xref: /linux-6.15/include/linux/netdevice.h (revision c1e4535f)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct macsec_context;
57 struct macsec_ops;
58 
59 struct sfp_bus;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69 
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 				    const struct ethtool_ops *ops);
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 #define MAX_NEST_DEV 8
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key_false rps_needed;
198 extern struct static_key_false rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 	__be16	(*parse_protocol)(const struct sk_buff *skb);
278 };
279 
280 /* These flag bits are private to the generic network queueing
281  * layer; they may not be explicitly referenced by any other
282  * code.
283  */
284 
285 enum netdev_state_t {
286 	__LINK_STATE_START,
287 	__LINK_STATE_PRESENT,
288 	__LINK_STATE_NOCARRIER,
289 	__LINK_STATE_LINKWATCH_PENDING,
290 	__LINK_STATE_DORMANT,
291 	__LINK_STATE_TESTING,
292 };
293 
294 
295 /*
296  * This structure holds boot-time configured netdevice settings. They
297  * are then used in the device probing.
298  */
299 struct netdev_boot_setup {
300 	char name[IFNAMSIZ];
301 	struct ifmap map;
302 };
303 #define NETDEV_BOOT_SETUP_MAX 8
304 
305 int __init netdev_boot_setup(char *str);
306 
307 struct gro_list {
308 	struct list_head	list;
309 	int			count;
310 };
311 
312 /*
313  * size of gro hash buckets, must less than bit number of
314  * napi_struct::gro_bitmask
315  */
316 #define GRO_HASH_BUCKETS	8
317 
318 /*
319  * Structure for NAPI scheduling similar to tasklet but with weighting
320  */
321 struct napi_struct {
322 	/* The poll_list must only be managed by the entity which
323 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
324 	 * whoever atomically sets that bit can add this napi_struct
325 	 * to the per-CPU poll_list, and whoever clears that bit
326 	 * can remove from the list right before clearing the bit.
327 	 */
328 	struct list_head	poll_list;
329 
330 	unsigned long		state;
331 	int			weight;
332 	int			defer_hard_irqs_count;
333 	unsigned long		gro_bitmask;
334 	int			(*poll)(struct napi_struct *, int);
335 #ifdef CONFIG_NETPOLL
336 	int			poll_owner;
337 #endif
338 	struct net_device	*dev;
339 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
340 	struct sk_buff		*skb;
341 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
342 	int			rx_count; /* length of rx_list */
343 	struct hrtimer		timer;
344 	struct list_head	dev_list;
345 	struct hlist_node	napi_hash_node;
346 	unsigned int		napi_id;
347 };
348 
349 enum {
350 	NAPI_STATE_SCHED,	/* Poll is scheduled */
351 	NAPI_STATE_MISSED,	/* reschedule a napi */
352 	NAPI_STATE_DISABLE,	/* Disable pending */
353 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
354 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
355 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
356 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
357 };
358 
359 enum {
360 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
361 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
362 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
363 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
364 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
365 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
366 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
367 };
368 
369 enum gro_result {
370 	GRO_MERGED,
371 	GRO_MERGED_FREE,
372 	GRO_HELD,
373 	GRO_NORMAL,
374 	GRO_DROP,
375 	GRO_CONSUMED,
376 };
377 typedef enum gro_result gro_result_t;
378 
379 /*
380  * enum rx_handler_result - Possible return values for rx_handlers.
381  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
382  * further.
383  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
384  * case skb->dev was changed by rx_handler.
385  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
386  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
387  *
388  * rx_handlers are functions called from inside __netif_receive_skb(), to do
389  * special processing of the skb, prior to delivery to protocol handlers.
390  *
391  * Currently, a net_device can only have a single rx_handler registered. Trying
392  * to register a second rx_handler will return -EBUSY.
393  *
394  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
395  * To unregister a rx_handler on a net_device, use
396  * netdev_rx_handler_unregister().
397  *
398  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
399  * do with the skb.
400  *
401  * If the rx_handler consumed the skb in some way, it should return
402  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
403  * the skb to be delivered in some other way.
404  *
405  * If the rx_handler changed skb->dev, to divert the skb to another
406  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
407  * new device will be called if it exists.
408  *
409  * If the rx_handler decides the skb should be ignored, it should return
410  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
411  * are registered on exact device (ptype->dev == skb->dev).
412  *
413  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
414  * delivered, it should return RX_HANDLER_PASS.
415  *
416  * A device without a registered rx_handler will behave as if rx_handler
417  * returned RX_HANDLER_PASS.
418  */
419 
420 enum rx_handler_result {
421 	RX_HANDLER_CONSUMED,
422 	RX_HANDLER_ANOTHER,
423 	RX_HANDLER_EXACT,
424 	RX_HANDLER_PASS,
425 };
426 typedef enum rx_handler_result rx_handler_result_t;
427 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
428 
429 void __napi_schedule(struct napi_struct *n);
430 void __napi_schedule_irqoff(struct napi_struct *n);
431 
432 static inline bool napi_disable_pending(struct napi_struct *n)
433 {
434 	return test_bit(NAPI_STATE_DISABLE, &n->state);
435 }
436 
437 bool napi_schedule_prep(struct napi_struct *n);
438 
439 /**
440  *	napi_schedule - schedule NAPI poll
441  *	@n: NAPI context
442  *
443  * Schedule NAPI poll routine to be called if it is not already
444  * running.
445  */
446 static inline void napi_schedule(struct napi_struct *n)
447 {
448 	if (napi_schedule_prep(n))
449 		__napi_schedule(n);
450 }
451 
452 /**
453  *	napi_schedule_irqoff - schedule NAPI poll
454  *	@n: NAPI context
455  *
456  * Variant of napi_schedule(), assuming hard irqs are masked.
457  */
458 static inline void napi_schedule_irqoff(struct napi_struct *n)
459 {
460 	if (napi_schedule_prep(n))
461 		__napi_schedule_irqoff(n);
462 }
463 
464 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
465 static inline bool napi_reschedule(struct napi_struct *napi)
466 {
467 	if (napi_schedule_prep(napi)) {
468 		__napi_schedule(napi);
469 		return true;
470 	}
471 	return false;
472 }
473 
474 bool napi_complete_done(struct napi_struct *n, int work_done);
475 /**
476  *	napi_complete - NAPI processing complete
477  *	@n: NAPI context
478  *
479  * Mark NAPI processing as complete.
480  * Consider using napi_complete_done() instead.
481  * Return false if device should avoid rearming interrupts.
482  */
483 static inline bool napi_complete(struct napi_struct *n)
484 {
485 	return napi_complete_done(n, 0);
486 }
487 
488 /**
489  *	napi_hash_del - remove a NAPI from global table
490  *	@napi: NAPI context
491  *
492  * Warning: caller must observe RCU grace period
493  * before freeing memory containing @napi, if
494  * this function returns true.
495  * Note: core networking stack automatically calls it
496  * from netif_napi_del().
497  * Drivers might want to call this helper to combine all
498  * the needed RCU grace periods into a single one.
499  */
500 bool napi_hash_del(struct napi_struct *napi);
501 
502 /**
503  *	napi_disable - prevent NAPI from scheduling
504  *	@n: NAPI context
505  *
506  * Stop NAPI from being scheduled on this context.
507  * Waits till any outstanding processing completes.
508  */
509 void napi_disable(struct napi_struct *n);
510 
511 /**
512  *	napi_enable - enable NAPI scheduling
513  *	@n: NAPI context
514  *
515  * Resume NAPI from being scheduled on this context.
516  * Must be paired with napi_disable.
517  */
518 static inline void napi_enable(struct napi_struct *n)
519 {
520 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
521 	smp_mb__before_atomic();
522 	clear_bit(NAPI_STATE_SCHED, &n->state);
523 	clear_bit(NAPI_STATE_NPSVC, &n->state);
524 }
525 
526 /**
527  *	napi_synchronize - wait until NAPI is not running
528  *	@n: NAPI context
529  *
530  * Wait until NAPI is done being scheduled on this context.
531  * Waits till any outstanding processing completes but
532  * does not disable future activations.
533  */
534 static inline void napi_synchronize(const struct napi_struct *n)
535 {
536 	if (IS_ENABLED(CONFIG_SMP))
537 		while (test_bit(NAPI_STATE_SCHED, &n->state))
538 			msleep(1);
539 	else
540 		barrier();
541 }
542 
543 /**
544  *	napi_if_scheduled_mark_missed - if napi is running, set the
545  *	NAPIF_STATE_MISSED
546  *	@n: NAPI context
547  *
548  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
549  * NAPI is scheduled.
550  **/
551 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
552 {
553 	unsigned long val, new;
554 
555 	do {
556 		val = READ_ONCE(n->state);
557 		if (val & NAPIF_STATE_DISABLE)
558 			return true;
559 
560 		if (!(val & NAPIF_STATE_SCHED))
561 			return false;
562 
563 		new = val | NAPIF_STATE_MISSED;
564 	} while (cmpxchg(&n->state, val, new) != val);
565 
566 	return true;
567 }
568 
569 enum netdev_queue_state_t {
570 	__QUEUE_STATE_DRV_XOFF,
571 	__QUEUE_STATE_STACK_XOFF,
572 	__QUEUE_STATE_FROZEN,
573 };
574 
575 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
576 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
577 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
578 
579 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
580 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
583 					QUEUE_STATE_FROZEN)
584 
585 /*
586  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
587  * netif_tx_* functions below are used to manipulate this flag.  The
588  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
589  * queue independently.  The netif_xmit_*stopped functions below are called
590  * to check if the queue has been stopped by the driver or stack (either
591  * of the XOFF bits are set in the state).  Drivers should not need to call
592  * netif_xmit*stopped functions, they should only be using netif_tx_*.
593  */
594 
595 struct netdev_queue {
596 /*
597  * read-mostly part
598  */
599 	struct net_device	*dev;
600 	struct Qdisc __rcu	*qdisc;
601 	struct Qdisc		*qdisc_sleeping;
602 #ifdef CONFIG_SYSFS
603 	struct kobject		kobj;
604 #endif
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 	int			numa_node;
607 #endif
608 	unsigned long		tx_maxrate;
609 	/*
610 	 * Number of TX timeouts for this queue
611 	 * (/sys/class/net/DEV/Q/trans_timeout)
612 	 */
613 	unsigned long		trans_timeout;
614 
615 	/* Subordinate device that the queue has been assigned to */
616 	struct net_device	*sb_dev;
617 #ifdef CONFIG_XDP_SOCKETS
618 	struct xdp_umem         *umem;
619 #endif
620 /*
621  * write-mostly part
622  */
623 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
624 	int			xmit_lock_owner;
625 	/*
626 	 * Time (in jiffies) of last Tx
627 	 */
628 	unsigned long		trans_start;
629 
630 	unsigned long		state;
631 
632 #ifdef CONFIG_BQL
633 	struct dql		dql;
634 #endif
635 } ____cacheline_aligned_in_smp;
636 
637 extern int sysctl_fb_tunnels_only_for_init_net;
638 extern int sysctl_devconf_inherit_init_net;
639 
640 static inline bool net_has_fallback_tunnels(const struct net *net)
641 {
642 	return net == &init_net ||
643 	       !IS_ENABLED(CONFIG_SYSCTL) ||
644 	       !sysctl_fb_tunnels_only_for_init_net;
645 }
646 
647 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
648 {
649 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
650 	return q->numa_node;
651 #else
652 	return NUMA_NO_NODE;
653 #endif
654 }
655 
656 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
657 {
658 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
659 	q->numa_node = node;
660 #endif
661 }
662 
663 #ifdef CONFIG_RPS
664 /*
665  * This structure holds an RPS map which can be of variable length.  The
666  * map is an array of CPUs.
667  */
668 struct rps_map {
669 	unsigned int len;
670 	struct rcu_head rcu;
671 	u16 cpus[];
672 };
673 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
674 
675 /*
676  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
677  * tail pointer for that CPU's input queue at the time of last enqueue, and
678  * a hardware filter index.
679  */
680 struct rps_dev_flow {
681 	u16 cpu;
682 	u16 filter;
683 	unsigned int last_qtail;
684 };
685 #define RPS_NO_FILTER 0xffff
686 
687 /*
688  * The rps_dev_flow_table structure contains a table of flow mappings.
689  */
690 struct rps_dev_flow_table {
691 	unsigned int mask;
692 	struct rcu_head rcu;
693 	struct rps_dev_flow flows[];
694 };
695 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
696     ((_num) * sizeof(struct rps_dev_flow)))
697 
698 /*
699  * The rps_sock_flow_table contains mappings of flows to the last CPU
700  * on which they were processed by the application (set in recvmsg).
701  * Each entry is a 32bit value. Upper part is the high-order bits
702  * of flow hash, lower part is CPU number.
703  * rps_cpu_mask is used to partition the space, depending on number of
704  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
705  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
706  * meaning we use 32-6=26 bits for the hash.
707  */
708 struct rps_sock_flow_table {
709 	u32	mask;
710 
711 	u32	ents[] ____cacheline_aligned_in_smp;
712 };
713 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
714 
715 #define RPS_NO_CPU 0xffff
716 
717 extern u32 rps_cpu_mask;
718 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
719 
720 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
721 					u32 hash)
722 {
723 	if (table && hash) {
724 		unsigned int index = hash & table->mask;
725 		u32 val = hash & ~rps_cpu_mask;
726 
727 		/* We only give a hint, preemption can change CPU under us */
728 		val |= raw_smp_processor_id();
729 
730 		if (table->ents[index] != val)
731 			table->ents[index] = val;
732 	}
733 }
734 
735 #ifdef CONFIG_RFS_ACCEL
736 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
737 			 u16 filter_id);
738 #endif
739 #endif /* CONFIG_RPS */
740 
741 /* This structure contains an instance of an RX queue. */
742 struct netdev_rx_queue {
743 #ifdef CONFIG_RPS
744 	struct rps_map __rcu		*rps_map;
745 	struct rps_dev_flow_table __rcu	*rps_flow_table;
746 #endif
747 	struct kobject			kobj;
748 	struct net_device		*dev;
749 	struct xdp_rxq_info		xdp_rxq;
750 #ifdef CONFIG_XDP_SOCKETS
751 	struct xdp_umem                 *umem;
752 #endif
753 } ____cacheline_aligned_in_smp;
754 
755 /*
756  * RX queue sysfs structures and functions.
757  */
758 struct rx_queue_attribute {
759 	struct attribute attr;
760 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
761 	ssize_t (*store)(struct netdev_rx_queue *queue,
762 			 const char *buf, size_t len);
763 };
764 
765 #ifdef CONFIG_XPS
766 /*
767  * This structure holds an XPS map which can be of variable length.  The
768  * map is an array of queues.
769  */
770 struct xps_map {
771 	unsigned int len;
772 	unsigned int alloc_len;
773 	struct rcu_head rcu;
774 	u16 queues[];
775 };
776 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
777 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
778        - sizeof(struct xps_map)) / sizeof(u16))
779 
780 /*
781  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
782  */
783 struct xps_dev_maps {
784 	struct rcu_head rcu;
785 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
786 };
787 
788 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
789 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
790 
791 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
792 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
793 
794 #endif /* CONFIG_XPS */
795 
796 #define TC_MAX_QUEUE	16
797 #define TC_BITMASK	15
798 /* HW offloaded queuing disciplines txq count and offset maps */
799 struct netdev_tc_txq {
800 	u16 count;
801 	u16 offset;
802 };
803 
804 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
805 /*
806  * This structure is to hold information about the device
807  * configured to run FCoE protocol stack.
808  */
809 struct netdev_fcoe_hbainfo {
810 	char	manufacturer[64];
811 	char	serial_number[64];
812 	char	hardware_version[64];
813 	char	driver_version[64];
814 	char	optionrom_version[64];
815 	char	firmware_version[64];
816 	char	model[256];
817 	char	model_description[256];
818 };
819 #endif
820 
821 #define MAX_PHYS_ITEM_ID_LEN 32
822 
823 /* This structure holds a unique identifier to identify some
824  * physical item (port for example) used by a netdevice.
825  */
826 struct netdev_phys_item_id {
827 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
828 	unsigned char id_len;
829 };
830 
831 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
832 					    struct netdev_phys_item_id *b)
833 {
834 	return a->id_len == b->id_len &&
835 	       memcmp(a->id, b->id, a->id_len) == 0;
836 }
837 
838 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
839 				       struct sk_buff *skb,
840 				       struct net_device *sb_dev);
841 
842 enum tc_setup_type {
843 	TC_SETUP_QDISC_MQPRIO,
844 	TC_SETUP_CLSU32,
845 	TC_SETUP_CLSFLOWER,
846 	TC_SETUP_CLSMATCHALL,
847 	TC_SETUP_CLSBPF,
848 	TC_SETUP_BLOCK,
849 	TC_SETUP_QDISC_CBS,
850 	TC_SETUP_QDISC_RED,
851 	TC_SETUP_QDISC_PRIO,
852 	TC_SETUP_QDISC_MQ,
853 	TC_SETUP_QDISC_ETF,
854 	TC_SETUP_ROOT_QDISC,
855 	TC_SETUP_QDISC_GRED,
856 	TC_SETUP_QDISC_TAPRIO,
857 	TC_SETUP_FT,
858 	TC_SETUP_QDISC_ETS,
859 	TC_SETUP_QDISC_TBF,
860 	TC_SETUP_QDISC_FIFO,
861 };
862 
863 /* These structures hold the attributes of bpf state that are being passed
864  * to the netdevice through the bpf op.
865  */
866 enum bpf_netdev_command {
867 	/* Set or clear a bpf program used in the earliest stages of packet
868 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
869 	 * is responsible for calling bpf_prog_put on any old progs that are
870 	 * stored. In case of error, the callee need not release the new prog
871 	 * reference, but on success it takes ownership and must bpf_prog_put
872 	 * when it is no longer used.
