1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos.h> 35 #include <linux/timer.h> 36 #include <linux/delay.h> 37 #include <linux/atomic.h> 38 #include <asm/cache.h> 39 #include <asm/byteorder.h> 40 41 #include <linux/device.h> 42 #include <linux/percpu.h> 43 #include <linux/rculist.h> 44 #include <linux/dmaengine.h> 45 #include <linux/workqueue.h> 46 #include <linux/dynamic_queue_limits.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 #include <net/netprio_cgroup.h> 55 56 #include <linux/netdev_features.h> 57 58 struct netpoll_info; 59 struct phy_device; 60 /* 802.11 specific */ 61 struct wireless_dev; 62 /* source back-compat hooks */ 63 #define SET_ETHTOOL_OPS(netdev,ops) \ 64 ( (netdev)->ethtool_ops = (ops) ) 65 66 /* hardware address assignment types */ 67 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 /* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously, in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), all 89 * others are propagated to higher layers. 90 */ 91 92 /* qdisc ->enqueue() return codes. */ 93 #define NET_XMIT_SUCCESS 0x00 94 #define NET_XMIT_DROP 0x01 /* skb dropped */ 95 #define NET_XMIT_CN 0x02 /* congestion notification */ 96 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105 /* Driver transmit return codes */ 106 #define NETDEV_TX_MASK 0xf0 107 108 enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 #endif 135 136 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 137 138 /* Initial net device group. All devices belong to group 0 by default. */ 139 #define INIT_NETDEV_GROUP 0 140 141 #ifdef __KERNEL__ 142 /* 143 * Compute the worst case header length according to the protocols 144 * used. 145 */ 146 147 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #elif IS_ENABLED(CONFIG_TR) 154 # define LL_MAX_HEADER 48 155 #else 156 # define LL_MAX_HEADER 32 157 #endif 158 159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 160 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 161 #define MAX_HEADER LL_MAX_HEADER 162 #else 163 #define MAX_HEADER (LL_MAX_HEADER + 48) 164 #endif 165 166 /* 167 * Old network device statistics. Fields are native words 168 * (unsigned long) so they can be read and written atomically. 169 */ 170 171 struct net_device_stats { 172 unsigned long rx_packets; 173 unsigned long tx_packets; 174 unsigned long rx_bytes; 175 unsigned long tx_bytes; 176 unsigned long rx_errors; 177 unsigned long tx_errors; 178 unsigned long rx_dropped; 179 unsigned long tx_dropped; 180 unsigned long multicast; 181 unsigned long collisions; 182 unsigned long rx_length_errors; 183 unsigned long rx_over_errors; 184 unsigned long rx_crc_errors; 185 unsigned long rx_frame_errors; 186 unsigned long rx_fifo_errors; 187 unsigned long rx_missed_errors; 188 unsigned long tx_aborted_errors; 189 unsigned long tx_carrier_errors; 190 unsigned long tx_fifo_errors; 191 unsigned long tx_heartbeat_errors; 192 unsigned long tx_window_errors; 193 unsigned long rx_compressed; 194 unsigned long tx_compressed; 195 }; 196 197 #endif /* __KERNEL__ */ 198 199 200 /* Media selection options. */ 201 enum { 202 IF_PORT_UNKNOWN = 0, 203 IF_PORT_10BASE2, 204 IF_PORT_10BASET, 205 IF_PORT_AUI, 206 IF_PORT_100BASET, 207 IF_PORT_100BASETX, 208 IF_PORT_100BASEFX 209 }; 210 211 #ifdef __KERNEL__ 212 213 #include <linux/cache.h> 214 #include <linux/skbuff.h> 215 216 #ifdef CONFIG_RPS 217 #include <linux/static_key.h> 218 extern struct static_key rps_needed; 219 #endif 220 221 struct neighbour; 222 struct neigh_parms; 223 struct sk_buff; 224 225 struct netdev_hw_addr { 226 struct list_head list; 227 unsigned char addr[MAX_ADDR_LEN]; 228 unsigned char type; 229 #define NETDEV_HW_ADDR_T_LAN 1 230 #define NETDEV_HW_ADDR_T_SAN 2 231 #define NETDEV_HW_ADDR_T_SLAVE 3 232 #define NETDEV_HW_ADDR_T_UNICAST 4 233 #define NETDEV_HW_ADDR_T_MULTICAST 5 234 bool synced; 235 bool global_use; 236 int refcount; 237 struct rcu_head rcu_head; 238 }; 239 240 struct netdev_hw_addr_list { 241 struct list_head list; 242 int count; 243 }; 244 245 #define netdev_hw_addr_list_count(l) ((l)->count) 246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 247 #define netdev_hw_addr_list_for_each(ha, l) \ 248 list_for_each_entry(ha, &(l)->list, list) 249 250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 252 #define netdev_for_each_uc_addr(ha, dev) \ 253 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 254 255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 257 #define netdev_for_each_mc_addr(ha, dev) \ 258 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 259 260 struct hh_cache { 261 u16 hh_len; 262 u16 __pad; 263 seqlock_t hh_lock; 264 265 /* cached hardware header; allow for machine alignment needs. */ 266 #define HH_DATA_MOD 16 267 #define HH_DATA_OFF(__len) \ 268 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 269 #define HH_DATA_ALIGN(__len) \ 270 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 271 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 272 }; 273 274 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 275 * Alternative is: 276 * dev->hard_header_len ? (dev->hard_header_len + 277 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 278 * 279 * We could use other alignment values, but we must maintain the 280 * relationship HH alignment <= LL alignment. 281 */ 282 #define LL_RESERVED_SPACE(dev) \ 283 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 285 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 286 287 struct header_ops { 288 int (*create) (struct sk_buff *skb, struct net_device *dev, 289 unsigned short type, const void *daddr, 290 const void *saddr, unsigned len); 291 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 292 int (*rebuild)(struct sk_buff *skb); 293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 294 void (*cache_update)(struct hh_cache *hh, 295 const struct net_device *dev, 296 const unsigned char *haddr); 297 }; 298 299 /* These flag bits are private to the generic network queueing 300 * layer, they may not be explicitly referenced by any other 301 * code. 302 */ 303 304 enum netdev_state_t { 305 __LINK_STATE_START, 306 __LINK_STATE_PRESENT, 307 __LINK_STATE_NOCARRIER, 308 __LINK_STATE_LINKWATCH_PENDING, 309 __LINK_STATE_DORMANT, 310 }; 311 312 313 /* 314 * This structure holds at boot time configured netdevice settings. They 315 * are then used in the device probing. 316 */ 317 struct netdev_boot_setup { 318 char name[IFNAMSIZ]; 319 struct ifmap map; 320 }; 321 #define NETDEV_BOOT_SETUP_MAX 8 322 323 extern int __init netdev_boot_setup(char *str); 324 325 /* 326 * Structure for NAPI scheduling similar to tasklet but with weighting 327 */ 328 struct napi_struct { 329 /* The poll_list must only be managed by the entity which 330 * changes the state of the NAPI_STATE_SCHED bit. This means 331 * whoever atomically sets that bit can add this napi_struct 332 * to the per-cpu poll_list, and whoever clears that bit 333 * can remove from the list right before clearing the bit. 334 */ 335 struct list_head poll_list; 336 337 unsigned long state; 338 int weight; 339 int (*poll)(struct napi_struct *, int); 340 #ifdef CONFIG_NETPOLL 341 spinlock_t poll_lock; 342 int poll_owner; 343 #endif 344 345 unsigned int gro_count; 346 347 struct net_device *dev; 348 struct list_head dev_list; 349 struct sk_buff *gro_list; 350 struct sk_buff *skb; 351 }; 352 353 enum { 354 NAPI_STATE_SCHED, /* Poll is scheduled */ 355 NAPI_STATE_DISABLE, /* Disable pending */ 356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 357 }; 358 359 enum gro_result { 360 GRO_MERGED, 361 GRO_MERGED_FREE, 362 GRO_HELD, 363 GRO_NORMAL, 364 GRO_DROP, 365 }; 366 typedef enum gro_result gro_result_t; 367 368 /* 369 * enum rx_handler_result - Possible return values for rx_handlers. 370 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 371 * further. 372 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 373 * case skb->dev was changed by rx_handler. 374 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 375 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 376 * 377 * rx_handlers are functions called from inside __netif_receive_skb(), to do 378 * special processing of the skb, prior to delivery to protocol handlers. 379 * 380 * Currently, a net_device can only have a single rx_handler registered. Trying 381 * to register a second rx_handler will return -EBUSY. 382 * 383 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 384 * To unregister a rx_handler on a net_device, use 385 * netdev_rx_handler_unregister(). 386 * 387 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 388 * do with the skb. 389 * 390 * If the rx_handler consumed to skb in some way, it should return 391 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 392 * the skb to be delivered in some other ways. 393 * 394 * If the rx_handler changed skb->dev, to divert the skb to another 395 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 396 * new device will be called if it exists. 397 * 398 * If the rx_handler consider the skb should be ignored, it should return 399 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 400 * are registred on exact device (ptype->dev == skb->dev). 401 * 402 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 403 * delivered, it should return RX_HANDLER_PASS. 404 * 405 * A device without a registered rx_handler will behave as if rx_handler 406 * returned RX_HANDLER_PASS. 407 */ 408 409 enum rx_handler_result { 410 RX_HANDLER_CONSUMED, 411 RX_HANDLER_ANOTHER, 412 RX_HANDLER_EXACT, 413 RX_HANDLER_PASS, 414 }; 415 typedef enum rx_handler_result rx_handler_result_t; 416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 417 418 extern void __napi_schedule(struct napi_struct *n); 419 420 static inline bool napi_disable_pending(struct napi_struct *n) 421 { 422 return test_bit(NAPI_STATE_DISABLE, &n->state); 423 } 424 425 /** 426 * napi_schedule_prep - check if napi can be scheduled 427 * @n: napi context 428 * 429 * Test if NAPI routine is already running, and if not mark 430 * it as running. This is used as a condition variable 431 * insure only one NAPI poll instance runs. We also make 432 * sure there is no pending NAPI disable. 433 */ 434 static inline bool napi_schedule_prep(struct napi_struct *n) 435 { 436 return !napi_disable_pending(n) && 437 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 438 } 439 440 /** 441 * napi_schedule - schedule NAPI poll 442 * @n: napi context 443 * 444 * Schedule NAPI poll routine to be called if it is not already 445 * running. 446 */ 447 static inline void napi_schedule(struct napi_struct *n) 448 { 449 if (napi_schedule_prep(n)) 450 __napi_schedule(n); 451 } 452 453 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 454 static inline bool napi_reschedule(struct napi_struct *napi) 455 { 456 if (napi_schedule_prep(napi)) { 457 __napi_schedule(napi); 458 return true; 459 } 460 return false; 461 } 462 463 /** 464 * napi_complete - NAPI processing complete 465 * @n: napi context 466 * 467 * Mark NAPI processing as complete. 