1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos.h> 35 #include <linux/timer.h> 36 #include <linux/delay.h> 37 #include <linux/atomic.h> 38 #include <asm/cache.h> 39 #include <asm/byteorder.h> 40 41 #include <linux/device.h> 42 #include <linux/percpu.h> 43 #include <linux/rculist.h> 44 #include <linux/dmaengine.h> 45 #include <linux/workqueue.h> 46 #include <linux/dynamic_queue_limits.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 #include <net/netprio_cgroup.h> 55 56 #include <linux/netdev_features.h> 57 58 struct netpoll_info; 59 struct phy_device; 60 /* 802.11 specific */ 61 struct wireless_dev; 62 /* source back-compat hooks */ 63 #define SET_ETHTOOL_OPS(netdev,ops) \ 64 ( (netdev)->ethtool_ops = (ops) ) 65 66 /* hardware address assignment types */ 67 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 /* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously, in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), all 89 * others are propagated to higher layers. 90 */ 91 92 /* qdisc ->enqueue() return codes. */ 93 #define NET_XMIT_SUCCESS 0x00 94 #define NET_XMIT_DROP 0x01 /* skb dropped */ 95 #define NET_XMIT_CN 0x02 /* congestion notification */ 96 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105 /* Driver transmit return codes */ 106 #define NETDEV_TX_MASK 0xf0 107 108 enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 #endif 135 136 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 137 138 /* Initial net device group. All devices belong to group 0 by default. */ 139 #define INIT_NETDEV_GROUP 0 140 141 #ifdef __KERNEL__ 142 /* 143 * Compute the worst case header length according to the protocols 144 * used. 145 */ 146 147 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #elif IS_ENABLED(CONFIG_TR) 154 # define LL_MAX_HEADER 48 155 #else 156 # define LL_MAX_HEADER 32 157 #endif 158 159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 160 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 161 #define MAX_HEADER LL_MAX_HEADER 162 #else 163 #define MAX_HEADER (LL_MAX_HEADER + 48) 164 #endif 165 166 /* 167 * Old network device statistics. Fields are native words 168 * (unsigned long) so they can be read and written atomically. 169 */ 170 171 struct net_device_stats { 172 unsigned long rx_packets; 173 unsigned long tx_packets; 174 unsigned long rx_bytes; 175 unsigned long tx_bytes; 176 unsigned long rx_errors; 177 unsigned long tx_errors; 178 unsigned long rx_dropped; 179 unsigned long tx_dropped; 180 unsigned long multicast; 181 unsigned long collisions; 182 unsigned long rx_length_errors; 183 unsigned long rx_over_errors; 184 unsigned long rx_crc_errors; 185 unsigned long rx_frame_errors; 186 unsigned long rx_fifo_errors; 187 unsigned long rx_missed_errors; 188 unsigned long tx_aborted_errors; 189 unsigned long tx_carrier_errors; 190 unsigned long tx_fifo_errors; 191 unsigned long tx_heartbeat_errors; 192 unsigned long tx_window_errors; 193 unsigned long rx_compressed; 194 unsigned long tx_compressed; 195 }; 196 197 #endif /* __KERNEL__ */ 198 199 200 /* Media selection options. */ 201 enum { 202 IF_PORT_UNKNOWN = 0, 203 IF_PORT_10BASE2, 204 IF_PORT_10BASET, 205 IF_PORT_AUI, 206 IF_PORT_100BASET, 207 IF_PORT_100BASETX, 208 IF_PORT_100BASEFX 209 }; 210 211 #ifdef __KERNEL__ 212 213 #include <linux/cache.h> 214 #include <linux/skbuff.h> 215 216 #ifdef CONFIG_RPS 217 #include <linux/jump_label.h> 218 extern struct jump_label_key rps_needed; 219 #endif 220 221 struct neighbour; 222 struct neigh_parms; 223 struct sk_buff; 224 225 struct netdev_hw_addr { 226 struct list_head list; 227 unsigned char addr[MAX_ADDR_LEN]; 228 unsigned char type; 229 #define NETDEV_HW_ADDR_T_LAN 1 230 #define NETDEV_HW_ADDR_T_SAN 2 231 #define NETDEV_HW_ADDR_T_SLAVE 3 232 #define NETDEV_HW_ADDR_T_UNICAST 4 233 #define NETDEV_HW_ADDR_T_MULTICAST 5 234 bool synced; 235 bool global_use; 236 int refcount; 237 struct rcu_head rcu_head; 238 }; 239 240 struct netdev_hw_addr_list { 241 struct list_head list; 242 int count; 243 }; 244 245 #define netdev_hw_addr_list_count(l) ((l)->count) 246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 247 #define netdev_hw_addr_list_for_each(ha, l) \ 248 list_for_each_entry(ha, &(l)->list, list) 249 250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 252 #define netdev_for_each_uc_addr(ha, dev) \ 253 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 254 