	IFF_BONDING			= 1<<2,
1661 	IFF_ISATAP			= 1<<3,
1662 	IFF_WAN_HDLC			= 1<<4,
1663 	IFF_XMIT_DST_RELEASE		= 1<<5,
1664 	IFF_DONT_BRIDGE			= 1<<6,
1665 	IFF_DISABLE_NETPOLL		= 1<<7,
1666 	IFF_MACVLAN_PORT		= 1<<8,
1667 	IFF_BRIDGE_PORT			= 1<<9,
1668 	IFF_OVS_DATAPATH		= 1<<10,
1669 	IFF_TX_SKB_SHARING		= 1<<11,
1670 	IFF_UNICAST_FLT			= 1<<12,
1671 	IFF_TEAM_PORT			= 1<<13,
1672 	IFF_SUPP_NOFCS			= 1<<14,
1673 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1674 	IFF_MACVLAN			= 1<<16,
1675 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1676 	IFF_L3MDEV_MASTER		= 1<<18,
1677 	IFF_NO_QUEUE			= 1<<19,
1678 	IFF_OPENVSWITCH			= 1<<20,
1679 	IFF_L3MDEV_SLAVE		= 1<<21,
1680 	IFF_TEAM			= 1<<22,
1681 	IFF_RXFH_CONFIGURED		= 1<<23,
1682 	IFF_PHONY_HEADROOM		= 1<<24,
1683 	IFF_MACSEC			= 1<<25,
1684 	IFF_NO_RX_HANDLER		= 1<<26,
1685 	IFF_FAILOVER			= 1<<27,
1686 	IFF_FAILOVER_SLAVE		= 1<<28,
1687 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1688 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1689 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1690 };
1691 
1692 /* Specifies the type of the struct net_device::ml_priv pointer */
1693 enum netdev_ml_priv_type {
1694 	ML_PRIV_NONE,
1695 	ML_PRIV_CAN,
1696 };
1697 
1698 enum netdev_stat_type {
1699 	NETDEV_PCPU_STAT_NONE,
1700 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1701 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1702 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1703 };
1704 
1705 enum netdev_reg_state {
1706 	NETREG_UNINITIALIZED = 0,
1707 	NETREG_REGISTERED,	/* completed register_netdevice */
1708 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1709 	NETREG_UNREGISTERED,	/* completed unregister todo */
1710 	NETREG_RELEASED,	/* called free_netdev */
1711 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1712 };
1713 
1714 /**
1715  *	struct net_device - The DEVICE structure.
1716  *
1717  *	Actually, this whole structure is a big mistake.  It mixes I/O
1718  *	data with strictly "high-level" data, and it has to know about
1719  *	almost every data structure used in the INET module.
1720  *
1721  *	@priv_flags:	flags invisible to userspace defined as bits, see
1722  *			enum netdev_priv_flags for the definitions
1723  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1724  *			drivers. Mainly used by logical interfaces, such as
1725  *			bonding and tunnels
1726  *
1727  *	@name:	This is the first field of the "visible" part of this structure
1728  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1729  *		of the interface.
1730  *
1731  *	@name_node:	Name hashlist node
1732  *	@ifalias:	SNMP alias
1733  *	@mem_end:	Shared memory end
1734  *	@mem_start:	Shared memory start
1735  *	@base_addr:	Device I/O address
1736  *	@irq:		Device IRQ number
1737  *
1738  *	@state:		Generic network queuing layer state, see netdev_state_t
1739  *	@dev_list:	The global list of network devices
1740  *	@napi_list:	List entry used for polling NAPI devices
1741  *	@unreg_list:	List entry  when we are unregistering the
1742  *			device; see the function unregister_netdev
1743  *	@close_list:	List entry used when we are closing the device
1744  *	@ptype_all:     Device-specific packet handlers for all protocols
1745  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1746  *
1747  *	@adj_list:	Directly linked devices, like slaves for bonding
1748  *	@features:	Currently active device features
1749  *	@hw_features:	User-changeable features
1750  *
1751  *	@wanted_features:	User-requested features
1752  *	@vlan_features:		Mask of features inheritable by VLAN devices
1753  *
1754  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1755  *				This field indicates what encapsulation
1756  *				offloads the hardware is capable of doing,
1757  *				and drivers will need to set them appropriately.
1758  *
1759  *	@mpls_features:	Mask of features inheritable by MPLS
1760  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1761  *
1762  *	@ifindex:	interface index
1763  *	@group:		The group the device belongs to
1764  *
1765  *	@stats:		Statistics struct, which was left as a legacy, use
1766  *			rtnl_link_stats64 instead
1767  *
1768  *	@core_stats:	core networking counters,
1769  *			do not use this in drivers
1770  *	@carrier_up_count:	Number of times the carrier has been up
1771  *	@carrier_down_count:	Number of times the carrier has been down
1772  *
1773  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1774  *				instead of ioctl,
1775  *				see <net/iw_handler.h> for details.
1776  *
1777  *	@netdev_ops:	Includes several pointers to callbacks,
1778  *			if one wants to override the ndo_*() functions
1779  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1780  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1781  *	@ethtool_ops:	Management operations
1782  *	@l3mdev_ops:	Layer 3 master device operations
1783  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1784  *			discovery handling. Necessary for e.g. 6LoWPAN.
1785  *	@xfrmdev_ops:	Transformation offload operations
1786  *	@tlsdev_ops:	Transport Layer Security offload operations
1787  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1788  *			of Layer 2 headers.
1789  *
1790  *	@flags:		Interface flags (a la BSD)
1791  *	@xdp_features:	XDP capability supported by the device
1792  *	@gflags:	Global flags ( kept as legacy )
1793  *	@priv_len:	Size of the ->priv flexible array
1794  *	@priv:		Flexible array containing private data
1795  *	@operstate:	RFC2863 operstate
1796  *	@link_mode:	Mapping policy to operstate
1797  *	@if_port:	Selectable AUI, TP, ...
1798  *	@dma:		DMA channel
1799  *	@mtu:		Interface MTU value
1800  *	@min_mtu:	Interface Minimum MTU value
1801  *	@max_mtu:	Interface Maximum MTU value
1802  *	@type:		Interface hardware type
1803  *	@hard_header_len: Maximum hardware header length.
1804  *	@min_header_len:  Minimum hardware header length
1805  *
1806  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1807  *			  cases can this be guaranteed
1808  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1809  *			  cases can this be guaranteed. Some cases also use
1810  *			  LL_MAX_HEADER instead to allocate the skb
1811  *
1812  *	interface address info:
1813  *
1814  * 	@perm_addr:		Permanent hw address
1815  * 	@addr_assign_type:	Hw address assignment type
1816  * 	@addr_len:		Hardware address length
1817  *	@upper_level:		Maximum depth level of upper devices.
1818  *	@lower_level:		Maximum depth level of lower devices.
1819  *	@neigh_priv_len:	Used in neigh_alloc()
1820  * 	@dev_id:		Used to differentiate devices that share
1821  * 				the same link layer address
1822  * 	@dev_port:		Used to differentiate devices that share
1823  * 				the same function
1824  *	@addr_list_lock:	XXX: need comments on this one
1825  *	@name_assign_type:	network interface name assignment type
1826  *	@uc_promisc:		Counter that indicates promiscuous mode
1827  *				has been enabled due to the need to listen to
1828  *				additional unicast addresses in a device that
1829  *				does not implement ndo_set_rx_mode()
1830  *	@uc:			unicast mac addresses
1831  *	@mc:			multicast mac addresses
1832  *	@dev_addrs:		list of device hw addresses
1833  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1834  *	@promiscuity:		Number of times the NIC is told to work in
1835  *				promiscuous mode; if it becomes 0 the NIC will
1836  *				exit promiscuous mode
1837  *	@allmulti:		Counter, enables or disables allmulticast mode
1838  *
1839  *	@vlan_info:	VLAN info
1840  *	@dsa_ptr:	dsa specific data
1841  *	@tipc_ptr:	TIPC specific data
1842  *	@atalk_ptr:	AppleTalk link
1843  *	@ip_ptr:	IPv4 specific data
1844  *	@ip6_ptr:	IPv6 specific data
1845  *	@ax25_ptr:	AX.25 specific data
1846  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1847  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1848  *			 device struct
1849  *	@mpls_ptr:	mpls_dev struct pointer
1850  *	@mctp_ptr:	MCTP specific data
1851  *
1852  *	@dev_addr:	Hw address (before bcast,
1853  *			because most packets are unicast)
1854  *
1855  *	@_rx:			Array of RX queues
1856  *	@num_rx_queues:		Number of RX queues
1857  *				allocated at register_netdev() time
1858  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1859  *	@xdp_prog:		XDP sockets filter program pointer
1860  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1861  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1862  *				allow to avoid NIC hard IRQ, on busy queues.
1863  *
1864  *	@rx_handler:		handler for received packets
1865  *	@rx_handler_data: 	XXX: need comments on this one
1866  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1867  *	@ingress_queue:		XXX: need comments on this one
1868  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1869  *	@broadcast:		hw bcast address
1870  *
1871  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1872  *			indexed by RX queue number. Assigned by driver.
1873  *			This must only be set if the ndo_rx_flow_steer
1874  *			operation is defined
1875  *	@index_hlist:		Device index hash chain
1876  *
1877  *	@_tx:			Array of TX queues
1878  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1879  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1880  *	@qdisc:			Root qdisc from userspace point of view
1881  *	@tx_queue_len:		Max frames per queue allowed
1882  *	@tx_global_lock: 	XXX: need comments on this one
1883  *	@xdp_bulkq:		XDP device bulk queue
1884  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1885  *
1886  *	@xps_maps:	XXX: need comments on this one
1887  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1888  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1889  *	@qdisc_hash:		qdisc hash table
1890  *	@watchdog_timeo:	Represents the timeout that is used by
1891  *				the watchdog (see dev_watchdog())
1892  *	@watchdog_timer:	List of timers
1893  *
1894  *	@proto_down_reason:	reason a netdev interface is held down
1895  *	@pcpu_refcnt:		Number of references to this device
1896  *	@dev_refcnt:		Number of references to this device
1897  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1898  *	@todo_list:		Delayed register/unregister
1899  *	@link_watch_list:	XXX: need comments on this one
1900  *
1901  *	@reg_state:		Register/unregister state machine
1902  *	@dismantle:		Device is going to be freed
1903  *	@rtnl_link_state:	This enum represents the phases of creating
1904  *				a new link
1905  *
1906  *	@needs_free_netdev:	Should unregister perform free_netdev?
1907  *	@priv_destructor:	Called from unregister
1908  *	@npinfo:		XXX: need comments on this one
1909  * 	@nd_net:		Network namespace this network device is inside
1910  *
1911  * 	@ml_priv:	Mid-layer private
1912  *	@ml_priv_type:  Mid-layer private type
1913  *
1914  *	@pcpu_stat_type:	Type of device statistics which the core should
1915  *				allocate/free: none, lstats, tstats, dstats. none
1916  *				means the driver is handling statistics allocation/
1917  *				freeing internally.
1918  *	@lstats:		Loopback statistics: packets, bytes
1919  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1920  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1921  *
1922  *	@garp_port:	GARP
1923  *	@mrp_port:	MRP
1924  *
1925  *	@dm_private:	Drop monitor private
1926  *
1927  *	@dev:		Class/net/name entry
1928  *	@sysfs_groups:	Space for optional device, statistics and wireless
1929  *			sysfs groups
1930  *
1931  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1932  *	@rtnl_link_ops:	Rtnl_link_ops
1933  *	@stat_ops:	Optional ops for queue-aware statistics
1934  *	@queue_mgmt_ops:	Optional ops for queue management
1935  *
1936  *	@gso_max_size:	Maximum size of generic segmentation offload
1937  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1938  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1939  *			NIC for GSO
1940  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1941  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1942  * 				for IPv4.
1943  *
1944  *	@dcbnl_ops:	Data Center Bridging netlink ops
1945  *	@num_tc:	Number of traffic classes in the net device
1946  *	@tc_to_txq:	XXX: need comments on this one
1947  *	@prio_tc_map:	XXX: need comments on this one
1948  *
1949  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1950  *
1951  *	@priomap:	XXX: need comments on this one
1952  *	@link_topo:	Physical link topology tracking attached PHYs
1953  *	@phydev:	Physical device may attach itself
1954  *			for hardware timestamping
1955  *	@sfp_bus:	attached &struct sfp_bus structure.
1956  *
1957  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1958  *
1959  *	@proto_down:	protocol port state information can be sent to the
1960  *			switch driver and used to set the phys state of the
1961  *			switch port.
1962  *
1963  *	@threaded:	napi threaded mode is enabled
1964  *
1965  *	@see_all_hwtstamp_requests: device wants to see calls to
1966  *			ndo_hwtstamp_set() for all timestamp requests
1967  *			regardless of source, even if those aren't
1968  *			HWTSTAMP_SOURCE_NETDEV
1969  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1970  *	@netns_local: interface can't change network namespaces
1971  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
1972  *
1973  *	@net_notifier_list:	List of per-net netdev notifier block
1974  *				that follow this device when it is moved
1975  *				to another network namespace.
1976  *
1977  *	@macsec_ops:    MACsec offloading ops
1978  *
1979  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1980  *				offload capabilities of the device
1981  *	@udp_tunnel_nic:	UDP tunnel offload state
1982  *	@ethtool:	ethtool related state
1983  *	@xdp_state:		stores info on attached XDP BPF programs
1984  *
1985  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1986  *			dev->addr_list_lock.
1987  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1988  *			keep a list of interfaces to be deleted.
1989  *	@gro_max_size:	Maximum size of aggregated packet in generic
1990  *			receive offload (GRO)
1991  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
1992  * 				receive offload (GRO), for IPv4.
1993  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
1994  *				zero copy driver
1995  *
1996  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1997  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1998  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1999  *	@dev_registered_tracker:	tracker for reference held while
2000  *					registered
2001  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2002  *
2003  *	@devlink_port:	Pointer to related devlink port structure.
2004  *			Assigned by a driver before netdev registration using
2005  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2006  *			during the time netdevice is registered.