873 	 */
874 	XDP_SETUP_PROG,
875 	XDP_SETUP_PROG_HW,
876 	XDP_QUERY_PROG,
877 	XDP_QUERY_PROG_HW,
878 	/* BPF program for offload callbacks, invoked at program load time. */
879 	BPF_OFFLOAD_MAP_ALLOC,
880 	BPF_OFFLOAD_MAP_FREE,
881 	XDP_SETUP_XSK_UMEM,
882 };
883 
884 struct bpf_prog_offload_ops;
885 struct netlink_ext_ack;
886 struct xdp_umem;
887 struct xdp_dev_bulk_queue;
888 
889 struct netdev_bpf {
890 	enum bpf_netdev_command command;
891 	union {
892 		/* XDP_SETUP_PROG */
893 		struct {
894 			u32 flags;
895 			struct bpf_prog *prog;
896 			struct netlink_ext_ack *extack;
897 		};
898 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
899 		struct {
900 			u32 prog_id;
901 			/* flags with which program was installed */
902 			u32 prog_flags;
903 		};
904 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
905 		struct {
906 			struct bpf_offloaded_map *offmap;
907 		};
908 		/* XDP_SETUP_XSK_UMEM */
909 		struct {
910 			struct xdp_umem *umem;
911 			u16 queue_id;
912 		} xsk;
913 	};
914 };
915 
916 /* Flags for ndo_xsk_wakeup. */
917 #define XDP_WAKEUP_RX (1 << 0)
918 #define XDP_WAKEUP_TX (1 << 1)
919 
920 #ifdef CONFIG_XFRM_OFFLOAD
921 struct xfrmdev_ops {
922 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
923 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
924 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
925 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
926 				       struct xfrm_state *x);
927 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
928 };
929 #endif
930 
931 struct dev_ifalias {
932 	struct rcu_head rcuhead;
933 	char ifalias[];
934 };
935 
936 struct devlink;
937 struct tlsdev_ops;
938 
939 struct netdev_name_node {
940 	struct hlist_node hlist;
941 	struct list_head list;
942 	struct net_device *dev;
943 	const char *name;
944 };
945 
946 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
947 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
948 
949 struct netdev_net_notifier {
950 	struct list_head list;
951 	struct notifier_block *nb;
952 };
953 
954 /*
955  * This structure defines the management hooks for network devices.
956  * The following hooks can be defined; unless noted otherwise, they are
957  * optional and can be filled with a null pointer.
958  *
959  * int (*ndo_init)(struct net_device *dev);
960  *     This function is called once when a network device is registered.
961  *     The network device can use this for any late stage initialization
962  *     or semantic validation. It can fail with an error code which will
963  *     be propagated back to register_netdev.
964  *
965  * void (*ndo_uninit)(struct net_device *dev);
966  *     This function is called when device is unregistered or when registration
967  *     fails. It is not called if init fails.
968  *
969  * int (*ndo_open)(struct net_device *dev);
970  *     This function is called when a network device transitions to the up
971  *     state.
972  *
973  * int (*ndo_stop)(struct net_device *dev);
974  *     This function is called when a network device transitions to the down
975  *     state.
976  *
977  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
978  *                               struct net_device *dev);
979  *	Called when a packet needs to be transmitted.
980  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
981  *	the queue before that can happen; it's for obsolete devices and weird
982  *	corner cases, but the stack really does a non-trivial amount
983  *	of useless work if you return NETDEV_TX_BUSY.
984  *	Required; cannot be NULL.
985  *
986  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
987  *					   struct net_device *dev
988  *					   netdev_features_t features);
989  *	Called by core transmit path to determine if device is capable of
990  *	performing offload operations on a given packet. This is to give
991  *	the device an opportunity to implement any restrictions that cannot
992  *	be otherwise expressed by feature flags. The check is called with
993  *	the set of features that the stack has calculated and it returns
994  *	those the driver believes to be appropriate.
995  *
996  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
997  *                         struct net_device *sb_dev);
998  *	Called to decide which queue to use when device supports multiple
999  *	transmit queues.
1000  *
1001  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1002  *	This function is called to allow device receiver to make
1003  *	changes to configuration when multicast or promiscuous is enabled.
1004  *
1005  * void (*ndo_set_rx_mode)(struct net_device *dev);
1006  *	This function is called device changes address list filtering.
1007  *	If driver handles unicast address filtering, it should set
1008  *	IFF_UNICAST_FLT in its priv_flags.
1009  *
1010  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1011  *	This function  is called when the Media Access Control address
1012  *	needs to be changed. If this interface is not defined, the
1013  *	MAC address can not be changed.
1014  *
1015  * int (*ndo_validate_addr)(struct net_device *dev);
1016  *	Test if Media Access Control address is valid for the device.
1017  *
1018  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1019  *	Called when a user requests an ioctl which can't be handled by
1020  *	the generic interface code. If not defined ioctls return
1021  *	not supported error code.
1022  *
1023  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1024  *	Used to set network devices bus interface parameters. This interface
1025  *	is retained for legacy reasons; new devices should use the bus
1026  *	interface (PCI) for low level management.
1027  *
1028  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1029  *	Called when a user wants to change the Maximum Transfer Unit
1030  *	of a device.
1031  *
1032  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1033  *	Callback used when the transmitter has not made any progress
1034  *	for dev->watchdog ticks.
1035  *
1036  * void (*ndo_get_stats64)(struct net_device *dev,
1037  *                         struct rtnl_link_stats64 *storage);
1038  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1039  *	Called when a user wants to get the network device usage
1040  *	statistics. Drivers must do one of the following:
1041  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1042  *	   rtnl_link_stats64 structure passed by the caller.
1043  *	2. Define @ndo_get_stats to update a net_device_stats structure
1044  *	   (which should normally be dev->stats) and return a pointer to
1045  *	   it. The structure may be changed asynchronously only if each
1046  *	   field is written atomically.
1047  *	3. Update dev->stats asynchronously and atomically, and define
1048  *	   neither operation.
1049  *
1050  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1051  *	Return true if this device supports offload stats of this attr_id.
1052  *
1053  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1054  *	void *attr_data)
1055  *	Get statistics for offload operations by attr_id. Write it into the
1056  *	attr_data pointer.
1057  *
1058  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1059  *	If device supports VLAN filtering this function is called when a
1060  *	VLAN id is registered.
1061  *
1062  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1063  *	If device supports VLAN filtering this function is called when a
1064  *	VLAN id is unregistered.
1065  *
1066  * void (*ndo_poll_controller)(struct net_device *dev);
1067  *
1068  *	SR-IOV management functions.
1069  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1070  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1071  *			  u8 qos, __be16 proto);
1072  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1073  *			  int max_tx_rate);
1074  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_get_vf_config)(struct net_device *dev,
1077  *			    int vf, struct ifla_vf_info *ivf);
1078  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1079  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1080  *			  struct nlattr *port[]);
1081  *
1082  *      Enable or disable the VF ability to query its RSS Redirection Table and
1083  *      Hash Key. This is needed since on some devices VF share this information
1084  *      with PF and querying it may introduce a theoretical security risk.
1085  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1086  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1087  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1088  *		       void *type_data);
1089  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1090  *	This is always called from the stack with the rtnl lock held and netif
1091  *	tx queues stopped. This allows the netdevice to perform queue
1092  *	management safely.
1093  *
1094  *	Fiber Channel over Ethernet (FCoE) offload functions.
1095  * int (*ndo_fcoe_enable)(struct net_device *dev);
1096  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1097  *	so the underlying device can perform whatever needed configuration or
1098  *	initialization to support acceleration of FCoE traffic.
1099  *
1100  * int (*ndo_fcoe_disable)(struct net_device *dev);
1101  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1102  *	so the underlying device can perform whatever needed clean-ups to
1103  *	stop supporting acceleration of FCoE traffic.
1104  *
1105  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1106  *			     struct scatterlist *sgl, unsigned int sgc);
1107  *	Called when the FCoE Initiator wants to initialize an I/O that
1108  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1109  *	perform necessary setup and returns 1 to indicate the device is set up
1110  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1111  *
1112  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1113  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1114  *	indicated by the FC exchange id 'xid', so the underlying device can
1115  *	clean up and reuse resources for later DDP requests.
1116  *
1117  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1118  *			      struct scatterlist *sgl, unsigned int sgc);
1119  *	Called when the FCoE Target wants to initialize an I/O that
1120  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1121  *	perform necessary setup and returns 1 to indicate the device is set up
1122  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1123  *
1124  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1125  *			       struct netdev_fcoe_hbainfo *hbainfo);
1126  *	Called when the FCoE Protocol stack wants information on the underlying
1127  *	device. This information is utilized by the FCoE protocol stack to
1128  *	register attributes with Fiber Channel management service as per the
1129  *	FC-GS Fabric Device Management Information(FDMI) specification.
1130  *
1131  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1132  *	Called when the underlying device wants to override default World Wide
1133  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1134  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1135  *	protocol stack to use.
1136  *
1137  *	RFS acceleration.
1138  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1139  *			    u16 rxq_index, u32 flow_id);
1140  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1141  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1142  *	Return the filter ID on success, or a negative error code.
1143  *
1144  *	Slave management functions (for bridge, bonding, etc).
1145  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1146  *	Called to make another netdev an underling.
1147  *
1148  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1149  *	Called to release previously enslaved netdev.
1150  *
1151  *      Feature/offload setting functions.
1152  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1153  *		netdev_features_t features);
1154  *	Adjusts the requested feature flags according to device-specific
1155  *	constraints, and returns the resulting flags. Must not modify
1156  *	the device state.
1157  *
1158  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1159  *	Called to update device configuration to new features. Passed
1160  *	feature set might be less than what was returned by ndo_fix_features()).
1161  *	Must return >0 or -errno if it changed dev->features itself.
1162  *
1163  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1164  *		      struct net_device *dev,
1165  *		      const unsigned char *addr, u16 vid, u16 flags,
1166  *		      struct netlink_ext_ack *extack);
1167  *	Adds an FDB entry to dev for addr.
1168  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1169  *		      struct net_device *dev,
1170  *		      const unsigned char *addr, u16 vid)
1171  *	Deletes the FDB entry from dev coresponding to addr.
1172  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1173  *		       struct net_device *dev, struct net_device *filter_dev,
1174  *		       int *idx)
1175  *	Used to add FDB entries to dump requests. Implementers should add
1176  *	entries to skb and update idx with the number of entries.
1177  *
1178  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1179  *			     u16 flags, struct netlink_ext_ack *extack)
1180  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1181  *			     struct net_device *dev, u32 filter_mask,
1182  *			     int nlflags)
1183  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1184  *			     u16 flags);
1185  *
1186  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1187  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1188  *	which do not represent real hardware may define this to allow their
1189  *	userspace components to manage their virtual carrier state. Devices
1190  *	that determine carrier state from physical hardware properties (eg
1191  *	network cables) or protocol-dependent mechanisms (eg
1192  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1193  *
1194  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1195  *			       struct netdev_phys_item_id *ppid);
1196  *	Called to get ID of physical port of this device. If driver does
1197  *	not implement this, it is assumed that the hw is not able to have
1198  *	multiple net devices on single physical port.
1199  *
1200  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1201  *				 struct netdev_phys_item_id *ppid)
1202  *	Called to get the parent ID of the physical port of this device.
1203  *
1204  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1205  *			      struct udp_tunnel_info *ti);
1206  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1207  *	address family that a UDP tunnel is listnening to. It is called only
1208  *	when a new port starts listening. The operation is protected by the
1209  *	RTNL.
1210  *
1211  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1212  *			      struct udp_tunnel_info *ti);
1213  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1214  *	address family that the UDP tunnel is not listening to anymore. The
1215  *	operation is protected by the RTNL.
1216  *
1217  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1218  *				 struct net_device *dev)
1219  *	Called by upper layer devices to accelerate switching or other
1220  *	station functionality into hardware. 'pdev is the lowerdev
1221  *	to use for the offload and 'dev' is the net device that will
1222  *	back the offload. Returns a pointer to the private structure
1223  *	the upper layer will maintain.
1224  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1225  *	Called by upper layer device to delete the station created
1226  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1227  *	the station and priv is the structure returned by the add
1228  *	operation.
1229  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1230  *			     int queue_index, u32 maxrate);
1231  *	Called when a user wants to set a max-rate limitation of specific
1232  *	TX queue.
1233  * int (*ndo_get_iflink)(const struct net_device *dev);
1234  *	Called to get the iflink value of this device.
1235  * void (*ndo_change_proto_down)(struct net_device *dev,
1236  *				 bool proto_down);
1237  *	This function is used to pass protocol port error state information
1238  *	to the switch driver. The switch driver can react to the proto_down
1239  *      by doing a phys down on the associated switch port.
1240  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1241  *	This function is used to get egress tunnel information for given skb.
1242  *	This is useful for retrieving outer tunnel header parameters while
1243  *	sampling packet.
1244  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1245  *	This function is used to specify the headroom that the skb must
1246  *	consider when allocation skb during packet reception. Setting
1247  *	appropriate rx headroom value allows avoiding skb head copy on
1248  *	forward. Setting a negative value resets the rx headroom to the
1249  *	default value.
1250  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1251  *	This function is used to set or query state related to XDP on the
1252  *	netdevice and manage BPF offload. See definition of
1253  *	enum bpf_netdev_command for details.
1254  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1255  *			u32 flags);
1256  *	This function is used to submit @n XDP packets for transmit on a
1257  *	netdevice. Returns number of frames successfully transmitted, frames
1258  *	that got dropped are freed/returned via xdp_return_frame().
1259  *	Returns negative number, means general error invoking ndo, meaning
1260  *	no frames were xmit'ed and core-caller will free all frames.
1261  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1262  *      This function is used to wake up the softirq, ksoftirqd or kthread
1263  *	responsible for sending and/or receiving packets on a specific
1264  *	queue id bound to an AF_XDP socket. The flags field specifies if
1265  *	only RX, only Tx, or both should be woken up using the flags
1266  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1267  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1268  *	Get devlink port instance associated with a given netdev.
1269  *	Called with a reference on the netdevice and devlink locks only,
1270  *	rtnl_lock is not held.
1271  */
1272 struct net_device_ops {
1273 	int			(*ndo_init)(struct net_device *dev);
1274 	void			(*ndo_uninit)(struct net_device *dev);
1275 	int			(*ndo_open)(struct net_device *dev);
1276 	int			(*ndo_stop)(struct net_device *dev);
1277 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1278 						  struct net_device *dev);
1279 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1280 						      struct net_device *dev,
1281 						      netdev_features_t features);
1282 	u16			(*ndo_select_queue)(struct net_device *dev,
1283 						    struct sk_buff *skb,
1284 						    struct net_device *sb_dev);
1285 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1286 						       int flags);
1287 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1288 	int			(*ndo_set_mac_address)(struct net_device *dev,
1289 						       void *addr);
1290 	int			(*ndo_validate_addr)(struct net_device *dev);
1291 	int			(*ndo_do_ioctl)(struct net_device *dev,
1292 					        struct ifreq *ifr, int cmd);
1293 	int			(*ndo_set_config)(struct net_device *dev,
1294 					          struct ifmap *map);
1295 	int			(*ndo_change_mtu)(struct net_device *dev,
1296 						  int new_mtu);
1297 	int			(*ndo_neigh_setup)(struct net_device *dev,
1298 						   struct neigh_parms *);
1299 	void			(*ndo_tx_timeout) (struct net_device *dev,
1300 						   unsigned int txqueue);
1301 
1302 	void			(*ndo_get_stats64)(struct net_device *dev,
1303 						   struct rtnl_link_stats64 *storage);
1304 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1305 	int			(*ndo_get_offload_stats)(int attr_id,
1306 							 const struct net_device *dev,
1307 							 void *attr_data);
1308 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1309 
1310 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1311 						       __be16 proto, u16 vid);
1312 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1313 						        __be16 proto, u16 vid);
1314 #ifdef CONFIG_NET_POLL_CONTROLLER
1315 	void                    (*ndo_poll_controller)(struct net_device *dev);
1316 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1317 						     struct netpoll_info *info);
1318 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1319 #endif
1320 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1321 						  int queue, u8 *mac);
1322 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1323 						   int queue, u16 vlan,
1324 						   u8 qos, __be16 proto);
1325 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1326 						   int vf, int min_tx_rate,
1327 						   int max_tx_rate);
1328 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1329 						       int vf, bool setting);
1330 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1331 						    int vf, bool setting);
1332 	int			(*ndo_get_vf_config)(struct net_device *dev,
1333 						     int vf,
1334 						     struct ifla_vf_info *ivf);
1335 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1336 							 int vf, int link_state);
1337 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1338 						    int vf,
1339 						    struct ifla_vf_stats
1340 						    *vf_stats);
1341 	int			(*ndo_set_vf_port)(struct net_device *dev,
1342 						   int vf,
1343 						   struct nlattr *port[]);
1344 	int			(*ndo_get_vf_port)(struct net_device *dev,
1345 						   int vf, struct sk_buff *skb);
1346 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1347 						   int vf,
1348 						   struct ifla_vf_guid *node_guid,
1349 						   struct ifla_vf_guid *port_guid);
1350 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1351 						   int vf, u64 guid,
1352 						   int guid_type);
1353 	int			(*ndo_set_vf_rss_query_en)(
1354 						   struct net_device *dev,
1355 						   int vf, bool setting);
1356 	int			(*ndo_setup_tc)(struct net_device *dev,
1357 						enum tc_setup_type type,
1358 						void *type_data);
1359 #if IS_ENABLED(CONFIG_FCOE)
1360 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1361 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1362 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1363 						      u16 xid,
1364 						      struct scatterlist *sgl,
1365 						      unsigned int sgc);
1366 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1367 						     u16 xid);
1368 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1369 						       u16 xid,
1370 						       struct scatterlist *sgl,
1371 						       unsigned int sgc);
1372 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1373 							struct netdev_fcoe_hbainfo *hbainfo);
1374 #endif
1375 
1376 #if IS_ENABLED(CONFIG_LIBFCOE)
1377 #define NETDEV_FCOE_WWNN 0
1378 #define NETDEV_FCOE_WWPN 1
1379 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1380 						    u64 *wwn, int type);
1381 #endif
1382 
1383 #ifdef CONFIG_RFS_ACCEL
1384 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1385 						     const struct sk_buff *skb,
1386 						     u16 rxq_index,
1387 						     u32 flow_id);
1388 #endif
1389 	int			(*ndo_add_slave)(struct net_device *dev,
1390 						 struct net_device *slave_dev,
1391 						 struct netlink_ext_ack *extack);
1392 	int			(*ndo_del_slave)(struct net_device *dev,
1393 						 struct net_device *slave_dev);
1394 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1395 						    netdev_features_t features);
1396 	int			(*ndo_set_features)(struct net_device *dev,
1397 						    netdev_features_t features);
1398 	int			(*ndo_neigh_construct)(struct net_device *dev,
1399 						       struct neighbour *n);
1400 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1401 						     struct neighbour *n);
1402 
1403 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1404 					       struct nlattr *tb[],
1405 					       struct net_device *dev,
1406 					       const unsigned char *addr,
1407 					       u16 vid,
1408 					       u16 flags,
1409 					       struct netlink_ext_ack *extack);
1410 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1411 					       struct nlattr *tb[],
1412 					       struct net_device *dev,
1413 					       const unsigned char *addr,
1414 					       u16 vid);
1415 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1416 						struct netlink_callback *cb,
1417 						struct net_device *dev,
1418 						struct net_device *filter_dev,
1419 						int *idx);
1420 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1421 					       struct nlattr *tb[],
1422 					       struct net_device *dev,
1423 					       const unsigned char *addr,
1424 					       u16 vid, u32 portid, u32 seq,
1425 					       struct netlink_ext_ack *extack);
1426 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1427 						      struct nlmsghdr *nlh,
1428 						      u16 flags,
1429 						      struct netlink_ext_ack *extack);
1430 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1431 						      u32 pid, u32 seq,
1432 						      struct net_device *dev,
1433 						      u32 filter_mask,
1434 						      int nlflags);
1435 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1436 						      struct nlmsghdr *nlh,
1437 						      u16 flags);
1438 	int			(*ndo_change_carrier)(struct net_device *dev,
1439 						      bool new_carrier);
1440 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1441 							struct netdev_phys_item_id *ppid);
1442 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1443 							  struct netdev_phys_item_id *ppid);
1444 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1445 							  char *name, size_t len);
1446 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1447 						      struct udp_tunnel_info *ti);
1448 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1449 						      struct udp_tunnel_info *ti);
1450 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1451 							struct net_device *dev);
1452 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1453 							void *priv);
1454 
1455 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1456 						      int queue_index,
1457 						      u32 maxrate);
1458 	int			(*ndo_get_iflink)(const struct net_device *dev);
1459 	int			(*ndo_change_proto_down)(struct net_device *dev,
1460 							 bool proto_down);
1461 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1462 						       struct sk_buff *skb);
1463 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1464 						       int needed_headroom);
1465 	int			(*ndo_bpf)(struct net_device *dev,
1466 					   struct netdev_bpf *bpf);
1467 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1468 						struct xdp_frame **xdp,
1469 						u32 flags);
1470 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1471 						  u32 queue_id, u32 flags);
1472 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1473 };
1474 
1475 /**
1476  * enum net_device_priv_flags - &struct net_device priv_flags
1477  *
1478  * These are the &struct net_device, they are only set internally
1479  * by drivers and used in the kernel. These flags are invisible to
1480  * userspace; this means that the order of these flags can change
1481  * during any kernel release.