468 */ 469 extern void __napi_complete(struct napi_struct *n); 470 extern void napi_complete(struct napi_struct *n); 471 472 /** 473 * napi_disable - prevent NAPI from scheduling 474 * @n: napi context 475 * 476 * Stop NAPI from being scheduled on this context. 477 * Waits till any outstanding processing completes. 478 */ 479 static inline void napi_disable(struct napi_struct *n) 480 { 481 set_bit(NAPI_STATE_DISABLE, &n->state); 482 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 483 msleep(1); 484 clear_bit(NAPI_STATE_DISABLE, &n->state); 485 } 486 487 /** 488 * napi_enable - enable NAPI scheduling 489 * @n: napi context 490 * 491 * Resume NAPI from being scheduled on this context. 492 * Must be paired with napi_disable. 493 */ 494 static inline void napi_enable(struct napi_struct *n) 495 { 496 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 497 smp_mb__before_clear_bit(); 498 clear_bit(NAPI_STATE_SCHED, &n->state); 499 } 500 501 #ifdef CONFIG_SMP 502 /** 503 * napi_synchronize - wait until NAPI is not running 504 * @n: napi context 505 * 506 * Wait until NAPI is done being scheduled on this context. 507 * Waits till any outstanding processing completes but 508 * does not disable future activations. 509 */ 510 static inline void napi_synchronize(const struct napi_struct *n) 511 { 512 while (test_bit(NAPI_STATE_SCHED, &n->state)) 513 msleep(1); 514 } 515 #else 516 # define napi_synchronize(n) barrier() 517 #endif 518 519 enum netdev_queue_state_t { 520 __QUEUE_STATE_DRV_XOFF, 521 __QUEUE_STATE_STACK_XOFF, 522 __QUEUE_STATE_FROZEN, 523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 524 (1 << __QUEUE_STATE_STACK_XOFF)) 525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 526 (1 << __QUEUE_STATE_FROZEN)) 527 }; 528 /* 529 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 530 * netif_tx_* functions below are used to manipulate this flag. The 531 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 532 * queue independently. The netif_xmit_*stopped functions below are called 533 * to check if the queue has been stopped by the driver or stack (either 534 * of the XOFF bits are set in the state). Drivers should not need to call 535 * netif_xmit*stopped functions, they should only be using netif_tx_*. 536 */ 537 538 struct netdev_queue { 539 /* 540 * read mostly part 541 */ 542 struct net_device *dev; 543 struct Qdisc *qdisc; 544 struct Qdisc *qdisc_sleeping; 545 #ifdef CONFIG_SYSFS 546 struct kobject kobj; 547 #endif 548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 549 int numa_node; 550 #endif 551 /* 552 * write mostly part 553 */ 554 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 555 int xmit_lock_owner; 556 /* 557 * please use this field instead of dev->trans_start 558 */ 559 unsigned long trans_start; 560 561 /* 562 * Number of TX timeouts for this queue 563 * (/sys/class/net/DEV/Q/trans_timeout) 564 */ 565 unsigned long trans_timeout; 566 567 unsigned long state; 568 569 #ifdef CONFIG_BQL 570 struct dql dql; 571 #endif 572 } ____cacheline_aligned_in_smp; 573 574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 575 { 576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 577 return q->numa_node; 578 #else 579 return NUMA_NO_NODE; 580 #endif 581 } 582 583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 584 { 585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 586 q->numa_node = node; 587 #endif 588 } 589 590 #ifdef CONFIG_RPS 591 /* 592 * This structure holds an RPS map which can be of variable length. The 593 * map is an array of CPUs. 594 */ 595 struct rps_map { 596 unsigned int len; 597 struct rcu_head rcu; 598 u16 cpus[0]; 599 }; 600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 601 602 /* 603 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 604 * tail pointer for that CPU's input queue at the time of last enqueue, and 605 * a hardware filter index. 606 */ 607 struct rps_dev_flow { 608 u16 cpu; 609 u16 filter; 610 unsigned int last_qtail; 611 }; 612 #define RPS_NO_FILTER 0xffff 613 614 /* 615 * The rps_dev_flow_table structure contains a table of flow mappings. 616 */ 617 struct rps_dev_flow_table { 618 unsigned int mask; 619 struct rcu_head rcu; 620 struct work_struct free_work; 621 struct rps_dev_flow flows[0]; 622 }; 623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 624 ((_num) * sizeof(struct rps_dev_flow))) 625 626 /* 627 * The rps_sock_flow_table contains mappings of flows to the last CPU 628 * on which they were processed by the application (set in recvmsg). 629 */ 630 struct rps_sock_flow_table { 631 unsigned int mask; 632 u16 ents[0]; 633 }; 634 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 635 ((_num) * sizeof(u16))) 636 637 #define RPS_NO_CPU 0xffff 638 639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 640 u32 hash) 641 { 642 if (table && hash) { 643 unsigned int cpu, index = hash & table->mask; 644 645 /* We only give a hint, preemption can change cpu under us */ 646 cpu = raw_smp_processor_id(); 647 648 if (table->ents[index] != cpu) 649 table->ents[index] = cpu; 650 } 651 } 652 653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 654 u32 hash) 655 { 656 if (table && hash) 657 table->ents[hash & table->mask] = RPS_NO_CPU; 658 } 659 660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 661 662 #ifdef CONFIG_RFS_ACCEL 663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 664 u32 flow_id, u16 filter_id); 665 #endif 666 667 /* This structure contains an instance of an RX queue. */ 668 struct netdev_rx_queue { 669 struct rps_map __rcu *rps_map; 670 struct rps_dev_flow_table __rcu *rps_flow_table; 671 struct kobject kobj; 672 struct net_device *dev; 673 } ____cacheline_aligned_in_smp; 674 #endif /* CONFIG_RPS */ 675 676 #ifdef CONFIG_XPS 677 /* 678 * This structure holds an XPS map which can be of variable length. The 679 * map is an array of queues. 680 */ 681 struct xps_map { 682 unsigned int len; 683 unsigned int alloc_len; 684 struct rcu_head rcu; 685 u16 queues[0]; 686 }; 687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 689 / sizeof(u16)) 690 691 /* 692 * This structure holds all XPS maps for device. Maps are indexed by CPU. 693 */ 694 struct xps_dev_maps { 695 struct rcu_head rcu; 696 struct xps_map __rcu *cpu_map[0]; 697 }; 698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 699 (nr_cpu_ids * sizeof(struct xps_map *))) 700 #endif /* CONFIG_XPS */ 701 702 #define TC_MAX_QUEUE 16 703 #define TC_BITMASK 15 704 /* HW offloaded queuing disciplines txq count and offset maps */ 705 struct netdev_tc_txq { 706 u16 count; 707 u16 offset; 708 }; 709 710 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 711 /* 712 * This structure is to hold information about the device 713 * configured to run FCoE protocol stack. 714 */ 715 struct netdev_fcoe_hbainfo { 716 char manufacturer[64]; 717 char serial_number[64]; 718 char hardware_version[64]; 719 char driver_version[64]; 720 char optionrom_version[64]; 721 char firmware_version[64]; 722 char model[256]; 723 char model_description[256]; 724 }; 725 #endif 726 727 /* 728 * This structure defines the management hooks for network devices. 729 * The following hooks can be defined; unless noted otherwise, they are 730 * optional and can be filled with a null pointer. 731 * 732 * int (*ndo_init)(struct net_device *dev); 733 * This function is called once when network device is registered. 734 * The network device can use this to any late stage initializaton 735 * or semantic validattion. It can fail with an error code which will 736 * be propogated back to register_netdev 737 * 738 * void (*ndo_uninit)(struct net_device *dev); 739 * This function is called when device is unregistered or when registration 740 * fails. It is not called if init fails. 741 * 742 * int (*ndo_open)(struct net_device *dev); 743 * This function is called when network device transistions to the up 744 * state. 745 * 746 * int (*ndo_stop)(struct net_device *dev); 747 * This function is called when network device transistions to the down 748 * state. 749 * 750 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 751 * struct net_device *dev); 752 * Called when a packet needs to be transmitted. 753 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 754 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 755 * Required can not be NULL. 756 * 757 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 758 * Called to decide which queue to when device supports multiple 759 * transmit queues. 760 * 761 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 762 * This function is called to allow device receiver to make 763 * changes to configuration when multicast or promiscious is enabled. 764 * 765 * void (*ndo_set_rx_mode)(struct net_device *dev); 766 * This function is called device changes address list filtering. 767 * If driver handles unicast address filtering, it should set 768 * IFF_UNICAST_FLT to its priv_flags. 769 * 770 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 771 * This function is called when the Media Access Control address 772 * needs to be changed. If this interface is not defined, the 773 * mac address can not be changed. 774 * 775 * int (*ndo_validate_addr)(struct net_device *dev); 776 * Test if Media Access Control address is valid for the device. 777 * 778 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 779 * Called when a user request an ioctl which can't be handled by 780 * the generic interface code. If not defined ioctl's return 781 * not supported error code. 782 * 783 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 784 * Used to set network devices bus interface parameters. This interface 785 * is retained for legacy reason, new devices should use the bus 786 * interface (PCI) for low level management. 787 * 788 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 789 * Called when a user wants to change the Maximum Transfer Unit 790 * of a device. If not defined, any request to change MTU will 791 * will return an error. 792 * 793 * void (*ndo_tx_timeout)(struct net_device *dev); 794 * Callback uses when the transmitter has not made any progress 795 * for dev->watchdog ticks. 796 * 797 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 798 * struct rtnl_link_stats64 *storage); 799 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 800 * Called when a user wants to get the network device usage 801 * statistics. Drivers must do one of the following: 802 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 803 * rtnl_link_stats64 structure passed by the caller. 804 * 2. Define @ndo_get_stats to update a net_device_stats structure 805 * (which should normally be dev->stats) and return a pointer to 806 * it. The structure may be changed asynchronously only if each 807 * field is written atomically. 808 * 3. Update dev->stats asynchronously and atomically, and define 809 * neither operation. 