xref: /linux-6.15/include/linux/netdevice.h (revision c40d04df)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40 
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55 
56 #include <linux/netdev_features.h>
57 
58 struct netpoll_info;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 					/* source back-compat hooks */
63 #define SET_ETHTOOL_OPS(netdev,ops) \
64 	( (netdev)->ethtool_ops = (ops) )
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously, in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 #endif
135 
136 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
137 
138 /* Initial net device group. All devices belong to group 0 by default. */
139 #define INIT_NETDEV_GROUP	0
140 
141 #ifdef  __KERNEL__
142 /*
143  *	Compute the worst case header length according to the protocols
144  *	used.
145  */
146 
147 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #elif IS_ENABLED(CONFIG_TR)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158 
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165 
166 /*
167  *	Old network device statistics. Fields are native words
168  *	(unsigned long) so they can be read and written atomically.
169  */
170 
171 struct net_device_stats {
172 	unsigned long	rx_packets;
173 	unsigned long	tx_packets;
174 	unsigned long	rx_bytes;
175 	unsigned long	tx_bytes;
176 	unsigned long	rx_errors;
177 	unsigned long	tx_errors;
178 	unsigned long	rx_dropped;
179 	unsigned long	tx_dropped;
180 	unsigned long	multicast;
181 	unsigned long	collisions;
182 	unsigned long	rx_length_errors;
183 	unsigned long	rx_over_errors;
184 	unsigned long	rx_crc_errors;
185 	unsigned long	rx_frame_errors;
186 	unsigned long	rx_fifo_errors;
187 	unsigned long	rx_missed_errors;
188 	unsigned long	tx_aborted_errors;
189 	unsigned long	tx_carrier_errors;
190 	unsigned long	tx_fifo_errors;
191 	unsigned long	tx_heartbeat_errors;
192 	unsigned long	tx_window_errors;
193 	unsigned long	rx_compressed;
194 	unsigned long	tx_compressed;
195 };
196 
197 #endif  /*  __KERNEL__  */
198 
199 
200 /* Media selection options. */
201 enum {
202         IF_PORT_UNKNOWN = 0,
203         IF_PORT_10BASE2,
204         IF_PORT_10BASET,
205         IF_PORT_AUI,
206         IF_PORT_100BASET,
207         IF_PORT_100BASETX,
208         IF_PORT_100BASEFX
209 };
210 
211 #ifdef __KERNEL__
212 
213 #include <linux/cache.h>
214 #include <linux/skbuff.h>
215 
216 #ifdef CONFIG_RPS
217 #include <linux/static_key.h>
218 extern struct static_key rps_needed;
219 #endif
220 
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224 
225 struct netdev_hw_addr {
226 	struct list_head	list;
227 	unsigned char		addr[MAX_ADDR_LEN];
228 	unsigned char		type;
229 #define NETDEV_HW_ADDR_T_LAN		1
230 #define NETDEV_HW_ADDR_T_SAN		2
231 #define NETDEV_HW_ADDR_T_SLAVE		3
232 #define NETDEV_HW_ADDR_T_UNICAST	4
233 #define NETDEV_HW_ADDR_T_MULTICAST	5
234 	bool			synced;
235 	bool			global_use;
236 	int			refcount;
237 	struct rcu_head		rcu_head;
238 };
239 
240 struct netdev_hw_addr_list {
241 	struct list_head	list;
242 	int			count;
243 };
244 
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 	list_for_each_entry(ha, &(l)->list, list)
249 
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254 
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259 
260 struct hh_cache {
261 	u16		hh_len;
262 	u16		__pad;
263 	seqlock_t	hh_lock;
264 
265 	/* cached hardware header; allow for machine alignment needs.        */
266 #define HH_DATA_MOD	16
267 #define HH_DATA_OFF(__len) \
268 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
269 #define HH_DATA_ALIGN(__len) \
270 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
271 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
272 };
273 
274 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
275  * Alternative is:
276  *   dev->hard_header_len ? (dev->hard_header_len +
277  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
278  *
279  * We could use other alignment values, but we must maintain the
280  * relationship HH alignment <= LL alignment.
281  */
282 #define LL_RESERVED_SPACE(dev) \
283 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
285 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 
287 struct header_ops {
288 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
289 			   unsigned short type, const void *daddr,
290 			   const void *saddr, unsigned len);
291 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
292 	int	(*rebuild)(struct sk_buff *skb);
293 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 	void	(*cache_update)(struct hh_cache *hh,
295 				const struct net_device *dev,
296 				const unsigned char *haddr);
297 };
298 
299 /* These flag bits are private to the generic network queueing
300  * layer, they may not be explicitly referenced by any other
301  * code.
302  */
303 
304 enum netdev_state_t {
305 	__LINK_STATE_START,
306 	__LINK_STATE_PRESENT,
307 	__LINK_STATE_NOCARRIER,
308 	__LINK_STATE_LINKWATCH_PENDING,
309 	__LINK_STATE_DORMANT,
310 };
311 
312 
313 /*
314  * This structure holds at boot time configured netdevice settings. They
315  * are then used in the device probing.
316  */
317 struct netdev_boot_setup {
318 	char name[IFNAMSIZ];
319 	struct ifmap map;
320 };
321 #define NETDEV_BOOT_SETUP_MAX 8
322 
323 extern int __init netdev_boot_setup(char *str);
324 
325 /*
326  * Structure for NAPI scheduling similar to tasklet but with weighting
327  */
328 struct napi_struct {
329 	/* The poll_list must only be managed by the entity which
330 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
331 	 * whoever atomically sets that bit can add this napi_struct
332 	 * to the per-cpu poll_list, and whoever clears that bit
333 	 * can remove from the list right before clearing the bit.
334 	 */
335 	struct list_head	poll_list;
336 
337 	unsigned long		state;
338 	int			weight;
339 	int			(*poll)(struct napi_struct *, int);
340 #ifdef CONFIG_NETPOLL
341 	spinlock_t		poll_lock;
342 	int			poll_owner;
343 #endif
344 
345 	unsigned int		gro_count;
346 
347 	struct net_device	*dev;
348 	struct list_head	dev_list;
349 	struct sk_buff		*gro_list;
350 	struct sk_buff		*skb;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,	/* Poll is scheduled */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 };
358 
359 enum gro_result {
360 	GRO_MERGED,
361 	GRO_MERGED_FREE,
362 	GRO_HELD,
363 	GRO_NORMAL,
364 	GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367 
368 /*
369  * enum rx_handler_result - Possible return values for rx_handlers.
370  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371  * further.
372  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373  * case skb->dev was changed by rx_handler.
374  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376  *
377  * rx_handlers are functions called from inside __netif_receive_skb(), to do
378  * special processing of the skb, prior to delivery to protocol handlers.
379  *
380  * Currently, a net_device can only have a single rx_handler registered. Trying
381  * to register a second rx_handler will return -EBUSY.
382  *
383  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384  * To unregister a rx_handler on a net_device, use
385  * netdev_rx_handler_unregister().
386  *
387  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388  * do with the skb.
389  *
390  * If the rx_handler consumed to skb in some way, it should return
391  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392  * the skb to be delivered in some other ways.
393  *
394  * If the rx_handler changed skb->dev, to divert the skb to another
395  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396  * new device will be called if it exists.
397  *
398  * If the rx_handler consider the skb should be ignored, it should return
399  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400  * are registred on exact device (ptype->dev == skb->dev).
401  *
402  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403  * delivered, it should return RX_HANDLER_PASS.
404  *
405  * A device without a registered rx_handler will behave as if rx_handler
406  * returned RX_HANDLER_PASS.
407  */
408 
409 enum rx_handler_result {
410 	RX_HANDLER_CONSUMED,
411 	RX_HANDLER_ANOTHER,
412 	RX_HANDLER_EXACT,
413 	RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417 
418 extern void __napi_schedule(struct napi_struct *n);
419 
420 static inline bool napi_disable_pending(struct napi_struct *n)
421 {
422 	return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424 
425 /**
426  *	napi_schedule_prep - check if napi can be scheduled
427  *	@n: napi context
428  *
429  * Test if NAPI routine is already running, and if not mark
430  * it as running.  This is used as a condition variable
431  * insure only one NAPI poll instance runs.  We also make
432  * sure there is no pending NAPI disable.
433  */
434 static inline bool napi_schedule_prep(struct napi_struct *n)
435 {
436 	return !napi_disable_pending(n) &&
437 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439 
440 /**
441  *	napi_schedule - schedule NAPI poll
442  *	@n: napi context
443  *
444  * Schedule NAPI poll routine to be called if it is not already
445  * running.
446  */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 	if (napi_schedule_prep(n))
450 		__napi_schedule(n);
451 }
452 
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
454 static inline bool napi_reschedule(struct napi_struct *napi)
455 {
456 	if (napi_schedule_prep(napi)) {
457 		__napi_schedule(napi);
458 		return true;
459 	}
460 	return false;
461 }
462 
463 /**
464  *	napi_complete - NAPI processing complete
465  *	@n: napi context
466  *
467  * Mark NAPI processing as complete.
468  */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471 
472 /**
473  *	napi_disable - prevent NAPI from scheduling
474  *	@n: napi context
475  *
476  * Stop NAPI from being scheduled on this context.
477  * Waits till any outstanding processing completes.
478  */
479 static inline void napi_disable(struct napi_struct *n)
480 {
481 	set_bit(NAPI_STATE_DISABLE, &n->state);
482 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 		msleep(1);
484 	clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486 
487 /**
488  *	napi_enable - enable NAPI scheduling
489  *	@n: napi context
490  *
491  * Resume NAPI from being scheduled on this context.
492  * Must be paired with napi_disable.
493  */
494 static inline void napi_enable(struct napi_struct *n)
495 {
496 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 	smp_mb__before_clear_bit();
498 	clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500 
501 #ifdef CONFIG_SMP
502 /**
503  *	napi_synchronize - wait until NAPI is not running
504  *	@n: napi context
505  *
506  * Wait until NAPI is done being scheduled on this context.
507  * Waits till any outstanding processing completes but
508  * does not disable future activations.