1482  *
1483  * You should have a pretty good reason to be extending these flags.
1484  *
1485  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1486  * @IFF_EBRIDGE: Ethernet bridging device
1487  * @IFF_BONDING: bonding master or slave
1488  * @IFF_ISATAP: ISATAP interface (RFC4214)
1489  * @IFF_WAN_HDLC: WAN HDLC device
1490  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1491  *	release skb->dst
1492  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1493  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1494  * @IFF_MACVLAN_PORT: device used as macvlan port
1495  * @IFF_BRIDGE_PORT: device used as bridge port
1496  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1497  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1498  * @IFF_UNICAST_FLT: Supports unicast filtering
1499  * @IFF_TEAM_PORT: device used as team port
1500  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1501  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1502  *	change when it's running
1503  * @IFF_MACVLAN: Macvlan device
1504  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1505  *	underlying stacked devices
1506  * @IFF_L3MDEV_MASTER: device is an L3 master device
1507  * @IFF_NO_QUEUE: device can run without qdisc attached
1508  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1509  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1510  * @IFF_TEAM: device is a team device
1511  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1512  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1513  *	entity (i.e. the master device for bridged veth)
1514  * @IFF_MACSEC: device is a MACsec device
1515  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1516  * @IFF_FAILOVER: device is a failover master device
1517  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1518  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1519  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1520  */
1521 enum netdev_priv_flags {
1522 	IFF_802_1Q_VLAN			= 1<<0,
1523 	IFF_EBRIDGE			= 1<<1,
1524 	IFF_BONDING			= 1<<2,
1525 	IFF_ISATAP			= 1<<3,
1526 	IFF_WAN_HDLC			= 1<<4,
1527 	IFF_XMIT_DST_RELEASE		= 1<<5,
1528 	IFF_DONT_BRIDGE			= 1<<6,
1529 	IFF_DISABLE_NETPOLL		= 1<<7,
1530 	IFF_MACVLAN_PORT		= 1<<8,
1531 	IFF_BRIDGE_PORT			= 1<<9,
1532 	IFF_OVS_DATAPATH		= 1<<10,
1533 	IFF_TX_SKB_SHARING		= 1<<11,
1534 	IFF_UNICAST_FLT			= 1<<12,
1535 	IFF_TEAM_PORT			= 1<<13,
1536 	IFF_SUPP_NOFCS			= 1<<14,
1537 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1538 	IFF_MACVLAN			= 1<<16,
1539 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1540 	IFF_L3MDEV_MASTER		= 1<<18,
1541 	IFF_NO_QUEUE			= 1<<19,
1542 	IFF_OPENVSWITCH			= 1<<20,
1543 	IFF_L3MDEV_SLAVE		= 1<<21,
1544 	IFF_TEAM			= 1<<22,
1545 	IFF_RXFH_CONFIGURED		= 1<<23,
1546 	IFF_PHONY_HEADROOM		= 1<<24,
1547 	IFF_MACSEC			= 1<<25,
1548 	IFF_NO_RX_HANDLER		= 1<<26,
1549 	IFF_FAILOVER			= 1<<27,
1550 	IFF_FAILOVER_SLAVE		= 1<<28,
1551 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1552 	IFF_LIVE_RENAME_OK		= 1<<30,
1553 };
1554 
1555 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1556 #define IFF_EBRIDGE			IFF_EBRIDGE
1557 #define IFF_BONDING			IFF_BONDING
1558 #define IFF_ISATAP			IFF_ISATAP
1559 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1560 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1561 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1562 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1563 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1564 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1565 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1566 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1567 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1568 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1569 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1570 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1571 #define IFF_MACVLAN			IFF_MACVLAN
1572 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1573 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1574 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1575 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1576 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1577 #define IFF_TEAM			IFF_TEAM
1578 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1579 #define IFF_MACSEC			IFF_MACSEC
1580 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1581 #define IFF_FAILOVER			IFF_FAILOVER
1582 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1583 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1584 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1585 
1586 /**
1587  *	struct net_device - The DEVICE structure.
1588  *
1589  *	Actually, this whole structure is a big mistake.  It mixes I/O
1590  *	data with strictly "high-level" data, and it has to know about
1591  *	almost every data structure used in the INET module.
1592  *
1593  *	@name:	This is the first field of the "visible" part of this structure
1594  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1595  *		of the interface.
1596  *
1597  *	@name_node:	Name hashlist node
1598  *	@ifalias:	SNMP alias
1599  *	@mem_end:	Shared memory end
1600  *	@mem_start:	Shared memory start
1601  *	@base_addr:	Device I/O address
1602  *	@irq:		Device IRQ number
1603  *
1604  *	@state:		Generic network queuing layer state, see netdev_state_t
1605  *	@dev_list:	The global list of network devices
1606  *	@napi_list:	List entry used for polling NAPI devices
1607  *	@unreg_list:	List entry  when we are unregistering the
1608  *			device; see the function unregister_netdev
1609  *	@close_list:	List entry used when we are closing the device
1610  *	@ptype_all:     Device-specific packet handlers for all protocols
1611  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1612  *
1613  *	@adj_list:	Directly linked devices, like slaves for bonding
1614  *	@features:	Currently active device features
1615  *	@hw_features:	User-changeable features
1616  *
1617  *	@wanted_features:	User-requested features
1618  *	@vlan_features:		Mask of features inheritable by VLAN devices
1619  *
1620  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1621  *				This field indicates what encapsulation
1622  *				offloads the hardware is capable of doing,
1623  *				and drivers will need to set them appropriately.
1624  *
1625  *	@mpls_features:	Mask of features inheritable by MPLS
1626  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1627  *
1628  *	@ifindex:	interface index
1629  *	@group:		The group the device belongs to
1630  *
1631  *	@stats:		Statistics struct, which was left as a legacy, use
1632  *			rtnl_link_stats64 instead
1633  *
1634  *	@rx_dropped:	Dropped packets by core network,
1635  *			do not use this in drivers
1636  *	@tx_dropped:	Dropped packets by core network,
1637  *			do not use this in drivers
1638  *	@rx_nohandler:	nohandler dropped packets by core network on
1639  *			inactive devices, do not use this in drivers
1640  *	@carrier_up_count:	Number of times the carrier has been up
1641  *	@carrier_down_count:	Number of times the carrier has been down
1642  *
1643  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1644  *				instead of ioctl,
1645  *				see <net/iw_handler.h> for details.
1646  *	@wireless_data:	Instance data managed by the core of wireless extensions
1647  *
1648  *	@netdev_ops:	Includes several pointers to callbacks,
1649  *			if one wants to override the ndo_*() functions
1650  *	@ethtool_ops:	Management operations
1651  *	@l3mdev_ops:	Layer 3 master device operations
1652  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1653  *			discovery handling. Necessary for e.g. 6LoWPAN.
1654  *	@xfrmdev_ops:	Transformation offload operations
1655  *	@tlsdev_ops:	Transport Layer Security offload operations
1656  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1657  *			of Layer 2 headers.
1658  *
1659  *	@flags:		Interface flags (a la BSD)
1660  *	@priv_flags:	Like 'flags' but invisible to userspace,
1661  *			see if.h for the definitions
1662  *	@gflags:	Global flags ( kept as legacy )
1663  *	@padded:	How much padding added by alloc_netdev()
1664  *	@operstate:	RFC2863 operstate
1665  *	@link_mode:	Mapping policy to operstate
1666  *	@if_port:	Selectable AUI, TP, ...
1667  *	@dma:		DMA channel
1668  *	@mtu:		Interface MTU value
1669  *	@min_mtu:	Interface Minimum MTU value
1670  *	@max_mtu:	Interface Maximum MTU value
1671  *	@type:		Interface hardware type
1672  *	@hard_header_len: Maximum hardware header length.
1673  *	@min_header_len:  Minimum hardware header length
1674  *
1675  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1676  *			  cases can this be guaranteed
1677  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1678  *			  cases can this be guaranteed. Some cases also use
1679  *			  LL_MAX_HEADER instead to allocate the skb
1680  *
1681  *	interface address info:
1682  *
1683  * 	@perm_addr:		Permanent hw address
1684  * 	@addr_assign_type:	Hw address assignment type
1685  * 	@addr_len:		Hardware address length
1686  *	@upper_level:		Maximum depth level of upper devices.
1687  *	@lower_level:		Maximum depth level of lower devices.
1688  *	@neigh_priv_len:	Used in neigh_alloc()
1689  * 	@dev_id:		Used to differentiate devices that share
1690  * 				the same link layer address
1691  * 	@dev_port:		Used to differentiate devices that share
1692  * 				the same function
1693  *	@addr_list_lock:	XXX: need comments on this one
1694  *	@name_assign_type:	network interface name assignment type
1695  *	@uc_promisc:		Counter that indicates promiscuous mode
1696  *				has been enabled due to the need to listen to
1697  *				additional unicast addresses in a device that
1698  *				does not implement ndo_set_rx_mode()
1699  *	@uc:			unicast mac addresses
1700  *	@mc:			multicast mac addresses
1701  *	@dev_addrs:		list of device hw addresses
1702  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1703  *	@promiscuity:		Number of times the NIC is told to work in
1704  *				promiscuous mode; if it becomes 0 the NIC will
1705  *				exit promiscuous mode
1706  *	@allmulti:		Counter, enables or disables allmulticast mode
1707  *
1708  *	@vlan_info:	VLAN info
1709  *	@dsa_ptr:	dsa specific data
1710  *	@tipc_ptr:	TIPC specific data
1711  *	@atalk_ptr:	AppleTalk link
1712  *	@ip_ptr:	IPv4 specific data
1713  *	@dn_ptr:	DECnet specific data
1714  *	@ip6_ptr:	IPv6 specific data
1715  *	@ax25_ptr:	AX.25 specific data
1716  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1717  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1718  *			 device struct
1719  *	@mpls_ptr:	mpls_dev struct pointer
1720  *
1721  *	@dev_addr:	Hw address (before bcast,
1722  *			because most packets are unicast)
1723  *
1724  *	@_rx:			Array of RX queues
1725  *	@num_rx_queues:		Number of RX queues
1726  *				allocated at register_netdev() time
1727  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1728  *	@xdp_prog:		XDP sockets filter program pointer
1729  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1730  *
1731  *	@rx_handler:		handler for received packets
1732  *	@rx_handler_data: 	XXX: need comments on this one
1733  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1734  *				ingress processing
1735  *	@ingress_queue:		XXX: need comments on this one
1736  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1737  *	@broadcast:		hw bcast address
1738  *
1739  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1740  *			indexed by RX queue number. Assigned by driver.
1741  *			This must only be set if the ndo_rx_flow_steer
1742  *			operation is defined
1743  *	@index_hlist:		Device index hash chain
1744  *
1745  *	@_tx:			Array of TX queues
1746  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1747  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1748  *	@qdisc:			Root qdisc from userspace point of view
1749  *	@tx_queue_len:		Max frames per queue allowed
1750  *	@tx_global_lock: 	XXX: need comments on this one
1751  *	@xdp_bulkq:		XDP device bulk queue
1752  *	@xps_cpus_map:		all CPUs map for XPS device
1753  *	@xps_rxqs_map:		all RXQs map for XPS device
1754  *
1755  *	@xps_maps:	XXX: need comments on this one
1756  *	@miniq_egress:		clsact qdisc specific data for
1757  *				egress processing
1758  *	@qdisc_hash:		qdisc hash table
1759  *	@watchdog_timeo:	Represents the timeout that is used by
1760  *				the watchdog (see dev_watchdog())
1761  *	@watchdog_timer:	List of timers
1762  *
1763  *	@pcpu_refcnt:		Number of references to this device
1764  *	@todo_list:		Delayed register/unregister
1765  *	@link_watch_list:	XXX: need comments on this one
1766  *
1767  *	@reg_state:		Register/unregister state machine
1768  *	@dismantle:		Device is going to be freed
1769  *	@rtnl_link_state:	This enum represents the phases of creating
1770  *				a new link
1771  *
1772  *	@needs_free_netdev:	Should unregister perform free_netdev?
1773  *	@priv_destructor:	Called from unregister
1774  *	@npinfo:		XXX: need comments on this one
1775  * 	@nd_net:		Network namespace this network device is inside
1776  *
1777  * 	@ml_priv:	Mid-layer private
1778  * 	@lstats:	Loopback statistics
1779  * 	@tstats:	Tunnel statistics
1780  * 	@dstats:	Dummy statistics
1781  * 	@vstats:	Virtual ethernet statistics
1782  *
1783  *	@garp_port:	GARP
1784  *	@mrp_port:	MRP
1785  *
1786  *	@dev:		Class/net/name entry
1787  *	@sysfs_groups:	Space for optional device, statistics and wireless
1788  *			sysfs groups
1789  *
1790  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1791  *	@rtnl_link_ops:	Rtnl_link_ops
1792  *
1793  *	@gso_max_size:	Maximum size of generic segmentation offload
1794  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1795  *			NIC for GSO
1796  *
1797  *	@dcbnl_ops:	Data Center Bridging netlink ops
1798  *	@num_tc:	Number of traffic classes in the net device
1799  *	@tc_to_txq:	XXX: need comments on this one
1800  *	@prio_tc_map:	XXX: need comments on this one
1801  *
1802  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1803  *
1804  *	@priomap:	XXX: need comments on this one
1805  *	@phydev:	Physical device may attach itself
1806  *			for hardware timestamping
1807  *	@sfp_bus:	attached &struct sfp_bus structure.
1808  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1809  *				spinlock
1810  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1811  *	@qdisc_xmit_lock_key:	lockdep class annotating
1812  *				netdev_queue->_xmit_lock spinlock
1813  *	@addr_list_lock_key:	lockdep class annotating
1814  *				net_device->addr_list_lock spinlock
1815  *
1816  *	@proto_down:	protocol port state information can be sent to the
1817  *			switch driver and used to set the phys state of the
1818  *			switch port.
1819  *
1820  *	@wol_enabled:	Wake-on-LAN is enabled
1821  *
1822  *	@net_notifier_list:	List of per-net netdev notifier block
1823  *				that follow this device when it is moved
1824  *				to another network namespace.
1825  *
1826  *	@macsec_ops:    MACsec offloading ops
1827  *
1828  *	FIXME: cleanup struct net_device such that network protocol info
1829  *	moves out.
1830  */
1831 
1832 struct net_device {
1833 	char			name[IFNAMSIZ];
1834 	struct netdev_name_node	*name_node;
1835 	struct dev_ifalias	__rcu *ifalias;
1836 	/*
1837 	 *	I/O specific fields
1838 	 *	FIXME: Merge these and struct ifmap into one
1839 	 */
1840 	unsigned long		mem_end;
1841 	unsigned long		mem_start;
1842 	unsigned long		base_addr;
1843 	int			irq;
1844 
1845 	/*
1846 	 *	Some hardware also needs these fields (state,dev_list,
1847 	 *	napi_list,unreg_list,close_list) but they are not
1848 	 *	part of the usual set specified in Space.c.
1849 	 */
1850 
1851 	unsigned long		state;
1852 
1853 	struct list_head	dev_list;
1854 	struct list_head	napi_list;
1855 	struct list_head	unreg_list;
1856 	struct list_head	close_list;
1857 	struct list_head	ptype_all;
1858 	struct list_head	ptype_specific;
1859 
1860 	struct {
1861 		struct list_head upper;
1862 		struct list_head lower;
1863 	} adj_list;
1864 
1865 	netdev_features_t	features;
1866 	netdev_features_t	hw_features;
1867 	netdev_features_t	wanted_features;
1868 	netdev_features_t	vlan_features;
1869 	netdev_features_t	hw_enc_features;
1870 	netdev_features_t	mpls_features;
1871 	netdev_features_t	gso_partial_features;
1872 
1873 	int			ifindex;
1874 	int			group;
1875 
1876 	struct net_device_stats	stats;
1877 
1878 	atomic_long_t		rx_dropped;
1879 	atomic_long_t		tx_dropped;
1880 	atomic_long_t		rx_nohandler;
1881 
1882 	/* Stats to monitor link on/off, flapping */
1883 	atomic_t		carrier_up_count;
1884 	atomic_t		carrier_down_count;
1885 
1886 #ifdef CONFIG_WIRELESS_EXT
1887 	const struct iw_handler_def *wireless_handlers;
1888 	struct iw_public_data	*wireless_data;
1889 #endif
1890 	const struct net_device_ops *netdev_ops;
1891 	const struct ethtool_ops *ethtool_ops;
1892 #ifdef CONFIG_NET_L3_MASTER_DEV
1893 	const struct l3mdev_ops	*l3mdev_ops;
1894 #endif
1895 #if IS_ENABLED(CONFIG_IPV6)
1896 	const struct ndisc_ops *ndisc_ops;
1897 #endif
1898 
1899 #ifdef CONFIG_XFRM_OFFLOAD
1900 	const struct xfrmdev_ops *xfrmdev_ops;
1901 #endif
1902 
1903 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1904 	const struct tlsdev_ops *tlsdev_ops;
1905 #endif
1906 
1907 	const struct header_ops *header_ops;
1908 
1909 	unsigned int		flags;
1910 	unsigned int		priv_flags;
1911 
1912 	unsigned short		gflags;
1913 	unsigned short		padded;
1914 
1915 	unsigned char		operstate;
1916 	unsigned char		link_mode;
1917 
1918 	unsigned char		if_port;
1919 	unsigned char		dma;
1920 
1921 	/* Note : dev->mtu is often read without holding a lock.