810 * 811 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 812 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 813 * this function is called when a VLAN id is registered. 814 * 815 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 816 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 817 * this function is called when a VLAN id is unregistered. 818 * 819 * void (*ndo_poll_controller)(struct net_device *dev); 820 * 821 * SR-IOV management functions. 822 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 823 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 824 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 825 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 826 * int (*ndo_get_vf_config)(struct net_device *dev, 827 * int vf, struct ifla_vf_info *ivf); 828 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 829 * struct nlattr *port[]); 830 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 831 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 832 * Called to setup 'tc' number of traffic classes in the net device. This 833 * is always called from the stack with the rtnl lock held and netif tx 834 * queues stopped. This allows the netdevice to perform queue management 835 * safely. 836 * 837 * Fiber Channel over Ethernet (FCoE) offload functions. 838 * int (*ndo_fcoe_enable)(struct net_device *dev); 839 * Called when the FCoE protocol stack wants to start using LLD for FCoE 840 * so the underlying device can perform whatever needed configuration or 841 * initialization to support acceleration of FCoE traffic. 842 * 843 * int (*ndo_fcoe_disable)(struct net_device *dev); 844 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 845 * so the underlying device can perform whatever needed clean-ups to 846 * stop supporting acceleration of FCoE traffic. 847 * 848 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 849 * struct scatterlist *sgl, unsigned int sgc); 850 * Called when the FCoE Initiator wants to initialize an I/O that 851 * is a possible candidate for Direct Data Placement (DDP). The LLD can 852 * perform necessary setup and returns 1 to indicate the device is set up 853 * successfully to perform DDP on this I/O, otherwise this returns 0. 854 * 855 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 856 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 857 * indicated by the FC exchange id 'xid', so the underlying device can 858 * clean up and reuse resources for later DDP requests. 859 * 860 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 861 * struct scatterlist *sgl, unsigned int sgc); 862 * Called when the FCoE Target wants to initialize an I/O that 863 * is a possible candidate for Direct Data Placement (DDP). The LLD can 864 * perform necessary setup and returns 1 to indicate the device is set up 865 * successfully to perform DDP on this I/O, otherwise this returns 0. 866 * 867 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 868 * struct netdev_fcoe_hbainfo *hbainfo); 869 * Called when the FCoE Protocol stack wants information on the underlying 870 * device. This information is utilized by the FCoE protocol stack to 871 * register attributes with Fiber Channel management service as per the 872 * FC-GS Fabric Device Management Information(FDMI) specification. 873 * 874 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 875 * Called when the underlying device wants to override default World Wide 876 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 877 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 878 * protocol stack to use. 879 * 880 * RFS acceleration. 881 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 882 * u16 rxq_index, u32 flow_id); 883 * Set hardware filter for RFS. rxq_index is the target queue index; 884 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 885 * Return the filter ID on success, or a negative error code. 886 * 887 * Slave management functions (for bridge, bonding, etc). User should 888 * call netdev_set_master() to set dev->master properly. 889 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 890 * Called to make another netdev an underling. 891 * 892 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 893 * Called to release previously enslaved netdev. 894 * 895 * Feature/offload setting functions. 896 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 897 * netdev_features_t features); 898 * Adjusts the requested feature flags according to device-specific 899 * constraints, and returns the resulting flags. Must not modify 900 * the device state. 901 * 902 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 903 * Called to update device configuration to new features. Passed 904 * feature set might be less than what was returned by ndo_fix_features()). 905 * Must return >0 or -errno if it changed dev->features itself. 906 * 907 */ 908 struct net_device_ops { 909 int (*ndo_init)(struct net_device *dev); 910 void (*ndo_uninit)(struct net_device *dev); 911 int (*ndo_open)(struct net_device *dev); 912 int (*ndo_stop)(struct net_device *dev); 913 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 914 struct net_device *dev); 915 u16 (*ndo_select_queue)(struct net_device *dev, 916 struct sk_buff *skb); 917 void (*ndo_change_rx_flags)(struct net_device *dev, 918 int flags); 919 void (*ndo_set_rx_mode)(struct net_device *dev); 920 int (*ndo_set_mac_address)(struct net_device *dev, 921 void *addr); 922 int (*ndo_validate_addr)(struct net_device *dev); 923 int (*ndo_do_ioctl)(struct net_device *dev, 924 struct ifreq *ifr, int cmd); 925 int (*ndo_set_config)(struct net_device *dev, 926 struct ifmap *map); 927 int (*ndo_change_mtu)(struct net_device *dev, 928 int new_mtu); 929 int (*ndo_neigh_setup)(struct net_device *dev, 930 struct neigh_parms *); 931 void (*ndo_tx_timeout) (struct net_device *dev); 932 933 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 934 struct rtnl_link_stats64 *storage); 935 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 936 937 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 938 unsigned short vid); 939 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 940 unsigned short vid); 941 #ifdef CONFIG_NET_POLL_CONTROLLER 942 void (*ndo_poll_controller)(struct net_device *dev); 943 int (*ndo_netpoll_setup)(struct net_device *dev, 944 struct netpoll_info *info); 945 void (*ndo_netpoll_cleanup)(struct net_device *dev); 946 #endif 947 int (*ndo_set_vf_mac)(struct net_device *dev, 948 int queue, u8 *mac); 949 int (*ndo_set_vf_vlan)(struct net_device *dev, 950 int queue, u16 vlan, u8 qos); 951 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 952 int vf, int rate); 953 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 954 int vf, bool setting); 955 int (*ndo_get_vf_config)(struct net_device *dev, 956 int vf, 957 struct ifla_vf_info *ivf); 958 int (*ndo_set_vf_port)(struct net_device *dev, 959 int vf, 960 struct nlattr *port[]); 961 int (*ndo_get_vf_port)(struct net_device *dev, 962 int vf, struct sk_buff *skb); 963 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 964 #if IS_ENABLED(CONFIG_FCOE) 965 int (*ndo_fcoe_enable)(struct net_device *dev); 966 int (*ndo_fcoe_disable)(struct net_device *dev); 967 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 968 u16 xid, 969 struct scatterlist *sgl, 970 unsigned int sgc); 971 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 972 u16 xid); 973 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 974 u16 xid, 975 struct scatterlist *sgl, 976 unsigned int sgc); 977 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 978 struct netdev_fcoe_hbainfo *hbainfo); 979 #endif 980 981 #if IS_ENABLED(CONFIG_LIBFCOE) 982 #define NETDEV_FCOE_WWNN 0 983 #define NETDEV_FCOE_WWPN 1 984 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 985 u64 *wwn, int type); 986 #endif 987 988 #ifdef CONFIG_RFS_ACCEL 989 int (*ndo_rx_flow_steer)(struct net_device *dev, 990 const struct sk_buff *skb, 991 u16 rxq_index, 992 u32 flow_id); 993 #endif 994 int (*ndo_add_slave)(struct net_device *dev, 995 struct net_device *slave_dev); 996 int (*ndo_del_slave)(struct net_device *dev, 997 struct net_device *slave_dev); 998 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 999 netdev_features_t features); 1000 int (*ndo_set_features)(struct net_device *dev, 1001 netdev_features_t features); 1002 int (*ndo_neigh_construct)(struct neighbour *n); 1003 void (*ndo_neigh_destroy)(struct neighbour *n); 1004 }; 1005 1006 /* 1007 * The DEVICE structure. 1008 * Actually, this whole structure is a big mistake. It mixes I/O 1009 * data with strictly "high-level" data, and it has to know about 1010 * almost every data structure used in the INET module. 1011 * 1012 * FIXME: cleanup struct net_device such that network protocol info 1013 * moves out. 1014 */ 1015 1016 struct net_device { 1017 1018 /* 1019 * This is the first field of the "visible" part of this structure 1020 * (i.e. as seen by users in the "Space.c" file). It is the name 1021 * of the interface. 1022 */ 1023 char name[IFNAMSIZ]; 1024 1025 struct pm_qos_request pm_qos_req; 1026 1027 /* device name hash chain */ 1028 struct hlist_node name_hlist; 1029 /* snmp alias */ 1030 char *ifalias; 1031 1032 /* 1033 * I/O specific fields 1034 * FIXME: Merge these and struct ifmap into one 1035 */ 1036 unsigned long mem_end; /* shared mem end */ 1037 unsigned long mem_start; /* shared mem start */ 1038 unsigned long base_addr; /* device I/O address */ 1039 unsigned int irq; /* device IRQ number */ 1040 1041 /* 1042 * Some hardware also needs these fields, but they are not 1043 * part of the usual set specified in Space.c. 1044 */ 1045 1046 unsigned long state; 1047 1048 struct list_head dev_list; 1049 struct list_head napi_list; 1050 struct list_head unreg_list; 1051 1052 /* currently active device features */ 1053 netdev_features_t features; 1054 /* user-changeable features */ 1055 netdev_features_t hw_features; 1056 /* user-requested features */ 1057 netdev_features_t wanted_features; 1058 /* mask of features inheritable by VLAN devices */ 1059 netdev_features_t vlan_features; 1060 1061 /* Interface index. Unique device identifier */ 1062 int ifindex; 1063 int iflink; 1064 1065 struct net_device_stats stats; 1066 atomic_long_t rx_dropped; /* dropped packets by core network 1067 * Do not use this in drivers. 1068 */ 1069 1070 #ifdef CONFIG_WIRELESS_EXT 1071 /* List of functions to handle Wireless Extensions (instead of ioctl). 1072 * See <net/iw_handler.h> for details. Jean II */ 1073 const struct iw_handler_def * wireless_handlers; 1074 /* Instance data managed by the core of Wireless Extensions. */ 1075 struct iw_public_data * wireless_data; 1076 #endif 1077 /* Management operations */ 1078 const struct net_device_ops *netdev_ops; 1079 const struct ethtool_ops *ethtool_ops; 1080 1081 /* Hardware header description */ 1082 const struct header_ops *header_ops; 1083 1084 unsigned int flags; /* interface flags (a la BSD) */ 1085 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1086 * See if.h for definitions. */ 1087 unsigned short gflags; 1088 unsigned short padded; /* How much padding added by alloc_netdev() */ 1089 1090 unsigned char operstate; /* RFC2863 operstate */ 1091 unsigned char link_mode; /* mapping policy to operstate */ 1092 1093 unsigned char if_port; /* Selectable AUI, TP,..