xref: /linux-6.15/include/linux/netdevice.h (revision c131bd0b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 	struct task_struct	*thread;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,		/* Poll is scheduled */
355 	NAPI_STATE_MISSED,		/* reschedule a napi */
356 	NAPI_STATE_DISABLE,		/* Disable pending */
357 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
358 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
359 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
360 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
361 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
362 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
363 };
364 
365 enum {
366 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
367 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
368 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
369 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
370 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
371 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
372 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
373 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
374 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
375 };
376 
377 enum gro_result {
378 	GRO_MERGED,
379 	GRO_MERGED_FREE,
380 	GRO_HELD,
381 	GRO_NORMAL,
382 	GRO_CONSUMED,
383 };
384 typedef enum gro_result gro_result_t;
385 
386 /*
387  * enum rx_handler_result - Possible return values for rx_handlers.
388  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
389  * further.
390  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
391  * case skb->dev was changed by rx_handler.
392  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
393  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
394  *
395  * rx_handlers are functions called from inside __netif_receive_skb(), to do
396  * special processing of the skb, prior to delivery to protocol handlers.
397  *
398  * Currently, a net_device can only have a single rx_handler registered. Trying
399  * to register a second rx_handler will return -EBUSY.
400  *
401  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
402  * To unregister a rx_handler on a net_device, use
403  * netdev_rx_handler_unregister().
404  *
405  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
406  * do with the skb.
407  *
408  * If the rx_handler consumed the skb in some way, it should return
409  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
410  * the skb to be delivered in some other way.
411  *
412  * If the rx_handler changed skb->dev, to divert the skb to another
413  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
414  * new device will be called if it exists.
415  *
416  * If the rx_handler decides the skb should be ignored, it should return
417  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
418  * are registered on exact device (ptype->dev == skb->dev).
419  *
420  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
421  * delivered, it should return RX_HANDLER_PASS.
422  *
423  * A device without a registered rx_handler will behave as if rx_handler
424  * returned RX_HANDLER_PASS.
425  */
426 
427 enum rx_handler_result {
428 	RX_HANDLER_CONSUMED,
429 	RX_HANDLER_ANOTHER,
430 	RX_HANDLER_EXACT,
431 	RX_HANDLER_PASS,
432 };
433 typedef enum rx_handler_result rx_handler_result_t;
434 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
435 
436 void __napi_schedule(struct napi_struct *n);
437 void __napi_schedule_irqoff(struct napi_struct *n);
438 
439 static inline bool napi_disable_pending(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_DISABLE, &n->state);
442 }
443 
444 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
445 {
446 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
447 }
448 
449 bool napi_schedule_prep(struct napi_struct *n);
450 
451 /**
452  *	napi_schedule - schedule NAPI poll
453  *	@n: NAPI context
454  *
455  * Schedule NAPI poll routine to be called if it is not already
456  * running.
457  */
458 static inline void napi_schedule(struct napi_struct *n)
459 {
460 	if (napi_schedule_prep(n))
461 		__napi_schedule(n);
462 }
463 
464 /**
465  *	napi_schedule_irqoff - schedule NAPI poll
466  *	@n: NAPI context
467  *
468  * Variant of napi_schedule(), assuming hard irqs are masked.
469  */
470 static inline void napi_schedule_irqoff(struct napi_struct *n)
471 {
472 	if (napi_schedule_prep(n))
473 		__napi_schedule_irqoff(n);
474 }
475 
476 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
477 static inline bool napi_reschedule(struct napi_struct *napi)
478 {
479 	if (napi_schedule_prep(napi)) {
480 		__napi_schedule(napi);
481 		return true;
482 	}
483 	return false;
484 }
485 
486 bool napi_complete_done(struct napi_struct *n, int work_done);
487 /**
488  *	napi_complete - NAPI processing complete
489  *	@n: NAPI context
490  *
491  * Mark NAPI processing as complete.
492  * Consider using napi_complete_done() instead.
493  * Return false if device should avoid rearming interrupts.
494  */
495 static inline bool napi_complete(struct napi_struct *n)
496 {
497 	return napi_complete_done(n, 0);
498 }
499 
500 int dev_set_threaded(struct net_device *dev, bool threaded);
501 
502 /**
503  *	napi_disable - prevent NAPI from scheduling
504  *	@n: NAPI context
505  *
506  * Stop NAPI from being scheduled on this context.
507  * Waits till any outstanding processing completes.
508  */
509 void napi_disable(struct napi_struct *n);
510 
511 void napi_enable(struct napi_struct *n);
512 
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: NAPI context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	if (IS_ENABLED(CONFIG_SMP))
524 		while (test_bit(NAPI_STATE_SCHED, &n->state))
525 			msleep(1);
526 	else
527 		barrier();
528 }
529 
530 /**
531  *	napi_if_scheduled_mark_missed - if napi is running, set the
532  *	NAPIF_STATE_MISSED
533  *	@n: NAPI context
534  *
535  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
536  * NAPI is scheduled.
537  **/
538 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
539 {
540 	unsigned long val, new;
541 
542 	do {
543 		val = READ_ONCE(n->state);
544 		if (val & NAPIF_STATE_DISABLE)
545 			return true;
546 
547 		if (!(val & NAPIF_STATE_SCHED))
548 			return false;
549 
550 		new = val | NAPIF_STATE_MISSED;
551 	} while (cmpxchg(&n->state, val, new) != val);
552 
553 	return true;
554 }
555 
556 enum netdev_queue_state_t {
557 	__QUEUE_STATE_DRV_XOFF,
558 	__QUEUE_STATE_STACK_XOFF,
559 	__QUEUE_STATE_FROZEN,
560 };
561 
562 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
563 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
564 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
565 
566 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
567 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
568 					QUEUE_STATE_FROZEN)
569 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
570 					QUEUE_STATE_FROZEN)
571 
572 /*
573  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
574  * netif_tx_* functions below are used to manipulate this flag.  The
575  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
576  * queue independently.  The netif_xmit_*stopped functions below are called
577  * to check if the queue has been stopped by the driver or stack (either
578  * of the XOFF bits are set in the state).  Drivers should not need to call
579  * netif_xmit*stopped functions, they should only be using netif_tx_*.
580  */
581 
582 struct netdev_queue {
583 /*
584  * read-mostly part
585  */
586 	struct net_device	*dev;
587 	struct Qdisc __rcu	*qdisc;
588 	struct Qdisc		*qdisc_sleeping;
589 #ifdef CONFIG_SYSFS
590 	struct kobject		kobj;
591 #endif
592 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
593 	int			numa_node;
594 #endif
595 	unsigned long		tx_maxrate;
596 	/*
597 	 * Number of TX timeouts for this queue
598 	 * (/sys/class/net/DEV/Q/trans_timeout)
599 	 */
600 	unsigned long		trans_timeout;
601 
602 	/* Subordinate device that the queue has been assigned to */
603 	struct net_device	*sb_dev;
604 #ifdef CONFIG_XDP_SOCKETS
605 	struct xsk_buff_pool    *pool;
606 #endif
607 /*
608  * write-mostly part
609  */
610 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
611 	int			xmit_lock_owner;
612 	/*
613 	 * Time (in jiffies) of last Tx
614 	 */
615 	unsigned long		trans_start;
616 
617 	unsigned long		state;
618 
619 #ifdef CONFIG_BQL
620 	struct dql		dql;
621 #endif
622 } ____cacheline_aligned_in_smp;
623 
624 extern int sysctl_fb_tunnels_only_for_init_net;
625 extern int sysctl_devconf_inherit_init_net;
626 
627 /*
628  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
629  *                                     == 1 : For initns only
630  *                                     == 2 : For none.
631  */
632 static inline bool net_has_fallback_tunnels(const struct net *net)
633 {
634 	return !IS_ENABLED(CONFIG_SYSCTL) ||
635 	       !sysctl_fb_tunnels_only_for_init_net ||
636 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
637 }
638 
639 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
640 {
641 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
642 	return q->numa_node;
643 #else
644 	return NUMA_NO_NODE;
645 #endif
646 }
647 
648 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	q->numa_node = node;
652 #endif
653 }
654 
655 #ifdef CONFIG_RPS
656 /*
657  * This structure holds an RPS map which can be of variable length.  The
658  * map is an array of CPUs.
659  */
660 struct rps_map {
661 	unsigned int len;
662 	struct rcu_head rcu;
663 	u16 cpus[];
664 };
665 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
666 
667 /*
668  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
669  * tail pointer for that CPU's input queue at the time of last enqueue, and
670  * a hardware filter index.
671  */
672 struct rps_dev_flow {
673 	u16 cpu;
674 	u16 filter;
675 	unsigned int last_qtail;
676 };
677 #define RPS_NO_FILTER 0xffff
678 
679 /*
680  * The rps_dev_flow_table structure contains a table of flow mappings.
681  */
682 struct rps_dev_flow_table {
683 	unsigned int mask;
684 	struct rcu_head rcu;
685 	struct rps_dev_flow flows[];
686 };
687 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
688     ((_num) * sizeof(struct rps_dev_flow)))
689 
690 /*
691  * The rps_sock_flow_table contains mappings of flows to the last CPU
692  * on which they were processed by the application (set in recvmsg).
693  * Each entry is a 32bit value. Upper part is the high-order bits
694  * of flow hash, lower part is CPU number.
695  * rps_cpu_mask is used to partition the space, depending on number of
696  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
697  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
698  * meaning we use 32-6=26 bits for the hash.
699  */
700 struct rps_sock_flow_table {
701 	u32	mask;
702 
703 	u32	ents[] ____cacheline_aligned_in_smp;
704 };
705 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
706 
707 #define RPS_NO_CPU 0xffff
708 
709 extern u32 rps_cpu_mask;
710 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
711 
712 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
713 					u32 hash)
714 {
715 	if (table && hash) {
716 		unsigned int index = hash & table->mask;
717 		u32 val = hash & ~rps_cpu_mask;
718 
719 		/* We only give a hint, preemption can change CPU under us */
720 		val |= raw_smp_processor_id();
721 
722 		if (table->ents[index] != val)
723 			table->ents[index] = val;
724 	}
725 }
726 
727 #ifdef CONFIG_RFS_ACCEL
728 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
729 			 u16 filter_id);
730 #endif
731 #endif /* CONFIG_RPS */
732 
733 /* This structure contains an instance of an RX queue. */
734 struct netdev_rx_queue {
735 #ifdef CONFIG_RPS
736 	struct rps_map __rcu		*rps_map;
737 	struct rps_dev_flow_table __rcu	*rps_flow_table;
738 #endif
739 	struct kobject			kobj;
740 	struct net_device		*dev;
741 	struct xdp_rxq_info		xdp_rxq;
742 #ifdef CONFIG_XDP_SOCKETS
743 	struct xsk_buff_pool            *pool;
744 #endif
745 } ____cacheline_aligned_in_smp;
746 
747 /*
748  * RX queue sysfs structures and functions.
749  */
750 struct rx_queue_attribute {
751 	struct attribute attr;
752 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
753 	ssize_t (*store)(struct netdev_rx_queue *queue,
754 			 const char *buf, size_t len);
755 };
756 
757 #ifdef CONFIG_XPS
758 /*
759  * This structure holds an XPS map which can be of variable length.  The
760  * map is an array of queues.
761  */
762 struct xps_map {
763 	unsigned int len;
764 	unsigned int alloc_len;
765 	struct rcu_head rcu;
766 	u16 queues[];
767 };
768 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
769 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
770        - sizeof(struct xps_map)) / sizeof(u16))
771 
772 /*
773  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
774  */
775 struct xps_dev_maps {
776 	struct rcu_head rcu;
777 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
778 };
779 
780 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
781 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
782 
783 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
784 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
785 
786 #endif /* CONFIG_XPS */
787 
788 #define TC_MAX_QUEUE	16
789 #define TC_BITMASK	15
790 /* HW offloaded queuing disciplines txq count and offset maps */
791 struct netdev_tc_txq {
792 	u16 count;
793 	u16 offset;
794 };
795 
796 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
797 /*
798  * This structure is to hold information about the device
799  * configured to run FCoE protocol stack.
800  */
801 struct netdev_fcoe_hbainfo {
802 	char	manufacturer[64];
803 	char	serial_number[64];
804 	char	hardware_version[64];
805 	char	driver_version[64];
806 	char	optionrom_version[64];
807 	char	firmware_version[64];
808 	char	model[256];
809 	char	model_description[256];
810 };
811 #endif
812 
813 #define MAX_PHYS_ITEM_ID_LEN 32
814 
815 /* This structure holds a unique identifier to identify some
816  * physical item (port for example) used by a netdevice.
817  */
818 struct netdev_phys_item_id {
819 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
820 	unsigned char id_len;
821 };
822 
823 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
824 					    struct netdev_phys_item_id *b)
825 {
826 	return a->id_len == b->id_len &&
827 	       memcmp(a->id, b->id, a->id_len) == 0;
828 }
829 
830 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
831 				       struct sk_buff *skb,
832 				       struct net_device *sb_dev);
833 
834 enum tc_setup_type {
835 	TC_SETUP_QDISC_MQPRIO,
836 	TC_SETUP_CLSU32,
837 	TC_SETUP_CLSFLOWER,
838 	TC_SETUP_CLSMATCHALL,
839 	TC_SETUP_CLSBPF,
840 	TC_SETUP_BLOCK,
841 	TC_SETUP_QDISC_CBS,
842 	TC_SETUP_QDISC_RED,
843 	TC_SETUP_QDISC_PRIO,
844 	TC_SETUP_QDISC_MQ,
845 	TC_SETUP_QDISC_ETF,
846 	TC_SETUP_ROOT_QDISC,
847 	TC_SETUP_QDISC_GRED,
848 	TC_SETUP_QDISC_TAPRIO,
849 	TC_SETUP_FT,
850 	TC_SETUP_QDISC_ETS,
851 	TC_SETUP_QDISC_TBF,
852 	TC_SETUP_QDISC_FIFO,
853 	TC_SETUP_QDISC_HTB,
854 };
855 
856 /* These structures hold the attributes of bpf state that are being passed
857  * to the netdevice through the bpf op.
858  */
859 enum bpf_netdev_command {
860 	/* Set or clear a bpf program used in the earliest stages of packet
861 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
862 	 * is responsible for calling bpf_prog_put on any old progs that are
863 	 * stored. In case of error, the callee need not release the new prog
864 	 * reference, but on success it takes ownership and must bpf_prog_put
865 	 * when it is no longer used.
866 	 */
867 	XDP_SETUP_PROG,
868 	XDP_SETUP_PROG_HW,
869 	/* BPF program for offload callbacks, invoked at program load time. */
870 	BPF_OFFLOAD_MAP_ALLOC,
871 	BPF_OFFLOAD_MAP_FREE,
872 	XDP_SETUP_XSK_POOL,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 struct xdp_dev_bulk_queue;
879 struct bpf_xdp_link;
880 
881 enum bpf_xdp_mode {
882 	XDP_MODE_SKB = 0,
883 	XDP_MODE_DRV = 1,
884 	XDP_MODE_HW = 2,
885 	__MAX_XDP_MODE
886 };
887 
888 struct bpf_xdp_entity {
889 	struct bpf_prog *prog;
890 	struct bpf_xdp_link *link;
891 };
892 
893 struct netdev_bpf {
894 	enum bpf_netdev_command command;
895 	union {
896 		/* XDP_SETUP_PROG */
897 		struct {
898 			u32 flags;
899 			struct bpf_prog *prog;
900 			struct netlink_ext_ack *extack;
901 		};
902 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
903 		struct {
904 			struct bpf_offloaded_map *offmap;
905 		};
906 		/* XDP_SETUP_XSK_POOL */
907 		struct {
908 			struct xsk_buff_pool *pool;
909 			u16 queue_id;
910 		} xsk;
911 	};
912 };
913 
914 /* Flags for ndo_xsk_wakeup. */
915 #define XDP_WAKEUP_RX (1 << 0)
916 #define XDP_WAKEUP_TX (1 << 1)
917 
918 #ifdef CONFIG_XFRM_OFFLOAD
919 struct xfrmdev_ops {
920 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
921 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
922 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
923 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
924 				       struct xfrm_state *x);
925 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
926 };
927 #endif
928 
929 struct dev_ifalias {
930 	struct rcu_head rcuhead;
931 	char ifalias[];
932 };
933 
934 struct devlink;
935 struct tlsdev_ops;
936 
937 struct netdev_name_node {
938 	struct hlist_node hlist;
939 	struct list_head list;
940 	struct net_device *dev;
941 	const char *name;
942 };
943 
944 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
945 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
946 
947 struct netdev_net_notifier {
948 	struct list_head list;
949 	struct notifier_block *nb;
950 };
951 
952 /*
953  * This structure defines the management hooks for network devices.
954  * The following hooks can be defined; unless noted otherwise, they are
955  * optional and can be filled with a null pointer.
956  *
957  * int (*ndo_init)(struct net_device *dev);
958  *     This function is called once when a network device is registered.
959  *     The network device can use this for any late stage initialization
960  *     or semantic validation. It can fail with an error code which will
961  *     be propagated back to register_netdev.
962  *
963  * void (*ndo_uninit)(struct net_device *dev);
964  *     This function is called when device is unregistered or when registration
965  *     fails. It is not called if init fails.
966  *
967  * int (*ndo_open)(struct net_device *dev);
968  *     This function is called when a network device transitions to the up
969  *     state.
970  *
971  * int (*ndo_stop)(struct net_device *dev);
972  *     This function is called when a network device transitions to the down
973  *     state.
974  *
975  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
976  *                               struct net_device *dev);
977  *	Called when a packet needs to be transmitted.
978  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
979  *	the queue before that can happen; it's for obsolete devices and weird
980  *	corner cases, but the stack really does a non-trivial amount
981  *	of useless work if you return NETDEV_TX_BUSY.
982  *	Required; cannot be NULL.
983  *
984  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
985  *					   struct net_device *dev
986  *					   netdev_features_t features);
987  *	Called by core transmit path to determine if device is capable of
988  *	performing offload operations on a given packet. This is to give
989  *	the device an opportunity to implement any restrictions that cannot
990  *	be otherwise expressed by feature flags. The check is called with
991  *	the set of features that the stack has calculated and it returns
992  *	those the driver believes to be appropriate.
993  *
994  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
995  *                         struct net_device *sb_dev);
996  *	Called to decide which queue to use when device supports multiple
997  *	transmit queues.
998  *
999  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1000  *	This function is called to allow device receiver to make
1001  *	changes to configuration when multicast or promiscuous is enabled.
1002  *
1003  * void (*ndo_set_rx_mode)(struct net_device *dev);
1004  *	This function is called device changes address list filtering.
1005  *	If driver handles unicast address filtering, it should set
1006  *	IFF_UNICAST_FLT in its priv_flags.
1007  *
1008  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1009  *	This function  is called when the Media Access Control address
1010  *	needs to be changed. If this interface is not defined, the
1011  *	MAC address can not be changed.
1012  *
1013  * int (*ndo_validate_addr)(struct net_device *dev);
1014  *	Test if Media Access Control address is valid for the device.