509  */
510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 	while (test_bit(NAPI_STATE_SCHED, &n->state))
513 		msleep(1);
514 }
515 #else
516 # define napi_synchronize(n)	barrier()
517 #endif
518 
519 enum netdev_queue_state_t {
520 	__QUEUE_STATE_DRV_XOFF,
521 	__QUEUE_STATE_STACK_XOFF,
522 	__QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
524 			      (1 << __QUEUE_STATE_STACK_XOFF))
525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
526 					(1 << __QUEUE_STATE_FROZEN))
527 };
528 /*
529  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
530  * netif_tx_* functions below are used to manipulate this flag.  The
531  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
532  * queue independently.  The netif_xmit_*stopped functions below are called
533  * to check if the queue has been stopped by the driver or stack (either
534  * of the XOFF bits are set in the state).  Drivers should not need to call
535  * netif_xmit*stopped functions, they should only be using netif_tx_*.
536  */
537 
538 struct netdev_queue {
539 /*
540  * read mostly part
541  */
542 	struct net_device	*dev;
543 	struct Qdisc		*qdisc;
544 	struct Qdisc		*qdisc_sleeping;
545 #ifdef CONFIG_SYSFS
546 	struct kobject		kobj;
547 #endif
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 	int			numa_node;
550 #endif
551 /*
552  * write mostly part
553  */
554 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
555 	int			xmit_lock_owner;
556 	/*
557 	 * please use this field instead of dev->trans_start
558 	 */
559 	unsigned long		trans_start;
560 
561 	/*
562 	 * Number of TX timeouts for this queue
563 	 * (/sys/class/net/DEV/Q/trans_timeout)
564 	 */
565 	unsigned long		trans_timeout;
566 
567 	unsigned long		state;
568 
569 #ifdef CONFIG_BQL
570 	struct dql		dql;
571 #endif
572 } ____cacheline_aligned_in_smp;
573 
574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
575 {
576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
577 	return q->numa_node;
578 #else
579 	return NUMA_NO_NODE;
580 #endif
581 }
582 
583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
584 {
585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
586 	q->numa_node = node;
587 #endif
588 }
589 
590 #ifdef CONFIG_RPS
591 /*
592  * This structure holds an RPS map which can be of variable length.  The
593  * map is an array of CPUs.
594  */
595 struct rps_map {
596 	unsigned int len;
597 	struct rcu_head rcu;
598 	u16 cpus[0];
599 };
600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
601 
602 /*
603  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
604  * tail pointer for that CPU's input queue at the time of last enqueue, and
605  * a hardware filter index.
606  */
607 struct rps_dev_flow {
608 	u16 cpu;
609 	u16 filter;
610 	unsigned int last_qtail;
611 };
612 #define RPS_NO_FILTER 0xffff
613 
614 /*
615  * The rps_dev_flow_table structure contains a table of flow mappings.
616  */
617 struct rps_dev_flow_table {
618 	unsigned int mask;
619 	struct rcu_head rcu;
620 	struct work_struct free_work;
621 	struct rps_dev_flow flows[0];
622 };
623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
624     ((_num) * sizeof(struct rps_dev_flow)))
625 
626 /*
627  * The rps_sock_flow_table contains mappings of flows to the last CPU
628  * on which they were processed by the application (set in recvmsg).
629  */
630 struct rps_sock_flow_table {
631 	unsigned int mask;
632 	u16 ents[0];
633 };
634 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
635     ((_num) * sizeof(u16)))
636 
637 #define RPS_NO_CPU 0xffff
638 
639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
640 					u32 hash)
641 {
642 	if (table && hash) {
643 		unsigned int cpu, index = hash & table->mask;
644 
645 		/* We only give a hint, preemption can change cpu under us */
646 		cpu = raw_smp_processor_id();
647 
648 		if (table->ents[index] != cpu)
649 			table->ents[index] = cpu;
650 	}
651 }
652 
653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
654 				       u32 hash)
655 {
656 	if (table && hash)
657 		table->ents[hash & table->mask] = RPS_NO_CPU;
658 }
659 
660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
661 
662 #ifdef CONFIG_RFS_ACCEL
663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
664 				u32 flow_id, u16 filter_id);
665 #endif
666 
667 /* This structure contains an instance of an RX queue. */
668 struct netdev_rx_queue {
669 	struct rps_map __rcu		*rps_map;
670 	struct rps_dev_flow_table __rcu	*rps_flow_table;
671 	struct kobject			kobj;
672 	struct net_device		*dev;
673 } ____cacheline_aligned_in_smp;
674 #endif /* CONFIG_RPS */
675 
676 #ifdef CONFIG_XPS
677 /*
678  * This structure holds an XPS map which can be of variable length.  The
679  * map is an array of queues.
680  */
681 struct xps_map {
682 	unsigned int len;
683 	unsigned int alloc_len;
684 	struct rcu_head rcu;
685 	u16 queues[0];
686 };
687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
689     / sizeof(u16))
690 
691 /*
692  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
693  */
694 struct xps_dev_maps {
695 	struct rcu_head rcu;
696 	struct xps_map __rcu *cpu_map[0];
697 };
698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
699     (nr_cpu_ids * sizeof(struct xps_map *)))
700 #endif /* CONFIG_XPS */
701 
702 #define TC_MAX_QUEUE	16
703 #define TC_BITMASK	15
704 /* HW offloaded queuing disciplines txq count and offset maps */
705 struct netdev_tc_txq {
706 	u16 count;
707 	u16 offset;
708 };
709 
710 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
711 /*
712  * This structure is to hold information about the device
713  * configured to run FCoE protocol stack.
714  */
715 struct netdev_fcoe_hbainfo {
716 	char	manufacturer[64];
717 	char	serial_number[64];
718 	char	hardware_version[64];
719 	char	driver_version[64];
720 	char	optionrom_version[64];
721 	char	firmware_version[64];
722 	char	model[256];
723 	char	model_description[256];
724 };
725 #endif
726 
727 /*
728  * This structure defines the management hooks for network devices.
729  * The following hooks can be defined; unless noted otherwise, they are
730  * optional and can be filled with a null pointer.
731  *
732  * int (*ndo_init)(struct net_device *dev);
733  *     This function is called once when network device is registered.
734  *     The network device can use this to any late stage initializaton
735  *     or semantic validattion. It can fail with an error code which will
736  *     be propogated back to register_netdev
737  *
738  * void (*ndo_uninit)(struct net_device *dev);
739  *     This function is called when device is unregistered or when registration
740  *     fails. It is not called if init fails.
741  *
742  * int (*ndo_open)(struct net_device *dev);
743  *     This function is called when network device transistions to the up
744  *     state.
745  *
746  * int (*ndo_stop)(struct net_device *dev);
747  *     This function is called when network device transistions to the down
748  *     state.
749  *
750  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
751  *                               struct net_device *dev);
752  *	Called when a packet needs to be transmitted.
753  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
754  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
755  *	Required can not be NULL.
756  *
757  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
758  *	Called to decide which queue to when device supports multiple
759  *	transmit queues.
760  *
761  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
762  *	This function is called to allow device receiver to make
763  *	changes to configuration when multicast or promiscious is enabled.
764  *
765  * void (*ndo_set_rx_mode)(struct net_device *dev);
766  *	This function is called device changes address list filtering.
767  *	If driver handles unicast address filtering, it should set
768  *	IFF_UNICAST_FLT to its priv_flags.
769  *
770  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
771  *	This function  is called when the Media Access Control address
772  *	needs to be changed. If this interface is not defined, the
773  *	mac address can not be changed.
774  *
775  * int (*ndo_validate_addr)(struct net_device *dev);
776  *	Test if Media Access Control address is valid for the device.
777  *
778  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
779  *	Called when a user request an ioctl which can't be handled by
780  *	the generic interface code. If not defined ioctl's return
781  *	not supported error code.
782  *
783  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
784  *	Used to set network devices bus interface parameters. This interface
785  *	is retained for legacy reason, new devices should use the bus
786  *	interface (PCI) for low level management.
787  *
788  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
789  *	Called when a user wants to change the Maximum Transfer Unit
790  *	of a device. If not defined, any request to change MTU will
791  *	will return an error.
792  *
793  * void (*ndo_tx_timeout)(struct net_device *dev);
794  *	Callback uses when the transmitter has not made any progress
795  *	for dev->watchdog ticks.
796  *
797  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
798  *                      struct rtnl_link_stats64 *storage);
799  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
800  *	Called when a user wants to get the network device usage
801  *	statistics. Drivers must do one of the following:
802  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
803  *	   rtnl_link_stats64 structure passed by the caller.
804  *	2. Define @ndo_get_stats to update a net_device_stats structure
805  *	   (which should normally be dev->stats) and return a pointer to
806  *	   it. The structure may be changed asynchronously only if each
807  *	   field is written atomically.
808  *	3. Update dev->stats asynchronously and atomically, and define
809  *	   neither operation.
810  *
811  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
812  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
813  *	this function is called when a VLAN id is registered.
814  *
815  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
816  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
817  *	this function is called when a VLAN id is unregistered.
818  *
819  * void (*ndo_poll_controller)(struct net_device *dev);
820  *
821  *	SR-IOV management functions.
822  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
823  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
824  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
825  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
826  * int (*ndo_get_vf_config)(struct net_device *dev,
827  *			    int vf, struct ifla_vf_info *ivf);
828  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
829  *			  struct nlattr *port[]);
830  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
831  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
832  * 	Called to setup 'tc' number of traffic classes in the net device. This
833  * 	is always called from the stack with the rtnl lock held and netif tx
834  * 	queues stopped. This allows the netdevice to perform queue management
835  * 	safely.
836  *
837  *	Fiber Channel over Ethernet (FCoE) offload functions.
838  * int (*ndo_fcoe_enable)(struct net_device *dev);
839  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
840  *	so the underlying device can perform whatever needed configuration or
841  *	initialization to support acceleration of FCoE traffic.
842  *
843  * int (*ndo_fcoe_disable)(struct net_device *dev);
844  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
845  *	so the underlying device can perform whatever needed clean-ups to
846  *	stop supporting acceleration of FCoE traffic.