2007  *
2008  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2009  *		   where the clock is recovered.
2010  *
2011  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2012  *
2013  *	FIXME: cleanup struct net_device such that network protocol info
2014  *	moves out.
2015  */
2016 
2017 struct net_device {
2018 	/* Cacheline organization can be found documented in
2019 	 * Documentation/networking/net_cachelines/net_device.rst.
2020 	 * Please update the document when adding new fields.
2021 	 */
2022 
2023 	/* TX read-mostly hotpath */
2024 	__cacheline_group_begin(net_device_read_tx);
2025 	struct_group(priv_flags_fast,
2026 		unsigned long		priv_flags:32;
2027 		unsigned long		lltx:1;
2028 	);
2029 	const struct net_device_ops *netdev_ops;
2030 	const struct header_ops *header_ops;
2031 	struct netdev_queue	*_tx;
2032 	netdev_features_t	gso_partial_features;
2033 	unsigned int		real_num_tx_queues;
2034 	unsigned int		gso_max_size;
2035 	unsigned int		gso_ipv4_max_size;
2036 	u16			gso_max_segs;
2037 	s16			num_tc;
2038 	/* Note : dev->mtu is often read without holding a lock.
2039 	 * Writers usually hold RTNL.
2040 	 * It is recommended to use READ_ONCE() to annotate the reads,
2041 	 * and to use WRITE_ONCE() to annotate the writes.
2042 	 */
2043 	unsigned int		mtu;
2044 	unsigned short		needed_headroom;
2045 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2046 #ifdef CONFIG_XPS
2047 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2048 #endif
2049 #ifdef CONFIG_NETFILTER_EGRESS
2050 	struct nf_hook_entries __rcu *nf_hooks_egress;
2051 #endif
2052 #ifdef CONFIG_NET_XGRESS
2053 	struct bpf_mprog_entry __rcu *tcx_egress;
2054 #endif
2055 	__cacheline_group_end(net_device_read_tx);
2056 
2057 	/* TXRX read-mostly hotpath */
2058 	__cacheline_group_begin(net_device_read_txrx);
2059 	union {
2060 		struct pcpu_lstats __percpu		*lstats;
2061 		struct pcpu_sw_netstats __percpu	*tstats;
2062 		struct pcpu_dstats __percpu		*dstats;
2063 	};
2064 	unsigned long		state;
2065 	unsigned int		flags;
2066 	unsigned short		hard_header_len;
2067 	netdev_features_t	features;
2068 	struct inet6_dev __rcu	*ip6_ptr;
2069 	__cacheline_group_end(net_device_read_txrx);
2070 
2071 	/* RX read-mostly hotpath */
2072 	__cacheline_group_begin(net_device_read_rx);
2073 	struct bpf_prog __rcu	*xdp_prog;
2074 	struct list_head	ptype_specific;
2075 	int			ifindex;
2076 	unsigned int		real_num_rx_queues;
2077 	struct netdev_rx_queue	*_rx;
2078 	unsigned long		gro_flush_timeout;
2079 	u32			napi_defer_hard_irqs;
2080 	unsigned int		gro_max_size;
2081 	unsigned int		gro_ipv4_max_size;
2082 	rx_handler_func_t __rcu	*rx_handler;
2083 	void __rcu		*rx_handler_data;
2084 	possible_net_t			nd_net;
2085 #ifdef CONFIG_NETPOLL
2086 	struct netpoll_info __rcu	*npinfo;
2087 #endif
2088 #ifdef CONFIG_NET_XGRESS
2089 	struct bpf_mprog_entry __rcu *tcx_ingress;
2090 #endif
2091 	__cacheline_group_end(net_device_read_rx);
2092 
2093 	char			name[IFNAMSIZ];
2094 	struct netdev_name_node	*name_node;
2095 	struct dev_ifalias	__rcu *ifalias;
2096 	/*
2097 	 *	I/O specific fields
2098 	 *	FIXME: Merge these and struct ifmap into one
2099 	 */
2100 	unsigned long		mem_end;
2101 	unsigned long		mem_start;
2102 	unsigned long		base_addr;
2103 
2104 	/*
2105 	 *	Some hardware also needs these fields (state,dev_list,
2106 	 *	napi_list,unreg_list,close_list) but they are not
2107 	 *	part of the usual set specified in Space.c.
2108 	 */
2109 
2110 
2111 	struct list_head	dev_list;
2112 	struct list_head	napi_list;
2113 	struct list_head	unreg_list;
2114 	struct list_head	close_list;
2115 	struct list_head	ptype_all;
2116 
2117 	struct {
2118 		struct list_head upper;
2119 		struct list_head lower;
2120 	} adj_list;
2121 
2122 	/* Read-mostly cache-line for fast-path access */
2123 	xdp_features_t		xdp_features;
2124 	const struct xdp_metadata_ops *xdp_metadata_ops;
2125 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2126 	unsigned short		gflags;
2127 
2128 	unsigned short		needed_tailroom;
2129 
2130 	netdev_features_t	hw_features;
2131 	netdev_features_t	wanted_features;
2132 	netdev_features_t	vlan_features;
2133 	netdev_features_t	hw_enc_features;
2134 	netdev_features_t	mpls_features;
2135 
2136 	unsigned int		min_mtu;
2137 	unsigned int		max_mtu;
2138 	unsigned short		type;
2139 	unsigned char		min_header_len;
2140 	unsigned char		name_assign_type;
2141 
2142 	int			group;
2143 
2144 	struct net_device_stats	stats; /* not used by modern drivers */
2145 
2146 	struct net_device_core_stats __percpu *core_stats;
2147 
2148 	/* Stats to monitor link on/off, flapping */
2149 	atomic_t		carrier_up_count;
2150 	atomic_t		carrier_down_count;
2151 
2152 #ifdef CONFIG_WIRELESS_EXT
2153 	const struct iw_handler_def *wireless_handlers;
2154 #endif
2155 	const struct ethtool_ops *ethtool_ops;
2156 #ifdef CONFIG_NET_L3_MASTER_DEV
2157 	const struct l3mdev_ops	*l3mdev_ops;
2158 #endif
2159 #if IS_ENABLED(CONFIG_IPV6)
2160 	const struct ndisc_ops *ndisc_ops;
2161 #endif
2162 
2163 #ifdef CONFIG_XFRM_OFFLOAD
2164 	const struct xfrmdev_ops *xfrmdev_ops;
2165 #endif
2166 
2167 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2168 	const struct tlsdev_ops *tlsdev_ops;
2169 #endif
2170 
2171 	unsigned int		operstate;
2172 	unsigned char		link_mode;
2173 
2174 	unsigned char		if_port;
2175 	unsigned char		dma;
2176 
2177 	/* Interface address info. */
2178 	unsigned char		perm_addr[MAX_ADDR_LEN];
2179 	unsigned char		addr_assign_type;
2180 	unsigned char		addr_len;
2181 	unsigned char		upper_level;
2182 	unsigned char		lower_level;
2183 
2184 	unsigned short		neigh_priv_len;
2185 	unsigned short          dev_id;
2186 	unsigned short          dev_port;
2187 	int			irq;
2188 	u32			priv_len;
2189 
2190 	spinlock_t		addr_list_lock;
2191 
2192 	struct netdev_hw_addr_list	uc;
2193 	struct netdev_hw_addr_list	mc;
2194 	struct netdev_hw_addr_list	dev_addrs;
2195 
2196 #ifdef CONFIG_SYSFS
2197 	struct kset		*queues_kset;
2198 #endif
2199 #ifdef CONFIG_LOCKDEP
2200 	struct list_head	unlink_list;
2201 #endif
2202 	unsigned int		promiscuity;
2203 	unsigned int		allmulti;
2204 	bool			uc_promisc;
2205 #ifdef CONFIG_LOCKDEP
2206 	unsigned char		nested_level;
2207 #endif
2208 
2209 
2210 	/* Protocol-specific pointers */
2211 	struct in_device __rcu	*ip_ptr;
2212 	/** @fib_nh_head: nexthops associated with this netdev */
2213 	struct hlist_head	fib_nh_head;
2214 
2215 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2216 	struct vlan_info __rcu	*vlan_info;
2217 #endif
2218 #if IS_ENABLED(CONFIG_NET_DSA)
2219 	struct dsa_port		*dsa_ptr;
2220 #endif
2221 #if IS_ENABLED(CONFIG_TIPC)
2222 	struct tipc_bearer __rcu *tipc_ptr;
2223 #endif
2224 #if IS_ENABLED(CONFIG_ATALK)
2225 	void 			*atalk_ptr;
2226 #endif
2227 #if IS_ENABLED(CONFIG_AX25)
2228 	void			*ax25_ptr;
2229 #endif
2230 #if IS_ENABLED(CONFIG_CFG80211)
2231 	struct wireless_dev	*ieee80211_ptr;
2232 #endif
2233 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2234 	struct wpan_dev		*ieee802154_ptr;
2235 #endif
2236 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2237 	struct mpls_dev __rcu	*mpls_ptr;
2238 #endif
2239 #if IS_ENABLED(CONFIG_MCTP)
2240 	struct mctp_dev __rcu	*mctp_ptr;
2241 #endif
2242 
2243 /*
2244  * Cache lines mostly used on receive path (including eth_type_trans())
2245  */
2246 	/* Interface address info used in eth_type_trans() */
2247 	const unsigned char	*dev_addr;
2248 
2249 	unsigned int		num_rx_queues;
2250 #define GRO_LEGACY_MAX_SIZE	65536u
2251 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2252  * and shinfo->gso_segs is a 16bit field.
2253  */
2254 #define GRO_MAX_SIZE		(8 * 65535u)
2255 	unsigned int		xdp_zc_max_segs;
2256 	struct netdev_queue __rcu *ingress_queue;
2257 #ifdef CONFIG_NETFILTER_INGRESS
2258 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2259 #endif
2260 
2261 	unsigned char		broadcast[MAX_ADDR_LEN];
2262 #ifdef CONFIG_RFS_ACCEL
2263 	struct cpu_rmap		*rx_cpu_rmap;
2264 #endif
2265 	struct hlist_node	index_hlist;
2266 
2267 /*
2268  * Cache lines mostly used on transmit path
2269  */
2270 	unsigned int		num_tx_queues;
2271 	struct Qdisc __rcu	*qdisc;
2272 	unsigned int		tx_queue_len;
2273 	spinlock_t		tx_global_lock;
2274 
2275 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2276 
2277 #ifdef CONFIG_NET_SCHED
2278 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2279 #endif
2280 	/* These may be needed for future network-power-down code. */
2281 	struct timer_list	watchdog_timer;
2282 	int			watchdog_timeo;
2283 
2284 	u32                     proto_down_reason;
2285 
2286 	struct list_head	todo_list;
2287 
2288 #ifdef CONFIG_PCPU_DEV_REFCNT
2289 	int __percpu		*pcpu_refcnt;
2290 #else
2291 	refcount_t		dev_refcnt;
2292 #endif
2293 	struct ref_tracker_dir	refcnt_tracker;
2294 
2295 	struct list_head	link_watch_list;
2296 
2297 	u8 reg_state;
2298 
2299 	bool dismantle;
2300 
2301 	enum {
2302 		RTNL_LINK_INITIALIZED,
2303 		RTNL_LINK_INITIALIZING,
2304 	} rtnl_link_state:16;
2305 
2306 	bool needs_free_netdev;
2307 	void (*priv_destructor)(struct net_device *dev);
2308 
2309 	/* mid-layer private */
2310 	void				*ml_priv;
2311 	enum netdev_ml_priv_type	ml_priv_type;
2312 
2313 	enum netdev_stat_type		pcpu_stat_type:8;
2314 
2315 #if IS_ENABLED(CONFIG_GARP)
2316 	struct garp_port __rcu	*garp_port;
2317 #endif
2318 #if IS_ENABLED(CONFIG_MRP)
2319 	struct mrp_port __rcu	*mrp_port;
2320 #endif
2321 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2322 	struct dm_hw_stat_delta __rcu *dm_private;
2323 #endif
2324 	struct device		dev;
2325 	const struct attribute_group *sysfs_groups[4];
2326 	const struct attribute_group *sysfs_rx_queue_group;
2327 
2328 	const struct rtnl_link_ops *rtnl_link_ops;
2329 
2330 	const struct netdev_stat_ops *stat_ops;
2331 
2332 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2333 
2334 	/* for setting kernel sock attribute on TCP connection setup */
2335 #define GSO_MAX_SEGS		65535u
2336 #define GSO_LEGACY_MAX_SIZE	65536u
2337 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2338  * and shinfo->gso_segs is a 16bit field.
2339  */
2340 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2341 
2342 #define TSO_LEGACY_MAX_SIZE	65536
2343 #define TSO_MAX_SIZE		UINT_MAX
2344 	unsigned int		tso_max_size;
2345 #define TSO_MAX_SEGS		U16_MAX
2346 	u16			tso_max_segs;
2347 
2348 #ifdef CONFIG_DCB
2349 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2350 #endif
2351 	u8			prio_tc_map[TC_BITMASK + 1];
2352 
2353 #if IS_ENABLED(CONFIG_FCOE)
2354 	unsigned int		fcoe_ddp_xid;
2355 #endif
2356 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2357 	struct netprio_map __rcu *priomap;
2358 #endif
2359 	struct phy_link_topology	*link_topo;
2360 	struct phy_device	*phydev;
2361 	struct sfp_bus		*sfp_bus;
2362 	struct lock_class_key	*qdisc_tx_busylock;
2363 	bool			proto_down;
2364 	bool			threaded;
2365 
2366 	/* priv_flags_slow, ungrouped to save space */
2367 	unsigned long		see_all_hwtstamp_requests:1;
2368 	unsigned long		change_proto_down:1;
2369 	unsigned long		netns_local:1;
2370 	unsigned long		fcoe_mtu:1;
2371 
2372 	struct list_head	net_notifier_list;
2373 
2374 #if IS_ENABLED(CONFIG_MACSEC)
2375 	/* MACsec management functions */
2376 	const struct macsec_ops *macsec_ops;
2377 #endif
2378 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2379 	struct udp_tunnel_nic	*udp_tunnel_nic;
2380 
2381 	struct ethtool_netdev_state *ethtool;
2382 
2383 	/* protected by rtnl_lock */
2384 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2385 
2386 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2387 	netdevice_tracker	linkwatch_dev_tracker;
2388 	netdevice_tracker	watchdog_dev_tracker;
2389 	netdevice_tracker	dev_registered_tracker;
2390 	struct rtnl_hw_stats64	*offload_xstats_l3;
2391 
2392 	struct devlink_port	*devlink_port;
2393 
2394 #if IS_ENABLED(CONFIG_DPLL)
2395 	struct dpll_pin	__rcu	*dpll_pin;
2396 #endif
2397 #if IS_ENABLED(CONFIG_PAGE_POOL)
2398 	/** @page_pools: page pools created for this netdevice */
2399 	struct hlist_head	page_pools;
2400 #endif
2401 
2402 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2403 	struct dim_irq_moder	*irq_moder;
2404 
2405 	u64			max_pacing_offload_horizon;
2406 
2407 	u8			priv[] ____cacheline_aligned
2408 				       __counted_by(priv_len);
2409 } ____cacheline_aligned;
2410 #define to_net_dev(d) container_of(d, struct net_device, dev)
2411 
2412 /*
2413  * Driver should use this to assign devlink port instance to a netdevice
2414  * before it registers the netdevice. Therefore devlink_port is static
2415  * during the netdev lifetime after it is registered.