*/ 1094 unsigned char dma; /* DMA channel */ 1095 1096 unsigned int mtu; /* interface MTU value */ 1097 unsigned short type; /* interface hardware type */ 1098 unsigned short hard_header_len; /* hardware hdr length */ 1099 1100 /* extra head- and tailroom the hardware may need, but not in all cases 1101 * can this be guaranteed, especially tailroom. Some cases also use 1102 * LL_MAX_HEADER instead to allocate the skb. 1103 */ 1104 unsigned short needed_headroom; 1105 unsigned short needed_tailroom; 1106 1107 /* Interface address info. */ 1108 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1109 unsigned char addr_assign_type; /* hw address assignment type */ 1110 unsigned char addr_len; /* hardware address length */ 1111 unsigned char neigh_priv_len; 1112 unsigned short dev_id; /* for shared network cards */ 1113 1114 spinlock_t addr_list_lock; 1115 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1116 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1117 bool uc_promisc; 1118 unsigned int promiscuity; 1119 unsigned int allmulti; 1120 1121 1122 /* Protocol specific pointers */ 1123 1124 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1125 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1126 #endif 1127 #if IS_ENABLED(CONFIG_NET_DSA) 1128 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1129 #endif 1130 void *atalk_ptr; /* AppleTalk link */ 1131 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1132 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1133 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1134 void *ec_ptr; /* Econet specific data */ 1135 void *ax25_ptr; /* AX.25 specific data */ 1136 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1137 assign before registering */ 1138 1139 /* 1140 * Cache lines mostly used on receive path (including eth_type_trans()) 1141 */ 1142 unsigned long last_rx; /* Time of last Rx 1143 * This should not be set in 1144 * drivers, unless really needed, 1145 * because network stack (bonding) 1146 * use it if/when necessary, to 1147 * avoid dirtying this cache line. 1148 */ 1149 1150 struct net_device *master; /* Pointer to master device of a group, 1151 * which this device is member of. 1152 */ 1153 1154 /* Interface address info used in eth_type_trans() */ 1155 unsigned char *dev_addr; /* hw address, (before bcast 1156 because most packets are 1157 unicast) */ 1158 1159 struct netdev_hw_addr_list dev_addrs; /* list of device 1160 hw addresses */ 1161 1162 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1163 1164 #ifdef CONFIG_SYSFS 1165 struct kset *queues_kset; 1166 #endif 1167 1168 #ifdef CONFIG_RPS 1169 struct netdev_rx_queue *_rx; 1170 1171 /* Number of RX queues allocated at register_netdev() time */ 1172 unsigned int num_rx_queues; 1173 1174 /* Number of RX queues currently active in device */ 1175 unsigned int real_num_rx_queues; 1176 1177 #ifdef CONFIG_RFS_ACCEL 1178 /* CPU reverse-mapping for RX completion interrupts, indexed 1179 * by RX queue number. Assigned by driver. This must only be 1180 * set if the ndo_rx_flow_steer operation is defined. */ 1181 struct cpu_rmap *rx_cpu_rmap; 1182 #endif 1183 #endif 1184 1185 rx_handler_func_t __rcu *rx_handler; 1186 void __rcu *rx_handler_data; 1187 1188 struct netdev_queue __rcu *ingress_queue; 1189 1190 /* 1191 * Cache lines mostly used on transmit path 1192 */ 1193 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1194 1195 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1196 unsigned int num_tx_queues; 1197 1198 /* Number of TX queues currently active in device */ 1199 unsigned int real_num_tx_queues; 1200 1201 /* root qdisc from userspace point of view */ 1202 struct Qdisc *qdisc; 1203 1204 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1205 spinlock_t tx_global_lock; 1206 1207 #ifdef CONFIG_XPS 1208 struct xps_dev_maps __rcu *xps_maps; 1209 #endif 1210 1211 /* These may be needed for future network-power-down code. */ 1212 1213 /* 1214 * trans_start here is expensive for high speed devices on SMP, 1215 * please use netdev_queue->trans_start instead. 1216 */ 1217 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1218 1219 int watchdog_timeo; /* used by dev_watchdog() */ 1220 struct timer_list watchdog_timer; 1221 1222 /* Number of references to this device */ 1223 int __percpu *pcpu_refcnt; 1224 1225 /* delayed register/unregister */ 1226 struct list_head todo_list; 1227 /* device index hash chain */ 1228 struct hlist_node index_hlist; 1229 1230 struct list_head link_watch_list; 1231 1232 /* register/unregister state machine */ 1233 enum { NETREG_UNINITIALIZED=0, 1234 NETREG_REGISTERED, /* completed register_netdevice */ 1235 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1236 NETREG_UNREGISTERED, /* completed unregister todo */ 1237 NETREG_RELEASED, /* called free_netdev */ 1238 NETREG_DUMMY, /* dummy device for NAPI poll */ 1239 } reg_state:8; 1240 1241 bool dismantle; /* device is going do be freed */ 1242 1243 enum { 1244 RTNL_LINK_INITIALIZED, 1245 RTNL_LINK_INITIALIZING, 1246 } rtnl_link_state:16; 1247 1248 /* Called from unregister, can be used to call free_netdev */ 1249 void (*destructor)(struct net_device *dev); 1250 1251 #ifdef CONFIG_NETPOLL 1252 struct netpoll_info *npinfo; 1253 #endif 1254 1255 #ifdef CONFIG_NET_NS 1256 /* Network namespace this network device is inside */ 1257 struct net *nd_net; 1258 #endif 1259 1260 /* mid-layer private */ 1261 union { 1262 void *ml_priv; 1263 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1264 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1265 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1266 }; 1267 /* GARP */ 1268 struct garp_port __rcu *garp_port; 1269 1270 /* class/net/name entry */ 1271 struct device dev; 1272 /* space for optional device, statistics, and wireless sysfs groups */ 1273 const struct attribute_group *sysfs_groups[4]; 1274 1275 /* rtnetlink link ops */ 1276 const struct rtnl_link_ops *rtnl_link_ops; 1277 1278 /* for setting kernel sock attribute on TCP connection setup */ 1279 #define GSO_MAX_SIZE 65536 1280 unsigned int gso_max_size; 1281 1282 #ifdef CONFIG_DCB 1283 /* Data Center Bridging netlink ops */ 1284 const struct dcbnl_rtnl_ops *dcbnl_ops; 1285 #endif 1286 u8 num_tc; 1287 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1288 u8 prio_tc_map[TC_BITMASK + 1]; 1289 1290 #if IS_ENABLED(CONFIG_FCOE) 1291 /* max exchange id for FCoE LRO by ddp */ 1292 unsigned int fcoe_ddp_xid; 1293 #endif 1294 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1295 struct netprio_map __rcu *priomap; 1296 #endif 1297 /* phy device may attach itself for hardware timestamping */ 1298 struct phy_device *phydev; 1299 1300 /* group the device belongs to */ 1301 int group; 1302 }; 1303 #define to_net_dev(d) container_of(d, struct net_device, dev) 1304 1305 #define NETDEV_ALIGN 32 1306 1307 static inline 1308 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1309 { 1310 return dev->prio_tc_map[prio & TC_BITMASK]; 1311 } 1312 1313 static inline 1314 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1315 { 1316 if (tc >= dev->num_tc) 1317 return -EINVAL; 1318 1319 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1320 return 0; 1321 } 1322 1323 static inline 1324 void netdev_reset_tc(struct net_device *dev) 1325 { 1326 dev->num_tc = 0; 1327 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1328 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1329 } 1330 1331 static inline 1332 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1333 { 1334 if (tc >= dev->num_tc) 1335 return -EINVAL; 1336 1337 dev->tc_to_txq[tc].count = count; 1338 dev->tc_to_txq[tc].offset = offset; 1339 return 0; 1340 } 1341 1342 static inline 1343 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1344 { 1345 if (num_tc > TC_MAX_QUEUE) 1346 return -EINVAL; 1347 1348 dev->num_tc = num_tc; 1349 return 0; 1350 } 1351 1352 static inline 1353 int netdev_get_num_tc(struct net_device *dev) 1354 { 1355 return dev->num_tc; 1356 } 1357 1358 static inline 1359 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1360 unsigned int index) 1361 { 1362 return &dev->_tx[index]; 1363 } 1364 1365 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1366 void (*f)(struct net_device *, 1367 struct netdev_queue *, 1368 void *), 1369 void *arg) 1370 { 1371 unsigned int i; 1372 1373 for (i = 0; i < dev->num_tx_queues; i++) 1374 f(dev, &dev->_tx[i], arg); 1375 } 1376 1377 /* 1378 * Net namespace inlines 1379 */ 1380 static inline 1381 struct net *dev_net(const struct net_device *dev) 1382 { 1383 return read_pnet(&dev->nd_net); 1384 } 1385 1386 static inline 1387 void dev_net_set(struct net_device *dev, struct net *net) 1388 { 1389 #ifdef CONFIG_NET_NS 1390 release_net(dev->nd_net); 1391 dev->nd_net = hold_net(net); 1392 #endif 1393 } 1394 1395 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1396 { 1397 #ifdef CONFIG_NET_DSA_TAG_DSA 1398 if (dev->dsa_ptr != NULL) 1399 return dsa_uses_dsa_tags(dev->dsa_ptr); 1400 #endif 1401 1402 return 0; 1403 } 1404 1405 #ifndef CONFIG_NET_NS 1406 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1407 { 1408 skb->dev = dev; 1409 } 1410 #else /* CONFIG_NET_NS */ 1411 void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1412 #endif 1413 1414 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1415 { 1416 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1417 if (dev->dsa_ptr != NULL) 1418 return dsa_uses_trailer_tags(dev->dsa_ptr); 1419 #endif 1420 1421 return 0; 1422 } 1423 1424 /** 1425 * netdev_priv - access network device private data 1426 * @dev: network device 1427 * 1428 * Get network device private data 1429 */ 1430 static inline void *netdev_priv(const struct net_device *dev) 1431 { 1432 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1433 } 1434 1435 /* Set the sysfs physical device reference for the network logical device 1436 * if set prior to registration will cause a symlink during initialization. 1437 */ 1438 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1439 1440 /* Set the sysfs device type for the network logical device to allow 1441 * fin grained indentification of different network device types. For 1442 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1443 */ 1444 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1445 1446 /** 1447 * netif_napi_add - initialize a napi context 1448 * @dev: network device 1449 * @napi: napi context 1450 * @poll: polling function 1451 * @weight: default weight 1452 * 1453 * netif_napi_add() must be used to initialize a napi context prior to calling 1454 * *any* of the other napi related functions. 