1015  *
1016  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1017  *	Called when a user requests an ioctl which can't be handled by
1018  *	the generic interface code. If not defined ioctls return
1019  *	not supported error code.
1020  *
1021  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1022  *	Used to set network devices bus interface parameters. This interface
1023  *	is retained for legacy reasons; new devices should use the bus
1024  *	interface (PCI) for low level management.
1025  *
1026  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1027  *	Called when a user wants to change the Maximum Transfer Unit
1028  *	of a device.
1029  *
1030  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1031  *	Callback used when the transmitter has not made any progress
1032  *	for dev->watchdog ticks.
1033  *
1034  * void (*ndo_get_stats64)(struct net_device *dev,
1035  *                         struct rtnl_link_stats64 *storage);
1036  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1037  *	Called when a user wants to get the network device usage
1038  *	statistics. Drivers must do one of the following:
1039  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1040  *	   rtnl_link_stats64 structure passed by the caller.
1041  *	2. Define @ndo_get_stats to update a net_device_stats structure
1042  *	   (which should normally be dev->stats) and return a pointer to
1043  *	   it. The structure may be changed asynchronously only if each
1044  *	   field is written atomically.
1045  *	3. Update dev->stats asynchronously and atomically, and define
1046  *	   neither operation.
1047  *
1048  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1049  *	Return true if this device supports offload stats of this attr_id.
1050  *
1051  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1052  *	void *attr_data)
1053  *	Get statistics for offload operations by attr_id. Write it into the
1054  *	attr_data pointer.
1055  *
1056  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1057  *	If device supports VLAN filtering this function is called when a
1058  *	VLAN id is registered.
1059  *
1060  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1061  *	If device supports VLAN filtering this function is called when a
1062  *	VLAN id is unregistered.
1063  *
1064  * void (*ndo_poll_controller)(struct net_device *dev);
1065  *
1066  *	SR-IOV management functions.
1067  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1068  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1069  *			  u8 qos, __be16 proto);
1070  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1071  *			  int max_tx_rate);
1072  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1073  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1074  * int (*ndo_get_vf_config)(struct net_device *dev,
1075  *			    int vf, struct ifla_vf_info *ivf);
1076  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1077  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1078  *			  struct nlattr *port[]);
1079  *
1080  *      Enable or disable the VF ability to query its RSS Redirection Table and
1081  *      Hash Key. This is needed since on some devices VF share this information
1082  *      with PF and querying it may introduce a theoretical security risk.
1083  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1084  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1085  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1086  *		       void *type_data);
1087  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1088  *	This is always called from the stack with the rtnl lock held and netif
1089  *	tx queues stopped. This allows the netdevice to perform queue
1090  *	management safely.
1091  *
1092  *	Fiber Channel over Ethernet (FCoE) offload functions.
1093  * int (*ndo_fcoe_enable)(struct net_device *dev);
1094  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1095  *	so the underlying device can perform whatever needed configuration or
1096  *	initialization to support acceleration of FCoE traffic.
1097  *
1098  * int (*ndo_fcoe_disable)(struct net_device *dev);
1099  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1100  *	so the underlying device can perform whatever needed clean-ups to
1101  *	stop supporting acceleration of FCoE traffic.
1102  *
1103  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1104  *			     struct scatterlist *sgl, unsigned int sgc);
1105  *	Called when the FCoE Initiator wants to initialize an I/O that
1106  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1107  *	perform necessary setup and returns 1 to indicate the device is set up
1108  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1109  *
1110  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1111  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1112  *	indicated by the FC exchange id 'xid', so the underlying device can
1113  *	clean up and reuse resources for later DDP requests.
1114  *
1115  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1116  *			      struct scatterlist *sgl, unsigned int sgc);
1117  *	Called when the FCoE Target wants to initialize an I/O that
1118  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1119  *	perform necessary setup and returns 1 to indicate the device is set up
1120  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1121  *
1122  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1123  *			       struct netdev_fcoe_hbainfo *hbainfo);
1124  *	Called when the FCoE Protocol stack wants information on the underlying
1125  *	device. This information is utilized by the FCoE protocol stack to
1126  *	register attributes with Fiber Channel management service as per the
1127  *	FC-GS Fabric Device Management Information(FDMI) specification.
1128  *
1129  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1130  *	Called when the underlying device wants to override default World Wide
1131  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1132  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1133  *	protocol stack to use.
1134  *
1135  *	RFS acceleration.
1136  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1137  *			    u16 rxq_index, u32 flow_id);
1138  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1139  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1140  *	Return the filter ID on success, or a negative error code.
1141  *
1142  *	Slave management functions (for bridge, bonding, etc).
1143  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1144  *	Called to make another netdev an underling.
1145  *
1146  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1147  *	Called to release previously enslaved netdev.
1148  *
1149  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1150  *					    struct sk_buff *skb,
1151  *					    bool all_slaves);
1152  *	Get the xmit slave of master device. If all_slaves is true, function
1153  *	assume all the slaves can transmit.
1154  *
1155  *      Feature/offload setting functions.
1156  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1157  *		netdev_features_t features);
1158  *	Adjusts the requested feature flags according to device-specific
1159  *	constraints, and returns the resulting flags. Must not modify
1160  *	the device state.
1161  *
1162  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1163  *	Called to update device configuration to new features. Passed
1164  *	feature set might be less than what was returned by ndo_fix_features()).
1165  *	Must return >0 or -errno if it changed dev->features itself.
1166  *
1167  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1168  *		      struct net_device *dev,
1169  *		      const unsigned char *addr, u16 vid, u16 flags,
1170  *		      struct netlink_ext_ack *extack);
1171  *	Adds an FDB entry to dev for addr.
1172  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1173  *		      struct net_device *dev,
1174  *		      const unsigned char *addr, u16 vid)
1175  *	Deletes the FDB entry from dev coresponding to addr.
1176  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1177  *		       struct net_device *dev, struct net_device *filter_dev,
1178  *		       int *idx)
1179  *	Used to add FDB entries to dump requests. Implementers should add
1180  *	entries to skb and update idx with the number of entries.
1181  *
1182  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1183  *			     u16 flags, struct netlink_ext_ack *extack)
1184  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1185  *			     struct net_device *dev, u32 filter_mask,
1186  *			     int nlflags)
1187  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1188  *			     u16 flags);
1189  *
1190  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1191  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1192  *	which do not represent real hardware may define this to allow their
1193  *	userspace components to manage their virtual carrier state. Devices
1194  *	that determine carrier state from physical hardware properties (eg
1195  *	network cables) or protocol-dependent mechanisms (eg
1196  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1197  *
1198  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1199  *			       struct netdev_phys_item_id *ppid);
1200  *	Called to get ID of physical port of this device. If driver does
1201  *	not implement this, it is assumed that the hw is not able to have
1202  *	multiple net devices on single physical port.
1203  *
1204  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1205  *				 struct netdev_phys_item_id *ppid)
1206  *	Called to get the parent ID of the physical port of this device.
1207  *
1208  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1209  *				 struct net_device *dev)
1210  *	Called by upper layer devices to accelerate switching or other
1211  *	station functionality into hardware. 'pdev is the lowerdev
1212  *	to use for the offload and 'dev' is the net device that will
1213  *	back the offload. Returns a pointer to the private structure
1214  *	the upper layer will maintain.
1215  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1216  *	Called by upper layer device to delete the station created
1217  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1218  *	the station and priv is the structure returned by the add
1219  *	operation.
1220  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1221  *			     int queue_index, u32 maxrate);
1222  *	Called when a user wants to set a max-rate limitation of specific
1223  *	TX queue.
1224  * int (*ndo_get_iflink)(const struct net_device *dev);
1225  *	Called to get the iflink value of this device.
1226  * void (*ndo_change_proto_down)(struct net_device *dev,
1227  *				 bool proto_down);
1228  *	This function is used to pass protocol port error state information
1229  *	to the switch driver. The switch driver can react to the proto_down
1230  *      by doing a phys down on the associated switch port.
1231  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1232  *	This function is used to get egress tunnel information for given skb.
1233  *	This is useful for retrieving outer tunnel header parameters while
1234  *	sampling packet.
1235  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1236  *	This function is used to specify the headroom that the skb must
1237  *	consider when allocation skb during packet reception. Setting
1238  *	appropriate rx headroom value allows avoiding skb head copy on
1239  *	forward. Setting a negative value resets the rx headroom to the
1240  *	default value.
1241  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1242  *	This function is used to set or query state related to XDP on the
1243  *	netdevice and manage BPF offload. See definition of
1244  *	enum bpf_netdev_command for details.
1245  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1246  *			u32 flags);
1247  *	This function is used to submit @n XDP packets for transmit on a
1248  *	netdevice. Returns number of frames successfully transmitted, frames
1249  *	that got dropped are freed/returned via xdp_return_frame().
1250  *	Returns negative number, means general error invoking ndo, meaning
1251  *	no frames were xmit'ed and core-caller will free all frames.
1252  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1253  *      This function is used to wake up the softirq, ksoftirqd or kthread
1254  *	responsible for sending and/or receiving packets on a specific
1255  *	queue id bound to an AF_XDP socket. The flags field specifies if
1256  *	only RX, only Tx, or both should be woken up using the flags
1257  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1258  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1259  *	Get devlink port instance associated with a given netdev.
1260  *	Called with a reference on the netdevice and devlink locks only,
1261  *	rtnl_lock is not held.
1262  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1263  *			 int cmd);
1264  *	Add, change, delete or get information on an IPv4 tunnel.
1265  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1266  *	If a device is paired with a peer device, return the peer instance.
1267  *	The caller must be under RCU read context.
1268  */
1269 struct net_device_ops {
1270 	int			(*ndo_init)(struct net_device *dev);
1271 	void			(*ndo_uninit)(struct net_device *dev);
1272 	int			(*ndo_open)(struct net_device *dev);
1273 	int			(*ndo_stop)(struct net_device *dev);
1274 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1275 						  struct net_device *dev);
1276 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1277 						      struct net_device *dev,
1278 						      netdev_features_t features);
1279 	u16			(*ndo_select_queue)(struct net_device *dev,
1280 						    struct sk_buff *skb,
1281 						    struct net_device *sb_dev);
1282 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1283 						       int flags);
1284 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1285 	int			(*ndo_set_mac_address)(struct net_device *dev,
1286 						       void *addr);
1287 	int			(*ndo_validate_addr)(struct net_device *dev);
1288 	int			(*ndo_do_ioctl)(struct net_device *dev,
1289 					        struct ifreq *ifr, int cmd);
1290 	int			(*ndo_set_config)(struct net_device *dev,
1291 					          struct ifmap *map);
1292 	int			(*ndo_change_mtu)(struct net_device *dev,
1293 						  int new_mtu);
1294 	int			(*ndo_neigh_setup)(struct net_device *dev,
1295 						   struct neigh_parms *);
1296 	void			(*ndo_tx_timeout) (struct net_device *dev,
1297 						   unsigned int txqueue);
1298 
1299 	void			(*ndo_get_stats64)(struct net_device *dev,
1300 						   struct rtnl_link_stats64 *storage);
1301 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1302 	int			(*ndo_get_offload_stats)(int attr_id,
1303 							 const struct net_device *dev,
1304 							 void *attr_data);
1305 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1306 
1307 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1308 						       __be16 proto, u16 vid);
1309 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1310 						        __be16 proto, u16 vid);
1311 #ifdef CONFIG_NET_POLL_CONTROLLER
1312 	void                    (*ndo_poll_controller)(struct net_device *dev);
1313 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1314 						     struct netpoll_info *info);
1315 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1316 #endif
1317 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1318 						  int queue, u8 *mac);
1319 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1320 						   int queue, u16 vlan,
1321 						   u8 qos, __be16 proto);
1322 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1323 						   int vf, int min_tx_rate,
1324 						   int max_tx_rate);
1325 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1326 						       int vf, bool setting);
1327 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1328 						    int vf, bool setting);
1329 	int			(*ndo_get_vf_config)(struct net_device *dev,
1330 						     int vf,
1331 						     struct ifla_vf_info *ivf);
1332 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1333 							 int vf, int link_state);
1334 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1335 						    int vf,
1336 						    struct ifla_vf_stats
1337 						    *vf_stats);
1338 	int			(*ndo_set_vf_port)(struct net_device *dev,
1339 						   int vf,
1340 						   struct nlattr *port[]);
1341 	int			(*ndo_get_vf_port)(struct net_device *dev,
1342 						   int vf, struct sk_buff *skb);
1343 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1344 						   int vf,
1345 						   struct ifla_vf_guid *node_guid,
1346 						   struct ifla_vf_guid *port_guid);
1347 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1348 						   int vf, u64 guid,
1349 						   int guid_type);
1350 	int			(*ndo_set_vf_rss_query_en)(
1351 						   struct net_device *dev,
1352 						   int vf, bool setting);
1353 	int			(*ndo_setup_tc)(struct net_device *dev,
1354 						enum tc_setup_type type,
1355 						void *type_data);
1356 #if IS_ENABLED(CONFIG_FCOE)
1357 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1358 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1359 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1360 						      u16 xid,
1361 						      struct scatterlist *sgl,
1362 						      unsigned int sgc);
1363 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1364 						     u16 xid);
1365 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1366 						       u16 xid,
1367 						       struct scatterlist *sgl,
1368 						       unsigned int sgc);
1369 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1370 							struct netdev_fcoe_hbainfo *hbainfo);
1371 #endif
1372 
1373 #if IS_ENABLED(CONFIG_LIBFCOE)
1374 #define NETDEV_FCOE_WWNN 0
1375 #define NETDEV_FCOE_WWPN 1
1376 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1377 						    u64 *wwn, int type);
1378 #endif
1379 
1380 #ifdef CONFIG_RFS_ACCEL
1381 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1382 						     const struct sk_buff *skb,
1383 						     u16 rxq_index,
1384 						     u32 flow_id);
1385 #endif
1386 	int			(*ndo_add_slave)(struct net_device *dev,
1387 						 struct net_device *slave_dev,
1388 						 struct netlink_ext_ack *extack);
1389 	int			(*ndo_del_slave)(struct net_device *dev,
1390 						 struct net_device *slave_dev);
1391 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1392 						      struct sk_buff *skb,
1393 						      bool all_slaves);
1394 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1395 							struct sock *sk);
1396 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1397 						    netdev_features_t features);
1398 	int			(*ndo_set_features)(struct net_device *dev,
1399 						    netdev_features_t features);
1400 	int			(*ndo_neigh_construct)(struct net_device *dev,
1401 						       struct neighbour *n);
1402 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1403 						     struct neighbour *n);
1404 
1405 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1406 					       struct nlattr *tb[],
1407 					       struct net_device *dev,
1408 					       const unsigned char *addr,
1409 					       u16 vid,
1410 					       u16 flags,
1411 					       struct netlink_ext_ack *extack);
1412 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1413 					       struct nlattr *tb[],
1414 					       struct net_device *dev,
1415 					       const unsigned char *addr,
1416 					       u16 vid);
1417 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1418 						struct netlink_callback *cb,
1419 						struct net_device *dev,
1420 						struct net_device *filter_dev,
1421 						int *idx);
1422 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1423 					       struct nlattr *tb[],
1424 					       struct net_device *dev,
1425 					       const unsigned char *addr,
1426 					       u16 vid, u32 portid, u32 seq,
1427 					       struct netlink_ext_ack *extack);
1428 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1429 						      struct nlmsghdr *nlh,
1430 						      u16 flags,
1431 						      struct netlink_ext_ack *extack);
1432 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1433 						      u32 pid, u32 seq,
1434 						      struct net_device *dev,
1435 						      u32 filter_mask,
1436 						      int nlflags);
1437 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1438 						      struct nlmsghdr *nlh,
1439 						      u16 flags);
1440 	int			(*ndo_change_carrier)(struct net_device *dev,
1441 						      bool new_carrier);
1442 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1443 							struct netdev_phys_item_id *ppid);
1444 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1445 							  struct netdev_phys_item_id *ppid);
1446 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1447 							  char *name, size_t len);
1448 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1449 							struct net_device *dev);
1450 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1451 							void *priv);
1452 
1453 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1454 						      int queue_index,
1455 						      u32 maxrate);
1456 	int			(*ndo_get_iflink)(const struct net_device *dev);
1457 	int			(*ndo_change_proto_down)(struct net_device *dev,
1458 							 bool proto_down);
1459 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1460 						       struct sk_buff *skb);
1461 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1462 						       int needed_headroom);
1463 	int			(*ndo_bpf)(struct net_device *dev,
1464 					   struct netdev_bpf *bpf);
1465 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1466 						struct xdp_frame **xdp,
1467 						u32 flags);
1468 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1469 						  u32 queue_id, u32 flags);
1470 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1471 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1472 						  struct ip_tunnel_parm *p, int cmd);
1473 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1474 };
1475 
1476 /**
1477  * enum netdev_priv_flags - &struct net_device priv_flags
1478  *
1479  * These are the &struct net_device, they are only set internally
1480  * by drivers and used in the kernel. These flags are invisible to
1481  * userspace; this means that the order of these flags can change
1482  * during any kernel release.
1483  *
1484  * You should have a pretty good reason to be extending these flags.
1485  *
1486  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1487  * @IFF_EBRIDGE: Ethernet bridging device
1488  * @IFF_BONDING: bonding master or slave
1489  * @IFF_ISATAP: ISATAP interface (RFC4214)
1490  * @IFF_WAN_HDLC: WAN HDLC device
1491  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1492  *	release skb->dst
1493  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1494  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1495  * @IFF_MACVLAN_PORT: device used as macvlan port
1496  * @IFF_BRIDGE_PORT: device used as bridge port
1497  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1498  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1499  * @IFF_UNICAST_FLT: Supports unicast filtering
1500  * @IFF_TEAM_PORT: device used as team port
1501  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1502  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1503  *	change when it's running
1504  * @IFF_MACVLAN: Macvlan device
1505  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1506  *	underlying stacked devices
1507  * @IFF_L3MDEV_MASTER: device is an L3 master device
1508  * @IFF_NO_QUEUE: device can run without qdisc attached
1509  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1510  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1511  * @IFF_TEAM: device is a team device
1512  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1513  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1514  *	entity (i.e. the master device for bridged veth)
1515  * @IFF_MACSEC: device is a MACsec device
1516  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1517  * @IFF_FAILOVER: device is a failover master device
1518  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1519  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1520  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1521  */
1522 enum netdev_priv_flags {
1523 	IFF_802_1Q_VLAN			= 1<<0,
1524 	IFF_EBRIDGE			= 1<<1,
1525 	IFF_BONDING			= 1<<2,
1526 	IFF_ISATAP			= 1<<3,
1527 	IFF_WAN_HDLC			= 1<<4,
1528 	IFF_XMIT_DST_RELEASE		= 1<<5,
1529 	IFF_DONT_BRIDGE			= 1<<6,
1530 	IFF_DISABLE_NETPOLL		= 1<<7,
1531 	IFF_MACVLAN_PORT		= 1<<8,
1532 	IFF_BRIDGE_PORT			= 1<<9,
1533 	IFF_OVS_DATAPATH		= 1<<10,
1534 	IFF_TX_SKB_SHARING		= 1<<11,
1535 	IFF_UNICAST_FLT			= 1<<12,
1536 	IFF_TEAM_PORT			= 1<<13,
1537 	IFF_SUPP_NOFCS			= 1<<14,
1538 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1539 	IFF_MACVLAN			= 1<<16,
1540 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1541 	IFF_L3MDEV_MASTER		= 1<<18,
1542 	IFF_NO_QUEUE			= 1<<19,
1543 	IFF_OPENVSWITCH			= 1<<20,
1544 	IFF_L3MDEV_SLAVE		= 1<<21,
1545 	IFF_TEAM			= 1<<22,
1546 	IFF_RXFH_CONFIGURED		= 1<<23,
1547 	IFF_PHONY_HEADROOM		= 1<<24,
1548 	IFF_MACSEC			= 1<<25,
1549 	IFF_NO_RX_HANDLER		= 1<<26,
1550 	IFF_FAILOVER			= 1<<27,
1551 	IFF_FAILOVER_SLAVE		= 1<<28,
1552 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1553 	IFF_LIVE_RENAME_OK		= 1<<30,
1554 };
1555 
1556 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1557 #define IFF_EBRIDGE			IFF_EBRIDGE
1558 #define IFF_BONDING			IFF_BONDING
1559 #define IFF_ISATAP			IFF_ISATAP
1560 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1561 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1562 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1563 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1564 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1565 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1566 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1567 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1568 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1569 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1570 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1571 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1572 #define IFF_MACVLAN			IFF_MACVLAN
1573 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1574 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1575 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1576 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1577 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1578 #define IFF_TEAM			IFF_TEAM
1579 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1580 #define IFF_MACSEC			IFF_MACSEC
1581 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1582 #define IFF_FAILOVER			IFF_FAILOVER
1583 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1584 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1585 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1586 
1587 /**
1588  *	struct net_device - The DEVICE structure.