1922 	 * Writers usually hold RTNL.
1923 	 * It is recommended to use READ_ONCE() to annotate the reads,
1924 	 * and to use WRITE_ONCE() to annotate the writes.
1925 	 */
1926 	unsigned int		mtu;
1927 	unsigned int		min_mtu;
1928 	unsigned int		max_mtu;
1929 	unsigned short		type;
1930 	unsigned short		hard_header_len;
1931 	unsigned char		min_header_len;
1932 
1933 	unsigned short		needed_headroom;
1934 	unsigned short		needed_tailroom;
1935 
1936 	/* Interface address info. */
1937 	unsigned char		perm_addr[MAX_ADDR_LEN];
1938 	unsigned char		addr_assign_type;
1939 	unsigned char		addr_len;
1940 	unsigned char		upper_level;
1941 	unsigned char		lower_level;
1942 	unsigned short		neigh_priv_len;
1943 	unsigned short          dev_id;
1944 	unsigned short          dev_port;
1945 	spinlock_t		addr_list_lock;
1946 	unsigned char		name_assign_type;
1947 	bool			uc_promisc;
1948 	struct netdev_hw_addr_list	uc;
1949 	struct netdev_hw_addr_list	mc;
1950 	struct netdev_hw_addr_list	dev_addrs;
1951 
1952 #ifdef CONFIG_SYSFS
1953 	struct kset		*queues_kset;
1954 #endif
1955 	unsigned int		promiscuity;
1956 	unsigned int		allmulti;
1957 
1958 
1959 	/* Protocol-specific pointers */
1960 
1961 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1962 	struct vlan_info __rcu	*vlan_info;
1963 #endif
1964 #if IS_ENABLED(CONFIG_NET_DSA)
1965 	struct dsa_port		*dsa_ptr;
1966 #endif
1967 #if IS_ENABLED(CONFIG_TIPC)
1968 	struct tipc_bearer __rcu *tipc_ptr;
1969 #endif
1970 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1971 	void 			*atalk_ptr;
1972 #endif
1973 	struct in_device __rcu	*ip_ptr;
1974 #if IS_ENABLED(CONFIG_DECNET)
1975 	struct dn_dev __rcu     *dn_ptr;
1976 #endif
1977 	struct inet6_dev __rcu	*ip6_ptr;
1978 #if IS_ENABLED(CONFIG_AX25)
1979 	void			*ax25_ptr;
1980 #endif
1981 	struct wireless_dev	*ieee80211_ptr;
1982 	struct wpan_dev		*ieee802154_ptr;
1983 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1984 	struct mpls_dev __rcu	*mpls_ptr;
1985 #endif
1986 
1987 /*
1988  * Cache lines mostly used on receive path (including eth_type_trans())
1989  */
1990 	/* Interface address info used in eth_type_trans() */
1991 	unsigned char		*dev_addr;
1992 
1993 	struct netdev_rx_queue	*_rx;
1994 	unsigned int		num_rx_queues;
1995 	unsigned int		real_num_rx_queues;
1996 
1997 	struct bpf_prog __rcu	*xdp_prog;
1998 	unsigned long		gro_flush_timeout;
1999 	int			napi_defer_hard_irqs;
2000 	rx_handler_func_t __rcu	*rx_handler;
2001 	void __rcu		*rx_handler_data;
2002 
2003 #ifdef CONFIG_NET_CLS_ACT
2004 	struct mini_Qdisc __rcu	*miniq_ingress;
2005 #endif
2006 	struct netdev_queue __rcu *ingress_queue;
2007 #ifdef CONFIG_NETFILTER_INGRESS
2008 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2009 #endif
2010 
2011 	unsigned char		broadcast[MAX_ADDR_LEN];
2012 #ifdef CONFIG_RFS_ACCEL
2013 	struct cpu_rmap		*rx_cpu_rmap;
2014 #endif
2015 	struct hlist_node	index_hlist;
2016 
2017 /*
2018  * Cache lines mostly used on transmit path
2019  */
2020 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2021 	unsigned int		num_tx_queues;
2022 	unsigned int		real_num_tx_queues;
2023 	struct Qdisc		*qdisc;
2024 	unsigned int		tx_queue_len;
2025 	spinlock_t		tx_global_lock;
2026 
2027 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2028 
2029 #ifdef CONFIG_XPS
2030 	struct xps_dev_maps __rcu *xps_cpus_map;
2031 	struct xps_dev_maps __rcu *xps_rxqs_map;
2032 #endif
2033 #ifdef CONFIG_NET_CLS_ACT
2034 	struct mini_Qdisc __rcu	*miniq_egress;
2035 #endif
2036 
2037 #ifdef CONFIG_NET_SCHED
2038 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2039 #endif
2040 	/* These may be needed for future network-power-down code. */
2041 	struct timer_list	watchdog_timer;
2042 	int			watchdog_timeo;
2043 
2044 	struct list_head	todo_list;
2045 	int __percpu		*pcpu_refcnt;
2046 
2047 	struct list_head	link_watch_list;
2048 
2049 	enum { NETREG_UNINITIALIZED=0,
2050 	       NETREG_REGISTERED,	/* completed register_netdevice */
2051 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2052 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2053 	       NETREG_RELEASED,		/* called free_netdev */
2054 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2055 	} reg_state:8;
2056 
2057 	bool dismantle;
2058 
2059 	enum {
2060 		RTNL_LINK_INITIALIZED,
2061 		RTNL_LINK_INITIALIZING,
2062 	} rtnl_link_state:16;
2063 
2064 	bool needs_free_netdev;
2065 	void (*priv_destructor)(struct net_device *dev);
2066 
2067 #ifdef CONFIG_NETPOLL
2068 	struct netpoll_info __rcu	*npinfo;
2069 #endif
2070 
2071 	possible_net_t			nd_net;
2072 
2073 	/* mid-layer private */
2074 	union {
2075 		void					*ml_priv;
2076 		struct pcpu_lstats __percpu		*lstats;
2077 		struct pcpu_sw_netstats __percpu	*tstats;
2078 		struct pcpu_dstats __percpu		*dstats;
2079 	};
2080 
2081 #if IS_ENABLED(CONFIG_GARP)
2082 	struct garp_port __rcu	*garp_port;
2083 #endif
2084 #if IS_ENABLED(CONFIG_MRP)
2085 	struct mrp_port __rcu	*mrp_port;
2086 #endif
2087 
2088 	struct device		dev;
2089 	const struct attribute_group *sysfs_groups[4];
2090 	const struct attribute_group *sysfs_rx_queue_group;
2091 
2092 	const struct rtnl_link_ops *rtnl_link_ops;
2093 
2094 	/* for setting kernel sock attribute on TCP connection setup */
2095 #define GSO_MAX_SIZE		65536
2096 	unsigned int		gso_max_size;
2097 #define GSO_MAX_SEGS		65535
2098 	u16			gso_max_segs;
2099 
2100 #ifdef CONFIG_DCB
2101 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2102 #endif
2103 	s16			num_tc;
2104 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2105 	u8			prio_tc_map[TC_BITMASK + 1];
2106 
2107 #if IS_ENABLED(CONFIG_FCOE)
2108 	unsigned int		fcoe_ddp_xid;
2109 #endif
2110 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2111 	struct netprio_map __rcu *priomap;
2112 #endif
2113 	struct phy_device	*phydev;
2114 	struct sfp_bus		*sfp_bus;
2115 	struct lock_class_key	qdisc_tx_busylock_key;
2116 	struct lock_class_key	qdisc_running_key;
2117 	struct lock_class_key	qdisc_xmit_lock_key;
2118 	struct lock_class_key	addr_list_lock_key;
2119 	bool			proto_down;
2120 	unsigned		wol_enabled:1;
2121 
2122 	struct list_head	net_notifier_list;
2123 
2124 #if IS_ENABLED(CONFIG_MACSEC)
2125 	/* MACsec management functions */
2126 	const struct macsec_ops *macsec_ops;
2127 #endif
2128 };
2129 #define to_net_dev(d) container_of(d, struct net_device, dev)
2130 
2131 static inline bool netif_elide_gro(const struct net_device *dev)
2132 {
2133 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2134 		return true;
2135 	return false;
2136 }
2137 
2138 #define	NETDEV_ALIGN		32
2139 
2140 static inline
2141 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2142 {
2143 	return dev->prio_tc_map[prio & TC_BITMASK];
2144 }
2145 
2146 static inline
2147 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2148 {
2149 	if (tc >= dev->num_tc)
2150 		return -EINVAL;
2151 
2152 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2153 	return 0;
2154 }
2155 
2156 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2157 void netdev_reset_tc(struct net_device *dev);
2158 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2159 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2160 
2161 static inline
2162 int netdev_get_num_tc(struct net_device *dev)
2163 {
2164 	return dev->num_tc;
2165 }
2166 
2167 void netdev_unbind_sb_channel(struct net_device *dev,
2168 			      struct net_device *sb_dev);
2169 int netdev_bind_sb_channel_queue(struct net_device *dev,
2170 				 struct net_device *sb_dev,
2171 				 u8 tc, u16 count, u16 offset);
2172 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2173 static inline int netdev_get_sb_channel(struct net_device *dev)
2174 {
2175 	return max_t(int, -dev->num_tc, 0);
2176 }
2177 
2178 static inline
2179 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2180 					 unsigned int index)
2181 {
2182 	return &dev->_tx[index];
2183 }
2184 
2185 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2186 						    const struct sk_buff *skb)
2187 {
2188 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2189 }
2190 
2191 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2192 					    void (*f)(struct net_device *,
2193 						      struct netdev_queue *,
2194 						      void *),
2195 					    void *arg)
2196 {
2197 	unsigned int i;
2198 
2199 	for (i = 0; i < dev->num_tx_queues; i++)
2200 		f(dev, &dev->_tx[i], arg);
2201 }
2202 
2203 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2204 		     struct net_device *sb_dev);
2205 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2206 					 struct sk_buff *skb,
2207 					 struct net_device *sb_dev);
2208 
2209 /* returns the headroom that the master device needs to take in account
2210  * when forwarding to this dev
2211  */
2212 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2213 {
2214 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2215 }
2216 
2217 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2218 {
2219 	if (dev->netdev_ops->ndo_set_rx_headroom)
2220 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2221 }
2222 
2223 /* set the device rx headroom to the dev's default */
2224 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2225 {
2226 	netdev_set_rx_headroom(dev, -1);
2227 }
2228 
2229 /*
2230  * Net namespace inlines
2231  */
2232 static inline
2233 struct net *dev_net(const struct net_device *dev)
2234 {
2235 	return read_pnet(&dev->nd_net);
2236 }
2237 
2238 static inline
2239 void dev_net_set(struct net_device *dev, struct net *net)
2240 {
2241 	write_pnet(&dev->nd_net, net);
2242 }
2243 
2244 /**
2245  *	netdev_priv - access network device private data
2246  *	@dev: network device
2247  *
2248  * Get network device private data
2249  */
2250 static inline void *netdev_priv(const struct net_device *dev)
2251 {
2252 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2253 }
2254 
2255 /* Set the sysfs physical device reference for the network logical device
2256  * if set prior to registration will cause a symlink during initialization.
2257  */
2258 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2259 
2260 /* Set the sysfs device type for the network logical device to allow
2261  * fine-grained identification of different network device types. For
2262  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2263  */
2264 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2265 
2266 /* Default NAPI poll() weight
2267  * Device drivers are strongly advised to not use bigger value
2268  */
2269 #define NAPI_POLL_WEIGHT 64
2270 
2271 /**
2272  *	netif_napi_add - initialize a NAPI context
2273  *	@dev:  network device
2274  *	@napi: NAPI context
2275  *	@poll: polling function
2276  *	@weight: default weight
2277  *
2278  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2279  * *any* of the other NAPI-related functions.
2280  */
2281 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2282 		    int (*poll)(struct napi_struct *, int), int weight);
2283 
2284 /**
2285  *	netif_tx_napi_add - initialize a NAPI context
2286  *	@dev:  network device
2287  *	@napi: NAPI context
2288  *	@poll: polling function
2289  *	@weight: default weight
2290  *
2291  * This variant of netif_napi_add() should be used from drivers using NAPI
2292  * to exclusively poll a TX queue.
2293  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2294  */
2295 static inline void netif_tx_napi_add(struct net_device *dev,
2296 				     struct napi_struct *napi,
2297 				     int (*poll)(struct napi_struct *, int),
2298 				     int weight)
2299 {
2300 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2301 	netif_napi_add(dev, napi, poll, weight);
2302 }
2303 
2304 /**
2305  *  netif_napi_del - remove a NAPI context
2306  *  @napi: NAPI context
2307  *
2308  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2309  */
2310 void netif_napi_del(struct napi_struct *napi);
2311 
2312 struct napi_gro_cb {
2313 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2314 	void	*frag0;
2315 
2316 	/* Length of frag0. */
2317 	unsigned int frag0_len;
2318 
2319 	/* This indicates where we are processing relative to skb->data. */
2320 	int	data_offset;
2321 
2322 	/* This is non-zero if the packet cannot be merged with the new skb. */
2323 	u16	flush;
2324 
2325 	/* Save the IP ID here and check when we get to the transport layer */
2326 	u16	flush_id;
2327 
2328 	/* Number of segments aggregated. */
2329 	u16	count;
2330 
2331 	/* Start offset for remote checksum offload */
2332 	u16	gro_remcsum_start;
2333 
2334 	/* jiffies when first packet was created/queued */
2335 	unsigned long age;
2336 
2337 	/* Used in ipv6_gro_receive() and foo-over-udp */
2338 	u16	proto;
2339 
2340 	/* This is non-zero if the packet may be of the same flow. */
2341 	u8	same_flow:1;
2342 
2343 	/* Used in tunnel GRO receive */
2344 	u8	encap_mark:1;
2345 
2346 	/* GRO checksum is valid */
2347 	u8	csum_valid:1;
2348 
2349 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2350 	u8	csum_cnt:3;
2351 
2352 	/* Free the skb? */
2353 	u8	free:2;
2354 #define NAPI_GRO_FREE		  1
2355 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2356 
2357 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2358 	u8	is_ipv6:1;
2359 
2360 	/* Used in GRE, set in fou/gue_gro_receive */
2361 	u8	is_fou:1;
2362 
2363 	/* Used to determine if flush_id can be ignored */
2364 	u8	is_atomic:1;
2365 
2366 	/* Number of gro_receive callbacks this packet already went through */
2367 	u8 recursion_counter:4;
2368 
2369 	/* GRO is done by frag_list pointer chaining. */
2370 	u8	is_flist:1;
2371 
2372 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2373 	__wsum	csum;
2374 
2375 	/* used in skb_gro_receive() slow path */
2376 	struct sk_buff *last;
2377 };
2378 
2379 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2380 
2381 #define GRO_RECURSION_LIMIT 15
2382 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2383 {
2384 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2385 }
2386 
2387 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2388 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2389 					       struct list_head *head,
2390 					       struct sk_buff *skb)
2391 {
2392 	if (unlikely(gro_recursion_inc_test(skb))) {
2393 		NAPI_GRO_CB(skb)->flush |= 1;
2394 		return NULL;
2395 	}
2396 
2397 	return cb(head, skb);
2398 }
2399 
2400 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2401 					    struct sk_buff *);
2402 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2403 						  struct sock *sk,
2404 						  struct list_head *head,
2405 						  struct sk_buff *skb)
2406 {
2407 	if (unlikely(gro_recursion_inc_test(skb))) {
2408 		NAPI_GRO_CB(skb)->flush |= 1;
2409 		return NULL;
2410 	}
2411 
2412 	return cb(sk, head, skb);
2413 }
2414 
2415 struct packet_type {
2416 	__be16			type;	/* This is really htons(ether_type). */
2417 	bool			ignore_outgoing;
2418 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2419 	int			(*func) (struct sk_buff *,
2420 					 struct net_device *,
2421 					 struct packet_type *,
2422 					 struct net_device *);
2423 	void			(*list_func) (struct list_head *,
2424 					      struct packet_type *,
2425 					      struct net_device *);
2426 	bool			(*id_match)(struct packet_type *ptype,
2427 					    struct sock *sk);
2428 	void			*af_packet_priv;
2429 	struct list_head	list;
2430 };
2431 
2432 struct offload_callbacks {
2433 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2434 						netdev_features_t features);
2435 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2436 						struct sk_buff *skb);
2437 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2438 };
2439 
2440 struct packet_offload {
2441 	__be16			 type;	/* This is really htons(ether_type). */
2442 	u16			 priority;
2443 	struct offload_callbacks callbacks;
2444 	struct list_head	 list;
2445 };
2446 
2447 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2448 struct pcpu_sw_netstats {
2449 	u64     rx_packets;
2450 	u64     rx_bytes;
2451 	u64     tx_packets;
2452 	u64     tx_bytes;
2453 	struct u64_stats_sync   syncp;
2454 } __aligned(4 * sizeof(u64));
2455 
2456 struct pcpu_lstats {
2457 	u64_stats_t packets;
2458 	u64_stats_t bytes;
2459 	struct u64_stats_sync syncp;
2460 } __aligned(2 * sizeof(u64));
2461 
2462 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2463 
2464 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2465 {
2466 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2467 
2468 	u64_stats_update_begin(&lstats->syncp);
2469 	u64_stats_add(&lstats->bytes, len);
2470 	u64_stats_inc(&lstats->packets);
2471 	u64_stats_update_end(&lstats->syncp);
2472 }
2473 
2474 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2475 ({									\
2476 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2477 	if (pcpu_stats)	{						\
2478 		int __cpu;						\
2479 		for_each_possible_cpu(__cpu) {				\
2480 			typeof(type) *stat;				\
2481 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2482 			u64_stats_init(&stat->syncp);			\
2483 		}							\
2484 	}								\
2485 	pcpu_stats;							\
2486 })
2487 
2488 #define netdev_alloc_pcpu_stats(type)					\
2489 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2490 
2491 enum netdev_lag_tx_type {
2492 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2493 	NETDEV_LAG_TX_TYPE_RANDOM,
2494 	NETDEV_LAG_TX_TYPE_BROADCAST,
2495 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2496 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2497 	NETDEV_LAG_TX_TYPE_HASH,
2498 };
2499 
2500 enum netdev_lag_hash {
2501 	NETDEV_LAG_HASH_NONE,
2502 	NETDEV_LAG_HASH_L2,
2503 	NETDEV_LAG_HASH_L34,
2504 	NETDEV_LAG_HASH_L23,
2505 	NETDEV_LAG_HASH_E23,
2506 	NETDEV_LAG_HASH_E34,
2507 	NETDEV_LAG_HASH_UNKNOWN,
2508 };
2509 
2510 struct netdev_lag_upper_info {
2511 	enum netdev_lag_tx_type tx_type;
2512 	enum netdev_lag_hash hash_type;
2513 };
2514 
2515 struct netdev_lag_lower_state_info {
2516 	u8 link_up : 1,
2517 	   tx_enabled : 1;
2518 };
2519 
2520 #include <linux/notifier.h>
2521 
2522 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2523  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2524  * adding new types.
