1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 struct macsec_context; 57 struct macsec_ops; 58 59 struct sfp_bus; 60 /* 802.11 specific */ 61 struct wireless_dev; 62 /* 802.15.4 specific */ 63 struct wpan_dev; 64 struct mpls_dev; 65 /* UDP Tunnel offloads */ 66 struct udp_tunnel_info; 67 struct bpf_prog; 68 struct xdp_buff; 69 70 void netdev_set_default_ethtool_ops(struct net_device *dev, 71 const struct ethtool_ops *ops); 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 #define MAX_NEST_DEV 8 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key_false rps_needed; 198 extern struct static_key_false rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 __be16 (*parse_protocol)(const struct sk_buff *skb); 278 }; 279 280 /* These flag bits are private to the generic network queueing 281 * layer; they may not be explicitly referenced by any other 282 * code. 283 */ 284 285 enum netdev_state_t { 286 __LINK_STATE_START, 287 __LINK_STATE_PRESENT, 288 __LINK_STATE_NOCARRIER, 289 __LINK_STATE_LINKWATCH_PENDING, 290 __LINK_STATE_DORMANT, 291 __LINK_STATE_TESTING, 292 }; 293 294 295 /* 296 * This structure holds boot-time configured netdevice settings. They 297 * are then used in the device probing. 298 */ 299 struct netdev_boot_setup { 300 char name[IFNAMSIZ]; 301 struct ifmap map; 302 }; 303 #define NETDEV_BOOT_SETUP_MAX 8 304 305 int __init netdev_boot_setup(char *str); 306 307 struct gro_list { 308 struct list_head list; 309 int count; 310 }; 311 312 /* 313 * size of gro hash buckets, must less than bit number of 314 * napi_struct::gro_bitmask 315 */ 316 #define GRO_HASH_BUCKETS 8 317 318 /* 319 * Structure for NAPI scheduling similar to tasklet but with weighting 320 */ 321 struct napi_struct { 322 /* The poll_list must only be managed by the entity which 323 * changes the state of the NAPI_STATE_SCHED bit. This means 324 * whoever atomically sets that bit can add this napi_struct 325 * to the per-CPU poll_list, and whoever clears that bit 326 * can remove from the list right before clearing the bit. 327 */ 328 struct list_head poll_list; 329 330 unsigned long state; 331 int weight; 332 int defer_hard_irqs_count; 333 unsigned long gro_bitmask; 334 int (*poll)(struct napi_struct *, int); 335 #ifdef CONFIG_NETPOLL 336 int poll_owner; 337 #endif 338 struct net_device *dev; 339 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 340 struct sk_buff *skb; 341 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 342 int rx_count; /* length of rx_list */ 343 struct hrtimer timer; 344 struct list_head dev_list; 345 struct hlist_node napi_hash_node; 346 unsigned int napi_id; 347 }; 348 349 enum { 350 NAPI_STATE_SCHED, /* Poll is scheduled */ 351 NAPI_STATE_MISSED, /* reschedule a napi */ 352 NAPI_STATE_DISABLE, /* Disable pending */ 353 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 354 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 355 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 356 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 357 }; 358 359 enum { 360 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 361 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 362 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 363 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 364 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 365 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 366 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 367 }; 368 369 enum gro_result { 370 GRO_MERGED, 371 GRO_MERGED_FREE, 372 GRO_HELD, 373 GRO_NORMAL, 374 GRO_DROP, 375 GRO_CONSUMED, 376 }; 377 typedef enum gro_result gro_result_t; 378 379 /* 380 * enum rx_handler_result - Possible return values for rx_handlers. 381 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 382 * further. 383 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 384 * case skb->dev was changed by rx_handler. 385 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 386 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 387 * 388 * rx_handlers are functions called from inside __netif_receive_skb(), to do 389 * special processing of the skb, prior to delivery to protocol handlers. 390 * 391 * Currently, a net_device can only have a single rx_handler registered. Trying 392 * to register a second rx_handler will return -EBUSY. 393 * 394 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 395 * To unregister a rx_handler on a net_device, use 396 * netdev_rx_handler_unregister(). 397 * 398 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 399 * do with the skb. 400 * 401 * If the rx_handler consumed the skb in some way, it should return 402 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 403 * the skb to be delivered in some other way. 404 * 405 * If the rx_handler changed skb->dev, to divert the skb to another 406 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 407 * new device will be called if it exists. 408 * 409 * If the rx_handler decides the skb should be ignored, it should return 410 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 411 * are registered on exact device (ptype->dev == skb->dev). 412 * 413 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 414 * delivered, it should return RX_HANDLER_PASS. 415 * 416 * A device without a registered rx_handler will behave as if rx_handler 417 * returned RX_HANDLER_PASS. 418 */ 419 420 enum rx_handler_result { 421 RX_HANDLER_CONSUMED, 422 RX_HANDLER_ANOTHER, 423 RX_HANDLER_EXACT, 424 RX_HANDLER_PASS, 425 }; 426 typedef enum rx_handler_result rx_handler_result_t; 427 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 428 429 void __napi_schedule(struct napi_struct *n); 430 void __napi_schedule_irqoff(struct napi_struct *n); 431 432 static inline bool napi_disable_pending(struct napi_struct *n) 433 { 434 return test_bit(NAPI_STATE_DISABLE, &n->state); 435 } 436 437 bool napi_schedule_prep(struct napi_struct *n); 438 439 /** 440 * napi_schedule - schedule NAPI poll 441 * @n: NAPI context 442 * 443 * Schedule NAPI poll routine to be called if it is not already 444 * running. 445 */ 446 static inline void napi_schedule(struct napi_struct *n) 447 { 448 if (napi_schedule_prep(n)) 449 __napi_schedule(n); 450 } 451 452 /** 453 * napi_schedule_irqoff - schedule NAPI poll 454 * @n: NAPI context 455 * 456 * Variant of napi_schedule(), assuming hard irqs are masked. 457 */ 458 static inline void napi_schedule_irqoff(struct napi_struct *n) 459 { 460 if (napi_schedule_prep(n)) 461 __napi_schedule_irqoff(n); 462 } 463 464 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 465 static inline bool napi_reschedule(struct napi_struct *napi) 466 { 467 if (napi_schedule_prep(napi)) { 468 __napi_schedule(napi); 469 return true; 470 } 471 return false; 472 } 473 474 bool napi_complete_done(struct napi_struct *n, int work_done); 475 /** 476 * napi_complete - NAPI processing complete 477 * @n: NAPI context 478 * 479 * Mark NAPI processing as complete. 480 * Consider using napi_complete_done() instead. 481 * Return false if device should avoid rearming interrupts. 482 */ 483 static inline bool napi_complete(struct napi_struct *n) 484 { 485 return napi_complete_done(n, 0); 486 } 487 488 /** 489 * napi_hash_del - remove a NAPI from global table 490 * @napi: NAPI context 491 * 492 * Warning: caller must observe RCU grace period 493 * before freeing memory containing @napi, if 494 * this function returns true. 495 * Note: core networking stack automatically calls it 496 * from netif_napi_del(). 497 * Drivers might want to call this helper to combine all 498 * the needed RCU grace periods into a single one. 499 */ 500 bool napi_hash_del(struct napi_struct *napi); 501 502 /** 503 * napi_disable - prevent NAPI from scheduling 504 * @n: NAPI context 505 * 506 * Stop NAPI from being scheduled on this context. 507 * Waits till any outstanding processing completes. 508 */ 509 void napi_disable(struct napi_struct *n); 510 511 /** 512 * napi_enable - enable NAPI scheduling 513 * @n: NAPI context 514 * 515 * Resume NAPI from being scheduled on this context. 516 * Must be paired with napi_disable. 517 */ 518 static inline void napi_enable(struct napi_struct *n) 519 { 520 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 521 smp_mb__before_atomic(); 522 clear_bit(NAPI_STATE_SCHED, &n->state); 523 clear_bit(NAPI_STATE_NPSVC, &n->state); 524 } 525 526 /** 527 * napi_synchronize - wait until NAPI is not running 528 * @n: NAPI context 529 * 530 * Wait until NAPI is done being scheduled on this context. 531 * Waits till any outstanding processing completes but 532 * does not disable future activations. 533 */ 534 static inline void napi_synchronize(const struct napi_struct *n) 535 { 536 if (IS_ENABLED(CONFIG_SMP)) 537 while (test_bit(NAPI_STATE_SCHED, &n->state)) 538 msleep(1); 539 else 540 barrier(); 541 } 542 543 /** 544 * napi_if_scheduled_mark_missed - if napi is running, set the 545 * NAPIF_STATE_MISSED 546 * @n: NAPI context 547 * 548 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 549 * NAPI is scheduled. 550 **/ 551 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 552 { 553 unsigned long val, new; 554 555 do { 556 val = READ_ONCE(n->state); 557 if (val & NAPIF_STATE_DISABLE) 558 return true; 559 560 if (!(val & NAPIF_STATE_SCHED)) 561 return false; 562 563 new = val | NAPIF_STATE_MISSED; 564 } while (cmpxchg(&n->state, val, new) != val); 565 566 return true; 567 } 568 569 enum netdev_queue_state_t { 570 __QUEUE_STATE_DRV_XOFF, 571 __QUEUE_STATE_STACK_XOFF, 572 __QUEUE_STATE_FROZEN, 573 }; 574 575 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 576 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 577 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 578 579 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 580 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 581 QUEUE_STATE_FROZEN) 582 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 583 QUEUE_STATE_FROZEN) 584 585 /* 586 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 587 * netif_tx_* functions below are used to manipulate this flag. The 588 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 589 * queue independently. The netif_xmit_*stopped functions below are called 590 * to check if the queue has been stopped by the driver or stack (either 591 * of the XOFF bits are set in the state). Drivers should not need to call 592 * netif_xmit*stopped functions, they should only be using netif_tx_*. 593 */ 594 595 struct netdev_queue { 596 /* 597 * read-mostly part 598 */ 599 struct net_device *dev; 600 struct Qdisc __rcu *qdisc; 601 struct Qdisc *qdisc_sleeping; 602 #ifdef CONFIG_SYSFS 603 struct kobject kobj; 604 #endif 605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 606 int numa_node; 607 #endif 608 unsigned long tx_maxrate; 609 /* 610 * Number of TX timeouts for this queue 611 * (/sys/class/net/DEV/Q/trans_timeout) 612 */ 613 unsigned long trans_timeout; 614 615 /* Subordinate device that the queue has been assigned to */ 616 struct net_device *sb_dev; 617 #ifdef CONFIG_XDP_SOCKETS 618 struct xdp_umem *umem; 619 #endif 620 /* 621 * write-mostly part 622 */ 623 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 624 int xmit_lock_owner; 625 /* 626 * Time (in jiffies) of last Tx 627 */ 628 unsigned long trans_start; 629 630 unsigned long state; 631 632 #ifdef CONFIG_BQL 633 struct dql dql; 634 #endif 635 } ____cacheline_aligned_in_smp; 636 637 extern int sysctl_fb_tunnels_only_for_init_net; 638 extern int sysctl_devconf_inherit_init_net; 639 640 static inline bool net_has_fallback_tunnels(const struct net *net) 641 { 642 return net == &init_net || 643 !IS_ENABLED(CONFIG_SYSCTL) || 644 !sysctl_fb_tunnels_only_for_init_net; 645 } 646 647 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 648 { 649 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 650 return q->numa_node; 651 #else 652 return NUMA_NO_NODE; 653 #endif 654 } 655 656 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 657 { 658 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 659 q->numa_node = node; 660 #endif 661 } 662 663 #ifdef CONFIG_RPS 664 /* 665 * This structure holds an RPS map which can be of variable length. The 666 * map is an array of CPUs. 667 */ 668 struct rps_map { 669 unsigned int len; 670 struct rcu_head rcu; 671 u16 cpus[]; 672 }; 673 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 674 675 /* 676 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 677 * tail pointer for that CPU's input queue at the time of last enqueue, and 678 * a hardware filter index. 679 */ 680 struct rps_dev_flow { 681 u16 cpu; 682 u16 filter; 683 unsigned int last_qtail; 684 }; 685 #define RPS_NO_FILTER 0xffff 686 687 /* 688 * The rps_dev_flow_table structure contains a table of flow mappings. 689 */ 690 struct rps_dev_flow_table { 691 unsigned int mask; 692 struct rcu_head rcu; 693 struct rps_dev_flow flows[]; 694 }; 695 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 696 ((_num) * sizeof(struct rps_dev_flow))) 697 698 /* 699 * The rps_sock_flow_table contains mappings of flows to the last CPU 700 * on which they were processed by the application (set in recvmsg). 701 * Each entry is a 32bit value. Upper part is the high-order bits 702 * of flow hash, lower part is CPU number. 703 * rps_cpu_mask is used to partition the space, depending on number of 704 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 705 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 706 * meaning we use 32-6=26 bits for the hash. 707 */ 708 struct rps_sock_flow_table { 709 u32 mask; 710 711 u32 ents[] ____cacheline_aligned_in_smp; 712 }; 713 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 714 715 #define RPS_NO_CPU 0xffff 716 717 extern u32 rps_cpu_mask; 718 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 719 720 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 721 u32 hash) 722 { 723 if (table && hash) { 724 unsigned int index = hash & table->mask; 725 u32 val = hash & ~rps_cpu_mask; 726 727 /* We only give a hint, preemption can change CPU under us */ 728 val |= raw_smp_processor_id(); 729 730 if (table->ents[index] != val) 731 table->ents[index] = val; 732 } 733 } 734 735 #ifdef CONFIG_RFS_ACCEL 736 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 737 u16 filter_id); 738 #endif 739 #endif /* CONFIG_RPS */ 740 741 /* This structure contains an instance of an RX queue. */ 742 struct netdev_rx_queue { 743 #ifdef CONFIG_RPS 744 struct rps_map __rcu *rps_map; 745 struct rps_dev_flow_table __rcu *rps_flow_table; 746 #endif 747 struct kobject kobj; 748 struct net_device *dev; 749 struct xdp_rxq_info xdp_rxq; 750 #ifdef CONFIG_XDP_SOCKETS 751 struct xdp_umem *umem; 752 #endif 753 } ____cacheline_aligned_in_smp; 754 755 /* 756 * RX queue sysfs structures and functions. 757 */ 758 struct rx_queue_attribute { 759 struct attribute attr; 760 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 761 ssize_t (*store)(struct netdev_rx_queue *queue, 762 const char *buf, size_t len); 763 }; 764 765 #ifdef CONFIG_XPS 766 /* 767 * This structure holds an XPS map which can be of variable length. The 768 * map is an array of queues. 769 */ 770 struct xps_map { 771 unsigned int len; 772 unsigned int alloc_len; 773 struct rcu_head rcu; 774 u16 queues[]; 775 }; 776 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 777 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 778 - sizeof(struct xps_map)) / sizeof(u16)) 779 780 /* 781 * This structure holds all XPS maps for device. Maps are indexed by CPU. 782 */ 783 struct xps_dev_maps { 784 struct rcu_head rcu; 785 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 786 }; 787 788 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 789 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 790 791 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 792 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 793 794 #endif /* CONFIG_XPS */ 795 796 #define TC_MAX_QUEUE 16 797 #define TC_BITMASK 15 798 /* HW offloaded queuing disciplines txq count and offset maps */ 799 struct netdev_tc_txq { 800 u16 count; 801 u16 offset; 802 }; 803 804 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 805 /* 806 * This structure is to hold information about the device 807 * configured to run FCoE protocol stack. 808 */ 809 struct netdev_fcoe_hbainfo { 810 char manufacturer[64]; 811 char serial_number[64]; 812 char hardware_version[64]; 813 char driver_version[64]; 814 char optionrom_version[64]; 815 char firmware_version[64]; 816 char model[256]; 817 char model_description[256]; 818 }; 819 #endif 820 821 #define MAX_PHYS_ITEM_ID_LEN 32 822 823 /* This structure holds a unique identifier to identify some 824 * physical item (port for example) used by a netdevice. 825 */ 826 struct netdev_phys_item_id { 827 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 828 unsigned char id_len; 829 }; 830 831 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 832 struct netdev_phys_item_id *b) 833 { 834 return a->id_len == b->id_len && 835 memcmp(a->id, b->id, a->id_len) == 0; 836 } 837 838 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 839 struct sk_buff *skb, 840 struct net_device *sb_dev); 841 842 enum tc_setup_type { 843 TC_SETUP_QDISC_MQPRIO, 844 TC_SETUP_CLSU32, 845 TC_SETUP_CLSFLOWER, 846 TC_SETUP_CLSMATCHALL, 847 TC_SETUP_CLSBPF, 848 TC_SETUP_BLOCK, 849 TC_SETUP_QDISC_CBS, 850 TC_SETUP_QDISC_RED, 851 TC_SETUP_QDISC_PRIO, 852 TC_SETUP_QDISC_MQ, 853 TC_SETUP_QDISC_ETF, 854 TC_SETUP_ROOT_QDISC, 855 TC_SETUP_QDISC_GRED, 856 TC_SETUP_QDISC_TAPRIO, 857 TC_SETUP_FT, 858 TC_SETUP_QDISC_ETS, 859 TC_SETUP_QDISC_TBF, 860 TC_SETUP_QDISC_FIFO, 861 }; 862 863 /* These structures hold the attributes of bpf state that are being passed 864 * to the netdevice through the bpf op. 865 */ 866 enum bpf_netdev_command { 867 /* Set or clear a bpf program used in the earliest stages of packet 868 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 869 * is responsible for calling bpf_prog_put on any old progs that are 870 * stored. In case of error, the callee need not release the new prog 871 * reference, but on success it takes ownership and must bpf_prog_put 872 * when it is no longer used. 873 */ 874 XDP_SETUP_PROG, 875 XDP_SETUP_PROG_HW, 876 XDP_QUERY_PROG, 877 XDP_QUERY_PROG_HW, 878 /* BPF program for offload callbacks, invoked at program load time. */ 879 BPF_OFFLOAD_MAP_ALLOC, 880 BPF_OFFLOAD_MAP_FREE, 881 XDP_SETUP_XSK_UMEM, 882 }; 883 884 struct bpf_prog_offload_ops; 885 struct netlink_ext_ack; 886 struct xdp_umem; 887 struct xdp_dev_bulk_queue; 888 889 struct netdev_bpf { 890 enum bpf_netdev_command command; 891 union { 892 /* XDP_SETUP_PROG */ 893 struct { 894 u32 flags; 895 struct bpf_prog *prog; 896 struct netlink_ext_ack *extack; 897 }; 898 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 899 struct { 900 u32 prog_id; 901 /* flags with which program was installed */ 902 u32 prog_flags; 903 }; 904 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 905 struct { 906 struct bpf_offloaded_map *offmap; 907 }; 908 /* XDP_SETUP_XSK_UMEM */ 909 struct { 910 struct xdp_umem *umem; 911 u16 queue_id; 912 } xsk; 913 }; 914 }; 915 916 /* Flags for ndo_xsk_wakeup. */ 917 #define XDP_WAKEUP_RX (1 << 0) 918 #define XDP_WAKEUP_TX (1 << 1) 919 920 #ifdef CONFIG_XFRM_OFFLOAD 921 struct xfrmdev_ops { 922 int (*xdo_dev_state_add) (struct xfrm_state *x); 923 void (*xdo_dev_state_delete) (struct xfrm_state *x); 924 void (*xdo_dev_state_free) (struct xfrm_state *x); 925 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 926 struct xfrm_state *x); 927 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 928 }; 929 #endif 930 931 struct dev_ifalias { 932 struct rcu_head rcuhead; 933 char ifalias[]; 934 }; 935 936 struct devlink; 937 struct tlsdev_ops; 938 939 struct netdev_name_node { 940 struct hlist_node hlist; 941 struct list_head list; 942 struct net_device *dev; 943 const char *name; 944 }; 945 946 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 947 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 948 949 struct netdev_net_notifier { 950 struct list_head list; 951 struct notifier_block *nb; 952 }; 953 954 /* 955 * This structure defines the management hooks for network devices. 