847  *
848  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
849  *			     struct scatterlist *sgl, unsigned int sgc);
850  *	Called when the FCoE Initiator wants to initialize an I/O that
851  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
852  *	perform necessary setup and returns 1 to indicate the device is set up
853  *	successfully to perform DDP on this I/O, otherwise this returns 0.
854  *
855  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
856  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
857  *	indicated by the FC exchange id 'xid', so the underlying device can
858  *	clean up and reuse resources for later DDP requests.
859  *
860  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
861  *			      struct scatterlist *sgl, unsigned int sgc);
862  *	Called when the FCoE Target wants to initialize an I/O that
863  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
864  *	perform necessary setup and returns 1 to indicate the device is set up
865  *	successfully to perform DDP on this I/O, otherwise this returns 0.
866  *
867  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
868  *			       struct netdev_fcoe_hbainfo *hbainfo);
869  *	Called when the FCoE Protocol stack wants information on the underlying
870  *	device. This information is utilized by the FCoE protocol stack to
871  *	register attributes with Fiber Channel management service as per the
872  *	FC-GS Fabric Device Management Information(FDMI) specification.
873  *
874  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
875  *	Called when the underlying device wants to override default World Wide
876  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
877  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
878  *	protocol stack to use.
879  *
880  *	RFS acceleration.
881  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
882  *			    u16 rxq_index, u32 flow_id);
883  *	Set hardware filter for RFS.  rxq_index is the target queue index;
884  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
885  *	Return the filter ID on success, or a negative error code.
886  *
887  *	Slave management functions (for bridge, bonding, etc). User should
888  *	call netdev_set_master() to set dev->master properly.
889  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
890  *	Called to make another netdev an underling.
891  *
892  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
893  *	Called to release previously enslaved netdev.
894  *
895  *      Feature/offload setting functions.
896  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
897  *		netdev_features_t features);
898  *	Adjusts the requested feature flags according to device-specific
899  *	constraints, and returns the resulting flags. Must not modify
900  *	the device state.
901  *
902  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
903  *	Called to update device configuration to new features. Passed
904  *	feature set might be less than what was returned by ndo_fix_features()).
905  *	Must return >0 or -errno if it changed dev->features itself.
906  *
907  */
908 struct net_device_ops {
909 	int			(*ndo_init)(struct net_device *dev);
910 	void			(*ndo_uninit)(struct net_device *dev);
911 	int			(*ndo_open)(struct net_device *dev);
912 	int			(*ndo_stop)(struct net_device *dev);
913 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
914 						   struct net_device *dev);
915 	u16			(*ndo_select_queue)(struct net_device *dev,
916 						    struct sk_buff *skb);
917 	void			(*ndo_change_rx_flags)(struct net_device *dev,
918 						       int flags);
919 	void			(*ndo_set_rx_mode)(struct net_device *dev);
920 	int			(*ndo_set_mac_address)(struct net_device *dev,
921 						       void *addr);
922 	int			(*ndo_validate_addr)(struct net_device *dev);
923 	int			(*ndo_do_ioctl)(struct net_device *dev,
924 					        struct ifreq *ifr, int cmd);
925 	int			(*ndo_set_config)(struct net_device *dev,
926 					          struct ifmap *map);
927 	int			(*ndo_change_mtu)(struct net_device *dev,
928 						  int new_mtu);
929 	int			(*ndo_neigh_setup)(struct net_device *dev,
930 						   struct neigh_parms *);
931 	void			(*ndo_tx_timeout) (struct net_device *dev);
932 
933 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
934 						     struct rtnl_link_stats64 *storage);
935 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
936 
937 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
938 						       unsigned short vid);
939 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
940 						        unsigned short vid);
941 #ifdef CONFIG_NET_POLL_CONTROLLER
942 	void                    (*ndo_poll_controller)(struct net_device *dev);
943 	int			(*ndo_netpoll_setup)(struct net_device *dev,
944 						     struct netpoll_info *info);
945 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
946 #endif
947 	int			(*ndo_set_vf_mac)(struct net_device *dev,
948 						  int queue, u8 *mac);
949 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
950 						   int queue, u16 vlan, u8 qos);
951 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
952 						      int vf, int rate);
953 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
954 						       int vf, bool setting);
955 	int			(*ndo_get_vf_config)(struct net_device *dev,
956 						     int vf,
957 						     struct ifla_vf_info *ivf);
958 	int			(*ndo_set_vf_port)(struct net_device *dev,
959 						   int vf,
960 						   struct nlattr *port[]);
961 	int			(*ndo_get_vf_port)(struct net_device *dev,
962 						   int vf, struct sk_buff *skb);
963 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
964 #if IS_ENABLED(CONFIG_FCOE)
965 	int			(*ndo_fcoe_enable)(struct net_device *dev);
966 	int			(*ndo_fcoe_disable)(struct net_device *dev);
967 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
968 						      u16 xid,
969 						      struct scatterlist *sgl,
970 						      unsigned int sgc);
971 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
972 						     u16 xid);
973 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
974 						       u16 xid,
975 						       struct scatterlist *sgl,
976 						       unsigned int sgc);
977 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
978 							struct netdev_fcoe_hbainfo *hbainfo);
979 #endif
980 
981 #if IS_ENABLED(CONFIG_LIBFCOE)
982 #define NETDEV_FCOE_WWNN 0
983 #define NETDEV_FCOE_WWPN 1
984 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
985 						    u64 *wwn, int type);
986 #endif
987 
988 #ifdef CONFIG_RFS_ACCEL
989 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
990 						     const struct sk_buff *skb,
991 						     u16 rxq_index,
992 						     u32 flow_id);
993 #endif
994 	int			(*ndo_add_slave)(struct net_device *dev,
995 						 struct net_device *slave_dev);
996 	int			(*ndo_del_slave)(struct net_device *dev,
997 						 struct net_device *slave_dev);
998 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
999 						    netdev_features_t features);
1000 	int			(*ndo_set_features)(struct net_device *dev,
1001 						    netdev_features_t features);
1002 	int			(*ndo_neigh_construct)(struct neighbour *n);
1003 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1004 };
1005 
1006 /*
1007  *	The DEVICE structure.
1008  *	Actually, this whole structure is a big mistake.  It mixes I/O
1009  *	data with strictly "high-level" data, and it has to know about
1010  *	almost every data structure used in the INET module.
1011  *
1012  *	FIXME: cleanup struct net_device such that network protocol info
1013  *	moves out.
1014  */
1015 
1016 struct net_device {
1017 
1018 	/*
1019 	 * This is the first field of the "visible" part of this structure
1020 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1021 	 * of the interface.
1022 	 */
1023 	char			name[IFNAMSIZ];
1024 
1025 	struct pm_qos_request	pm_qos_req;
1026 
1027 	/* device name hash chain */
1028 	struct hlist_node	name_hlist;
1029 	/* snmp alias */
1030 	char 			*ifalias;
1031 
1032 	/*
1033 	 *	I/O specific fields
1034 	 *	FIXME: Merge these and struct ifmap into one
1035 	 */
1036 	unsigned long		mem_end;	/* shared mem end	*/
1037 	unsigned long		mem_start;	/* shared mem start	*/
1038 	unsigned long		base_addr;	/* device I/O address	*/
1039 	unsigned int		irq;		/* device IRQ number	*/
1040 
1041 	/*
1042 	 *	Some hardware also needs these fields, but they are not
1043 	 *	part of the usual set specified in Space.c.
1044 	 */
1045 
1046 	unsigned long		state;
1047 
1048 	struct list_head	dev_list;
1049 	struct list_head	napi_list;
1050 	struct list_head	unreg_list;
1051 
1052 	/* currently active device features */
1053 	netdev_features_t	features;
1054 	/* user-changeable features */
1055 	netdev_features_t	hw_features;
1056 	/* user-requested features */
1057 	netdev_features_t	wanted_features;
1058 	/* mask of features inheritable by VLAN devices */
1059 	netdev_features_t	vlan_features;
1060 
1061 	/* Interface index. Unique device identifier	*/
1062 	int			ifindex;
1063 	int			iflink;
1064 
1065 	struct net_device_stats	stats;
1066 	atomic_long_t		rx_dropped; /* dropped packets by core network
1067 					     * Do not use this in drivers.
1068 					     */
1069 
1070 #ifdef CONFIG_WIRELESS_EXT
1071 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1072 	 * See <net/iw_handler.h> for details. Jean II */
1073 	const struct iw_handler_def *	wireless_handlers;
1074 	/* Instance data managed by the core of Wireless Extensions. */
1075 	struct iw_public_data *	wireless_data;
1076 #endif
1077 	/* Management operations */
1078 	const struct net_device_ops *netdev_ops;
1079 	const struct ethtool_ops *ethtool_ops;
1080 
1081 	/* Hardware header description */
1082 	const struct header_ops *header_ops;
1083 
1084 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1085 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1086 					     * See if.h for definitions. */
1087 	unsigned short		gflags;
1088 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1089 
1090 	unsigned char		operstate; /* RFC2863 operstate */
1091 	unsigned char		link_mode; /* mapping policy to operstate */
1092 
1093 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1094 	unsigned char		dma;		/* DMA channel		*/
1095 
1096 	unsigned int		mtu;	/* interface MTU value		*/
1097 	unsigned short		type;	/* interface hardware type	*/
1098 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1099 
1100 	/* extra head- and tailroom the hardware may need, but not in all cases
1101 	 * can this be guaranteed, especially tailroom. Some cases also use
1102 	 * LL_MAX_HEADER instead to allocate the skb.
1103 	 */
1104 	unsigned short		needed_headroom;
1105 	unsigned short		needed_tailroom;
1106 
1107 	/* Interface address info. */
1108 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1109 	unsigned char		addr_assign_type; /* hw address assignment type */
1110 	unsigned char		addr_len;	/* hardware address length	*/
1111 	unsigned char		neigh_priv_len;
1112 	unsigned short          dev_id;		/* for shared network cards */
1113 
1114 	spinlock_t		addr_list_lock;
1115 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1116 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1117 	bool			uc_promisc;
1118 	unsigned int		promiscuity;
1119 	unsigned int		allmulti;
1120 
1121 
1122 	/* Protocol specific pointers */
1123 
1124 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1125 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1126 #endif
1127 #if IS_ENABLED(CONFIG_NET_DSA)
1128 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1129 #endif
1130 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1131 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1132 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1133 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1134 	void			*ec_ptr;	/* Econet specific data	*/
1135 	void			*ax25_ptr;	/* AX.25 specific data */
1136 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1137 						   assign before registering */
1138 
1139 /*
1140  * Cache lines mostly used on receive path (including eth_type_trans())
1141  */
1142 	unsigned long		last_rx;	/* Time of last Rx
1143 						 * This should not be set in
1144 						 * drivers, unless really needed,
1145 						 * because network stack (bonding)
1146 						 * use it if/when necessary, to
1147 						 * avoid dirtying this cache line.