255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 257 #define netdev_for_each_mc_addr(ha, dev) \ 258 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 259 260 struct hh_cache { 261 u16 hh_len; 262 u16 __pad; 263 seqlock_t hh_lock; 264 265 /* cached hardware header; allow for machine alignment needs. */ 266 #define HH_DATA_MOD 16 267 #define HH_DATA_OFF(__len) \ 268 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 269 #define HH_DATA_ALIGN(__len) \ 270 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 271 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 272 }; 273 274 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 275 * Alternative is: 276 * dev->hard_header_len ? (dev->hard_header_len + 277 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 278 * 279 * We could use other alignment values, but we must maintain the 280 * relationship HH alignment <= LL alignment. 281 */ 282 #define LL_RESERVED_SPACE(dev) \ 283 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 285 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 286 287 struct header_ops { 288 int (*create) (struct sk_buff *skb, struct net_device *dev, 289 unsigned short type, const void *daddr, 290 const void *saddr, unsigned len); 291 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 292 int (*rebuild)(struct sk_buff *skb); 293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 294 void (*cache_update)(struct hh_cache *hh, 295 const struct net_device *dev, 296 const unsigned char *haddr); 297 }; 298 299 /* These flag bits are private to the generic network queueing 300 * layer, they may not be explicitly referenced by any other 301 * code. 302 */ 303 304 enum netdev_state_t { 305 __LINK_STATE_START, 306 __LINK_STATE_PRESENT, 307 __LINK_STATE_NOCARRIER, 308 __LINK_STATE_LINKWATCH_PENDING, 309 __LINK_STATE_DORMANT, 310 }; 311 312 313 /* 314 * This structure holds at boot time configured netdevice settings. They 315 * are then used in the device probing. 316 */ 317 struct netdev_boot_setup { 318 char name[IFNAMSIZ]; 319 struct ifmap map; 320 }; 321 #define NETDEV_BOOT_SETUP_MAX 8 322 323 extern int __init netdev_boot_setup(char *str); 324 325 /* 326 * Structure for NAPI scheduling similar to tasklet but with weighting 327 */ 328 struct napi_struct { 329 /* The poll_list must only be managed by the entity which 330 * changes the state of the NAPI_STATE_SCHED bit. This means 331 * whoever atomically sets that bit can add this napi_struct 332 * to the per-cpu poll_list, and whoever clears that bit 333 * can remove from the list right before clearing the bit. 334 */ 335 struct list_head poll_list; 336 337 unsigned long state; 338 int weight; 339 int (*poll)(struct napi_struct *, int); 340 #ifdef CONFIG_NETPOLL 341 spinlock_t poll_lock; 342 int poll_owner; 343 #endif 344 345 unsigned int gro_count; 346 347 struct net_device *dev; 348 struct list_head dev_list; 349 struct sk_buff *gro_list; 350 struct sk_buff *skb; 351 }; 352 353 enum { 354 NAPI_STATE_SCHED, /* Poll is scheduled */ 355 NAPI_STATE_DISABLE, /* Disable pending */ 356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 357 }; 358 359 enum gro_result { 360 GRO_MERGED, 361 GRO_MERGED_FREE, 362 GRO_HELD, 363 GRO_NORMAL, 364 GRO_DROP, 365 }; 366 typedef enum gro_result gro_result_t; 367 368 /* 369 * enum rx_handler_result - Possible return values for rx_handlers. 370 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 371 * further. 372 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 373 * case skb->dev was changed by rx_handler. 374 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 375 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 376 * 377 * rx_handlers are functions called from inside __netif_receive_skb(), to do 378 * special processing of the skb, prior to delivery to protocol handlers. 379 * 380 * Currently, a net_device can only have a single rx_handler registered. Trying 381 * to register a second rx_handler will return -EBUSY. 382 * 383 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 384 * To unregister a rx_handler on a net_device, use 385 * netdev_rx_handler_unregister(). 386 * 387 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 388 * do with the skb. 389 * 390 * If the rx_handler consumed to skb in some way, it should return 391 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 392 * the skb to be delivered in some other ways. 393 * 394 * If the rx_handler changed skb->dev, to divert the skb to another 395 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 396 * new device will be called if it exists. 