1589  *
1590  *	Actually, this whole structure is a big mistake.  It mixes I/O
1591  *	data with strictly "high-level" data, and it has to know about
1592  *	almost every data structure used in the INET module.
1593  *
1594  *	@name:	This is the first field of the "visible" part of this structure
1595  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1596  *		of the interface.
1597  *
1598  *	@name_node:	Name hashlist node
1599  *	@ifalias:	SNMP alias
1600  *	@mem_end:	Shared memory end
1601  *	@mem_start:	Shared memory start
1602  *	@base_addr:	Device I/O address
1603  *	@irq:		Device IRQ number
1604  *
1605  *	@state:		Generic network queuing layer state, see netdev_state_t
1606  *	@dev_list:	The global list of network devices
1607  *	@napi_list:	List entry used for polling NAPI devices
1608  *	@unreg_list:	List entry  when we are unregistering the
1609  *			device; see the function unregister_netdev
1610  *	@close_list:	List entry used when we are closing the device
1611  *	@ptype_all:     Device-specific packet handlers for all protocols
1612  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1613  *
1614  *	@adj_list:	Directly linked devices, like slaves for bonding
1615  *	@features:	Currently active device features
1616  *	@hw_features:	User-changeable features
1617  *
1618  *	@wanted_features:	User-requested features
1619  *	@vlan_features:		Mask of features inheritable by VLAN devices
1620  *
1621  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1622  *				This field indicates what encapsulation
1623  *				offloads the hardware is capable of doing,
1624  *				and drivers will need to set them appropriately.
1625  *
1626  *	@mpls_features:	Mask of features inheritable by MPLS
1627  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1628  *
1629  *	@ifindex:	interface index
1630  *	@group:		The group the device belongs to
1631  *
1632  *	@stats:		Statistics struct, which was left as a legacy, use
1633  *			rtnl_link_stats64 instead
1634  *
1635  *	@rx_dropped:	Dropped packets by core network,
1636  *			do not use this in drivers
1637  *	@tx_dropped:	Dropped packets by core network,
1638  *			do not use this in drivers
1639  *	@rx_nohandler:	nohandler dropped packets by core network on
1640  *			inactive devices, do not use this in drivers
1641  *	@carrier_up_count:	Number of times the carrier has been up
1642  *	@carrier_down_count:	Number of times the carrier has been down
1643  *
1644  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1645  *				instead of ioctl,
1646  *				see <net/iw_handler.h> for details.
1647  *	@wireless_data:	Instance data managed by the core of wireless extensions
1648  *
1649  *	@netdev_ops:	Includes several pointers to callbacks,
1650  *			if one wants to override the ndo_*() functions
1651  *	@ethtool_ops:	Management operations
1652  *	@l3mdev_ops:	Layer 3 master device operations
1653  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1654  *			discovery handling. Necessary for e.g. 6LoWPAN.
1655  *	@xfrmdev_ops:	Transformation offload operations
1656  *	@tlsdev_ops:	Transport Layer Security offload operations
1657  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1658  *			of Layer 2 headers.
1659  *
1660  *	@flags:		Interface flags (a la BSD)
1661  *	@priv_flags:	Like 'flags' but invisible to userspace,
1662  *			see if.h for the definitions
1663  *	@gflags:	Global flags ( kept as legacy )
1664  *	@padded:	How much padding added by alloc_netdev()
1665  *	@operstate:	RFC2863 operstate
1666  *	@link_mode:	Mapping policy to operstate
1667  *	@if_port:	Selectable AUI, TP, ...
1668  *	@dma:		DMA channel
1669  *	@mtu:		Interface MTU value
1670  *	@min_mtu:	Interface Minimum MTU value
1671  *	@max_mtu:	Interface Maximum MTU value
1672  *	@type:		Interface hardware type
1673  *	@hard_header_len: Maximum hardware header length.
1674  *	@min_header_len:  Minimum hardware header length
1675  *
1676  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1677  *			  cases can this be guaranteed
1678  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1679  *			  cases can this be guaranteed. Some cases also use
1680  *			  LL_MAX_HEADER instead to allocate the skb
1681  *
1682  *	interface address info:
1683  *
1684  * 	@perm_addr:		Permanent hw address
1685  * 	@addr_assign_type:	Hw address assignment type
1686  * 	@addr_len:		Hardware address length
1687  *	@upper_level:		Maximum depth level of upper devices.
1688  *	@lower_level:		Maximum depth level of lower devices.
1689  *	@neigh_priv_len:	Used in neigh_alloc()
1690  * 	@dev_id:		Used to differentiate devices that share
1691  * 				the same link layer address
1692  * 	@dev_port:		Used to differentiate devices that share
1693  * 				the same function
1694  *	@addr_list_lock:	XXX: need comments on this one
1695  *	@name_assign_type:	network interface name assignment type
1696  *	@uc_promisc:		Counter that indicates promiscuous mode
1697  *				has been enabled due to the need to listen to
1698  *				additional unicast addresses in a device that
1699  *				does not implement ndo_set_rx_mode()
1700  *	@uc:			unicast mac addresses
1701  *	@mc:			multicast mac addresses
1702  *	@dev_addrs:		list of device hw addresses
1703  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1704  *	@promiscuity:		Number of times the NIC is told to work in
1705  *				promiscuous mode; if it becomes 0 the NIC will
1706  *				exit promiscuous mode
1707  *	@allmulti:		Counter, enables or disables allmulticast mode
1708  *
1709  *	@vlan_info:	VLAN info
1710  *	@dsa_ptr:	dsa specific data
1711  *	@tipc_ptr:	TIPC specific data
1712  *	@atalk_ptr:	AppleTalk link
1713  *	@ip_ptr:	IPv4 specific data
1714  *	@dn_ptr:	DECnet specific data
1715  *	@ip6_ptr:	IPv6 specific data
1716  *	@ax25_ptr:	AX.25 specific data
1717  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1718  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1719  *			 device struct
1720  *	@mpls_ptr:	mpls_dev struct pointer
1721  *
1722  *	@dev_addr:	Hw address (before bcast,
1723  *			because most packets are unicast)
1724  *
1725  *	@_rx:			Array of RX queues
1726  *	@num_rx_queues:		Number of RX queues
1727  *				allocated at register_netdev() time
1728  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1729  *	@xdp_prog:		XDP sockets filter program pointer
1730  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1731  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1732  *				allow to avoid NIC hard IRQ, on busy queues.
1733  *
1734  *	@rx_handler:		handler for received packets
1735  *	@rx_handler_data: 	XXX: need comments on this one
1736  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1737  *				ingress processing
1738  *	@ingress_queue:		XXX: need comments on this one
1739  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1740  *	@broadcast:		hw bcast address
1741  *
1742  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1743  *			indexed by RX queue number. Assigned by driver.
1744  *			This must only be set if the ndo_rx_flow_steer
1745  *			operation is defined
1746  *	@index_hlist:		Device index hash chain
1747  *
1748  *	@_tx:			Array of TX queues
1749  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1750  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1751  *	@qdisc:			Root qdisc from userspace point of view
1752  *	@tx_queue_len:		Max frames per queue allowed
1753  *	@tx_global_lock: 	XXX: need comments on this one
1754  *	@xdp_bulkq:		XDP device bulk queue
1755  *	@xps_cpus_map:		all CPUs map for XPS device
1756  *	@xps_rxqs_map:		all RXQs map for XPS device
1757  *
1758  *	@xps_maps:	XXX: need comments on this one
1759  *	@miniq_egress:		clsact qdisc specific data for
1760  *				egress processing
1761  *	@qdisc_hash:		qdisc hash table
1762  *	@watchdog_timeo:	Represents the timeout that is used by
1763  *				the watchdog (see dev_watchdog())
1764  *	@watchdog_timer:	List of timers
1765  *
1766  *	@proto_down_reason:	reason a netdev interface is held down
1767  *	@pcpu_refcnt:		Number of references to this device
1768  *	@todo_list:		Delayed register/unregister
1769  *	@link_watch_list:	XXX: need comments on this one
1770  *
1771  *	@reg_state:		Register/unregister state machine
1772  *	@dismantle:		Device is going to be freed
1773  *	@rtnl_link_state:	This enum represents the phases of creating
1774  *				a new link
1775  *
1776  *	@needs_free_netdev:	Should unregister perform free_netdev?
1777  *	@priv_destructor:	Called from unregister
1778  *	@npinfo:		XXX: need comments on this one
1779  * 	@nd_net:		Network namespace this network device is inside
1780  *
1781  * 	@ml_priv:	Mid-layer private
1782  * 	@lstats:	Loopback statistics
1783  * 	@tstats:	Tunnel statistics
1784  * 	@dstats:	Dummy statistics
1785  * 	@vstats:	Virtual ethernet statistics
1786  *
1787  *	@garp_port:	GARP
1788  *	@mrp_port:	MRP
1789  *
1790  *	@dev:		Class/net/name entry
1791  *	@sysfs_groups:	Space for optional device, statistics and wireless
1792  *			sysfs groups
1793  *
1794  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1795  *	@rtnl_link_ops:	Rtnl_link_ops
1796  *
1797  *	@gso_max_size:	Maximum size of generic segmentation offload
1798  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1799  *			NIC for GSO
1800  *
1801  *	@dcbnl_ops:	Data Center Bridging netlink ops
1802  *	@num_tc:	Number of traffic classes in the net device
1803  *	@tc_to_txq:	XXX: need comments on this one
1804  *	@prio_tc_map:	XXX: need comments on this one
1805  *
1806  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1807  *
1808  *	@priomap:	XXX: need comments on this one
1809  *	@phydev:	Physical device may attach itself
1810  *			for hardware timestamping
1811  *	@sfp_bus:	attached &struct sfp_bus structure.
1812  *
1813  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1814  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1815  *
1816  *	@proto_down:	protocol port state information can be sent to the
1817  *			switch driver and used to set the phys state of the
1818  *			switch port.
1819  *
1820  *	@wol_enabled:	Wake-on-LAN is enabled
1821  *
1822  *	@threaded:	napi threaded mode is enabled
1823  *
1824  *	@net_notifier_list:	List of per-net netdev notifier block
1825  *				that follow this device when it is moved
1826  *				to another network namespace.
1827  *
1828  *	@macsec_ops:    MACsec offloading ops
1829  *
1830  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1831  *				offload capabilities of the device
1832  *	@udp_tunnel_nic:	UDP tunnel offload state
1833  *	@xdp_state:		stores info on attached XDP BPF programs
1834  *
1835  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1836  *			dev->addr_list_lock.
1837  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1838  *			keep a list of interfaces to be deleted.
1839  *
1840  *	FIXME: cleanup struct net_device such that network protocol info
1841  *	moves out.
1842  */
1843 
1844 struct net_device {
1845 	char			name[IFNAMSIZ];
1846 	struct netdev_name_node	*name_node;
1847 	struct dev_ifalias	__rcu *ifalias;
1848 	/*
1849 	 *	I/O specific fields
1850 	 *	FIXME: Merge these and struct ifmap into one
1851 	 */
1852 	unsigned long		mem_end;
1853 	unsigned long		mem_start;
1854 	unsigned long		base_addr;
1855 
1856 	/*
1857 	 *	Some hardware also needs these fields (state,dev_list,
1858 	 *	napi_list,unreg_list,close_list) but they are not
1859 	 *	part of the usual set specified in Space.c.
1860 	 */
1861 
1862 	unsigned long		state;
1863 
1864 	struct list_head	dev_list;
1865 	struct list_head	napi_list;
1866 	struct list_head	unreg_list;
1867 	struct list_head	close_list;
1868 	struct list_head	ptype_all;
1869 	struct list_head	ptype_specific;
1870 
1871 	struct {
1872 		struct list_head upper;
1873 		struct list_head lower;
1874 	} adj_list;
1875 
1876 	/* Read-mostly cache-line for fast-path access */
1877 	unsigned int		flags;
1878 	unsigned int		priv_flags;
1879 	const struct net_device_ops *netdev_ops;
1880 	int			ifindex;
1881 	unsigned short		gflags;
1882 	unsigned short		hard_header_len;
1883 
1884 	/* Note : dev->mtu is often read without holding a lock.
1885 	 * Writers usually hold RTNL.
1886 	 * It is recommended to use READ_ONCE() to annotate the reads,
1887 	 * and to use WRITE_ONCE() to annotate the writes.