1148 						 */
1149 
1150 	struct net_device	*master; /* Pointer to master device of a group,
1151 					  * which this device is member of.
1152 					  */
1153 
1154 	/* Interface address info used in eth_type_trans() */
1155 	unsigned char		*dev_addr;	/* hw address, (before bcast
1156 						   because most packets are
1157 						   unicast) */
1158 
1159 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1160 						      hw addresses */
1161 
1162 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1163 
1164 #ifdef CONFIG_SYSFS
1165 	struct kset		*queues_kset;
1166 #endif
1167 
1168 #ifdef CONFIG_RPS
1169 	struct netdev_rx_queue	*_rx;
1170 
1171 	/* Number of RX queues allocated at register_netdev() time */
1172 	unsigned int		num_rx_queues;
1173 
1174 	/* Number of RX queues currently active in device */
1175 	unsigned int		real_num_rx_queues;
1176 
1177 #ifdef CONFIG_RFS_ACCEL
1178 	/* CPU reverse-mapping for RX completion interrupts, indexed
1179 	 * by RX queue number.  Assigned by driver.  This must only be
1180 	 * set if the ndo_rx_flow_steer operation is defined. */
1181 	struct cpu_rmap		*rx_cpu_rmap;
1182 #endif
1183 #endif
1184 
1185 	rx_handler_func_t __rcu	*rx_handler;
1186 	void __rcu		*rx_handler_data;
1187 
1188 	struct netdev_queue __rcu *ingress_queue;
1189 
1190 /*
1191  * Cache lines mostly used on transmit path
1192  */
1193 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1194 
1195 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1196 	unsigned int		num_tx_queues;
1197 
1198 	/* Number of TX queues currently active in device  */
1199 	unsigned int		real_num_tx_queues;
1200 
1201 	/* root qdisc from userspace point of view */
1202 	struct Qdisc		*qdisc;
1203 
1204 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1205 	spinlock_t		tx_global_lock;
1206 
1207 #ifdef CONFIG_XPS
1208 	struct xps_dev_maps __rcu *xps_maps;
1209 #endif
1210 
1211 	/* These may be needed for future network-power-down code. */
1212 
1213 	/*
1214 	 * trans_start here is expensive for high speed devices on SMP,
1215 	 * please use netdev_queue->trans_start instead.
1216 	 */
1217 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1218 
1219 	int			watchdog_timeo; /* used by dev_watchdog() */
1220 	struct timer_list	watchdog_timer;
1221 
1222 	/* Number of references to this device */
1223 	int __percpu		*pcpu_refcnt;
1224 
1225 	/* delayed register/unregister */
1226 	struct list_head	todo_list;
1227 	/* device index hash chain */
1228 	struct hlist_node	index_hlist;
1229 
1230 	struct list_head	link_watch_list;
1231 
1232 	/* register/unregister state machine */
1233 	enum { NETREG_UNINITIALIZED=0,
1234 	       NETREG_REGISTERED,	/* completed register_netdevice */
1235 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1236 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1237 	       NETREG_RELEASED,		/* called free_netdev */
1238 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1239 	} reg_state:8;
1240 
1241 	bool dismantle; /* device is going do be freed */
1242 
1243 	enum {
1244 		RTNL_LINK_INITIALIZED,
1245 		RTNL_LINK_INITIALIZING,
1246 	} rtnl_link_state:16;
1247 
1248 	/* Called from unregister, can be used to call free_netdev */
1249 	void (*destructor)(struct net_device *dev);
1250 
1251 #ifdef CONFIG_NETPOLL
1252 	struct netpoll_info	*npinfo;
1253 #endif
1254 
1255 #ifdef CONFIG_NET_NS
1256 	/* Network namespace this network device is inside */
1257 	struct net		*nd_net;
1258 #endif
1259 
1260 	/* mid-layer private */
1261 	union {
1262 		void				*ml_priv;
1263 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1264 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1265 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1266 	};
1267 	/* GARP */
1268 	struct garp_port __rcu	*garp_port;
1269 
1270 	/* class/net/name entry */
1271 	struct device		dev;
1272 	/* space for optional device, statistics, and wireless sysfs groups */
1273 	const struct attribute_group *sysfs_groups[4];
1274 
1275 	/* rtnetlink link ops */
1276 	const struct rtnl_link_ops *rtnl_link_ops;
1277 
1278 	/* for setting kernel sock attribute on TCP connection setup */
1279 #define GSO_MAX_SIZE		65536
1280 	unsigned int		gso_max_size;
1281 
1282 #ifdef CONFIG_DCB
1283 	/* Data Center Bridging netlink ops */
1284 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1285 #endif
1286 	u8 num_tc;
1287 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1288 	u8 prio_tc_map[TC_BITMASK + 1];
1289 
1290 #if IS_ENABLED(CONFIG_FCOE)
1291 	/* max exchange id for FCoE LRO by ddp */
1292 	unsigned int		fcoe_ddp_xid;
1293 #endif
1294 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1295 	struct netprio_map __rcu *priomap;
1296 #endif
1297 	/* phy device may attach itself for hardware timestamping */
1298 	struct phy_device *phydev;
1299 
1300 	/* group the device belongs to */
1301 	int group;
1302 };
1303 #define to_net_dev(d) container_of(d, struct net_device, dev)
1304 
1305 #define	NETDEV_ALIGN		32
1306 
1307 static inline
1308 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1309 {
1310 	return dev->prio_tc_map[prio & TC_BITMASK];
1311 }
1312 
1313 static inline
1314 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1315 {
1316 	if (tc >= dev->num_tc)
1317 		return -EINVAL;
1318 
1319 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1320 	return 0;
1321 }
1322 
1323 static inline
1324 void netdev_reset_tc(struct net_device *dev)
1325 {
1326 	dev->num_tc = 0;
1327 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1328 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1329 }
1330 
1331 static inline
1332 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1333 {
1334 	if (tc >= dev->num_tc)
1335 		return -EINVAL;
1336 
1337 	dev->tc_to_txq[tc].count = count;
1338 	dev->tc_to_txq[tc].offset = offset;
1339 	return 0;
1340 }
1341 
1342 static inline
1343 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1344 {
1345 	if (num_tc > TC_MAX_QUEUE)
1346 		return -EINVAL;
1347 
1348 	dev->num_tc = num_tc;
1349 	return 0;
1350 }
1351 
1352 static inline
1353 int netdev_get_num_tc(struct net_device *dev)
1354 {
1355 	return dev->num_tc;
1356 }
1357 
1358 static inline
1359 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1360 					 unsigned int index)
1361 {
1362 	return &dev->_tx[index];
1363 }
1364 
1365 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1366 					    void (*f)(struct net_device *,
1367 						      struct netdev_queue *,
1368 						      void *),
1369 					    void *arg)
1370 {
1371 	unsigned int i;
1372 
1373 	for (i = 0; i < dev->num_tx_queues; i++)
1374 		f(dev, &dev->_tx[i], arg);
1375 }
1376 
1377 /*
1378  * Net namespace inlines
1379  */
1380 static inline
1381 struct net *dev_net(const struct net_device *dev)
1382 {
1383 	return read_pnet(&dev->nd_net);
1384 }
1385 
1386 static inline
1387 void dev_net_set(struct net_device *dev, struct net *net)
1388 {
1389 #ifdef CONFIG_NET_NS
1390 	release_net(dev->nd_net);
1391 	dev->nd_net = hold_net(net);
1392 #endif
1393 }
1394 
1395 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1396 {
1397 #ifdef CONFIG_NET_DSA_TAG_DSA
1398 	if (dev->dsa_ptr != NULL)
1399 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1400 #endif
1401 
1402 	return 0;
1403 }
1404 
1405 #ifndef CONFIG_NET_NS
1406 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1407 {
1408 	skb->dev = dev;
1409 }
1410 #else /* CONFIG_NET_NS */
1411 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1412 #endif
1413 
1414 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1415 {
1416 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1417 	if (dev->dsa_ptr != NULL)
1418 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1419 #endif
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  *	netdev_priv - access network device private data
1426  *	@dev: network device
1427  *
1428  * Get network device private data
1429  */
1430 static inline void *netdev_priv(const struct net_device *dev)
1431 {
1432 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1433 }
1434 
1435 /* Set the sysfs physical device reference for the network logical device
1436  * if set prior to registration will cause a symlink during initialization.
1437  */
1438 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1439 
1440 /* Set the sysfs device type for the network logical device to allow
1441  * fin grained indentification of different network device types. For
1442  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1443  */
1444 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1445 
1446 /**
1447  *	netif_napi_add - initialize a napi context
1448  *	@dev:  network device
1449  *	@napi: napi context
1450  *	@poll: polling function
1451  *	@weight: default weight
1452  *
1453  * netif_napi_add() must be used to initialize a napi context prior to calling
1454  * *any* of the other napi related functions.