2416  */
2417 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2418 ({								\
2419 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2420 	((dev)->devlink_port = (port));				\
2421 })
2422 
2423 static inline bool netif_elide_gro(const struct net_device *dev)
2424 {
2425 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2426 		return true;
2427 	return false;
2428 }
2429 
2430 #define	NETDEV_ALIGN		32
2431 
2432 static inline
2433 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2434 {
2435 	return dev->prio_tc_map[prio & TC_BITMASK];
2436 }
2437 
2438 static inline
2439 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2440 {
2441 	if (tc >= dev->num_tc)
2442 		return -EINVAL;
2443 
2444 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2445 	return 0;
2446 }
2447 
2448 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2449 void netdev_reset_tc(struct net_device *dev);
2450 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2451 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2452 
2453 static inline
2454 int netdev_get_num_tc(struct net_device *dev)
2455 {
2456 	return dev->num_tc;
2457 }
2458 
2459 static inline void net_prefetch(void *p)
2460 {
2461 	prefetch(p);
2462 #if L1_CACHE_BYTES < 128
2463 	prefetch((u8 *)p + L1_CACHE_BYTES);
2464 #endif
2465 }
2466 
2467 static inline void net_prefetchw(void *p)
2468 {
2469 	prefetchw(p);
2470 #if L1_CACHE_BYTES < 128
2471 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2472 #endif
2473 }
2474 
2475 void netdev_unbind_sb_channel(struct net_device *dev,
2476 			      struct net_device *sb_dev);
2477 int netdev_bind_sb_channel_queue(struct net_device *dev,
2478 				 struct net_device *sb_dev,
2479 				 u8 tc, u16 count, u16 offset);
2480 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2481 static inline int netdev_get_sb_channel(struct net_device *dev)
2482 {
2483 	return max_t(int, -dev->num_tc, 0);
2484 }
2485 
2486 static inline
2487 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2488 					 unsigned int index)
2489 {
2490 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2491 	return &dev->_tx[index];
2492 }
2493 
2494 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2495 						    const struct sk_buff *skb)
2496 {
2497 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2498 }
2499 
2500 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2501 					    void (*f)(struct net_device *,
2502 						      struct netdev_queue *,
2503 						      void *),
2504 					    void *arg)
2505 {
2506 	unsigned int i;
2507 
2508 	for (i = 0; i < dev->num_tx_queues; i++)
2509 		f(dev, &dev->_tx[i], arg);
2510 }
2511 
2512 #define netdev_lockdep_set_classes(dev)				\
2513 {								\
2514 	static struct lock_class_key qdisc_tx_busylock_key;	\
2515 	static struct lock_class_key qdisc_xmit_lock_key;	\
2516 	static struct lock_class_key dev_addr_list_lock_key;	\
2517 	unsigned int i;						\
2518 								\
2519 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2520 	lockdep_set_class(&(dev)->addr_list_lock,		\
2521 			  &dev_addr_list_lock_key);		\
2522 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2523 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2524 				  &qdisc_xmit_lock_key);	\
2525 }
2526 
2527 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2528 		     struct net_device *sb_dev);
2529 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2530 					 struct sk_buff *skb,
2531 					 struct net_device *sb_dev);
2532 
2533 /* returns the headroom that the master device needs to take in account
2534  * when forwarding to this dev
2535  */
2536 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2537 {
2538 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2539 }
2540 
2541 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2542 {
2543 	if (dev->netdev_ops->ndo_set_rx_headroom)
2544 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2545 }
2546 
2547 /* set the device rx headroom to the dev's default */
2548 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2549 {
2550 	netdev_set_rx_headroom(dev, -1);
2551 }
2552 
2553 static inline void *netdev_get_ml_priv(struct net_device *dev,
2554 				       enum netdev_ml_priv_type type)
2555 {
2556 	if (dev->ml_priv_type != type)
2557 		return NULL;
2558 
2559 	return dev->ml_priv;
2560 }
2561 
2562 static inline void netdev_set_ml_priv(struct net_device *dev,
2563 				      void *ml_priv,
2564 				      enum netdev_ml_priv_type type)
2565 {
2566 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2567 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2568 	     dev->ml_priv_type, type);
2569 	WARN(!dev->ml_priv_type && dev->ml_priv,
2570 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2571 
2572 	dev->ml_priv = ml_priv;
2573 	dev->ml_priv_type = type;
2574 }
2575 
2576 /*
2577  * Net namespace inlines
2578  */
2579 static inline
2580 struct net *dev_net(const struct net_device *dev)
2581 {
2582 	return read_pnet(&dev->nd_net);
2583 }
2584 
2585 static inline
2586 void dev_net_set(struct net_device *dev, struct net *net)
2587 {
2588 	write_pnet(&dev->nd_net, net);
2589 }
2590 
2591 /**
2592  *	netdev_priv - access network device private data
2593  *	@dev: network device
2594  *
2595  * Get network device private data
2596  */
2597 static inline void *netdev_priv(const struct net_device *dev)
2598 {
2599 	return (void *)dev->priv;
2600 }
2601 
2602 /* Set the sysfs physical device reference for the network logical device
2603  * if set prior to registration will cause a symlink during initialization.
2604  */
2605 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2606 
2607 /* Set the sysfs device type for the network logical device to allow
2608  * fine-grained identification of different network device types. For
2609  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2610  */
2611 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2612 
2613 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2614 			  enum netdev_queue_type type,
2615 			  struct napi_struct *napi);
2616 
2617 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2618 {
2619 	napi->irq = irq;
2620 }
2621 
2622 /* Default NAPI poll() weight
2623  * Device drivers are strongly advised to not use bigger value
2624  */
2625 #define NAPI_POLL_WEIGHT 64
2626 
2627 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2628 			   int (*poll)(struct napi_struct *, int), int weight);
2629 
2630 /**
2631  * netif_napi_add() - initialize a NAPI context
2632  * @dev:  network device
2633  * @napi: NAPI context
2634  * @poll: polling function
2635  *
2636  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2637  * *any* of the other NAPI-related functions.
2638  */
2639 static inline void
2640 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2641 	       int (*poll)(struct napi_struct *, int))
2642 {
2643 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2644 }
2645 
2646 static inline void
2647 netif_napi_add_tx_weight(struct net_device *dev,
2648 			 struct napi_struct *napi,
2649 			 int (*poll)(struct napi_struct *, int),
2650 			 int weight)
2651 {
2652 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2653 	netif_napi_add_weight(dev, napi, poll, weight);
2654 }
2655 
2656 /**
2657  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2658  * @dev:  network device
2659  * @napi: NAPI context
2660  * @poll: polling function
2661  *
2662  * This variant of netif_napi_add() should be used from drivers using NAPI
2663  * to exclusively poll a TX queue.
2664  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2665  */
2666 static inline void netif_napi_add_tx(struct net_device *dev,
2667 				     struct napi_struct *napi,
2668 				     int (*poll)(struct napi_struct *, int))
2669 {
2670 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2671 }
2672 
2673 /**
2674  *  __netif_napi_del - remove a NAPI context
2675  *  @napi: NAPI context
2676  *
2677  * Warning: caller must observe RCU grace period before freeing memory
2678  * containing @napi. Drivers might want to call this helper to combine
2679  * all the needed RCU grace periods into a single one.
2680  */
2681 void __netif_napi_del(struct napi_struct *napi);
2682 
2683 /**
2684  *  netif_napi_del - remove a NAPI context
2685  *  @napi: NAPI context
2686  *
2687  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2688  */
2689 static inline void netif_napi_del(struct napi_struct *napi)
2690 {
2691 	__netif_napi_del(napi);
2692 	synchronize_net();
2693 }
2694 
2695 struct packet_type {
2696 	__be16			type;	/* This is really htons(ether_type). */
2697 	bool			ignore_outgoing;
2698 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2699 	netdevice_tracker	dev_tracker;
2700 	int			(*func) (struct sk_buff *,
2701 					 struct net_device *,
2702 					 struct packet_type *,
2703 					 struct net_device *);
2704 	void			(*list_func) (struct list_head *,
2705 					      struct packet_type *,
2706 					      struct net_device *);
2707 	bool			(*id_match)(struct packet_type *ptype,
2708 					    struct sock *sk);
2709 	struct net		*af_packet_net;
2710 	void			*af_packet_priv;
2711 	struct list_head	list;
2712 };
2713 
2714 struct offload_callbacks {
2715 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2716 						netdev_features_t features);
2717 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2718 						struct sk_buff *skb);
2719 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2720 };
2721 
2722 struct packet_offload {
2723 	__be16			 type;	/* This is really htons(ether_type). */
2724 	u16			 priority;
2725 	struct offload_callbacks callbacks;
2726 	struct list_head	 list;
2727 };
2728 
2729 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2730 struct pcpu_sw_netstats {
2731 	u64_stats_t		rx_packets;
2732 	u64_stats_t		rx_bytes;
2733 	u64_stats_t		tx_packets;
2734 	u64_stats_t		tx_bytes;
2735 	struct u64_stats_sync   syncp;
2736 } __aligned(4 * sizeof(u64));
2737 
2738 struct pcpu_dstats {
2739 	u64_stats_t		rx_packets;
2740 	u64_stats_t		rx_bytes;
2741 	u64_stats_t		rx_drops;
2742 	u64_stats_t		tx_packets;
2743 	u64_stats_t		tx_bytes;
2744 	u64_stats_t		tx_drops;
2745 	struct u64_stats_sync	syncp;
2746 } __aligned(8 * sizeof(u64));
2747 
2748 struct pcpu_lstats {
2749 	u64_stats_t packets;
2750 	u64_stats_t bytes;
2751 	struct u64_stats_sync syncp;
2752 } __aligned(2 * sizeof(u64));
2753 
2754 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2755 
2756 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2757 {
2758 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2759 
2760 	u64_stats_update_begin(&tstats->syncp);
2761 	u64_stats_add(&tstats->rx_bytes, len);
2762 	u64_stats_inc(&tstats->rx_packets);
2763 	u64_stats_update_end(&tstats->syncp);
2764 }
2765 
2766 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2767 					  unsigned int packets,
2768 					  unsigned int len)
2769 {
2770 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2771 
2772 	u64_stats_update_begin(&tstats->syncp);
2773 	u64_stats_add(&tstats->tx_bytes, len);
2774 	u64_stats_add(&tstats->tx_packets, packets);
2775 	u64_stats_update_end(&tstats->syncp);
2776 }
2777 
2778 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2779 {
2780 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2781 
2782 	u64_stats_update_begin(&lstats->syncp);
2783 	u64_stats_add(&lstats->bytes, len);
2784 	u64_stats_inc(&lstats->packets);
2785 	u64_stats_update_end(&lstats->syncp);
2786 }
2787 
2788 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2789 ({									\
2790 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2791 	if (pcpu_stats)	{						\
2792 		int __cpu;						\
2793 		for_each_possible_cpu(__cpu) {				\
2794 			typeof(type) *stat;				\
2795 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2796 			u64_stats_init(&stat->syncp);			\
2797 		}							\
2798 	}								\
2799 	pcpu_stats;							\
2800 })
2801 
2802 #define netdev_alloc_pcpu_stats(type)					\
2803 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2804 
2805 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2806 ({									\
2807 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2808 	if (pcpu_stats) {						\
2809 		int __cpu;						\
2810 		for_each_possible_cpu(__cpu) {				\
2811 			typeof(type) *stat;				\
2812 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2813 			u64_stats_init(&stat->syncp);			\
2814 		}							\
2815 	}								\
2816 	pcpu_stats;							\
2817 })
2818 
2819 enum netdev_lag_tx_type {
2820 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2821 	NETDEV_LAG_TX_TYPE_RANDOM,
2822 	NETDEV_LAG_TX_TYPE_BROADCAST,
2823 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2824 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2825 	NETDEV_LAG_TX_TYPE_HASH,
2826 };
2827 
2828 enum netdev_lag_hash {
2829 	NETDEV_LAG_HASH_NONE,
2830 	NETDEV_LAG_HASH_L2,
2831 	NETDEV_LAG_HASH_L34,
2832 	NETDEV_LAG_HASH_L23,
2833 	NETDEV_LAG_HASH_E23,
2834 	NETDEV_LAG_HASH_E34,
2835 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2836 	NETDEV_LAG_HASH_UNKNOWN,
2837 };
2838 
2839 struct netdev_lag_upper_info {
2840 	enum netdev_lag_tx_type tx_type;
2841 	enum netdev_lag_hash hash_type;
2842 };
2843 
2844 struct netdev_lag_lower_state_info {
2845 	u8 link_up : 1,
2846 	   tx_enabled : 1;
2847 };
2848 
2849 #include <linux/notifier.h>
2850 
2851 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2852  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2853  * adding new types.