956 * The following hooks can be defined; unless noted otherwise, they are 957 * optional and can be filled with a null pointer. 958 * 959 * int (*ndo_init)(struct net_device *dev); 960 * This function is called once when a network device is registered. 961 * The network device can use this for any late stage initialization 962 * or semantic validation. It can fail with an error code which will 963 * be propagated back to register_netdev. 964 * 965 * void (*ndo_uninit)(struct net_device *dev); 966 * This function is called when device is unregistered or when registration 967 * fails. It is not called if init fails. 968 * 969 * int (*ndo_open)(struct net_device *dev); 970 * This function is called when a network device transitions to the up 971 * state. 972 * 973 * int (*ndo_stop)(struct net_device *dev); 974 * This function is called when a network device transitions to the down 975 * state. 976 * 977 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 978 * struct net_device *dev); 979 * Called when a packet needs to be transmitted. 980 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 981 * the queue before that can happen; it's for obsolete devices and weird 982 * corner cases, but the stack really does a non-trivial amount 983 * of useless work if you return NETDEV_TX_BUSY. 984 * Required; cannot be NULL. 985 * 986 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 987 * struct net_device *dev 988 * netdev_features_t features); 989 * Called by core transmit path to determine if device is capable of 990 * performing offload operations on a given packet. This is to give 991 * the device an opportunity to implement any restrictions that cannot 992 * be otherwise expressed by feature flags. The check is called with 993 * the set of features that the stack has calculated and it returns 994 * those the driver believes to be appropriate. 995 * 996 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 997 * struct net_device *sb_dev); 998 * Called to decide which queue to use when device supports multiple 999 * transmit queues. 1000 * 1001 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1002 * This function is called to allow device receiver to make 1003 * changes to configuration when multicast or promiscuous is enabled. 1004 * 1005 * void (*ndo_set_rx_mode)(struct net_device *dev); 1006 * This function is called device changes address list filtering. 1007 * If driver handles unicast address filtering, it should set 1008 * IFF_UNICAST_FLT in its priv_flags. 1009 * 1010 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1011 * This function is called when the Media Access Control address 1012 * needs to be changed. If this interface is not defined, the 1013 * MAC address can not be changed. 1014 * 1015 * int (*ndo_validate_addr)(struct net_device *dev); 1016 * Test if Media Access Control address is valid for the device. 1017 * 1018 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1019 * Called when a user requests an ioctl which can't be handled by 1020 * the generic interface code. If not defined ioctls return 1021 * not supported error code. 1022 * 1023 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1024 * Used to set network devices bus interface parameters. This interface 1025 * is retained for legacy reasons; new devices should use the bus 1026 * interface (PCI) for low level management. 1027 * 1028 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1029 * Called when a user wants to change the Maximum Transfer Unit 1030 * of a device. 1031 * 1032 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1033 * Callback used when the transmitter has not made any progress 1034 * for dev->watchdog ticks. 1035 * 1036 * void (*ndo_get_stats64)(struct net_device *dev, 1037 * struct rtnl_link_stats64 *storage); 1038 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1039 * Called when a user wants to get the network device usage 1040 * statistics. Drivers must do one of the following: 1041 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1042 * rtnl_link_stats64 structure passed by the caller. 1043 * 2. Define @ndo_get_stats to update a net_device_stats structure 1044 * (which should normally be dev->stats) and return a pointer to 1045 * it. The structure may be changed asynchronously only if each 1046 * field is written atomically. 1047 * 3. Update dev->stats asynchronously and atomically, and define 1048 * neither operation. 1049 * 1050 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1051 * Return true if this device supports offload stats of this attr_id. 1052 * 1053 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1054 * void *attr_data) 1055 * Get statistics for offload operations by attr_id. Write it into the 1056 * attr_data pointer. 1057 * 1058 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1059 * If device supports VLAN filtering this function is called when a 1060 * VLAN id is registered. 1061 * 1062 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1063 * If device supports VLAN filtering this function is called when a 1064 * VLAN id is unregistered. 1065 * 1066 * void (*ndo_poll_controller)(struct net_device *dev); 1067 * 1068 * SR-IOV management functions. 1069 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1070 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1071 * u8 qos, __be16 proto); 1072 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1073 * int max_tx_rate); 1074 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1075 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1076 * int (*ndo_get_vf_config)(struct net_device *dev, 1077 * int vf, struct ifla_vf_info *ivf); 1078 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1079 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1080 * struct nlattr *port[]); 1081 * 1082 * Enable or disable the VF ability to query its RSS Redirection Table and 1083 * Hash Key. This is needed since on some devices VF share this information 1084 * with PF and querying it may introduce a theoretical security risk. 1085 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1086 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1087 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1088 * void *type_data); 1089 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1090 * This is always called from the stack with the rtnl lock held and netif 1091 * tx queues stopped. This allows the netdevice to perform queue 1092 * management safely. 1093 * 1094 * Fiber Channel over Ethernet (FCoE) offload functions. 1095 * int (*ndo_fcoe_enable)(struct net_device *dev); 1096 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1097 * so the underlying device can perform whatever needed configuration or 1098 * initialization to support acceleration of FCoE traffic. 1099 * 1100 * int (*ndo_fcoe_disable)(struct net_device *dev); 1101 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1102 * so the underlying device can perform whatever needed clean-ups to 1103 * stop supporting acceleration of FCoE traffic. 1104 * 1105 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1106 * struct scatterlist *sgl, unsigned int sgc); 1107 * Called when the FCoE Initiator wants to initialize an I/O that 1108 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1109 * perform necessary setup and returns 1 to indicate the device is set up 1110 * successfully to perform DDP on this I/O, otherwise this returns 0. 1111 * 1112 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1113 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1114 * indicated by the FC exchange id 'xid', so the underlying device can 1115 * clean up and reuse resources for later DDP requests. 1116 * 1117 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1118 * struct scatterlist *sgl, unsigned int sgc); 1119 * Called when the FCoE Target wants to initialize an I/O that 1120 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1121 * perform necessary setup and returns 1 to indicate the device is set up 1122 * successfully to perform DDP on this I/O, otherwise this returns 0. 1123 * 1124 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1125 * struct netdev_fcoe_hbainfo *hbainfo); 1126 * Called when the FCoE Protocol stack wants information on the underlying 1127 * device. This information is utilized by the FCoE protocol stack to 1128 * register attributes with Fiber Channel management service as per the 1129 * FC-GS Fabric Device Management Information(FDMI) specification. 1130 * 1131 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1132 * Called when the underlying device wants to override default World Wide 1133 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1134 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1135 * protocol stack to use. 1136 * 1137 * RFS acceleration. 1138 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1139 * u16 rxq_index, u32 flow_id); 1140 * Set hardware filter for RFS. rxq_index is the target queue index; 1141 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1142 * Return the filter ID on success, or a negative error code. 1143 * 1144 * Slave management functions (for bridge, bonding, etc). 1145 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1146 * Called to make another netdev an underling. 1147 * 1148 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1149 * Called to release previously enslaved netdev. 1150 * 1151 * Feature/offload setting functions. 1152 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1153 * netdev_features_t features); 1154 * Adjusts the requested feature flags according to device-specific 1155 * constraints, and returns the resulting flags. Must not modify 1156 * the device state. 1157 * 1158 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1159 * Called to update device configuration to new features. Passed 1160 * feature set might be less than what was returned by ndo_fix_features()). 1161 * Must return >0 or -errno if it changed dev->features itself. 1162 * 1163 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1164 * struct net_device *dev, 1165 * const unsigned char *addr, u16 vid, u16 flags, 1166 * struct netlink_ext_ack *extack); 1167 * Adds an FDB entry to dev for addr. 1168 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1169 * struct net_device *dev, 1170 * const unsigned char *addr, u16 vid) 1171 * Deletes the FDB entry from dev coresponding to addr. 1172 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1173 * struct net_device *dev, struct net_device *filter_dev, 1174 * int *idx) 1175 * Used to add FDB entries to dump requests. Implementers should add 1176 * entries to skb and update idx with the number of entries. 1177 * 1178 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1179 * u16 flags, struct netlink_ext_ack *extack) 1180 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1181 * struct net_device *dev, u32 filter_mask, 1182 * int nlflags) 1183 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1184 * u16 flags); 1185 * 1186 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1187 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1188 * which do not represent real hardware may define this to allow their 1189 * userspace components to manage their virtual carrier state. Devices 1190 * that determine carrier state from physical hardware properties (eg 1191 * network cables) or protocol-dependent mechanisms (eg 1192 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1193 * 1194 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1195 * struct netdev_phys_item_id *ppid); 1196 * Called to get ID of physical port of this device. If driver does 1197 * not implement this, it is assumed that the hw is not able to have 1198 * multiple net devices on single physical port. 1199 * 1200 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1201 * struct netdev_phys_item_id *ppid) 1202 * Called to get the parent ID of the physical port of this device. 1203 * 1204 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1205 * struct udp_tunnel_info *ti); 1206 * Called by UDP tunnel to notify a driver about the UDP port and socket 1207 * address family that a UDP tunnel is listnening to. It is called only 1208 * when a new port starts listening. The operation is protected by the 1209 * RTNL. 1210 * 1211 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1212 * struct udp_tunnel_info *ti); 1213 * Called by UDP tunnel to notify the driver about a UDP port and socket 1214 * address family that the UDP tunnel is not listening to anymore. The 1215 * operation is protected by the RTNL. 1216 * 1217 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1218 * struct net_device *dev) 1219 * Called by upper layer devices to accelerate switching or other 1220 * station functionality into hardware. 'pdev is the lowerdev 1221 * to use for the offload and 'dev' is the net device that will 1222 * back the offload. Returns a pointer to the private structure 1223 * the upper layer will maintain. 1224 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1225 * Called by upper layer device to delete the station created 1226 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1227 * the station and priv is the structure returned by the add 1228 * operation. 1229 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1230 * int queue_index, u32 maxrate); 1231 * Called when a user wants to set a max-rate limitation of specific 1232 * TX queue. 1233 * int (*ndo_get_iflink)(const struct net_device *dev); 1234 * Called to get the iflink value of this device. 1235 * void (*ndo_change_proto_down)(struct net_device *dev, 1236 * bool proto_down); 1237 * This function is used to pass protocol port error state information 1238 * to the switch driver. The switch driver can react to the proto_down 1239 * by doing a phys down on the associated switch port. 1240 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1241 * This function is used to get egress tunnel information for given skb. 1242 * This is useful for retrieving outer tunnel header parameters while 1243 * sampling packet. 1244 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1245 * This function is used to specify the headroom that the skb must 1246 * consider when allocation skb during packet reception. Setting 1247 * appropriate rx headroom value allows avoiding skb head copy on 1248 * forward. Setting a negative value resets the rx headroom to the 1249 * default value. 1250 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1251 * This function is used to set or query state related to XDP on the 1252 * netdevice and manage BPF offload. See definition of 1253 * enum bpf_netdev_command for details. 1254 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1255 * u32 flags); 1256 * This function is used to submit @n XDP packets for transmit on a 1257 * netdevice. Returns number of frames successfully transmitted, frames 1258 * that got dropped are freed/returned via xdp_return_frame(). 1259 * Returns negative number, means general error invoking ndo, meaning 1260 * no frames were xmit'ed and core-caller will free all frames. 1261 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1262 * This function is used to wake up the softirq, ksoftirqd or kthread 1263 * responsible for sending and/or receiving packets on a specific 1264 * queue id bound to an AF_XDP socket. The flags field specifies if 1265 * only RX, only Tx, or both should be woken up using the flags 1266 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1267 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1268 * Get devlink port instance associated with a given netdev. 1269 * Called with a reference on the netdevice and devlink locks only, 1270 * rtnl_lock is not held. 1271 */ 1272 struct net_device_ops { 1273 int (*ndo_init)(struct net_device *dev); 1274 void (*ndo_uninit)(struct net_device *dev); 1275 int (*ndo_open)(struct net_device *dev); 1276 int (*ndo_stop)(struct net_device *dev); 1277 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1278 struct net_device *dev); 1279 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1280 struct net_device *dev, 1281 netdev_features_t features); 1282 u16 (*ndo_select_queue)(struct net_device *dev, 1283 struct sk_buff *skb, 1284 struct net_device *sb_dev); 1285 void (*ndo_change_rx_flags)(struct net_device *dev, 1286 int flags); 1287 void (*ndo_set_rx_mode)(struct net_device *dev); 1288 int (*ndo_set_mac_address)(struct net_device *dev, 1289 void *addr); 1290 int (*ndo_validate_addr)(struct net_device *dev); 1291 int (*ndo_do_ioctl)(struct net_device *dev, 1292 struct ifreq *ifr, int cmd); 1293 int (*ndo_set_config)(struct net_device *dev, 1294 struct ifmap *map); 1295 int (*ndo_change_mtu)(struct net_device *dev, 1296 int new_mtu); 1297 int (*ndo_neigh_setup)(struct net_device *dev, 1298 struct neigh_parms *); 1299 void (*ndo_tx_timeout) (struct net_device *dev, 1300 unsigned int txqueue); 1301 1302 void (*ndo_get_stats64)(struct net_device *dev, 1303 struct rtnl_link_stats64 *storage); 1304 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1305 int (*ndo_get_offload_stats)(int attr_id, 1306 const struct net_device *dev, 1307 void *attr_data); 1308 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1309 1310 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1311 __be16 proto, u16 vid); 1312 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1313 __be16 proto, u16 vid); 1314 #ifdef CONFIG_NET_POLL_CONTROLLER 1315 void (*ndo_poll_controller)(struct net_device *dev); 1316 int (*ndo_netpoll_setup)(struct net_device *dev, 1317 struct netpoll_info *info); 1318 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1319 #endif 1320 int (*ndo_set_vf_mac)(struct net_device *dev, 1321 int queue, u8 *mac); 1322 int (*ndo_set_vf_vlan)(struct net_device *dev, 1323 int queue, u16 vlan, 1324 u8 qos, __be16 proto); 1325 int (*ndo_set_vf_rate)(struct net_device *dev, 1326 int vf, int min_tx_rate, 1327 int max_tx_rate); 1328 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1329 int vf, bool setting); 1330 int (*ndo_set_vf_trust)(struct net_device *dev, 1331 int vf, bool setting); 1332 int (*ndo_get_vf_config)(struct net_device *dev, 1333 int vf, 1334 struct ifla_vf_info *ivf); 1335 int (*ndo_set_vf_link_state)(struct net_device *dev, 1336 int vf, int link_state); 1337 int (*ndo_get_vf_stats)(struct net_device *dev, 1338 int vf, 1339 struct ifla_vf_stats 1340 *vf_stats); 1341 int (*ndo_set_vf_port)(struct net_device *dev, 1342 int vf, 1343 struct nlattr *port[]); 1344 int (*ndo_get_vf_port)(struct net_device *dev, 1345 int vf, struct sk_buff *skb); 1346 int (*ndo_get_vf_guid)(struct net_device *dev, 1347 int vf, 1348 struct ifla_vf_guid *node_guid, 1349 struct ifla_vf_guid *port_guid); 1350 int (*ndo_set_vf_guid)(struct net_device *dev, 1351 int vf, u64 guid, 1352 int guid_type); 1353 int (*ndo_set_vf_rss_query_en)( 1354 struct net_device *dev, 1355 int vf, bool setting); 1356 int (*ndo_setup_tc)(struct net_device *dev, 1357 enum tc_setup_type type, 1358 void *type_data); 1359 #if IS_ENABLED(CONFIG_FCOE) 1360 int (*ndo_fcoe_enable)(struct net_device *dev); 1361 int (*ndo_fcoe_disable)(struct net_device *dev); 1362 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1363 u16 xid, 1364 struct scatterlist *sgl, 1365 unsigned int sgc); 1366 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1367 u16 xid); 1368 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1369 u16 xid, 1370 struct