1455  */
1456 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1457 		    int (*poll)(struct napi_struct *, int), int weight);
1458 
1459 /**
1460  *  netif_napi_del - remove a napi context
1461  *  @napi: napi context
1462  *
1463  *  netif_napi_del() removes a napi context from the network device napi list
1464  */
1465 void netif_napi_del(struct napi_struct *napi);
1466 
1467 struct napi_gro_cb {
1468 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1469 	void *frag0;
1470 
1471 	/* Length of frag0. */
1472 	unsigned int frag0_len;
1473 
1474 	/* This indicates where we are processing relative to skb->data. */
1475 	int data_offset;
1476 
1477 	/* This is non-zero if the packet may be of the same flow. */
1478 	int same_flow;
1479 
1480 	/* This is non-zero if the packet cannot be merged with the new skb. */
1481 	int flush;
1482 
1483 	/* Number of segments aggregated. */
1484 	int count;
1485 
1486 	/* Free the skb? */
1487 	int free;
1488 };
1489 
1490 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1491 
1492 struct packet_type {
1493 	__be16			type;	/* This is really htons(ether_type). */
1494 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1495 	int			(*func) (struct sk_buff *,
1496 					 struct net_device *,
1497 					 struct packet_type *,
1498 					 struct net_device *);
1499 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1500 						netdev_features_t features);
1501 	int			(*gso_send_check)(struct sk_buff *skb);
1502 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1503 					       struct sk_buff *skb);
1504 	int			(*gro_complete)(struct sk_buff *skb);
1505 	void			*af_packet_priv;
1506 	struct list_head	list;
1507 };
1508 
1509 #include <linux/notifier.h>
1510 
1511 /* netdevice notifier chain. Please remember to update the rtnetlink
1512  * notification exclusion list in rtnetlink_event() when adding new
1513  * types.
1514  */
1515 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1516 #define NETDEV_DOWN	0x0002
1517 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1518 				   detected a hardware crash and restarted
1519 				   - we can use this eg to kick tcp sessions
1520 				   once done */
1521 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1522 #define NETDEV_REGISTER 0x0005
1523 #define NETDEV_UNREGISTER	0x0006
1524 #define NETDEV_CHANGEMTU	0x0007
1525 #define NETDEV_CHANGEADDR	0x0008
1526 #define NETDEV_GOING_DOWN	0x0009
1527 #define NETDEV_CHANGENAME	0x000A
1528 #define NETDEV_FEAT_CHANGE	0x000B
1529 #define NETDEV_BONDING_FAILOVER 0x000C
1530 #define NETDEV_PRE_UP		0x000D
1531 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1532 #define NETDEV_POST_TYPE_CHANGE	0x000F
1533 #define NETDEV_POST_INIT	0x0010
1534 #define NETDEV_UNREGISTER_BATCH 0x0011
1535 #define NETDEV_RELEASE		0x0012
1536 #define NETDEV_NOTIFY_PEERS	0x0013
1537 #define NETDEV_JOIN		0x0014
1538 
1539 extern int register_netdevice_notifier(struct notifier_block *nb);
1540 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1541 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1542 
1543 
1544 extern rwlock_t				dev_base_lock;		/* Device list lock */
1545 
1546 
1547 #define for_each_netdev(net, d)		\
1548 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1549 #define for_each_netdev_reverse(net, d)	\
1550 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1551 #define for_each_netdev_rcu(net, d)		\
1552 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1553 #define for_each_netdev_safe(net, d, n)	\
1554 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1555 #define for_each_netdev_continue(net, d)		\
1556 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1557 #define for_each_netdev_continue_rcu(net, d)		\
1558 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1559 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1560 
1561 static inline struct net_device *next_net_device(struct net_device *dev)
1562 {
1563 	struct list_head *lh;
1564 	struct net *net;
1565 
1566 	net = dev_net(dev);
1567 	lh = dev->dev_list.next;
1568 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1569 }
1570 
1571 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1572 {
1573 	struct list_head *lh;
1574 	struct net *net;
1575 
1576 	net = dev_net(dev);
1577 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1578 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1579 }
1580 
1581 static inline struct net_device *first_net_device(struct net *net)
1582 {
1583 	return list_empty(&net->dev_base_head) ? NULL :
1584 		net_device_entry(net->dev_base_head.next);
1585 }
1586 
1587 static inline struct net_device *first_net_device_rcu(struct net *net)
1588 {
1589 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1590 
1591 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1592 }
1593 
1594 extern int 			netdev_boot_setup_check(struct net_device *dev);
1595 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1596 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1597 					      const char *hwaddr);
1598 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1599 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1600 extern void		dev_add_pack(struct packet_type *pt);
1601 extern void		dev_remove_pack(struct packet_type *pt);
1602 extern void		__dev_remove_pack(struct packet_type *pt);
1603 
1604 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1605 						      unsigned short mask);
1606 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1607 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1608 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1609 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1610 extern int		dev_open(struct net_device *dev);
1611 extern int		dev_close(struct net_device *dev);
1612 extern void		dev_disable_lro(struct net_device *dev);
1613 extern int		dev_queue_xmit(struct sk_buff *skb);
1614 extern int		register_netdevice(struct net_device *dev);
1615 extern void		unregister_netdevice_queue(struct net_device *dev,
1616 						   struct list_head *head);
1617 extern void		unregister_netdevice_many(struct list_head *head);
1618 static inline void unregister_netdevice(struct net_device *dev)
1619 {
1620 	unregister_netdevice_queue(dev, NULL);
1621 }
1622 
1623 extern int 		netdev_refcnt_read(const struct net_device *dev);
1624 extern void		free_netdev(struct net_device *dev);
1625 extern void		synchronize_net(void);
1626 extern int		init_dummy_netdev(struct net_device *dev);
1627 extern void		netdev_resync_ops(struct net_device *dev);
1628 
1629 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1630 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1631 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1632 extern int		dev_restart(struct net_device *dev);
1633 #ifdef CONFIG_NETPOLL_TRAP
1634 extern int		netpoll_trap(void);
1635 #endif
1636 extern int	       skb_gro_receive(struct sk_buff **head,
1637 				       struct sk_buff *skb);
1638 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1639 
1640 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1641 {
1642 	return NAPI_GRO_CB(skb)->data_offset;
1643 }
1644 
1645 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1646 {
1647 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1648 }
1649 
1650 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1651 {
1652 	NAPI_GRO_CB(skb)->data_offset += len;
1653 }
1654 
1655 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1656 					unsigned int offset)
1657 {
1658 	return NAPI_GRO_CB(skb)->frag0 + offset;
1659 }
1660 
1661 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1662 {
1663 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1664 }
1665 
1666 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1667 					unsigned int offset)
1668 {
1669 	if (!pskb_may_pull(skb, hlen))
1670 		return NULL;
1671 
1672 	NAPI_GRO_CB(skb)->frag0 = NULL;
1673 	NAPI_GRO_CB(skb)->frag0_len = 0;
1674 	return skb->data + offset;
1675 }
1676 
1677 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1678 {
1679 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1680 }
1681 
1682 static inline void *skb_gro_network_header(struct sk_buff *skb)
1683 {
1684 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1685 	       skb_network_offset(skb);
1686 }
1687 
1688 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1689 				  unsigned short type,
1690 				  const void *daddr, const void *saddr,
1691 				  unsigned len)
1692 {
1693 	if (!dev->header_ops || !dev->header_ops->create)
1694 		return 0;
1695 
1696 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1697 }
1698 
1699 static inline int dev_parse_header(const struct sk_buff *skb,
1700 				   unsigned char *haddr)
1701 {
1702 	const struct net_device *dev = skb->dev;
1703 
1704 	if (!dev->header_ops || !dev->header_ops->parse)
1705 		return 0;
1706 	return dev->header_ops->parse(skb, haddr);
1707 }
1708 
1709 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1710 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1711 static inline int unregister_gifconf(unsigned int family)
1712 {
1713 	return register_gifconf(family, NULL);
1714 }
1715 
1716 /*
1717  * Incoming packets are placed on per-cpu queues
1718  */
1719 struct softnet_data {
1720 	struct Qdisc		*output_queue;
1721 	struct Qdisc		**output_queue_tailp;
1722 	struct list_head	poll_list;
1723 	struct sk_buff		*completion_queue;
1724 	struct sk_buff_head	process_queue;
1725 
1726 	/* stats */
1727 	unsigned int		processed;
1728 	unsigned int		time_squeeze;
1729 	unsigned int		cpu_collision;
1730 	unsigned int		received_rps;
1731 
1732 #ifdef CONFIG_RPS
1733 	struct softnet_data	*rps_ipi_list;
1734 
1735 	/* Elements below can be accessed between CPUs for RPS */
1736 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1737 	struct softnet_data	*rps_ipi_next;
1738 	unsigned int		cpu;
1739 	unsigned int		input_queue_head;
1740 	unsigned int		input_queue_tail;
1741 #endif
1742 	unsigned		dropped;
1743 	struct sk_buff_head	input_pkt_queue;
1744 	struct napi_struct	backlog;
1745 };
1746 
1747 static inline void input_queue_head_incr(struct softnet_data *sd)
1748 {
1749 #ifdef CONFIG_RPS
1750 	sd->input_queue_head++;
1751 #endif
1752 }
1753 
1754 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1755 					      unsigned int *qtail)
1756 {
1757 #ifdef CONFIG_RPS
1758 	*qtail = ++sd->input_queue_tail;
1759 #endif
1760 }
1761 
1762 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1763 
1764 extern void __netif_schedule(struct Qdisc *q);
1765 
1766 static inline void netif_schedule_queue(struct netdev_queue *txq)
1767 {
1768 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1769 		__netif_schedule(txq->qdisc);
1770 }
1771 
1772 static inline void netif_tx_schedule_all(struct net_device *dev)
1773 {
1774 	unsigned int i;
1775 
1776 	for (i = 0; i < dev->num_tx_queues; i++)
1777 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1778 }
1779 
1780 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1781 {
1782 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1783 }
1784 
1785 /**
1786  *	netif_start_queue - allow transmit
1787  *	@dev: network device
1788  *
1789  *	Allow upper layers to call the device hard_start_xmit routine.
1790  */
1791 static inline void netif_start_queue(struct net_device *dev)
1792 {
1793 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1794 }
1795 
1796 static inline void netif_tx_start_all_queues(struct net_device *dev)
1797 {
1798 	unsigned int i;
1799 
1800 	for (i = 0; i < dev->num_tx_queues; i++) {
1801 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1802 		netif_tx_start_queue(txq);
1803 	}
1804 }
1805 
1806 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1807 {
1808 #ifdef CONFIG_NETPOLL_TRAP
1809 	if (netpoll_trap()) {
1810 		netif_tx_start_queue(dev_queue);
1811 		return;
1812 	}
1813 #endif
1814 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1815 		__netif_schedule(dev_queue->qdisc);
1816 }
1817 
1818 /**
1819  *	netif_wake_queue - restart transmit
1820  *	@dev: network device
1821  *
1822  *	Allow upper layers to call the device hard_start_xmit routine.