397 * 398 * If the rx_handler consider the skb should be ignored, it should return 399 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 400 * are registred on exact device (ptype->dev == skb->dev). 401 * 402 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 403 * delivered, it should return RX_HANDLER_PASS. 404 * 405 * A device without a registered rx_handler will behave as if rx_handler 406 * returned RX_HANDLER_PASS. 407 */ 408 409 enum rx_handler_result { 410 RX_HANDLER_CONSUMED, 411 RX_HANDLER_ANOTHER, 412 RX_HANDLER_EXACT, 413 RX_HANDLER_PASS, 414 }; 415 typedef enum rx_handler_result rx_handler_result_t; 416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 417 418 extern void __napi_schedule(struct napi_struct *n); 419 420 static inline int napi_disable_pending(struct napi_struct *n) 421 { 422 return test_bit(NAPI_STATE_DISABLE, &n->state); 423 } 424 425 /** 426 * napi_schedule_prep - check if napi can be scheduled 427 * @n: napi context 428 * 429 * Test if NAPI routine is already running, and if not mark 430 * it as running. This is used as a condition variable 431 * insure only one NAPI poll instance runs. We also make 432 * sure there is no pending NAPI disable. 433 */ 434 static inline int napi_schedule_prep(struct napi_struct *n) 435 { 436 return !napi_disable_pending(n) && 437 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 438 } 439 440 /** 441 * napi_schedule - schedule NAPI poll 442 * @n: napi context 443 * 444 * Schedule NAPI poll routine to be called if it is not already 445 * running. 446 */ 447 static inline void napi_schedule(struct napi_struct *n) 448 { 449 if (napi_schedule_prep(n)) 450 __napi_schedule(n); 451 } 452 453 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 454 static inline int napi_reschedule(struct napi_struct *napi) 455 { 456 if (napi_schedule_prep(napi)) { 457 __napi_schedule(napi); 458 return 1; 459 } 460 return 0; 461 } 462 463 /** 464 * napi_complete - NAPI processing complete 465 * @n: napi context 466 * 467 * Mark NAPI processing as complete. 468 */ 469 extern void __napi_complete(struct napi_struct *n); 470 extern void napi_complete(struct napi_struct *n); 471 472 /** 473 * napi_disable - prevent NAPI from scheduling 474 * @n: napi context 475 * 476 * Stop NAPI from being scheduled on this context. 477 * Waits till any outstanding processing completes. 478 */ 479 static inline void napi_disable(struct napi_struct *n) 480 { 481 set_bit(NAPI_STATE_DISABLE, &n->state); 482 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 483 msleep(1); 484 clear_bit(NAPI_STATE_DISABLE, &n->state); 485 } 486 487 /** 488 * napi_enable - enable NAPI scheduling 489 * @n: napi context 490 * 491 * Resume NAPI from being scheduled on this context. 492 * Must be paired with napi_disable. 493 */ 494 static inline void napi_enable(struct napi_struct *n) 495 { 496 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 497 smp_mb__before_clear_bit(); 498 clear_bit(NAPI_STATE_SCHED, &n->state); 499 } 500 501 #ifdef CONFIG_SMP 502 /** 503 * napi_synchronize - wait until NAPI is not running 504 * @n: napi context 505 * 506 * Wait until NAPI is done being scheduled on this context. 507 * Waits till any outstanding processing completes but 508 * does not disable future activations. 509 */ 510 static inline void napi_synchronize(const struct napi_struct *n) 511 { 512 while (test_bit(NAPI_STATE_SCHED, &n->state)) 513 msleep(1); 514 } 515 #else 516 # define napi_synchronize(n) barrier() 517 #endif 518 519 enum netdev_queue_state_t { 520 __QUEUE_STATE_DRV_XOFF, 521 __QUEUE_STATE_STACK_XOFF, 522 __QUEUE_STATE_FROZEN, 523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 524 (1 << __QUEUE_STATE_STACK_XOFF)) 525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 526 (1 << __QUEUE_STATE_FROZEN)) 527 }; 528 /* 529 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 530 * netif_tx_* functions below are used to manipulate this flag. The 531 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 532 * queue independently. The netif_xmit_*stopped functions below are called 533 * to check if the queue has been stopped by the driver or stack (either 534 * of the XOFF bits are set in the state). Drivers should not need to call 535 * netif_xmit*stopped functions, they should only be using netif_tx_*. 