scatterlist *sgl, 1371 unsigned int sgc); 1372 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1373 struct netdev_fcoe_hbainfo *hbainfo); 1374 #endif 1375 1376 #if IS_ENABLED(CONFIG_LIBFCOE) 1377 #define NETDEV_FCOE_WWNN 0 1378 #define NETDEV_FCOE_WWPN 1 1379 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1380 u64 *wwn, int type); 1381 #endif 1382 1383 #ifdef CONFIG_RFS_ACCEL 1384 int (*ndo_rx_flow_steer)(struct net_device *dev, 1385 const struct sk_buff *skb, 1386 u16 rxq_index, 1387 u32 flow_id); 1388 #endif 1389 int (*ndo_add_slave)(struct net_device *dev, 1390 struct net_device *slave_dev, 1391 struct netlink_ext_ack *extack); 1392 int (*ndo_del_slave)(struct net_device *dev, 1393 struct net_device *slave_dev); 1394 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1395 netdev_features_t features); 1396 int (*ndo_set_features)(struct net_device *dev, 1397 netdev_features_t features); 1398 int (*ndo_neigh_construct)(struct net_device *dev, 1399 struct neighbour *n); 1400 void (*ndo_neigh_destroy)(struct net_device *dev, 1401 struct neighbour *n); 1402 1403 int (*ndo_fdb_add)(struct ndmsg *ndm, 1404 struct nlattr *tb[], 1405 struct net_device *dev, 1406 const unsigned char *addr, 1407 u16 vid, 1408 u16 flags, 1409 struct netlink_ext_ack *extack); 1410 int (*ndo_fdb_del)(struct ndmsg *ndm, 1411 struct nlattr *tb[], 1412 struct net_device *dev, 1413 const unsigned char *addr, 1414 u16 vid); 1415 int (*ndo_fdb_dump)(struct sk_buff *skb, 1416 struct netlink_callback *cb, 1417 struct net_device *dev, 1418 struct net_device *filter_dev, 1419 int *idx); 1420 int (*ndo_fdb_get)(struct sk_buff *skb, 1421 struct nlattr *tb[], 1422 struct net_device *dev, 1423 const unsigned char *addr, 1424 u16 vid, u32 portid, u32 seq, 1425 struct netlink_ext_ack *extack); 1426 int (*ndo_bridge_setlink)(struct net_device *dev, 1427 struct nlmsghdr *nlh, 1428 u16 flags, 1429 struct netlink_ext_ack *extack); 1430 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1431 u32 pid, u32 seq, 1432 struct net_device *dev, 1433 u32 filter_mask, 1434 int nlflags); 1435 int (*ndo_bridge_dellink)(struct net_device *dev, 1436 struct nlmsghdr *nlh, 1437 u16 flags); 1438 int (*ndo_change_carrier)(struct net_device *dev, 1439 bool new_carrier); 1440 int (*ndo_get_phys_port_id)(struct net_device *dev, 1441 struct netdev_phys_item_id *ppid); 1442 int (*ndo_get_port_parent_id)(struct net_device *dev, 1443 struct netdev_phys_item_id *ppid); 1444 int (*ndo_get_phys_port_name)(struct net_device *dev, 1445 char *name, size_t len); 1446 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1447 struct udp_tunnel_info *ti); 1448 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1449 struct udp_tunnel_info *ti); 1450 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1451 struct net_device *dev); 1452 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1453 void *priv); 1454 1455 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1456 int queue_index, 1457 u32 maxrate); 1458 int (*ndo_get_iflink)(const struct net_device *dev); 1459 int (*ndo_change_proto_down)(struct net_device *dev, 1460 bool proto_down); 1461 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1462 struct sk_buff *skb); 1463 void (*ndo_set_rx_headroom)(struct net_device *dev, 1464 int needed_headroom); 1465 int (*ndo_bpf)(struct net_device *dev, 1466 struct netdev_bpf *bpf); 1467 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1468 struct xdp_frame **xdp, 1469 u32 flags); 1470 int (*ndo_xsk_wakeup)(struct net_device *dev, 1471 u32 queue_id, u32 flags); 1472 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1473 }; 1474 1475 /** 1476 * enum net_device_priv_flags - &struct net_device priv_flags 1477 * 1478 * These are the &struct net_device, they are only set internally 1479 * by drivers and used in the kernel. These flags are invisible to 1480 * userspace; this means that the order of these flags can change 1481 * during any kernel release. 1482 * 1483 * You should have a pretty good reason to be extending these flags. 1484 * 1485 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1486 * @IFF_EBRIDGE: Ethernet bridging device 1487 * @IFF_BONDING: bonding master or slave 1488 * @IFF_ISATAP: ISATAP interface (RFC4214) 1489 * @IFF_WAN_HDLC: WAN HDLC device 1490 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1491 * release skb->dst 1492 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1493 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1494 * @IFF_MACVLAN_PORT: device used as macvlan port 1495 * @IFF_BRIDGE_PORT: device used as bridge port 1496 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1497 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1498 * @IFF_UNICAST_FLT: Supports unicast filtering 1499 * @IFF_TEAM_PORT: device used as team port 1500 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1501 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1502 * change when it's running 1503 * @IFF_MACVLAN: Macvlan device 1504 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1505 * underlying stacked devices 1506 * @IFF_L3MDEV_MASTER: device is an L3 master device 1507 * @IFF_NO_QUEUE: device can run without qdisc attached 1508 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1509 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1510 * @IFF_TEAM: device is a team device 1511 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1512 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1513 * entity (i.e. the master device for bridged veth) 1514 * @IFF_MACSEC: device is a MACsec device 1515 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1516 * @IFF_FAILOVER: device is a failover master device 1517 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1518 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1519 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1520 */ 1521 enum netdev_priv_flags { 1522 IFF_802_1Q_VLAN = 1<<0, 1523 IFF_EBRIDGE = 1<<1, 1524 IFF_BONDING = 1<<2, 1525 IFF_ISATAP = 1<<3, 1526 IFF_WAN_HDLC = 1<<4, 1527 IFF_XMIT_DST_RELEASE = 1<<5, 1528 IFF_DONT_BRIDGE = 1<<6, 1529 IFF_DISABLE_NETPOLL = 1<<7, 1530 IFF_MACVLAN_PORT = 1<<8, 1531 IFF_BRIDGE_PORT = 1<<9, 1532 IFF_OVS_DATAPATH = 1<<10, 1533 IFF_TX_SKB_SHARING = 1<<11, 1534 IFF_UNICAST_FLT = 1<<12, 1535 IFF_TEAM_PORT = 1<<13, 1536 IFF_SUPP_NOFCS = 1<<14, 1537 IFF_LIVE_ADDR_CHANGE = 1<<15, 1538 IFF_MACVLAN = 1<<16, 1539 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1540 IFF_L3MDEV_MASTER = 1<<18, 1541 IFF_NO_QUEUE = 1<<19, 1542 IFF_OPENVSWITCH = 1<<20, 1543 IFF_L3MDEV_SLAVE = 1<<21, 1544 IFF_TEAM = 1<<22, 1545 IFF_RXFH_CONFIGURED = 1<<23, 1546 IFF_PHONY_HEADROOM = 1<<24, 1547 IFF_MACSEC = 1<<25, 1548 IFF_NO_RX_HANDLER = 1<<26, 1549 IFF_FAILOVER = 1<<27, 1550 IFF_FAILOVER_SLAVE = 1<<28, 1551 IFF_L3MDEV_RX_HANDLER = 1<<29, 1552 IFF_LIVE_RENAME_OK = 1<<30, 1553 }; 1554 1555 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1556 #define IFF_EBRIDGE IFF_EBRIDGE 1557 #define IFF_BONDING IFF_BONDING 1558 #define IFF_ISATAP IFF_ISATAP 1559 #define IFF_WAN_HDLC IFF_WAN_HDLC 1560 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1561 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1562 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1563 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1564 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1565 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1566 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1567 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1568 #define IFF_TEAM_PORT IFF_TEAM_PORT 1569 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1570 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1571 #define IFF_MACVLAN IFF_MACVLAN 1572 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1573 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1574 #define IFF_NO_QUEUE IFF_NO_QUEUE 1575 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1576 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1577 #define IFF_TEAM IFF_TEAM 1578 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1579 #define IFF_MACSEC IFF_MACSEC 1580 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1581 #define IFF_FAILOVER IFF_FAILOVER 1582 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1583 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1584 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1585 1586 /** 1587 * struct net_device - The DEVICE structure. 1588 * 1589 * Actually, this whole structure is a big mistake. It mixes I/O 1590 * data with strictly "high-level" data, and it has to know about 1591 * almost every data structure used in the INET module. 1592 * 1593 * @name: This is the first field of the "visible" part of this structure 1594 * (i.e. as seen by users in the "Space.c" file). It is the name 1595 * of the interface. 1596 * 1597 * @name_node: Name hashlist node 1598 * @ifalias: SNMP alias 1599 * @mem_end: Shared memory end 1600 * @mem_start: Shared memory start 1601 * @base_addr: Device I/O address 1602 * @irq: Device IRQ number 1603 * 1604 * @state: Generic network queuing layer state, see netdev_state_t 1605 * @dev_list: The global list of network devices 1606 * @napi_list: List entry used for polling NAPI devices 1607 * @unreg_list: List entry when we are unregistering the 1608 * device; see the function unregister_netdev 1609 * @close_list: List entry used when we are closing the device 1610 * @ptype_all: Device-specific packet handlers for all protocols 1611 * @ptype_specific: Device-specific, protocol-specific packet handlers 1612 * 1613 * @adj_list: Directly linked devices, like slaves for bonding 1614 * @features: Currently active device features 1615 * @hw_features: User-changeable features 1616 * 1617 * @wanted_features: User-requested features 1618 * @vlan_features: Mask of features inheritable by VLAN devices 1619 * 1620 * @hw_enc_features: Mask of features inherited by encapsulating devices 1621 * This field indicates what encapsulation 1622 * offloads the hardware is capable of doing, 1623 * and drivers will need to set them appropriately. 1624 * 1625 * @mpls_features: Mask of features inheritable by MPLS 1626 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1627 * 1628 * @ifindex: interface index 1629 * @group: The group the device belongs to 1630 * 1631 * @stats: Statistics struct, which was left as a legacy, use 1632 * rtnl_link_stats64 instead 1633 * 1634 * @rx_dropped: Dropped packets by core network, 1635 * do not use this in drivers 1636 * @tx_dropped: Dropped packets by core network, 1637 * do not use this in drivers 1638 * @rx_nohandler: nohandler dropped packets by core network on 1639 * inactive devices, do not use this in drivers 1640 * @carrier_up_count: Number of times the carrier has been up 1641 * @carrier_down_count: Number of times the carrier has been down 1642 * 1643 * @wireless_handlers: List of functions to handle Wireless Extensions, 1644 * instead of ioctl, 1645 * see <net/iw_handler.h> for details. 1646 * @wireless_data: Instance data managed by the core of wireless extensions 1647 * 1648 * @netdev_ops: Includes several pointers to callbacks, 1649 * if one wants to override the ndo_*() functions 1650 * @ethtool_ops: Management operations 1651 * @l3mdev_ops: Layer 3 master device operations 1652 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1653 * discovery handling. Necessary for e.g. 6LoWPAN. 1654 * @xfrmdev_ops: Transformation offload operations 1655 * @tlsdev_ops: Transport Layer Security offload operations 1656 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1657 * of Layer 2 headers. 1658 * 1659 * @flags: Interface flags (a la BSD) 1660 * @priv_flags: Like 'flags' but invisible to userspace, 1661 * see if.h for the definitions 1662 * @gflags: Global flags ( kept as legacy ) 1663 * @padded: How much padding added by alloc_netdev() 1664 * @operstate: RFC2863 operstate 1665 * @link_mode: Mapping policy to operstate 1666 * @if_port: Selectable AUI, TP, ... 1667 * @dma: DMA channel 1668 * @mtu: Interface MTU value 1669 * @min_mtu: Interface Minimum MTU value 1670 * @max_mtu: Interface Maximum MTU value 1671 * @type: Interface hardware type 1672 * @hard_header_len: Maximum hardware header length. 1673 * @min_header_len: Minimum hardware header length 1674 * 1675 * @needed_headroom: Extra headroom the hardware may need, but not in all 1676 * cases can this be guaranteed 1677 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1678 * cases can this be guaranteed. Some cases also use 1679 * LL_MAX_HEADER instead to allocate the skb 1680 * 1681 * interface address info: 1682 * 1683 * @perm_addr: Permanent hw address 1684 * @addr_assign_type: Hw address assignment type 1685 * @addr_len: Hardware address length 1686 * @upper_level: Maximum depth level of upper devices. 1687 * @lower_level: Maximum depth level of lower devices. 1688 * @neigh_priv_len: Used in neigh_alloc() 1689 * @dev_id: Used to differentiate devices that share 1690 * the same link layer address 1691 * @dev_port: Used to differentiate devices that share 1692 * the same function 1693 * @addr_list_lock: XXX: need comments on this one 1694 * @name_assign_type: network interface name assignment type 1695 * @uc_promisc: Counter that indicates promiscuous mode 1696 * has been enabled due to the need to listen to 1697 * additional unicast addresses in a device that 1698 * does not implement ndo_set_rx_mode() 1699 * @uc: unicast mac addresses 1700 * @mc: multicast mac addresses 1701 * @dev_addrs: list of device hw addresses 1702 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1703 * @promiscuity: Number of times the NIC is told to work in 1704 * promiscuous mode; if it becomes 0 the NIC will 1705 * exit promiscuous mode 1706 * @allmulti: Counter, enables or disables allmulticast mode 1707 * 1708 * @vlan_info: VLAN info 1709 * @dsa_ptr: dsa specific data 1710 * @tipc_ptr: TIPC specific data 1711 * @atalk_ptr: AppleTalk link 1712 * @ip_ptr: IPv4 specific data 1713 * @dn_ptr: DECnet specific data 1714 * @ip6_ptr: IPv6 specific data 1715 * @ax25_ptr: AX.25 specific data 1716 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1717 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1718 * device struct 1719 * @mpls_ptr: mpls_dev struct pointer 1720 * 1721 * @dev_addr: Hw address (before bcast, 1722 * because most packets are unicast) 1723 * 1724 * @_rx: Array of RX queues 1725 * @num_rx_queues: Number of RX queues 1726 * allocated at register_netdev() time 1727 * @real_num_rx_queues: Number of RX queues currently active in device 1728 * @xdp_prog: XDP sockets filter program pointer 1729 * @gro_flush_timeout: timeout for GRO layer in NAPI 1730 * 1731 * @rx_handler: handler for received packets 1732 * @rx_handler_data: XXX: need comments on this one 1733 * @miniq_ingress: ingress/clsact qdisc specific data for 1734 * ingress processing 1735 * @ingress_queue: XXX: need comments on this one 1736 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1737 * @broadcast: hw bcast address 1738 * 1739 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1740 * indexed by RX queue number. Assigned by driver. 1741 * This must only be set if the ndo_rx_flow_steer 1742 * operation is defined 1743 * @index_hlist: Device index hash chain 1744 * 1745 * @_tx: Array of TX queues 1746 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1747 * @real_num_tx_queues: Number of TX queues currently active in device 1748 * @qdisc: Root qdisc from userspace point of view 1749 * @tx_queue_len: Max frames per queue allowed 1750 * @tx_global_lock: XXX: need comments on this one 1751 * @xdp_bulkq: XDP device bulk queue 1752 * @xps_cpus_map: all CPUs map for XPS device 1753 * @xps_rxqs_map: all RXQs map for XPS device 1754 * 1755 * @xps_maps: XXX: need comments on this one 1756 * @miniq_egress: clsact qdisc specific data for 1757 * egress processing 1758 * @qdisc_hash: qdisc hash table 1759 * @watchdog_timeo: Represents the timeout that is used by 1760 * the watchdog (see dev_watchdog()) 1761 * @watchdog_timer: List of timers 1762 * 1763 * @pcpu_refcnt: Number of references to this device 1764 * @todo_list: Delayed register/unregister 1765 * @link_watch_list: XXX: need comments on this one 1766 * 1767 * @reg_state: Register/unregister state machine 1768 * @dismantle: Device is going to be freed 1769 * @rtnl_link_state: This enum represents the phases of creating 1770 * a new link 1771 * 1772 * @needs_free_netdev: Should unregister perform free_netdev? 1773 * @priv_destructor: Called from unregister 1774 * @npinfo: XXX: need comments on this one 1775 * @nd_net: Network namespace this network device is inside 1776 * 1777 * @ml_priv: Mid-layer private 1778 * @lstats: Loopback statistics 1779 * @tstats: Tunnel statistics 1780 * @dstats: Dummy statistics 1781 * @vstats: Virtual ethernet statistics 1782 * 1783 * @garp_port: GARP 1784 * @mrp_port: MRP 1785 * 1786 * @dev: Class/net/name entry 1787 * @sysfs_groups: Space for optional device, statistics and wireless 1788 * sysfs groups 1789 * 1790 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1791 * @rtnl_link_ops: Rtnl_link_ops 1792 * 1793 * @gso_max_size: Maximum size of generic segmentation offload 1794 * @gso_max_segs: Maximum number of segments that can be passed to the 1795 * NIC for GSO 1796 * 1797 * @dcbnl_ops: Data Center Bridging netlink ops 1798 * @num_tc: Number of traffic classes in the net device 1799 * @tc_to_txq: XXX: need comments on this one 1800 * @prio_tc_map: XXX: need comments on this one 1801 * 1802 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1803 * 1804 * @priomap: XXX: need comments on this one 1805 * @phydev: Physical device may attach itself 1806 * for hardware timestamping 1807 * @sfp_bus: attached &struct sfp_bus structure. 1808 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock 1809 * spinlock 1810 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1811 * @qdisc_xmit_lock_key: lockdep class annotating 1812 * netdev_queue->_xmit_lock spinlock 1813 * @addr_list_lock_key: lockdep class annotating 1814 * net_device->addr_list_lock spinlock 1815 * 1816 * @proto_down: protocol port state information can be sent to the 1817 * switch driver and used to set the phys state of the 1818 * switch port. 1819 * 1820 * @wol_enabled: Wake-on-LAN is enabled 1821 * 1822 * @net_notifier_list: List of per-net netdev notifier block 1823 * that follow this device when it is moved 1824 * to another network namespace. 1825 * 1826 * @macsec_ops: MACsec offloading ops 1827 * 1828 * FIXME: cleanup struct net_device such that network protocol info 1829 * moves out. 1830 */ 1831 1832 struct net_device { 1833 char name[IFNAMSIZ]; 1834 struct netdev_name_node *name_node; 1835 struct dev_ifalias __rcu *ifalias; 1836 /* 1837 * I/O specific fields 1838 * FIXME: Merge these and struct ifmap into one 1839 */ 1840 unsigned long mem_end; 1841 unsigned long mem_start; 1842 unsigned long base_addr; 1843 int irq; 1844 1845 /* 1846 * Some hardware also needs these fields (state,dev_list, 1847 * napi_list,unreg_list,close_list) but they are not 1848 * part of the usual set specified in Space.c. 1849 */ 1850 1851 unsigned long state; 1852 1853 struct list_head dev_list; 1854 struct list_head napi_list; 1855 struct list_head unreg_list; 1856 struct list_head close_list; 1857 struct list_head ptype_all; 1858 struct list_head ptype_specific; 1859 1860 struct { 1861 struct list_head upper; 1862 struct list_head lower; 1863 } adj_list; 1864 1865 netdev_features_t features; 1866 netdev_features_t hw_features; 1867 netdev_features_t wanted_features; 1868 netdev_features_t vlan_features; 1869 netdev_features_t hw_enc_features; 1870 netdev_features_t mpls_features; 1871 netdev_features_t gso_partial_features; 1872 1873 int ifindex; 1874 int group; 1875 1876 struct net_device_stats stats; 1877 1878 atomic_long_t rx_dropped; 1879 atomic_long_t tx_dropped; 1880 atomic_long_t rx_nohandler; 1881 1882 /* Stats to monitor link on/off, flapping */ 1883 atomic_t carrier_up_count; 1884 atomic_t carrier_down_count; 1885 1886 #ifdef CONFIG_WIRELESS_EXT 1887 const struct iw_handler_def *wireless_handlers; 1888 struct iw_public_data *wireless_data; 1889 #endif 1890 const struct net_device_ops *netdev_ops; 1891 const struct ethtool_ops *ethtool_ops; 1892 #ifdef CONFIG_NET_L3_MASTER_DEV 1893 const struct l3mdev_ops *l3mdev_ops; 1894 #endif 1895 #if IS_ENABLED(CONFIG_IPV6) 1896 const struct ndisc_ops *ndisc_ops; 1897 #endif 1898 1899 #ifdef CONFIG_XFRM_OFFLOAD 1900 const struct xfrmdev_ops *xfrmdev_ops; 1901 #endif 1902 1903 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1904 const struct tlsdev_ops *tlsdev_ops; 1905 #endif 1906 1907 const struct header_ops *header_ops; 1908 1909 unsigned int flags; 1910 unsigned int priv_flags; 1911 1912 unsigned short gflags; 1913 unsigned short padded; 1914 1915 unsigned char operstate; 1916 unsigned char link_mode; 1917 1918 unsigned char if_port; 1919 unsigned char dma; 1920 1921 /* Note : dev->mtu is often read without holding a lock. 1922 * Writers usually hold RTNL. 1923 * It is recommended to use READ_ONCE() to annotate the reads, 1924 * and to use WRITE_ONCE() to annotate the writes. 