1823  *	Used for flow control when transmit resources are available.
1824  */
1825 static inline void netif_wake_queue(struct net_device *dev)
1826 {
1827 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1828 }
1829 
1830 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1831 {
1832 	unsigned int i;
1833 
1834 	for (i = 0; i < dev->num_tx_queues; i++) {
1835 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1836 		netif_tx_wake_queue(txq);
1837 	}
1838 }
1839 
1840 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1841 {
1842 	if (WARN_ON(!dev_queue)) {
1843 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1844 		return;
1845 	}
1846 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1847 }
1848 
1849 /**
1850  *	netif_stop_queue - stop transmitted packets
1851  *	@dev: network device
1852  *
1853  *	Stop upper layers calling the device hard_start_xmit routine.
1854  *	Used for flow control when transmit resources are unavailable.
1855  */
1856 static inline void netif_stop_queue(struct net_device *dev)
1857 {
1858 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1859 }
1860 
1861 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1862 {
1863 	unsigned int i;
1864 
1865 	for (i = 0; i < dev->num_tx_queues; i++) {
1866 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1867 		netif_tx_stop_queue(txq);
1868 	}
1869 }
1870 
1871 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1872 {
1873 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1874 }
1875 
1876 /**
1877  *	netif_queue_stopped - test if transmit queue is flowblocked
1878  *	@dev: network device
1879  *
1880  *	Test if transmit queue on device is currently unable to send.
1881  */
1882 static inline bool netif_queue_stopped(const struct net_device *dev)
1883 {
1884 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1885 }
1886 
1887 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1888 {
1889 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1890 }
1891 
1892 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1893 {
1894 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1895 }
1896 
1897 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1898 					unsigned int bytes)
1899 {
1900 #ifdef CONFIG_BQL
1901 	dql_queued(&dev_queue->dql, bytes);
1902 
1903 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1904 		return;
1905 
1906 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1907 
1908 	/*
1909 	 * The XOFF flag must be set before checking the dql_avail below,
1910 	 * because in netdev_tx_completed_queue we update the dql_completed
1911 	 * before checking the XOFF flag.
1912 	 */
1913 	smp_mb();
1914 
1915 	/* check again in case another CPU has just made room avail */
1916 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1917 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1918 #endif
1919 }
1920 
1921 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1922 {
1923 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1924 }
1925 
1926 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1927 					     unsigned pkts, unsigned bytes)
1928 {
1929 #ifdef CONFIG_BQL
1930 	if (unlikely(!bytes))
1931 		return;
1932 
1933 	dql_completed(&dev_queue->dql, bytes);
1934 
1935 	/*
1936 	 * Without the memory barrier there is a small possiblity that
1937 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1938 	 * be stopped forever
1939 	 */
1940 	smp_mb();
1941 
1942 	if (dql_avail(&dev_queue->dql) < 0)
1943 		return;
1944 
1945 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1946 		netif_schedule_queue(dev_queue);
1947 #endif
1948 }
1949 
1950 static inline void netdev_completed_queue(struct net_device *dev,
1951 					  unsigned pkts, unsigned bytes)
1952 {
1953 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1954 }
1955 
1956 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1957 {
1958 #ifdef CONFIG_BQL
1959 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1960 	dql_reset(&q->dql);
1961 #endif
1962 }
1963 
1964 static inline void netdev_reset_queue(struct net_device *dev_queue)
1965 {
1966 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1967 }
1968 
1969 /**
1970  *	netif_running - test if up
1971  *	@dev: network device
1972  *
1973  *	Test if the device has been brought up.
1974  */
1975 static inline bool netif_running(const struct net_device *dev)
1976 {
1977 	return test_bit(__LINK_STATE_START, &dev->state);
1978 }
1979 
1980 /*
1981  * Routines to manage the subqueues on a device.  We only need start
1982  * stop, and a check if it's stopped.  All other device management is
1983  * done at the overall netdevice level.
1984  * Also test the device if we're multiqueue.
1985  */
1986 
1987 /**
1988  *	netif_start_subqueue - allow sending packets on subqueue
1989  *	@dev: network device
1990  *	@queue_index: sub queue index
1991  *
1992  * Start individual transmit queue of a device with multiple transmit queues.
1993  */
1994 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1995 {
1996 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1997 
1998 	netif_tx_start_queue(txq);
1999 }
2000 
2001 /**
2002  *	netif_stop_subqueue - stop sending packets on subqueue
2003  *	@dev: network device
2004  *	@queue_index: sub queue index
2005  *
2006  * Stop individual transmit queue of a device with multiple transmit queues.
2007  */
2008 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2009 {
2010 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2011 #ifdef CONFIG_NETPOLL_TRAP
2012 	if (netpoll_trap())
2013 		return;
2014 #endif
2015 	netif_tx_stop_queue(txq);
2016 }
2017 
2018 /**
2019  *	netif_subqueue_stopped - test status of subqueue
2020  *	@dev: network device
2021  *	@queue_index: sub queue index
2022  *
2023  * Check individual transmit queue of a device with multiple transmit queues.
2024  */
2025 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2026 					    u16 queue_index)
2027 {
2028 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2029 
2030 	return netif_tx_queue_stopped(txq);
2031 }
2032 
2033 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2034 					  struct sk_buff *skb)
2035 {
2036 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2037 }
2038 
2039 /**
2040  *	netif_wake_subqueue - allow sending packets on subqueue
2041  *	@dev: network device
2042  *	@queue_index: sub queue index
2043  *
2044  * Resume individual transmit queue of a device with multiple transmit queues.
2045  */
2046 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2047 {
2048 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2049 #ifdef CONFIG_NETPOLL_TRAP
2050 	if (netpoll_trap())
2051 		return;
2052 #endif
2053 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2054 		__netif_schedule(txq->qdisc);
2055 }
2056 
2057 /*
2058  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2059  * as a distribution range limit for the returned value.
2060  */
2061 static inline u16 skb_tx_hash(const struct net_device *dev,
2062 			      const struct sk_buff *skb)
2063 {
2064 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2065 }
2066 
2067 /**
2068  *	netif_is_multiqueue - test if device has multiple transmit queues
2069  *	@dev: network device
2070  *
2071  * Check if device has multiple transmit queues
2072  */
2073 static inline bool netif_is_multiqueue(const struct net_device *dev)
2074 {
2075 	return dev->num_tx_queues > 1;
2076 }
2077 
2078 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2079 					unsigned int txq);
2080 
2081 #ifdef CONFIG_RPS
2082 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2083 					unsigned int rxq);
2084 #else
2085 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2086 						unsigned int rxq)
2087 {
2088 	return 0;
2089 }
2090 #endif
2091 
2092 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2093 					     const struct net_device *from_dev)
2094 {
2095 	netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2096 #ifdef CONFIG_RPS
2097 	return netif_set_real_num_rx_queues(to_dev,
2098 					    from_dev->real_num_rx_queues);
2099 #else
2100 	return 0;
2101 #endif
2102 }
2103 
2104 /* Use this variant when it is known for sure that it
2105  * is executing from hardware interrupt context or with hardware interrupts
2106  * disabled.
2107  */
2108 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2109 
2110 /* Use this variant in places where it could be invoked
2111  * from either hardware interrupt or other context, with hardware interrupts
2112  * either disabled or enabled.
2113  */
2114 extern void dev_kfree_skb_any(struct sk_buff *skb);
2115 
2116 extern int		netif_rx(struct sk_buff *skb);
2117 extern int		netif_rx_ni(struct sk_buff *skb);
2118 extern int		netif_receive_skb(struct sk_buff *skb);
2119 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2120 					struct sk_buff *skb);
2121 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2122 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2123 					 struct sk_buff *skb);
2124 extern void		napi_gro_flush(struct napi_struct *napi);
2125 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2126 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2127 					  struct sk_buff *skb,
2128 					  gro_result_t ret);
2129 extern struct sk_buff *	napi_frags_skb(struct napi_struct *napi);
2130 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2131 
2132 static inline void napi_free_frags(struct napi_struct *napi)
2133 {
2134 	kfree_skb(napi->skb);
2135 	napi->skb = NULL;
2136 }
2137 
2138 extern int netdev_rx_handler_register(struct net_device *dev,
2139 				      rx_handler_func_t *rx_handler,
2140 				      void *rx_handler_data);
2141 extern void netdev_rx_handler_unregister(struct net_device *dev);
2142 
2143 extern bool		dev_valid_name(const char *name);
2144 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2145 extern int		dev_ethtool(struct net *net, struct ifreq *);
2146 extern unsigned		dev_get_flags(const struct net_device *);
2147 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2148 extern int		dev_change_flags(struct net_device *, unsigned);
2149 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2150 extern int		dev_change_name(struct net_device *, const char *);
2151 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2152 extern int		dev_change_net_namespace(struct net_device *,
2153 						 struct net *, const char *);
2154 extern int		dev_set_mtu(struct net_device *, int);
2155 extern void		dev_set_group(struct net_device *, int);
2156 extern int		dev_set_mac_address(struct net_device *,
2157 					    struct sockaddr *);
2158 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2159 					    struct net_device *dev,
2160 					    struct netdev_queue *txq);
2161 extern int		dev_forward_skb(struct net_device *dev,
2162 					struct sk_buff *skb);
2163 
2164 extern int		netdev_budget;
2165 
2166 /* Called by rtnetlink.c:rtnl_unlock() */
2167 extern void netdev_run_todo(void);
2168 
2169 /**
2170  *	dev_put - release reference to device
2171  *	@dev: network device
2172  *
2173  * Release reference to device to allow it to be freed.
2174  */
2175 static inline void dev_put(struct net_device *dev)
2176 {
2177 	this_cpu_dec(*dev->pcpu_refcnt);
2178 }
2179 
2180 /**
2181  *	dev_hold - get reference to device
2182  *	@dev: network device
2183  *
2184  * Hold reference to device to keep it from being freed.