536 */ 537 538 struct netdev_queue { 539 /* 540 * read mostly part 541 */ 542 struct net_device *dev; 543 struct Qdisc *qdisc; 544 struct Qdisc *qdisc_sleeping; 545 #ifdef CONFIG_SYSFS 546 struct kobject kobj; 547 #endif 548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 549 int numa_node; 550 #endif 551 /* 552 * write mostly part 553 */ 554 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 555 int xmit_lock_owner; 556 /* 557 * please use this field instead of dev->trans_start 558 */ 559 unsigned long trans_start; 560 561 /* 562 * Number of TX timeouts for this queue 563 * (/sys/class/net/DEV/Q/trans_timeout) 564 */ 565 unsigned long trans_timeout; 566 567 unsigned long state; 568 569 #ifdef CONFIG_BQL 570 struct dql dql; 571 #endif 572 } ____cacheline_aligned_in_smp; 573 574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 575 { 576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 577 return q->numa_node; 578 #else 579 return NUMA_NO_NODE; 580 #endif 581 } 582 583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 584 { 585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 586 q->numa_node = node; 587 #endif 588 } 589 590 #ifdef CONFIG_RPS 591 /* 592 * This structure holds an RPS map which can be of variable length. The 593 * map is an array of CPUs. 594 */ 595 struct rps_map { 596 unsigned int len; 597 struct rcu_head rcu; 598 u16 cpus[0]; 599 }; 600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 601 602 /* 603 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 604 * tail pointer for that CPU's input queue at the time of last enqueue, and 605 * a hardware filter index. 606 */ 607 struct rps_dev_flow { 608 u16 cpu; 609 u16 filter; 610 unsigned int last_qtail; 611 }; 612 #define RPS_NO_FILTER 0xffff 613 614 /* 615 * The rps_dev_flow_table structure contains a table of flow mappings. 616 */ 617 struct rps_dev_flow_table { 618 unsigned int mask; 619 struct rcu_head rcu; 620 struct work_struct free_work; 621 struct rps_dev_flow flows[0]; 622 }; 623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 624 ((_num) * sizeof(struct rps_dev_flow))) 625 626 /* 627 * The rps_sock_flow_table contains mappings of flows to the last CPU 628 * on which they were processed by the application (set in recvmsg). 629 */ 630 struct rps_sock_flow_table { 631 unsigned int mask; 632 u16 ents[0]; 633 }; 634 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 635 ((_num) * sizeof(u16))) 636 637 #define RPS_NO_CPU 0xffff 638 639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 640 u32 hash) 641 { 642 if (table && hash) { 643 unsigned int cpu, index = hash & table->mask; 644 645 /* We only give a hint, preemption can change cpu under us */ 646 cpu = raw_smp_processor_id(); 647 648 if (table->ents[index] != cpu) 649 table->ents[index] = cpu; 650 } 651 } 652 653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 654 u32 hash) 655 { 656 if (table && hash) 657 table->ents[hash & table->mask] = RPS_NO_CPU; 658 } 659 660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 661 662 #ifdef CONFIG_RFS_ACCEL 663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 664 u32 flow_id, u16 filter_id); 665 #endif 666 667 /* This structure contains an instance of an RX queue. */ 668 struct netdev_rx_queue { 669 struct rps_map __rcu *rps_map; 670 struct rps_dev_flow_table __rcu *rps_flow_table; 671 struct kobject kobj; 672 struct net_device *dev; 673 } ____cacheline_aligned_in_smp; 674 #endif /* CONFIG_RPS */ 675 676 #ifdef CONFIG_XPS 677 /* 678 * This structure holds an XPS map which can be of variable length. The 679 * map is an array of queues. 680 */ 681 struct xps_map { 682 unsigned int len; 683 unsigned int alloc_len; 684 struct rcu_head rcu; 685 u16 queues[0]; 686 }; 687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 689 / sizeof(u16)) 690 691 /* 692 * This structure holds all XPS maps for device. Maps are indexed by CPU. 693 */ 694 struct xps_dev_maps { 695 struct rcu_head rcu; 696 struct xps_map __rcu *cpu_map[0]; 697 }; 698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 699 (nr_cpu_ids * sizeof(struct xps_map *))) 700 #endif /* CONFIG_XPS */ 701 702 #define TC_MAX_QUEUE 16 703 #define TC_BITMASK 15 704 /* HW offloaded queuing disciplines txq count and offset maps */ 705 struct netdev_tc_txq { 706 u16 count; 707 u16 offset; 708 }; 709 710 /* 711 * This structure defines the management hooks for network devices. 