1925 */ 1926 unsigned int mtu; 1927 unsigned int min_mtu; 1928 unsigned int max_mtu; 1929 unsigned short type; 1930 unsigned short hard_header_len; 1931 unsigned char min_header_len; 1932 1933 unsigned short needed_headroom; 1934 unsigned short needed_tailroom; 1935 1936 /* Interface address info. */ 1937 unsigned char perm_addr[MAX_ADDR_LEN]; 1938 unsigned char addr_assign_type; 1939 unsigned char addr_len; 1940 unsigned char upper_level; 1941 unsigned char lower_level; 1942 unsigned short neigh_priv_len; 1943 unsigned short dev_id; 1944 unsigned short dev_port; 1945 spinlock_t addr_list_lock; 1946 unsigned char name_assign_type; 1947 bool uc_promisc; 1948 struct netdev_hw_addr_list uc; 1949 struct netdev_hw_addr_list mc; 1950 struct netdev_hw_addr_list dev_addrs; 1951 1952 #ifdef CONFIG_SYSFS 1953 struct kset *queues_kset; 1954 #endif 1955 unsigned int promiscuity; 1956 unsigned int allmulti; 1957 1958 1959 /* Protocol-specific pointers */ 1960 1961 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1962 struct vlan_info __rcu *vlan_info; 1963 #endif 1964 #if IS_ENABLED(CONFIG_NET_DSA) 1965 struct dsa_port *dsa_ptr; 1966 #endif 1967 #if IS_ENABLED(CONFIG_TIPC) 1968 struct tipc_bearer __rcu *tipc_ptr; 1969 #endif 1970 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1971 void *atalk_ptr; 1972 #endif 1973 struct in_device __rcu *ip_ptr; 1974 #if IS_ENABLED(CONFIG_DECNET) 1975 struct dn_dev __rcu *dn_ptr; 1976 #endif 1977 struct inet6_dev __rcu *ip6_ptr; 1978 #if IS_ENABLED(CONFIG_AX25) 1979 void *ax25_ptr; 1980 #endif 1981 struct wireless_dev *ieee80211_ptr; 1982 struct wpan_dev *ieee802154_ptr; 1983 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1984 struct mpls_dev __rcu *mpls_ptr; 1985 #endif 1986 1987 /* 1988 * Cache lines mostly used on receive path (including eth_type_trans()) 1989 */ 1990 /* Interface address info used in eth_type_trans() */ 1991 unsigned char *dev_addr; 1992 1993 struct netdev_rx_queue *_rx; 1994 unsigned int num_rx_queues; 1995 unsigned int real_num_rx_queues; 1996 1997 struct bpf_prog __rcu *xdp_prog; 1998 unsigned long gro_flush_timeout; 1999 int napi_defer_hard_irqs; 2000 rx_handler_func_t __rcu *rx_handler; 2001 void __rcu *rx_handler_data; 2002 2003 #ifdef CONFIG_NET_CLS_ACT 2004 struct mini_Qdisc __rcu *miniq_ingress; 2005 #endif 2006 struct netdev_queue __rcu *ingress_queue; 2007 #ifdef CONFIG_NETFILTER_INGRESS 2008 struct nf_hook_entries __rcu *nf_hooks_ingress; 2009 #endif 2010 2011 unsigned char broadcast[MAX_ADDR_LEN]; 2012 #ifdef CONFIG_RFS_ACCEL 2013 struct cpu_rmap *rx_cpu_rmap; 2014 #endif 2015 struct hlist_node index_hlist; 2016 2017 /* 2018 * Cache lines mostly used on transmit path 2019 */ 2020 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2021 unsigned int num_tx_queues; 2022 unsigned int real_num_tx_queues; 2023 struct Qdisc *qdisc; 2024 unsigned int tx_queue_len; 2025 spinlock_t tx_global_lock; 2026 2027 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2028 2029 #ifdef CONFIG_XPS 2030 struct xps_dev_maps __rcu *xps_cpus_map; 2031 struct xps_dev_maps __rcu *xps_rxqs_map; 2032 #endif 2033 #ifdef CONFIG_NET_CLS_ACT 2034 struct mini_Qdisc __rcu *miniq_egress; 2035 #endif 2036 2037 #ifdef CONFIG_NET_SCHED 2038 DECLARE_HASHTABLE (qdisc_hash, 4); 2039 #endif 2040 /* These may be needed for future network-power-down code. */ 2041 struct timer_list watchdog_timer; 2042 int watchdog_timeo; 2043 2044 struct list_head todo_list; 2045 int __percpu *pcpu_refcnt; 2046 2047 struct list_head link_watch_list; 2048 2049 enum { NETREG_UNINITIALIZED=0, 2050 NETREG_REGISTERED, /* completed register_netdevice */ 2051 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2052 NETREG_UNREGISTERED, /* completed unregister todo */ 2053 NETREG_RELEASED, /* called free_netdev */ 2054 NETREG_DUMMY, /* dummy device for NAPI poll */ 2055 } reg_state:8; 2056 2057 bool dismantle; 2058 2059 enum { 2060 RTNL_LINK_INITIALIZED, 2061 RTNL_LINK_INITIALIZING, 2062 } rtnl_link_state:16; 2063 2064 bool needs_free_netdev; 2065 void (*priv_destructor)(struct net_device *dev); 2066 2067 #ifdef CONFIG_NETPOLL 2068 struct netpoll_info __rcu *npinfo; 2069 #endif 2070 2071 possible_net_t nd_net; 2072 2073 /* mid-layer private */ 2074 union { 2075 void *ml_priv; 2076 struct pcpu_lstats __percpu *lstats; 2077 struct pcpu_sw_netstats __percpu *tstats; 2078 struct pcpu_dstats __percpu *dstats; 2079 }; 2080 2081 #if IS_ENABLED(CONFIG_GARP) 2082 struct garp_port __rcu *garp_port; 2083 #endif 2084 #if IS_ENABLED(CONFIG_MRP) 2085 struct mrp_port __rcu *mrp_port; 2086 #endif 2087 2088 struct device dev; 2089 const struct attribute_group *sysfs_groups[4]; 2090 const struct attribute_group *sysfs_rx_queue_group; 2091 2092 const struct rtnl_link_ops *rtnl_link_ops; 2093 2094 /* for setting kernel sock attribute on TCP connection setup */ 2095 #define GSO_MAX_SIZE 65536 2096 unsigned int gso_max_size; 2097 #define GSO_MAX_SEGS 65535 2098 u16 gso_max_segs; 2099 2100 #ifdef CONFIG_DCB 2101 const struct dcbnl_rtnl_ops *dcbnl_ops; 2102 #endif 2103 s16 num_tc; 2104 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2105 u8 prio_tc_map[TC_BITMASK + 1]; 2106 2107 #if IS_ENABLED(CONFIG_FCOE) 2108 unsigned int fcoe_ddp_xid; 2109 #endif 2110 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2111 struct netprio_map __rcu *priomap; 2112 #endif 2113 struct phy_device *phydev; 2114 struct sfp_bus *sfp_bus; 2115 struct lock_class_key qdisc_tx_busylock_key; 2116 struct lock_class_key qdisc_running_key; 2117 struct lock_class_key qdisc_xmit_lock_key; 2118 struct lock_class_key addr_list_lock_key; 2119 bool proto_down; 2120 unsigned wol_enabled:1; 2121 2122 struct list_head net_notifier_list; 2123 2124 #if IS_ENABLED(CONFIG_MACSEC) 2125 /* MACsec management functions */ 2126 const struct macsec_ops *macsec_ops; 2127 #endif 2128 }; 2129 #define to_net_dev(d) container_of(d, struct net_device, dev) 2130 2131 static inline bool netif_elide_gro(const struct net_device *dev) 2132 { 2133 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2134 return true; 2135 return false; 2136 } 2137 2138 #define NETDEV_ALIGN 32 2139 2140 static inline 2141 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2142 { 2143 return dev->prio_tc_map[prio & TC_BITMASK]; 2144 } 2145 2146 static inline 2147 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2148 { 2149 if (tc >= dev->num_tc) 2150 return -EINVAL; 2151 2152 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2153 return 0; 2154 } 2155 2156 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2157 void netdev_reset_tc(struct net_device *dev); 2158 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2159 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2160 2161 static inline 2162 int netdev_get_num_tc(struct net_device *dev) 2163 { 2164 return dev->num_tc; 2165 } 2166 2167 void netdev_unbind_sb_channel(struct net_device *dev, 2168 struct net_device *sb_dev); 2169 int netdev_bind_sb_channel_queue(struct net_device *dev, 2170 struct net_device *sb_dev, 2171 u8 tc, u16 count, u16 offset); 2172 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2173 static inline int netdev_get_sb_channel(struct net_device *dev) 2174 { 2175 return max_t(int, -dev->num_tc, 0); 2176 } 2177 2178 static inline 2179 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2180 unsigned int index) 2181 { 2182 return &dev->_tx[index]; 2183 } 2184 2185 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2186 const struct sk_buff *skb) 2187 { 2188 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2189 } 2190 2191 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2192 void (*f)(struct net_device *, 2193 struct netdev_queue *, 2194 void *), 2195 void *arg) 2196 { 2197 unsigned int i; 2198 2199 for (i = 0; i < dev->num_tx_queues; i++) 2200 f(dev, &dev->_tx[i], arg); 2201 } 2202 2203 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2204 struct net_device *sb_dev); 2205 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2206 struct sk_buff *skb, 2207 struct net_device *sb_dev); 2208 2209 /* returns the headroom that the master device needs to take in account 2210 * when forwarding to this dev 2211 */ 2212 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2213 { 2214 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2215 } 2216 2217 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2218 { 2219 if (dev->netdev_ops->ndo_set_rx_headroom) 2220 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2221 } 2222 2223 /* set the device rx headroom to the dev's default */ 2224 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2225 { 2226 netdev_set_rx_headroom(dev, -1); 2227 } 2228 2229 /* 2230 * Net namespace inlines 2231 */ 2232 static inline 2233 struct net *dev_net(const struct net_device *dev) 2234 { 2235 return read_pnet(&dev->nd_net); 2236 } 2237 2238 static inline 2239 void dev_net_set(struct net_device *dev, struct net *net) 2240 { 2241 write_pnet(&dev->nd_net, net); 2242 } 2243 2244 /** 2245 * netdev_priv - access network device private data 2246 * @dev: network device 2247 * 2248 * Get network device private data 2249 */ 2250 static inline void *netdev_priv(const struct net_device *dev) 2251 { 2252 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2253 } 2254 2255 /* Set the sysfs physical device reference for the network logical device 2256 * if set prior to registration will cause a symlink during initialization. 2257 */ 2258 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2259 2260 /* Set the sysfs device type for the network logical device to allow 2261 * fine-grained identification of different network device types. For 2262 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2263 */ 2264 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2265 2266 /* Default NAPI poll() weight 2267 * Device drivers are strongly advised to not use bigger value 2268 */ 2269 #define NAPI_POLL_WEIGHT 64 2270 2271 /** 2272 * netif_napi_add - initialize a NAPI context 2273 * @dev: network device 2274 * @napi: NAPI context 2275 * @poll: polling function 2276 * @weight: default weight 2277 * 2278 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2279 * *any* of the other NAPI-related functions. 2280 */ 2281 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2282 int (*poll)(struct napi_struct *, int), int weight); 2283 2284 /** 2285 * netif_tx_napi_add - initialize a NAPI context 2286 * @dev: network device 2287 * @napi: NAPI context 2288 * @poll: polling function 2289 * @weight: default weight 2290 * 2291 * This variant of netif_napi_add() should be used from drivers using NAPI 2292 * to exclusively poll a TX queue. 2293 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2294 */ 2295 static inline void netif_tx_napi_add(struct net_device *dev, 2296 struct napi_struct *napi, 2297 int (*poll)(struct napi_struct *, int), 2298 int weight) 2299 { 2300 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2301 netif_napi_add(dev, napi, poll, weight); 2302 } 2303 2304 /** 2305 * netif_napi_del - remove a NAPI context 2306 * @napi: NAPI context 2307 * 2308 * netif_napi_del() removes a NAPI context from the network device NAPI list 2309 */ 2310 void netif_napi_del(struct napi_struct *napi); 2311 2312 struct napi_gro_cb { 2313 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2314 void *frag0; 2315 2316 /* Length of frag0. */ 2317 unsigned int frag0_len; 2318 2319 /* This indicates where we are processing relative to skb->data. */ 2320 int data_offset; 2321 2322 /* This is non-zero if the packet cannot be merged with the new skb. */ 2323 u16 flush; 2324 2325 /* Save the IP ID here and check when we get to the transport layer */ 2326 u16 flush_id; 2327 2328 /* Number of segments aggregated. */ 2329 u16 count; 2330 2331 /* Start offset for remote checksum offload */ 2332 u16 gro_remcsum_start; 2333 2334 /* jiffies when first packet was created/queued */ 2335 unsigned long age; 2336 2337 /* Used in ipv6_gro_receive() and foo-over-udp */ 2338 u16 proto; 2339 2340 /* This is non-zero if the packet may be of the same flow. */ 2341 u8 same_flow:1; 2342 2343 /* Used in tunnel GRO receive */ 2344 u8 encap_mark:1; 2345 2346 /* GRO checksum is valid */ 2347 u8 csum_valid:1; 2348 2349 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2350 u8 csum_cnt:3; 2351 2352 /* Free the skb? */ 2353 u8 free:2; 2354 #define NAPI_GRO_FREE 1 2355 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2356 2357 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2358 u8 is_ipv6:1; 2359 2360 /* Used in GRE, set in fou/gue_gro_receive */ 2361 u8 is_fou:1; 2362 2363 /* Used to determine if flush_id can be ignored */ 2364 u8 is_atomic:1; 2365 2366 /* Number of gro_receive callbacks this packet already went through */ 2367 u8 recursion_counter:4; 2368 2369 /* GRO is done by frag_list pointer chaining. */ 2370 u8 is_flist:1; 2371 2372 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2373 __wsum csum; 2374 2375 /* used in skb_gro_receive() slow path */ 2376 struct sk_buff *last; 2377 }; 2378 2379 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2380 2381 #define GRO_RECURSION_LIMIT 15 2382 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2383 { 2384 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2385 } 2386 2387 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2388 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2389 struct list_head *head, 2390 struct sk_buff *skb) 2391 { 2392 if (unlikely(gro_recursion_inc_test(skb))) { 2393 NAPI_GRO_CB(skb)->flush |= 1; 2394 return NULL; 2395 } 2396 2397 return cb(head, skb); 2398 } 2399 2400 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2401 struct sk_buff *); 2402 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2403 struct sock *sk, 2404 struct list_head *head, 2405 struct sk_buff *skb) 2406 { 2407 if (unlikely(gro_recursion_inc_test(skb))) { 2408 NAPI_GRO_CB(skb)->flush |= 1; 2409 return NULL; 2410 } 2411 2412 return cb(sk, head, skb); 2413 } 2414 2415 struct packet_type { 2416 __be16 type; /* This is really htons(ether_type). */ 2417 bool ignore_outgoing; 2418 struct net_device *dev; /* NULL is wildcarded here */ 2419 int (*func) (struct sk_buff *, 2420 struct net_device *, 2421 struct packet_type *, 2422 struct net_device *); 2423 void (*list_func) (struct list_head *, 2424 struct packet_type *, 2425 struct net_device *); 2426 bool (*id_match)(struct packet_type *ptype, 2427 struct sock *sk); 2428 void *af_packet_priv; 2429 struct list_head list; 2430 }; 2431 2432 struct offload_callbacks { 2433 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2434 netdev_features_t features); 2435 struct sk_buff *(*gro_receive)(struct list_head *head, 2436 struct sk_buff *skb); 2437 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2438 }; 2439 2440 struct packet_offload { 2441 __be16 type; /* This is really htons(ether_type). */ 2442 u16 priority; 2443 struct offload_callbacks callbacks; 2444 struct list_head list; 2445 }; 2446 2447 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2448 struct pcpu_sw_netstats { 2449 u64 rx_packets; 2450 u64 rx_bytes; 2451 u64 tx_packets; 2452 u64 tx_bytes; 2453 struct u64_stats_sync syncp; 2454 } __aligned(4 * sizeof(u64)); 2455 2456 struct pcpu_lstats { 2457 u64_stats_t packets; 2458 u64_stats_t bytes; 2459 struct u64_stats_sync syncp; 2460 } __aligned(2 * sizeof(u64)); 2461 2462 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2463 2464 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2465 { 2466 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2467 2468 u64_stats_update_begin(&lstats->syncp); 2469 u64_stats_add(&lstats->bytes, len); 2470 u64_stats_inc(&lstats->packets); 2471 u64_stats_update_end(&lstats->syncp); 2472 } 2473 2474 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2475 ({ \ 2476 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2477 if (pcpu_stats) { \ 2478 int __cpu; \ 2479 for_each_possible_cpu(__cpu) { \ 2480 typeof(type) *stat; \ 2481 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2482 u64_stats_init(&stat->syncp); \ 2483 } \ 2484 } \ 2485 pcpu_stats; \ 2486 }) 2487 2488 #define netdev_alloc_pcpu_stats(type) \ 2489 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2490 2491 enum netdev_lag_tx_type { 2492 NETDEV_LAG_TX_TYPE_UNKNOWN, 2493 NETDEV_LAG_TX_TYPE_RANDOM, 2494 NETDEV_LAG_TX_TYPE_BROADCAST, 2495 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2496 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2497 NETDEV_LAG_TX_TYPE_HASH, 2498 }; 2499 2500 enum netdev_lag_hash { 2501 NETDEV_LAG_HASH_NONE, 2502 NETDEV_LAG_HASH_L2, 2503 NETDEV_LAG_HASH_L34, 2504 NETDEV_LAG_HASH_L23, 2505 NETDEV_LAG_HASH_E23, 2506 NETDEV_LAG_HASH_E34, 2507 NETDEV_LAG_HASH_UNKNOWN, 2508 }; 2509 2510 struct netdev_lag_upper_info { 2511 enum netdev_lag_tx_type tx_type; 2512 enum netdev_lag_hash hash_type; 2513 }; 2514 2515 struct netdev_lag_lower_state_info { 2516 u8 link_up : 1, 2517 tx_enabled : 1; 2518 }; 2519 2520 #include <linux/notifier.h> 2521 2522 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2523 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2524 * adding new types. 