2525  */
2526 enum netdev_cmd {
2527 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2528 	NETDEV_DOWN,
2529 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2530 				   detected a hardware crash and restarted
2531 				   - we can use this eg to kick tcp sessions
2532 				   once done */
2533 	NETDEV_CHANGE,		/* Notify device state change */
2534 	NETDEV_REGISTER,
2535 	NETDEV_UNREGISTER,
2536 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2537 	NETDEV_CHANGEADDR,	/* notify after the address change */
2538 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2539 	NETDEV_GOING_DOWN,
2540 	NETDEV_CHANGENAME,
2541 	NETDEV_FEAT_CHANGE,
2542 	NETDEV_BONDING_FAILOVER,
2543 	NETDEV_PRE_UP,
2544 	NETDEV_PRE_TYPE_CHANGE,
2545 	NETDEV_POST_TYPE_CHANGE,
2546 	NETDEV_POST_INIT,
2547 	NETDEV_RELEASE,
2548 	NETDEV_NOTIFY_PEERS,
2549 	NETDEV_JOIN,
2550 	NETDEV_CHANGEUPPER,
2551 	NETDEV_RESEND_IGMP,
2552 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2553 	NETDEV_CHANGEINFODATA,
2554 	NETDEV_BONDING_INFO,
2555 	NETDEV_PRECHANGEUPPER,
2556 	NETDEV_CHANGELOWERSTATE,
2557 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2558 	NETDEV_UDP_TUNNEL_DROP_INFO,
2559 	NETDEV_CHANGE_TX_QUEUE_LEN,
2560 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2561 	NETDEV_CVLAN_FILTER_DROP_INFO,
2562 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2563 	NETDEV_SVLAN_FILTER_DROP_INFO,
2564 };
2565 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2566 
2567 int register_netdevice_notifier(struct notifier_block *nb);
2568 int unregister_netdevice_notifier(struct notifier_block *nb);
2569 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2570 int unregister_netdevice_notifier_net(struct net *net,
2571 				      struct notifier_block *nb);
2572 int register_netdevice_notifier_dev_net(struct net_device *dev,
2573 					struct notifier_block *nb,
2574 					struct netdev_net_notifier *nn);
2575 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2576 					  struct notifier_block *nb,
2577 					  struct netdev_net_notifier *nn);
2578 
2579 struct netdev_notifier_info {
2580 	struct net_device	*dev;
2581 	struct netlink_ext_ack	*extack;
2582 };
2583 
2584 struct netdev_notifier_info_ext {
2585 	struct netdev_notifier_info info; /* must be first */
2586 	union {
2587 		u32 mtu;
2588 	} ext;
2589 };
2590 
2591 struct netdev_notifier_change_info {
2592 	struct netdev_notifier_info info; /* must be first */
2593 	unsigned int flags_changed;
2594 };
2595 
2596 struct netdev_notifier_changeupper_info {
2597 	struct netdev_notifier_info info; /* must be first */
2598 	struct net_device *upper_dev; /* new upper dev */
2599 	bool master; /* is upper dev master */
2600 	bool linking; /* is the notification for link or unlink */
2601 	void *upper_info; /* upper dev info */
2602 };
2603 
2604 struct netdev_notifier_changelowerstate_info {
2605 	struct netdev_notifier_info info; /* must be first */
2606 	void *lower_state_info; /* is lower dev state */
2607 };
2608 
2609 struct netdev_notifier_pre_changeaddr_info {
2610 	struct netdev_notifier_info info; /* must be first */
2611 	const unsigned char *dev_addr;
2612 };
2613 
2614 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2615 					     struct net_device *dev)
2616 {
2617 	info->dev = dev;
2618 	info->extack = NULL;
2619 }
2620 
2621 static inline struct net_device *
2622 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2623 {
2624 	return info->dev;
2625 }
2626 
2627 static inline struct netlink_ext_ack *
2628 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2629 {
2630 	return info->extack;
2631 }
2632 
2633 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2634 
2635 
2636 extern rwlock_t				dev_base_lock;		/* Device list lock */
2637 
2638 #define for_each_netdev(net, d)		\
2639 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2640 #define for_each_netdev_reverse(net, d)	\
2641 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2642 #define for_each_netdev_rcu(net, d)		\
2643 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2644 #define for_each_netdev_safe(net, d, n)	\
2645 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2646 #define for_each_netdev_continue(net, d)		\
2647 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2648 #define for_each_netdev_continue_reverse(net, d)		\
2649 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2650 						     dev_list)
2651 #define for_each_netdev_continue_rcu(net, d)		\
2652 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2653 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2654 		for_each_netdev_rcu(&init_net, slave)	\
2655 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2656 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2657 
2658 static inline struct net_device *next_net_device(struct net_device *dev)
2659 {
2660 	struct list_head *lh;
2661 	struct net *net;
2662 
2663 	net = dev_net(dev);
2664 	lh = dev->dev_list.next;
2665 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2666 }
2667 
2668 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2669 {
2670 	struct list_head *lh;
2671 	struct net *net;
2672 
2673 	net = dev_net(dev);
2674 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2675 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2676 }
2677 
2678 static inline struct net_device *first_net_device(struct net *net)
2679 {
2680 	return list_empty(&net->dev_base_head) ? NULL :
2681 		net_device_entry(net->dev_base_head.next);
2682 }
2683 
2684 static inline struct net_device *first_net_device_rcu(struct net *net)
2685 {
2686 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2687 
2688 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2689 }
2690 
2691 int netdev_boot_setup_check(struct net_device *dev);
2692 unsigned long netdev_boot_base(const char *prefix, int unit);
2693 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2694 				       const char *hwaddr);
2695 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2697 void dev_add_pack(struct packet_type *pt);
2698 void dev_remove_pack(struct packet_type *pt);
2699 void __dev_remove_pack(struct packet_type *pt);
2700 void dev_add_offload(struct packet_offload *po);
2701 void dev_remove_offload(struct packet_offload *po);
2702 
2703 int dev_get_iflink(const struct net_device *dev);
2704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2705 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2706 				      unsigned short mask);
2707 struct net_device *dev_get_by_name(struct net *net, const char *name);
2708 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2709 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2710 int dev_alloc_name(struct net_device *dev, const char *name);
2711 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2712 void dev_close(struct net_device *dev);
2713 void dev_close_many(struct list_head *head, bool unlink);
2714 void dev_disable_lro(struct net_device *dev);
2715 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2716 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2717 		     struct net_device *sb_dev);
2718 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2719 		       struct net_device *sb_dev);
2720 int dev_queue_xmit(struct sk_buff *skb);
2721 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2722 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2723 int register_netdevice(struct net_device *dev);
2724 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2725 void unregister_netdevice_many(struct list_head *head);
2726 static inline void unregister_netdevice(struct net_device *dev)
2727 {
2728 	unregister_netdevice_queue(dev, NULL);
2729 }
2730 
2731 int netdev_refcnt_read(const struct net_device *dev);
2732 void free_netdev(struct net_device *dev);
2733 void netdev_freemem(struct net_device *dev);
2734 void synchronize_net(void);
2735 int init_dummy_netdev(struct net_device *dev);
2736 
2737 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2738 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2739 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2740 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2741 int netdev_get_name(struct net *net, char *name, int ifindex);
2742 int dev_restart(struct net_device *dev);
2743 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2744 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2745 
2746 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2747 {
2748 	return NAPI_GRO_CB(skb)->data_offset;
2749 }
2750 
2751 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2752 {
2753 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2754 }
2755 
2756 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2757 {
2758 	NAPI_GRO_CB(skb)->data_offset += len;
2759 }
2760 
2761 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2762 					unsigned int offset)
2763 {
2764 	return NAPI_GRO_CB(skb)->frag0 + offset;
2765 }
2766 
2767 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2768 {
2769 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2770 }
2771 
2772 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2773 {
2774 	NAPI_GRO_CB(skb)->frag0 = NULL;
2775 	NAPI_GRO_CB(skb)->frag0_len = 0;
2776 }
2777 
2778 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2779 					unsigned int offset)
2780 {
2781 	if (!pskb_may_pull(skb, hlen))
2782 		return NULL;
2783 
2784 	skb_gro_frag0_invalidate(skb);
2785 	return skb->data + offset;
2786 }
2787 
2788 static inline void *skb_gro_network_header(struct sk_buff *skb)
2789 {
2790 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2791 	       skb_network_offset(skb);
2792 }
2793 
2794 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2795 					const void *start, unsigned int len)
2796 {
2797 	if (NAPI_GRO_CB(skb)->csum_valid)
2798 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2799 						  csum_partial(start, len, 0));
2800 }
2801 
2802 /* GRO checksum functions. These are logical equivalents of the normal
2803  * checksum functions (in skbuff.h) except that they operate on the GRO
2804  * offsets and fields in sk_buff.
2805  */
2806 
2807 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2808 
2809 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2810 {
2811 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2812 }
2813 
2814 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2815 						      bool zero_okay,
2816 						      __sum16 check)
2817 {
2818 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2819 		skb_checksum_start_offset(skb) <
2820 		 skb_gro_offset(skb)) &&
2821 		!skb_at_gro_remcsum_start(skb) &&
2822 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2823 		(!zero_okay || check));
2824 }
2825 
2826 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2827 							   __wsum psum)
2828 {
2829 	if (NAPI_GRO_CB(skb)->csum_valid &&
2830 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2831 		return 0;
2832 
2833 	NAPI_GRO_CB(skb)->csum = psum;
2834 
2835 	return __skb_gro_checksum_complete(skb);
2836 }
2837 
2838 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2839 {
2840 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2841 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2842 		NAPI_GRO_CB(skb)->csum_cnt--;
2843 	} else {
2844 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2845 		 * verified a new top level checksum or an encapsulated one
2846 		 * during GRO. This saves work if we fallback to normal path.
2847 		 */
2848 		__skb_incr_checksum_unnecessary(skb);
2849 	}
2850 }
2851 
2852 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2853 				    compute_pseudo)			\
2854 ({									\
2855 	__sum16 __ret = 0;						\
2856 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2857 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2858 				compute_pseudo(skb, proto));		\
2859 	if (!__ret)							\
2860 		skb_gro_incr_csum_unnecessary(skb);			\
2861 	__ret;								\
2862 })
2863 
2864 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2865 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2866 
2867 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2868 					     compute_pseudo)		\
2869 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2870 
2871 #define skb_gro_checksum_simple_validate(skb)				\
2872 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2873 
2874 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2875 {
2876 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2877 		!NAPI_GRO_CB(skb)->csum_valid);
2878 }
2879 
2880 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2881 					      __wsum pseudo)
2882 {
2883 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2884 	NAPI_GRO_CB(skb)->csum_valid = 1;
2885 }
2886 
2887 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2888 do {									\
2889 	if (__skb_gro_checksum_convert_check(skb))			\
2890 		__skb_gro_checksum_convert(skb, 			\
2891 					   compute_pseudo(skb, proto));	\
2892 } while (0)
2893 
2894 struct gro_remcsum {
2895 	int offset;
2896 	__wsum delta;
2897 };
2898 
2899 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2900 {
2901 	grc->offset = 0;
2902 	grc->delta = 0;
2903 }
2904 
2905 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2906 					    unsigned int off, size_t hdrlen,
2907 					    int start, int offset,
2908 					    struct gro_remcsum *grc,
2909 					    bool nopartial)
2910 {
2911 	__wsum delta;
2912 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2913 
2914 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2915 
2916 	if (!nopartial) {
2917 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2918 		return ptr;
2919 	}
2920 
2921 	ptr = skb_gro_header_fast(skb, off);
2922 	if (skb_gro_header_hard(skb, off + plen)) {
2923 		ptr = skb_gro_header_slow(skb, off + plen, off);
2924 		if (!ptr)
2925 			return NULL;
2926 	}
2927 
2928 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2929 			       start, offset);
2930 
2931 	/* Adjust skb->csum since we changed the packet */
2932 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2933 
2934 	grc->offset = off + hdrlen + offset;
2935 	grc->delta = delta;
2936 
2937 	return ptr;
2938 }
2939 
2940 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2941 					   struct gro_remcsum *grc)
2942 {
2943 	void *ptr;
2944 	size_t plen = grc->offset + sizeof(u16);
2945 
2946 	if (!grc->delta)
2947 		return;
2948 
2949 	ptr = skb_gro_header_fast(skb, grc->offset);
2950 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2951 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2952 		if (!ptr)
2953 			return;
2954 	}
2955 
2956 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2957 }
2958 
2959 #ifdef CONFIG_XFRM_OFFLOAD
2960 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2961 {
2962 	if (PTR_ERR(pp) != -EINPROGRESS)
2963 		NAPI_GRO_CB(skb)->flush |= flush;
2964 }
2965 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2966 					       struct sk_buff *pp,
2967 					       int flush,
2968 					       struct gro_remcsum *grc)
2969 {
2970 	if (PTR_ERR(pp) != -EINPROGRESS) {
2971 		NAPI_GRO_CB(skb)->flush |= flush;
2972 		skb_gro_remcsum_cleanup(skb, grc);
2973 		skb->remcsum_offload = 0;
2974 	}
2975 }
2976 #else
2977 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2978 {
2979 	NAPI_GRO_CB(skb)->flush |= flush;
2980 }
2981 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2982 					       struct sk_buff *pp,
2983 					       int flush,
2984 					       struct gro_remcsum *grc)
2985 {
2986 	NAPI_GRO_CB(skb)->flush |= flush;
2987 	skb_gro_remcsum_cleanup(skb, grc);
2988 	skb->remcsum_offload = 0;
2989 }
2990 #endif
2991 
2992 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2993 				  unsigned short type,
2994 				  const void *daddr, const void *saddr,
2995 				  unsigned int len)
2996 {
2997 	if (!dev->header_ops || !dev->header_ops->create)
2998 		return 0;
2999 
3000 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3001 }
3002 
3003 static inline int dev_parse_header(const struct sk_buff *skb,
3004 				   unsigned char *haddr)
3005 {
3006 	const struct net_device *dev = skb->dev;
3007 
3008 	if (!dev->header_ops || !dev->header_ops->parse)
3009 		return 0;
3010 	return dev->header_ops->parse(skb, haddr);
3011 }
3012 
3013 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3014 {
3015 	const struct net_device *dev = skb->dev;
3016 
3017 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3018 		return 0;
3019 	return dev->header_ops->parse_protocol(skb);
3020 }
3021 
3022 /* ll_header must have at least hard_header_len allocated */
3023 static inline bool dev_validate_header(const struct net_device *dev,
3024 				       char *ll_header, int len)
3025 {
3026 	if (likely(len >= dev->hard_header_len))
3027 		return true;
3028 	if (len < dev->min_header_len)
3029 		return false;
3030 
3031 	if (capable(CAP_SYS_RAWIO)) {
3032 		memset(ll_header + len, 0, dev->hard_header_len - len);
3033 		return true;
3034 	}
3035 
3036 	if (dev->header_ops && dev->header_ops->validate)
3037 		return dev->header_ops->validate(ll_header, len);
3038 
3039 	return false;
3040 }
3041 
3042 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3043 			   int len, int size);
3044 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3045 static inline int unregister_gifconf(unsigned int family)
3046 {
3047 	return register_gifconf(family, NULL);
3048 }
3049 
3050 #ifdef CONFIG_NET_FLOW_LIMIT
3051 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3052 struct sd_flow_limit {
3053 	u64			count;
3054 	unsigned int		num_buckets;
3055 	unsigned int		history_head;
3056 	u16			history[FLOW_LIMIT_HISTORY];
3057 	u8			buckets[];
3058 };
3059 
3060 extern int netdev_flow_limit_table_len;
3061 #endif /* CONFIG_NET_FLOW_LIMIT */
3062 
3063 /*
3064  * Incoming packets are placed on per-CPU queues
3065  */
3066 struct softnet_data {
3067 	struct list_head	poll_list;
3068 	struct sk_buff_head	process_queue;
3069 
3070 	/* stats */
3071 	unsigned int		processed;
3072 	unsigned int		time_squeeze;
3073 	unsigned int		received_rps;
3074 #ifdef CONFIG_RPS
3075 	struct softnet_data	*rps_ipi_list;
3076 #endif
3077 #ifdef CONFIG_NET_FLOW_LIMIT
3078 	struct sd_flow_limit __rcu *flow_limit;
3079 #endif
3080 	struct Qdisc		*output_queue;
3081 	struct Qdisc		**output_queue_tailp;
3082 	struct sk_buff		*completion_queue;
3083 #ifdef CONFIG_XFRM_OFFLOAD
3084 	struct sk_buff_head	xfrm_backlog;
3085 #endif
3086 	/* written and read only by owning cpu: */
3087 	struct {
3088 		u16 recursion;
3089 		u8  more;
3090 	} xmit;
3091 #ifdef CONFIG_RPS
3092 	/* input_queue_head should be written by cpu owning this struct,
3093 	 * and only read by other cpus. Worth using a cache line.
3094 	 */
3095 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3096 
3097 	/* Elements below can be accessed between CPUs for RPS/RFS */
3098 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3099 	struct softnet_data	*rps_ipi_next;
3100 	unsigned int		cpu;
3101 	unsigned int		input_queue_tail;
3102 #endif
3103 	unsigned int		dropped;
3104 	struct sk_buff_head	input_pkt_queue;
3105 	struct napi_struct	backlog;
3106 
3107 };
3108 
3109 static inline void input_queue_head_incr(struct softnet_data *sd)
3110 {
3111 #ifdef CONFIG_RPS
3112 	sd->input_queue_head++;
3113 #endif
3114 }
3115 
3116 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3117 					      unsigned int *qtail)
3118 {
3119 #ifdef CONFIG_RPS
3120 	*qtail = ++sd->input_queue_tail;
3121 #endif
3122 }
3123 
3124 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3125 
3126 static inline int dev_recursion_level(void)
3127 {
3128 	return this_cpu_read(softnet_data.xmit.recursion);
3129 }
3130 
3131 #define XMIT_RECURSION_LIMIT	10
3132 static inline bool dev_xmit_recursion(void)
3133 {
3134 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3135 			XMIT_RECURSION_LIMIT);
3136 }
3137 
3138 static inline void dev_xmit_recursion_inc(void)
3139 {
3140 	__this_cpu_inc(softnet_data.xmit.recursion);
3141 }
3142 
3143 static inline void dev_xmit_recursion_dec(void)
3144 {
3145 	__this_cpu_dec(softnet_data.xmit.recursion);
3146 }
3147 
3148 void __netif_schedule(struct Qdisc *q);
3149 void netif_schedule_queue(struct netdev_queue *txq);
3150 
3151 static inline void netif_tx_schedule_all(struct net_device *dev)
3152 {
3153 	unsigned int i;
3154 
3155 	for (i = 0; i < dev->num_tx_queues; i++)
3156 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3157 }
3158 
3159 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3160 {
3161 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3162 }
3163 
3164 /**
3165  *	netif_start_queue - allow transmit
3166  *	@dev: network device
3167  *
3168  *	Allow upper layers to call the device hard_start_xmit routine.