712 * The following hooks can be defined; unless noted otherwise, they are 713 * optional and can be filled with a null pointer. 714 * 715 * int (*ndo_init)(struct net_device *dev); 716 * This function is called once when network device is registered. 717 * The network device can use this to any late stage initializaton 718 * or semantic validattion. It can fail with an error code which will 719 * be propogated back to register_netdev 720 * 721 * void (*ndo_uninit)(struct net_device *dev); 722 * This function is called when device is unregistered or when registration 723 * fails. It is not called if init fails. 724 * 725 * int (*ndo_open)(struct net_device *dev); 726 * This function is called when network device transistions to the up 727 * state. 728 * 729 * int (*ndo_stop)(struct net_device *dev); 730 * This function is called when network device transistions to the down 731 * state. 732 * 733 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 734 * struct net_device *dev); 735 * Called when a packet needs to be transmitted. 736 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 737 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 738 * Required can not be NULL. 739 * 740 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 741 * Called to decide which queue to when device supports multiple 742 * transmit queues. 743 * 744 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 745 * This function is called to allow device receiver to make 746 * changes to configuration when multicast or promiscious is enabled. 747 * 748 * void (*ndo_set_rx_mode)(struct net_device *dev); 749 * This function is called device changes address list filtering. 750 * If driver handles unicast address filtering, it should set 751 * IFF_UNICAST_FLT to its priv_flags. 752 * 753 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 754 * This function is called when the Media Access Control address 755 * needs to be changed. If this interface is not defined, the 756 * mac address can not be changed. 757 * 758 * int (*ndo_validate_addr)(struct net_device *dev); 759 * Test if Media Access Control address is valid for the device. 760 * 761 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 762 * Called when a user request an ioctl which can't be handled by 763 * the generic interface code. If not defined ioctl's return 764 * not supported error code. 765 * 766 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 767 * Used to set network devices bus interface parameters. This interface 768 * is retained for legacy reason, new devices should use the bus 769 * interface (PCI) for low level management. 770 * 771 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 772 * Called when a user wants to change the Maximum Transfer Unit 773 * of a device. If not defined, any request to change MTU will 774 * will return an error. 775 * 776 * void (*ndo_tx_timeout)(struct net_device *dev); 777 * Callback uses when the transmitter has not made any progress 778 * for dev->watchdog ticks. 779 * 780 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 781 * struct rtnl_link_stats64 *storage); 782 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 783 * Called when a user wants to get the network device usage 784 * statistics. Drivers must do one of the following: 785 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 786 * rtnl_link_stats64 structure passed by the caller. 787 * 2. Define @ndo_get_stats to update a net_device_stats structure 788 * (which should normally be dev->stats) and return a pointer to 789 * it. The structure may be changed asynchronously only if each 790 * field is written atomically. 791 * 3. Update dev->stats asynchronously and atomically, and define 792 * neither operation. 793 * 794 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 795 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 796 * this function is called when a VLAN id is registered. 797 * 798 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 799 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 800 * this function is called when a VLAN id is unregistered. 801 * 802 * void (*ndo_poll_controller)(struct net_device *dev); 803 * 804 * SR-IOV management functions. 