1888 	 */
1889 	unsigned int		mtu;
1890 	unsigned short		needed_headroom;
1891 	unsigned short		needed_tailroom;
1892 
1893 	netdev_features_t	features;
1894 	netdev_features_t	hw_features;
1895 	netdev_features_t	wanted_features;
1896 	netdev_features_t	vlan_features;
1897 	netdev_features_t	hw_enc_features;
1898 	netdev_features_t	mpls_features;
1899 	netdev_features_t	gso_partial_features;
1900 
1901 	unsigned int		min_mtu;
1902 	unsigned int		max_mtu;
1903 	unsigned short		type;
1904 	unsigned char		min_header_len;
1905 	unsigned char		name_assign_type;
1906 
1907 	int			group;
1908 
1909 	struct net_device_stats	stats; /* not used by modern drivers */
1910 
1911 	atomic_long_t		rx_dropped;
1912 	atomic_long_t		tx_dropped;
1913 	atomic_long_t		rx_nohandler;
1914 
1915 	/* Stats to monitor link on/off, flapping */
1916 	atomic_t		carrier_up_count;
1917 	atomic_t		carrier_down_count;
1918 
1919 #ifdef CONFIG_WIRELESS_EXT
1920 	const struct iw_handler_def *wireless_handlers;
1921 	struct iw_public_data	*wireless_data;
1922 #endif
1923 	const struct ethtool_ops *ethtool_ops;
1924 #ifdef CONFIG_NET_L3_MASTER_DEV
1925 	const struct l3mdev_ops	*l3mdev_ops;
1926 #endif
1927 #if IS_ENABLED(CONFIG_IPV6)
1928 	const struct ndisc_ops *ndisc_ops;
1929 #endif
1930 
1931 #ifdef CONFIG_XFRM_OFFLOAD
1932 	const struct xfrmdev_ops *xfrmdev_ops;
1933 #endif
1934 
1935 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1936 	const struct tlsdev_ops *tlsdev_ops;
1937 #endif
1938 
1939 	const struct header_ops *header_ops;
1940 
1941 	unsigned char		operstate;
1942 	unsigned char		link_mode;
1943 
1944 	unsigned char		if_port;
1945 	unsigned char		dma;
1946 
1947 	/* Interface address info. */
1948 	unsigned char		perm_addr[MAX_ADDR_LEN];
1949 	unsigned char		addr_assign_type;
1950 	unsigned char		addr_len;
1951 	unsigned char		upper_level;
1952 	unsigned char		lower_level;
1953 
1954 	unsigned short		neigh_priv_len;
1955 	unsigned short          dev_id;
1956 	unsigned short          dev_port;
1957 	unsigned short		padded;
1958 
1959 	spinlock_t		addr_list_lock;
1960 	int			irq;
1961 
1962 	struct netdev_hw_addr_list	uc;
1963 	struct netdev_hw_addr_list	mc;
1964 	struct netdev_hw_addr_list	dev_addrs;
1965 
1966 #ifdef CONFIG_SYSFS
1967 	struct kset		*queues_kset;
1968 #endif
1969 #ifdef CONFIG_LOCKDEP
1970 	struct list_head	unlink_list;
1971 #endif
1972 	unsigned int		promiscuity;
1973 	unsigned int		allmulti;
1974 	bool			uc_promisc;
1975 #ifdef CONFIG_LOCKDEP
1976 	unsigned char		nested_level;
1977 #endif
1978 
1979 
1980 	/* Protocol-specific pointers */
1981 
1982 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1983 	struct vlan_info __rcu	*vlan_info;
1984 #endif
1985 #if IS_ENABLED(CONFIG_NET_DSA)
1986 	struct dsa_port		*dsa_ptr;
1987 #endif
1988 #if IS_ENABLED(CONFIG_TIPC)
1989 	struct tipc_bearer __rcu *tipc_ptr;
1990 #endif
1991 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1992 	void 			*atalk_ptr;
1993 #endif
1994 	struct in_device __rcu	*ip_ptr;
1995 #if IS_ENABLED(CONFIG_DECNET)
1996 	struct dn_dev __rcu     *dn_ptr;
1997 #endif
1998 	struct inet6_dev __rcu	*ip6_ptr;
1999 #if IS_ENABLED(CONFIG_AX25)
2000 	void			*ax25_ptr;
2001 #endif
2002 	struct wireless_dev	*ieee80211_ptr;
2003 	struct wpan_dev		*ieee802154_ptr;
2004 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2005 	struct mpls_dev __rcu	*mpls_ptr;
2006 #endif
2007 
2008 /*
2009  * Cache lines mostly used on receive path (including eth_type_trans())
2010  */
2011 	/* Interface address info used in eth_type_trans() */
2012 	unsigned char		*dev_addr;
2013 
2014 	struct netdev_rx_queue	*_rx;
2015 	unsigned int		num_rx_queues;
2016 	unsigned int		real_num_rx_queues;
2017 
2018 	struct bpf_prog __rcu	*xdp_prog;
2019 	unsigned long		gro_flush_timeout;
2020 	int			napi_defer_hard_irqs;
2021 	rx_handler_func_t __rcu	*rx_handler;
2022 	void __rcu		*rx_handler_data;
2023 
2024 #ifdef CONFIG_NET_CLS_ACT
2025 	struct mini_Qdisc __rcu	*miniq_ingress;
2026 #endif
2027 	struct netdev_queue __rcu *ingress_queue;
2028 #ifdef CONFIG_NETFILTER_INGRESS
2029 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2030 #endif
2031 
2032 	unsigned char		broadcast[MAX_ADDR_LEN];
2033 #ifdef CONFIG_RFS_ACCEL
2034 	struct cpu_rmap		*rx_cpu_rmap;
2035 #endif
2036 	struct hlist_node	index_hlist;
2037 
2038 /*
2039  * Cache lines mostly used on transmit path
2040  */
2041 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2042 	unsigned int		num_tx_queues;
2043 	unsigned int		real_num_tx_queues;
2044 	struct Qdisc		*qdisc;
2045 	unsigned int		tx_queue_len;
2046 	spinlock_t		tx_global_lock;
2047 
2048 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2049 
2050 #ifdef CONFIG_XPS
2051 	struct xps_dev_maps __rcu *xps_cpus_map;
2052 	struct xps_dev_maps __rcu *xps_rxqs_map;
2053 #endif
2054 #ifdef CONFIG_NET_CLS_ACT
2055 	struct mini_Qdisc __rcu	*miniq_egress;
2056 #endif
2057 
2058 #ifdef CONFIG_NET_SCHED
2059 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2060 #endif
2061 	/* These may be needed for future network-power-down code. */
2062 	struct timer_list	watchdog_timer;
2063 	int			watchdog_timeo;
2064 
2065 	u32                     proto_down_reason;
2066 
2067 	struct list_head	todo_list;
2068 	int __percpu		*pcpu_refcnt;
2069 
2070 	struct list_head	link_watch_list;
2071 
2072 	enum { NETREG_UNINITIALIZED=0,
2073 	       NETREG_REGISTERED,	/* completed register_netdevice */
2074 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2075 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2076 	       NETREG_RELEASED,		/* called free_netdev */
2077 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2078 	} reg_state:8;
2079 
2080 	bool dismantle;
2081 
2082 	enum {
2083 		RTNL_LINK_INITIALIZED,
2084 		RTNL_LINK_INITIALIZING,
2085 	} rtnl_link_state:16;
2086 
2087 	bool needs_free_netdev;
2088 	void (*priv_destructor)(struct net_device *dev);
2089 
2090 #ifdef CONFIG_NETPOLL
2091 	struct netpoll_info __rcu	*npinfo;
2092 #endif
2093 
2094 	possible_net_t			nd_net;
2095 
2096 	/* mid-layer private */
2097 	union {
2098 		void					*ml_priv;
2099 		struct pcpu_lstats __percpu		*lstats;
2100 		struct pcpu_sw_netstats __percpu	*tstats;
2101 		struct pcpu_dstats __percpu		*dstats;
2102 	};
2103 
2104 #if IS_ENABLED(CONFIG_GARP)
2105 	struct garp_port __rcu	*garp_port;
2106 #endif
2107 #if IS_ENABLED(CONFIG_MRP)
2108 	struct mrp_port __rcu	*mrp_port;
2109 #endif
2110 
2111 	struct device		dev;
2112 	const struct attribute_group *sysfs_groups[4];
2113 	const struct attribute_group *sysfs_rx_queue_group;
2114 
2115 	const struct rtnl_link_ops *rtnl_link_ops;
2116 
2117 	/* for setting kernel sock attribute on TCP connection setup */
2118 #define GSO_MAX_SIZE		65536
2119 	unsigned int		gso_max_size;
2120 #define GSO_MAX_SEGS		65535
2121 	u16			gso_max_segs;
2122 
2123 #ifdef CONFIG_DCB
2124 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2125 #endif
2126 	s16			num_tc;
2127 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2128 	u8			prio_tc_map[TC_BITMASK + 1];
2129 
2130 #if IS_ENABLED(CONFIG_FCOE)
2131 	unsigned int		fcoe_ddp_xid;
2132 #endif
2133 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2134 	struct netprio_map __rcu *priomap;
2135 #endif
2136 	struct phy_device	*phydev;
2137 	struct sfp_bus		*sfp_bus;
2138 	struct lock_class_key	*qdisc_tx_busylock;
2139 	struct lock_class_key	*qdisc_running_key;
2140 	bool			proto_down;
2141 	unsigned		wol_enabled:1;
2142 	unsigned		threaded:1;
2143 
2144 	struct list_head	net_notifier_list;
2145 
2146 #if IS_ENABLED(CONFIG_MACSEC)
2147 	/* MACsec management functions */
2148 	const struct macsec_ops *macsec_ops;
2149 #endif
2150 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2151 	struct udp_tunnel_nic	*udp_tunnel_nic;
2152 
2153 	/* protected by rtnl_lock */
2154 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2155 };
2156 #define to_net_dev(d) container_of(d, struct net_device, dev)
2157 
2158 static inline bool netif_elide_gro(const struct net_device *dev)
2159 {
2160 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2161 		return true;
2162 	return false;
2163 }
2164 
2165 #define	NETDEV_ALIGN		32
2166 
2167 static inline
2168 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2169 {
2170 	return dev->prio_tc_map[prio & TC_BITMASK];
2171 }
2172 
2173 static inline
2174 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2175 {
2176 	if (tc >= dev->num_tc)
2177 		return -EINVAL;
2178 
2179 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2180 	return 0;
2181 }
2182 
2183 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2184 void netdev_reset_tc(struct net_device *dev);
2185 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2186 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2187 
2188 static inline
2189 int netdev_get_num_tc(struct net_device *dev)
2190 {
2191 	return dev->num_tc;
2192 }
2193 
2194 static inline void net_prefetch(void *p)
2195 {
2196 	prefetch(p);
2197 #if L1_CACHE_BYTES < 128
2198 	prefetch((u8 *)p + L1_CACHE_BYTES);
2199 #endif
2200 }
2201 
2202 static inline void net_prefetchw(void *p)
2203 {
2204 	prefetchw(p);
2205 #if L1_CACHE_BYTES < 128
2206 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2207 #endif
2208 }
2209 
2210 void netdev_unbind_sb_channel(struct net_device *dev,
2211 			      struct net_device *sb_dev);
2212 int netdev_bind_sb_channel_queue(struct net_device *dev,
2213 				 struct net_device *sb_dev,
2214 				 u8 tc, u16 count, u16 offset);
2215 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2216 static inline int netdev_get_sb_channel(struct net_device *dev)
2217 {
2218 	return max_t(int, -dev->num_tc, 0);
2219 }
2220 
2221 static inline
2222 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2223 					 unsigned int index)
2224 {
2225 	return &dev->_tx[index];
2226 }
2227 
2228 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2229 						    const struct sk_buff *skb)
2230 {
2231 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2232 }
2233 
2234 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2235 					    void (*f)(struct net_device *,
2236 						      struct netdev_queue *,
2237 						      void *),
2238 					    void *arg)
2239 {
2240 	unsigned int i;
2241 
2242 	for (i = 0; i < dev->num_tx_queues; i++)
2243 		f(dev, &dev->_tx[i], arg);
2244 }
2245 
2246 #define netdev_lockdep_set_classes(dev)				\
2247 {								\
2248 	static struct lock_class_key qdisc_tx_busylock_key;	\
2249 	static struct lock_class_key qdisc_running_key;		\
2250 	static struct lock_class_key qdisc_xmit_lock_key;	\
2251 	static struct lock_class_key dev_addr_list_lock_key;	\
2252 	unsigned int i;						\
2253 								\
2254 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2255 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2256 	lockdep_set_class(&(dev)->addr_list_lock,		\
2257 			  &dev_addr_list_lock_key);		\
2258 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2259 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2260 				  &qdisc_xmit_lock_key);	\
2261 }
2262 
2263 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2264 		     struct net_device *sb_dev);
2265 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2266 					 struct sk_buff *skb,
2267 					 struct net_device *sb_dev);
2268 
2269 /* returns the headroom that the master device needs to take in account
2270  * when forwarding to this dev
2271  */
2272 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2273 {
2274 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2275 }
2276 
2277 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2278 {
2279 	if (dev->netdev_ops->ndo_set_rx_headroom)
2280 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2281 }
2282 
2283 /* set the device rx headroom to the dev's default */
2284 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2285 {
2286 	netdev_set_rx_headroom(dev, -1);
2287 }
2288 
2289 /*
2290  * Net namespace inlines
2291  */
2292 static inline
2293 struct net *dev_net(const struct net_device *dev)
2294 {
2295 	return read_pnet(&dev->nd_net);
2296 }
2297 
2298 static inline
2299 void dev_net_set(struct net_device *dev, struct net *net)
2300 {
2301 	write_pnet(&dev->nd_net, net);
2302 }
2303 
2304 /**
2305  *	netdev_priv - access network device private data
2306  *	@dev: network device
2307  *
2308  * Get network device private data
2309  */
2310 static inline void *netdev_priv(const struct net_device *dev)
2311 {
2312 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2313 }
2314 
2315 /* Set the sysfs physical device reference for the network logical device
2316  * if set prior to registration will cause a symlink during initialization.
2317  */
2318 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2319 
2320 /* Set the sysfs device type for the network logical device to allow
2321  * fine-grained identification of different network device types. For
2322  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2323  */
2324 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2325 
2326 /* Default NAPI poll() weight
2327  * Device drivers are strongly advised to not use bigger value
2328  */
2329 #define NAPI_POLL_WEIGHT 64
2330 
2331 /**
2332  *	netif_napi_add - initialize a NAPI context
2333  *	@dev:  network device
2334  *	@napi: NAPI context
2335  *	@poll: polling function
2336  *	@weight: default weight
2337  *
2338  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2339  * *any* of the other NAPI-related functions.
2340  */
2341 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2342 		    int (*poll)(struct napi_struct *, int), int weight);
2343 
2344 /**
2345  *	netif_tx_napi_add - initialize a NAPI context
2346  *	@dev:  network device
2347  *	@napi: NAPI context
2348  *	@poll: polling function
2349  *	@weight: default weight
2350  *
2351  * This variant of netif_napi_add() should be used from drivers using NAPI
2352  * to exclusively poll a TX queue.
2353  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2354  */
2355 static inline void netif_tx_napi_add(struct net_device *dev,
2356 				     struct napi_struct *napi,
2357 				     int (*poll)(struct napi_struct *, int),
2358 				     int weight)
2359 {
2360 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2361 	netif_napi_add(dev, napi, poll, weight);
2362 }
2363 
2364 /**
2365  *  __netif_napi_del - remove a NAPI context
2366  *  @napi: NAPI context
2367  *
2368  * Warning: caller must observe RCU grace period before freeing memory
2369  * containing @napi. Drivers might want to call this helper to combine
2370  * all the needed RCU grace periods into a single one.
2371  */
2372 void __netif_napi_del(struct napi_struct *napi);
2373 
2374 /**
2375  *  netif_napi_del - remove a NAPI context
2376  *  @napi: NAPI context
2377  *
2378  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2379  */
2380 static inline void netif_napi_del(struct napi_struct *napi)
2381 {
2382 	__netif_napi_del(napi);
2383 	synchronize_net();
2384 }
2385 
2386 struct napi_gro_cb {
2387 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2388 	void	*frag0;
2389 
2390 	/* Length of frag0. */
2391 	unsigned int frag0_len;
2392 
2393 	/* This indicates where we are processing relative to skb->data. */
2394 	int	data_offset;
2395 
2396 	/* This is non-zero if the packet cannot be merged with the new skb. */
2397 	u16	flush;
2398 
2399 	/* Save the IP ID here and check when we get to the transport layer */
2400 	u16	flush_id;
2401 
2402 	/* Number of segments aggregated. */
2403 	u16	count;
2404 
2405 	/* Start offset for remote checksum offload */
2406 	u16	gro_remcsum_start;
2407 
2408 	/* jiffies when first packet was created/queued */
2409 	unsigned long age;
2410 
2411 	/* Used in ipv6_gro_receive() and foo-over-udp */
2412 	u16	proto;
2413 
2414 	/* This is non-zero if the packet may be of the same flow. */
2415 	u8	same_flow:1;
2416 
2417 	/* Used in tunnel GRO receive */
2418 	u8	encap_mark:1;
2419 
2420 	/* GRO checksum is valid */
2421 	u8	csum_valid:1;
2422 
2423 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2424 	u8	csum_cnt:3;
2425 
2426 	/* Free the skb? */
2427 	u8	free:2;
2428 #define NAPI_GRO_FREE		  1
2429 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2430 
2431 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2432 	u8	is_ipv6:1;
2433 
2434 	/* Used in GRE, set in fou/gue_gro_receive */
2435 	u8	is_fou:1;
2436 
2437 	/* Used to determine if flush_id can be ignored */
2438 	u8	is_atomic:1;
2439 
2440 	/* Number of gro_receive callbacks this packet already went through */
2441 	u8 recursion_counter:4;
2442 
2443 	/* GRO is done by frag_list pointer chaining. */
2444 	u8	is_flist:1;
2445 
2446 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2447 	__wsum	csum;
2448 
2449 	/* used in skb_gro_receive() slow path */
2450 	struct sk_buff *last;
2451 };
2452 
2453 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2454 
2455 #define GRO_RECURSION_LIMIT 15
2456 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2457 {
2458 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2459 }
2460 
2461 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2462 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2463 					       struct list_head *head,
2464 					       struct sk_buff *skb)
2465 {
2466 	if (unlikely(gro_recursion_inc_test(skb))) {
2467 		NAPI_GRO_CB(skb)->flush |= 1;
2468 		return NULL;
2469 	}
2470 
2471 	return cb(head, skb);
2472 }
2473 
2474 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2475 					    struct sk_buff *);
2476 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2477 						  struct sock *sk,
2478 						  struct list_head *head,
2479 						  struct sk_buff *skb)
2480 {
2481 	if (unlikely(gro_recursion_inc_test(skb))) {
2482 		NAPI_GRO_CB(skb)->flush |= 1;
2483 		return NULL;
2484 	}
2485 
2486 	return cb(sk, head, skb);
2487 }
2488 
2489 struct packet_type {
2490 	__be16			type;	/* This is really htons(ether_type). */
2491 	bool			ignore_outgoing;
2492 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2493 	int			(*func) (struct sk_buff *,
2494 					 struct net_device *,
2495 					 struct packet_type *,
2496 					 struct net_device *);
2497 	void			(*list_func) (struct list_head *,
2498 					      struct packet_type *,
2499 					      struct net_device *);
2500 	bool			(*id_match)(struct packet_type *ptype,
2501 					    struct sock *sk);
2502 	void			*af_packet_priv;
2503 	struct list_head	list;
2504 };
2505 
2506 struct offload_callbacks {
2507 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2508 						netdev_features_t features);
2509 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2510 						struct sk_buff *skb);
2511 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2512 };
2513 
2514 struct packet_offload {
2515 	__be16			 type;	/* This is really htons(ether_type). */
2516 	u16			 priority;
2517 	struct offload_callbacks callbacks;
2518 	struct list_head	 list;
2519 };
2520 
2521 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2522 struct pcpu_sw_netstats {
2523 	u64     rx_packets;
2524 	u64     rx_bytes;
2525 	u64     tx_packets;
2526 	u64     tx_bytes;
2527 	struct u64_stats_sync   syncp;
2528 } __aligned(4 * sizeof(u64));
2529 
2530 struct pcpu_lstats {
2531 	u64_stats_t packets;
2532 	u64_stats_t bytes;
2533 	struct u64_stats_sync syncp;
2534 } __aligned(2 * sizeof(u64));
2535 
2536 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2537 
2538 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2539 {
2540 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2541 
2542 	u64_stats_update_begin(&tstats->syncp);
2543 	tstats->rx_bytes += len;
2544 	tstats->rx_packets++;
2545 	u64_stats_update_end(&tstats->syncp);
2546 }
2547 
2548 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2549 					  unsigned int packets,
2550 					  unsigned int len)
2551 {
2552 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2553 
2554 	u64_stats_update_begin(&tstats->syncp);
2555 	tstats->tx_bytes += len;
2556 	tstats->tx_packets += packets;
2557 	u64_stats_update_end(&tstats->syncp);
2558 }
2559 
2560 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2561 {
2562 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2563 
2564 	u64_stats_update_begin(&lstats->syncp);
2565 	u64_stats_add(&lstats->bytes, len);
2566 	u64_stats_inc(&lstats->packets);
2567 	u64_stats_update_end(&lstats->syncp);
2568 }
2569 
2570 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2571 ({									\
2572 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2573 	if (pcpu_stats)	{						\
2574 		int __cpu;						\
2575 		for_each_possible_cpu(__cpu) {				\
2576 			typeof(type) *stat;				\
2577 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2578 			u64_stats_init(&stat->syncp);			\
2579 		}							\
2580 	}								\
2581 	pcpu_stats;							\
2582 })
2583 
2584 #define netdev_alloc_pcpu_stats(type)					\
2585 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2586 
2587 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2588 ({									\
2589 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2590 	if (pcpu_stats) {						\
2591 		int __cpu;						\
2592 		for_each_possible_cpu(__cpu) {				\
2593 			typeof(type) *stat;				\
2594 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2595 			u64_stats_init(&stat->syncp);			\
2596 		}							\
2597 	}								\
2598 	pcpu_stats;							\
2599 })
2600 
2601 enum netdev_lag_tx_type {
2602 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2603 	NETDEV_LAG_TX_TYPE_RANDOM,
2604 	NETDEV_LAG_TX_TYPE_BROADCAST,
2605 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2606 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2607 	NETDEV_LAG_TX_TYPE_HASH,
2608 };
2609 
2610 enum netdev_lag_hash {
2611 	NETDEV_LAG_HASH_NONE,
2612 	NETDEV_LAG_HASH_L2,
2613 	NETDEV_LAG_HASH_L34,
2614 	NETDEV_LAG_HASH_L23,
2615 	NETDEV_LAG_HASH_E23,
2616 	NETDEV_LAG_HASH_E34,
2617 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2618 	NETDEV_LAG_HASH_UNKNOWN,
2619 };
2620 
2621 struct netdev_lag_upper_info {
2622 	enum netdev_lag_tx_type tx_type;
2623 	enum netdev_lag_hash hash_type;
2624 };
2625 
2626 struct netdev_lag_lower_state_info {
2627 	u8 link_up : 1,
2628 	   tx_enabled : 1;
2629 };
2630 
2631 #include <linux/notifier.h>
2632 
2633 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2634  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2635  * adding new types.