3169  */
3170 static inline void netif_start_queue(struct net_device *dev)
3171 {
3172 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3173 }
3174 
3175 static inline void netif_tx_start_all_queues(struct net_device *dev)
3176 {
3177 	unsigned int i;
3178 
3179 	for (i = 0; i < dev->num_tx_queues; i++) {
3180 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3181 		netif_tx_start_queue(txq);
3182 	}
3183 }
3184 
3185 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3186 
3187 /**
3188  *	netif_wake_queue - restart transmit
3189  *	@dev: network device
3190  *
3191  *	Allow upper layers to call the device hard_start_xmit routine.
3192  *	Used for flow control when transmit resources are available.
3193  */
3194 static inline void netif_wake_queue(struct net_device *dev)
3195 {
3196 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3197 }
3198 
3199 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3200 {
3201 	unsigned int i;
3202 
3203 	for (i = 0; i < dev->num_tx_queues; i++) {
3204 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3205 		netif_tx_wake_queue(txq);
3206 	}
3207 }
3208 
3209 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3210 {
3211 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3212 }
3213 
3214 /**
3215  *	netif_stop_queue - stop transmitted packets
3216  *	@dev: network device
3217  *
3218  *	Stop upper layers calling the device hard_start_xmit routine.
3219  *	Used for flow control when transmit resources are unavailable.
3220  */
3221 static inline void netif_stop_queue(struct net_device *dev)
3222 {
3223 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3224 }
3225 
3226 void netif_tx_stop_all_queues(struct net_device *dev);
3227 void netdev_update_lockdep_key(struct net_device *dev);
3228 
3229 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3230 {
3231 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3232 }
3233 
3234 /**
3235  *	netif_queue_stopped - test if transmit queue is flowblocked
3236  *	@dev: network device
3237  *
3238  *	Test if transmit queue on device is currently unable to send.
3239  */
3240 static inline bool netif_queue_stopped(const struct net_device *dev)
3241 {
3242 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3243 }
3244 
3245 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3246 {
3247 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3248 }
3249 
3250 static inline bool
3251 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3252 {
3253 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3254 }
3255 
3256 static inline bool
3257 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3258 {
3259 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3260 }
3261 
3262 /**
3263  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3264  *	@dev_queue: pointer to transmit queue
3265  *
3266  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3267  * to give appropriate hint to the CPU.
3268  */
3269 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3270 {
3271 #ifdef CONFIG_BQL
3272 	prefetchw(&dev_queue->dql.num_queued);
3273 #endif
3274 }
3275 
3276 /**
3277  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3278  *	@dev_queue: pointer to transmit queue
3279  *
3280  * BQL enabled drivers might use this helper in their TX completion path,
3281  * to give appropriate hint to the CPU.
3282  */
3283 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3284 {
3285 #ifdef CONFIG_BQL
3286 	prefetchw(&dev_queue->dql.limit);
3287 #endif
3288 }
3289 
3290 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3291 					unsigned int bytes)
3292 {
3293 #ifdef CONFIG_BQL
3294 	dql_queued(&dev_queue->dql, bytes);
3295 
3296 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3297 		return;
3298 
3299 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3300 
3301 	/*
3302 	 * The XOFF flag must be set before checking the dql_avail below,
3303 	 * because in netdev_tx_completed_queue we update the dql_completed
3304 	 * before checking the XOFF flag.
3305 	 */
3306 	smp_mb();
3307 
3308 	/* check again in case another CPU has just made room avail */
3309 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3310 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3311 #endif
3312 }
3313 
3314 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3315  * that they should not test BQL status themselves.
3316  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3317  * skb of a batch.
3318  * Returns true if the doorbell must be used to kick the NIC.
3319  */
3320 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3321 					  unsigned int bytes,
3322 					  bool xmit_more)
3323 {
3324 	if (xmit_more) {
3325 #ifdef CONFIG_BQL
3326 		dql_queued(&dev_queue->dql, bytes);
3327 #endif
3328 		return netif_tx_queue_stopped(dev_queue);
3329 	}
3330 	netdev_tx_sent_queue(dev_queue, bytes);
3331 	return true;
3332 }
3333 
3334 /**
3335  * 	netdev_sent_queue - report the number of bytes queued to hardware
3336  * 	@dev: network device
3337  * 	@bytes: number of bytes queued to the hardware device queue
3338  *
3339  * 	Report the number of bytes queued for sending/completion to the network
3340  * 	device hardware queue. @bytes should be a good approximation and should
3341  * 	exactly match netdev_completed_queue() @bytes
3342  */
3343 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3344 {
3345 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3346 }
3347 
3348 static inline bool __netdev_sent_queue(struct net_device *dev,
3349 				       unsigned int bytes,
3350 				       bool xmit_more)
3351 {
3352 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3353 				      xmit_more);
3354 }
3355 
3356 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3357 					     unsigned int pkts, unsigned int bytes)
3358 {
3359 #ifdef CONFIG_BQL
3360 	if (unlikely(!bytes))
3361 		return;
3362 
3363 	dql_completed(&dev_queue->dql, bytes);
3364 
3365 	/*
3366 	 * Without the memory barrier there is a small possiblity that
3367 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3368 	 * be stopped forever
3369 	 */
3370 	smp_mb();
3371 
3372 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3373 		return;
3374 
3375 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3376 		netif_schedule_queue(dev_queue);
3377 #endif
3378 }
3379 
3380 /**
3381  * 	netdev_completed_queue - report bytes and packets completed by device
3382  * 	@dev: network device
3383  * 	@pkts: actual number of packets sent over the medium
3384  * 	@bytes: actual number of bytes sent over the medium
3385  *
3386  * 	Report the number of bytes and packets transmitted by the network device
3387  * 	hardware queue over the physical medium, @bytes must exactly match the
3388  * 	@bytes amount passed to netdev_sent_queue()
3389  */
3390 static inline void netdev_completed_queue(struct net_device *dev,
3391 					  unsigned int pkts, unsigned int bytes)
3392 {
3393 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3394 }
3395 
3396 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3397 {
3398 #ifdef CONFIG_BQL
3399 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3400 	dql_reset(&q->dql);
3401 #endif
3402 }
3403 
3404 /**
3405  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3406  * 	@dev_queue: network device
3407  *
3408  * 	Reset the bytes and packet count of a network device and clear the
3409  * 	software flow control OFF bit for this network device
3410  */
3411 static inline void netdev_reset_queue(struct net_device *dev_queue)
3412 {
3413 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3414 }
3415 
3416 /**
3417  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3418  * 	@dev: network device
3419  * 	@queue_index: given tx queue index
3420  *
3421  * 	Returns 0 if given tx queue index >= number of device tx queues,
3422  * 	otherwise returns the originally passed tx queue index.
3423  */
3424 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3425 {
3426 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3427 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3428 				     dev->name, queue_index,
3429 				     dev->real_num_tx_queues);
3430 		return 0;
3431 	}
3432 
3433 	return queue_index;
3434 }
3435 
3436 /**
3437  *	netif_running - test if up
3438  *	@dev: network device
3439  *
3440  *	Test if the device has been brought up.
3441  */
3442 static inline bool netif_running(const struct net_device *dev)
3443 {
3444 	return test_bit(__LINK_STATE_START, &dev->state);
3445 }
3446 
3447 /*
3448  * Routines to manage the subqueues on a device.  We only need start,
3449  * stop, and a check if it's stopped.  All other device management is
3450  * done at the overall netdevice level.
3451  * Also test the device if we're multiqueue.
3452  */
3453 
3454 /**
3455  *	netif_start_subqueue - allow sending packets on subqueue
3456  *	@dev: network device
3457  *	@queue_index: sub queue index
3458  *
3459  * Start individual transmit queue of a device with multiple transmit queues.
3460  */
3461 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3462 {
3463 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3464 
3465 	netif_tx_start_queue(txq);
3466 }
3467 
3468 /**
3469  *	netif_stop_subqueue - stop sending packets on subqueue
3470  *	@dev: network device
3471  *	@queue_index: sub queue index
3472  *
3473  * Stop individual transmit queue of a device with multiple transmit queues.
3474  */
3475 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3476 {
3477 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3478 	netif_tx_stop_queue(txq);
3479 }
3480 
3481 /**
3482  *	netif_subqueue_stopped - test status of subqueue
3483  *	@dev: network device
3484  *	@queue_index: sub queue index
3485  *
3486  * Check individual transmit queue of a device with multiple transmit queues.
3487  */
3488 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3489 					    u16 queue_index)
3490 {
3491 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3492 
3493 	return netif_tx_queue_stopped(txq);
3494 }
3495 
3496 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3497 					  struct sk_buff *skb)
3498 {
3499 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3500 }
3501 
3502 /**
3503  *	netif_wake_subqueue - allow sending packets on subqueue
3504  *	@dev: network device
3505  *	@queue_index: sub queue index
3506  *
3507  * Resume individual transmit queue of a device with multiple transmit queues.
3508  */
3509 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3510 {
3511 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3512 
3513 	netif_tx_wake_queue(txq);
3514 }
3515 
3516 #ifdef CONFIG_XPS
3517 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3518 			u16 index);
3519 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3520 			  u16 index, bool is_rxqs_map);
3521 
3522 /**
3523  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3524  *	@j: CPU/Rx queue index
3525  *	@mask: bitmask of all cpus/rx queues
3526  *	@nr_bits: number of bits in the bitmask
3527  *
3528  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3529  */
3530 static inline bool netif_attr_test_mask(unsigned long j,
3531 					const unsigned long *mask,
3532 					unsigned int nr_bits)
3533 {
3534 	cpu_max_bits_warn(j, nr_bits);
3535 	return test_bit(j, mask);
3536 }
3537 
3538 /**
3539  *	netif_attr_test_online - Test for online CPU/Rx queue
3540  *	@j: CPU/Rx queue index
3541  *	@online_mask: bitmask for CPUs/Rx queues that are online
3542  *	@nr_bits: number of bits in the bitmask
3543  *
3544  * Returns true if a CPU/Rx queue is online.
3545  */
3546 static inline bool netif_attr_test_online(unsigned long j,
3547 					  const unsigned long *online_mask,
3548 					  unsigned int nr_bits)
3549 {
3550 	cpu_max_bits_warn(j, nr_bits);
3551 
3552 	if (online_mask)
3553 		return test_bit(j, online_mask);
3554 
3555 	return (j < nr_bits);
3556 }
3557 
3558 /**
3559  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3560  *	@n: CPU/Rx queue index
3561  *	@srcp: the cpumask/Rx queue mask pointer
3562  *	@nr_bits: number of bits in the bitmask
3563  *
3564  * Returns >= nr_bits if no further CPUs/Rx queues set.
3565  */
3566 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3567 					       unsigned int nr_bits)
3568 {
3569 	/* -1 is a legal arg here. */
3570 	if (n != -1)
3571 		cpu_max_bits_warn(n, nr_bits);
3572 
3573 	if (srcp)
3574 		return find_next_bit(srcp, nr_bits, n + 1);
3575 
3576 	return n + 1;
3577 }
3578 
3579 /**
3580  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3581  *	@n: CPU/Rx queue index
3582  *	@src1p: the first CPUs/Rx queues mask pointer
3583  *	@src2p: the second CPUs/Rx queues mask pointer
3584  *	@nr_bits: number of bits in the bitmask
3585  *
3586  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3587  */
3588 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3589 					  const unsigned long *src2p,
3590 					  unsigned int nr_bits)
3591 {
3592 	/* -1 is a legal arg here. */
3593 	if (n != -1)
3594 		cpu_max_bits_warn(n, nr_bits);
3595 
3596 	if (src1p && src2p)
3597 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3598 	else if (src1p)
3599 		return find_next_bit(src1p, nr_bits, n + 1);
3600 	else if (src2p)
3601 		return find_next_bit(src2p, nr_bits, n + 1);
3602 
3603 	return n + 1;
3604 }
3605 #else
3606 static inline int netif_set_xps_queue(struct net_device *dev,
3607 				      const struct cpumask *mask,
3608 				      u16 index)
3609 {
3610 	return 0;
3611 }
3612 
3613 static inline int __netif_set_xps_queue(struct net_device *dev,
3614 					const unsigned long *mask,
3615 					u16 index, bool is_rxqs_map)
3616 {
3617 	return 0;
3618 }
3619 #endif
3620 
3621 /**
3622  *	netif_is_multiqueue - test if device has multiple transmit queues
3623  *	@dev: network device
3624  *
3625  * Check if device has multiple transmit queues
3626  */
3627 static inline bool netif_is_multiqueue(const struct net_device *dev)
3628 {
3629 	return dev->num_tx_queues > 1;
3630 }
3631 
3632 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3633 
3634 #ifdef CONFIG_SYSFS
3635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3636 #else
3637 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3638 						unsigned int rxqs)
3639 {
3640 	dev->real_num_rx_queues = rxqs;
3641 	return 0;
3642 }
3643 #endif
3644 
3645 static inline struct netdev_rx_queue *
3646 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3647 {
3648 	return dev->_rx + rxq;
3649 }
3650 
3651 #ifdef CONFIG_SYSFS
3652 static inline unsigned int get_netdev_rx_queue_index(
3653 		struct netdev_rx_queue *queue)
3654 {
3655 	struct net_device *dev = queue->dev;
3656 	int index = queue - dev->_rx;
3657 
3658 	BUG_ON(index >= dev->num_rx_queues);
3659 	return index;
3660 }
3661 #endif
3662 
3663 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3664 int netif_get_num_default_rss_queues(void);
3665 
3666 enum skb_free_reason {
3667 	SKB_REASON_CONSUMED,
3668 	SKB_REASON_DROPPED,
3669 };
3670 
3671 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3672 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3673 
3674 /*
3675  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3676  * interrupt context or with hardware interrupts being disabled.
3677  * (in_irq() || irqs_disabled())
3678  *
3679  * We provide four helpers that can be used in following contexts :
3680  *
3681  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3682  *  replacing kfree_skb(skb)
3683  *
3684  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3685  *  Typically used in place of consume_skb(skb) in TX completion path
3686  *
3687  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3688  *  replacing kfree_skb(skb)
3689  *
3690  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3691  *  and consumed a packet. Used in place of consume_skb(skb)
3692  */
3693 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3694 {
3695 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3696 }
3697 
3698 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3699 {
3700 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3701 }
3702 
3703 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3704 {
3705 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3706 }
3707 
3708 static inline void dev_consume_skb_any(struct sk_buff *skb)
3709 {
3710 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3711 }
3712 
3713 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3714 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3715 int netif_rx(struct sk_buff *skb);
3716 int netif_rx_ni(struct sk_buff *skb);
3717 int netif_receive_skb(struct sk_buff *skb);
3718 int netif_receive_skb_core(struct sk_buff *skb);
3719 void netif_receive_skb_list(struct list_head *head);
3720 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3721 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3722 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3723 gro_result_t napi_gro_frags(struct napi_struct *napi);
3724 struct packet_offload *gro_find_receive_by_type(__be16 type);
3725 struct packet_offload *gro_find_complete_by_type(__be16 type);
3726 
3727 static inline void napi_free_frags(struct napi_struct *napi)
3728 {
3729 	kfree_skb(napi->skb);
3730 	napi->skb = NULL;
3731 }
3732 
3733 bool netdev_is_rx_handler_busy(struct net_device *dev);
3734 int netdev_rx_handler_register(struct net_device *dev,
3735 			       rx_handler_func_t *rx_handler,
3736 			       void *rx_handler_data);
3737 void netdev_rx_handler_unregister(struct net_device *dev);
3738 
3739 bool dev_valid_name(const char *name);
3740 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3741 		bool *need_copyout);
3742 int dev_ifconf(struct net *net, struct ifconf *, int);
3743 int dev_ethtool(struct net *net, struct ifreq *);
3744 unsigned int dev_get_flags(const struct net_device *);
3745 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3746 		       struct netlink_ext_ack *extack);
3747 int dev_change_flags(struct net_device *dev, unsigned int flags,
3748 		     struct netlink_ext_ack *extack);
3749 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3750 			unsigned int gchanges);
3751 int dev_change_name(struct net_device *, const char *);
3752 int dev_set_alias(struct net_device *, const char *, size_t);
3753 int dev_get_alias(const struct net_device *, char *, size_t);
3754 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3755 int __dev_set_mtu(struct net_device *, int);
3756 int dev_validate_mtu(struct net_device *dev, int mtu,
3757 		     struct netlink_ext_ack *extack);
3758 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3759 		    struct netlink_ext_ack *extack);
3760 int dev_set_mtu(struct net_device *, int);
3761 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3762 void dev_set_group(struct net_device *, int);
3763 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3764 			      struct netlink_ext_ack *extack);
3765 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3766 			struct netlink_ext_ack *extack);
3767 int dev_change_carrier(struct net_device *, bool new_carrier);
3768 int dev_get_phys_port_id(struct net_device *dev,
3769 			 struct netdev_phys_item_id *ppid);
3770 int dev_get_phys_port_name(struct net_device *dev,
3771 			   char *name, size_t len);
3772 int dev_get_port_parent_id(struct net_device *dev,
3773 			   struct netdev_phys_item_id *ppid, bool recurse);
3774 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3775 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3776 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3777 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3778 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3779 				    struct netdev_queue *txq, int *ret);
3780 
3781 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3782 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3783 		      int fd, int expected_fd, u32 flags);
3784 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3785 		    enum bpf_netdev_command cmd);
3786 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3787 
3788 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3789 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3790 bool is_skb_forwardable(const struct net_device *dev,
3791 			const struct sk_buff *skb);
3792 
3793 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3794 					       struct sk_buff *skb)
3795 {
3796 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3797 	    unlikely(!is_skb_forwardable(dev, skb))) {
3798 		atomic_long_inc(&dev->rx_dropped);
3799 		kfree_skb(skb);
3800 		return NET_RX_DROP;
3801 	}
3802 
3803 	skb_scrub_packet(skb, true);
3804 	skb->priority = 0;
3805 	return 0;
3806 }
3807 
3808 bool dev_nit_active(struct net_device *dev);
3809 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3810 
3811 extern int		netdev_budget;
3812 extern unsigned int	netdev_budget_usecs;
3813 
3814 /* Called by rtnetlink.c:rtnl_unlock() */
3815 void netdev_run_todo(void);
3816 
3817 /**
3818  *	dev_put - release reference to device
3819  *	@dev: network device
3820  *
3821  * Release reference to device to allow it to be freed.