2854  */
2855 enum netdev_cmd {
2856 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2857 	NETDEV_DOWN,
2858 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2859 				   detected a hardware crash and restarted
2860 				   - we can use this eg to kick tcp sessions
2861 				   once done */
2862 	NETDEV_CHANGE,		/* Notify device state change */
2863 	NETDEV_REGISTER,
2864 	NETDEV_UNREGISTER,
2865 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2866 	NETDEV_CHANGEADDR,	/* notify after the address change */
2867 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2868 	NETDEV_GOING_DOWN,
2869 	NETDEV_CHANGENAME,
2870 	NETDEV_FEAT_CHANGE,
2871 	NETDEV_BONDING_FAILOVER,
2872 	NETDEV_PRE_UP,
2873 	NETDEV_PRE_TYPE_CHANGE,
2874 	NETDEV_POST_TYPE_CHANGE,
2875 	NETDEV_POST_INIT,
2876 	NETDEV_PRE_UNINIT,
2877 	NETDEV_RELEASE,
2878 	NETDEV_NOTIFY_PEERS,
2879 	NETDEV_JOIN,
2880 	NETDEV_CHANGEUPPER,
2881 	NETDEV_RESEND_IGMP,
2882 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2883 	NETDEV_CHANGEINFODATA,
2884 	NETDEV_BONDING_INFO,
2885 	NETDEV_PRECHANGEUPPER,
2886 	NETDEV_CHANGELOWERSTATE,
2887 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2888 	NETDEV_UDP_TUNNEL_DROP_INFO,
2889 	NETDEV_CHANGE_TX_QUEUE_LEN,
2890 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2891 	NETDEV_CVLAN_FILTER_DROP_INFO,
2892 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2893 	NETDEV_SVLAN_FILTER_DROP_INFO,
2894 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2895 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2896 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2897 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2898 	NETDEV_XDP_FEAT_CHANGE,
2899 };
2900 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2901 
2902 int register_netdevice_notifier(struct notifier_block *nb);
2903 int unregister_netdevice_notifier(struct notifier_block *nb);
2904 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2905 int unregister_netdevice_notifier_net(struct net *net,
2906 				      struct notifier_block *nb);
2907 int register_netdevice_notifier_dev_net(struct net_device *dev,
2908 					struct notifier_block *nb,
2909 					struct netdev_net_notifier *nn);
2910 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2911 					  struct notifier_block *nb,
2912 					  struct netdev_net_notifier *nn);
2913 
2914 struct netdev_notifier_info {
2915 	struct net_device	*dev;
2916 	struct netlink_ext_ack	*extack;
2917 };
2918 
2919 struct netdev_notifier_info_ext {
2920 	struct netdev_notifier_info info; /* must be first */
2921 	union {
2922 		u32 mtu;
2923 	} ext;
2924 };
2925 
2926 struct netdev_notifier_change_info {
2927 	struct netdev_notifier_info info; /* must be first */
2928 	unsigned int flags_changed;
2929 };
2930 
2931 struct netdev_notifier_changeupper_info {
2932 	struct netdev_notifier_info info; /* must be first */
2933 	struct net_device *upper_dev; /* new upper dev */
2934 	bool master; /* is upper dev master */
2935 	bool linking; /* is the notification for link or unlink */
2936 	void *upper_info; /* upper dev info */
2937 };
2938 
2939 struct netdev_notifier_changelowerstate_info {
2940 	struct netdev_notifier_info info; /* must be first */
2941 	void *lower_state_info; /* is lower dev state */
2942 };
2943 
2944 struct netdev_notifier_pre_changeaddr_info {
2945 	struct netdev_notifier_info info; /* must be first */
2946 	const unsigned char *dev_addr;
2947 };
2948 
2949 enum netdev_offload_xstats_type {
2950 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2951 };
2952 
2953 struct netdev_notifier_offload_xstats_info {
2954 	struct netdev_notifier_info info; /* must be first */
2955 	enum netdev_offload_xstats_type type;
2956 
2957 	union {
2958 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2959 		struct netdev_notifier_offload_xstats_rd *report_delta;
2960 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2961 		struct netdev_notifier_offload_xstats_ru *report_used;
2962 	};
2963 };
2964 
2965 int netdev_offload_xstats_enable(struct net_device *dev,
2966 				 enum netdev_offload_xstats_type type,
2967 				 struct netlink_ext_ack *extack);
2968 int netdev_offload_xstats_disable(struct net_device *dev,
2969 				  enum netdev_offload_xstats_type type);
2970 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2971 				   enum netdev_offload_xstats_type type);
2972 int netdev_offload_xstats_get(struct net_device *dev,
2973 			      enum netdev_offload_xstats_type type,
2974 			      struct rtnl_hw_stats64 *stats, bool *used,
2975 			      struct netlink_ext_ack *extack);
2976 void
2977 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2978 				   const struct rtnl_hw_stats64 *stats);
2979 void
2980 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2981 void netdev_offload_xstats_push_delta(struct net_device *dev,
2982 				      enum netdev_offload_xstats_type type,
2983 				      const struct rtnl_hw_stats64 *stats);
2984 
2985 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2986 					     struct net_device *dev)
2987 {
2988 	info->dev = dev;
2989 	info->extack = NULL;
2990 }
2991 
2992 static inline struct net_device *
2993 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2994 {
2995 	return info->dev;
2996 }
2997 
2998 static inline struct netlink_ext_ack *
2999 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3000 {
3001 	return info->extack;
3002 }
3003 
3004 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3005 int call_netdevice_notifiers_info(unsigned long val,
3006 				  struct netdev_notifier_info *info);
3007 
3008 #define for_each_netdev(net, d)		\
3009 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3010 #define for_each_netdev_reverse(net, d)	\
3011 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3012 #define for_each_netdev_rcu(net, d)		\
3013 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3014 #define for_each_netdev_safe(net, d, n)	\
3015 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3016 #define for_each_netdev_continue(net, d)		\
3017 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3018 #define for_each_netdev_continue_reverse(net, d)		\
3019 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3020 						     dev_list)
3021 #define for_each_netdev_continue_rcu(net, d)		\
3022 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3023 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3024 		for_each_netdev_rcu(&init_net, slave)	\
3025 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3026 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3027 
3028 #define for_each_netdev_dump(net, d, ifindex)				\
3029 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3030 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3031 
3032 static inline struct net_device *next_net_device(struct net_device *dev)
3033 {
3034 	struct list_head *lh;
3035 	struct net *net;
3036 
3037 	net = dev_net(dev);
3038 	lh = dev->dev_list.next;
3039 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3040 }
3041 
3042 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3043 {
3044 	struct list_head *lh;
3045 	struct net *net;
3046 
3047 	net = dev_net(dev);
3048 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3049 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3050 }
3051 
3052 static inline struct net_device *first_net_device(struct net *net)
3053 {
3054 	return list_empty(&net->dev_base_head) ? NULL :
3055 		net_device_entry(net->dev_base_head.next);
3056 }
3057 
3058 static inline struct net_device *first_net_device_rcu(struct net *net)
3059 {
3060 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3061 
3062 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3063 }
3064 
3065 int netdev_boot_setup_check(struct net_device *dev);
3066 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3067 				       const char *hwaddr);
3068 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3069 void dev_add_pack(struct packet_type *pt);
3070 void dev_remove_pack(struct packet_type *pt);
3071 void __dev_remove_pack(struct packet_type *pt);
3072 void dev_add_offload(struct packet_offload *po);
3073 void dev_remove_offload(struct packet_offload *po);
3074 
3075 int dev_get_iflink(const struct net_device *dev);
3076 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3077 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3078 			  struct net_device_path_stack *stack);
3079 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3080 				      unsigned short mask);
3081 struct net_device *dev_get_by_name(struct net *net, const char *name);
3082 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3083 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3084 bool netdev_name_in_use(struct net *net, const char *name);
3085 int dev_alloc_name(struct net_device *dev, const char *name);
3086 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3087 void dev_close(struct net_device *dev);
3088 void dev_close_many(struct list_head *head, bool unlink);
3089 void dev_disable_lro(struct net_device *dev);
3090 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3091 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3092 		     struct net_device *sb_dev);
3093 
3094 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3095 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3096 
3097 static inline int dev_queue_xmit(struct sk_buff *skb)
3098 {
3099 	return __dev_queue_xmit(skb, NULL);
3100 }
3101 
3102 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3103 				       struct net_device *sb_dev)
3104 {
3105 	return __dev_queue_xmit(skb, sb_dev);
3106 }
3107 
3108 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3109 {
3110 	int ret;
3111 
3112 	ret = __dev_direct_xmit(skb, queue_id);
3113 	if (!dev_xmit_complete(ret))
3114 		kfree_skb(skb);
3115 	return ret;
3116 }
3117 
3118 int register_netdevice(struct net_device *dev);
3119 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3120 void unregister_netdevice_many(struct list_head *head);
3121 static inline void unregister_netdevice(struct net_device *dev)
3122 {
3123 	unregister_netdevice_queue(dev, NULL);
3124 }
3125 
3126 int netdev_refcnt_read(const struct net_device *dev);
3127 void free_netdev(struct net_device *dev);
3128 void init_dummy_netdev(struct net_device *dev);
3129 
3130 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3131 					 struct sk_buff *skb,
3132 					 bool all_slaves);
3133 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3134 					    struct sock *sk);
3135 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3136 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3137 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3138 				       netdevice_tracker *tracker, gfp_t gfp);
3139 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3140 				      netdevice_tracker *tracker, gfp_t gfp);
3141 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3142 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3143 void netdev_copy_name(struct net_device *dev, char *name);
3144 
3145 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3146 				  unsigned short type,
3147 				  const void *daddr, const void *saddr,
3148 				  unsigned int len)
3149 {
3150 	if (!dev->header_ops || !dev->header_ops->create)
3151 		return 0;
3152 
3153 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3154 }
3155 
3156 static inline int dev_parse_header(const struct sk_buff *skb,
3157 				   unsigned char *haddr)
3158 {
3159 	const struct net_device *dev = skb->dev;
3160 
3161 	if (!dev->header_ops || !dev->header_ops->parse)
3162 		return 0;
3163 	return dev->header_ops->parse(skb, haddr);
3164 }
3165 
3166 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3167 {
3168 	const struct net_device *dev = skb->dev;
3169 
3170 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3171 		return 0;
3172 	return dev->header_ops->parse_protocol(skb);
3173 }
3174 
3175 /* ll_header must have at least hard_header_len allocated */
3176 static inline bool dev_validate_header(const struct net_device *dev,
3177 				       char *ll_header, int len)
3178 {
3179 	if (likely(len >= dev->hard_header_len))
3180 		return true;
3181 	if (len < dev->min_header_len)
3182 		return false;
3183 
3184 	if (capable(CAP_SYS_RAWIO)) {
3185 		memset(ll_header + len, 0, dev->hard_header_len - len);
3186 		return true;
3187 	}
3188 
3189 	if (dev->header_ops && dev->header_ops->validate)
3190 		return dev->header_ops->validate(ll_header, len);
3191 
3192 	return false;
3193 }
3194 
3195 static inline bool dev_has_header(const struct net_device *dev)
3196 {
3197 	return dev->header_ops && dev->header_ops->create;
3198 }
3199 
3200 /*
3201  * Incoming packets are placed on per-CPU queues
3202  */
3203 struct softnet_data {
3204 	struct list_head	poll_list;
3205 	struct sk_buff_head	process_queue;
3206 	local_lock_t		process_queue_bh_lock;
3207 
3208 	/* stats */
3209 	unsigned int		processed;
3210 	unsigned int		time_squeeze;
3211 #ifdef CONFIG_RPS
3212 	struct softnet_data	*rps_ipi_list;
3213 #endif
3214 
3215 	unsigned int		received_rps;
3216 	bool			in_net_rx_action;
3217 	bool			in_napi_threaded_poll;
3218 
3219 #ifdef CONFIG_NET_FLOW_LIMIT
3220 	struct sd_flow_limit __rcu *flow_limit;
3221 #endif
3222 	struct Qdisc		*output_queue;
3223 	struct Qdisc		**output_queue_tailp;
3224 	struct sk_buff		*completion_queue;
3225 #ifdef CONFIG_XFRM_OFFLOAD
3226 	struct sk_buff_head	xfrm_backlog;
3227 #endif
3228 	/* written and read only by owning cpu: */
3229 	struct netdev_xmit xmit;
3230 #ifdef CONFIG_RPS
3231 	/* input_queue_head should be written by cpu owning this struct,
3232 	 * and only read by other cpus. Worth using a cache line.
3233 	 */
3234 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3235 
3236 	/* Elements below can be accessed between CPUs for RPS/RFS */
3237 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3238 	struct softnet_data	*rps_ipi_next;
3239 	unsigned int		cpu;
3240 	unsigned int		input_queue_tail;
3241 #endif
3242 	struct sk_buff_head	input_pkt_queue;
3243 	struct napi_struct	backlog;
3244 
3245 	atomic_t		dropped ____cacheline_aligned_in_smp;
3246 
3247 	/* Another possibly contended cache line */
3248 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3249 	int			defer_count;
3250 	int			defer_ipi_scheduled;
3251 	struct sk_buff		*defer_list;
3252 	call_single_data_t	defer_csd;
3253 };
3254 
3255 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3256 
3257 #ifndef CONFIG_PREEMPT_RT
3258 static inline int dev_recursion_level(void)
3259 {
3260 	return this_cpu_read(softnet_data.xmit.recursion);
3261 }
3262 #else
3263 static inline int dev_recursion_level(void)
3264 {
3265 	return current->net_xmit.recursion;
3266 }
3267 
3268 #endif
3269 
3270 void __netif_schedule(struct Qdisc *q);
3271 void netif_schedule_queue(struct netdev_queue *txq);
3272 
3273 static inline void netif_tx_schedule_all(struct net_device *dev)
3274 {
3275 	unsigned int i;
3276 
3277 	for (i = 0; i < dev->num_tx_queues; i++)
3278 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3279 }
3280 
3281 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3282 {
3283 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3284 }
3285 
3286 /**
3287  *	netif_start_queue - allow transmit
3288  *	@dev: network device
3289  *
3290  *	Allow upper layers to call the device hard_start_xmit routine.