1455 */ 1456 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1457 int (*poll)(struct napi_struct *, int), int weight); 1458 1459 /** 1460 * netif_napi_del - remove a napi context 1461 * @napi: napi context 1462 * 1463 * netif_napi_del() removes a napi context from the network device napi list 1464 */ 1465 void netif_napi_del(struct napi_struct *napi); 1466 1467 struct napi_gro_cb { 1468 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1469 void *frag0; 1470 1471 /* Length of frag0. */ 1472 unsigned int frag0_len; 1473 1474 /* This indicates where we are processing relative to skb->data. */ 1475 int data_offset; 1476 1477 /* This is non-zero if the packet may be of the same flow. */ 1478 int same_flow; 1479 1480 /* This is non-zero if the packet cannot be merged with the new skb. */ 1481 int flush; 1482 1483 /* Number of segments aggregated. */ 1484 int count; 1485 1486 /* Free the skb? */ 1487 int free; 1488 }; 1489 1490 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1491 1492 struct packet_type { 1493 __be16 type; /* This is really htons(ether_type). */ 1494 struct net_device *dev; /* NULL is wildcarded here */ 1495 int (*func) (struct sk_buff *, 1496 struct net_device *, 1497 struct packet_type *, 1498 struct net_device *); 1499 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1500 netdev_features_t features); 1501 int (*gso_send_check)(struct sk_buff *skb); 1502 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1503 struct sk_buff *skb); 1504 int (*gro_complete)(struct sk_buff *skb); 1505 void *af_packet_priv; 1506 struct list_head list; 1507 }; 1508 1509 #include <linux/notifier.h> 1510 1511 /* netdevice notifier chain. Please remember to update the rtnetlink 1512 * notification exclusion list in rtnetlink_event() when adding new 1513 * types. 1514 */ 1515 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1516 #define NETDEV_DOWN 0x0002 1517 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1518 detected a hardware crash and restarted 1519 - we can use this eg to kick tcp sessions 1520 once done */ 1521 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1522 #define NETDEV_REGISTER 0x0005 1523 #define NETDEV_UNREGISTER 0x0006 1524 #define NETDEV_CHANGEMTU 0x0007 1525 #define NETDEV_CHANGEADDR 0x0008 1526 #define NETDEV_GOING_DOWN 0x0009 1527 #define NETDEV_CHANGENAME 0x000A 1528 #define NETDEV_FEAT_CHANGE 0x000B 1529 #define NETDEV_BONDING_FAILOVER 0x000C 1530 #define NETDEV_PRE_UP 0x000D 1531 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1532 #define NETDEV_POST_TYPE_CHANGE 0x000F 1533 #define NETDEV_POST_INIT 0x0010 1534 #define NETDEV_UNREGISTER_BATCH 0x0011 1535 #define NETDEV_RELEASE 0x0012 1536 #define NETDEV_NOTIFY_PEERS 0x0013 1537 #define NETDEV_JOIN 0x0014 1538 1539 extern int register_netdevice_notifier(struct notifier_block *nb); 1540 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1541 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1542 1543 1544 extern rwlock_t dev_base_lock; /* Device list lock */ 1545 1546 1547 #define for_each_netdev(net, d) \ 1548 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1549 #define for_each_netdev_reverse(net, d) \ 1550 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1551 #define for_each_netdev_rcu(net, d) \ 1552 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1553 #define for_each_netdev_safe(net, d, n) \ 1554 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1555 #define for_each_netdev_continue(net, d) \ 1556 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1557 #define for_each_netdev_continue_rcu(net, d) \ 1558 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1559 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1560 1561 static inline struct net_device *next_net_device(struct net_device *dev) 1562 { 1563 struct list_head *lh; 1564 struct net *net; 1565 1566 net = dev_net(dev); 1567 lh = dev->dev_list.next; 1568 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1569 } 1570 1571 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1572 { 1573 struct list_head *lh; 1574 struct net *net; 1575 1576 net = dev_net(dev); 1577 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1578 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1579 } 1580 1581 static inline struct net_device *first_net_device(struct net *net) 1582 { 1583 return list_empty(&net->dev_base_head) ? NULL : 1584 net_device_entry(net->dev_base_head.next); 1585 } 1586 1587 static inline struct net_device *first_net_device_rcu(struct net *net) 1588 { 1589 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1590 1591 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1592 } 1593 1594 extern int netdev_boot_setup_check(struct net_device *dev); 1595 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1596 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1597 const char *hwaddr); 1598 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1599 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1600 extern void dev_add_pack(struct packet_type *pt); 1601 extern void dev_remove_pack(struct packet_type *pt); 1602 extern void __dev_remove_pack(struct packet_type *pt); 1603 1604 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1605 unsigned short mask); 1606 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1607 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1608 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1609 extern int dev_alloc_name(struct net_device *dev, const char *name); 1610 extern int dev_open(struct net_device *dev); 1611 extern int dev_close(struct net_device *dev); 1612 extern void dev_disable_lro(struct net_device *dev); 1613 extern int dev_queue_xmit(struct sk_buff *skb); 1614 extern int register_netdevice(struct net_device *dev); 1615 extern void unregister_netdevice_queue(struct net_device *dev, 1616 struct list_head *head); 1617 extern void unregister_netdevice_many(struct list_head *head); 1618 static inline void unregister_netdevice(struct net_device *dev) 1619 { 1620 unregister_netdevice_queue(dev, NULL); 1621 } 1622 1623 extern int netdev_refcnt_read(const struct net_device *dev); 1624 extern void free_netdev(struct net_device *dev); 1625 extern void synchronize_net(void); 1626 extern int init_dummy_netdev(struct net_device *dev); 1627 extern void netdev_resync_ops(struct net_device *dev); 1628 1629 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1630 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1631 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1632 extern int dev_restart(struct net_device *dev); 1633 #ifdef CONFIG_NETPOLL_TRAP 1634 extern int netpoll_trap(void); 1635 #endif 1636 extern int skb_gro_receive(struct sk_buff **head, 1637 struct sk_buff *skb); 1638 extern void skb_gro_reset_offset(struct sk_buff *skb); 1639 1640 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1641 { 1642 return NAPI_GRO_CB(skb)->data_offset; 1643 } 1644 1645 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1646 { 1647 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1648 } 1649 1650 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1651 { 1652 NAPI_GRO_CB(skb)->data_offset += len; 1653 } 1654 1655 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1656 unsigned int offset) 1657 { 1658 return NAPI_GRO_CB(skb)->frag0 + offset; 1659 } 1660 1661 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1662 { 1663 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1664 } 1665 1666 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1667 unsigned int offset) 1668 { 1669 if (!pskb_may_pull(skb, hlen)) 1670 return NULL; 1671 1672 NAPI_GRO_CB(skb)->frag0 = NULL; 1673 NAPI_GRO_CB(skb)->frag0_len = 0; 1674 return skb->data + offset; 1675 } 1676 1677 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1678 { 1679 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1680 } 1681 1682 static inline void *skb_gro_network_header(struct sk_buff *skb) 1683 { 1684 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1685 skb_network_offset(skb); 1686 } 1687 1688 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1689 unsigned short type, 1690 const void *daddr, const void *saddr, 1691 unsigned len) 1692 { 1693 if (!dev->header_ops || !dev->header_ops->create) 1694 return 0; 1695 1696 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1697 } 1698 1699 static inline int dev_parse_header(const struct sk_buff *skb, 1700 unsigned char *haddr) 1701 { 1702 const struct net_device *dev = skb->dev; 1703 1704 if (!dev->header_ops || !dev->header_ops->parse) 1705 return 0; 1706 return dev->header_ops->parse(skb, haddr); 1707 } 1708 1709 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1710 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1711 static inline int unregister_gifconf(unsigned int family) 1712 { 1713 return register_gifconf(family, NULL); 1714 } 1715 1716 /* 1717 * Incoming packets are placed on per-cpu queues 1718 */ 1719 struct softnet_data { 1720 struct Qdisc *output_queue; 1721 struct Qdisc **output_queue_tailp; 1722 struct list_head poll_list; 1723 struct sk_buff *completion_queue; 1724 struct sk_buff_head process_queue; 1725 1726 /* stats */ 1727 unsigned int processed; 1728 unsigned int time_squeeze; 1729 unsigned int cpu_collision; 1730 unsigned int received_rps; 1731 1732 #ifdef CONFIG_RPS 1733 struct softnet_data *rps_ipi_list; 1734 1735 /* Elements below can be accessed between CPUs for RPS */ 1736 struct call_single_data csd ____cacheline_aligned_in_smp; 1737 struct softnet_data *rps_ipi_next; 1738 unsigned int cpu; 1739 unsigned int input_queue_head; 1740 unsigned int input_queue_tail; 1741 #endif 1742 unsigned dropped; 1743 struct sk_buff_head input_pkt_queue; 1744 struct napi_struct backlog; 1745 }; 1746 1747 static inline void input_queue_head_incr(struct softnet_data *sd) 1748 { 1749 #ifdef CONFIG_RPS 1750 sd->input_queue_head++; 1751 #endif 1752 } 1753 1754 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1755 unsigned int *qtail) 1756 { 1757 #ifdef CONFIG_RPS 1758 *qtail = ++sd->input_queue_tail; 1759 #endif 1760 } 1761 1762 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1763 1764 extern void __netif_schedule(struct Qdisc *q); 1765 1766 static inline void netif_schedule_queue(struct netdev_queue *txq) 1767 { 1768 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1769 __netif_schedule(txq->qdisc); 1770 } 1771 1772 static inline void netif_tx_schedule_all(struct net_device *dev) 1773 { 1774 unsigned int i; 1775 1776 for (i = 0; i < dev->num_tx_queues; i++) 1777 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1778 } 1779 1780 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1781 { 1782 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1783 } 1784 1785 /** 1786 * netif_start_queue - allow transmit 1787 * @dev: network device 1788 * 1789 * Allow upper layers to call the device hard_start_xmit routine. 