2636  */
2637 enum netdev_cmd {
2638 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2639 	NETDEV_DOWN,
2640 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2641 				   detected a hardware crash and restarted
2642 				   - we can use this eg to kick tcp sessions
2643 				   once done */
2644 	NETDEV_CHANGE,		/* Notify device state change */
2645 	NETDEV_REGISTER,
2646 	NETDEV_UNREGISTER,
2647 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2648 	NETDEV_CHANGEADDR,	/* notify after the address change */
2649 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2650 	NETDEV_GOING_DOWN,
2651 	NETDEV_CHANGENAME,
2652 	NETDEV_FEAT_CHANGE,
2653 	NETDEV_BONDING_FAILOVER,
2654 	NETDEV_PRE_UP,
2655 	NETDEV_PRE_TYPE_CHANGE,
2656 	NETDEV_POST_TYPE_CHANGE,
2657 	NETDEV_POST_INIT,
2658 	NETDEV_RELEASE,
2659 	NETDEV_NOTIFY_PEERS,
2660 	NETDEV_JOIN,
2661 	NETDEV_CHANGEUPPER,
2662 	NETDEV_RESEND_IGMP,
2663 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2664 	NETDEV_CHANGEINFODATA,
2665 	NETDEV_BONDING_INFO,
2666 	NETDEV_PRECHANGEUPPER,
2667 	NETDEV_CHANGELOWERSTATE,
2668 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2669 	NETDEV_UDP_TUNNEL_DROP_INFO,
2670 	NETDEV_CHANGE_TX_QUEUE_LEN,
2671 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2672 	NETDEV_CVLAN_FILTER_DROP_INFO,
2673 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2674 	NETDEV_SVLAN_FILTER_DROP_INFO,
2675 };
2676 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2677 
2678 int register_netdevice_notifier(struct notifier_block *nb);
2679 int unregister_netdevice_notifier(struct notifier_block *nb);
2680 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2681 int unregister_netdevice_notifier_net(struct net *net,
2682 				      struct notifier_block *nb);
2683 int register_netdevice_notifier_dev_net(struct net_device *dev,
2684 					struct notifier_block *nb,
2685 					struct netdev_net_notifier *nn);
2686 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2687 					  struct notifier_block *nb,
2688 					  struct netdev_net_notifier *nn);
2689 
2690 struct netdev_notifier_info {
2691 	struct net_device	*dev;
2692 	struct netlink_ext_ack	*extack;
2693 };
2694 
2695 struct netdev_notifier_info_ext {
2696 	struct netdev_notifier_info info; /* must be first */
2697 	union {
2698 		u32 mtu;
2699 	} ext;
2700 };
2701 
2702 struct netdev_notifier_change_info {
2703 	struct netdev_notifier_info info; /* must be first */
2704 	unsigned int flags_changed;
2705 };
2706 
2707 struct netdev_notifier_changeupper_info {
2708 	struct netdev_notifier_info info; /* must be first */
2709 	struct net_device *upper_dev; /* new upper dev */
2710 	bool master; /* is upper dev master */
2711 	bool linking; /* is the notification for link or unlink */
2712 	void *upper_info; /* upper dev info */
2713 };
2714 
2715 struct netdev_notifier_changelowerstate_info {
2716 	struct netdev_notifier_info info; /* must be first */
2717 	void *lower_state_info; /* is lower dev state */
2718 };
2719 
2720 struct netdev_notifier_pre_changeaddr_info {
2721 	struct netdev_notifier_info info; /* must be first */
2722 	const unsigned char *dev_addr;
2723 };
2724 
2725 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2726 					     struct net_device *dev)
2727 {
2728 	info->dev = dev;
2729 	info->extack = NULL;
2730 }
2731 
2732 static inline struct net_device *
2733 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2734 {
2735 	return info->dev;
2736 }
2737 
2738 static inline struct netlink_ext_ack *
2739 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2740 {
2741 	return info->extack;
2742 }
2743 
2744 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2745 
2746 
2747 extern rwlock_t				dev_base_lock;		/* Device list lock */
2748 
2749 #define for_each_netdev(net, d)		\
2750 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2751 #define for_each_netdev_reverse(net, d)	\
2752 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2753 #define for_each_netdev_rcu(net, d)		\
2754 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2755 #define for_each_netdev_safe(net, d, n)	\
2756 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2757 #define for_each_netdev_continue(net, d)		\
2758 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2759 #define for_each_netdev_continue_reverse(net, d)		\
2760 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2761 						     dev_list)
2762 #define for_each_netdev_continue_rcu(net, d)		\
2763 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2764 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2765 		for_each_netdev_rcu(&init_net, slave)	\
2766 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2767 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2768 
2769 static inline struct net_device *next_net_device(struct net_device *dev)
2770 {
2771 	struct list_head *lh;
2772 	struct net *net;
2773 
2774 	net = dev_net(dev);
2775 	lh = dev->dev_list.next;
2776 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2777 }
2778 
2779 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2780 {
2781 	struct list_head *lh;
2782 	struct net *net;
2783 
2784 	net = dev_net(dev);
2785 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2786 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2787 }
2788 
2789 static inline struct net_device *first_net_device(struct net *net)
2790 {
2791 	return list_empty(&net->dev_base_head) ? NULL :
2792 		net_device_entry(net->dev_base_head.next);
2793 }
2794 
2795 static inline struct net_device *first_net_device_rcu(struct net *net)
2796 {
2797 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2798 
2799 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2800 }
2801 
2802 int netdev_boot_setup_check(struct net_device *dev);
2803 unsigned long netdev_boot_base(const char *prefix, int unit);
2804 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2805 				       const char *hwaddr);
2806 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2807 void dev_add_pack(struct packet_type *pt);
2808 void dev_remove_pack(struct packet_type *pt);
2809 void __dev_remove_pack(struct packet_type *pt);
2810 void dev_add_offload(struct packet_offload *po);
2811 void dev_remove_offload(struct packet_offload *po);
2812 
2813 int dev_get_iflink(const struct net_device *dev);
2814 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2815 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2816 				      unsigned short mask);
2817 struct net_device *dev_get_by_name(struct net *net, const char *name);
2818 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2819 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2820 int dev_alloc_name(struct net_device *dev, const char *name);
2821 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2822 void dev_close(struct net_device *dev);
2823 void dev_close_many(struct list_head *head, bool unlink);
2824 void dev_disable_lro(struct net_device *dev);
2825 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2826 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2827 		     struct net_device *sb_dev);
2828 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2829 		       struct net_device *sb_dev);
2830 
2831 int dev_queue_xmit(struct sk_buff *skb);
2832 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2833 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2834 
2835 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2836 {
2837 	int ret;
2838 
2839 	ret = __dev_direct_xmit(skb, queue_id);
2840 	if (!dev_xmit_complete(ret))
2841 		kfree_skb(skb);
2842 	return ret;
2843 }
2844 
2845 int register_netdevice(struct net_device *dev);
2846 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2847 void unregister_netdevice_many(struct list_head *head);
2848 static inline void unregister_netdevice(struct net_device *dev)
2849 {
2850 	unregister_netdevice_queue(dev, NULL);
2851 }
2852 
2853 int netdev_refcnt_read(const struct net_device *dev);
2854 void free_netdev(struct net_device *dev);
2855 void netdev_freemem(struct net_device *dev);
2856 int init_dummy_netdev(struct net_device *dev);
2857 
2858 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2859 					 struct sk_buff *skb,
2860 					 bool all_slaves);
2861 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2862 					    struct sock *sk);
2863 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2864 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2866 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2867 int netdev_get_name(struct net *net, char *name, int ifindex);
2868 int dev_restart(struct net_device *dev);
2869 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2870 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2871 
2872 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2873 {
2874 	return NAPI_GRO_CB(skb)->data_offset;
2875 }
2876 
2877 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2878 {
2879 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2880 }
2881 
2882 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2883 {
2884 	NAPI_GRO_CB(skb)->data_offset += len;
2885 }
2886 
2887 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2888 					unsigned int offset)
2889 {
2890 	return NAPI_GRO_CB(skb)->frag0 + offset;
2891 }
2892 
2893 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2894 {
2895 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2896 }
2897 
2898 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2899 {
2900 	NAPI_GRO_CB(skb)->frag0 = NULL;
2901 	NAPI_GRO_CB(skb)->frag0_len = 0;
2902 }
2903 
2904 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2905 					unsigned int offset)
2906 {
2907 	if (!pskb_may_pull(skb, hlen))
2908 		return NULL;
2909 
2910 	skb_gro_frag0_invalidate(skb);
2911 	return skb->data + offset;
2912 }
2913 
2914 static inline void *skb_gro_network_header(struct sk_buff *skb)
2915 {
2916 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2917 	       skb_network_offset(skb);
2918 }
2919 
2920 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2921 					const void *start, unsigned int len)
2922 {
2923 	if (NAPI_GRO_CB(skb)->csum_valid)
2924 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2925 						  csum_partial(start, len, 0));
2926 }
2927 
2928 /* GRO checksum functions. These are logical equivalents of the normal
2929  * checksum functions (in skbuff.h) except that they operate on the GRO
2930  * offsets and fields in sk_buff.
2931  */
2932 
2933 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2934 
2935 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2936 {
2937 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2938 }
2939 
2940 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2941 						      bool zero_okay,
2942 						      __sum16 check)
2943 {
2944 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2945 		skb_checksum_start_offset(skb) <
2946 		 skb_gro_offset(skb)) &&
2947 		!skb_at_gro_remcsum_start(skb) &&
2948 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2949 		(!zero_okay || check));
2950 }
2951 
2952 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2953 							   __wsum psum)
2954 {
2955 	if (NAPI_GRO_CB(skb)->csum_valid &&
2956 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2957 		return 0;
2958 
2959 	NAPI_GRO_CB(skb)->csum = psum;
2960 
2961 	return __skb_gro_checksum_complete(skb);
2962 }
2963 
2964 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2965 {
2966 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2967 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2968 		NAPI_GRO_CB(skb)->csum_cnt--;
2969 	} else {
2970 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2971 		 * verified a new top level checksum or an encapsulated one
2972 		 * during GRO. This saves work if we fallback to normal path.
2973 		 */
2974 		__skb_incr_checksum_unnecessary(skb);
2975 	}
2976 }
2977 
2978 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2979 				    compute_pseudo)			\
2980 ({									\
2981 	__sum16 __ret = 0;						\
2982 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2983 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2984 				compute_pseudo(skb, proto));		\
2985 	if (!__ret)							\
2986 		skb_gro_incr_csum_unnecessary(skb);			\
2987 	__ret;								\
2988 })
2989 
2990 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2991 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2992 
2993 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2994 					     compute_pseudo)		\
2995 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2996 
2997 #define skb_gro_checksum_simple_validate(skb)				\
2998 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2999 
3000 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3001 {
3002 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3003 		!NAPI_GRO_CB(skb)->csum_valid);
3004 }
3005 
3006 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3007 					      __wsum pseudo)
3008 {
3009 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3010 	NAPI_GRO_CB(skb)->csum_valid = 1;
3011 }
3012 
3013 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3014 do {									\
3015 	if (__skb_gro_checksum_convert_check(skb))			\
3016 		__skb_gro_checksum_convert(skb, 			\
3017 					   compute_pseudo(skb, proto));	\
3018 } while (0)
3019 
3020 struct gro_remcsum {
3021 	int offset;
3022 	__wsum delta;
3023 };
3024 
3025 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3026 {
3027 	grc->offset = 0;
3028 	grc->delta = 0;
3029 }
3030 
3031 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3032 					    unsigned int off, size_t hdrlen,
3033 					    int start, int offset,
3034 					    struct gro_remcsum *grc,
3035 					    bool nopartial)
3036 {
3037 	__wsum delta;
3038 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3039 
3040 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3041 
3042 	if (!nopartial) {
3043 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3044 		return ptr;
3045 	}
3046 
3047 	ptr = skb_gro_header_fast(skb, off);
3048 	if (skb_gro_header_hard(skb, off + plen)) {
3049 		ptr = skb_gro_header_slow(skb, off + plen, off);
3050 		if (!ptr)
3051 			return NULL;
3052 	}
3053 
3054 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3055 			       start, offset);
3056 
3057 	/* Adjust skb->csum since we changed the packet */
3058 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3059 
3060 	grc->offset = off + hdrlen + offset;
3061 	grc->delta = delta;
3062 
3063 	return ptr;
3064 }
3065 
3066 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3067 					   struct gro_remcsum *grc)
3068 {
3069 	void *ptr;
3070 	size_t plen = grc->offset + sizeof(u16);
3071 
3072 	if (!grc->delta)
3073 		return;
3074 
3075 	ptr = skb_gro_header_fast(skb, grc->offset);
3076 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3077 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3078 		if (!ptr)
3079 			return;
3080 	}
3081 
3082 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3083 }
3084 
3085 #ifdef CONFIG_XFRM_OFFLOAD
3086 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3087 {
3088 	if (PTR_ERR(pp) != -EINPROGRESS)
3089 		NAPI_GRO_CB(skb)->flush |= flush;
3090 }
3091 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3092 					       struct sk_buff *pp,
3093 					       int flush,
3094 					       struct gro_remcsum *grc)
3095 {
3096 	if (PTR_ERR(pp) != -EINPROGRESS) {
3097 		NAPI_GRO_CB(skb)->flush |= flush;
3098 		skb_gro_remcsum_cleanup(skb, grc);
3099 		skb->remcsum_offload = 0;
3100 	}
3101 }
3102 #else
3103 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3104 {
3105 	NAPI_GRO_CB(skb)->flush |= flush;
3106 }
3107 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3108 					       struct sk_buff *pp,
3109 					       int flush,
3110 					       struct gro_remcsum *grc)
3111 {
3112 	NAPI_GRO_CB(skb)->flush |= flush;
3113 	skb_gro_remcsum_cleanup(skb, grc);
3114 	skb->remcsum_offload = 0;
3115 }
3116 #endif
3117 
3118 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3119 				  unsigned short type,
3120 				  const void *daddr, const void *saddr,
3121 				  unsigned int len)
3122 {
3123 	if (!dev->header_ops || !dev->header_ops->create)
3124 		return 0;
3125 
3126 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3127 }
3128 
3129 static inline int dev_parse_header(const struct sk_buff *skb,
3130 				   unsigned char *haddr)
3131 {
3132 	const struct net_device *dev = skb->dev;
3133 
3134 	if (!dev->header_ops || !dev->header_ops->parse)
3135 		return 0;
3136 	return dev->header_ops->parse(skb, haddr);
3137 }
3138 
3139 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3140 {
3141 	const struct net_device *dev = skb->dev;
3142 
3143 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3144 		return 0;
3145 	return dev->header_ops->parse_protocol(skb);
3146 }
3147 
3148 /* ll_header must have at least hard_header_len allocated */
3149 static inline bool dev_validate_header(const struct net_device *dev,
3150 				       char *ll_header, int len)
3151 {
3152 	if (likely(len >= dev->hard_header_len))
3153 		return true;
3154 	if (len < dev->min_header_len)
3155 		return false;
3156 
3157 	if (capable(CAP_SYS_RAWIO)) {
3158 		memset(ll_header + len, 0, dev->hard_header_len - len);
3159 		return true;
3160 	}
3161 
3162 	if (dev->header_ops && dev->header_ops->validate)
3163 		return dev->header_ops->validate(ll_header, len);
3164 
3165 	return false;
3166 }
3167 
3168 static inline bool dev_has_header(const struct net_device *dev)
3169 {
3170 	return dev->header_ops && dev->header_ops->create;
3171 }
3172 
3173 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3174 			   int len, int size);
3175 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3176 static inline int unregister_gifconf(unsigned int family)
3177 {
3178 	return register_gifconf(family, NULL);
3179 }
3180 
3181 #ifdef CONFIG_NET_FLOW_LIMIT
3182 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3183 struct sd_flow_limit {
3184 	u64			count;
3185 	unsigned int		num_buckets;
3186 	unsigned int		history_head;
3187 	u16			history[FLOW_LIMIT_HISTORY];
3188 	u8			buckets[];
3189 };
3190 
3191 extern int netdev_flow_limit_table_len;
3192 #endif /* CONFIG_NET_FLOW_LIMIT */
3193 
3194 /*
3195  * Incoming packets are placed on per-CPU queues
3196  */
3197 struct softnet_data {
3198 	struct list_head	poll_list;
3199 	struct sk_buff_head	process_queue;
3200 
3201 	/* stats */
3202 	unsigned int		processed;
3203 	unsigned int		time_squeeze;
3204 	unsigned int		received_rps;
3205 #ifdef CONFIG_RPS
3206 	struct softnet_data	*rps_ipi_list;
3207 #endif
3208 #ifdef CONFIG_NET_FLOW_LIMIT
3209 	struct sd_flow_limit __rcu *flow_limit;
3210 #endif
3211 	struct Qdisc		*output_queue;
3212 	struct Qdisc		**output_queue_tailp;
3213 	struct sk_buff		*completion_queue;
3214 #ifdef CONFIG_XFRM_OFFLOAD
3215 	struct sk_buff_head	xfrm_backlog;
3216 #endif
3217 	/* written and read only by owning cpu: */
3218 	struct {
3219 		u16 recursion;
3220 		u8  more;
3221 	} xmit;
3222 #ifdef CONFIG_RPS
3223 	/* input_queue_head should be written by cpu owning this struct,
3224 	 * and only read by other cpus. Worth using a cache line.
3225 	 */
3226 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3227 
3228 	/* Elements below can be accessed between CPUs for RPS/RFS */
3229 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3230 	struct softnet_data	*rps_ipi_next;
3231 	unsigned int		cpu;
3232 	unsigned int		input_queue_tail;
3233 #endif
3234 	unsigned int		dropped;
3235 	struct sk_buff_head	input_pkt_queue;
3236 	struct napi_struct	backlog;
3237 
3238 };
3239 
3240 static inline void input_queue_head_incr(struct softnet_data *sd)
3241 {
3242 #ifdef CONFIG_RPS
3243 	sd->input_queue_head++;
3244 #endif
3245 }
3246 
3247 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3248 					      unsigned int *qtail)
3249 {
3250 #ifdef CONFIG_RPS
3251 	*qtail = ++sd->input_queue_tail;
3252 #endif
3253 }
3254 
3255 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3256 
3257 static inline int dev_recursion_level(void)
3258 {
3259 	return this_cpu_read(softnet_data.xmit.recursion);
3260 }
3261 
3262 #define XMIT_RECURSION_LIMIT	8
3263 static inline bool dev_xmit_recursion(void)
3264 {
3265 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3266 			XMIT_RECURSION_LIMIT);
3267 }
3268 
3269 static inline void dev_xmit_recursion_inc(void)
3270 {
3271 	__this_cpu_inc(softnet_data.xmit.recursion);
3272 }
3273 
3274 static inline void dev_xmit_recursion_dec(void)
3275 {
3276 	__this_cpu_dec(softnet_data.xmit.recursion);
3277 }
3278 
3279 void __netif_schedule(struct Qdisc *q);
3280 void netif_schedule_queue(struct netdev_queue *txq);
3281 
3282 static inline void netif_tx_schedule_all(struct net_device *dev)
3283 {
3284 	unsigned int i;
3285 
3286 	for (i = 0; i < dev->num_tx_queues; i++)
3287 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3288 }
3289 
3290 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3291 {
3292 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3293 }
3294 
3295 /**
3296  *	netif_start_queue - allow transmit
3297  *	@dev: network device
3298  *
3299  *	Allow upper layers to call the device hard_start_xmit routine.