805 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 806 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 807 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 808 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 809 * int (*ndo_get_vf_config)(struct net_device *dev, 810 * int vf, struct ifla_vf_info *ivf); 811 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 812 * struct nlattr *port[]); 813 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 814 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 815 * Called to setup 'tc' number of traffic classes in the net device. This 816 * is always called from the stack with the rtnl lock held and netif tx 817 * queues stopped. This allows the netdevice to perform queue management 818 * safely. 819 * 820 * Fiber Channel over Ethernet (FCoE) offload functions. 821 * int (*ndo_fcoe_enable)(struct net_device *dev); 822 * Called when the FCoE protocol stack wants to start using LLD for FCoE 823 * so the underlying device can perform whatever needed configuration or 824 * initialization to support acceleration of FCoE traffic. 825 * 826 * int (*ndo_fcoe_disable)(struct net_device *dev); 827 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 828 * so the underlying device can perform whatever needed clean-ups to 829 * stop supporting acceleration of FCoE traffic. 830 * 831 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 832 * struct scatterlist *sgl, unsigned int sgc); 833 * Called when the FCoE Initiator wants to initialize an I/O that 834 * is a possible candidate for Direct Data Placement (DDP). The LLD can 835 * perform necessary setup and returns 1 to indicate the device is set up 836 * successfully to perform DDP on this I/O, otherwise this returns 0. 837 * 838 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 839 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 840 * indicated by the FC exchange id 'xid', so the underlying device can 841 * clean up and reuse resources for later DDP requests. 842 * 843 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 844 * struct scatterlist *sgl, unsigned int sgc); 845 * Called when the FCoE Target wants to initialize an I/O that 846 * is a possible candidate for Direct Data Placement (DDP). The LLD can 847 * perform necessary setup and returns 1 to indicate the device is set up 848 * successfully to perform DDP on this I/O, otherwise this returns 0. 849 * 850 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 851 * Called when the underlying device wants to override default World Wide 852 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 853 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 854 * protocol stack to use. 855 * 856 * RFS acceleration. 857 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 858 * u16 rxq_index, u32 flow_id); 859 * Set hardware filter for RFS. rxq_index is the target queue index; 860 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 861 * Return the filter ID on success, or a negative error code. 862 * 863 * Slave management functions (for bridge, bonding, etc). User should 864 * call netdev_set_master() to set dev->master properly. 865 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 866 * Called to make another netdev an underling. 867 * 868 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 869 * Called to release previously enslaved netdev. 870 * 871 * Feature/offload setting functions. 872 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 873 * netdev_features_t features); 874 * Adjusts the requested feature flags according to device-specific 875 * constraints, and returns the resulting flags. Must not modify 876 * the device state. 877 * 878 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 879 * Called to update device configuration to new features. Passed 880 * feature set might be less than what was returned by ndo_fix_features()). 881 * Must return >0 or -errno if it changed dev->features itself. 