1790 */ 1791 static inline void netif_start_queue(struct net_device *dev) 1792 { 1793 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1794 } 1795 1796 static inline void netif_tx_start_all_queues(struct net_device *dev) 1797 { 1798 unsigned int i; 1799 1800 for (i = 0; i < dev->num_tx_queues; i++) { 1801 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1802 netif_tx_start_queue(txq); 1803 } 1804 } 1805 1806 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1807 { 1808 #ifdef CONFIG_NETPOLL_TRAP 1809 if (netpoll_trap()) { 1810 netif_tx_start_queue(dev_queue); 1811 return; 1812 } 1813 #endif 1814 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1815 __netif_schedule(dev_queue->qdisc); 1816 } 1817 1818 /** 1819 * netif_wake_queue - restart transmit 1820 * @dev: network device 1821 * 1822 * Allow upper layers to call the device hard_start_xmit routine. 1823 * Used for flow control when transmit resources are available. 1824 */ 1825 static inline void netif_wake_queue(struct net_device *dev) 1826 { 1827 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1828 } 1829 1830 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1831 { 1832 unsigned int i; 1833 1834 for (i = 0; i < dev->num_tx_queues; i++) { 1835 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1836 netif_tx_wake_queue(txq); 1837 } 1838 } 1839 1840 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1841 { 1842 if (WARN_ON(!dev_queue)) { 1843 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1844 return; 1845 } 1846 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1847 } 1848 1849 /** 1850 * netif_stop_queue - stop transmitted packets 1851 * @dev: network device 1852 * 1853 * Stop upper layers calling the device hard_start_xmit routine. 1854 * Used for flow control when transmit resources are unavailable. 1855 */ 1856 static inline void netif_stop_queue(struct net_device *dev) 1857 { 1858 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1859 } 1860 1861 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1862 { 1863 unsigned int i; 1864 1865 for (i = 0; i < dev->num_tx_queues; i++) { 1866 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1867 netif_tx_stop_queue(txq); 1868 } 1869 } 1870 1871 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1872 { 1873 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1874 } 1875 1876 /** 1877 * netif_queue_stopped - test if transmit queue is flowblocked 1878 * @dev: network device 1879 * 1880 * Test if transmit queue on device is currently unable to send. 1881 */ 1882 static inline bool netif_queue_stopped(const struct net_device *dev) 1883 { 1884 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1885 } 1886 1887 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1888 { 1889 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1890 } 1891 1892 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1893 { 1894 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1895 } 1896 1897 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1898 unsigned int bytes) 1899 { 1900 #ifdef CONFIG_BQL 1901 dql_queued(&dev_queue->dql, bytes); 1902 1903 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1904 return; 1905 1906 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1907 1908 /* 1909 * The XOFF flag must be set before checking the dql_avail below, 1910 * because in netdev_tx_completed_queue we update the dql_completed 1911 * before checking the XOFF flag. 1912 */ 1913 smp_mb(); 1914 1915 /* check again in case another CPU has just made room avail */ 1916 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1917 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1918 #endif 1919 } 1920 1921 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1922 { 1923 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1924 } 1925 1926 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1927 unsigned pkts, unsigned bytes) 1928 { 1929 #ifdef CONFIG_BQL 1930 if (unlikely(!bytes)) 1931 return; 1932 1933 dql_completed(&dev_queue->dql, bytes); 1934 1935 /* 1936 * Without the memory barrier there is a small possiblity that 1937 * netdev_tx_sent_queue will miss the update and cause the queue to 1938 * be stopped forever 1939 */ 1940 smp_mb(); 1941 1942 if (dql_avail(&dev_queue->dql) < 0) 1943 return; 1944 1945 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 1946 netif_schedule_queue(dev_queue); 1947 #endif 1948 } 1949 1950 static inline void netdev_completed_queue(struct net_device *dev, 1951 unsigned pkts, unsigned bytes) 1952 { 1953 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1954 } 1955 1956 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1957 { 1958 #ifdef CONFIG_BQL 1959 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 1960 dql_reset(&q->dql); 1961 #endif 1962 } 1963 1964 static inline void netdev_reset_queue(struct net_device *dev_queue) 1965 { 1966 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 1967 } 1968 1969 /** 1970 * netif_running - test if up 1971 * @dev: network device 1972 * 1973 * Test if the device has been brought up. 1974 */ 1975 static inline bool netif_running(const struct net_device *dev) 1976 { 1977 return test_bit(__LINK_STATE_START, &dev->state); 1978 } 1979 1980 /* 1981 * Routines to manage the subqueues on a device. We only need start 1982 * stop, and a check if it's stopped. All other device management is 1983 * done at the overall netdevice level. 1984 * Also test the device if we're multiqueue. 1985 */ 1986 1987 /** 1988 * netif_start_subqueue - allow sending packets on subqueue 1989 * @dev: network device 1990 * @queue_index: sub queue index 1991 * 1992 * Start individual transmit queue of a device with multiple transmit queues. 1993 */ 1994 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1995 { 1996 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1997 1998 netif_tx_start_queue(txq); 1999 } 2000 2001 /** 2002 * netif_stop_subqueue - stop sending packets on subqueue 2003 * @dev: network device 2004 * @queue_index: sub queue index 2005 * 2006 * Stop individual transmit queue of a device with multiple transmit queues. 2007 */ 2008 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2009 { 2010 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2011 #ifdef CONFIG_NETPOLL_TRAP 2012 if (netpoll_trap()) 2013 return; 2014 #endif 2015 netif_tx_stop_queue(txq); 2016 } 2017 2018 /** 2019 * netif_subqueue_stopped - test status of subqueue 2020 * @dev: network device 2021 * @queue_index: sub queue index 2022 * 2023 * Check individual transmit queue of a device with multiple transmit queues. 2024 */ 2025 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2026 u16 queue_index) 2027 { 2028 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2029 2030 return netif_tx_queue_stopped(txq); 2031 } 2032 2033 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2034 struct sk_buff *skb) 2035 { 2036 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2037 } 2038 2039 /** 2040 * netif_wake_subqueue - allow sending packets on subqueue 2041 * @dev: network device 2042 * @queue_index: sub queue index 2043 * 2044 * Resume individual transmit queue of a device with multiple transmit queues. 2045 */ 2046 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2047 { 2048 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2049 #ifdef CONFIG_NETPOLL_TRAP 2050 if (netpoll_trap()) 2051 return; 2052 #endif 2053 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2054 __netif_schedule(txq->qdisc); 2055 } 2056 2057 /* 2058 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2059 * as a distribution range limit for the returned value. 2060 */ 2061 static inline u16 skb_tx_hash(const struct net_device *dev, 2062 const struct sk_buff *skb) 2063 { 2064 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2065 } 2066 2067 /** 2068 * netif_is_multiqueue - test if device has multiple transmit queues 2069 * @dev: network device 2070 * 2071 * Check if device has multiple transmit queues 2072 */ 2073 static inline bool netif_is_multiqueue(const struct net_device *dev) 2074 { 2075 return dev->num_tx_queues > 1; 2076 } 2077 2078 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2079 unsigned int txq); 2080 2081 #ifdef CONFIG_RPS 2082 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2083 unsigned int rxq); 2084 #else 2085 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2086 unsigned int rxq) 2087 { 2088 return 0; 2089 } 2090 #endif 2091 2092 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2093 const struct net_device *from_dev) 2094 { 2095 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2096 #ifdef CONFIG_RPS 2097 return netif_set_real_num_rx_queues(to_dev, 2098 from_dev->real_num_rx_queues); 2099 #else 2100 return 0; 2101 #endif 2102 } 2103 2104 /* Use this variant when it is known for sure that it 2105 * is executing from hardware interrupt context or with hardware interrupts 2106 * disabled. 2107 */ 2108 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2109 2110 /* Use this variant in places where it could be invoked 2111 * from either hardware interrupt or other context, with hardware interrupts 2112 * either disabled or enabled. 2113 */ 2114 extern void dev_kfree_skb_any(struct sk_buff *skb); 2115 2116 extern int netif_rx(struct sk_buff *skb); 2117 extern int netif_rx_ni(struct sk_buff *skb); 2118 extern int netif_receive_skb(struct sk_buff *skb); 2119 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2120 struct sk_buff *skb); 2121 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2122 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2123 struct sk_buff *skb); 2124 extern void napi_gro_flush(struct napi_struct *napi); 2125 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2126 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2127 struct sk_buff *skb, 2128 gro_result_t ret); 2129 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2130 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2131 2132 static inline void napi_free_frags(struct napi_struct *napi) 2133 { 2134 kfree_skb(napi->skb); 2135 napi->skb = NULL; 2136 } 2137 2138 extern int netdev_rx_handler_register(struct net_device *dev, 2139 rx_handler_func_t *rx_handler, 2140 void *rx_handler_data); 2141 extern void netdev_rx_handler_unregister(struct net_device *dev); 2142 2143 extern bool dev_valid_name(const char *name); 2144 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2145 extern int dev_ethtool(struct net *net, struct ifreq *); 2146 extern unsigned dev_get_flags(const struct net_device *); 2147 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2148 extern int dev_change_flags(struct net_device *, unsigned); 2149 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2150 extern int dev_change_name(struct net_device *, const char *); 2151 extern int dev_set_alias(struct net_device *, const char *, size_t); 2152 extern int dev_change_net_namespace(struct net_device *, 2153 struct net *, const char *); 2154 extern int dev_set_mtu(struct net_device *, int); 2155 extern void dev_set_group(struct net_device *, int); 2156 extern int dev_set_mac_address(struct net_device *, 2157 struct sockaddr *); 2158 extern int dev_hard_start_xmit(struct sk_buff *skb, 2159 struct net_device *dev, 2160 struct netdev_queue *txq); 2161 extern int dev_forward_skb(struct net_device *dev, 2162 struct sk_buff *skb); 2163 2164 extern int netdev_budget; 2165 2166 /* Called by rtnetlink.c:rtnl_unlock() */ 2167 extern void netdev_run_todo(void); 2168 2169 /** 2170 * dev_put - release reference to device 2171 * @dev: network device 2172 * 2173 * Release reference to device to allow it to be freed. 