3300  */
3301 static inline void netif_start_queue(struct net_device *dev)
3302 {
3303 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3304 }
3305 
3306 static inline void netif_tx_start_all_queues(struct net_device *dev)
3307 {
3308 	unsigned int i;
3309 
3310 	for (i = 0; i < dev->num_tx_queues; i++) {
3311 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3312 		netif_tx_start_queue(txq);
3313 	}
3314 }
3315 
3316 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3317 
3318 /**
3319  *	netif_wake_queue - restart transmit
3320  *	@dev: network device
3321  *
3322  *	Allow upper layers to call the device hard_start_xmit routine.
3323  *	Used for flow control when transmit resources are available.
3324  */
3325 static inline void netif_wake_queue(struct net_device *dev)
3326 {
3327 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3328 }
3329 
3330 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3331 {
3332 	unsigned int i;
3333 
3334 	for (i = 0; i < dev->num_tx_queues; i++) {
3335 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3336 		netif_tx_wake_queue(txq);
3337 	}
3338 }
3339 
3340 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3341 {
3342 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3343 }
3344 
3345 /**
3346  *	netif_stop_queue - stop transmitted packets
3347  *	@dev: network device
3348  *
3349  *	Stop upper layers calling the device hard_start_xmit routine.
3350  *	Used for flow control when transmit resources are unavailable.
3351  */
3352 static inline void netif_stop_queue(struct net_device *dev)
3353 {
3354 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3355 }
3356 
3357 void netif_tx_stop_all_queues(struct net_device *dev);
3358 
3359 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3360 {
3361 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3362 }
3363 
3364 /**
3365  *	netif_queue_stopped - test if transmit queue is flowblocked
3366  *	@dev: network device
3367  *
3368  *	Test if transmit queue on device is currently unable to send.
3369  */
3370 static inline bool netif_queue_stopped(const struct net_device *dev)
3371 {
3372 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3373 }
3374 
3375 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3376 {
3377 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3378 }
3379 
3380 static inline bool
3381 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3382 {
3383 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3384 }
3385 
3386 static inline bool
3387 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3388 {
3389 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3390 }
3391 
3392 /**
3393  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3394  *	@dev_queue: pointer to transmit queue
3395  *
3396  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3397  * to give appropriate hint to the CPU.
3398  */
3399 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3400 {
3401 #ifdef CONFIG_BQL
3402 	prefetchw(&dev_queue->dql.num_queued);
3403 #endif
3404 }
3405 
3406 /**
3407  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3408  *	@dev_queue: pointer to transmit queue
3409  *
3410  * BQL enabled drivers might use this helper in their TX completion path,
3411  * to give appropriate hint to the CPU.
3412  */
3413 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3414 {
3415 #ifdef CONFIG_BQL
3416 	prefetchw(&dev_queue->dql.limit);
3417 #endif
3418 }
3419 
3420 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3421 					unsigned int bytes)
3422 {
3423 #ifdef CONFIG_BQL
3424 	dql_queued(&dev_queue->dql, bytes);
3425 
3426 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3427 		return;
3428 
3429 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3430 
3431 	/*
3432 	 * The XOFF flag must be set before checking the dql_avail below,
3433 	 * because in netdev_tx_completed_queue we update the dql_completed
3434 	 * before checking the XOFF flag.
3435 	 */
3436 	smp_mb();
3437 
3438 	/* check again in case another CPU has just made room avail */
3439 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3440 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3441 #endif
3442 }
3443 
3444 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3445  * that they should not test BQL status themselves.
3446  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3447  * skb of a batch.
3448  * Returns true if the doorbell must be used to kick the NIC.
3449  */
3450 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3451 					  unsigned int bytes,
3452 					  bool xmit_more)
3453 {
3454 	if (xmit_more) {
3455 #ifdef CONFIG_BQL
3456 		dql_queued(&dev_queue->dql, bytes);
3457 #endif
3458 		return netif_tx_queue_stopped(dev_queue);
3459 	}
3460 	netdev_tx_sent_queue(dev_queue, bytes);
3461 	return true;
3462 }
3463 
3464 /**
3465  * 	netdev_sent_queue - report the number of bytes queued to hardware
3466  * 	@dev: network device
3467  * 	@bytes: number of bytes queued to the hardware device queue
3468  *
3469  * 	Report the number of bytes queued for sending/completion to the network
3470  * 	device hardware queue. @bytes should be a good approximation and should
3471  * 	exactly match netdev_completed_queue() @bytes
3472  */
3473 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3474 {
3475 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3476 }
3477 
3478 static inline bool __netdev_sent_queue(struct net_device *dev,
3479 				       unsigned int bytes,
3480 				       bool xmit_more)
3481 {
3482 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3483 				      xmit_more);
3484 }
3485 
3486 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3487 					     unsigned int pkts, unsigned int bytes)
3488 {
3489 #ifdef CONFIG_BQL
3490 	if (unlikely(!bytes))
3491 		return;
3492 
3493 	dql_completed(&dev_queue->dql, bytes);
3494 
3495 	/*
3496 	 * Without the memory barrier there is a small possiblity that
3497 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3498 	 * be stopped forever
3499 	 */
3500 	smp_mb();
3501 
3502 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3503 		return;
3504 
3505 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3506 		netif_schedule_queue(dev_queue);
3507 #endif
3508 }
3509 
3510 /**
3511  * 	netdev_completed_queue - report bytes and packets completed by device
3512  * 	@dev: network device
3513  * 	@pkts: actual number of packets sent over the medium
3514  * 	@bytes: actual number of bytes sent over the medium
3515  *
3516  * 	Report the number of bytes and packets transmitted by the network device
3517  * 	hardware queue over the physical medium, @bytes must exactly match the
3518  * 	@bytes amount passed to netdev_sent_queue()
3519  */
3520 static inline void netdev_completed_queue(struct net_device *dev,
3521 					  unsigned int pkts, unsigned int bytes)
3522 {
3523 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3524 }
3525 
3526 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3527 {
3528 #ifdef CONFIG_BQL
3529 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3530 	dql_reset(&q->dql);
3531 #endif
3532 }
3533 
3534 /**
3535  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3536  * 	@dev_queue: network device
3537  *
3538  * 	Reset the bytes and packet count of a network device and clear the
3539  * 	software flow control OFF bit for this network device
3540  */
3541 static inline void netdev_reset_queue(struct net_device *dev_queue)
3542 {
3543 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3544 }
3545 
3546 /**
3547  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3548  * 	@dev: network device
3549  * 	@queue_index: given tx queue index
3550  *
3551  * 	Returns 0 if given tx queue index >= number of device tx queues,
3552  * 	otherwise returns the originally passed tx queue index.
3553  */
3554 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3555 {
3556 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3557 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3558 				     dev->name, queue_index,
3559 				     dev->real_num_tx_queues);
3560 		return 0;
3561 	}
3562 
3563 	return queue_index;
3564 }
3565 
3566 /**
3567  *	netif_running - test if up
3568  *	@dev: network device
3569  *
3570  *	Test if the device has been brought up.
3571  */
3572 static inline bool netif_running(const struct net_device *dev)
3573 {
3574 	return test_bit(__LINK_STATE_START, &dev->state);
3575 }
3576 
3577 /*
3578  * Routines to manage the subqueues on a device.  We only need start,
3579  * stop, and a check if it's stopped.  All other device management is
3580  * done at the overall netdevice level.
3581  * Also test the device if we're multiqueue.
3582  */
3583 
3584 /**
3585  *	netif_start_subqueue - allow sending packets on subqueue
3586  *	@dev: network device
3587  *	@queue_index: sub queue index
3588  *
3589  * Start individual transmit queue of a device with multiple transmit queues.
3590  */
3591 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3592 {
3593 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3594 
3595 	netif_tx_start_queue(txq);
3596 }
3597 
3598 /**
3599  *	netif_stop_subqueue - stop sending packets on subqueue
3600  *	@dev: network device
3601  *	@queue_index: sub queue index
3602  *
3603  * Stop individual transmit queue of a device with multiple transmit queues.
3604  */
3605 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3606 {
3607 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3608 	netif_tx_stop_queue(txq);
3609 }
3610 
3611 /**
3612  *	__netif_subqueue_stopped - test status of subqueue
3613  *	@dev: network device
3614  *	@queue_index: sub queue index
3615  *
3616  * Check individual transmit queue of a device with multiple transmit queues.
3617  */
3618 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3619 					    u16 queue_index)
3620 {
3621 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3622 
3623 	return netif_tx_queue_stopped(txq);
3624 }
3625 
3626 /**
3627  *	netif_subqueue_stopped - test status of subqueue
3628  *	@dev: network device
3629  *	@skb: sub queue buffer pointer
3630  *
3631  * Check individual transmit queue of a device with multiple transmit queues.
3632  */
3633 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3634 					  struct sk_buff *skb)
3635 {
3636 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3637 }
3638 
3639 /**
3640  *	netif_wake_subqueue - allow sending packets on subqueue
3641  *	@dev: network device
3642  *	@queue_index: sub queue index
3643  *
3644  * Resume individual transmit queue of a device with multiple transmit queues.
3645  */
3646 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3647 {
3648 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3649 
3650 	netif_tx_wake_queue(txq);
3651 }
3652 
3653 #ifdef CONFIG_XPS
3654 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3655 			u16 index);
3656 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3657 			  u16 index, bool is_rxqs_map);
3658 
3659 /**
3660  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3661  *	@j: CPU/Rx queue index
3662  *	@mask: bitmask of all cpus/rx queues
3663  *	@nr_bits: number of bits in the bitmask
3664  *
3665  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3666  */
3667 static inline bool netif_attr_test_mask(unsigned long j,
3668 					const unsigned long *mask,
3669 					unsigned int nr_bits)
3670 {
3671 	cpu_max_bits_warn(j, nr_bits);
3672 	return test_bit(j, mask);
3673 }
3674 
3675 /**
3676  *	netif_attr_test_online - Test for online CPU/Rx queue
3677  *	@j: CPU/Rx queue index
3678  *	@online_mask: bitmask for CPUs/Rx queues that are online
3679  *	@nr_bits: number of bits in the bitmask
3680  *
3681  * Returns true if a CPU/Rx queue is online.
3682  */
3683 static inline bool netif_attr_test_online(unsigned long j,
3684 					  const unsigned long *online_mask,
3685 					  unsigned int nr_bits)
3686 {
3687 	cpu_max_bits_warn(j, nr_bits);
3688 
3689 	if (online_mask)
3690 		return test_bit(j, online_mask);
3691 
3692 	return (j < nr_bits);
3693 }
3694 
3695 /**
3696  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3697  *	@n: CPU/Rx queue index
3698  *	@srcp: the cpumask/Rx queue mask pointer
3699  *	@nr_bits: number of bits in the bitmask
3700  *
3701  * Returns >= nr_bits if no further CPUs/Rx queues set.
3702  */
3703 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3704 					       unsigned int nr_bits)
3705 {
3706 	/* -1 is a legal arg here. */
3707 	if (n != -1)
3708 		cpu_max_bits_warn(n, nr_bits);
3709 
3710 	if (srcp)
3711 		return find_next_bit(srcp, nr_bits, n + 1);
3712 
3713 	return n + 1;
3714 }
3715 
3716 /**
3717  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3718  *	@n: CPU/Rx queue index
3719  *	@src1p: the first CPUs/Rx queues mask pointer
3720  *	@src2p: the second CPUs/Rx queues mask pointer
3721  *	@nr_bits: number of bits in the bitmask
3722  *
3723  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3724  */
3725 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3726 					  const unsigned long *src2p,
3727 					  unsigned int nr_bits)
3728 {
3729 	/* -1 is a legal arg here. */
3730 	if (n != -1)
3731 		cpu_max_bits_warn(n, nr_bits);
3732 
3733 	if (src1p && src2p)
3734 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3735 	else if (src1p)
3736 		return find_next_bit(src1p, nr_bits, n + 1);
3737 	else if (src2p)
3738 		return find_next_bit(src2p, nr_bits, n + 1);
3739 
3740 	return n + 1;
3741 }
3742 #else
3743 static inline int netif_set_xps_queue(struct net_device *dev,
3744 				      const struct cpumask *mask,
3745 				      u16 index)
3746 {
3747 	return 0;
3748 }
3749 
3750 static inline int __netif_set_xps_queue(struct net_device *dev,
3751 					const unsigned long *mask,
3752 					u16 index, bool is_rxqs_map)
3753 {
3754 	return 0;
3755 }
3756 #endif
3757 
3758 /**
3759  *	netif_is_multiqueue - test if device has multiple transmit queues
3760  *	@dev: network device
3761  *
3762  * Check if device has multiple transmit queues
3763  */
3764 static inline bool netif_is_multiqueue(const struct net_device *dev)
3765 {
3766 	return dev->num_tx_queues > 1;
3767 }
3768 
3769 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3770 
3771 #ifdef CONFIG_SYSFS
3772 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3773 #else
3774 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3775 						unsigned int rxqs)
3776 {
3777 	dev->real_num_rx_queues = rxqs;
3778 	return 0;
3779 }
3780 #endif
3781 
3782 static inline struct netdev_rx_queue *
3783 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3784 {
3785 	return dev->_rx + rxq;
3786 }
3787 
3788 #ifdef CONFIG_SYSFS
3789 static inline unsigned int get_netdev_rx_queue_index(
3790 		struct netdev_rx_queue *queue)
3791 {
3792 	struct net_device *dev = queue->dev;
3793 	int index = queue - dev->_rx;
3794 
3795 	BUG_ON(index >= dev->num_rx_queues);
3796 	return index;
3797 }
3798 #endif
3799 
3800 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3801 int netif_get_num_default_rss_queues(void);
3802 
3803 enum skb_free_reason {
3804 	SKB_REASON_CONSUMED,
3805 	SKB_REASON_DROPPED,
3806 };
3807 
3808 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3809 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3810 
3811 /*
3812  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3813  * interrupt context or with hardware interrupts being disabled.
3814  * (in_irq() || irqs_disabled())
3815  *
3816  * We provide four helpers that can be used in following contexts :
3817  *
3818  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3819  *  replacing kfree_skb(skb)
3820  *
3821  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3822  *  Typically used in place of consume_skb(skb) in TX completion path
3823  *
3824  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3825  *  replacing kfree_skb(skb)
3826  *
3827  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3828  *  and consumed a packet. Used in place of consume_skb(skb)
3829  */
3830 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3831 {
3832 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3833 }
3834 
3835 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3836 {
3837 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3838 }
3839 
3840 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3841 {
3842 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3843 }
3844 
3845 static inline void dev_consume_skb_any(struct sk_buff *skb)
3846 {
3847 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3848 }
3849 
3850 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3851 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3852 int netif_rx(struct sk_buff *skb);
3853 int netif_rx_ni(struct sk_buff *skb);
3854 int netif_rx_any_context(struct sk_buff *skb);
3855 int netif_receive_skb(struct sk_buff *skb);
3856 int netif_receive_skb_core(struct sk_buff *skb);
3857 void netif_receive_skb_list(struct list_head *head);
3858 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3859 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3860 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3861 gro_result_t napi_gro_frags(struct napi_struct *napi);
3862 struct packet_offload *gro_find_receive_by_type(__be16 type);
3863 struct packet_offload *gro_find_complete_by_type(__be16 type);
3864 
3865 static inline void napi_free_frags(struct napi_struct *napi)
3866 {
3867 	kfree_skb(napi->skb);
3868 	napi->skb = NULL;
3869 }
3870 
3871 bool netdev_is_rx_handler_busy(struct net_device *dev);
3872 int netdev_rx_handler_register(struct net_device *dev,
3873 			       rx_handler_func_t *rx_handler,
3874 			       void *rx_handler_data);
3875 void netdev_rx_handler_unregister(struct net_device *dev);
3876 
3877 bool dev_valid_name(const char *name);
3878 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3879 		bool *need_copyout);
3880 int dev_ifconf(struct net *net, struct ifconf *, int);
3881 int dev_ethtool(struct net *net, struct ifreq *);
3882 unsigned int dev_get_flags(const struct net_device *);
3883 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3884 		       struct netlink_ext_ack *extack);
3885 int dev_change_flags(struct net_device *dev, unsigned int flags,
3886 		     struct netlink_ext_ack *extack);
3887 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3888 			unsigned int gchanges);
3889 int dev_change_name(struct net_device *, const char *);
3890 int dev_set_alias(struct net_device *, const char *, size_t);
3891 int dev_get_alias(const struct net_device *, char *, size_t);
3892 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3893 int __dev_set_mtu(struct net_device *, int);
3894 int dev_validate_mtu(struct net_device *dev, int mtu,
3895 		     struct netlink_ext_ack *extack);
3896 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3897 		    struct netlink_ext_ack *extack);
3898 int dev_set_mtu(struct net_device *, int);
3899 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3900 void dev_set_group(struct net_device *, int);
3901 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3902 			      struct netlink_ext_ack *extack);
3903 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3904 			struct netlink_ext_ack *extack);
3905 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3906 			     struct netlink_ext_ack *extack);
3907 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3908 int dev_change_carrier(struct net_device *, bool new_carrier);
3909 int dev_get_phys_port_id(struct net_device *dev,
3910 			 struct netdev_phys_item_id *ppid);
3911 int dev_get_phys_port_name(struct net_device *dev,
3912 			   char *name, size_t len);
3913 int dev_get_port_parent_id(struct net_device *dev,
3914 			   struct netdev_phys_item_id *ppid, bool recurse);
3915 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3916 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3917 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3918 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3919 				  u32 value);
3920 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3921 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3922 				    struct netdev_queue *txq, int *ret);
3923 
3924 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3925 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3926 		      int fd, int expected_fd, u32 flags);
3927 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3928 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3929 
3930 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3931 
3932 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3933 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3934 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3935 bool is_skb_forwardable(const struct net_device *dev,
3936 			const struct sk_buff *skb);
3937 
3938 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3939 						 const struct sk_buff *skb,
3940 						 const bool check_mtu)
3941 {
3942 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3943 	unsigned int len;
3944 
3945 	if (!(dev->flags & IFF_UP))
3946 		return false;
3947 
3948 	if (!check_mtu)
3949 		return true;
3950 
3951 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3952 	if (skb->len <= len)
3953 		return true;
3954 
3955 	/* if TSO is enabled, we don't care about the length as the packet
3956 	 * could be forwarded without being segmented before
3957 	 */
3958 	if (skb_is_gso(skb))
3959 		return true;
3960 
3961 	return false;
3962 }
3963 
3964 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3965 					       struct sk_buff *skb,
3966 					       const bool check_mtu)
3967 {
3968 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3969 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3970 		atomic_long_inc(&dev->rx_dropped);
3971 		kfree_skb(skb);
3972 		return NET_RX_DROP;
3973 	}
3974 
3975 	skb_scrub_packet(skb, true);
3976 	skb->priority = 0;
3977 	return 0;
3978 }
3979 
3980 bool dev_nit_active(struct net_device *dev);
3981 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3982 
3983 extern int		netdev_budget;
3984 extern unsigned int	netdev_budget_usecs;
3985 
3986 /* Called by rtnetlink.c:rtnl_unlock() */
3987 void netdev_run_todo(void);
3988 
3989 /**
3990  *	dev_put - release reference to device
3991  *	@dev: network device
3992  *
3993  * Release reference to device to allow it to be freed.