2185  */
2186 static inline void dev_hold(struct net_device *dev)
2187 {
2188 	this_cpu_inc(*dev->pcpu_refcnt);
2189 }
2190 
2191 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2192  * and _off may be called from IRQ context, but it is caller
2193  * who is responsible for serialization of these calls.
2194  *
2195  * The name carrier is inappropriate, these functions should really be
2196  * called netif_lowerlayer_*() because they represent the state of any
2197  * kind of lower layer not just hardware media.
2198  */
2199 
2200 extern void linkwatch_fire_event(struct net_device *dev);
2201 extern void linkwatch_forget_dev(struct net_device *dev);
2202 
2203 /**
2204  *	netif_carrier_ok - test if carrier present
2205  *	@dev: network device
2206  *
2207  * Check if carrier is present on device
2208  */
2209 static inline bool netif_carrier_ok(const struct net_device *dev)
2210 {
2211 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2212 }
2213 
2214 extern unsigned long dev_trans_start(struct net_device *dev);
2215 
2216 extern void __netdev_watchdog_up(struct net_device *dev);
2217 
2218 extern void netif_carrier_on(struct net_device *dev);
2219 
2220 extern void netif_carrier_off(struct net_device *dev);
2221 
2222 extern void netif_notify_peers(struct net_device *dev);
2223 
2224 /**
2225  *	netif_dormant_on - mark device as dormant.
2226  *	@dev: network device
2227  *
2228  * Mark device as dormant (as per RFC2863).
2229  *
2230  * The dormant state indicates that the relevant interface is not
2231  * actually in a condition to pass packets (i.e., it is not 'up') but is
2232  * in a "pending" state, waiting for some external event.  For "on-
2233  * demand" interfaces, this new state identifies the situation where the
2234  * interface is waiting for events to place it in the up state.
2235  *
2236  */
2237 static inline void netif_dormant_on(struct net_device *dev)
2238 {
2239 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2240 		linkwatch_fire_event(dev);
2241 }
2242 
2243 /**
2244  *	netif_dormant_off - set device as not dormant.
2245  *	@dev: network device
2246  *
2247  * Device is not in dormant state.
2248  */
2249 static inline void netif_dormant_off(struct net_device *dev)
2250 {
2251 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2252 		linkwatch_fire_event(dev);
2253 }
2254 
2255 /**
2256  *	netif_dormant - test if carrier present
2257  *	@dev: network device
2258  *
2259  * Check if carrier is present on device
2260  */
2261 static inline bool netif_dormant(const struct net_device *dev)
2262 {
2263 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2264 }
2265 
2266 
2267 /**
2268  *	netif_oper_up - test if device is operational
2269  *	@dev: network device
2270  *
2271  * Check if carrier is operational
2272  */
2273 static inline bool netif_oper_up(const struct net_device *dev)
2274 {
2275 	return (dev->operstate == IF_OPER_UP ||
2276 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2277 }
2278 
2279 /**
2280  *	netif_device_present - is device available or removed
2281  *	@dev: network device
2282  *
2283  * Check if device has not been removed from system.
2284  */
2285 static inline bool netif_device_present(struct net_device *dev)
2286 {
2287 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2288 }
2289 
2290 extern void netif_device_detach(struct net_device *dev);
2291 
2292 extern void netif_device_attach(struct net_device *dev);
2293 
2294 /*
2295  * Network interface message level settings
2296  */
2297 
2298 enum {
2299 	NETIF_MSG_DRV		= 0x0001,
2300 	NETIF_MSG_PROBE		= 0x0002,
2301 	NETIF_MSG_LINK		= 0x0004,
2302 	NETIF_MSG_TIMER		= 0x0008,
2303 	NETIF_MSG_IFDOWN	= 0x0010,
2304 	NETIF_MSG_IFUP		= 0x0020,
2305 	NETIF_MSG_RX_ERR	= 0x0040,
2306 	NETIF_MSG_TX_ERR	= 0x0080,
2307 	NETIF_MSG_TX_QUEUED	= 0x0100,
2308 	NETIF_MSG_INTR		= 0x0200,
2309 	NETIF_MSG_TX_DONE	= 0x0400,
2310 	NETIF_MSG_RX_STATUS	= 0x0800,
2311 	NETIF_MSG_PKTDATA	= 0x1000,
2312 	NETIF_MSG_HW		= 0x2000,
2313 	NETIF_MSG_WOL		= 0x4000,
2314 };
2315 
2316 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2317 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2318 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2319 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2320 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2321 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2322 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2323 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2324 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2325 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2326 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2327 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2328 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2329 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2330 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2331 
2332 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2333 {
2334 	/* use default */
2335 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2336 		return default_msg_enable_bits;
2337 	if (debug_value == 0)	/* no output */
2338 		return 0;
2339 	/* set low N bits */
2340 	return (1 << debug_value) - 1;
2341 }
2342 
2343 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2344 {
2345 	spin_lock(&txq->_xmit_lock);
2346 	txq->xmit_lock_owner = cpu;
2347 }
2348 
2349 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2350 {
2351 	spin_lock_bh(&txq->_xmit_lock);
2352 	txq->xmit_lock_owner = smp_processor_id();
2353 }
2354 
2355 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2356 {
2357 	bool ok = spin_trylock(&txq->_xmit_lock);
2358 	if (likely(ok))
2359 		txq->xmit_lock_owner = smp_processor_id();
2360 	return ok;
2361 }
2362 
2363 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2364 {
2365 	txq->xmit_lock_owner = -1;
2366 	spin_unlock(&txq->_xmit_lock);
2367 }
2368 
2369 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2370 {
2371 	txq->xmit_lock_owner = -1;
2372 	spin_unlock_bh(&txq->_xmit_lock);
2373 }
2374 
2375 static inline void txq_trans_update(struct netdev_queue *txq)
2376 {
2377 	if (txq->xmit_lock_owner != -1)
2378 		txq->trans_start = jiffies;
2379 }
2380 
2381 /**
2382  *	netif_tx_lock - grab network device transmit lock
2383  *	@dev: network device
2384  *
2385  * Get network device transmit lock
2386  */
2387 static inline void netif_tx_lock(struct net_device *dev)
2388 {
2389 	unsigned int i;
2390 	int cpu;
2391 
2392 	spin_lock(&dev->tx_global_lock);
2393 	cpu = smp_processor_id();
2394 	for (i = 0; i < dev->num_tx_queues; i++) {
2395 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2396 
2397 		/* We are the only thread of execution doing a
2398 		 * freeze, but we have to grab the _xmit_lock in
2399 		 * order to synchronize with threads which are in
2400 		 * the ->hard_start_xmit() handler and already
2401 		 * checked the frozen bit.
2402 		 */
2403 		__netif_tx_lock(txq, cpu);
2404 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2405 		__netif_tx_unlock(txq);
2406 	}
2407 }
2408 
2409 static inline void netif_tx_lock_bh(struct net_device *dev)
2410 {
2411 	local_bh_disable();
2412 	netif_tx_lock(dev);
2413 }
2414 
2415 static inline void netif_tx_unlock(struct net_device *dev)
2416 {
2417 	unsigned int i;
2418 
2419 	for (i = 0; i < dev->num_tx_queues; i++) {
2420 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2421 
2422 		/* No need to grab the _xmit_lock here.  If the
2423 		 * queue is not stopped for another reason, we
2424 		 * force a schedule.
2425 		 */
2426 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2427 		netif_schedule_queue(txq);
2428 	}
2429 	spin_unlock(&dev->tx_global_lock);
2430 }
2431 
2432 static inline void netif_tx_unlock_bh(struct net_device *dev)
2433 {
2434 	netif_tx_unlock(dev);
2435 	local_bh_enable();
2436 }
2437 
2438 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2439 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2440 		__netif_tx_lock(txq, cpu);		\
2441 	}						\
2442 }
2443 
2444 #define HARD_TX_UNLOCK(dev, txq) {			\
2445 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2446 		__netif_tx_unlock(txq);			\
2447 	}						\
2448 }
2449 
2450 static inline void netif_tx_disable(struct net_device *dev)
2451 {
2452 	unsigned int i;
2453 	int cpu;
2454 
2455 	local_bh_disable();
2456 	cpu = smp_processor_id();
2457 	for (i = 0; i < dev->num_tx_queues; i++) {
2458 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2459 
2460 		__netif_tx_lock(txq, cpu);
2461 		netif_tx_stop_queue(txq);
2462 		__netif_tx_unlock(txq);
2463 	}
2464 	local_bh_enable();
2465 }
2466 
2467 static inline void netif_addr_lock(struct net_device *dev)
2468 {
2469 	spin_lock(&dev->addr_list_lock);
2470 }
2471 
2472 static inline void netif_addr_lock_nested(struct net_device *dev)
2473 {
2474 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2475 }
2476 
2477 static inline void netif_addr_lock_bh(struct net_device *dev)
2478 {
2479 	spin_lock_bh(&dev->addr_list_lock);
2480 }
2481 
2482 static inline void netif_addr_unlock(struct net_device *dev)
2483 {
2484 	spin_unlock(&dev->addr_list_lock);
2485 }
2486 
2487 static inline void netif_addr_unlock_bh(struct net_device *dev)
2488 {
2489 	spin_unlock_bh(&dev->addr_list_lock);
2490 }
2491 
2492 /*
2493  * dev_addrs walker. Should be used only for read access. Call with
2494  * rcu_read_lock held.