2174 */ 2175 static inline void dev_put(struct net_device *dev) 2176 { 2177 this_cpu_dec(*dev->pcpu_refcnt); 2178 } 2179 2180 /** 2181 * dev_hold - get reference to device 2182 * @dev: network device 2183 * 2184 * Hold reference to device to keep it from being freed. 2185 */ 2186 static inline void dev_hold(struct net_device *dev) 2187 { 2188 this_cpu_inc(*dev->pcpu_refcnt); 2189 } 2190 2191 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2192 * and _off may be called from IRQ context, but it is caller 2193 * who is responsible for serialization of these calls. 2194 * 2195 * The name carrier is inappropriate, these functions should really be 2196 * called netif_lowerlayer_*() because they represent the state of any 2197 * kind of lower layer not just hardware media. 2198 */ 2199 2200 extern void linkwatch_fire_event(struct net_device *dev); 2201 extern void linkwatch_forget_dev(struct net_device *dev); 2202 2203 /** 2204 * netif_carrier_ok - test if carrier present 2205 * @dev: network device 2206 * 2207 * Check if carrier is present on device 2208 */ 2209 static inline bool netif_carrier_ok(const struct net_device *dev) 2210 { 2211 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2212 } 2213 2214 extern unsigned long dev_trans_start(struct net_device *dev); 2215 2216 extern void __netdev_watchdog_up(struct net_device *dev); 2217 2218 extern void netif_carrier_on(struct net_device *dev); 2219 2220 extern void netif_carrier_off(struct net_device *dev); 2221 2222 extern void netif_notify_peers(struct net_device *dev); 2223 2224 /** 2225 * netif_dormant_on - mark device as dormant. 2226 * @dev: network device 2227 * 2228 * Mark device as dormant (as per RFC2863). 2229 * 2230 * The dormant state indicates that the relevant interface is not 2231 * actually in a condition to pass packets (i.e., it is not 'up') but is 2232 * in a "pending" state, waiting for some external event. For "on- 2233 * demand" interfaces, this new state identifies the situation where the 2234 * interface is waiting for events to place it in the up state. 2235 * 2236 */ 2237 static inline void netif_dormant_on(struct net_device *dev) 2238 { 2239 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2240 linkwatch_fire_event(dev); 2241 } 2242 2243 /** 2244 * netif_dormant_off - set device as not dormant. 2245 * @dev: network device 2246 * 2247 * Device is not in dormant state. 2248 */ 2249 static inline void netif_dormant_off(struct net_device *dev) 2250 { 2251 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2252 linkwatch_fire_event(dev); 2253 } 2254 2255 /** 2256 * netif_dormant - test if carrier present 2257 * @dev: network device 2258 * 2259 * Check if carrier is present on device 2260 */ 2261 static inline bool netif_dormant(const struct net_device *dev) 2262 { 2263 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2264 } 2265 2266 2267 /** 2268 * netif_oper_up - test if device is operational 2269 * @dev: network device 2270 * 2271 * Check if carrier is operational 2272 */ 2273 static inline bool netif_oper_up(const struct net_device *dev) 2274 { 2275 return (dev->operstate == IF_OPER_UP || 2276 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2277 } 2278 2279 /** 2280 * netif_device_present - is device available or removed 2281 * @dev: network device 2282 * 2283 * Check if device has not been removed from system. 2284 */ 2285 static inline bool netif_device_present(struct net_device *dev) 2286 { 2287 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2288 } 2289 2290 extern void netif_device_detach(struct net_device *dev); 2291 2292 extern void netif_device_attach(struct net_device *dev); 2293 2294 /* 2295 * Network interface message level settings 2296 */ 2297 2298 enum { 2299 NETIF_MSG_DRV = 0x0001, 2300 NETIF_MSG_PROBE = 0x0002, 2301 NETIF_MSG_LINK = 0x0004, 2302 NETIF_MSG_TIMER = 0x0008, 2303 NETIF_MSG_IFDOWN = 0x0010, 2304 NETIF_MSG_IFUP = 0x0020, 2305 NETIF_MSG_RX_ERR = 0x0040, 2306 NETIF_MSG_TX_ERR = 0x0080, 2307 NETIF_MSG_TX_QUEUED = 0x0100, 2308 NETIF_MSG_INTR = 0x0200, 2309 NETIF_MSG_TX_DONE = 0x0400, 2310 NETIF_MSG_RX_STATUS = 0x0800, 2311 NETIF_MSG_PKTDATA = 0x1000, 2312 NETIF_MSG_HW = 0x2000, 2313 NETIF_MSG_WOL = 0x4000, 2314 }; 2315 2316 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2317 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2318 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2319 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2320 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2321 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2322 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2323 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2324 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2325 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2326 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2327 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2328 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2329 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2330 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2331 2332 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2333 { 2334 /* use default */ 2335 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2336 return default_msg_enable_bits; 2337 if (debug_value == 0) /* no output */ 2338 return 0; 2339 /* set low N bits */ 2340 return (1 << debug_value) - 1; 2341 } 2342 2343 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2344 { 2345 spin_lock(&txq->_xmit_lock); 2346 txq->xmit_lock_owner = cpu; 2347 } 2348 2349 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2350 { 2351 spin_lock_bh(&txq->_xmit_lock); 2352 txq->xmit_lock_owner = smp_processor_id(); 2353 } 2354 2355 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2356 { 2357 bool ok = spin_trylock(&txq->_xmit_lock); 2358 if (likely(ok)) 2359 txq->xmit_lock_owner = smp_processor_id(); 2360 return ok; 2361 } 2362 2363 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2364 { 2365 txq->xmit_lock_owner = -1; 2366 spin_unlock(&txq->_xmit_lock); 2367 } 2368 2369 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2370 { 2371 txq->xmit_lock_owner = -1; 2372 spin_unlock_bh(&txq->_xmit_lock); 2373 } 2374 2375 static inline void txq_trans_update(struct netdev_queue *txq) 2376 { 2377 if (txq->xmit_lock_owner != -1) 2378 txq->trans_start = jiffies; 2379 } 2380 2381 /** 2382 * netif_tx_lock - grab network device transmit lock 2383 * @dev: network device 2384 * 2385 * Get network device transmit lock 2386 */ 2387 static inline void netif_tx_lock(struct net_device *dev) 2388 { 2389 unsigned int i; 2390 int cpu; 2391 2392 spin_lock(&dev->tx_global_lock); 2393 cpu = smp_processor_id(); 2394 for (i = 0; i < dev->num_tx_queues; i++) { 2395 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2396 2397 /* We are the only thread of execution doing a 2398 * freeze, but we have to grab the _xmit_lock in 2399 * order to synchronize with threads which are in 2400 * the ->hard_start_xmit() handler and already 2401 * checked the frozen bit. 2402 */ 2403 __netif_tx_lock(txq, cpu); 2404 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2405 __netif_tx_unlock(txq); 2406 } 2407 } 2408 2409 static inline void netif_tx_lock_bh(struct net_device *dev) 2410 { 2411 local_bh_disable(); 2412 netif_tx_lock(dev); 2413 } 2414 2415 static inline void netif_tx_unlock(struct net_device *dev) 2416 { 2417 unsigned int i; 2418 2419 for (i = 0; i < dev->num_tx_queues; i++) { 2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2421 2422 /* No need to grab the _xmit_lock here. If the 2423 * queue is not stopped for another reason, we 2424 * force a schedule. 2425 */ 2426 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2427 netif_schedule_queue(txq); 2428 } 2429 spin_unlock(&dev->tx_global_lock); 2430 } 2431 2432 static inline void netif_tx_unlock_bh(struct net_device *dev) 2433 { 2434 netif_tx_unlock(dev); 2435 local_bh_enable(); 2436 } 2437 2438 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2439 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2440 __netif_tx_lock(txq, cpu); \ 2441 } \ 2442 } 2443 2444 #define HARD_TX_UNLOCK(dev, txq) { \ 2445 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2446 __netif_tx_unlock(txq); \ 2447 } \ 2448 } 2449 2450 static inline void netif_tx_disable(struct net_device *dev) 2451 { 2452 unsigned int i; 2453 int cpu; 2454 2455 local_bh_disable(); 2456 cpu = smp_processor_id(); 2457 for (i = 0; i < dev->num_tx_queues; i++) { 2458 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2459 2460 __netif_tx_lock(txq, cpu); 2461 netif_tx_stop_queue(txq); 2462 __netif_tx_unlock(txq); 2463 } 2464 local_bh_enable(); 2465 } 2466 2467 static inline void netif_addr_lock(struct net_device *dev) 2468 { 2469 spin_lock(&dev->addr_list_lock); 2470 } 2471 2472 static inline void netif_addr_lock_nested(struct net_device *dev) 2473 { 2474 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2475 } 2476 2477 static inline void netif_addr_lock_bh(struct net_device *dev) 2478 { 2479 spin_lock_bh(&dev->addr_list_lock); 2480 } 2481 2482 static inline void netif_addr_unlock(struct net_device *dev) 2483 { 2484 spin_unlock(&dev->addr_list_lock); 2485 } 2486 2487 static inline void netif_addr_unlock_bh(struct net_device *dev) 2488 { 2489 spin_unlock_bh(&dev->addr_list_lock); 2490 } 2491 2492 /* 2493 * dev_addrs walker. Should be used only for read access. Call with 2494 * rcu_read_lock held. 2495 */ 2496 #define for_each_dev_addr(dev, ha) \ 2497 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2498 2499 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2500 2501 extern void ether_setup(struct net_device *dev); 2502 2503 /* Support for loadable net-drivers */ 2504 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2505 void (*setup)(struct net_device *), 2506 unsigned int txqs, unsigned int rxqs); 2507 #define alloc_netdev(sizeof_priv, name, setup) \ 2508 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2509 2510 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2511 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2512 2513 extern int register_netdev(struct net_device *dev); 2514 extern void unregister_netdev(struct net_device *dev); 2515 2516 /* General hardware address lists handling functions */ 2517 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2518 struct netdev_hw_addr_list *from_list, 2519 int addr_len, unsigned char addr_type); 2520 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2521 