2525 */ 2526 enum netdev_cmd { 2527 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2528 NETDEV_DOWN, 2529 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2530 detected a hardware crash and restarted 2531 - we can use this eg to kick tcp sessions 2532 once done */ 2533 NETDEV_CHANGE, /* Notify device state change */ 2534 NETDEV_REGISTER, 2535 NETDEV_UNREGISTER, 2536 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2537 NETDEV_CHANGEADDR, /* notify after the address change */ 2538 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2539 NETDEV_GOING_DOWN, 2540 NETDEV_CHANGENAME, 2541 NETDEV_FEAT_CHANGE, 2542 NETDEV_BONDING_FAILOVER, 2543 NETDEV_PRE_UP, 2544 NETDEV_PRE_TYPE_CHANGE, 2545 NETDEV_POST_TYPE_CHANGE, 2546 NETDEV_POST_INIT, 2547 NETDEV_RELEASE, 2548 NETDEV_NOTIFY_PEERS, 2549 NETDEV_JOIN, 2550 NETDEV_CHANGEUPPER, 2551 NETDEV_RESEND_IGMP, 2552 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2553 NETDEV_CHANGEINFODATA, 2554 NETDEV_BONDING_INFO, 2555 NETDEV_PRECHANGEUPPER, 2556 NETDEV_CHANGELOWERSTATE, 2557 NETDEV_UDP_TUNNEL_PUSH_INFO, 2558 NETDEV_UDP_TUNNEL_DROP_INFO, 2559 NETDEV_CHANGE_TX_QUEUE_LEN, 2560 NETDEV_CVLAN_FILTER_PUSH_INFO, 2561 NETDEV_CVLAN_FILTER_DROP_INFO, 2562 NETDEV_SVLAN_FILTER_PUSH_INFO, 2563 NETDEV_SVLAN_FILTER_DROP_INFO, 2564 }; 2565 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2566 2567 int register_netdevice_notifier(struct notifier_block *nb); 2568 int unregister_netdevice_notifier(struct notifier_block *nb); 2569 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2570 int unregister_netdevice_notifier_net(struct net *net, 2571 struct notifier_block *nb); 2572 int register_netdevice_notifier_dev_net(struct net_device *dev, 2573 struct notifier_block *nb, 2574 struct netdev_net_notifier *nn); 2575 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2576 struct notifier_block *nb, 2577 struct netdev_net_notifier *nn); 2578 2579 struct netdev_notifier_info { 2580 struct net_device *dev; 2581 struct netlink_ext_ack *extack; 2582 }; 2583 2584 struct netdev_notifier_info_ext { 2585 struct netdev_notifier_info info; /* must be first */ 2586 union { 2587 u32 mtu; 2588 } ext; 2589 }; 2590 2591 struct netdev_notifier_change_info { 2592 struct netdev_notifier_info info; /* must be first */ 2593 unsigned int flags_changed; 2594 }; 2595 2596 struct netdev_notifier_changeupper_info { 2597 struct netdev_notifier_info info; /* must be first */ 2598 struct net_device *upper_dev; /* new upper dev */ 2599 bool master; /* is upper dev master */ 2600 bool linking; /* is the notification for link or unlink */ 2601 void *upper_info; /* upper dev info */ 2602 }; 2603 2604 struct netdev_notifier_changelowerstate_info { 2605 struct netdev_notifier_info info; /* must be first */ 2606 void *lower_state_info; /* is lower dev state */ 2607 }; 2608 2609 struct netdev_notifier_pre_changeaddr_info { 2610 struct netdev_notifier_info info; /* must be first */ 2611 const unsigned char *dev_addr; 2612 }; 2613 2614 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2615 struct net_device *dev) 2616 { 2617 info->dev = dev; 2618 info->extack = NULL; 2619 } 2620 2621 static inline struct net_device * 2622 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2623 { 2624 return info->dev; 2625 } 2626 2627 static inline struct netlink_ext_ack * 2628 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2629 { 2630 return info->extack; 2631 } 2632 2633 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2634 2635 2636 extern rwlock_t dev_base_lock; /* Device list lock */ 2637 2638 #define for_each_netdev(net, d) \ 2639 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2640 #define for_each_netdev_reverse(net, d) \ 2641 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2642 #define for_each_netdev_rcu(net, d) \ 2643 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2644 #define for_each_netdev_safe(net, d, n) \ 2645 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2646 #define for_each_netdev_continue(net, d) \ 2647 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2648 #define for_each_netdev_continue_reverse(net, d) \ 2649 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2650 dev_list) 2651 #define for_each_netdev_continue_rcu(net, d) \ 2652 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2653 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2654 for_each_netdev_rcu(&init_net, slave) \ 2655 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2656 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2657 2658 static inline struct net_device *next_net_device(struct net_device *dev) 2659 { 2660 struct list_head *lh; 2661 struct net *net; 2662 2663 net = dev_net(dev); 2664 lh = dev->dev_list.next; 2665 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2666 } 2667 2668 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2669 { 2670 struct list_head *lh; 2671 struct net *net; 2672 2673 net = dev_net(dev); 2674 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2675 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2676 } 2677 2678 static inline struct net_device *first_net_device(struct net *net) 2679 { 2680 return list_empty(&net->dev_base_head) ? NULL : 2681 net_device_entry(net->dev_base_head.next); 2682 } 2683 2684 static inline struct net_device *first_net_device_rcu(struct net *net) 2685 { 2686 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2687 2688 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2689 } 2690 2691 int netdev_boot_setup_check(struct net_device *dev); 2692 unsigned long netdev_boot_base(const char *prefix, int unit); 2693 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2694 const char *hwaddr); 2695 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2697 void dev_add_pack(struct packet_type *pt); 2698 void dev_remove_pack(struct packet_type *pt); 2699 void __dev_remove_pack(struct packet_type *pt); 2700 void dev_add_offload(struct packet_offload *po); 2701 void dev_remove_offload(struct packet_offload *po); 2702 2703 int dev_get_iflink(const struct net_device *dev); 2704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2705 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2706 unsigned short mask); 2707 struct net_device *dev_get_by_name(struct net *net, const char *name); 2708 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2709 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2710 int dev_alloc_name(struct net_device *dev, const char *name); 2711 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2712 void dev_close(struct net_device *dev); 2713 void dev_close_many(struct list_head *head, bool unlink); 2714 void dev_disable_lro(struct net_device *dev); 2715 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2716 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2717 struct net_device *sb_dev); 2718 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2719 struct net_device *sb_dev); 2720 int dev_queue_xmit(struct sk_buff *skb); 2721 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2722 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2723 int register_netdevice(struct net_device *dev); 2724 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2725 void unregister_netdevice_many(struct list_head *head); 2726 static inline void unregister_netdevice(struct net_device *dev) 2727 { 2728 unregister_netdevice_queue(dev, NULL); 2729 } 2730 2731 int netdev_refcnt_read(const struct net_device *dev); 2732 void free_netdev(struct net_device *dev); 2733 void netdev_freemem(struct net_device *dev); 2734 void synchronize_net(void); 2735 int init_dummy_netdev(struct net_device *dev); 2736 2737 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2738 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2739 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2740 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2741 int netdev_get_name(struct net *net, char *name, int ifindex); 2742 int dev_restart(struct net_device *dev); 2743 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2744 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 2745 2746 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2747 { 2748 return NAPI_GRO_CB(skb)->data_offset; 2749 } 2750 2751 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2752 { 2753 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2754 } 2755 2756 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2757 { 2758 NAPI_GRO_CB(skb)->data_offset += len; 2759 } 2760 2761 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2762 unsigned int offset) 2763 { 2764 return NAPI_GRO_CB(skb)->frag0 + offset; 2765 } 2766 2767 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2768 { 2769 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2770 } 2771 2772 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2773 { 2774 NAPI_GRO_CB(skb)->frag0 = NULL; 2775 NAPI_GRO_CB(skb)->frag0_len = 0; 2776 } 2777 2778 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2779 unsigned int offset) 2780 { 2781 if (!pskb_may_pull(skb, hlen)) 2782 return NULL; 2783 2784 skb_gro_frag0_invalidate(skb); 2785 return skb->data + offset; 2786 } 2787 2788 static inline void *skb_gro_network_header(struct sk_buff *skb) 2789 { 2790 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2791 skb_network_offset(skb); 2792 } 2793 2794 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2795 const void *start, unsigned int len) 2796 { 2797 if (NAPI_GRO_CB(skb)->csum_valid) 2798 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2799 csum_partial(start, len, 0)); 2800 } 2801 2802 /* GRO checksum functions. These are logical equivalents of the normal 2803 * checksum functions (in skbuff.h) except that they operate on the GRO 2804 * offsets and fields in sk_buff. 2805 */ 2806 2807 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2808 2809 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2810 { 2811 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2812 } 2813 2814 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2815 bool zero_okay, 2816 __sum16 check) 2817 { 2818 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2819 skb_checksum_start_offset(skb) < 2820 skb_gro_offset(skb)) && 2821 !skb_at_gro_remcsum_start(skb) && 2822 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2823 (!zero_okay || check)); 2824 } 2825 2826 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2827 __wsum psum) 2828 { 2829 if (NAPI_GRO_CB(skb)->csum_valid && 2830 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2831 return 0; 2832 2833 NAPI_GRO_CB(skb)->csum = psum; 2834 2835 return __skb_gro_checksum_complete(skb); 2836 } 2837 2838 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2839 { 2840 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2841 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2842 NAPI_GRO_CB(skb)->csum_cnt--; 2843 } else { 2844 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2845 * verified a new top level checksum or an encapsulated one 2846 * during GRO. This saves work if we fallback to normal path. 2847 */ 2848 __skb_incr_checksum_unnecessary(skb); 2849 } 2850 } 2851 2852 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2853 compute_pseudo) \ 2854 ({ \ 2855 __sum16 __ret = 0; \ 2856 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2857 __ret = __skb_gro_checksum_validate_complete(skb, \ 2858 compute_pseudo(skb, proto)); \ 2859 if (!__ret) \ 2860 skb_gro_incr_csum_unnecessary(skb); \ 2861 __ret; \ 2862 }) 2863 2864 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2865 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2866 2867 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2868 compute_pseudo) \ 2869 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2870 2871 #define skb_gro_checksum_simple_validate(skb) \ 2872 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2873 2874 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2875 { 2876 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2877 !NAPI_GRO_CB(skb)->csum_valid); 2878 } 2879 2880 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2881 __wsum pseudo) 2882 { 2883 NAPI_GRO_CB(skb)->csum = ~pseudo; 2884 NAPI_GRO_CB(skb)->csum_valid = 1; 2885 } 2886 2887 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 2888 do { \ 2889 if (__skb_gro_checksum_convert_check(skb)) \ 2890 __skb_gro_checksum_convert(skb, \ 2891 compute_pseudo(skb, proto)); \ 2892 } while (0) 2893 2894 struct gro_remcsum { 2895 int offset; 2896 __wsum delta; 2897 }; 2898 2899 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2900 { 2901 grc->offset = 0; 2902 grc->delta = 0; 2903 } 2904 2905 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2906 unsigned int off, size_t hdrlen, 2907 int start, int offset, 2908 struct gro_remcsum *grc, 2909 bool nopartial) 2910 { 2911 __wsum delta; 2912 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2913 2914 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2915 2916 if (!nopartial) { 2917 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2918 return ptr; 2919 } 2920 2921 ptr = skb_gro_header_fast(skb, off); 2922 if (skb_gro_header_hard(skb, off + plen)) { 2923 ptr = skb_gro_header_slow(skb, off + plen, off); 2924 if (!ptr) 2925 return NULL; 2926 } 2927 2928 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2929 start, offset); 2930 2931 /* Adjust skb->csum since we changed the packet */ 2932 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2933 2934 grc->offset = off + hdrlen + offset; 2935 grc->delta = delta; 2936 2937 return ptr; 2938 } 2939 2940 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2941 struct gro_remcsum *grc) 2942 { 2943 void *ptr; 2944 size_t plen = grc->offset + sizeof(u16); 2945 2946 if (!grc->delta) 2947 return; 2948 2949 ptr = skb_gro_header_fast(skb, grc->offset); 2950 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2951 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2952 if (!ptr) 2953 return; 2954 } 2955 2956 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2957 } 2958 2959 #ifdef CONFIG_XFRM_OFFLOAD 2960 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2961 { 2962 if (PTR_ERR(pp) != -EINPROGRESS) 2963 NAPI_GRO_CB(skb)->flush |= flush; 2964 } 2965 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2966 struct sk_buff *pp, 2967 int flush, 2968 struct gro_remcsum *grc) 2969 { 2970 if (PTR_ERR(pp) != -EINPROGRESS) { 2971 NAPI_GRO_CB(skb)->flush |= flush; 2972 skb_gro_remcsum_cleanup(skb, grc); 2973 skb->remcsum_offload = 0; 2974 } 2975 } 2976 #else 2977 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2978 { 2979 NAPI_GRO_CB(skb)->flush |= flush; 2980 } 2981 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2982 struct sk_buff *pp, 2983 int flush, 2984 struct gro_remcsum *grc) 2985 { 2986 NAPI_GRO_CB(skb)->flush |= flush; 2987 skb_gro_remcsum_cleanup(skb, grc); 2988 skb->remcsum_offload = 0; 2989 } 2990 #endif 2991 2992 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2993 unsigned short type, 2994 const void *daddr, const void *saddr, 2995 unsigned int len) 2996 { 2997 if (!dev->header_ops || !dev->header_ops->create) 2998 return 0; 2999 3000 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3001 } 3002 3003 static inline int dev_parse_header(const struct sk_buff *skb, 3004 unsigned char *haddr) 3005 { 3006 const struct net_device *dev = skb->dev; 3007 3008 if (!dev->header_ops || !dev->header_ops->parse) 3009 return 0; 3010 return dev->header_ops->parse(skb, haddr); 3011 } 3012 3013 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3014 { 3015 const struct net_device *dev = skb->dev; 3016 3017 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3018 return 0; 3019 return dev->header_ops->parse_protocol(skb); 3020 } 3021 3022 /* ll_header must have at least hard_header_len allocated */ 3023 static inline bool dev_validate_header(const struct net_device *dev, 3024 char *ll_header, int len) 3025 { 3026 if (likely(len >= dev->hard_header_len)) 3027 return true; 3028 if (len < dev->min_header_len) 3029 return false; 3030 3031 if (capable(CAP_SYS_RAWIO)) { 3032 memset(ll_header + len, 0, dev->hard_header_len - len); 3033 return true; 3034 } 3035 3036 if (dev->header_ops && dev->header_ops->validate) 3037 return dev->header_ops->validate(ll_header, len); 3038 3039 return false; 3040 } 3041 3042 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 3043 int len, int size); 3044 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 3045 static inline int unregister_gifconf(unsigned int family) 3046 { 3047 return register_gifconf(family, NULL); 3048 } 3049 3050 #ifdef CONFIG_NET_FLOW_LIMIT 3051 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3052 struct sd_flow_limit { 3053 u64 count; 3054 unsigned int num_buckets; 3055 unsigned int history_head; 3056 u16 history[FLOW_LIMIT_HISTORY]; 3057 u8 buckets[]; 3058 }; 3059 3060 extern int netdev_flow_limit_table_len; 3061 #endif /* CONFIG_NET_FLOW_LIMIT */ 3062 3063 /* 3064 * Incoming packets are placed on per-CPU queues 3065 */ 3066 struct softnet_data { 3067 struct list_head poll_list; 3068 struct sk_buff_head process_queue; 3069 3070 /* stats */ 3071 unsigned int processed; 3072 unsigned int time_squeeze; 3073 unsigned int received_rps; 3074 #ifdef CONFIG_RPS 3075 struct softnet_data *rps_ipi_list; 3076 #endif 3077 #ifdef CONFIG_NET_FLOW_LIMIT 3078 struct sd_flow_limit __rcu *flow_limit; 3079 #endif 3080 struct Qdisc *output_queue; 3081 struct Qdisc **output_queue_tailp; 3082 struct sk_buff *completion_queue; 3083 #ifdef CONFIG_XFRM_OFFLOAD 3084 struct sk_buff_head xfrm_backlog; 3085 #endif 3086 /* written and read only by owning cpu: */ 3087 struct { 3088 u16 recursion; 3089 u8 more; 3090 } xmit; 3091 #ifdef CONFIG_RPS 3092 /* input_queue_head should be written by cpu owning this struct, 3093 * and only read by other cpus. Worth using a cache line. 3094 */ 3095 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3096 3097 /* Elements below can be accessed between CPUs for RPS/RFS */ 3098 call_single_data_t csd ____cacheline_aligned_in_smp; 3099 struct softnet_data *rps_ipi_next; 3100 unsigned int cpu; 3101 unsigned int input_queue_tail; 3102 #endif 3103 unsigned int dropped; 3104 struct sk_buff_head input_pkt_queue; 3105 struct napi_struct backlog; 3106 3107 }; 3108 3109 static inline void input_queue_head_incr(struct softnet_data *sd) 3110 { 3111 #ifdef CONFIG_RPS 3112 sd->input_queue_head++; 3113 #endif 3114 } 3115 3116 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3117 unsigned int *qtail) 3118 { 3119 #ifdef CONFIG_RPS 3120 *qtail = ++sd->input_queue_tail; 3121 #endif 3122 } 3123 3124 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3125 3126 static inline int dev_recursion_level(void) 3127 { 3128 return this_cpu_read(softnet_data.xmit.recursion); 3129 } 3130 3131 #define XMIT_RECURSION_LIMIT 10 3132 static inline bool dev_xmit_recursion(void) 3133 { 3134 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3135 XMIT_RECURSION_LIMIT); 3136 } 3137 3138 static inline void dev_xmit_recursion_inc(void) 3139 { 3140 __this_cpu_inc(softnet_data.xmit.recursion); 3141 } 3142 3143 static inline void dev_xmit_recursion_dec(void) 3144 { 3145 __this_cpu_dec(softnet_data.xmit.recursion); 3146 } 3147 3148 void __netif_schedule(struct Qdisc *q); 3149 void netif_schedule_queue(struct netdev_queue *txq); 3150 3151 static inline void netif_tx_schedule_all(struct net_device *dev) 3152 { 3153 unsigned int i; 3154 3155 for (i = 0; i < dev->num_tx_queues; i++) 3156 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3157 } 3158 3159 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3160 { 3161 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3162 } 3163 3164 /** 3165 * netif_start_queue - allow transmit 3166 * @dev: network device 3167 * 3168 * Allow upper layers to call the device hard_start_xmit routine. 3169 */ 3170 static inline void netif_start_queue(struct net_device *dev) 3171 { 3172 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3173 } 3174 3175 static inline void netif_tx_start_all_queues(struct net_device *dev) 3176 { 3177 unsigned int i; 3178 3179 for (i = 0; i < dev->num_tx_queues; i++) { 3180 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3181 netif_tx_start_queue(txq); 3182 } 3183 } 3184 3185 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3186 3187 /** 3188 * netif_wake_queue - restart transmit 3189 * @dev: network device 3190 * 3191 * Allow upper layers to call the device hard_start_xmit routine. 3192 * Used for flow control when transmit resources are available. 3193 */ 3194 static inline void netif_wake_queue(struct net_device *dev) 3195 { 3196 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3197 } 3198 3199 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3200 { 3201 unsigned int i; 3202 3203 for (i = 0; i < dev->num_tx_queues; i++) { 3204 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3205 netif_tx_wake_queue(txq); 3206 } 3207 } 3208 3209 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3210 { 3211 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3212 } 3213 3214 /** 3215 * netif_stop_queue - stop transmitted packets 3216 * @dev: network device 3217 * 3218 * Stop upper layers calling the device hard_start_xmit routine. 