3822  */
3823 static inline void dev_put(struct net_device *dev)
3824 {
3825 	this_cpu_dec(*dev->pcpu_refcnt);
3826 }
3827 
3828 /**
3829  *	dev_hold - get reference to device
3830  *	@dev: network device
3831  *
3832  * Hold reference to device to keep it from being freed.
3833  */
3834 static inline void dev_hold(struct net_device *dev)
3835 {
3836 	this_cpu_inc(*dev->pcpu_refcnt);
3837 }
3838 
3839 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3840  * and _off may be called from IRQ context, but it is caller
3841  * who is responsible for serialization of these calls.
3842  *
3843  * The name carrier is inappropriate, these functions should really be
3844  * called netif_lowerlayer_*() because they represent the state of any
3845  * kind of lower layer not just hardware media.
3846  */
3847 
3848 void linkwatch_init_dev(struct net_device *dev);
3849 void linkwatch_fire_event(struct net_device *dev);
3850 void linkwatch_forget_dev(struct net_device *dev);
3851 
3852 /**
3853  *	netif_carrier_ok - test if carrier present
3854  *	@dev: network device
3855  *
3856  * Check if carrier is present on device
3857  */
3858 static inline bool netif_carrier_ok(const struct net_device *dev)
3859 {
3860 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3861 }
3862 
3863 unsigned long dev_trans_start(struct net_device *dev);
3864 
3865 void __netdev_watchdog_up(struct net_device *dev);
3866 
3867 void netif_carrier_on(struct net_device *dev);
3868 
3869 void netif_carrier_off(struct net_device *dev);
3870 
3871 /**
3872  *	netif_dormant_on - mark device as dormant.
3873  *	@dev: network device
3874  *
3875  * Mark device as dormant (as per RFC2863).
3876  *
3877  * The dormant state indicates that the relevant interface is not
3878  * actually in a condition to pass packets (i.e., it is not 'up') but is
3879  * in a "pending" state, waiting for some external event.  For "on-
3880  * demand" interfaces, this new state identifies the situation where the
3881  * interface is waiting for events to place it in the up state.
3882  */
3883 static inline void netif_dormant_on(struct net_device *dev)
3884 {
3885 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3886 		linkwatch_fire_event(dev);
3887 }
3888 
3889 /**
3890  *	netif_dormant_off - set device as not dormant.
3891  *	@dev: network device
3892  *
3893  * Device is not in dormant state.
3894  */
3895 static inline void netif_dormant_off(struct net_device *dev)
3896 {
3897 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3898 		linkwatch_fire_event(dev);
3899 }
3900 
3901 /**
3902  *	netif_dormant - test if device is dormant
3903  *	@dev: network device
3904  *
3905  * Check if device is dormant.
3906  */
3907 static inline bool netif_dormant(const struct net_device *dev)
3908 {
3909 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3910 }
3911 
3912 
3913 /**
3914  *	netif_testing_on - mark device as under test.
3915  *	@dev: network device
3916  *
3917  * Mark device as under test (as per RFC2863).
3918  *
3919  * The testing state indicates that some test(s) must be performed on
3920  * the interface. After completion, of the test, the interface state
3921  * will change to up, dormant, or down, as appropriate.
3922  */
3923 static inline void netif_testing_on(struct net_device *dev)
3924 {
3925 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3926 		linkwatch_fire_event(dev);
3927 }
3928 
3929 /**
3930  *	netif_testing_off - set device as not under test.
3931  *	@dev: network device
3932  *
3933  * Device is not in testing state.
3934  */
3935 static inline void netif_testing_off(struct net_device *dev)
3936 {
3937 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3938 		linkwatch_fire_event(dev);
3939 }
3940 
3941 /**
3942  *	netif_testing - test if device is under test
3943  *	@dev: network device
3944  *
3945  * Check if device is under test
3946  */
3947 static inline bool netif_testing(const struct net_device *dev)
3948 {
3949 	return test_bit(__LINK_STATE_TESTING, &dev->state);
3950 }
3951 
3952 
3953 /**
3954  *	netif_oper_up - test if device is operational
3955  *	@dev: network device
3956  *
3957  * Check if carrier is operational
3958  */
3959 static inline bool netif_oper_up(const struct net_device *dev)
3960 {
3961 	return (dev->operstate == IF_OPER_UP ||
3962 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3963 }
3964 
3965 /**
3966  *	netif_device_present - is device available or removed
3967  *	@dev: network device
3968  *
3969  * Check if device has not been removed from system.
3970  */
3971 static inline bool netif_device_present(struct net_device *dev)
3972 {
3973 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3974 }
3975 
3976 void netif_device_detach(struct net_device *dev);
3977 
3978 void netif_device_attach(struct net_device *dev);
3979 
3980 /*
3981  * Network interface message level settings
3982  */
3983 
3984 enum {
3985 	NETIF_MSG_DRV_BIT,
3986 	NETIF_MSG_PROBE_BIT,
3987 	NETIF_MSG_LINK_BIT,
3988 	NETIF_MSG_TIMER_BIT,
3989 	NETIF_MSG_IFDOWN_BIT,
3990 	NETIF_MSG_IFUP_BIT,
3991 	NETIF_MSG_RX_ERR_BIT,
3992 	NETIF_MSG_TX_ERR_BIT,
3993 	NETIF_MSG_TX_QUEUED_BIT,
3994 	NETIF_MSG_INTR_BIT,
3995 	NETIF_MSG_TX_DONE_BIT,
3996 	NETIF_MSG_RX_STATUS_BIT,
3997 	NETIF_MSG_PKTDATA_BIT,
3998 	NETIF_MSG_HW_BIT,
3999 	NETIF_MSG_WOL_BIT,
4000 
4001 	/* When you add a new bit above, update netif_msg_class_names array
4002 	 * in net/ethtool/common.c
4003 	 */
4004 	NETIF_MSG_CLASS_COUNT,
4005 };
4006 /* Both ethtool_ops interface and internal driver implementation use u32 */
4007 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4008 
4009 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4010 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4011 
4012 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4013 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4014 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4015 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4016 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4017 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4018 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4019 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4020 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4021 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4022 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4023 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4024 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4025 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4026 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4027 
4028 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4029 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4030 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4031 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4032 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4033 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4034 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4035 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4036 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4037 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4038 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4039 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4040 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4041 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4042 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4043 
4044 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4045 {
4046 	/* use default */
4047 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4048 		return default_msg_enable_bits;
4049 	if (debug_value == 0)	/* no output */
4050 		return 0;
4051 	/* set low N bits */
4052 	return (1U << debug_value) - 1;
4053 }
4054 
4055 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4056 {
4057 	spin_lock(&txq->_xmit_lock);
4058 	txq->xmit_lock_owner = cpu;
4059 }
4060 
4061 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4062 {
4063 	__acquire(&txq->_xmit_lock);
4064 	return true;
4065 }
4066 
4067 static inline void __netif_tx_release(struct netdev_queue *txq)
4068 {
4069 	__release(&txq->_xmit_lock);
4070 }
4071 
4072 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4073 {
4074 	spin_lock_bh(&txq->_xmit_lock);
4075 	txq->xmit_lock_owner = smp_processor_id();
4076 }
4077 
4078 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4079 {
4080 	bool ok = spin_trylock(&txq->_xmit_lock);
4081 	if (likely(ok))
4082 		txq->xmit_lock_owner = smp_processor_id();
4083 	return ok;
4084 }
4085 
4086 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4087 {
4088 	txq->xmit_lock_owner = -1;
4089 	spin_unlock(&txq->_xmit_lock);
4090 }
4091 
4092 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4093 {
4094 	txq->xmit_lock_owner = -1;
4095 	spin_unlock_bh(&txq->_xmit_lock);
4096 }
4097 
4098 static inline void txq_trans_update(struct netdev_queue *txq)
4099 {
4100 	if (txq->xmit_lock_owner != -1)
4101 		txq->trans_start = jiffies;
4102 }
4103 
4104 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4105 static inline void netif_trans_update(struct net_device *dev)
4106 {
4107 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4108 
4109 	if (txq->trans_start != jiffies)
4110 		txq->trans_start = jiffies;
4111 }
4112 
4113 /**
4114  *	netif_tx_lock - grab network device transmit lock
4115  *	@dev: network device
4116  *
4117  * Get network device transmit lock
4118  */
4119 static inline void netif_tx_lock(struct net_device *dev)
4120 {
4121 	unsigned int i;
4122 	int cpu;
4123 
4124 	spin_lock(&dev->tx_global_lock);
4125 	cpu = smp_processor_id();
4126 	for (i = 0; i < dev->num_tx_queues; i++) {
4127 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4128 
4129 		/* We are the only thread of execution doing a
4130 		 * freeze, but we have to grab the _xmit_lock in
4131 		 * order to synchronize with threads which are in
4132 		 * the ->hard_start_xmit() handler and already
4133 		 * checked the frozen bit.
4134 		 */
4135 		__netif_tx_lock(txq, cpu);
4136 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4137 		__netif_tx_unlock(txq);
4138 	}
4139 }
4140 
4141 static inline void netif_tx_lock_bh(struct net_device *dev)
4142 {
4143 	local_bh_disable();
4144 	netif_tx_lock(dev);
4145 }
4146 
4147 static inline void netif_tx_unlock(struct net_device *dev)
4148 {
4149 	unsigned int i;
4150 
4151 	for (i = 0; i < dev->num_tx_queues; i++) {
4152 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4153 
4154 		/* No need to grab the _xmit_lock here.  If the
4155 		 * queue is not stopped for another reason, we
4156 		 * force a schedule.
4157 		 */
4158 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4159 		netif_schedule_queue(txq);
4160 	}
4161 	spin_unlock(&dev->tx_global_lock);
4162 }
4163 
4164 static inline void netif_tx_unlock_bh(struct net_device *dev)
4165 {
4166 	netif_tx_unlock(dev);
4167 	local_bh_enable();
4168 }
4169 
4170 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4171 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4172 		__netif_tx_lock(txq, cpu);		\
4173 	} else {					\
4174 		__netif_tx_acquire(txq);		\
4175 	}						\
4176 }
4177 
4178 #define HARD_TX_TRYLOCK(dev, txq)			\
4179 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4180 		__netif_tx_trylock(txq) :		\
4181 		__netif_tx_acquire(txq))
4182 
4183 #define HARD_TX_UNLOCK(dev, txq) {			\
4184 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4185 		__netif_tx_unlock(txq);			\
4186 	} else {					\
4187 		__netif_tx_release(txq);		\
4188 	}						\
4189 }
4190 
4191 static inline void netif_tx_disable(struct net_device *dev)
4192 {
4193 	unsigned int i;
4194 	int cpu;
4195 
4196 	local_bh_disable();
4197 	cpu = smp_processor_id();
4198 	for (i = 0; i < dev->num_tx_queues; i++) {
4199 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4200 
4201 		__netif_tx_lock(txq, cpu);
4202 		netif_tx_stop_queue(txq);
4203 		__netif_tx_unlock(txq);
4204 	}
4205 	local_bh_enable();
4206 }
4207 
4208 static inline void netif_addr_lock(struct net_device *dev)
4209 {
4210 	spin_lock(&dev->addr_list_lock);
4211 }
4212 
4213 static inline void netif_addr_lock_bh(struct net_device *dev)
4214 {
4215 	spin_lock_bh(&dev->addr_list_lock);
4216 }
4217 
4218 static inline void netif_addr_unlock(struct net_device *dev)
4219 {
4220 	spin_unlock(&dev->addr_list_lock);
4221 }
4222 
4223 static inline void netif_addr_unlock_bh(struct net_device *dev)
4224 {
4225 	spin_unlock_bh(&dev->addr_list_lock);
4226 }
4227 
4228 /*
4229  * dev_addrs walker. Should be used only for read access. Call with
4230  * rcu_read_lock held.
4231  */
4232 #define for_each_dev_addr(dev, ha) \
4233 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4234 
4235 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4236 
4237 void ether_setup(struct net_device *dev);
4238 
4239 /* Support for loadable net-drivers */
4240 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4241 				    unsigned char name_assign_type,
4242 				    void (*setup)(struct net_device *),
4243 				    unsigned int txqs, unsigned int rxqs);
4244 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4245 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4246 
4247 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4248 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4249 			 count)
4250 
4251 int register_netdev(struct net_device *dev);
4252 void unregister_netdev(struct net_device *dev);
4253 
4254 /* General hardware address lists handling functions */
4255 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4256 		   struct netdev_hw_addr_list *from_list, int addr_len);
4257 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4258 		      struct netdev_hw_addr_list *from_list, int addr_len);
4259 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4260 		       struct net_device *dev,
4261 		       int (*sync)(struct net_device *, const unsigned char *),
4262 		       int (*unsync)(struct net_device *,
4263 				     const unsigned char *));
4264 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4265 			   struct net_device *dev,
4266 			   int (*sync)(struct net_device *,
4267 				       const unsigned char *, int),
4268 			   int (*unsync)(struct net_device *,
4269 					 const unsigned char *, int));
4270 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4271 			      struct net_device *dev,
4272 			      int (*unsync)(struct net_device *,
4273 					    const unsigned char *, int));
4274 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4275 			  struct net_device *dev,
4276 			  int (*unsync)(struct net_device *,
4277 					const unsigned char *));
4278 void __hw_addr_init(struct netdev_hw_addr_list *list);
4279 
4280 /* Functions used for device addresses handling */
4281 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4282 		 unsigned char addr_type);
4283 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4284 		 unsigned char addr_type);
4285 void dev_addr_flush(struct net_device *dev);
4286 int dev_addr_init(struct net_device *dev);
4287 
4288 /* Functions used for unicast addresses handling */
4289 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4290 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4291 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4292 int dev_uc_sync(struct net_device *to, struct net_device *from);
4293 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4294 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4295 void dev_uc_flush(struct net_device *dev);
4296 void dev_uc_init(struct net_device *dev);
4297 
4298 /**
4299  *  __dev_uc_sync - Synchonize device's unicast list
4300  *  @dev:  device to sync
4301  *  @sync: function to call if address should be added
4302  *  @unsync: function to call if address should be removed
4303  *
4304  *  Add newly added addresses to the interface, and release
4305  *  addresses that have been deleted.
4306  */
4307 static inline int __dev_uc_sync(struct net_device *dev,
4308 				int (*sync)(struct net_device *,
4309 					    const unsigned char *),
4310 				int (*unsync)(struct net_device *,
4311 					      const unsigned char *))
4312 {
4313 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4314 }
4315 
4316 /**
4317  *  __dev_uc_unsync - Remove synchronized addresses from device
4318  *  @dev:  device to sync
4319  *  @unsync: function to call if address should be removed
4320  *
4321  *  Remove all addresses that were added to the device by dev_uc_sync().
4322  */
4323 static inline void __dev_uc_unsync(struct net_device *dev,
4324 				   int (*unsync)(struct net_device *,
4325 						 const unsigned char *))
4326 {
4327 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4328 }
4329 
4330 /* Functions used for multicast addresses handling */
4331 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4332 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4333 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4334 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4335 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4336 int dev_mc_sync(struct net_device *to, struct net_device *from);
4337 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4338 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4339 void dev_mc_flush(struct net_device *dev);
4340 void dev_mc_init(struct net_device *dev);
4341 
4342 /**
4343  *  __dev_mc_sync - Synchonize device's multicast list
4344  *  @dev:  device to sync
4345  *  @sync: function to call if address should be added
4346  *  @unsync: function to call if address should be removed
4347  *
4348  *  Add newly added addresses to the interface, and release
4349  *  addresses that have been deleted.
4350  */
4351 static inline int __dev_mc_sync(struct net_device *dev,
4352 				int (*sync)(struct net_device *,
4353 					    const unsigned char *),
4354 				int (*unsync)(struct net_device *,
4355 					      const unsigned char *))
4356 {
4357 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4358 }
4359 
4360 /**
4361  *  __dev_mc_unsync - Remove synchronized addresses from device
4362  *  @dev:  device to sync
4363  *  @unsync: function to call if address should be removed
4364  *
4365  *  Remove all addresses that were added to the device by dev_mc_sync().