3994  */
3995 static inline void dev_put(struct net_device *dev)
3996 {
3997 	this_cpu_dec(*dev->pcpu_refcnt);
3998 }
3999 
4000 /**
4001  *	dev_hold - get reference to device
4002  *	@dev: network device
4003  *
4004  * Hold reference to device to keep it from being freed.
4005  */
4006 static inline void dev_hold(struct net_device *dev)
4007 {
4008 	this_cpu_inc(*dev->pcpu_refcnt);
4009 }
4010 
4011 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4012  * and _off may be called from IRQ context, but it is caller
4013  * who is responsible for serialization of these calls.
4014  *
4015  * The name carrier is inappropriate, these functions should really be
4016  * called netif_lowerlayer_*() because they represent the state of any
4017  * kind of lower layer not just hardware media.
4018  */
4019 
4020 void linkwatch_init_dev(struct net_device *dev);
4021 void linkwatch_fire_event(struct net_device *dev);
4022 void linkwatch_forget_dev(struct net_device *dev);
4023 
4024 /**
4025  *	netif_carrier_ok - test if carrier present
4026  *	@dev: network device
4027  *
4028  * Check if carrier is present on device
4029  */
4030 static inline bool netif_carrier_ok(const struct net_device *dev)
4031 {
4032 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4033 }
4034 
4035 unsigned long dev_trans_start(struct net_device *dev);
4036 
4037 void __netdev_watchdog_up(struct net_device *dev);
4038 
4039 void netif_carrier_on(struct net_device *dev);
4040 
4041 void netif_carrier_off(struct net_device *dev);
4042 
4043 /**
4044  *	netif_dormant_on - mark device as dormant.
4045  *	@dev: network device
4046  *
4047  * Mark device as dormant (as per RFC2863).
4048  *
4049  * The dormant state indicates that the relevant interface is not
4050  * actually in a condition to pass packets (i.e., it is not 'up') but is
4051  * in a "pending" state, waiting for some external event.  For "on-
4052  * demand" interfaces, this new state identifies the situation where the
4053  * interface is waiting for events to place it in the up state.
4054  */
4055 static inline void netif_dormant_on(struct net_device *dev)
4056 {
4057 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4058 		linkwatch_fire_event(dev);
4059 }
4060 
4061 /**
4062  *	netif_dormant_off - set device as not dormant.
4063  *	@dev: network device
4064  *
4065  * Device is not in dormant state.
4066  */
4067 static inline void netif_dormant_off(struct net_device *dev)
4068 {
4069 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4070 		linkwatch_fire_event(dev);
4071 }
4072 
4073 /**
4074  *	netif_dormant - test if device is dormant
4075  *	@dev: network device
4076  *
4077  * Check if device is dormant.
4078  */
4079 static inline bool netif_dormant(const struct net_device *dev)
4080 {
4081 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4082 }
4083 
4084 
4085 /**
4086  *	netif_testing_on - mark device as under test.
4087  *	@dev: network device
4088  *
4089  * Mark device as under test (as per RFC2863).
4090  *
4091  * The testing state indicates that some test(s) must be performed on
4092  * the interface. After completion, of the test, the interface state
4093  * will change to up, dormant, or down, as appropriate.
4094  */
4095 static inline void netif_testing_on(struct net_device *dev)
4096 {
4097 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4098 		linkwatch_fire_event(dev);
4099 }
4100 
4101 /**
4102  *	netif_testing_off - set device as not under test.
4103  *	@dev: network device
4104  *
4105  * Device is not in testing state.
4106  */
4107 static inline void netif_testing_off(struct net_device *dev)
4108 {
4109 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4110 		linkwatch_fire_event(dev);
4111 }
4112 
4113 /**
4114  *	netif_testing - test if device is under test
4115  *	@dev: network device
4116  *
4117  * Check if device is under test
4118  */
4119 static inline bool netif_testing(const struct net_device *dev)
4120 {
4121 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4122 }
4123 
4124 
4125 /**
4126  *	netif_oper_up - test if device is operational
4127  *	@dev: network device
4128  *
4129  * Check if carrier is operational
4130  */
4131 static inline bool netif_oper_up(const struct net_device *dev)
4132 {
4133 	return (dev->operstate == IF_OPER_UP ||
4134 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4135 }
4136 
4137 /**
4138  *	netif_device_present - is device available or removed
4139  *	@dev: network device
4140  *
4141  * Check if device has not been removed from system.
4142  */
4143 static inline bool netif_device_present(struct net_device *dev)
4144 {
4145 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4146 }
4147 
4148 void netif_device_detach(struct net_device *dev);
4149 
4150 void netif_device_attach(struct net_device *dev);
4151 
4152 /*
4153  * Network interface message level settings
4154  */
4155 
4156 enum {
4157 	NETIF_MSG_DRV_BIT,
4158 	NETIF_MSG_PROBE_BIT,
4159 	NETIF_MSG_LINK_BIT,
4160 	NETIF_MSG_TIMER_BIT,
4161 	NETIF_MSG_IFDOWN_BIT,
4162 	NETIF_MSG_IFUP_BIT,
4163 	NETIF_MSG_RX_ERR_BIT,
4164 	NETIF_MSG_TX_ERR_BIT,
4165 	NETIF_MSG_TX_QUEUED_BIT,
4166 	NETIF_MSG_INTR_BIT,
4167 	NETIF_MSG_TX_DONE_BIT,
4168 	NETIF_MSG_RX_STATUS_BIT,
4169 	NETIF_MSG_PKTDATA_BIT,
4170 	NETIF_MSG_HW_BIT,
4171 	NETIF_MSG_WOL_BIT,
4172 
4173 	/* When you add a new bit above, update netif_msg_class_names array
4174 	 * in net/ethtool/common.c
4175 	 */
4176 	NETIF_MSG_CLASS_COUNT,
4177 };
4178 /* Both ethtool_ops interface and internal driver implementation use u32 */
4179 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4180 
4181 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4182 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4183 
4184 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4185 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4186 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4187 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4188 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4189 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4190 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4191 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4192 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4193 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4194 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4195 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4196 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4197 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4198 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4199 
4200 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4201 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4202 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4203 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4204 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4205 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4206 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4207 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4208 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4209 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4210 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4211 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4212 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4213 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4214 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4215 
4216 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4217 {
4218 	/* use default */
4219 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4220 		return default_msg_enable_bits;
4221 	if (debug_value == 0)	/* no output */
4222 		return 0;
4223 	/* set low N bits */
4224 	return (1U << debug_value) - 1;
4225 }
4226 
4227 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4228 {
4229 	spin_lock(&txq->_xmit_lock);
4230 	txq->xmit_lock_owner = cpu;
4231 }
4232 
4233 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4234 {
4235 	__acquire(&txq->_xmit_lock);
4236 	return true;
4237 }
4238 
4239 static inline void __netif_tx_release(struct netdev_queue *txq)
4240 {
4241 	__release(&txq->_xmit_lock);
4242 }
4243 
4244 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4245 {
4246 	spin_lock_bh(&txq->_xmit_lock);
4247 	txq->xmit_lock_owner = smp_processor_id();
4248 }
4249 
4250 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4251 {
4252 	bool ok = spin_trylock(&txq->_xmit_lock);
4253 	if (likely(ok))
4254 		txq->xmit_lock_owner = smp_processor_id();
4255 	return ok;
4256 }
4257 
4258 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4259 {
4260 	txq->xmit_lock_owner = -1;
4261 	spin_unlock(&txq->_xmit_lock);
4262 }
4263 
4264 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4265 {
4266 	txq->xmit_lock_owner = -1;
4267 	spin_unlock_bh(&txq->_xmit_lock);
4268 }
4269 
4270 static inline void txq_trans_update(struct netdev_queue *txq)
4271 {
4272 	if (txq->xmit_lock_owner != -1)
4273 		txq->trans_start = jiffies;
4274 }
4275 
4276 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4277 static inline void netif_trans_update(struct net_device *dev)
4278 {
4279 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4280 
4281 	if (txq->trans_start != jiffies)
4282 		txq->trans_start = jiffies;
4283 }
4284 
4285 /**
4286  *	netif_tx_lock - grab network device transmit lock
4287  *	@dev: network device
4288  *
4289  * Get network device transmit lock
4290  */
4291 static inline void netif_tx_lock(struct net_device *dev)
4292 {
4293 	unsigned int i;
4294 	int cpu;
4295 
4296 	spin_lock(&dev->tx_global_lock);
4297 	cpu = smp_processor_id();
4298 	for (i = 0; i < dev->num_tx_queues; i++) {
4299 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4300 
4301 		/* We are the only thread of execution doing a
4302 		 * freeze, but we have to grab the _xmit_lock in
4303 		 * order to synchronize with threads which are in
4304 		 * the ->hard_start_xmit() handler and already
4305 		 * checked the frozen bit.
4306 		 */
4307 		__netif_tx_lock(txq, cpu);
4308 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4309 		__netif_tx_unlock(txq);
4310 	}
4311 }
4312 
4313 static inline void netif_tx_lock_bh(struct net_device *dev)
4314 {
4315 	local_bh_disable();
4316 	netif_tx_lock(dev);
4317 }
4318 
4319 static inline void netif_tx_unlock(struct net_device *dev)
4320 {
4321 	unsigned int i;
4322 
4323 	for (i = 0; i < dev->num_tx_queues; i++) {
4324 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4325 
4326 		/* No need to grab the _xmit_lock here.  If the
4327 		 * queue is not stopped for another reason, we
4328 		 * force a schedule.
4329 		 */
4330 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4331 		netif_schedule_queue(txq);
4332 	}
4333 	spin_unlock(&dev->tx_global_lock);
4334 }
4335 
4336 static inline void netif_tx_unlock_bh(struct net_device *dev)
4337 {
4338 	netif_tx_unlock(dev);
4339 	local_bh_enable();
4340 }
4341 
4342 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4343 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4344 		__netif_tx_lock(txq, cpu);		\
4345 	} else {					\
4346 		__netif_tx_acquire(txq);		\
4347 	}						\
4348 }
4349 
4350 #define HARD_TX_TRYLOCK(dev, txq)			\
4351 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4352 		__netif_tx_trylock(txq) :		\
4353 		__netif_tx_acquire(txq))
4354 
4355 #define HARD_TX_UNLOCK(dev, txq) {			\
4356 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4357 		__netif_tx_unlock(txq);			\
4358 	} else {					\
4359 		__netif_tx_release(txq);		\
4360 	}						\
4361 }
4362 
4363 static inline void netif_tx_disable(struct net_device *dev)
4364 {
4365 	unsigned int i;
4366 	int cpu;
4367 
4368 	local_bh_disable();
4369 	cpu = smp_processor_id();
4370 	spin_lock(&dev->tx_global_lock);
4371 	for (i = 0; i < dev->num_tx_queues; i++) {
4372 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4373 
4374 		__netif_tx_lock(txq, cpu);
4375 		netif_tx_stop_queue(txq);
4376 		__netif_tx_unlock(txq);
4377 	}
4378 	spin_unlock(&dev->tx_global_lock);
4379 	local_bh_enable();
4380 }
4381 
4382 static inline void netif_addr_lock(struct net_device *dev)
4383 {
4384 	unsigned char nest_level = 0;
4385 
4386 #ifdef CONFIG_LOCKDEP
4387 	nest_level = dev->nested_level;
4388 #endif
4389 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4390 }
4391 
4392 static inline void netif_addr_lock_bh(struct net_device *dev)
4393 {
4394 	unsigned char nest_level = 0;
4395 
4396 #ifdef CONFIG_LOCKDEP
4397 	nest_level = dev->nested_level;
4398 #endif
4399 	local_bh_disable();
4400 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4401 }
4402 
4403 static inline void netif_addr_unlock(struct net_device *dev)
4404 {
4405 	spin_unlock(&dev->addr_list_lock);
4406 }
4407 
4408 static inline void netif_addr_unlock_bh(struct net_device *dev)
4409 {
4410 	spin_unlock_bh(&dev->addr_list_lock);
4411 }
4412 
4413 /*
4414  * dev_addrs walker. Should be used only for read access. Call with
4415  * rcu_read_lock held.
4416  */
4417 #define for_each_dev_addr(dev, ha) \
4418 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4419 
4420 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4421 
4422 void ether_setup(struct net_device *dev);
4423 
4424 /* Support for loadable net-drivers */
4425 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4426 				    unsigned char name_assign_type,
4427 				    void (*setup)(struct net_device *),
4428 				    unsigned int txqs, unsigned int rxqs);
4429 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4430 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4431 
4432 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4433 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4434 			 count)
4435 
4436 int register_netdev(struct net_device *dev);
4437 void unregister_netdev(struct net_device *dev);
4438 
4439 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4440 
4441 /* General hardware address lists handling functions */
4442 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4443 		   struct netdev_hw_addr_list *from_list, int addr_len);
4444 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4445 		      struct netdev_hw_addr_list *from_list, int addr_len);
4446 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4447 		       struct net_device *dev,
4448 		       int (*sync)(struct net_device *, const unsigned char *),
4449 		       int (*unsync)(struct net_device *,
4450 				     const unsigned char *));
4451 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4452 			   struct net_device *dev,
4453 			   int (*sync)(struct net_device *,
4454 				       const unsigned char *, int),
4455 			   int (*unsync)(struct net_device *,
4456 					 const unsigned char *, int));
4457 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4458 			      struct net_device *dev,
4459 			      int (*unsync)(struct net_device *,
4460 					    const unsigned char *, int));
4461 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4462 			  struct net_device *dev,
4463 			  int (*unsync)(struct net_device *,
4464 					const unsigned char *));
4465 void __hw_addr_init(struct netdev_hw_addr_list *list);
4466 
4467 /* Functions used for device addresses handling */
4468 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4469 		 unsigned char addr_type);
4470 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4471 		 unsigned char addr_type);
4472 void dev_addr_flush(struct net_device *dev);
4473 int dev_addr_init(struct net_device *dev);
4474 
4475 /* Functions used for unicast addresses handling */
4476 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4477 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4478 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4479 int dev_uc_sync(struct net_device *to, struct net_device *from);
4480 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4481 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4482 void dev_uc_flush(struct net_device *dev);
4483 void dev_uc_init(struct net_device *dev);
4484 
4485 /**
4486  *  __dev_uc_sync - Synchonize device's unicast list
4487  *  @dev:  device to sync
4488  *  @sync: function to call if address should be added
4489  *  @unsync: function to call if address should be removed
4490  *
4491  *  Add newly added addresses to the interface, and release
4492  *  addresses that have been deleted.
4493  */
4494 static inline int __dev_uc_sync(struct net_device *dev,
4495 				int (*sync)(struct net_device *,
4496 					    const unsigned char *),
4497 				int (*unsync)(struct net_device *,
4498 					      const unsigned char *))
4499 {
4500 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4501 }
4502 
4503 /**
4504  *  __dev_uc_unsync - Remove synchronized addresses from device
4505  *  @dev:  device to sync
4506  *  @unsync: function to call if address should be removed
4507  *
4508  *  Remove all addresses that were added to the device by dev_uc_sync().
4509  */
4510 static inline void __dev_uc_unsync(struct net_device *dev,
4511 				   int (*unsync)(struct net_device *,
4512 						 const unsigned char *))
4513 {
4514 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4515 }
4516 
4517 /* Functions used for multicast addresses handling */
4518 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4519 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4520 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4521 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4522 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4523 int dev_mc_sync(struct net_device *to, struct net_device *from);
4524 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4525 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4526 void dev_mc_flush(struct net_device *dev);
4527 void dev_mc_init(struct net_device *dev);
4528 
4529 /**
4530  *  __dev_mc_sync - Synchonize device's multicast list
4531  *  @dev:  device to sync
4532  *  @sync: function to call if address should be added
4533  *  @unsync: function to call if address should be removed
4534  *
4535  *  Add newly added addresses to the interface, and release
4536  *  addresses that have been deleted.
4537  */
4538 static inline int __dev_mc_sync(struct net_device *dev,
4539 				int (*sync)(struct net_device *,
4540 					    const unsigned char *),
4541 				int (*unsync)(struct net_device *,
4542 					      const unsigned char *))
4543 {
4544 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4545 }
4546 
4547 /**
4548  *  __dev_mc_unsync - Remove synchronized addresses from device
4549  *  @dev:  device to sync
4550  *  @unsync: function to call if address should be removed
4551  *
4552  *  Remove all addresses that were added to the device by dev_mc_sync().