3291  */
3292 static inline void netif_start_queue(struct net_device *dev)
3293 {
3294 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3295 }
3296 
3297 static inline void netif_tx_start_all_queues(struct net_device *dev)
3298 {
3299 	unsigned int i;
3300 
3301 	for (i = 0; i < dev->num_tx_queues; i++) {
3302 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3303 		netif_tx_start_queue(txq);
3304 	}
3305 }
3306 
3307 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3308 
3309 /**
3310  *	netif_wake_queue - restart transmit
3311  *	@dev: network device
3312  *
3313  *	Allow upper layers to call the device hard_start_xmit routine.
3314  *	Used for flow control when transmit resources are available.
3315  */
3316 static inline void netif_wake_queue(struct net_device *dev)
3317 {
3318 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3319 }
3320 
3321 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3322 {
3323 	unsigned int i;
3324 
3325 	for (i = 0; i < dev->num_tx_queues; i++) {
3326 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3327 		netif_tx_wake_queue(txq);
3328 	}
3329 }
3330 
3331 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3332 {
3333 	/* Must be an atomic op see netif_txq_try_stop() */
3334 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3335 }
3336 
3337 /**
3338  *	netif_stop_queue - stop transmitted packets
3339  *	@dev: network device
3340  *
3341  *	Stop upper layers calling the device hard_start_xmit routine.
3342  *	Used for flow control when transmit resources are unavailable.
3343  */
3344 static inline void netif_stop_queue(struct net_device *dev)
3345 {
3346 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3347 }
3348 
3349 void netif_tx_stop_all_queues(struct net_device *dev);
3350 
3351 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3352 {
3353 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3354 }
3355 
3356 /**
3357  *	netif_queue_stopped - test if transmit queue is flowblocked
3358  *	@dev: network device
3359  *
3360  *	Test if transmit queue on device is currently unable to send.
3361  */
3362 static inline bool netif_queue_stopped(const struct net_device *dev)
3363 {
3364 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3365 }
3366 
3367 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3368 {
3369 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3370 }
3371 
3372 static inline bool
3373 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3374 {
3375 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3376 }
3377 
3378 static inline bool
3379 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3380 {
3381 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3382 }
3383 
3384 /**
3385  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3386  *	@dev_queue: pointer to transmit queue
3387  *	@min_limit: dql minimum limit
3388  *
3389  * Forces xmit_more() to return true until the minimum threshold
3390  * defined by @min_limit is reached (or until the tx queue is
3391  * empty). Warning: to be use with care, misuse will impact the
3392  * latency.
3393  */
3394 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3395 						  unsigned int min_limit)
3396 {
3397 #ifdef CONFIG_BQL
3398 	dev_queue->dql.min_limit = min_limit;
3399 #endif
3400 }
3401 
3402 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3403 {
3404 #ifdef CONFIG_BQL
3405 	/* Non-BQL migrated drivers will return 0, too. */
3406 	return dql_avail(&txq->dql);
3407 #else
3408 	return 0;
3409 #endif
3410 }
3411 
3412 /**
3413  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3414  *	@dev_queue: pointer to transmit queue
3415  *
3416  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3417  * to give appropriate hint to the CPU.
3418  */
3419 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3420 {
3421 #ifdef CONFIG_BQL
3422 	prefetchw(&dev_queue->dql.num_queued);
3423 #endif
3424 }
3425 
3426 /**
3427  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3428  *	@dev_queue: pointer to transmit queue
3429  *
3430  * BQL enabled drivers might use this helper in their TX completion path,
3431  * to give appropriate hint to the CPU.
3432  */
3433 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3434 {
3435 #ifdef CONFIG_BQL
3436 	prefetchw(&dev_queue->dql.limit);
3437 #endif
3438 }
3439 
3440 /**
3441  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3442  *	@dev_queue: network device queue
3443  *	@bytes: number of bytes queued to the device queue
3444  *
3445  *	Report the number of bytes queued for sending/completion to the network
3446  *	device hardware queue. @bytes should be a good approximation and should
3447  *	exactly match netdev_completed_queue() @bytes.
3448  *	This is typically called once per packet, from ndo_start_xmit().
3449  */
3450 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3451 					unsigned int bytes)
3452 {
3453 #ifdef CONFIG_BQL
3454 	dql_queued(&dev_queue->dql, bytes);
3455 
3456 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3457 		return;
3458 
3459 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3460 
3461 	/*
3462 	 * The XOFF flag must be set before checking the dql_avail below,
3463 	 * because in netdev_tx_completed_queue we update the dql_completed
3464 	 * before checking the XOFF flag.
3465 	 */
3466 	smp_mb();
3467 
3468 	/* check again in case another CPU has just made room avail */
3469 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3470 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3471 #endif
3472 }
3473 
3474 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3475  * that they should not test BQL status themselves.
3476  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3477  * skb of a batch.
3478  * Returns true if the doorbell must be used to kick the NIC.
3479  */
3480 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3481 					  unsigned int bytes,
3482 					  bool xmit_more)
3483 {
3484 	if (xmit_more) {
3485 #ifdef CONFIG_BQL
3486 		dql_queued(&dev_queue->dql, bytes);
3487 #endif
3488 		return netif_tx_queue_stopped(dev_queue);
3489 	}
3490 	netdev_tx_sent_queue(dev_queue, bytes);
3491 	return true;
3492 }
3493 
3494 /**
3495  *	netdev_sent_queue - report the number of bytes queued to hardware
3496  *	@dev: network device
3497  *	@bytes: number of bytes queued to the hardware device queue
3498  *
3499  *	Report the number of bytes queued for sending/completion to the network
3500  *	device hardware queue#0. @bytes should be a good approximation and should
3501  *	exactly match netdev_completed_queue() @bytes.
3502  *	This is typically called once per packet, from ndo_start_xmit().
3503  */
3504 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3505 {
3506 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3507 }
3508 
3509 static inline bool __netdev_sent_queue(struct net_device *dev,
3510 				       unsigned int bytes,
3511 				       bool xmit_more)
3512 {
3513 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3514 				      xmit_more);
3515 }
3516 
3517 /**
3518  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3519  *	@dev_queue: network device queue
3520  *	@pkts: number of packets (currently ignored)
3521  *	@bytes: number of bytes dequeued from the device queue
3522  *
3523  *	Must be called at most once per TX completion round (and not per
3524  *	individual packet), so that BQL can adjust its limits appropriately.
3525  */
3526 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3527 					     unsigned int pkts, unsigned int bytes)
3528 {
3529 #ifdef CONFIG_BQL
3530 	if (unlikely(!bytes))
3531 		return;
3532 
3533 	dql_completed(&dev_queue->dql, bytes);
3534 
3535 	/*
3536 	 * Without the memory barrier there is a small possibility that
3537 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3538 	 * be stopped forever
3539 	 */
3540 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3541 
3542 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3543 		return;
3544 
3545 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3546 		netif_schedule_queue(dev_queue);
3547 #endif
3548 }
3549 
3550 /**
3551  * 	netdev_completed_queue - report bytes and packets completed by device
3552  * 	@dev: network device
3553  * 	@pkts: actual number of packets sent over the medium
3554  * 	@bytes: actual number of bytes sent over the medium
3555  *
3556  * 	Report the number of bytes and packets transmitted by the network device
3557  * 	hardware queue over the physical medium, @bytes must exactly match the
3558  * 	@bytes amount passed to netdev_sent_queue()
3559  */
3560 static inline void netdev_completed_queue(struct net_device *dev,
3561 					  unsigned int pkts, unsigned int bytes)
3562 {
3563 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3564 }
3565 
3566 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3567 {
3568 #ifdef CONFIG_BQL
3569 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3570 	dql_reset(&q->dql);
3571 #endif
3572 }
3573 
3574 /**
3575  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3576  * @dev: network device
3577  * @qid: stack index of the queue to reset
3578  */
3579 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3580 					    u32 qid)
3581 {
3582 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3583 }
3584 
3585 /**
3586  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3587  * 	@dev_queue: network device
3588  *
3589  * 	Reset the bytes and packet count of a network device and clear the
3590  * 	software flow control OFF bit for this network device
3591  */
3592 static inline void netdev_reset_queue(struct net_device *dev_queue)
3593 {
3594 	netdev_tx_reset_subqueue(dev_queue, 0);
3595 }
3596 
3597 /**
3598  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3599  * 	@dev: network device
3600  * 	@queue_index: given tx queue index
3601  *
3602  * 	Returns 0 if given tx queue index >= number of device tx queues,
3603  * 	otherwise returns the originally passed tx queue index.
3604  */
3605 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3606 {
3607 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3608 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3609 				     dev->name, queue_index,
3610 				     dev->real_num_tx_queues);
3611 		return 0;
3612 	}
3613 
3614 	return queue_index;
3615 }
3616 
3617 /**
3618  *	netif_running - test if up
3619  *	@dev: network device
3620  *
3621  *	Test if the device has been brought up.
3622  */
3623 static inline bool netif_running(const struct net_device *dev)
3624 {
3625 	return test_bit(__LINK_STATE_START, &dev->state);
3626 }
3627 
3628 /*
3629  * Routines to manage the subqueues on a device.  We only need start,
3630  * stop, and a check if it's stopped.  All other device management is
3631  * done at the overall netdevice level.
3632  * Also test the device if we're multiqueue.
3633  */
3634 
3635 /**
3636  *	netif_start_subqueue - allow sending packets on subqueue
3637  *	@dev: network device
3638  *	@queue_index: sub queue index
3639  *
3640  * Start individual transmit queue of a device with multiple transmit queues.
3641  */
3642 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3643 {
3644 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3645 
3646 	netif_tx_start_queue(txq);
3647 }
3648 
3649 /**
3650  *	netif_stop_subqueue - stop sending packets on subqueue
3651  *	@dev: network device
3652  *	@queue_index: sub queue index
3653  *
3654  * Stop individual transmit queue of a device with multiple transmit queues.
3655  */
3656 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3657 {
3658 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3659 	netif_tx_stop_queue(txq);
3660 }
3661 
3662 /**
3663  *	__netif_subqueue_stopped - test status of subqueue
3664  *	@dev: network device
3665  *	@queue_index: sub queue index
3666  *
3667  * Check individual transmit queue of a device with multiple transmit queues.
3668  */
3669 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3670 					    u16 queue_index)
3671 {
3672 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3673 
3674 	return netif_tx_queue_stopped(txq);
3675 }
3676 
3677 /**
3678  *	netif_subqueue_stopped - test status of subqueue
3679  *	@dev: network device
3680  *	@skb: sub queue buffer pointer
3681  *
3682  * Check individual transmit queue of a device with multiple transmit queues.
3683  */
3684 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3685 					  struct sk_buff *skb)
3686 {
3687 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3688 }
3689 
3690 /**
3691  *	netif_wake_subqueue - allow sending packets on subqueue
3692  *	@dev: network device
3693  *	@queue_index: sub queue index
3694  *
3695  * Resume individual transmit queue of a device with multiple transmit queues.
3696  */
3697 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3698 {
3699 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3700 
3701 	netif_tx_wake_queue(txq);
3702 }
3703 
3704 #ifdef CONFIG_XPS
3705 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3706 			u16 index);
3707 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3708 			  u16 index, enum xps_map_type type);
3709 
3710 /**
3711  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3712  *	@j: CPU/Rx queue index
3713  *	@mask: bitmask of all cpus/rx queues
3714  *	@nr_bits: number of bits in the bitmask
3715  *
3716  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3717  */
3718 static inline bool netif_attr_test_mask(unsigned long j,
3719 					const unsigned long *mask,
3720 					unsigned int nr_bits)
3721 {
3722 	cpu_max_bits_warn(j, nr_bits);
3723 	return test_bit(j, mask);
3724 }
3725 
3726 /**
3727  *	netif_attr_test_online - Test for online CPU/Rx queue
3728  *	@j: CPU/Rx queue index
3729  *	@online_mask: bitmask for CPUs/Rx queues that are online
3730  *	@nr_bits: number of bits in the bitmask
3731  *
3732  * Returns true if a CPU/Rx queue is online.
3733  */
3734 static inline bool netif_attr_test_online(unsigned long j,
3735 					  const unsigned long *online_mask,
3736 					  unsigned int nr_bits)
3737 {
3738 	cpu_max_bits_warn(j, nr_bits);
3739 
3740 	if (online_mask)
3741 		return test_bit(j, online_mask);
3742 
3743 	return (j < nr_bits);
3744 }
3745 
3746 /**
3747  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3748  *	@n: CPU/Rx queue index
3749  *	@srcp: the cpumask/Rx queue mask pointer
3750  *	@nr_bits: number of bits in the bitmask
3751  *
3752  * Returns >= nr_bits if no further CPUs/Rx queues set.
3753  */
3754 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3755 					       unsigned int nr_bits)
3756 {
3757 	/* -1 is a legal arg here. */
3758 	if (n != -1)
3759 		cpu_max_bits_warn(n, nr_bits);
3760 
3761 	if (srcp)
3762 		return find_next_bit(srcp, nr_bits, n + 1);
3763 
3764 	return n + 1;
3765 }
3766 
3767 /**
3768  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3769  *	@n: CPU/Rx queue index
3770  *	@src1p: the first CPUs/Rx queues mask pointer
3771  *	@src2p: the second CPUs/Rx queues mask pointer
3772  *	@nr_bits: number of bits in the bitmask
3773  *
3774  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3775  */
3776 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3777 					  const unsigned long *src2p,
3778 					  unsigned int nr_bits)
3779 {
3780 	/* -1 is a legal arg here. */
3781 	if (n != -1)
3782 		cpu_max_bits_warn(n, nr_bits);
3783 
3784 	if (src1p && src2p)
3785 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3786 	else if (src1p)
3787 		return find_next_bit(src1p, nr_bits, n + 1);
3788 	else if (src2p)
3789 		return find_next_bit(src2p, nr_bits, n + 1);
3790 
3791 	return n + 1;
3792 }
3793 #else
3794 static inline int netif_set_xps_queue(struct net_device *dev,
3795 				      const struct cpumask *mask,
3796 				      u16 index)
3797 {
3798 	return 0;
3799 }
3800 
3801 static inline int __netif_set_xps_queue(struct net_device *dev,
3802 					const unsigned long *mask,
3803 					u16 index, enum xps_map_type type)
3804 {
3805 	return 0;
3806 }
3807 #endif
3808 
3809 /**
3810  *	netif_is_multiqueue - test if device has multiple transmit queues
3811  *	@dev: network device
3812  *
3813  * Check if device has multiple transmit queues
3814  */
3815 static inline bool netif_is_multiqueue(const struct net_device *dev)
3816 {
3817 	return dev->num_tx_queues > 1;
3818 }
3819 
3820 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3821 
3822 #ifdef CONFIG_SYSFS
3823 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3824 #else
3825 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3826 						unsigned int rxqs)
3827 {
3828 	dev->real_num_rx_queues = rxqs;
3829 	return 0;
3830 }
3831 #endif
3832 int netif_set_real_num_queues(struct net_device *dev,
3833 			      unsigned int txq, unsigned int rxq);
3834 
3835 int netif_get_num_default_rss_queues(void);
3836 
3837 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3838 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3839 
3840 /*
3841  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3842  * interrupt context or with hardware interrupts being disabled.