4366  */
4367 static inline void __dev_mc_unsync(struct net_device *dev,
4368 				   int (*unsync)(struct net_device *,
4369 						 const unsigned char *))
4370 {
4371 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4372 }
4373 
4374 /* Functions used for secondary unicast and multicast support */
4375 void dev_set_rx_mode(struct net_device *dev);
4376 void __dev_set_rx_mode(struct net_device *dev);
4377 int dev_set_promiscuity(struct net_device *dev, int inc);
4378 int dev_set_allmulti(struct net_device *dev, int inc);
4379 void netdev_state_change(struct net_device *dev);
4380 void netdev_notify_peers(struct net_device *dev);
4381 void netdev_features_change(struct net_device *dev);
4382 /* Load a device via the kmod */
4383 void dev_load(struct net *net, const char *name);
4384 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4385 					struct rtnl_link_stats64 *storage);
4386 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4387 			     const struct net_device_stats *netdev_stats);
4388 
4389 extern int		netdev_max_backlog;
4390 extern int		netdev_tstamp_prequeue;
4391 extern int		weight_p;
4392 extern int		dev_weight_rx_bias;
4393 extern int		dev_weight_tx_bias;
4394 extern int		dev_rx_weight;
4395 extern int		dev_tx_weight;
4396 extern int		gro_normal_batch;
4397 
4398 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4399 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4400 						     struct list_head **iter);
4401 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4402 						     struct list_head **iter);
4403 
4404 /* iterate through upper list, must be called under RCU read lock */
4405 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4406 	for (iter = &(dev)->adj_list.upper, \
4407 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4408 	     updev; \
4409 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4410 
4411 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4412 				  int (*fn)(struct net_device *upper_dev,
4413 					    void *data),
4414 				  void *data);
4415 
4416 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4417 				  struct net_device *upper_dev);
4418 
4419 bool netdev_has_any_upper_dev(struct net_device *dev);
4420 
4421 void *netdev_lower_get_next_private(struct net_device *dev,
4422 				    struct list_head **iter);
4423 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4424 					struct list_head **iter);
4425 
4426 #define netdev_for_each_lower_private(dev, priv, iter) \
4427 	for (iter = (dev)->adj_list.lower.next, \
4428 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4429 	     priv; \
4430 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4431 
4432 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4433 	for (iter = &(dev)->adj_list.lower, \
4434 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4435 	     priv; \
4436 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4437 
4438 void *netdev_lower_get_next(struct net_device *dev,
4439 				struct list_head **iter);
4440 
4441 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4442 	for (iter = (dev)->adj_list.lower.next, \
4443 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4444 	     ldev; \
4445 	     ldev = netdev_lower_get_next(dev, &(iter)))
4446 
4447 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4448 					     struct list_head **iter);
4449 int netdev_walk_all_lower_dev(struct net_device *dev,
4450 			      int (*fn)(struct net_device *lower_dev,
4451 					void *data),
4452 			      void *data);
4453 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4454 				  int (*fn)(struct net_device *lower_dev,
4455 					    void *data),
4456 				  void *data);
4457 
4458 void *netdev_adjacent_get_private(struct list_head *adj_list);
4459 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4460 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4461 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4462 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4463 			  struct netlink_ext_ack *extack);
4464 int netdev_master_upper_dev_link(struct net_device *dev,
4465 				 struct net_device *upper_dev,
4466 				 void *upper_priv, void *upper_info,
4467 				 struct netlink_ext_ack *extack);
4468 void netdev_upper_dev_unlink(struct net_device *dev,
4469 			     struct net_device *upper_dev);
4470 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4471 				   struct net_device *new_dev,
4472 				   struct net_device *dev,
4473 				   struct netlink_ext_ack *extack);
4474 void netdev_adjacent_change_commit(struct net_device *old_dev,
4475 				   struct net_device *new_dev,
4476 				   struct net_device *dev);
4477 void netdev_adjacent_change_abort(struct net_device *old_dev,
4478 				  struct net_device *new_dev,
4479 				  struct net_device *dev);
4480 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4481 void *netdev_lower_dev_get_private(struct net_device *dev,
4482 				   struct net_device *lower_dev);
4483 void netdev_lower_state_changed(struct net_device *lower_dev,
4484 				void *lower_state_info);
4485 
4486 /* RSS keys are 40 or 52 bytes long */
4487 #define NETDEV_RSS_KEY_LEN 52
4488 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4489 void netdev_rss_key_fill(void *buffer, size_t len);
4490 
4491 int skb_checksum_help(struct sk_buff *skb);
4492 int skb_crc32c_csum_help(struct sk_buff *skb);
4493 int skb_csum_hwoffload_help(struct sk_buff *skb,
4494 			    const netdev_features_t features);
4495 
4496 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4497 				  netdev_features_t features, bool tx_path);
4498 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4499 				    netdev_features_t features);
4500 
4501 struct netdev_bonding_info {
4502 	ifslave	slave;
4503 	ifbond	master;
4504 };
4505 
4506 struct netdev_notifier_bonding_info {
4507 	struct netdev_notifier_info info; /* must be first */
4508 	struct netdev_bonding_info  bonding_info;
4509 };
4510 
4511 void netdev_bonding_info_change(struct net_device *dev,
4512 				struct netdev_bonding_info *bonding_info);
4513 
4514 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4515 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4516 #else
4517 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4518 				  const void *data)
4519 {
4520 }
4521 #endif
4522 
4523 static inline
4524 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4525 {
4526 	return __skb_gso_segment(skb, features, true);
4527 }
4528 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4529 
4530 static inline bool can_checksum_protocol(netdev_features_t features,
4531 					 __be16 protocol)
4532 {
4533 	if (protocol == htons(ETH_P_FCOE))
4534 		return !!(features & NETIF_F_FCOE_CRC);
4535 
4536 	/* Assume this is an IP checksum (not SCTP CRC) */
4537 
4538 	if (features & NETIF_F_HW_CSUM) {
4539 		/* Can checksum everything */
4540 		return true;
4541 	}
4542 
4543 	switch (protocol) {
4544 	case htons(ETH_P_IP):
4545 		return !!(features & NETIF_F_IP_CSUM);
4546 	case htons(ETH_P_IPV6):
4547 		return !!(features & NETIF_F_IPV6_CSUM);
4548 	default:
4549 		return false;
4550 	}
4551 }
4552 
4553 #ifdef CONFIG_BUG
4554 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4555 #else
4556 static inline void netdev_rx_csum_fault(struct net_device *dev,
4557 					struct sk_buff *skb)
4558 {
4559 }
4560 #endif
4561 /* rx skb timestamps */
4562 void net_enable_timestamp(void);
4563 void net_disable_timestamp(void);
4564 
4565 #ifdef CONFIG_PROC_FS
4566 int __init dev_proc_init(void);
4567 #else
4568 #define dev_proc_init() 0
4569 #endif
4570 
4571 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4572 					      struct sk_buff *skb, struct net_device *dev,
4573 					      bool more)
4574 {
4575 	__this_cpu_write(softnet_data.xmit.more, more);
4576 	return ops->ndo_start_xmit(skb, dev);
4577 }
4578 
4579 static inline bool netdev_xmit_more(void)
4580 {
4581 	return __this_cpu_read(softnet_data.xmit.more);
4582 }
4583 
4584 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4585 					    struct netdev_queue *txq, bool more)
4586 {
4587 	const struct net_device_ops *ops = dev->netdev_ops;
4588 	netdev_tx_t rc;
4589 
4590 	rc = __netdev_start_xmit(ops, skb, dev, more);
4591 	if (rc == NETDEV_TX_OK)
4592 		txq_trans_update(txq);
4593 
4594 	return rc;
4595 }
4596 
4597 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4598 				const void *ns);
4599 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4600 				 const void *ns);
4601 
4602 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4603 {
4604 	return netdev_class_create_file_ns(class_attr, NULL);
4605 }
4606 
4607 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4608 {
4609 	netdev_class_remove_file_ns(class_attr, NULL);
4610 }
4611 
4612 extern const struct kobj_ns_type_operations net_ns_type_operations;
4613 
4614 const char *netdev_drivername(const struct net_device *dev);
4615 
4616 void linkwatch_run_queue(void);
4617 
4618 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4619 							  netdev_features_t f2)
4620 {
4621 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4622 		if (f1 & NETIF_F_HW_CSUM)
4623 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4624 		else
4625 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4626 	}
4627 
4628 	return f1 & f2;
4629 }
4630 
4631 static inline netdev_features_t netdev_get_wanted_features(
4632 	struct net_device *dev)
4633 {
4634 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4635 }
4636 netdev_features_t netdev_increment_features(netdev_features_t all,
4637 	netdev_features_t one, netdev_features_t mask);
4638 
4639 /* Allow TSO being used on stacked device :
4640  * Performing the GSO segmentation before last device
4641  * is a performance improvement.
4642  */
4643 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4644 							netdev_features_t mask)
4645 {
4646 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4647 }
4648 
4649 int __netdev_update_features(struct net_device *dev);
4650 void netdev_update_features(struct net_device *dev);
4651 void netdev_change_features(struct net_device *dev);
4652 
4653 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4654 					struct net_device *dev);
4655 
4656 netdev_features_t passthru_features_check(struct sk_buff *skb,
4657 					  struct net_device *dev,
4658 					  netdev_features_t features);
4659 netdev_features_t netif_skb_features(struct sk_buff *skb);
4660 
4661 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4662 {
4663 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4664 
4665 	/* check flags correspondence */
4666 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4667 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4668 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4669 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4670 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4671 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4672 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4673 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4674 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4675 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4676 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4677 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4678 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4679 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4680 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4681 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4682 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4683 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4684 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4685 
4686 	return (features & feature) == feature;
4687 }
4688 
4689 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4690 {
4691 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4692 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4693 }
4694 
4695 static inline bool netif_needs_gso(struct sk_buff *skb,
4696 				   netdev_features_t features)
4697 {
4698 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4699 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4700 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4701 }
4702 
4703 static inline void netif_set_gso_max_size(struct net_device *dev,
4704 					  unsigned int size)
4705 {
4706 	dev->gso_max_size = size;
4707 }
4708 
4709 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4710 					int pulled_hlen, u16 mac_offset,
4711 					int mac_len)
4712 {
4713 	skb->protocol = protocol;
4714 	skb->encapsulation = 1;
4715 	skb_push(skb, pulled_hlen);
4716 	skb_reset_transport_header(skb);
4717 	skb->mac_header = mac_offset;
4718 	skb->network_header = skb->mac_header + mac_len;
4719 	skb->mac_len = mac_len;
4720 }
4721 
4722 static inline bool netif_is_macsec(const struct net_device *dev)
4723 {
4724 	return dev->priv_flags & IFF_MACSEC;
4725 }
4726 
4727 static inline bool netif_is_macvlan(const struct net_device *dev)
4728 {
4729 	return dev->priv_flags & IFF_MACVLAN;
4730 }
4731 
4732 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4733 {
4734 	return dev->priv_flags & IFF_MACVLAN_PORT;
4735 }
4736 
4737 static inline bool netif_is_bond_master(const struct net_device *dev)
4738 {
4739 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4740 }
4741 
4742 static inline bool netif_is_bond_slave(const struct net_device *dev)
4743 {
4744 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4745 }
4746 
4747 static inline bool netif_supports_nofcs(struct net_device *dev)
4748 {
4749 	return dev->priv_flags & IFF_SUPP_NOFCS;
4750 }
4751 
4752 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4753 {
4754 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4755 }
4756 
4757 static inline bool netif_is_l3_master(const struct net_device *dev)
4758 {
4759 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4760 }
4761 
4762 static inline bool netif_is_l3_slave(const struct net_device *dev)
4763 {
4764 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4765 }
4766 
4767 static inline bool netif_is_bridge_master(const struct net_device *dev)
4768 {
4769 	return dev->priv_flags & IFF_EBRIDGE;
4770 }
4771 
4772 static inline bool netif_is_bridge_port(const struct net_device *dev)
4773 {
4774 	return dev->priv_flags & IFF_BRIDGE_PORT;
4775 }
4776 
4777 static inline bool netif_is_ovs_master(const struct net_device *dev)
4778 {
4779 	return dev->priv_flags & IFF_OPENVSWITCH;
4780 }
4781 
4782 static inline bool netif_is_ovs_port(const struct net_device *dev)
4783 {
4784 	return dev->priv_flags & IFF_OVS_DATAPATH;
4785 }
4786 
4787 static inline bool netif_is_team_master(const struct net_device *dev)
4788 {
4789 	return dev->priv_flags & IFF_TEAM;
4790 }
4791 
4792 static inline bool netif_is_team_port(const struct net_device *dev)
4793 {
4794 	return dev->priv_flags & IFF_TEAM_PORT;
4795 }
4796 
4797 static inline bool netif_is_lag_master(const struct net_device *dev)
4798 {
4799 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4800 }
4801 
4802 static inline bool netif_is_lag_port(const struct net_device *dev)
4803 {
4804 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4805 }
4806 
4807 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4808 {
4809 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4810 }
4811 
4812 static inline bool netif_is_failover(const struct net_device *dev)
4813 {
4814 	return dev->priv_flags & IFF_FAILOVER;
4815 }
4816 
4817 static inline bool netif_is_failover_slave(const struct net_device *dev)
4818 {
4819 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4820 }
4821 
4822 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4823 static inline void netif_keep_dst(struct net_device *dev)
4824 {
4825 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4826 }
4827 
4828 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4829 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4830 {
4831 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4832 	return dev->priv_flags & IFF_MACSEC;
4833 }
4834 
4835 extern struct pernet_operations __net_initdata loopback_net_ops;
4836 
4837 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4838 
4839 /* netdev_printk helpers, similar to dev_printk */
4840 
4841 static inline const char *netdev_name(const struct net_device *dev)
4842 {
4843 	if (!dev->name[0] || strchr(dev->name, '%'))
4844 		return "(unnamed net_device)";
4845 	return dev->name;
4846 }
4847 
4848 static inline bool netdev_unregistering(const struct net_device *dev)
4849 {
4850 	return dev->reg_state == NETREG_UNREGISTERING;
4851 }
4852 
4853 static inline const char *netdev_reg_state(const struct net_device *dev)
4854 {
4855 	switch (dev->reg_state) {
4856 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4857 	case NETREG_REGISTERED: return "";
4858 	case NETREG_UNREGISTERING: return " (unregistering)";
4859 	case NETREG_UNREGISTERED: return " (unregistered)";
4860 	case NETREG_RELEASED: return " (released)";
4861 	case NETREG_DUMMY: return " (dummy)";
4862 	}
4863 
4864 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4865 	return " (unknown)";
4866 }
4867 
4868 __printf(3, 4) __cold
4869 void netdev_printk(const char *level, const struct net_device *dev,
4870 		   const char *format, ...);
4871 __printf(2, 3) __cold
4872 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4873 __printf(2, 3) __cold
4874 void netdev_alert(const struct net_device *dev, const char *format, ...);
4875 __printf(2, 3) __cold
4876 void netdev_crit(const struct net_device *dev, const char *format, ...);
4877 __printf(2, 3) __cold
4878 void netdev_err(const struct net_device *dev, const char *format, ...);
4879 __printf(2, 3) __cold
4880 void netdev_warn(const struct net_device *dev, const char *format, ...);
4881 __printf(2, 3) __cold
4882 void netdev_notice(const struct net_device *dev, const char *format, ...);
4883 __printf(2, 3) __cold
4884 void netdev_info(const struct net_device *dev, const char *format, ...);
4885 
4886 #define netdev_level_once(level, dev, fmt, ...)			\
4887 do {								\
4888 	static bool __print_once __read_mostly;			\
4889 								\
4890 	if (!__print_once) {					\
4891 		__print_once = true;				\
4892 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4893 	}							\
4894 } while (0)
4895 
4896 #define netdev_emerg_once(dev, fmt, ...) \
4897 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4898 #define netdev_alert_once(dev, fmt, ...) \
4899 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4900 #define netdev_crit_once(dev, fmt, ...) \
4901 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4902 #define netdev_err_once(dev, fmt, ...) \
4903 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4904 #define netdev_warn_once(dev, fmt, ...) \
4905 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4906 #define netdev_notice_once(dev, fmt, ...) \
4907 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4908 #define netdev_info_once(dev, fmt, ...) \
4909 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4910 
4911 #define MODULE_ALIAS_NETDEV(device) \
4912 	MODULE_ALIAS("netdev-" device)
4913 
4914 #if defined(CONFIG_DYNAMIC_DEBUG)
4915 #define netdev_dbg(__dev, format, args...)			\
4916 do {								\
4917 	dynamic_netdev_dbg(__dev, format, ##args);		\
4918 } while (0)
4919 #elif defined(DEBUG)
4920 #define netdev_dbg(__dev, format, args...)			\
4921 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4922 #else
4923 #define netdev_dbg(__dev, format, args...)			\
4924 ({								\
4925 	if (0)							\
4926 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4927 })
4928 #endif
4929 
4930 #if defined(VERBOSE_DEBUG)
4931 #define netdev_vdbg	netdev_dbg
4932 #else
4933 
4934 #define netdev_vdbg(dev, format, args...)			\
4935 ({								\
4936 	if (0)							\
4937 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4938 	0;							\
4939 })
4940 #endif
4941 
4942 /*
4943  * netdev_WARN() acts like dev_printk(), but with the key difference
4944  * of using a WARN/WARN_ON to get the message out, including the
4945  * file/line information and a backtrace.
4946  */
4947 #define netdev_WARN(dev, format, args...)			\
4948 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4949 	     netdev_reg_state(dev), ##args)
4950 
4951 #define netdev_WARN_ONCE(dev, format, args...)				\
4952 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4953 		  netdev_reg_state(dev), ##args)
4954 
4955 /* netif printk helpers, similar to netdev_printk */
4956 
4957 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4958 do {					  			\
4959 	if (netif_msg_##type(priv))				\
4960 		netdev_printk(level, (dev), fmt, ##args);	\
4961 } while (0)
4962 
4963 #define netif_level(level, priv, type, dev, fmt, args...)	\
4964 do {								\
4965 	if (netif_msg_##type(priv))				\
4966 		netdev_##level(dev, fmt, ##args);		\
4967 } while (0)
4968 
4969 #define netif_emerg(priv, type, dev, fmt, args...)		\
4970 	netif_level(emerg, priv, type, dev, fmt, ##args)
4971 #define netif_alert(priv, type, dev, fmt, args...)		\
4972 	netif_level(alert, priv, type, dev, fmt, ##args)
4973 #define netif_crit(priv, type, dev, fmt, args...)		\
4974 	netif_level(crit, priv, type, dev, fmt, ##args)
4975 #define netif_err(priv, type, dev, fmt, args...)		\
4976 	netif_level(err, priv, type, dev, fmt, ##args)
4977 #define netif_warn(priv, type, dev, fmt, args...)		\
4978 	netif_level(warn, priv, type, dev, fmt, ##args)
4979 #define netif_notice(priv, type, dev, fmt, args...)		\
4980 	netif_level(notice, priv, type, dev, fmt, ##args)
4981 #define netif_info(priv, type, dev, fmt, args...)		\
4982 	netif_level(info, priv, type, dev, fmt, ##args)
4983 
4984 #if defined(CONFIG_DYNAMIC_DEBUG)
4985 #define netif_dbg(priv, type, netdev, format, args...)		\
4986 do {								\
4987 	if (netif_msg_##type(priv))				\
4988 		dynamic_netdev_dbg(netdev, format, ##args);	\
4989 } while (0)
4990 #elif defined(DEBUG)
4991 #define netif_dbg(priv, type, dev, format, args...)		\
4992 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4993 #else
4994 #define netif_dbg(priv, type, dev, format, args...)			\
4995 ({									\
4996 	if (0)								\
4997 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4998 	0;								\
4999 })
5000 #endif
5001 
5002 /* if @cond then downgrade to debug, else print at @level */
5003 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5004 	do {                                                              \
5005 		if (cond)                                                 \
5006 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5007 		else                                                      \
5008 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5009 	} while (0)
5010 
5011 #if defined(VERBOSE_DEBUG)
5012 #define netif_vdbg	netif_dbg
5013 #else
5014 #define netif_vdbg(priv, type, dev, format, args...)		\
5015 ({								\
5016 	if (0)							\
5017 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5018 	0;							\
5019 })
5020 #endif
5021 
5022 /*
5023  *	The list of packet types we will receive (as opposed to discard)
5024  *	and the routines to invoke.
5025  *
5026  *	Why 16. Because with 16 the only overlap we get on a hash of the
5027  *	low nibble of the protocol value is RARP/SNAP/X.25.
5028  *
5029  *		0800	IP
5030  *		0001	802.3
5031  *		0002	AX.25
5032  *		0004	802.2
5033  *		8035	RARP
5034  *		0005	SNAP
5035  *		0805	X.25
5036  *		0806	ARP
5037  *		8137	IPX
5038  *		0009	Localtalk
5039  *		86DD	IPv6
5040  */
5041 #define PTYPE_HASH_SIZE	(16)
5042 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5043 
5044 extern struct net_device *blackhole_netdev;
5045 
5046 #endif	/* _LINUX_NETDEVICE_H */
5047