4553  */
4554 static inline void __dev_mc_unsync(struct net_device *dev,
4555 				   int (*unsync)(struct net_device *,
4556 						 const unsigned char *))
4557 {
4558 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4559 }
4560 
4561 /* Functions used for secondary unicast and multicast support */
4562 void dev_set_rx_mode(struct net_device *dev);
4563 void __dev_set_rx_mode(struct net_device *dev);
4564 int dev_set_promiscuity(struct net_device *dev, int inc);
4565 int dev_set_allmulti(struct net_device *dev, int inc);
4566 void netdev_state_change(struct net_device *dev);
4567 void __netdev_notify_peers(struct net_device *dev);
4568 void netdev_notify_peers(struct net_device *dev);
4569 void netdev_features_change(struct net_device *dev);
4570 /* Load a device via the kmod */
4571 void dev_load(struct net *net, const char *name);
4572 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4573 					struct rtnl_link_stats64 *storage);
4574 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4575 			     const struct net_device_stats *netdev_stats);
4576 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4577 			   const struct pcpu_sw_netstats __percpu *netstats);
4578 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4579 
4580 extern int		netdev_max_backlog;
4581 extern int		netdev_tstamp_prequeue;
4582 extern int		weight_p;
4583 extern int		dev_weight_rx_bias;
4584 extern int		dev_weight_tx_bias;
4585 extern int		dev_rx_weight;
4586 extern int		dev_tx_weight;
4587 extern int		gro_normal_batch;
4588 
4589 enum {
4590 	NESTED_SYNC_IMM_BIT,
4591 	NESTED_SYNC_TODO_BIT,
4592 };
4593 
4594 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4595 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4596 
4597 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4598 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4599 
4600 struct netdev_nested_priv {
4601 	unsigned char flags;
4602 	void *data;
4603 };
4604 
4605 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4606 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4607 						     struct list_head **iter);
4608 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4609 						     struct list_head **iter);
4610 
4611 #ifdef CONFIG_LOCKDEP
4612 static LIST_HEAD(net_unlink_list);
4613 
4614 static inline void net_unlink_todo(struct net_device *dev)
4615 {
4616 	if (list_empty(&dev->unlink_list))
4617 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4618 }
4619 #endif
4620 
4621 /* iterate through upper list, must be called under RCU read lock */
4622 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4623 	for (iter = &(dev)->adj_list.upper, \
4624 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4625 	     updev; \
4626 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4627 
4628 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4629 				  int (*fn)(struct net_device *upper_dev,
4630 					    struct netdev_nested_priv *priv),
4631 				  struct netdev_nested_priv *priv);
4632 
4633 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4634 				  struct net_device *upper_dev);
4635 
4636 bool netdev_has_any_upper_dev(struct net_device *dev);
4637 
4638 void *netdev_lower_get_next_private(struct net_device *dev,
4639 				    struct list_head **iter);
4640 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4641 					struct list_head **iter);
4642 
4643 #define netdev_for_each_lower_private(dev, priv, iter) \
4644 	for (iter = (dev)->adj_list.lower.next, \
4645 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4646 	     priv; \
4647 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4648 
4649 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4650 	for (iter = &(dev)->adj_list.lower, \
4651 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4652 	     priv; \
4653 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4654 
4655 void *netdev_lower_get_next(struct net_device *dev,
4656 				struct list_head **iter);
4657 
4658 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4659 	for (iter = (dev)->adj_list.lower.next, \
4660 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4661 	     ldev; \
4662 	     ldev = netdev_lower_get_next(dev, &(iter)))
4663 
4664 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4665 					     struct list_head **iter);
4666 int netdev_walk_all_lower_dev(struct net_device *dev,
4667 			      int (*fn)(struct net_device *lower_dev,
4668 					struct netdev_nested_priv *priv),
4669 			      struct netdev_nested_priv *priv);
4670 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4671 				  int (*fn)(struct net_device *lower_dev,
4672 					    struct netdev_nested_priv *priv),
4673 				  struct netdev_nested_priv *priv);
4674 
4675 void *netdev_adjacent_get_private(struct list_head *adj_list);
4676 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4677 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4678 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4679 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4680 			  struct netlink_ext_ack *extack);
4681 int netdev_master_upper_dev_link(struct net_device *dev,
4682 				 struct net_device *upper_dev,
4683 				 void *upper_priv, void *upper_info,
4684 				 struct netlink_ext_ack *extack);
4685 void netdev_upper_dev_unlink(struct net_device *dev,
4686 			     struct net_device *upper_dev);
4687 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4688 				   struct net_device *new_dev,
4689 				   struct net_device *dev,
4690 				   struct netlink_ext_ack *extack);
4691 void netdev_adjacent_change_commit(struct net_device *old_dev,
4692 				   struct net_device *new_dev,
4693 				   struct net_device *dev);
4694 void netdev_adjacent_change_abort(struct net_device *old_dev,
4695 				  struct net_device *new_dev,
4696 				  struct net_device *dev);
4697 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4698 void *netdev_lower_dev_get_private(struct net_device *dev,
4699 				   struct net_device *lower_dev);
4700 void netdev_lower_state_changed(struct net_device *lower_dev,
4701 				void *lower_state_info);
4702 
4703 /* RSS keys are 40 or 52 bytes long */
4704 #define NETDEV_RSS_KEY_LEN 52
4705 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4706 void netdev_rss_key_fill(void *buffer, size_t len);
4707 
4708 int skb_checksum_help(struct sk_buff *skb);
4709 int skb_crc32c_csum_help(struct sk_buff *skb);
4710 int skb_csum_hwoffload_help(struct sk_buff *skb,
4711 			    const netdev_features_t features);
4712 
4713 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4714 				  netdev_features_t features, bool tx_path);
4715 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4716 				    netdev_features_t features);
4717 
4718 struct netdev_bonding_info {
4719 	ifslave	slave;
4720 	ifbond	master;
4721 };
4722 
4723 struct netdev_notifier_bonding_info {
4724 	struct netdev_notifier_info info; /* must be first */
4725 	struct netdev_bonding_info  bonding_info;
4726 };
4727 
4728 void netdev_bonding_info_change(struct net_device *dev,
4729 				struct netdev_bonding_info *bonding_info);
4730 
4731 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4732 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4733 #else
4734 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4735 				  const void *data)
4736 {
4737 }
4738 #endif
4739 
4740 static inline
4741 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4742 {
4743 	return __skb_gso_segment(skb, features, true);
4744 }
4745 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4746 
4747 static inline bool can_checksum_protocol(netdev_features_t features,
4748 					 __be16 protocol)
4749 {
4750 	if (protocol == htons(ETH_P_FCOE))
4751 		return !!(features & NETIF_F_FCOE_CRC);
4752 
4753 	/* Assume this is an IP checksum (not SCTP CRC) */
4754 
4755 	if (features & NETIF_F_HW_CSUM) {
4756 		/* Can checksum everything */
4757 		return true;
4758 	}
4759 
4760 	switch (protocol) {
4761 	case htons(ETH_P_IP):
4762 		return !!(features & NETIF_F_IP_CSUM);
4763 	case htons(ETH_P_IPV6):
4764 		return !!(features & NETIF_F_IPV6_CSUM);
4765 	default:
4766 		return false;
4767 	}
4768 }
4769 
4770 #ifdef CONFIG_BUG
4771 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4772 #else
4773 static inline void netdev_rx_csum_fault(struct net_device *dev,
4774 					struct sk_buff *skb)
4775 {
4776 }
4777 #endif
4778 /* rx skb timestamps */
4779 void net_enable_timestamp(void);
4780 void net_disable_timestamp(void);
4781 
4782 #ifdef CONFIG_PROC_FS
4783 int __init dev_proc_init(void);
4784 #else
4785 #define dev_proc_init() 0
4786 #endif
4787 
4788 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4789 					      struct sk_buff *skb, struct net_device *dev,
4790 					      bool more)
4791 {
4792 	__this_cpu_write(softnet_data.xmit.more, more);
4793 	return ops->ndo_start_xmit(skb, dev);
4794 }
4795 
4796 static inline bool netdev_xmit_more(void)
4797 {
4798 	return __this_cpu_read(softnet_data.xmit.more);
4799 }
4800 
4801 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4802 					    struct netdev_queue *txq, bool more)
4803 {
4804 	const struct net_device_ops *ops = dev->netdev_ops;
4805 	netdev_tx_t rc;
4806 
4807 	rc = __netdev_start_xmit(ops, skb, dev, more);
4808 	if (rc == NETDEV_TX_OK)
4809 		txq_trans_update(txq);
4810 
4811 	return rc;
4812 }
4813 
4814 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4815 				const void *ns);
4816 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4817 				 const void *ns);
4818 
4819 extern const struct kobj_ns_type_operations net_ns_type_operations;
4820 
4821 const char *netdev_drivername(const struct net_device *dev);
4822 
4823 void linkwatch_run_queue(void);
4824 
4825 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4826 							  netdev_features_t f2)
4827 {
4828 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4829 		if (f1 & NETIF_F_HW_CSUM)
4830 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4831 		else
4832 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4833 	}
4834 
4835 	return f1 & f2;
4836 }
4837 
4838 static inline netdev_features_t netdev_get_wanted_features(
4839 	struct net_device *dev)
4840 {
4841 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4842 }
4843 netdev_features_t netdev_increment_features(netdev_features_t all,
4844 	netdev_features_t one, netdev_features_t mask);
4845 
4846 /* Allow TSO being used on stacked device :
4847  * Performing the GSO segmentation before last device
4848  * is a performance improvement.
4849  */
4850 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4851 							netdev_features_t mask)
4852 {
4853 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4854 }
4855 
4856 int __netdev_update_features(struct net_device *dev);
4857 void netdev_update_features(struct net_device *dev);
4858 void netdev_change_features(struct net_device *dev);
4859 
4860 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4861 					struct net_device *dev);
4862 
4863 netdev_features_t passthru_features_check(struct sk_buff *skb,
4864 					  struct net_device *dev,
4865 					  netdev_features_t features);
4866 netdev_features_t netif_skb_features(struct sk_buff *skb);
4867 
4868 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4869 {
4870 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4871 
4872 	/* check flags correspondence */
4873 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4874 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4875 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4876 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4877 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4878 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4879 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4880 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4881 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4882 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4883 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4884 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4885 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4886 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4887 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4888 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4889 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4890 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4891 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4892 
4893 	return (features & feature) == feature;
4894 }
4895 
4896 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4897 {
4898 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4899 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4900 }
4901 
4902 static inline bool netif_needs_gso(struct sk_buff *skb,
4903 				   netdev_features_t features)
4904 {
4905 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4906 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4907 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4908 }
4909 
4910 static inline void netif_set_gso_max_size(struct net_device *dev,
4911 					  unsigned int size)
4912 {
4913 	dev->gso_max_size = size;
4914 }
4915 
4916 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4917 					int pulled_hlen, u16 mac_offset,
4918 					int mac_len)
4919 {
4920 	skb->protocol = protocol;
4921 	skb->encapsulation = 1;
4922 	skb_push(skb, pulled_hlen);
4923 	skb_reset_transport_header(skb);
4924 	skb->mac_header = mac_offset;
4925 	skb->network_header = skb->mac_header + mac_len;
4926 	skb->mac_len = mac_len;
4927 }
4928 
4929 static inline bool netif_is_macsec(const struct net_device *dev)
4930 {
4931 	return dev->priv_flags & IFF_MACSEC;
4932 }
4933 
4934 static inline bool netif_is_macvlan(const struct net_device *dev)
4935 {
4936 	return dev->priv_flags & IFF_MACVLAN;
4937 }
4938 
4939 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4940 {
4941 	return dev->priv_flags & IFF_MACVLAN_PORT;
4942 }
4943 
4944 static inline bool netif_is_bond_master(const struct net_device *dev)
4945 {
4946 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4947 }
4948 
4949 static inline bool netif_is_bond_slave(const struct net_device *dev)
4950 {
4951 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4952 }
4953 
4954 static inline bool netif_supports_nofcs(struct net_device *dev)
4955 {
4956 	return dev->priv_flags & IFF_SUPP_NOFCS;
4957 }
4958 
4959 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4960 {
4961 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4962 }
4963 
4964 static inline bool netif_is_l3_master(const struct net_device *dev)
4965 {
4966 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4967 }
4968 
4969 static inline bool netif_is_l3_slave(const struct net_device *dev)
4970 {
4971 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4972 }
4973 
4974 static inline bool netif_is_bridge_master(const struct net_device *dev)
4975 {
4976 	return dev->priv_flags & IFF_EBRIDGE;
4977 }
4978 
4979 static inline bool netif_is_bridge_port(const struct net_device *dev)
4980 {
4981 	return dev->priv_flags & IFF_BRIDGE_PORT;
4982 }
4983 
4984 static inline bool netif_is_ovs_master(const struct net_device *dev)
4985 {
4986 	return dev->priv_flags & IFF_OPENVSWITCH;
4987 }
4988 
4989 static inline bool netif_is_ovs_port(const struct net_device *dev)
4990 {
4991 	return dev->priv_flags & IFF_OVS_DATAPATH;
4992 }
4993 
4994 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4995 {
4996 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4997 }
4998 
4999 static inline bool netif_is_team_master(const struct net_device *dev)
5000 {
5001 	return dev->priv_flags & IFF_TEAM;
5002 }
5003 
5004 static inline bool netif_is_team_port(const struct net_device *dev)
5005 {
5006 	return dev->priv_flags & IFF_TEAM_PORT;
5007 }
5008 
5009 static inline bool netif_is_lag_master(const struct net_device *dev)
5010 {
5011 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5012 }
5013 
5014 static inline bool netif_is_lag_port(const struct net_device *dev)
5015 {
5016 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5017 }
5018 
5019 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5020 {
5021 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5022 }
5023 
5024 static inline bool netif_is_failover(const struct net_device *dev)
5025 {
5026 	return dev->priv_flags & IFF_FAILOVER;
5027 }
5028 
5029 static inline bool netif_is_failover_slave(const struct net_device *dev)
5030 {
5031 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5032 }
5033 
5034 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5035 static inline void netif_keep_dst(struct net_device *dev)
5036 {
5037 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5038 }
5039 
5040 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5041 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5042 {
5043 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5044 	return dev->priv_flags & IFF_MACSEC;
5045 }
5046 
5047 extern struct pernet_operations __net_initdata loopback_net_ops;
5048 
5049 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5050 
5051 /* netdev_printk helpers, similar to dev_printk */
5052 
5053 static inline const char *netdev_name(const struct net_device *dev)
5054 {
5055 	if (!dev->name[0] || strchr(dev->name, '%'))
5056 		return "(unnamed net_device)";
5057 	return dev->name;
5058 }
5059 
5060 static inline bool netdev_unregistering(const struct net_device *dev)
5061 {
5062 	return dev->reg_state == NETREG_UNREGISTERING;
5063 }
5064 
5065 static inline const char *netdev_reg_state(const struct net_device *dev)
5066 {
5067 	switch (dev->reg_state) {
5068 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5069 	case NETREG_REGISTERED: return "";
5070 	case NETREG_UNREGISTERING: return " (unregistering)";
5071 	case NETREG_UNREGISTERED: return " (unregistered)";
5072 	case NETREG_RELEASED: return " (released)";
5073 	case NETREG_DUMMY: return " (dummy)";
5074 	}
5075 
5076 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5077 	return " (unknown)";
5078 }
5079 
5080 __printf(3, 4) __cold
5081 void netdev_printk(const char *level, const struct net_device *dev,
5082 		   const char *format, ...);
5083 __printf(2, 3) __cold
5084 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5085 __printf(2, 3) __cold
5086 void netdev_alert(const struct net_device *dev, const char *format, ...);
5087 __printf(2, 3) __cold
5088 void netdev_crit(const struct net_device *dev, const char *format, ...);
5089 __printf(2, 3) __cold
5090 void netdev_err(const struct net_device *dev, const char *format, ...);
5091 __printf(2, 3) __cold
5092 void netdev_warn(const struct net_device *dev, const char *format, ...);
5093 __printf(2, 3) __cold
5094 void netdev_notice(const struct net_device *dev, const char *format, ...);
5095 __printf(2, 3) __cold
5096 void netdev_info(const struct net_device *dev, const char *format, ...);
5097 
5098 #define netdev_level_once(level, dev, fmt, ...)			\
5099 do {								\
5100 	static bool __print_once __read_mostly;			\
5101 								\
5102 	if (!__print_once) {					\
5103 		__print_once = true;				\
5104 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5105 	}							\
5106 } while (0)
5107 
5108 #define netdev_emerg_once(dev, fmt, ...) \
5109 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5110 #define netdev_alert_once(dev, fmt, ...) \
5111 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5112 #define netdev_crit_once(dev, fmt, ...) \
5113 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5114 #define netdev_err_once(dev, fmt, ...) \
5115 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5116 #define netdev_warn_once(dev, fmt, ...) \
5117 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5118 #define netdev_notice_once(dev, fmt, ...) \
5119 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5120 #define netdev_info_once(dev, fmt, ...) \
5121 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5122 
5123 #define MODULE_ALIAS_NETDEV(device) \
5124 	MODULE_ALIAS("netdev-" device)
5125 
5126 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5127 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5128 #define netdev_dbg(__dev, format, args...)			\
5129 do {								\
5130 	dynamic_netdev_dbg(__dev, format, ##args);		\
5131 } while (0)
5132 #elif defined(DEBUG)
5133 #define netdev_dbg(__dev, format, args...)			\
5134 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5135 #else
5136 #define netdev_dbg(__dev, format, args...)			\
5137 ({								\
5138 	if (0)							\
5139 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5140 })
5141 #endif
5142 
5143 #if defined(VERBOSE_DEBUG)
5144 #define netdev_vdbg	netdev_dbg
5145 #else
5146 
5147 #define netdev_vdbg(dev, format, args...)			\
5148 ({								\
5149 	if (0)							\
5150 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5151 	0;							\
5152 })
5153 #endif
5154 
5155 /*
5156  * netdev_WARN() acts like dev_printk(), but with the key difference
5157  * of using a WARN/WARN_ON to get the message out, including the
5158  * file/line information and a backtrace.
5159  */
5160 #define netdev_WARN(dev, format, args...)			\
5161 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5162 	     netdev_reg_state(dev), ##args)
5163 
5164 #define netdev_WARN_ONCE(dev, format, args...)				\
5165 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5166 		  netdev_reg_state(dev), ##args)
5167 
5168 /* netif printk helpers, similar to netdev_printk */
5169 
5170 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5171 do {					  			\
5172 	if (netif_msg_##type(priv))				\
5173 		netdev_printk(level, (dev), fmt, ##args);	\
5174 } while (0)
5175 
5176 #define netif_level(level, priv, type, dev, fmt, args...)	\
5177 do {								\
5178 	if (netif_msg_##type(priv))				\
5179 		netdev_##level(dev, fmt, ##args);		\
5180 } while (0)
5181 
5182 #define netif_emerg(priv, type, dev, fmt, args...)		\
5183 	netif_level(emerg, priv, type, dev, fmt, ##args)
5184 #define netif_alert(priv, type, dev, fmt, args...)		\
5185 	netif_level(alert, priv, type, dev, fmt, ##args)
5186 #define netif_crit(priv, type, dev, fmt, args...)		\
5187 	netif_level(crit, priv, type, dev, fmt, ##args)
5188 #define netif_err(priv, type, dev, fmt, args...)		\
5189 	netif_level(err, priv, type, dev, fmt, ##args)
5190 #define netif_warn(priv, type, dev, fmt, args...)		\
5191 	netif_level(warn, priv, type, dev, fmt, ##args)
5192 #define netif_notice(priv, type, dev, fmt, args...)		\
5193 	netif_level(notice, priv, type, dev, fmt, ##args)
5194 #define netif_info(priv, type, dev, fmt, args...)		\
5195 	netif_level(info, priv, type, dev, fmt, ##args)
5196 
5197 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5198 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5199 #define netif_dbg(priv, type, netdev, format, args...)		\
5200 do {								\
5201 	if (netif_msg_##type(priv))				\
5202 		dynamic_netdev_dbg(netdev, format, ##args);	\
5203 } while (0)
5204 #elif defined(DEBUG)
5205 #define netif_dbg(priv, type, dev, format, args...)		\
5206 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5207 #else
5208 #define netif_dbg(priv, type, dev, format, args...)			\
5209 ({									\
5210 	if (0)								\
5211 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5212 	0;								\
5213 })
5214 #endif
5215 
5216 /* if @cond then downgrade to debug, else print at @level */
5217 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5218 	do {                                                              \
5219 		if (cond)                                                 \
5220 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5221 		else                                                      \
5222 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5223 	} while (0)
5224 
5225 #if defined(VERBOSE_DEBUG)
5226 #define netif_vdbg	netif_dbg
5227 #else
5228 #define netif_vdbg(priv, type, dev, format, args...)		\
5229 ({								\
5230 	if (0)							\
5231 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5232 	0;							\
5233 })
5234 #endif
5235 
5236 /*
5237  *	The list of packet types we will receive (as opposed to discard)
5238  *	and the routines to invoke.
5239  *
5240  *	Why 16. Because with 16 the only overlap we get on a hash of the
5241  *	low nibble of the protocol value is RARP/SNAP/X.25.
5242  *
5243  *		0800	IP
5244  *		0001	802.3
5245  *		0002	AX.25
5246  *		0004	802.2
5247  *		8035	RARP
5248  *		0005	SNAP
5249  *		0805	X.25
5250  *		0806	ARP
5251  *		8137	IPX
5252  *		0009	Localtalk
5253  *		86DD	IPv6
5254  */
5255 #define PTYPE_HASH_SIZE	(16)
5256 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5257 
5258 extern struct net_device *blackhole_netdev;
5259 
5260 #endif	/* _LINUX_NETDEVICE_H */
5261