3843  * (in_hardirq() || irqs_disabled())
3844  *
3845  * We provide four helpers that can be used in following contexts :
3846  *
3847  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3848  *  replacing kfree_skb(skb)
3849  *
3850  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3851  *  Typically used in place of consume_skb(skb) in TX completion path
3852  *
3853  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3854  *  replacing kfree_skb(skb)
3855  *
3856  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3857  *  and consumed a packet. Used in place of consume_skb(skb)
3858  */
3859 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3860 {
3861 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3862 }
3863 
3864 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3865 {
3866 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3867 }
3868 
3869 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3870 {
3871 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3872 }
3873 
3874 static inline void dev_consume_skb_any(struct sk_buff *skb)
3875 {
3876 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3877 }
3878 
3879 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3880 			     struct bpf_prog *xdp_prog);
3881 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3882 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3883 int netif_rx(struct sk_buff *skb);
3884 int __netif_rx(struct sk_buff *skb);
3885 
3886 int netif_receive_skb(struct sk_buff *skb);
3887 int netif_receive_skb_core(struct sk_buff *skb);
3888 void netif_receive_skb_list_internal(struct list_head *head);
3889 void netif_receive_skb_list(struct list_head *head);
3890 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3891 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3892 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3893 void napi_get_frags_check(struct napi_struct *napi);
3894 gro_result_t napi_gro_frags(struct napi_struct *napi);
3895 
3896 static inline void napi_free_frags(struct napi_struct *napi)
3897 {
3898 	kfree_skb(napi->skb);
3899 	napi->skb = NULL;
3900 }
3901 
3902 bool netdev_is_rx_handler_busy(struct net_device *dev);
3903 int netdev_rx_handler_register(struct net_device *dev,
3904 			       rx_handler_func_t *rx_handler,
3905 			       void *rx_handler_data);
3906 void netdev_rx_handler_unregister(struct net_device *dev);
3907 
3908 bool dev_valid_name(const char *name);
3909 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3910 {
3911 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3912 }
3913 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3914 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3915 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3916 		void __user *data, bool *need_copyout);
3917 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3918 int generic_hwtstamp_get_lower(struct net_device *dev,
3919 			       struct kernel_hwtstamp_config *kernel_cfg);
3920 int generic_hwtstamp_set_lower(struct net_device *dev,
3921 			       struct kernel_hwtstamp_config *kernel_cfg,
3922 			       struct netlink_ext_ack *extack);
3923 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3924 unsigned int dev_get_flags(const struct net_device *);
3925 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3926 		       struct netlink_ext_ack *extack);
3927 int dev_change_flags(struct net_device *dev, unsigned int flags,
3928 		     struct netlink_ext_ack *extack);
3929 int dev_set_alias(struct net_device *, const char *, size_t);
3930 int dev_get_alias(const struct net_device *, char *, size_t);
3931 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3932 			       const char *pat, int new_ifindex);
3933 static inline
3934 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3935 			     const char *pat)
3936 {
3937 	return __dev_change_net_namespace(dev, net, pat, 0);
3938 }
3939 int __dev_set_mtu(struct net_device *, int);
3940 int dev_set_mtu(struct net_device *, int);
3941 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3942 			      struct netlink_ext_ack *extack);
3943 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3944 			struct netlink_ext_ack *extack);
3945 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3946 			     struct netlink_ext_ack *extack);
3947 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3948 int dev_get_port_parent_id(struct net_device *dev,
3949 			   struct netdev_phys_item_id *ppid, bool recurse);
3950 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3951 
3952 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3953 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3954 				    struct netdev_queue *txq, int *ret);
3955 
3956 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3957 u8 dev_xdp_prog_count(struct net_device *dev);
3958 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
3959 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3960 
3961 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
3962 
3963 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3964 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3965 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3966 bool is_skb_forwardable(const struct net_device *dev,
3967 			const struct sk_buff *skb);
3968 
3969 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3970 						 const struct sk_buff *skb,
3971 						 const bool check_mtu)
3972 {
3973 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3974 	unsigned int len;
3975 
3976 	if (!(dev->flags & IFF_UP))
3977 		return false;
3978 
3979 	if (!check_mtu)
3980 		return true;
3981 
3982 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3983 	if (skb->len <= len)
3984 		return true;
3985 
3986 	/* if TSO is enabled, we don't care about the length as the packet
3987 	 * could be forwarded without being segmented before
3988 	 */
3989 	if (skb_is_gso(skb))
3990 		return true;
3991 
3992 	return false;
3993 }
3994 
3995 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
3996 
3997 #define DEV_CORE_STATS_INC(FIELD)						\
3998 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3999 {										\
4000 	netdev_core_stats_inc(dev,						\
4001 			offsetof(struct net_device_core_stats, FIELD));		\
4002 }
4003 DEV_CORE_STATS_INC(rx_dropped)
4004 DEV_CORE_STATS_INC(tx_dropped)
4005 DEV_CORE_STATS_INC(rx_nohandler)
4006 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4007 #undef DEV_CORE_STATS_INC
4008 
4009 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4010 					       struct sk_buff *skb,
4011 					       const bool check_mtu)
4012 {
4013 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4014 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4015 		dev_core_stats_rx_dropped_inc(dev);
4016 		kfree_skb(skb);
4017 		return NET_RX_DROP;
4018 	}
4019 
4020 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4021 	skb->priority = 0;
4022 	return 0;
4023 }
4024 
4025 bool dev_nit_active(struct net_device *dev);
4026 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4027 
4028 static inline void __dev_put(struct net_device *dev)
4029 {
4030 	if (dev) {
4031 #ifdef CONFIG_PCPU_DEV_REFCNT
4032 		this_cpu_dec(*dev->pcpu_refcnt);
4033 #else
4034 		refcount_dec(&dev->dev_refcnt);
4035 #endif
4036 	}
4037 }
4038 
4039 static inline void __dev_hold(struct net_device *dev)
4040 {
4041 	if (dev) {
4042 #ifdef CONFIG_PCPU_DEV_REFCNT
4043 		this_cpu_inc(*dev->pcpu_refcnt);
4044 #else
4045 		refcount_inc(&dev->dev_refcnt);
4046 #endif
4047 	}
4048 }
4049 
4050 static inline void __netdev_tracker_alloc(struct net_device *dev,
4051 					  netdevice_tracker *tracker,
4052 					  gfp_t gfp)
4053 {
4054 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4055 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4056 #endif
4057 }
4058 
4059 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4060  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4061  */
4062 static inline void netdev_tracker_alloc(struct net_device *dev,
4063 					netdevice_tracker *tracker, gfp_t gfp)
4064 {
4065 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4066 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4067 	__netdev_tracker_alloc(dev, tracker, gfp);
4068 #endif
4069 }
4070 
4071 static inline void netdev_tracker_free(struct net_device *dev,
4072 				       netdevice_tracker *tracker)
4073 {
4074 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4075 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4076 #endif
4077 }
4078 
4079 static inline void netdev_hold(struct net_device *dev,
4080 			       netdevice_tracker *tracker, gfp_t gfp)
4081 {
4082 	if (dev) {
4083 		__dev_hold(dev);
4084 		__netdev_tracker_alloc(dev, tracker, gfp);
4085 	}
4086 }
4087 
4088 static inline void netdev_put(struct net_device *dev,
4089 			      netdevice_tracker *tracker)
4090 {
4091 	if (dev) {
4092 		netdev_tracker_free(dev, tracker);
4093 		__dev_put(dev);
4094 	}
4095 }
4096 
4097 /**
4098  *	dev_hold - get reference to device
4099  *	@dev: network device
4100  *
4101  * Hold reference to device to keep it from being freed.
4102  * Try using netdev_hold() instead.
4103  */
4104 static inline void dev_hold(struct net_device *dev)
4105 {
4106 	netdev_hold(dev, NULL, GFP_ATOMIC);
4107 }
4108 
4109 /**
4110  *	dev_put - release reference to device
4111  *	@dev: network device
4112  *
4113  * Release reference to device to allow it to be freed.
4114  * Try using netdev_put() instead.
4115  */
4116 static inline void dev_put(struct net_device *dev)
4117 {
4118 	netdev_put(dev, NULL);
4119 }
4120 
4121 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4122 
4123 static inline void netdev_ref_replace(struct net_device *odev,
4124 				      struct net_device *ndev,
4125 				      netdevice_tracker *tracker,
4126 				      gfp_t gfp)
4127 {
4128 	if (odev)
4129 		netdev_tracker_free(odev, tracker);
4130 
4131 	__dev_hold(ndev);
4132 	__dev_put(odev);
4133 
4134 	if (ndev)
4135 		__netdev_tracker_alloc(ndev, tracker, gfp);
4136 }
4137 
4138 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4139  * and _off may be called from IRQ context, but it is caller
4140  * who is responsible for serialization of these calls.
4141  *
4142  * The name carrier is inappropriate, these functions should really be
4143  * called netif_lowerlayer_*() because they represent the state of any
4144  * kind of lower layer not just hardware media.
4145  */
4146 void linkwatch_fire_event(struct net_device *dev);
4147 
4148 /**
4149  * linkwatch_sync_dev - sync linkwatch for the given device
4150  * @dev: network device to sync linkwatch for
4151  *
4152  * Sync linkwatch for the given device, removing it from the
4153  * pending work list (if queued).
4154  */
4155 void linkwatch_sync_dev(struct net_device *dev);
4156 
4157 /**
4158  *	netif_carrier_ok - test if carrier present
4159  *	@dev: network device
4160  *
4161  * Check if carrier is present on device
4162  */
4163 static inline bool netif_carrier_ok(const struct net_device *dev)
4164 {
4165 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4166 }
4167 
4168 unsigned long dev_trans_start(struct net_device *dev);
4169 
4170 void __netdev_watchdog_up(struct net_device *dev);
4171 
4172 void netif_carrier_on(struct net_device *dev);
4173 void netif_carrier_off(struct net_device *dev);
4174 void netif_carrier_event(struct net_device *dev);
4175 
4176 /**
4177  *	netif_dormant_on - mark device as dormant.
4178  *	@dev: network device
4179  *
4180  * Mark device as dormant (as per RFC2863).
4181  *
4182  * The dormant state indicates that the relevant interface is not
4183  * actually in a condition to pass packets (i.e., it is not 'up') but is
4184  * in a "pending" state, waiting for some external event.  For "on-
4185  * demand" interfaces, this new state identifies the situation where the
4186  * interface is waiting for events to place it in the up state.
4187  */
4188 static inline void netif_dormant_on(struct net_device *dev)
4189 {
4190 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4191 		linkwatch_fire_event(dev);
4192 }
4193 
4194 /**
4195  *	netif_dormant_off - set device as not dormant.
4196  *	@dev: network device
4197  *
4198  * Device is not in dormant state.
4199  */
4200 static inline void netif_dormant_off(struct net_device *dev)
4201 {
4202 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4203 		linkwatch_fire_event(dev);
4204 }
4205 
4206 /**
4207  *	netif_dormant - test if device is dormant
4208  *	@dev: network device
4209  *
4210  * Check if device is dormant.
4211  */
4212 static inline bool netif_dormant(const struct net_device *dev)
4213 {
4214 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4215 }
4216 
4217 
4218 /**
4219  *	netif_testing_on - mark device as under test.
4220  *	@dev: network device
4221  *
4222  * Mark device as under test (as per RFC2863).
4223  *
4224  * The testing state indicates that some test(s) must be performed on
4225  * the interface. After completion, of the test, the interface state
4226  * will change to up, dormant, or down, as appropriate.
4227  */
4228 static inline void netif_testing_on(struct net_device *dev)
4229 {
4230 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4231 		linkwatch_fire_event(dev);
4232 }
4233 
4234 /**
4235  *	netif_testing_off - set device as not under test.
4236  *	@dev: network device
4237  *
4238  * Device is not in testing state.
4239  */
4240 static inline void netif_testing_off(struct net_device *dev)
4241 {
4242 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4243 		linkwatch_fire_event(dev);
4244 }
4245 
4246 /**
4247  *	netif_testing - test if device is under test
4248  *	@dev: network device
4249  *
4250  * Check if device is under test
4251  */
4252 static inline bool netif_testing(const struct net_device *dev)
4253 {
4254 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4255 }
4256 
4257 
4258 /**
4259  *	netif_oper_up - test if device is operational
4260  *	@dev: network device
4261  *
4262  * Check if carrier is operational
4263  */
4264 static inline bool netif_oper_up(const struct net_device *dev)
4265 {
4266 	unsigned int operstate = READ_ONCE(dev->operstate);
4267 
4268 	return	operstate == IF_OPER_UP ||
4269 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4270 }
4271 
4272 /**
4273  *	netif_device_present - is device available or removed
4274  *	@dev: network device
4275  *
4276  * Check if device has not been removed from system.