struct netdev_hw_addr_list *from_list, 2522 int addr_len, unsigned char addr_type); 2523 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2524 struct netdev_hw_addr_list *from_list, 2525 int addr_len); 2526 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2527 struct netdev_hw_addr_list *from_list, 2528 int addr_len); 2529 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2530 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2531 2532 /* Functions used for device addresses handling */ 2533 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2534 unsigned char addr_type); 2535 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2536 unsigned char addr_type); 2537 extern int dev_addr_add_multiple(struct net_device *to_dev, 2538 struct net_device *from_dev, 2539 unsigned char addr_type); 2540 extern int dev_addr_del_multiple(struct net_device *to_dev, 2541 struct net_device *from_dev, 2542 unsigned char addr_type); 2543 extern void dev_addr_flush(struct net_device *dev); 2544 extern int dev_addr_init(struct net_device *dev); 2545 2546 /* Functions used for unicast addresses handling */ 2547 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2548 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2549 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2550 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2551 extern void dev_uc_flush(struct net_device *dev); 2552 extern void dev_uc_init(struct net_device *dev); 2553 2554 /* Functions used for multicast addresses handling */ 2555 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2556 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2557 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2558 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2559 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2560 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2561 extern void dev_mc_flush(struct net_device *dev); 2562 extern void dev_mc_init(struct net_device *dev); 2563 2564 /* Functions used for secondary unicast and multicast support */ 2565 extern void dev_set_rx_mode(struct net_device *dev); 2566 extern void __dev_set_rx_mode(struct net_device *dev); 2567 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2568 extern int dev_set_allmulti(struct net_device *dev, int inc); 2569 extern void netdev_state_change(struct net_device *dev); 2570 extern int netdev_bonding_change(struct net_device *dev, 2571 unsigned long event); 2572 extern void netdev_features_change(struct net_device *dev); 2573 /* Load a device via the kmod */ 2574 extern void dev_load(struct net *net, const char *name); 2575 extern void dev_mcast_init(void); 2576 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2577 struct rtnl_link_stats64 *storage); 2578 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2579 const struct net_device_stats *netdev_stats); 2580 2581 extern int netdev_max_backlog; 2582 extern int netdev_tstamp_prequeue; 2583 extern int weight_p; 2584 extern int bpf_jit_enable; 2585 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2586 extern int netdev_set_bond_master(struct net_device *dev, 2587 struct net_device *master); 2588 extern int skb_checksum_help(struct sk_buff *skb); 2589 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2590 netdev_features_t features); 2591 #ifdef CONFIG_BUG 2592 extern void netdev_rx_csum_fault(struct net_device *dev); 2593 #else 2594 static inline void netdev_rx_csum_fault(struct net_device *dev) 2595 { 2596 } 2597 #endif 2598 /* rx skb timestamps */ 2599 extern void net_enable_timestamp(void); 2600 extern void net_disable_timestamp(void); 2601 2602 #ifdef CONFIG_PROC_FS 2603 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2604 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2605 extern void dev_seq_stop(struct seq_file *seq, void *v); 2606 extern int dev_seq_open_ops(struct inode *inode, struct file *file, 2607 const struct seq_operations *ops); 2608 #endif 2609 2610 extern int netdev_class_create_file(struct class_attribute *class_attr); 2611 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2612 2613 extern struct kobj_ns_type_operations net_ns_type_operations; 2614 2615 extern const char *netdev_drivername(const struct net_device *dev); 2616 2617 extern void linkwatch_run_queue(void); 2618 2619 static inline netdev_features_t netdev_get_wanted_features( 2620 struct net_device *dev) 2621 { 2622 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2623 } 2624 netdev_features_t netdev_increment_features(netdev_features_t all, 2625 netdev_features_t one, netdev_features_t mask); 2626 int __netdev_update_features(struct net_device *dev); 2627 void netdev_update_features(struct net_device *dev); 2628 void netdev_change_features(struct net_device *dev); 2629 2630 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2631 struct net_device *dev); 2632 2633 netdev_features_t netif_skb_features(struct sk_buff *skb); 2634 2635 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2636 { 2637 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2638 2639 /* check flags correspondence */ 2640 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2641 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2642 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2643 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2644 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2645 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2646 2647 return (features & feature) == feature; 2648 } 2649 2650 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2651 { 2652 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2653 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2654 } 2655 2656 static inline bool netif_needs_gso(struct sk_buff *skb, 2657 netdev_features_t features) 2658 { 2659 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2660 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2661 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2662 } 2663 2664 static inline void netif_set_gso_max_size(struct net_device *dev, 2665 unsigned int size) 2666 { 2667 dev->gso_max_size = size; 2668 } 2669 2670 static inline bool netif_is_bond_slave(struct net_device *dev) 2671 { 2672 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2673 } 2674 2675 static inline bool netif_supports_nofcs(struct net_device *dev) 2676 { 2677 return dev->priv_flags & IFF_SUPP_NOFCS; 2678 } 2679 2680 extern struct pernet_operations __net_initdata loopback_net_ops; 2681 2682 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2683 2684 /* netdev_printk helpers, similar to dev_printk */ 2685 2686 static inline const char *netdev_name(const struct net_device *dev) 2687 { 2688 if (dev->reg_state != NETREG_REGISTERED) 2689 return "(unregistered net_device)"; 2690 return dev->name; 2691 } 2692 2693 extern int __netdev_printk(const char *level, const struct net_device *dev, 2694 struct va_format *vaf); 2695 2696 extern __printf(3, 4) 2697 int netdev_printk(const char *level, const struct net_device *dev, 2698 const char *format, ...); 2699 extern __printf(2, 3) 2700 int netdev_emerg(const struct net_device *dev, const char *format, ...); 2701 extern __printf(2, 3) 2702 int netdev_alert(const struct net_device *dev, const char *format, ...); 2703 extern __printf(2, 3) 2704 int netdev_crit(const struct net_device *dev, const char *format, ...); 2705 extern __printf(2, 3) 2706 int netdev_err(const struct net_device *dev, const char *format, ...); 2707 extern __printf(2, 3) 2708 int netdev_warn(const struct net_device *dev, const char *format, ...); 2709 extern __printf(2, 3) 2710 int netdev_notice(const struct net_device *dev, const char *format, ...); 2711 extern __printf(2, 3) 2712 int netdev_info(const struct net_device *dev, const char *format, ...); 2713 2714 #define MODULE_ALIAS_NETDEV(device) \ 2715 MODULE_ALIAS("netdev-" device) 2716 2717 #if defined(CONFIG_DYNAMIC_DEBUG) 2718 #define netdev_dbg(__dev, format, args...) \ 2719 do { \ 2720 dynamic_netdev_dbg(__dev, format, ##args); \ 2721 } while (0) 2722 #elif defined(DEBUG) 2723 #define netdev_dbg(__dev, format, args...) \ 2724 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2725 #else 2726 #define netdev_dbg(__dev, format, args...) \ 2727 ({ \ 2728 if (0) \ 2729 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2730 0; \ 2731 }) 2732 #endif 2733 2734 #if defined(VERBOSE_DEBUG) 2735 #define netdev_vdbg netdev_dbg 2736 #else 2737 2738 #define netdev_vdbg(dev, format, args...) \ 2739 ({ \ 2740 if (0) \ 2741 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2742 0; \ 2743 }) 2744 #endif 2745 2746 /* 2747 * netdev_WARN() acts like dev_printk(), but with the key difference 2748 * of using a WARN/WARN_ON to get the message out, including the 2749 * file/line information and a backtrace. 2750 */ 2751 #define netdev_WARN(dev, format, args...) \ 2752 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2753 2754 /* netif printk helpers, similar to netdev_printk */ 2755 2756 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2757 do { \ 2758 if (netif_msg_##type(priv)) \ 2759 netdev_printk(level, (dev), fmt, ##args); \ 2760 } while (0) 2761 2762 #define netif_level(level, priv, type, dev, fmt, args...) \ 2763 do { \ 2764 if (netif_msg_##type(priv)) \ 2765 netdev_##level(dev, fmt, ##args); \ 2766 } while (0) 2767 2768 #define netif_emerg(priv, type, dev, fmt, args...) \ 2769 netif_level(emerg, priv, type, dev, fmt, ##args) 2770 #define netif_alert(priv, type, dev, fmt, args...) \ 2771 netif_level(alert, priv, type, dev, fmt, ##args) 2772 #define netif_crit(priv, type, dev, fmt, args...) \ 2773 netif_level(crit, priv, type, dev, fmt, ##args) 2774 #define netif_err(priv, type, dev, fmt, args...) \ 2775 netif_level(err, priv, type, dev, fmt, ##args) 2776 #define netif_warn(priv, type, dev, fmt, args...) \ 2777 netif_level(warn, priv, type, dev, fmt, ##args) 2778 #define netif_notice(priv, type, dev, fmt, args...) \ 2779 netif_level(notice, priv, type, dev, fmt, ##args) 2780 #define netif_info(priv, type, dev, fmt, args...) \ 2781 netif_level(info, priv, type, dev, fmt, ##args) 2782 2783 #if defined(DEBUG) 2784 #define netif_dbg(priv, type, dev, format, args...) \ 2785 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2786 #elif defined(CONFIG_DYNAMIC_DEBUG) 2787 #define netif_dbg(priv, type, netdev, format, args...) \ 2788 do { \ 2789 if (netif_msg_##type(priv)) \ 2790 dynamic_netdev_dbg(netdev, format, ##args); \ 2791 } while (0) 2792 #else 2793 #define netif_dbg(priv, type, dev, format, args...) \ 2794 ({ \ 2795 if (0) \ 2796 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2797 0; \ 2798 }) 2799 #endif 2800 2801 #if defined(VERBOSE_DEBUG) 2802 #define netif_vdbg netif_dbg 2803 #else 2804 #define netif_vdbg(priv, type, dev, format, args...) \ 2805 ({ \ 2806 if (0) \ 2807 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2808 0; \ 2809 }) 2810 #endif 2811 2812 #endif /* __KERNEL__ */ 2813 2814 #endif /* _LINUX_NETDEVICE_H */ 2815