2495  */
2496 #define for_each_dev_addr(dev, ha) \
2497 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2498 
2499 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2500 
2501 extern void		ether_setup(struct net_device *dev);
2502 
2503 /* Support for loadable net-drivers */
2504 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2505 				       void (*setup)(struct net_device *),
2506 				       unsigned int txqs, unsigned int rxqs);
2507 #define alloc_netdev(sizeof_priv, name, setup) \
2508 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2509 
2510 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2511 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2512 
2513 extern int		register_netdev(struct net_device *dev);
2514 extern void		unregister_netdev(struct net_device *dev);
2515 
2516 /* General hardware address lists handling functions */
2517 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2518 				  struct netdev_hw_addr_list *from_list,
2519 				  int addr_len, unsigned char addr_type);
2520 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2521 				   struct netdev_hw_addr_list *from_list,
2522 				   int addr_len, unsigned char addr_type);
2523 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2524 			  struct netdev_hw_addr_list *from_list,
2525 			  int addr_len);
2526 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2527 			     struct netdev_hw_addr_list *from_list,
2528 			     int addr_len);
2529 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2530 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2531 
2532 /* Functions used for device addresses handling */
2533 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2534 			unsigned char addr_type);
2535 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2536 			unsigned char addr_type);
2537 extern int dev_addr_add_multiple(struct net_device *to_dev,
2538 				 struct net_device *from_dev,
2539 				 unsigned char addr_type);
2540 extern int dev_addr_del_multiple(struct net_device *to_dev,
2541 				 struct net_device *from_dev,
2542 				 unsigned char addr_type);
2543 extern void dev_addr_flush(struct net_device *dev);
2544 extern int dev_addr_init(struct net_device *dev);
2545 
2546 /* Functions used for unicast addresses handling */
2547 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2548 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2549 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2550 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2551 extern void dev_uc_flush(struct net_device *dev);
2552 extern void dev_uc_init(struct net_device *dev);
2553 
2554 /* Functions used for multicast addresses handling */
2555 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2556 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2557 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2558 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2559 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2560 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2561 extern void dev_mc_flush(struct net_device *dev);
2562 extern void dev_mc_init(struct net_device *dev);
2563 
2564 /* Functions used for secondary unicast and multicast support */
2565 extern void		dev_set_rx_mode(struct net_device *dev);
2566 extern void		__dev_set_rx_mode(struct net_device *dev);
2567 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2568 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2569 extern void		netdev_state_change(struct net_device *dev);
2570 extern int		netdev_bonding_change(struct net_device *dev,
2571 					      unsigned long event);
2572 extern void		netdev_features_change(struct net_device *dev);
2573 /* Load a device via the kmod */
2574 extern void		dev_load(struct net *net, const char *name);
2575 extern void		dev_mcast_init(void);
2576 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2577 					       struct rtnl_link_stats64 *storage);
2578 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2579 				    const struct net_device_stats *netdev_stats);
2580 
2581 extern int		netdev_max_backlog;
2582 extern int		netdev_tstamp_prequeue;
2583 extern int		weight_p;
2584 extern int		bpf_jit_enable;
2585 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2586 extern int netdev_set_bond_master(struct net_device *dev,
2587 				  struct net_device *master);
2588 extern int skb_checksum_help(struct sk_buff *skb);
2589 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2590 	netdev_features_t features);
2591 #ifdef CONFIG_BUG
2592 extern void netdev_rx_csum_fault(struct net_device *dev);
2593 #else
2594 static inline void netdev_rx_csum_fault(struct net_device *dev)
2595 {
2596 }
2597 #endif
2598 /* rx skb timestamps */
2599 extern void		net_enable_timestamp(void);
2600 extern void		net_disable_timestamp(void);
2601 
2602 #ifdef CONFIG_PROC_FS
2603 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2604 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2605 extern void dev_seq_stop(struct seq_file *seq, void *v);
2606 extern int dev_seq_open_ops(struct inode *inode, struct file *file,
2607 			    const struct seq_operations *ops);
2608 #endif
2609 
2610 extern int netdev_class_create_file(struct class_attribute *class_attr);
2611 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2612 
2613 extern struct kobj_ns_type_operations net_ns_type_operations;
2614 
2615 extern const char *netdev_drivername(const struct net_device *dev);
2616 
2617 extern void linkwatch_run_queue(void);
2618 
2619 static inline netdev_features_t netdev_get_wanted_features(
2620 	struct net_device *dev)
2621 {
2622 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2623 }
2624 netdev_features_t netdev_increment_features(netdev_features_t all,
2625 	netdev_features_t one, netdev_features_t mask);
2626 int __netdev_update_features(struct net_device *dev);
2627 void netdev_update_features(struct net_device *dev);
2628 void netdev_change_features(struct net_device *dev);
2629 
2630 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2631 					struct net_device *dev);
2632 
2633 netdev_features_t netif_skb_features(struct sk_buff *skb);
2634 
2635 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2636 {
2637 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2638 
2639 	/* check flags correspondence */
2640 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2641 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2642 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2643 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2644 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2645 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2646 
2647 	return (features & feature) == feature;
2648 }
2649 
2650 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2651 {
2652 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2653 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2654 }
2655 
2656 static inline bool netif_needs_gso(struct sk_buff *skb,
2657 				   netdev_features_t features)
2658 {
2659 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2660 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2661 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2662 }
2663 
2664 static inline void netif_set_gso_max_size(struct net_device *dev,
2665 					  unsigned int size)
2666 {
2667 	dev->gso_max_size = size;
2668 }
2669 
2670 static inline bool netif_is_bond_slave(struct net_device *dev)
2671 {
2672 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2673 }
2674 
2675 static inline bool netif_supports_nofcs(struct net_device *dev)
2676 {
2677 	return dev->priv_flags & IFF_SUPP_NOFCS;
2678 }
2679 
2680 extern struct pernet_operations __net_initdata loopback_net_ops;
2681 
2682 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2683 
2684 /* netdev_printk helpers, similar to dev_printk */
2685 
2686 static inline const char *netdev_name(const struct net_device *dev)
2687 {
2688 	if (dev->reg_state != NETREG_REGISTERED)
2689 		return "(unregistered net_device)";
2690 	return dev->name;
2691 }
2692 
2693 extern int __netdev_printk(const char *level, const struct net_device *dev,
2694 			struct va_format *vaf);
2695 
2696 extern __printf(3, 4)
2697 int netdev_printk(const char *level, const struct net_device *dev,
2698 		  const char *format, ...);
2699 extern __printf(2, 3)
2700 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2701 extern __printf(2, 3)
2702 int netdev_alert(const struct net_device *dev, const char *format, ...);
2703 extern __printf(2, 3)
2704 int netdev_crit(const struct net_device *dev, const char *format, ...);
2705 extern __printf(2, 3)
2706 int netdev_err(const struct net_device *dev, const char *format, ...);
2707 extern __printf(2, 3)
2708 int netdev_warn(const struct net_device *dev, const char *format, ...);
2709 extern __printf(2, 3)
2710 int netdev_notice(const struct net_device *dev, const char *format, ...);
2711 extern __printf(2, 3)
2712 int netdev_info(const struct net_device *dev, const char *format, ...);
2713 
2714 #define MODULE_ALIAS_NETDEV(device) \
2715 	MODULE_ALIAS("netdev-" device)
2716 
2717 #if defined(CONFIG_DYNAMIC_DEBUG)
2718 #define netdev_dbg(__dev, format, args...)			\
2719 do {								\
2720 	dynamic_netdev_dbg(__dev, format, ##args);		\
2721 } while (0)
2722 #elif defined(DEBUG)
2723 #define netdev_dbg(__dev, format, args...)			\
2724 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2725 #else
2726 #define netdev_dbg(__dev, format, args...)			\
2727 ({								\
2728 	if (0)							\
2729 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2730 	0;							\
2731 })
2732 #endif
2733 
2734 #if defined(VERBOSE_DEBUG)
2735 #define netdev_vdbg	netdev_dbg
2736 #else
2737 
2738 #define netdev_vdbg(dev, format, args...)			\
2739 ({								\
2740 	if (0)							\
2741 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2742 	0;							\
2743 })
2744 #endif
2745 
2746 /*
2747  * netdev_WARN() acts like dev_printk(), but with the key difference
2748  * of using a WARN/WARN_ON to get the message out, including the
2749  * file/line information and a backtrace.
2750  */
2751 #define netdev_WARN(dev, format, args...)			\
2752 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2753 
2754 /* netif printk helpers, similar to netdev_printk */
2755 
2756 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2757 do {					  			\
2758 	if (netif_msg_##type(priv))				\
2759 		netdev_printk(level, (dev), fmt, ##args);	\
2760 } while (0)
2761 
2762 #define netif_level(level, priv, type, dev, fmt, args...)	\
2763 do {								\
2764 	if (netif_msg_##type(priv))				\
2765 		netdev_##level(dev, fmt, ##args);		\
2766 } while (0)
2767 
2768 #define netif_emerg(priv, type, dev, fmt, args...)		\
2769 	netif_level(emerg, priv, type, dev, fmt, ##args)
2770 #define netif_alert(priv, type, dev, fmt, args...)		\
2771 	netif_level(alert, priv, type, dev, fmt, ##args)
2772 #define netif_crit(priv, type, dev, fmt, args...)		\
2773 	netif_level(crit, priv, type, dev, fmt, ##args)
2774 #define netif_err(priv, type, dev, fmt, args...)		\
2775 	netif_level(err, priv, type, dev, fmt, ##args)
2776 #define netif_warn(priv, type, dev, fmt, args...)		\
2777 	netif_level(warn, priv, type, dev, fmt, ##args)
2778 #define netif_notice(priv, type, dev, fmt, args...)		\
2779 	netif_level(notice, priv, type, dev, fmt, ##args)
2780 #define netif_info(priv, type, dev, fmt, args...)		\
2781 	netif_level(info, priv, type, dev, fmt, ##args)
2782 
2783 #if defined(DEBUG)
2784 #define netif_dbg(priv, type, dev, format, args...)		\
2785 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2786 #elif defined(CONFIG_DYNAMIC_DEBUG)
2787 #define netif_dbg(priv, type, netdev, format, args...)		\
2788 do {								\
2789 	if (netif_msg_##type(priv))				\
2790 		dynamic_netdev_dbg(netdev, format, ##args);	\
2791 } while (0)
2792 #else
2793 #define netif_dbg(priv, type, dev, format, args...)			\
2794 ({									\
2795 	if (0)								\
2796 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2797 	0;								\
2798 })
2799 #endif
2800 
2801 #if defined(VERBOSE_DEBUG)
2802 #define netif_vdbg	netif_dbg
2803 #else
2804 #define netif_vdbg(priv, type, dev, format, args...)		\
2805 ({								\
2806 	if (0)							\
2807 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2808 	0;							\
2809 })
2810 #endif
2811 
2812 #endif /* __KERNEL__ */
2813 
2814 #endif	/* _LINUX_NETDEVICE_H */
2815