4277  */
4278 static inline bool netif_device_present(const struct net_device *dev)
4279 {
4280 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4281 }
4282 
4283 void netif_device_detach(struct net_device *dev);
4284 
4285 void netif_device_attach(struct net_device *dev);
4286 
4287 /*
4288  * Network interface message level settings
4289  */
4290 
4291 enum {
4292 	NETIF_MSG_DRV_BIT,
4293 	NETIF_MSG_PROBE_BIT,
4294 	NETIF_MSG_LINK_BIT,
4295 	NETIF_MSG_TIMER_BIT,
4296 	NETIF_MSG_IFDOWN_BIT,
4297 	NETIF_MSG_IFUP_BIT,
4298 	NETIF_MSG_RX_ERR_BIT,
4299 	NETIF_MSG_TX_ERR_BIT,
4300 	NETIF_MSG_TX_QUEUED_BIT,
4301 	NETIF_MSG_INTR_BIT,
4302 	NETIF_MSG_TX_DONE_BIT,
4303 	NETIF_MSG_RX_STATUS_BIT,
4304 	NETIF_MSG_PKTDATA_BIT,
4305 	NETIF_MSG_HW_BIT,
4306 	NETIF_MSG_WOL_BIT,
4307 
4308 	/* When you add a new bit above, update netif_msg_class_names array
4309 	 * in net/ethtool/common.c
4310 	 */
4311 	NETIF_MSG_CLASS_COUNT,
4312 };
4313 /* Both ethtool_ops interface and internal driver implementation use u32 */
4314 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4315 
4316 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4317 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4318 
4319 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4320 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4321 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4322 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4323 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4324 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4325 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4326 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4327 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4328 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4329 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4330 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4331 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4332 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4333 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4334 
4335 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4336 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4337 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4338 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4339 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4340 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4341 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4342 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4343 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4344 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4345 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4346 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4347 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4348 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4349 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4350 
4351 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4352 {
4353 	/* use default */
4354 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4355 		return default_msg_enable_bits;
4356 	if (debug_value == 0)	/* no output */
4357 		return 0;
4358 	/* set low N bits */
4359 	return (1U << debug_value) - 1;
4360 }
4361 
4362 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4363 {
4364 	spin_lock(&txq->_xmit_lock);
4365 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4366 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4367 }
4368 
4369 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4370 {
4371 	__acquire(&txq->_xmit_lock);
4372 	return true;
4373 }
4374 
4375 static inline void __netif_tx_release(struct netdev_queue *txq)
4376 {
4377 	__release(&txq->_xmit_lock);
4378 }
4379 
4380 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4381 {
4382 	spin_lock_bh(&txq->_xmit_lock);
4383 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4384 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4385 }
4386 
4387 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4388 {
4389 	bool ok = spin_trylock(&txq->_xmit_lock);
4390 
4391 	if (likely(ok)) {
4392 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4393 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4394 	}
4395 	return ok;
4396 }
4397 
4398 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4399 {
4400 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4401 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4402 	spin_unlock(&txq->_xmit_lock);
4403 }
4404 
4405 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4406 {
4407 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4408 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4409 	spin_unlock_bh(&txq->_xmit_lock);
4410 }
4411 
4412 /*
4413  * txq->trans_start can be read locklessly from dev_watchdog()
4414  */
4415 static inline void txq_trans_update(struct netdev_queue *txq)
4416 {
4417 	if (txq->xmit_lock_owner != -1)
4418 		WRITE_ONCE(txq->trans_start, jiffies);
4419 }
4420 
4421 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4422 {
4423 	unsigned long now = jiffies;
4424 
4425 	if (READ_ONCE(txq->trans_start) != now)
4426 		WRITE_ONCE(txq->trans_start, now);
4427 }
4428 
4429 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4430 static inline void netif_trans_update(struct net_device *dev)
4431 {
4432 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4433 
4434 	txq_trans_cond_update(txq);
4435 }
4436 
4437 /**
4438  *	netif_tx_lock - grab network device transmit lock
4439  *	@dev: network device
4440  *
4441  * Get network device transmit lock
4442  */
4443 void netif_tx_lock(struct net_device *dev);
4444 
4445 static inline void netif_tx_lock_bh(struct net_device *dev)
4446 {
4447 	local_bh_disable();
4448 	netif_tx_lock(dev);
4449 }
4450 
4451 void netif_tx_unlock(struct net_device *dev);
4452 
4453 static inline void netif_tx_unlock_bh(struct net_device *dev)
4454 {
4455 	netif_tx_unlock(dev);
4456 	local_bh_enable();
4457 }
4458 
4459 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4460 	if (!(dev)->lltx) {				\
4461 		__netif_tx_lock(txq, cpu);		\
4462 	} else {					\
4463 		__netif_tx_acquire(txq);		\
4464 	}						\
4465 }
4466 
4467 #define HARD_TX_TRYLOCK(dev, txq)			\
4468 	(!(dev)->lltx ?					\
4469 		__netif_tx_trylock(txq) :		\
4470 		__netif_tx_acquire(txq))
4471 
4472 #define HARD_TX_UNLOCK(dev, txq) {			\
4473 	if (!(dev)->lltx) {				\
4474 		__netif_tx_unlock(txq);			\
4475 	} else {					\
4476 		__netif_tx_release(txq);		\
4477 	}						\
4478 }
4479 
4480 static inline void netif_tx_disable(struct net_device *dev)
4481 {
4482 	unsigned int i;
4483 	int cpu;
4484 
4485 	local_bh_disable();
4486 	cpu = smp_processor_id();
4487 	spin_lock(&dev->tx_global_lock);
4488 	for (i = 0; i < dev->num_tx_queues; i++) {
4489 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4490 
4491 		__netif_tx_lock(txq, cpu);
4492 		netif_tx_stop_queue(txq);
4493 		__netif_tx_unlock(txq);
4494 	}
4495 	spin_unlock(&dev->tx_global_lock);
4496 	local_bh_enable();
4497 }
4498 
4499 static inline void netif_addr_lock(struct net_device *dev)
4500 {
4501 	unsigned char nest_level = 0;
4502 
4503 #ifdef CONFIG_LOCKDEP
4504 	nest_level = dev->nested_level;
4505 #endif
4506 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4507 }
4508 
4509 static inline void netif_addr_lock_bh(struct net_device *dev)
4510 {
4511 	unsigned char nest_level = 0;
4512 
4513 #ifdef CONFIG_LOCKDEP
4514 	nest_level = dev->nested_level;
4515 #endif
4516 	local_bh_disable();
4517 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4518 }
4519 
4520 static inline void netif_addr_unlock(struct net_device *dev)
4521 {
4522 	spin_unlock(&dev->addr_list_lock);
4523 }
4524 
4525 static inline void netif_addr_unlock_bh(struct net_device *dev)
4526 {
4527 	spin_unlock_bh(&dev->addr_list_lock);
4528 }
4529 
4530 /*
4531  * dev_addrs walker. Should be used only for read access. Call with
4532  * rcu_read_lock held.
4533  */
4534 #define for_each_dev_addr(dev, ha) \
4535 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4536 
4537 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4538 
4539 void ether_setup(struct net_device *dev);
4540 
4541 /* Allocate dummy net_device */
4542 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4543 
4544 /* Support for loadable net-drivers */
4545 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4546 				    unsigned char name_assign_type,
4547 				    void (*setup)(struct net_device *),
4548 				    unsigned int txqs, unsigned int rxqs);
4549 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4550 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4551 
4552 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4553 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4554 			 count)
4555 
4556 int register_netdev(struct net_device *dev);
4557 void unregister_netdev(struct net_device *dev);
4558 
4559 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4560 
4561 /* General hardware address lists handling functions */
4562 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4563 		   struct netdev_hw_addr_list *from_list, int addr_len);
4564 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4565 		      struct netdev_hw_addr_list *from_list, int addr_len);
4566 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4567 		       struct net_device *dev,
4568 		       int (*sync)(struct net_device *, const unsigned char *),
4569 		       int (*unsync)(struct net_device *,
4570 				     const unsigned char *));
4571 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4572 			   struct net_device *dev,
4573 			   int (*sync)(struct net_device *,
4574 				       const unsigned char *, int),
4575 			   int (*unsync)(struct net_device *,
4576 					 const unsigned char *, int));
4577 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4578 			      struct net_device *dev,
4579 			      int (*unsync)(struct net_device *,
4580 					    const unsigned char *, int));
4581 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4582 			  struct net_device *dev,
4583 			  int (*unsync)(struct net_device *,
4584 					const unsigned char *));
4585 void __hw_addr_init(struct netdev_hw_addr_list *list);
4586 
4587 /* Functions used for device addresses handling */
4588 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4589 		  const void *addr, size_t len);
4590 
4591 static inline void
4592 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4593 {
4594 	dev_addr_mod(dev, 0, addr, len);
4595 }
4596 
4597 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4598 {
4599 	__dev_addr_set(dev, addr, dev->addr_len);
4600 }
4601 
4602 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4603 		 unsigned char addr_type);
4604 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4605 		 unsigned char addr_type);
4606 
4607 /* Functions used for unicast addresses handling */
4608 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4609 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4610 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4611 int dev_uc_sync(struct net_device *to, struct net_device *from);
4612 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4613 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4614 void dev_uc_flush(struct net_device *dev);
4615 void dev_uc_init(struct net_device *dev);
4616 
4617 /**
4618  *  __dev_uc_sync - Synchronize device's unicast list
4619  *  @dev:  device to sync
4620  *  @sync: function to call if address should be added
4621  *  @unsync: function to call if address should be removed
4622  *
4623  *  Add newly added addresses to the interface, and release
4624  *  addresses that have been deleted.
4625  */
4626 static inline int __dev_uc_sync(struct net_device *dev,
4627 				int (*sync)(struct net_device *,
4628 					    const unsigned char *),
4629 				int (*unsync)(struct net_device *,
4630 					      const unsigned char *))
4631 {
4632 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4633 }
4634 
4635 /**
4636  *  __dev_uc_unsync - Remove synchronized addresses from device
4637  *  @dev:  device to sync
4638  *  @unsync: function to call if address should be removed
4639  *
4640  *  Remove all addresses that were added to the device by dev_uc_sync().
4641  */
4642 static inline void __dev_uc_unsync(struct net_device *dev,
4643 				   int (*unsync)(struct net_device *,
4644 						 const unsigned char *))
4645 {
4646 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4647 }
4648 
4649 /* Functions used for multicast addresses handling */
4650 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4651 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4652 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4653 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4654 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4655 int dev_mc_sync(struct net_device *to, struct net_device *from);
4656 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4657 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4658 void dev_mc_flush(struct net_device *dev);
4659 void dev_mc_init(struct net_device *dev);
4660 
4661 /**
4662  *  __dev_mc_sync - Synchronize device's multicast list
4663  *  @dev:  device to sync
4664  *  @sync: function to call if address should be added
4665  *  @unsync: function to call if address should be removed
4666  *
4667  *  Add newly added addresses to the interface, and release
4668  *  addresses that have been deleted.
4669  */
4670 static inline int __dev_mc_sync(struct net_device *dev,
4671 				int (*sync)(struct net_device *,
4672 					    const unsigned char *),
4673 				int (*unsync)(struct net_device *,
4674 					      const unsigned char *))
4675 {
4676 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4677 }
4678 
4679 /**
4680  *  __dev_mc_unsync - Remove synchronized addresses from device
4681  *  @dev:  device to sync
4682  *  @unsync: function to call if address should be removed
4683  *
4684  *  Remove all addresses that were added to the device by dev_mc_sync().