3219 * Used for flow control when transmit resources are unavailable. 3220 */ 3221 static inline void netif_stop_queue(struct net_device *dev) 3222 { 3223 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3224 } 3225 3226 void netif_tx_stop_all_queues(struct net_device *dev); 3227 void netdev_update_lockdep_key(struct net_device *dev); 3228 3229 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3230 { 3231 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3232 } 3233 3234 /** 3235 * netif_queue_stopped - test if transmit queue is flowblocked 3236 * @dev: network device 3237 * 3238 * Test if transmit queue on device is currently unable to send. 3239 */ 3240 static inline bool netif_queue_stopped(const struct net_device *dev) 3241 { 3242 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3243 } 3244 3245 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3246 { 3247 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3248 } 3249 3250 static inline bool 3251 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3252 { 3253 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3254 } 3255 3256 static inline bool 3257 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3258 { 3259 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3260 } 3261 3262 /** 3263 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3264 * @dev_queue: pointer to transmit queue 3265 * 3266 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3267 * to give appropriate hint to the CPU. 3268 */ 3269 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3270 { 3271 #ifdef CONFIG_BQL 3272 prefetchw(&dev_queue->dql.num_queued); 3273 #endif 3274 } 3275 3276 /** 3277 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3278 * @dev_queue: pointer to transmit queue 3279 * 3280 * BQL enabled drivers might use this helper in their TX completion path, 3281 * to give appropriate hint to the CPU. 3282 */ 3283 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3284 { 3285 #ifdef CONFIG_BQL 3286 prefetchw(&dev_queue->dql.limit); 3287 #endif 3288 } 3289 3290 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3291 unsigned int bytes) 3292 { 3293 #ifdef CONFIG_BQL 3294 dql_queued(&dev_queue->dql, bytes); 3295 3296 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3297 return; 3298 3299 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3300 3301 /* 3302 * The XOFF flag must be set before checking the dql_avail below, 3303 * because in netdev_tx_completed_queue we update the dql_completed 3304 * before checking the XOFF flag. 3305 */ 3306 smp_mb(); 3307 3308 /* check again in case another CPU has just made room avail */ 3309 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3310 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3311 #endif 3312 } 3313 3314 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3315 * that they should not test BQL status themselves. 3316 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3317 * skb of a batch. 3318 * Returns true if the doorbell must be used to kick the NIC. 3319 */ 3320 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3321 unsigned int bytes, 3322 bool xmit_more) 3323 { 3324 if (xmit_more) { 3325 #ifdef CONFIG_BQL 3326 dql_queued(&dev_queue->dql, bytes); 3327 #endif 3328 return netif_tx_queue_stopped(dev_queue); 3329 } 3330 netdev_tx_sent_queue(dev_queue, bytes); 3331 return true; 3332 } 3333 3334 /** 3335 * netdev_sent_queue - report the number of bytes queued to hardware 3336 * @dev: network device 3337 * @bytes: number of bytes queued to the hardware device queue 3338 * 3339 * Report the number of bytes queued for sending/completion to the network 3340 * device hardware queue. @bytes should be a good approximation and should 3341 * exactly match netdev_completed_queue() @bytes 3342 */ 3343 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3344 { 3345 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3346 } 3347 3348 static inline bool __netdev_sent_queue(struct net_device *dev, 3349 unsigned int bytes, 3350 bool xmit_more) 3351 { 3352 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3353 xmit_more); 3354 } 3355 3356 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3357 unsigned int pkts, unsigned int bytes) 3358 { 3359 #ifdef CONFIG_BQL 3360 if (unlikely(!bytes)) 3361 return; 3362 3363 dql_completed(&dev_queue->dql, bytes); 3364 3365 /* 3366 * Without the memory barrier there is a small possiblity that 3367 * netdev_tx_sent_queue will miss the update and cause the queue to 3368 * be stopped forever 3369 */ 3370 smp_mb(); 3371 3372 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3373 return; 3374 3375 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3376 netif_schedule_queue(dev_queue); 3377 #endif 3378 } 3379 3380 /** 3381 * netdev_completed_queue - report bytes and packets completed by device 3382 * @dev: network device 3383 * @pkts: actual number of packets sent over the medium 3384 * @bytes: actual number of bytes sent over the medium 3385 * 3386 * Report the number of bytes and packets transmitted by the network device 3387 * hardware queue over the physical medium, @bytes must exactly match the 3388 * @bytes amount passed to netdev_sent_queue() 3389 */ 3390 static inline void netdev_completed_queue(struct net_device *dev, 3391 unsigned int pkts, unsigned int bytes) 3392 { 3393 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3394 } 3395 3396 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3397 { 3398 #ifdef CONFIG_BQL 3399 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3400 dql_reset(&q->dql); 3401 #endif 3402 } 3403 3404 /** 3405 * netdev_reset_queue - reset the packets and bytes count of a network device 3406 * @dev_queue: network device 3407 * 3408 * Reset the bytes and packet count of a network device and clear the 3409 * software flow control OFF bit for this network device 3410 */ 3411 static inline void netdev_reset_queue(struct net_device *dev_queue) 3412 { 3413 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3414 } 3415 3416 /** 3417 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3418 * @dev: network device 3419 * @queue_index: given tx queue index 3420 * 3421 * Returns 0 if given tx queue index >= number of device tx queues, 3422 * otherwise returns the originally passed tx queue index. 3423 */ 3424 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3425 { 3426 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3427 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3428 dev->name, queue_index, 3429 dev->real_num_tx_queues); 3430 return 0; 3431 } 3432 3433 return queue_index; 3434 } 3435 3436 /** 3437 * netif_running - test if up 3438 * @dev: network device 3439 * 3440 * Test if the device has been brought up. 3441 */ 3442 static inline bool netif_running(const struct net_device *dev) 3443 { 3444 return test_bit(__LINK_STATE_START, &dev->state); 3445 } 3446 3447 /* 3448 * Routines to manage the subqueues on a device. We only need start, 3449 * stop, and a check if it's stopped. All other device management is 3450 * done at the overall netdevice level. 3451 * Also test the device if we're multiqueue. 3452 */ 3453 3454 /** 3455 * netif_start_subqueue - allow sending packets on subqueue 3456 * @dev: network device 3457 * @queue_index: sub queue index 3458 * 3459 * Start individual transmit queue of a device with multiple transmit queues. 3460 */ 3461 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3462 { 3463 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3464 3465 netif_tx_start_queue(txq); 3466 } 3467 3468 /** 3469 * netif_stop_subqueue - stop sending packets on subqueue 3470 * @dev: network device 3471 * @queue_index: sub queue index 3472 * 3473 * Stop individual transmit queue of a device with multiple transmit queues. 3474 */ 3475 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3476 { 3477 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3478 netif_tx_stop_queue(txq); 3479 } 3480 3481 /** 3482 * netif_subqueue_stopped - test status of subqueue 3483 * @dev: network device 3484 * @queue_index: sub queue index 3485 * 3486 * Check individual transmit queue of a device with multiple transmit queues. 3487 */ 3488 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3489 u16 queue_index) 3490 { 3491 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3492 3493 return netif_tx_queue_stopped(txq); 3494 } 3495 3496 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3497 struct sk_buff *skb) 3498 { 3499 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3500 } 3501 3502 /** 3503 * netif_wake_subqueue - allow sending packets on subqueue 3504 * @dev: network device 3505 * @queue_index: sub queue index 3506 * 3507 * Resume individual transmit queue of a device with multiple transmit queues. 3508 */ 3509 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3510 { 3511 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3512 3513 netif_tx_wake_queue(txq); 3514 } 3515 3516 #ifdef CONFIG_XPS 3517 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3518 u16 index); 3519 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3520 u16 index, bool is_rxqs_map); 3521 3522 /** 3523 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3524 * @j: CPU/Rx queue index 3525 * @mask: bitmask of all cpus/rx queues 3526 * @nr_bits: number of bits in the bitmask 3527 * 3528 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3529 */ 3530 static inline bool netif_attr_test_mask(unsigned long j, 3531 const unsigned long *mask, 3532 unsigned int nr_bits) 3533 { 3534 cpu_max_bits_warn(j, nr_bits); 3535 return test_bit(j, mask); 3536 } 3537 3538 /** 3539 * netif_attr_test_online - Test for online CPU/Rx queue 3540 * @j: CPU/Rx queue index 3541 * @online_mask: bitmask for CPUs/Rx queues that are online 3542 * @nr_bits: number of bits in the bitmask 3543 * 3544 * Returns true if a CPU/Rx queue is online. 3545 */ 3546 static inline bool netif_attr_test_online(unsigned long j, 3547 const unsigned long *online_mask, 3548 unsigned int nr_bits) 3549 { 3550 cpu_max_bits_warn(j, nr_bits); 3551 3552 if (online_mask) 3553 return test_bit(j, online_mask); 3554 3555 return (j < nr_bits); 3556 } 3557 3558 /** 3559 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3560 * @n: CPU/Rx queue index 3561 * @srcp: the cpumask/Rx queue mask pointer 3562 * @nr_bits: number of bits in the bitmask 3563 * 3564 * Returns >= nr_bits if no further CPUs/Rx queues set. 3565 */ 3566 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3567 unsigned int nr_bits) 3568 { 3569 /* -1 is a legal arg here. */ 3570 if (n != -1) 3571 cpu_max_bits_warn(n, nr_bits); 3572 3573 if (srcp) 3574 return find_next_bit(srcp, nr_bits, n + 1); 3575 3576 return n + 1; 3577 } 3578 3579 /** 3580 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3581 * @n: CPU/Rx queue index 3582 * @src1p: the first CPUs/Rx queues mask pointer 3583 * @src2p: the second CPUs/Rx queues mask pointer 3584 * @nr_bits: number of bits in the bitmask 3585 * 3586 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3587 */ 3588 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3589 const unsigned long *src2p, 3590 unsigned int nr_bits) 3591 { 3592 /* -1 is a legal arg here. */ 3593 if (n != -1) 3594 cpu_max_bits_warn(n, nr_bits); 3595 3596 if (src1p && src2p) 3597 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3598 else if (src1p) 3599 return find_next_bit(src1p, nr_bits, n + 1); 3600 else if (src2p) 3601 return find_next_bit(src2p, nr_bits, n + 1); 3602 3603 return n + 1; 3604 } 3605 #else 3606 static inline int netif_set_xps_queue(struct net_device *dev, 3607 const struct cpumask *mask, 3608 u16 index) 3609 { 3610 return 0; 3611 } 3612 3613 static inline int __netif_set_xps_queue(struct net_device *dev, 3614 const unsigned long *mask, 3615 u16 index, bool is_rxqs_map) 3616 { 3617 return 0; 3618 } 3619 #endif 3620 3621 /** 3622 * netif_is_multiqueue - test if device has multiple transmit queues 3623 * @dev: network device 3624 * 3625 * Check if device has multiple transmit queues 3626 */ 3627 static inline bool netif_is_multiqueue(const struct net_device *dev) 3628 { 3629 return dev->num_tx_queues > 1; 3630 } 3631 3632 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3633 3634 #ifdef CONFIG_SYSFS 3635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3636 #else 3637 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3638 unsigned int rxqs) 3639 { 3640 dev->real_num_rx_queues = rxqs; 3641 return 0; 3642 } 3643 #endif 3644 3645 static inline struct netdev_rx_queue * 3646 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3647 { 3648 return dev->_rx + rxq; 3649 } 3650 3651 #ifdef CONFIG_SYSFS 3652 static inline unsigned int get_netdev_rx_queue_index( 3653 struct netdev_rx_queue *queue) 3654 { 3655 struct net_device *dev = queue->dev; 3656 int index = queue - dev->_rx; 3657 3658 BUG_ON(index >= dev->num_rx_queues); 3659 return index; 3660 } 3661 #endif 3662 3663 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3664 int netif_get_num_default_rss_queues(void); 3665 3666 enum skb_free_reason { 3667 SKB_REASON_CONSUMED, 3668 SKB_REASON_DROPPED, 3669 }; 3670 3671 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3672 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3673 3674 /* 3675 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3676 * interrupt context or with hardware interrupts being disabled. 3677 * (in_irq() || irqs_disabled()) 3678 * 3679 * We provide four helpers that can be used in following contexts : 3680 * 3681 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3682 * replacing kfree_skb(skb) 3683 * 3684 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3685 * Typically used in place of consume_skb(skb) in TX completion path 3686 * 3687 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3688 * replacing kfree_skb(skb) 3689 * 3690 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3691 * and consumed a packet. Used in place of consume_skb(skb) 3692 */ 3693 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3694 { 3695 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3696 } 3697 3698 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3699 { 3700 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3701 } 3702 3703 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3704 { 3705 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3706 } 3707 3708 static inline void dev_consume_skb_any(struct sk_buff *skb) 3709 { 3710 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3711 } 3712 3713 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3714 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3715 int netif_rx(struct sk_buff *skb); 3716 int netif_rx_ni(struct sk_buff *skb); 3717 int netif_receive_skb(struct sk_buff *skb); 3718 int netif_receive_skb_core(struct sk_buff *skb); 3719 void netif_receive_skb_list(struct list_head *head); 3720 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3721 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3722 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3723 gro_result_t napi_gro_frags(struct napi_struct *napi); 3724 struct packet_offload *gro_find_receive_by_type(__be16 type); 3725 struct packet_offload *gro_find_complete_by_type(__be16 type); 3726 3727 static inline void napi_free_frags(struct napi_struct *napi) 3728 { 3729 kfree_skb(napi->skb); 3730 napi->skb = NULL; 3731 } 3732 3733 bool netdev_is_rx_handler_busy(struct net_device *dev); 3734 int netdev_rx_handler_register(struct net_device *dev, 3735 rx_handler_func_t *rx_handler, 3736 void *rx_handler_data); 3737 void netdev_rx_handler_unregister(struct net_device *dev); 3738 3739 bool dev_valid_name(const char *name); 3740 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3741 bool *need_copyout); 3742 int dev_ifconf(struct net *net, struct ifconf *, int); 3743 int dev_ethtool(struct net *net, struct ifreq *); 3744 unsigned int dev_get_flags(const struct net_device *); 3745 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3746 struct netlink_ext_ack *extack); 3747 int dev_change_flags(struct net_device *dev, unsigned int flags, 3748 struct netlink_ext_ack *extack); 3749 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3750 unsigned int gchanges); 3751 int dev_change_name(struct net_device *, const char *); 3752 int dev_set_alias(struct net_device *, const char *, size_t); 3753 int dev_get_alias(const struct net_device *, char *, size_t); 3754 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3755 int __dev_set_mtu(struct net_device *, int); 3756 int dev_validate_mtu(struct net_device *dev, int mtu, 3757 struct netlink_ext_ack *extack); 3758 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3759 struct netlink_ext_ack *extack); 3760 int dev_set_mtu(struct net_device *, int); 3761 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3762 void dev_set_group(struct net_device *, int); 3763 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3764 struct netlink_ext_ack *extack); 3765 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3766 struct netlink_ext_ack *extack); 3767 int dev_change_carrier(struct net_device *, bool new_carrier); 3768 int dev_get_phys_port_id(struct net_device *dev, 3769 struct netdev_phys_item_id *ppid); 3770 int dev_get_phys_port_name(struct net_device *dev, 3771 char *name, size_t len); 3772 int dev_get_port_parent_id(struct net_device *dev, 3773 struct netdev_phys_item_id *ppid, bool recurse); 3774 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3775 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3776 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3777 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3778 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3779 struct netdev_queue *txq, int *ret); 3780 3781 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3782 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3783 int fd, int expected_fd, u32 flags); 3784 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3785 enum bpf_netdev_command cmd); 3786 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3787 3788 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3789 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3790 bool is_skb_forwardable(const struct net_device *dev, 3791 const struct sk_buff *skb); 3792 3793 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3794 struct sk_buff *skb) 3795 { 3796 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3797 unlikely(!is_skb_forwardable(dev, skb))) { 3798 atomic_long_inc(&dev->rx_dropped); 3799 kfree_skb(skb); 3800 return NET_RX_DROP; 3801 } 3802 3803 skb_scrub_packet(skb, true); 3804 skb->priority = 0; 3805 return 0; 3806 } 3807 3808 bool dev_nit_active(struct net_device *dev); 3809 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3810 3811 extern int netdev_budget; 3812 extern unsigned int netdev_budget_usecs; 3813 3814 /* Called by rtnetlink.c:rtnl_unlock() */ 3815 void netdev_run_todo(void); 3816 3817 /** 3818 * dev_put - release reference to device 3819 * @dev: network device 3820 * 3821 * Release reference to device to allow it to be freed. 3822 */ 3823 static inline void dev_put(struct net_device *dev) 3824 { 3825 this_cpu_dec(*dev->pcpu_refcnt); 3826 } 3827 3828 /** 3829 * dev_hold - get reference to device 3830 * @dev: network device 3831 * 3832 * Hold reference to device to keep it from being freed. 3833 */ 3834 static inline void dev_hold(struct net_device *dev) 3835 { 3836 this_cpu_inc(*dev->pcpu_refcnt); 3837 } 3838 3839 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3840 * and _off may be called from IRQ context, but it is caller 3841 * who is responsible for serialization of these calls. 3842 * 3843 * The name carrier is inappropriate, these functions should really be 3844 * called netif_lowerlayer_*() because they represent the state of any 3845 * kind of lower layer not just hardware media. 