882 * 883 */ 884 struct net_device_ops { 885 int (*ndo_init)(struct net_device *dev); 886 void (*ndo_uninit)(struct net_device *dev); 887 int (*ndo_open)(struct net_device *dev); 888 int (*ndo_stop)(struct net_device *dev); 889 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 890 struct net_device *dev); 891 u16 (*ndo_select_queue)(struct net_device *dev, 892 struct sk_buff *skb); 893 void (*ndo_change_rx_flags)(struct net_device *dev, 894 int flags); 895 void (*ndo_set_rx_mode)(struct net_device *dev); 896 int (*ndo_set_mac_address)(struct net_device *dev, 897 void *addr); 898 int (*ndo_validate_addr)(struct net_device *dev); 899 int (*ndo_do_ioctl)(struct net_device *dev, 900 struct ifreq *ifr, int cmd); 901 int (*ndo_set_config)(struct net_device *dev, 902 struct ifmap *map); 903 int (*ndo_change_mtu)(struct net_device *dev, 904 int new_mtu); 905 int (*ndo_neigh_setup)(struct net_device *dev, 906 struct neigh_parms *); 907 void (*ndo_tx_timeout) (struct net_device *dev); 908 909 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 910 struct rtnl_link_stats64 *storage); 911 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 912 913 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 914 unsigned short vid); 915 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 916 unsigned short vid); 917 #ifdef CONFIG_NET_POLL_CONTROLLER 918 void (*ndo_poll_controller)(struct net_device *dev); 919 int (*ndo_netpoll_setup)(struct net_device *dev, 920 struct netpoll_info *info); 921 void (*ndo_netpoll_cleanup)(struct net_device *dev); 922 #endif 923 int (*ndo_set_vf_mac)(struct net_device *dev, 924 int queue, u8 *mac); 925 int (*ndo_set_vf_vlan)(struct net_device *dev, 926 int queue, u16 vlan, u8 qos); 927 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 928 int vf, int rate); 929 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 930 int vf, bool setting); 931 int (*ndo_get_vf_config)(struct net_device *dev, 932 int vf, 933 struct ifla_vf_info *ivf); 934 int (*ndo_set_vf_port)(struct net_device *dev, 935 int vf, 936 struct nlattr *port[]); 937 int (*ndo_get_vf_port)(struct net_device *dev, 938 int vf, struct sk_buff *skb); 939 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 940 #if IS_ENABLED(CONFIG_FCOE) 941 int (*ndo_fcoe_enable)(struct net_device *dev); 942 int (*ndo_fcoe_disable)(struct net_device *dev); 943 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 944 u16 xid, 945 struct scatterlist *sgl, 946 unsigned int sgc); 947 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 948 u16 xid); 949 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 950 u16 xid, 951 struct scatterlist *sgl, 952 unsigned int sgc); 953 #endif 954 955 #if IS_ENABLED(CONFIG_LIBFCOE) 956 #define NETDEV_FCOE_WWNN 0 957 #define NETDEV_FCOE_WWPN 1 958 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 959 u64 *wwn, int type); 960 #endif 961 962 #ifdef CONFIG_RFS_ACCEL 963 int (*ndo_rx_flow_steer)(struct net_device *dev, 964 const struct sk_buff *skb, 965 u16 rxq_index, 966 u32 flow_id); 967 #endif 968 int (*ndo_add_slave)(struct net_device *dev, 969 struct net_device *slave_dev); 970 int (*ndo_del_slave)(struct net_device *dev, 971 struct net_device *slave_dev); 972 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 973 netdev_features_t features); 974 int (*ndo_set_features)(struct net_device *dev, 975 netdev_features_t features); 976 int (*ndo_neigh_construct)(struct neighbour *n); 977 void (*ndo_neigh_destroy)(struct neighbour *n); 978 }; 979 980 /* 981 * The DEVICE structure. 982 * Actually, this whole structure is a big mistake. It mixes I/O 983 * data with strictly "high-level" data, and it has to know about 984 * almost every data structure used in the INET module. 985 * 986 * FIXME: cleanup struct net_device such that network protocol info 987 * moves out. 988 */ 989 990 struct net_device { 991 992 /* 993 * This is the first field of the "visible" part of this structure 994 * (i.e. as seen by users in the "Space.c" file). It is the name 995 * of the interface. 996 */ 997 char name[IFNAMSIZ]; 998 999 struct pm_qos_request pm_qos_req; 1000 1001 /* device name hash chain */ 1002 struct hlist_node name_hlist; 1003 /* snmp alias */ 1004 char *ifalias; 1005 1006 /* 1007 * I/O specific fields 1008 * FIXME: Merge these and struct ifmap into one 1009 */ 1010 unsigned long mem_end; /* shared mem end */ 1011 unsigned long mem_start; /* shared mem start */ 1012 unsigned long base_addr; /* device I/O address */ 1013 unsigned int irq; /* device IRQ number */ 1014 1015 /* 1016 * Some hardware also needs these fields, but they are not 1017 * part of the usual set specified in Space.c. 1018 */ 1019 1020 unsigned long state; 1021 1022 struct list_head dev_list; 1023 struct list_head napi_list; 1024 struct list_head unreg_list; 1025 1026 /* currently active device features */ 1027 netdev_features_t features; 1028 /* user-changeable features */ 1029 netdev_features_t hw_features; 1030 /* user-requested features */ 1031 netdev_features_t wanted_features; 1032 /* mask of features inheritable by VLAN devices */ 1033 netdev_features_t vlan_features; 1034 1035 /* Interface index. Unique device identifier */ 1036 int ifindex; 1037 int iflink; 1038 1039 struct net_device_stats stats; 1040 atomic_long_t rx_dropped; /* dropped packets by core network 1041 * Do not use this in drivers. 