4685  */
4686 static inline void __dev_mc_unsync(struct net_device *dev,
4687 				   int (*unsync)(struct net_device *,
4688 						 const unsigned char *))
4689 {
4690 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4691 }
4692 
4693 /* Functions used for secondary unicast and multicast support */
4694 void dev_set_rx_mode(struct net_device *dev);
4695 int dev_set_promiscuity(struct net_device *dev, int inc);
4696 int dev_set_allmulti(struct net_device *dev, int inc);
4697 void netdev_state_change(struct net_device *dev);
4698 void __netdev_notify_peers(struct net_device *dev);
4699 void netdev_notify_peers(struct net_device *dev);
4700 void netdev_features_change(struct net_device *dev);
4701 /* Load a device via the kmod */
4702 void dev_load(struct net *net, const char *name);
4703 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4704 					struct rtnl_link_stats64 *storage);
4705 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4706 			     const struct net_device_stats *netdev_stats);
4707 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4708 			   const struct pcpu_sw_netstats __percpu *netstats);
4709 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4710 
4711 enum {
4712 	NESTED_SYNC_IMM_BIT,
4713 	NESTED_SYNC_TODO_BIT,
4714 };
4715 
4716 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4717 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4718 
4719 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4720 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4721 
4722 struct netdev_nested_priv {
4723 	unsigned char flags;
4724 	void *data;
4725 };
4726 
4727 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4728 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4729 						     struct list_head **iter);
4730 
4731 /* iterate through upper list, must be called under RCU read lock */
4732 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4733 	for (iter = &(dev)->adj_list.upper, \
4734 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4735 	     updev; \
4736 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4737 
4738 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4739 				  int (*fn)(struct net_device *upper_dev,
4740 					    struct netdev_nested_priv *priv),
4741 				  struct netdev_nested_priv *priv);
4742 
4743 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4744 				  struct net_device *upper_dev);
4745 
4746 bool netdev_has_any_upper_dev(struct net_device *dev);
4747 
4748 void *netdev_lower_get_next_private(struct net_device *dev,
4749 				    struct list_head **iter);
4750 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4751 					struct list_head **iter);
4752 
4753 #define netdev_for_each_lower_private(dev, priv, iter) \
4754 	for (iter = (dev)->adj_list.lower.next, \
4755 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4756 	     priv; \
4757 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4758 
4759 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4760 	for (iter = &(dev)->adj_list.lower, \
4761 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4762 	     priv; \
4763 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4764 
4765 void *netdev_lower_get_next(struct net_device *dev,
4766 				struct list_head **iter);
4767 
4768 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4769 	for (iter = (dev)->adj_list.lower.next, \
4770 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4771 	     ldev; \
4772 	     ldev = netdev_lower_get_next(dev, &(iter)))
4773 
4774 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4775 					     struct list_head **iter);
4776 int netdev_walk_all_lower_dev(struct net_device *dev,
4777 			      int (*fn)(struct net_device *lower_dev,
4778 					struct netdev_nested_priv *priv),
4779 			      struct netdev_nested_priv *priv);
4780 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4781 				  int (*fn)(struct net_device *lower_dev,
4782 					    struct netdev_nested_priv *priv),
4783 				  struct netdev_nested_priv *priv);
4784 
4785 void *netdev_adjacent_get_private(struct list_head *adj_list);
4786 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4787 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4788 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4789 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4790 			  struct netlink_ext_ack *extack);
4791 int netdev_master_upper_dev_link(struct net_device *dev,
4792 				 struct net_device *upper_dev,
4793 				 void *upper_priv, void *upper_info,
4794 				 struct netlink_ext_ack *extack);
4795 void netdev_upper_dev_unlink(struct net_device *dev,
4796 			     struct net_device *upper_dev);
4797 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4798 				   struct net_device *new_dev,
4799 				   struct net_device *dev,
4800 				   struct netlink_ext_ack *extack);
4801 void netdev_adjacent_change_commit(struct net_device *old_dev,
4802 				   struct net_device *new_dev,
4803 				   struct net_device *dev);
4804 void netdev_adjacent_change_abort(struct net_device *old_dev,
4805 				  struct net_device *new_dev,
4806 				  struct net_device *dev);
4807 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4808 void *netdev_lower_dev_get_private(struct net_device *dev,
4809 				   struct net_device *lower_dev);
4810 void netdev_lower_state_changed(struct net_device *lower_dev,
4811 				void *lower_state_info);
4812 
4813 /* RSS keys are 40 or 52 bytes long */
4814 #define NETDEV_RSS_KEY_LEN 52
4815 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4816 void netdev_rss_key_fill(void *buffer, size_t len);
4817 
4818 int skb_checksum_help(struct sk_buff *skb);
4819 int skb_crc32c_csum_help(struct sk_buff *skb);
4820 int skb_csum_hwoffload_help(struct sk_buff *skb,
4821 			    const netdev_features_t features);
4822 
4823 struct netdev_bonding_info {
4824 	ifslave	slave;
4825 	ifbond	master;
4826 };
4827 
4828 struct netdev_notifier_bonding_info {
4829 	struct netdev_notifier_info info; /* must be first */
4830 	struct netdev_bonding_info  bonding_info;
4831 };
4832 
4833 void netdev_bonding_info_change(struct net_device *dev,
4834 				struct netdev_bonding_info *bonding_info);
4835 
4836 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4837 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4838 #else
4839 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4840 				  const void *data)
4841 {
4842 }
4843 #endif
4844 
4845 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4846 
4847 static inline bool can_checksum_protocol(netdev_features_t features,
4848 					 __be16 protocol)
4849 {
4850 	if (protocol == htons(ETH_P_FCOE))
4851 		return !!(features & NETIF_F_FCOE_CRC);
4852 
4853 	/* Assume this is an IP checksum (not SCTP CRC) */
4854 
4855 	if (features & NETIF_F_HW_CSUM) {
4856 		/* Can checksum everything */
4857 		return true;
4858 	}
4859 
4860 	switch (protocol) {
4861 	case htons(ETH_P_IP):
4862 		return !!(features & NETIF_F_IP_CSUM);
4863 	case htons(ETH_P_IPV6):
4864 		return !!(features & NETIF_F_IPV6_CSUM);
4865 	default:
4866 		return false;
4867 	}
4868 }
4869 
4870 #ifdef CONFIG_BUG
4871 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4872 #else
4873 static inline void netdev_rx_csum_fault(struct net_device *dev,
4874 					struct sk_buff *skb)
4875 {
4876 }
4877 #endif
4878 /* rx skb timestamps */
4879 void net_enable_timestamp(void);
4880 void net_disable_timestamp(void);
4881 
4882 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4883 					const struct skb_shared_hwtstamps *hwtstamps,
4884 					bool cycles)
4885 {
4886 	const struct net_device_ops *ops = dev->netdev_ops;
4887 
4888 	if (ops->ndo_get_tstamp)
4889 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4890 
4891 	return hwtstamps->hwtstamp;
4892 }
4893 
4894 #ifndef CONFIG_PREEMPT_RT
4895 static inline void netdev_xmit_set_more(bool more)
4896 {
4897 	__this_cpu_write(softnet_data.xmit.more, more);
4898 }
4899 
4900 static inline bool netdev_xmit_more(void)
4901 {
4902 	return __this_cpu_read(softnet_data.xmit.more);
4903 }
4904 #else
4905 static inline void netdev_xmit_set_more(bool more)
4906 {
4907 	current->net_xmit.more = more;
4908 }
4909 
4910 static inline bool netdev_xmit_more(void)
4911 {
4912 	return current->net_xmit.more;
4913 }
4914 #endif
4915 
4916 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4917 					      struct sk_buff *skb, struct net_device *dev,
4918 					      bool more)
4919 {
4920 	netdev_xmit_set_more(more);
4921 	return ops->ndo_start_xmit(skb, dev);
4922 }
4923 
4924 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4925 					    struct netdev_queue *txq, bool more)
4926 {
4927 	const struct net_device_ops *ops = dev->netdev_ops;
4928 	netdev_tx_t rc;
4929 
4930 	rc = __netdev_start_xmit(ops, skb, dev, more);
4931 	if (rc == NETDEV_TX_OK)
4932 		txq_trans_update(txq);
4933 
4934 	return rc;
4935 }
4936 
4937 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4938 				const void *ns);
4939 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4940 				 const void *ns);
4941 
4942 extern const struct kobj_ns_type_operations net_ns_type_operations;
4943 
4944 const char *netdev_drivername(const struct net_device *dev);
4945 
4946 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4947 							  netdev_features_t f2)
4948 {
4949 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4950 		if (f1 & NETIF_F_HW_CSUM)
4951 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4952 		else
4953 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4954 	}
4955 
4956 	return f1 & f2;
4957 }
4958 
4959 static inline netdev_features_t netdev_get_wanted_features(
4960 	struct net_device *dev)
4961 {
4962 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4963 }
4964 netdev_features_t netdev_increment_features(netdev_features_t all,
4965 	netdev_features_t one, netdev_features_t mask);
4966 
4967 /* Allow TSO being used on stacked device :
4968  * Performing the GSO segmentation before last device
4969  * is a performance improvement.
4970  */
4971 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4972 							netdev_features_t mask)
4973 {
4974 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4975 }
4976 
4977 int __netdev_update_features(struct net_device *dev);
4978 void netdev_update_features(struct net_device *dev);
4979 void netdev_change_features(struct net_device *dev);
4980 
4981 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4982 					struct net_device *dev);
4983 
4984 netdev_features_t passthru_features_check(struct sk_buff *skb,
4985 					  struct net_device *dev,
4986 					  netdev_features_t features);
4987 netdev_features_t netif_skb_features(struct sk_buff *skb);
4988 void skb_warn_bad_offload(const struct sk_buff *skb);
4989 
4990 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4991 {
4992 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4993 
4994 	/* check flags correspondence */
4995 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4996 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5002 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5003 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5004 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5005 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5006 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5007 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5008 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5009 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5010 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5011 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5012 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5013 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5014 
5015 	return (features & feature) == feature;
5016 }
5017 
5018 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5019 {
5020 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5021 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5022 }
5023 
5024 static inline bool netif_needs_gso(struct sk_buff *skb,
5025 				   netdev_features_t features)
5026 {
5027 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5028 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5029 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5030 }
5031 
5032 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5033 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5034 void netif_inherit_tso_max(struct net_device *to,
5035 			   const struct net_device *from);
5036 
5037 static inline unsigned int
5038 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5039 {
5040 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5041 	return skb->protocol == htons(ETH_P_IPV6) ?
5042 	       READ_ONCE(dev->gro_max_size) :
5043 	       READ_ONCE(dev->gro_ipv4_max_size);
5044 }
5045 
5046 static inline unsigned int
5047 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5048 {
5049 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5050 	return skb->protocol == htons(ETH_P_IPV6) ?
5051 	       READ_ONCE(dev->gso_max_size) :
5052 	       READ_ONCE(dev->gso_ipv4_max_size);
5053 }
5054 
5055 static inline bool netif_is_macsec(const struct net_device *dev)
5056 {
5057 	return dev->priv_flags & IFF_MACSEC;
5058 }
5059 
5060 static inline bool netif_is_macvlan(const struct net_device *dev)
5061 {
5062 	return dev->priv_flags & IFF_MACVLAN;
5063 }
5064 
5065 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5066 {
5067 	return dev->priv_flags & IFF_MACVLAN_PORT;
5068 }
5069 
5070 static inline bool netif_is_bond_master(const struct net_device *dev)
5071 {
5072 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5073 }
5074 
5075 static inline bool netif_is_bond_slave(const struct net_device *dev)
5076 {
5077 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5078 }
5079 
5080 static inline bool netif_supports_nofcs(struct net_device *dev)
5081 {
5082 	return dev->priv_flags & IFF_SUPP_NOFCS;
5083 }
5084 
5085 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5086 {
5087 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5088 }
5089 
5090 static inline bool netif_is_l3_master(const struct net_device *dev)
5091 {
5092 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5093 }
5094 
5095 static inline bool netif_is_l3_slave(const struct net_device *dev)
5096 {
5097 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5098 }
5099 
5100 static inline int dev_sdif(const struct net_device *dev)
5101 {
5102 #ifdef CONFIG_NET_L3_MASTER_DEV
5103 	if (netif_is_l3_slave(dev))
5104 		return dev->ifindex;
5105 #endif
5106 	return 0;
5107 }
5108 
5109 static inline bool netif_is_bridge_master(const struct net_device *dev)
5110 {
5111 	return dev->priv_flags & IFF_EBRIDGE;
5112 }
5113 
5114 static inline bool netif_is_bridge_port(const struct net_device *dev)
5115 {
5116 	return dev->priv_flags & IFF_BRIDGE_PORT;
5117 }
5118 
5119 static inline bool netif_is_ovs_master(const struct net_device *dev)
5120 {
5121 	return dev->priv_flags & IFF_OPENVSWITCH;
5122 }
5123 
5124 static inline bool netif_is_ovs_port(const struct net_device *dev)
5125 {
5126 	return dev->priv_flags & IFF_OVS_DATAPATH;
5127 }
5128 
5129 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5130 {
5131 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5132 }
5133 
5134 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5135 {
5136 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5137 }
5138 
5139 static inline bool netif_is_team_master(const struct net_device *dev)
5140 {
5141 	return dev->priv_flags & IFF_TEAM;
5142 }
5143 
5144 static inline bool netif_is_team_port(const struct net_device *dev)
5145 {
5146 	return dev->priv_flags & IFF_TEAM_PORT;
5147 }
5148 
5149 static inline bool netif_is_lag_master(const struct net_device *dev)
5150 {
5151 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5152 }
5153 
5154 static inline bool netif_is_lag_port(const struct net_device *dev)
5155 {
5156 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5157 }
5158 
5159 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5160 {
5161 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5162 }
5163 
5164 static inline bool netif_is_failover(const struct net_device *dev)
5165 {
5166 	return dev->priv_flags & IFF_FAILOVER;
5167 }
5168 
5169 static inline bool netif_is_failover_slave(const struct net_device *dev)
5170 {
5171 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5172 }
5173 
5174 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5175 static inline void netif_keep_dst(struct net_device *dev)
5176 {
5177 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5178 }
5179 
5180 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5181 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5182 {
5183 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5184 	return netif_is_macsec(dev);
5185 }
5186 
5187 extern struct pernet_operations __net_initdata loopback_net_ops;
5188 
5189 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5190 
5191 /* netdev_printk helpers, similar to dev_printk */
5192 
5193 static inline const char *netdev_name(const struct net_device *dev)
5194 {
5195 	if (!dev->name[0] || strchr(dev->name, '%'))
5196 		return "(unnamed net_device)";
5197 	return dev->name;
5198 }
5199 
5200 static inline const char *netdev_reg_state(const struct net_device *dev)
5201 {
5202 	u8 reg_state = READ_ONCE(dev->reg_state);
5203 
5204 	switch (reg_state) {
5205 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5206 	case NETREG_REGISTERED: return "";
5207 	case NETREG_UNREGISTERING: return " (unregistering)";
5208 	case NETREG_UNREGISTERED: return " (unregistered)";
5209 	case NETREG_RELEASED: return " (released)";
5210 	case NETREG_DUMMY: return " (dummy)";
5211 	}
5212 
5213 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5214 	return " (unknown)";
5215 }
5216 
5217 #define MODULE_ALIAS_NETDEV(device) \
5218 	MODULE_ALIAS("netdev-" device)
5219 
5220 /*
5221  * netdev_WARN() acts like dev_printk(), but with the key difference
5222  * of using a WARN/WARN_ON to get the message out, including the
5223  * file/line information and a backtrace.
5224  */
5225 #define netdev_WARN(dev, format, args...)			\
5226 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5227 	     netdev_reg_state(dev), ##args)
5228 
5229 #define netdev_WARN_ONCE(dev, format, args...)				\
5230 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5231 		  netdev_reg_state(dev), ##args)
5232 
5233 /*
5234  *	The list of packet types we will receive (as opposed to discard)
5235  *	and the routines to invoke.
5236  *
5237  *	Why 16. Because with 16 the only overlap we get on a hash of the
5238  *	low nibble of the protocol value is RARP/SNAP/X.25.
5239  *
5240  *		0800	IP
5241  *		0001	802.3
5242  *		0002	AX.25
5243  *		0004	802.2
5244  *		8035	RARP
5245  *		0005	SNAP
5246  *		0805	X.25
5247  *		0806	ARP
5248  *		8137	IPX
5249  *		0009	Localtalk
5250  *		86DD	IPv6
5251  */
5252 #define PTYPE_HASH_SIZE	(16)
5253 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5254 
5255 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5256 
5257 extern struct net_device *blackhole_netdev;
5258 
5259 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5260 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5261 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5262 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5263 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5264 
5265 #endif	/* _LINUX_NETDEVICE_H */
5266