3846 */ 3847 3848 void linkwatch_init_dev(struct net_device *dev); 3849 void linkwatch_fire_event(struct net_device *dev); 3850 void linkwatch_forget_dev(struct net_device *dev); 3851 3852 /** 3853 * netif_carrier_ok - test if carrier present 3854 * @dev: network device 3855 * 3856 * Check if carrier is present on device 3857 */ 3858 static inline bool netif_carrier_ok(const struct net_device *dev) 3859 { 3860 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3861 } 3862 3863 unsigned long dev_trans_start(struct net_device *dev); 3864 3865 void __netdev_watchdog_up(struct net_device *dev); 3866 3867 void netif_carrier_on(struct net_device *dev); 3868 3869 void netif_carrier_off(struct net_device *dev); 3870 3871 /** 3872 * netif_dormant_on - mark device as dormant. 3873 * @dev: network device 3874 * 3875 * Mark device as dormant (as per RFC2863). 3876 * 3877 * The dormant state indicates that the relevant interface is not 3878 * actually in a condition to pass packets (i.e., it is not 'up') but is 3879 * in a "pending" state, waiting for some external event. For "on- 3880 * demand" interfaces, this new state identifies the situation where the 3881 * interface is waiting for events to place it in the up state. 3882 */ 3883 static inline void netif_dormant_on(struct net_device *dev) 3884 { 3885 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3886 linkwatch_fire_event(dev); 3887 } 3888 3889 /** 3890 * netif_dormant_off - set device as not dormant. 3891 * @dev: network device 3892 * 3893 * Device is not in dormant state. 3894 */ 3895 static inline void netif_dormant_off(struct net_device *dev) 3896 { 3897 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3898 linkwatch_fire_event(dev); 3899 } 3900 3901 /** 3902 * netif_dormant - test if device is dormant 3903 * @dev: network device 3904 * 3905 * Check if device is dormant. 3906 */ 3907 static inline bool netif_dormant(const struct net_device *dev) 3908 { 3909 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3910 } 3911 3912 3913 /** 3914 * netif_testing_on - mark device as under test. 3915 * @dev: network device 3916 * 3917 * Mark device as under test (as per RFC2863). 3918 * 3919 * The testing state indicates that some test(s) must be performed on 3920 * the interface. After completion, of the test, the interface state 3921 * will change to up, dormant, or down, as appropriate. 3922 */ 3923 static inline void netif_testing_on(struct net_device *dev) 3924 { 3925 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 3926 linkwatch_fire_event(dev); 3927 } 3928 3929 /** 3930 * netif_testing_off - set device as not under test. 3931 * @dev: network device 3932 * 3933 * Device is not in testing state. 3934 */ 3935 static inline void netif_testing_off(struct net_device *dev) 3936 { 3937 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 3938 linkwatch_fire_event(dev); 3939 } 3940 3941 /** 3942 * netif_testing - test if device is under test 3943 * @dev: network device 3944 * 3945 * Check if device is under test 3946 */ 3947 static inline bool netif_testing(const struct net_device *dev) 3948 { 3949 return test_bit(__LINK_STATE_TESTING, &dev->state); 3950 } 3951 3952 3953 /** 3954 * netif_oper_up - test if device is operational 3955 * @dev: network device 3956 * 3957 * Check if carrier is operational 3958 */ 3959 static inline bool netif_oper_up(const struct net_device *dev) 3960 { 3961 return (dev->operstate == IF_OPER_UP || 3962 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3963 } 3964 3965 /** 3966 * netif_device_present - is device available or removed 3967 * @dev: network device 3968 * 3969 * Check if device has not been removed from system. 3970 */ 3971 static inline bool netif_device_present(struct net_device *dev) 3972 { 3973 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3974 } 3975 3976 void netif_device_detach(struct net_device *dev); 3977 3978 void netif_device_attach(struct net_device *dev); 3979 3980 /* 3981 * Network interface message level settings 3982 */ 3983 3984 enum { 3985 NETIF_MSG_DRV_BIT, 3986 NETIF_MSG_PROBE_BIT, 3987 NETIF_MSG_LINK_BIT, 3988 NETIF_MSG_TIMER_BIT, 3989 NETIF_MSG_IFDOWN_BIT, 3990 NETIF_MSG_IFUP_BIT, 3991 NETIF_MSG_RX_ERR_BIT, 3992 NETIF_MSG_TX_ERR_BIT, 3993 NETIF_MSG_TX_QUEUED_BIT, 3994 NETIF_MSG_INTR_BIT, 3995 NETIF_MSG_TX_DONE_BIT, 3996 NETIF_MSG_RX_STATUS_BIT, 3997 NETIF_MSG_PKTDATA_BIT, 3998 NETIF_MSG_HW_BIT, 3999 NETIF_MSG_WOL_BIT, 4000 4001 /* When you add a new bit above, update netif_msg_class_names array 4002 * in net/ethtool/common.c 4003 */ 4004 NETIF_MSG_CLASS_COUNT, 4005 }; 4006 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4007 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4008 4009 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4010 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4011 4012 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4013 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4014 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4015 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4016 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4017 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4018 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4019 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4020 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4021 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4022 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4023 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4024 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4025 #define NETIF_MSG_HW __NETIF_MSG(HW) 4026 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4027 4028 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4029 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4030 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4031 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4032 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4033 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4034 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4035 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4036 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4037 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4038 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4039 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4040 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4041 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4042 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4043 4044 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4045 { 4046 /* use default */ 4047 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4048 return default_msg_enable_bits; 4049 if (debug_value == 0) /* no output */ 4050 return 0; 4051 /* set low N bits */ 4052 return (1U << debug_value) - 1; 4053 } 4054 4055 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4056 { 4057 spin_lock(&txq->_xmit_lock); 4058 txq->xmit_lock_owner = cpu; 4059 } 4060 4061 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4062 { 4063 __acquire(&txq->_xmit_lock); 4064 return true; 4065 } 4066 4067 static inline void __netif_tx_release(struct netdev_queue *txq) 4068 { 4069 __release(&txq->_xmit_lock); 4070 } 4071 4072 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4073 { 4074 spin_lock_bh(&txq->_xmit_lock); 4075 txq->xmit_lock_owner = smp_processor_id(); 4076 } 4077 4078 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4079 { 4080 bool ok = spin_trylock(&txq->_xmit_lock); 4081 if (likely(ok)) 4082 txq->xmit_lock_owner = smp_processor_id(); 4083 return ok; 4084 } 4085 4086 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4087 { 4088 txq->xmit_lock_owner = -1; 4089 spin_unlock(&txq->_xmit_lock); 4090 } 4091 4092 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4093 { 4094 txq->xmit_lock_owner = -1; 4095 spin_unlock_bh(&txq->_xmit_lock); 4096 } 4097 4098 static inline void txq_trans_update(struct netdev_queue *txq) 4099 { 4100 if (txq->xmit_lock_owner != -1) 4101 txq->trans_start = jiffies; 4102 } 4103 4104 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4105 static inline void netif_trans_update(struct net_device *dev) 4106 { 4107 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4108 4109 if (txq->trans_start != jiffies) 4110 txq->trans_start = jiffies; 4111 } 4112 4113 /** 4114 * netif_tx_lock - grab network device transmit lock 4115 * @dev: network device 4116 * 4117 * Get network device transmit lock 4118 */ 4119 static inline void netif_tx_lock(struct net_device *dev) 4120 { 4121 unsigned int i; 4122 int cpu; 4123 4124 spin_lock(&dev->tx_global_lock); 4125 cpu = smp_processor_id(); 4126 for (i = 0; i < dev->num_tx_queues; i++) { 4127 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4128 4129 /* We are the only thread of execution doing a 4130 * freeze, but we have to grab the _xmit_lock in 4131 * order to synchronize with threads which are in 4132 * the ->hard_start_xmit() handler and already 4133 * checked the frozen bit. 4134 */ 4135 __netif_tx_lock(txq, cpu); 4136 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4137 __netif_tx_unlock(txq); 4138 } 4139 } 4140 4141 static inline void netif_tx_lock_bh(struct net_device *dev) 4142 { 4143 local_bh_disable(); 4144 netif_tx_lock(dev); 4145 } 4146 4147 static inline void netif_tx_unlock(struct net_device *dev) 4148 { 4149 unsigned int i; 4150 4151 for (i = 0; i < dev->num_tx_queues; i++) { 4152 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4153 4154 /* No need to grab the _xmit_lock here. If the 4155 * queue is not stopped for another reason, we 4156 * force a schedule. 4157 */ 4158 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4159 netif_schedule_queue(txq); 4160 } 4161 spin_unlock(&dev->tx_global_lock); 4162 } 4163 4164 static inline void netif_tx_unlock_bh(struct net_device *dev) 4165 { 4166 netif_tx_unlock(dev); 4167 local_bh_enable(); 4168 } 4169 4170 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4171 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4172 __netif_tx_lock(txq, cpu); \ 4173 } else { \ 4174 __netif_tx_acquire(txq); \ 4175 } \ 4176 } 4177 4178 #define HARD_TX_TRYLOCK(dev, txq) \ 4179 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4180 __netif_tx_trylock(txq) : \ 4181 __netif_tx_acquire(txq)) 4182 4183 #define HARD_TX_UNLOCK(dev, txq) { \ 4184 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4185 __netif_tx_unlock(txq); \ 4186 } else { \ 4187 __netif_tx_release(txq); \ 4188 } \ 4189 } 4190 4191 static inline void netif_tx_disable(struct net_device *dev) 4192 { 4193 unsigned int i; 4194 int cpu; 4195 4196 local_bh_disable(); 4197 cpu = smp_processor_id(); 4198 for (i = 0; i < dev->num_tx_queues; i++) { 4199 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4200 4201 __netif_tx_lock(txq, cpu); 4202 netif_tx_stop_queue(txq); 4203 __netif_tx_unlock(txq); 4204 } 4205 local_bh_enable(); 4206 } 4207 4208 static inline void netif_addr_lock(struct net_device *dev) 4209 { 4210 spin_lock(&dev->addr_list_lock); 4211 } 4212 4213 static inline void netif_addr_lock_bh(struct net_device *dev) 4214 { 4215 spin_lock_bh(&dev->addr_list_lock); 4216 } 4217 4218 static inline void netif_addr_unlock(struct net_device *dev) 4219 { 4220 spin_unlock(&dev->addr_list_lock); 4221 } 4222 4223 static inline void netif_addr_unlock_bh(struct net_device *dev) 4224 { 4225 spin_unlock_bh(&dev->addr_list_lock); 4226 } 4227 4228 /* 4229 * dev_addrs walker. Should be used only for read access. Call with 4230 * rcu_read_lock held. 4231 */ 4232 #define for_each_dev_addr(dev, ha) \ 4233 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4234 4235 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4236 4237 void ether_setup(struct net_device *dev); 4238 4239 /* Support for loadable net-drivers */ 4240 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4241 unsigned char name_assign_type, 4242 void (*setup)(struct net_device *), 4243 unsigned int txqs, unsigned int rxqs); 4244 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4245 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4246 4247 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4248 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4249 count) 4250 4251 int register_netdev(struct net_device *dev); 4252 void unregister_netdev(struct net_device *dev); 4253 4254 /* General hardware address lists handling functions */ 4255 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4256 struct netdev_hw_addr_list *from_list, int addr_len); 4257 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4258 struct netdev_hw_addr_list *from_list, int addr_len); 4259 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4260 struct net_device *dev, 4261 int (*sync)(struct net_device *, const unsigned char *), 4262 int (*unsync)(struct net_device *, 4263 const unsigned char *)); 4264 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4265 struct net_device *dev, 4266 int (*sync)(struct net_device *, 4267 const unsigned char *, int), 4268 int (*unsync)(struct net_device *, 4269 const unsigned char *, int)); 4270 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4271 struct net_device *dev, 4272 int (*unsync)(struct net_device *, 4273 const unsigned char *, int)); 4274 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4275 struct net_device *dev, 4276 int (*unsync)(struct net_device *, 4277 const unsigned char *)); 4278 void __hw_addr_init(struct netdev_hw_addr_list *list); 4279 4280 /* Functions used for device addresses handling */ 4281 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4282 unsigned char addr_type); 4283 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4284 unsigned char addr_type); 4285 void dev_addr_flush(struct net_device *dev); 4286 int dev_addr_init(struct net_device *dev); 4287 4288 /* Functions used for unicast addresses handling */ 4289 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4290 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4291 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4292 int dev_uc_sync(struct net_device *to, struct net_device *from); 4293 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4294 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4295 void dev_uc_flush(struct net_device *dev); 4296 void dev_uc_init(struct net_device *dev); 4297 4298 /** 4299 * __dev_uc_sync - Synchonize device's unicast list 4300 * @dev: device to sync 4301 * @sync: function to call if address should be added 4302 * @unsync: function to call if address should be removed 4303 * 4304 * Add newly added addresses to the interface, and release 4305 * addresses that have been deleted. 4306 */ 4307 static inline int __dev_uc_sync(struct net_device *dev, 4308 int (*sync)(struct net_device *, 4309 const unsigned char *), 4310 int (*unsync)(struct net_device *, 4311 const unsigned char *)) 4312 { 4313 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4314 } 4315 4316 /** 4317 * __dev_uc_unsync - Remove synchronized addresses from device 4318 * @dev: device to sync 4319 * @unsync: function to call if address should be removed 4320 * 4321 * Remove all addresses that were added to the device by dev_uc_sync(). 4322 */ 4323 static inline void __dev_uc_unsync(struct net_device *dev, 4324 int (*unsync)(struct net_device *, 4325 const unsigned char *)) 4326 { 4327 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4328 } 4329 4330 /* Functions used for multicast addresses handling */ 4331 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4332 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4333 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4334 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4335 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4336 int dev_mc_sync(struct net_device *to, struct net_device *from); 4337 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4338 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4339 void dev_mc_flush(struct net_device *dev); 4340 void dev_mc_init(struct net_device *dev); 4341 4342 /** 4343 * __dev_mc_sync - Synchonize device's multicast list 4344 * @dev: device to sync 4345 * @sync: function to call if address should be added 4346 * @unsync: function to call if address should be removed 4347 * 4348 * Add newly added addresses to the interface, and release 4349 * addresses that have been deleted. 4350 */ 4351 static inline int __dev_mc_sync(struct net_device *dev, 4352 int (*sync)(struct net_device *, 4353 const unsigned char *), 4354 int (*unsync)(struct net_device *, 4355 const unsigned char *)) 4356 { 4357 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4358 } 4359 4360 /** 4361 * __dev_mc_unsync - Remove synchronized addresses from device 4362 * @dev: device to sync 4363 * @unsync: function to call if address should be removed 4364 * 4365 * Remove all addresses that were added to the device by dev_mc_sync(). 4366 */ 4367 static inline void __dev_mc_unsync(struct net_device *dev, 4368 int (*unsync)(struct net_device *, 4369 const unsigned char *)) 4370 { 4371 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4372 } 4373 4374 /* Functions used for secondary unicast and multicast support */ 4375 void dev_set_rx_mode(struct net_device *dev); 4376 void __dev_set_rx_mode(struct net_device *dev); 4377 int dev_set_promiscuity(struct net_device *dev, int inc); 4378 int dev_set_allmulti(struct net_device *dev, int inc); 4379 void netdev_state_change(struct net_device *dev); 4380 void netdev_notify_peers(struct net_device *dev); 4381 void netdev_features_change(struct net_device *dev); 4382 /* Load a device via the kmod */ 4383 void dev_load(struct net *net, const char *name); 4384 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4385 struct rtnl_link_stats64 *storage); 4386 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4387 const struct net_device_stats *netdev_stats); 4388 4389 extern int netdev_max_backlog; 4390 extern int netdev_tstamp_prequeue; 4391 extern int weight_p; 4392 extern int dev_weight_rx_bias; 4393 extern int dev_weight_tx_bias; 4394 extern int dev_rx_weight; 4395 extern int dev_tx_weight; 4396 extern int gro_normal_batch; 4397 4398 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4399 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4400 struct list_head **iter); 4401 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4402 struct list_head **iter); 4403 4404 /* iterate through upper list, must be called under RCU read lock */ 4405 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4406 for (iter = &(dev)->adj_list.upper, \ 4407 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4408 updev; \ 4409 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4410 4411 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4412 int (*fn)(struct net_device *upper_dev, 4413 void *data), 4414 void *data); 4415 4416 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4417 struct net_device *upper_dev); 4418 4419 bool netdev_has_any_upper_dev(struct net_device *dev); 4420 4421 void *netdev_lower_get_next_private(struct net_device *dev, 4422 struct list_head **iter); 4423 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4424 struct list_head **iter); 4425 4426 #define netdev_for_each_lower_private(dev, priv, iter) \ 4427 for (iter = (dev)->adj_list.lower.next, \ 4428 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4429 priv; \ 4430 priv = netdev_lower_get_next_private(dev, &(iter))) 4431 4432 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4433 for (iter = &(dev)->adj_list.lower, \ 4434 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4435 priv; \ 4436 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4437 4438 void *netdev_lower_get_next(struct net_device *dev, 4439 struct list_head **iter); 4440 4441 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4442 for (iter = (dev)->adj_list.lower.next, \ 4443 ldev = netdev_lower_get_next(dev, &(iter)); \ 4444 ldev; \ 4445 ldev = netdev_lower_get_next(dev, &(iter))) 4446 4447 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4448 struct list_head **iter); 4449 int netdev_walk_all_lower_dev(struct net_device *dev, 4450 int (*fn)(struct net_device *lower_dev, 4451 void *data), 4452 void *data); 4453 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4454 int (*fn)(struct net_device *lower_dev, 4455 void *data), 4456 void *data); 4457 4458 void *netdev_adjacent_get_private(struct list_head *adj_list); 4459 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4460 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4461 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4462 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4463 struct netlink_ext_ack *extack); 4464 int netdev_master_upper_dev_link(struct net_device *dev, 4465 struct net_device *upper_dev, 4466 void *upper_priv, void *upper_info, 4467 struct netlink_ext_ack *extack); 4468 void netdev_upper_dev_unlink(struct net_device *dev, 4469 struct net_device *upper_dev); 4470 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4471 struct net_device *new_dev, 4472 struct net_device *dev, 4473 struct netlink_ext_ack *extack); 4474 void netdev_adjacent_change_commit(struct net_device *old_dev, 4475 struct net_device *new_dev, 4476 struct net_device *dev); 4477 void netdev_adjacent_change_abort(struct net_device *old_dev, 4478 struct net_device *new_dev, 4479 struct net_device *dev); 4480 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4481 void *netdev_lower_dev_get_private(struct net_device *dev, 4482 struct net_device *lower_dev); 4483 void netdev_lower_state_changed(struct net_device *lower_dev, 4484 void *lower_state_info); 4485 4486 /* RSS keys are 40 or 52 bytes long */ 4487 #define NETDEV_RSS_KEY_LEN 52 4488 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4489 void netdev_rss_key_fill(void *buffer, size_t len); 4490 4491 int skb_checksum_help(struct sk_buff *skb); 4492 int skb_crc32c_csum_help(struct sk_buff *skb); 4493 int skb_csum_hwoffload_help(struct sk_buff *skb, 4494 const netdev_features_t features); 4495 4496 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4497 netdev_features_t features, bool tx_path); 4498 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4499 netdev_features_t features); 4500 4501 struct netdev_bonding_info { 4502 ifslave slave; 4503 ifbond master; 4504 }; 4505 4506 struct netdev_notifier_bonding_info { 4507 struct netdev_notifier_info info; /* must be first */ 4508 struct netdev_bonding_info bonding_info; 4509 }; 4510 4511 void netdev_bonding_info_change(struct net_device *dev, 4512 struct netdev_bonding_info *bonding_info); 4513 4514 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4515 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4516 #else 4517 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4518 const void *data) 4519 { 4520 } 4521 #endif 4522 4523 static inline 4524 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4525 { 4526 return __skb_gso_segment(skb, features, true); 4527 } 4528 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4529 4530 static inline bool can_checksum_protocol(netdev_features_t features, 4531 __be16 protocol) 4532 { 4533 if (protocol == htons(ETH_P_FCOE)) 4534 return !!(features & NETIF_F_FCOE_CRC); 4535 4536 /* Assume this is an IP checksum (not SCTP CRC) */ 4537 4538 if (features & NETIF_F_HW_CSUM) { 4539 /* Can checksum everything */ 4540 return true; 4541 } 4542 4543 switch (protocol) { 4544 case htons(ETH_P_IP): 4545 return !!(features & NETIF_F_IP_CSUM); 4546 case htons(ETH_P_IPV6): 4547 return !!(features & NETIF_F_IPV6_CSUM); 4548 default: 4549 return false; 4550 } 4551 } 4552 4553 #ifdef CONFIG_BUG 4554 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4555 #else 4556 static inline void netdev_rx_csum_fault(struct net_device *dev, 4557 struct sk_buff *skb) 4558 { 4559 } 4560 #endif 4561 /* rx skb timestamps */ 4562 void net_enable_timestamp(void); 4563 void net_disable_timestamp(void); 4564 4565 #ifdef CONFIG_PROC_FS 4566 int __init dev_proc_init(void); 4567 #else 4568 #define dev_proc_init() 0 4569 #endif 4570 4571 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4572 struct sk_buff *skb, struct net_device *dev, 4573 bool more) 4574 { 4575 __this_cpu_write(softnet_data.xmit.more, more); 4576 return ops->ndo_start_xmit(skb, dev); 4577 } 4578 4579 static inline bool netdev_xmit_more(void) 4580 { 4581 return __this_cpu_read(softnet_data.xmit.more); 4582 } 4583 4584 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4585 struct netdev_queue *txq, bool more) 4586 { 4587 const struct net_device_ops *ops = dev->netdev_ops; 4588 netdev_tx_t rc; 4589 4590 rc = __netdev_start_xmit(ops, skb, dev, more); 4591 if (rc == NETDEV_TX_OK) 4592 txq_trans_update(txq); 4593 4594 return rc; 4595 } 4596 4597 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4598 const void *ns); 4599 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4600 const void *ns); 4601 4602 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4603 { 4604 return netdev_class_create_file_ns(class_attr, NULL); 4605 } 4606 4607 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4608 { 4609 netdev_class_remove_file_ns(class_attr, NULL); 4610 } 4611 4612 extern const struct kobj_ns_type_operations net_ns_type_operations; 4613 4614 const char *netdev_drivername(const struct net_device *dev); 4615 4616 void linkwatch_run_queue(void); 4617 4618 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4619 netdev_features_t f2) 4620 { 4621 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4622 if (f1 & NETIF_F_HW_CSUM) 4623 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4624 else 4625 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4626 } 4627 4628 return f1 & f2; 4629 } 4630 4631 static inline netdev_features_t netdev_get_wanted_features( 4632 struct net_device *dev) 4633 { 4634 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4635 } 4636 netdev_features_t netdev_increment_features(netdev_features_t all, 4637 netdev_features_t one, netdev_features_t mask); 4638 4639 /* Allow TSO being used on stacked device : 4640 * Performing the GSO segmentation before last device 4641 * is a performance improvement. 4642 */ 4643 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4644 netdev_features_t mask) 4645 { 4646 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4647 } 4648 4649 int __netdev_update_features(struct net_device *dev); 4650 void netdev_update_features(struct net_device *dev); 4651 void netdev_change_features(struct net_device *dev); 4652 4653 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4654 struct net_device *dev); 4655 4656 netdev_features_t passthru_features_check(struct sk_buff *skb, 4657 struct net_device *dev, 4658 netdev_features_t features); 4659 netdev_features_t netif_skb_features(struct sk_buff *skb); 4660 4661 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4662 { 4663 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4664 4665 /* check flags correspondence */ 4666 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4667 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4668 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4669 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4670 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4671 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4672 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4673 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4674 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4675 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4676 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4677 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4678 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4679 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4680 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4681 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4682 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4683 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4684 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4685 4686 return (features & feature) == feature; 4687 } 4688 4689 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4690 { 4691 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4692 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4693 } 4694 4695 static inline bool netif_needs_gso(struct sk_buff *skb, 4696 netdev_features_t features) 4697 { 4698 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4699 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4700 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4701 } 4702 4703 static inline void netif_set_gso_max_size(struct net_device *dev, 4704 unsigned int size) 4705 { 4706 dev->gso_max_size = size; 4707 } 4708 4709 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4710 int pulled_hlen, u16 mac_offset, 4711 int mac_len) 4712 { 4713 skb->protocol = protocol; 4714 skb->encapsulation = 1; 4715 skb_push(skb, pulled_hlen); 4716 skb_reset_transport_header(skb); 4717 skb->mac_header = mac_offset; 4718 skb->network_header = skb->mac_header + mac_len; 4719 skb->mac_len = mac_len; 4720 } 4721 4722 static inline bool netif_is_macsec(const struct net_device *dev) 4723 { 4724 return dev->priv_flags & IFF_MACSEC; 4725 } 4726 4727 static inline bool netif_is_macvlan(const struct net_device *dev) 4728 { 4729 return dev->priv_flags & IFF_MACVLAN; 4730 } 4731 4732 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4733 { 4734 return dev->priv_flags & IFF_MACVLAN_PORT; 4735 } 4736 4737 static inline bool netif_is_bond_master(const struct net_device *dev) 4738 { 4739 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4740 } 4741 4742 static inline bool netif_is_bond_slave(const struct net_device *dev) 4743 { 4744 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4745 } 4746 4747 static inline bool netif_supports_nofcs(struct net_device *dev) 4748 { 4749 return dev->priv_flags & IFF_SUPP_NOFCS; 4750 } 4751 4752 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4753 { 4754 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4755 } 4756 4757 static inline bool netif_is_l3_master(const struct net_device *dev) 4758 { 4759 return dev->priv_flags & IFF_L3MDEV_MASTER; 4760 } 4761 4762 static inline bool netif_is_l3_slave(const struct net_device *dev) 4763 { 4764 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4765 } 4766 4767 static inline bool netif_is_bridge_master(const struct net_device *dev) 4768 { 4769 return dev->priv_flags & IFF_EBRIDGE; 4770 } 4771 4772 static inline bool netif_is_bridge_port(const struct net_device *dev) 4773 { 4774 return dev->priv_flags & IFF_BRIDGE_PORT; 4775 } 4776 4777 static inline bool netif_is_ovs_master(const struct net_device *dev) 4778 { 4779 return dev->priv_flags & IFF_OPENVSWITCH; 4780 } 4781 4782 static inline bool netif_is_ovs_port(const struct net_device *dev) 4783 { 4784 return dev->priv_flags & IFF_OVS_DATAPATH; 4785 } 4786 4787 static inline bool netif_is_team_master(const struct net_device *dev) 4788 { 4789 return dev->priv_flags & IFF_TEAM; 4790 } 4791 4792 static inline bool netif_is_team_port(const struct net_device *dev) 4793 { 4794 return dev->priv_flags & IFF_TEAM_PORT; 4795 } 4796 4797 static inline bool netif_is_lag_master(const struct net_device *dev) 4798 { 4799 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4800 } 4801 4802 static inline bool netif_is_lag_port(const struct net_device *dev) 4803 { 4804 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4805 } 4806 4807 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4808 { 4809 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4810 } 4811 4812 static inline bool netif_is_failover(const struct net_device *dev) 4813 { 4814 return dev->priv_flags & IFF_FAILOVER; 4815 } 4816 4817 static inline bool netif_is_failover_slave(const struct net_device *dev) 4818 { 4819 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4820 } 4821 4822 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4823 static inline void netif_keep_dst(struct net_device *dev) 4824 { 4825 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4826 } 4827 4828 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4829 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4830 { 4831 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4832 return dev->priv_flags & IFF_MACSEC; 4833 } 4834 4835 extern struct pernet_operations __net_initdata loopback_net_ops; 4836 4837 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4838 4839 /* netdev_printk helpers, similar to dev_printk */ 4840 4841 static inline const char *netdev_name(const struct net_device *dev) 4842 { 4843 if (!dev->name[0] || strchr(dev->name, '%')) 4844 return "(unnamed net_device)"; 4845 return dev->name; 4846 } 4847 4848 static inline bool netdev_unregistering(const struct net_device *dev) 4849 { 4850 return dev->reg_state == NETREG_UNREGISTERING; 4851 } 4852 4853 static inline const char *netdev_reg_state(const struct net_device *dev) 4854 { 4855 switch (dev->reg_state) { 4856 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4857 case NETREG_REGISTERED: return ""; 4858 case NETREG_UNREGISTERING: return " (unregistering)"; 4859 case NETREG_UNREGISTERED: return " (unregistered)"; 4860 case NETREG_RELEASED: return " (released)"; 4861 case NETREG_DUMMY: return " (dummy)"; 4862 } 4863 4864 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4865 return " (unknown)"; 4866 } 4867 4868 __printf(3, 4) __cold 4869 void netdev_printk(const char *level, const struct net_device *dev, 4870 const char *format, ...); 4871 __printf(2, 3) __cold 4872 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4873 __printf(2, 3) __cold 4874 void netdev_alert(const struct net_device *dev, const char *format, ...); 4875 __printf(2, 3) __cold 4876 void netdev_crit(const struct net_device *dev, const char *format, ...); 4877 __printf(2, 3) __cold 4878 void netdev_err(const struct net_device *dev, const char *format, ...); 4879 __printf(2, 3) __cold 4880 void netdev_warn(const struct net_device *dev, const char *format, ...); 4881 __printf(2, 3) __cold 4882 void netdev_notice(const struct net_device *dev, const char *format, ...); 4883 __printf(2, 3) __cold 4884 void netdev_info(const struct net_device *dev, const char *format, ...); 4885 4886 #define netdev_level_once(level, dev, fmt, ...) \ 4887 do { \ 4888 static bool __print_once __read_mostly; \ 4889 \ 4890 if (!__print_once) { \ 4891 __print_once = true; \ 4892 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4893 } \ 4894 } while (0) 4895 4896 #define netdev_emerg_once(dev, fmt, ...) \ 4897 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4898 #define netdev_alert_once(dev, fmt, ...) \ 4899 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4900 #define netdev_crit_once(dev, fmt, ...) \ 4901 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4902 #define netdev_err_once(dev, fmt, ...) \ 4903 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4904 #define netdev_warn_once(dev, fmt, ...) \ 4905 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4906 #define netdev_notice_once(dev, fmt, ...) \ 4907 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4908 #define netdev_info_once(dev, fmt, ...) \ 4909 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4910 4911 #define MODULE_ALIAS_NETDEV(device) \ 4912 MODULE_ALIAS("netdev-" device) 4913 4914 #if defined(CONFIG_DYNAMIC_DEBUG) 4915 #define netdev_dbg(__dev, format, args...) \ 4916 do { \ 4917 dynamic_netdev_dbg(__dev, format, ##args); \ 4918 } while (0) 4919 #elif defined(DEBUG) 4920 #define netdev_dbg(__dev, format, args...) \ 4921 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4922 #else 4923 #define netdev_dbg(__dev, format, args...) \ 4924 ({ \ 4925 if (0) \ 4926 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4927 }) 4928 #endif 4929 4930 #if defined(VERBOSE_DEBUG) 4931 #define netdev_vdbg netdev_dbg 4932 #else 4933 4934 #define netdev_vdbg(dev, format, args...) \ 4935 ({ \ 4936 if (0) \ 4937 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4938 0; \ 4939 }) 4940 #endif 4941 4942 /* 4943 * netdev_WARN() acts like dev_printk(), but with the key difference 4944 * of using a WARN/WARN_ON to get the message out, including the 4945 * file/line information and a backtrace. 4946 */ 4947 #define netdev_WARN(dev, format, args...) \ 4948 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4949 netdev_reg_state(dev), ##args) 4950 4951 #define netdev_WARN_ONCE(dev, format, args...) \ 4952 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4953 netdev_reg_state(dev), ##args) 4954 4955 /* netif printk helpers, similar to netdev_printk */ 4956 4957 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4958 do { \ 4959 if (netif_msg_##type(priv)) \ 4960 netdev_printk(level, (dev), fmt, ##args); \ 4961 } while (0) 4962 4963 #define netif_level(level, priv, type, dev, fmt, args...) \ 4964 do { \ 4965 if (netif_msg_##type(priv)) \ 4966 netdev_##level(dev, fmt, ##args); \ 4967 } while (0) 4968 4969 #define netif_emerg(priv, type, dev, fmt, args...) \ 4970 netif_level(emerg, priv, type, dev, fmt, ##args) 4971 #define netif_alert(priv, type, dev, fmt, args...) \ 4972 netif_level(alert, priv, type, dev, fmt, ##args) 4973 #define netif_crit(priv, type, dev, fmt, args...) \ 4974 netif_level(crit, priv, type, dev, fmt, ##args) 4975 #define netif_err(priv, type, dev, fmt, args...) \ 4976 netif_level(err, priv, type, dev, fmt, ##args) 4977 #define netif_warn(priv, type, dev, fmt, args...) \ 4978 netif_level(warn, priv, type, dev, fmt, ##args) 4979 #define netif_notice(priv, type, dev, fmt, args...) \ 4980 netif_level(notice, priv, type, dev, fmt, ##args) 4981 #define netif_info(priv, type, dev, fmt, args...) \ 4982 netif_level(info, priv, type, dev, fmt, ##args) 4983 4984 #if defined(CONFIG_DYNAMIC_DEBUG) 4985 #define netif_dbg(priv, type, netdev, format, args...) \ 4986 do { \ 4987 if (netif_msg_##type(priv)) \ 4988 dynamic_netdev_dbg(netdev, format, ##args); \ 4989 } while (0) 4990 #elif defined(DEBUG) 4991 #define netif_dbg(priv, type, dev, format, args...) \ 4992 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4993 #else 4994 #define netif_dbg(priv, type, dev, format, args...) \ 4995 ({ \ 4996 if (0) \ 4997 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4998 0; \ 4999 }) 5000 #endif 5001 5002 /* if @cond then downgrade to debug, else print at @level */ 5003 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5004 do { \ 5005 if (cond) \ 5006 netif_dbg(priv, type, netdev, fmt, ##args); \ 5007 else \ 5008 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5009 } while (0) 5010 5011 #if defined(VERBOSE_DEBUG) 5012 #define netif_vdbg netif_dbg 5013 #else 5014 #define netif_vdbg(priv, type, dev, format, args...) \ 5015 ({ \ 5016 if (0) \ 5017 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5018 0; \ 5019 }) 5020 #endif 5021 5022 /* 5023 * The list of packet types we will receive (as opposed to discard) 5024 * and the routines to invoke. 5025 * 5026 * Why 16. Because with 16 the only overlap we get on a hash of the 5027 * low nibble of the protocol value is RARP/SNAP/X.25. 5028 * 5029 * 0800 IP 5030 * 0001 802.3 5031 * 0002 AX.25 5032 * 0004 802.2 5033 * 8035 RARP 5034 * 0005 SNAP 5035 * 0805 X.25 5036 * 0806 ARP 5037 * 8137 IPX 5038 * 0009 Localtalk 5039 * 86DD IPv6 5040 */ 5041 #define PTYPE_HASH_SIZE (16) 5042 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5043 5044 extern struct net_device *blackhole_netdev; 5045 5046 #endif /* _LINUX_NETDEVICE_H */ 5047