1042 */ 1043 1044 #ifdef CONFIG_WIRELESS_EXT 1045 /* List of functions to handle Wireless Extensions (instead of ioctl). 1046 * See <net/iw_handler.h> for details. Jean II */ 1047 const struct iw_handler_def * wireless_handlers; 1048 /* Instance data managed by the core of Wireless Extensions. */ 1049 struct iw_public_data * wireless_data; 1050 #endif 1051 /* Management operations */ 1052 const struct net_device_ops *netdev_ops; 1053 const struct ethtool_ops *ethtool_ops; 1054 1055 /* Hardware header description */ 1056 const struct header_ops *header_ops; 1057 1058 unsigned int flags; /* interface flags (a la BSD) */ 1059 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 1060 unsigned short gflags; 1061 unsigned short padded; /* How much padding added by alloc_netdev() */ 1062 1063 unsigned char operstate; /* RFC2863 operstate */ 1064 unsigned char link_mode; /* mapping policy to operstate */ 1065 1066 unsigned char if_port; /* Selectable AUI, TP,..*/ 1067 unsigned char dma; /* DMA channel */ 1068 1069 unsigned int mtu; /* interface MTU value */ 1070 unsigned short type; /* interface hardware type */ 1071 unsigned short hard_header_len; /* hardware hdr length */ 1072 1073 /* extra head- and tailroom the hardware may need, but not in all cases 1074 * can this be guaranteed, especially tailroom. Some cases also use 1075 * LL_MAX_HEADER instead to allocate the skb. 1076 */ 1077 unsigned short needed_headroom; 1078 unsigned short needed_tailroom; 1079 1080 /* Interface address info. */ 1081 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1082 unsigned char addr_assign_type; /* hw address assignment type */ 1083 unsigned char addr_len; /* hardware address length */ 1084 unsigned char neigh_priv_len; 1085 unsigned short dev_id; /* for shared network cards */ 1086 1087 spinlock_t addr_list_lock; 1088 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1089 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1090 bool uc_promisc; 1091 unsigned int promiscuity; 1092 unsigned int allmulti; 1093 1094 1095 /* Protocol specific pointers */ 1096 1097 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1098 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1099 #endif 1100 #if IS_ENABLED(CONFIG_NET_DSA) 1101 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1102 #endif 1103 void *atalk_ptr; /* AppleTalk link */ 1104 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1105 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1106 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1107 void *ec_ptr; /* Econet specific data */ 1108 void *ax25_ptr; /* AX.25 specific data */ 1109 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1110 assign before registering */ 1111 1112 /* 1113 * Cache lines mostly used on receive path (including eth_type_trans()) 1114 */ 1115 unsigned long last_rx; /* Time of last Rx 1116 * This should not be set in 1117 * drivers, unless really needed, 1118 * because network stack (bonding) 1119 * use it if/when necessary, to 1120 * avoid dirtying this cache line. 1121 */ 1122 1123 struct net_device *master; /* Pointer to master device of a group, 1124 * which this device is member of. 1125 */ 1126 1127 /* Interface address info used in eth_type_trans() */ 1128 unsigned char *dev_addr; /* hw address, (before bcast 1129 because most packets are 1130 unicast) */ 1131 1132 struct netdev_hw_addr_list dev_addrs; /* list of device 1133 hw addresses */ 1134 1135 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1136 1137 #ifdef CONFIG_SYSFS 1138 struct kset *queues_kset; 1139 #endif 1140 1141 #ifdef CONFIG_RPS 1142 struct netdev_rx_queue *_rx; 1143 1144 /* Number of RX queues allocated at register_netdev() time */ 1145 unsigned int num_rx_queues; 1146 1147 /* Number of RX queues currently active in device */ 1148 unsigned int real_num_rx_queues; 1149 1150 #ifdef CONFIG_RFS_ACCEL 1151 /* CPU reverse-mapping for RX completion interrupts, indexed 1152 * by RX queue number. Assigned by driver. This must only be 1153 * set if the ndo_rx_flow_steer operation is defined. */ 1154 struct cpu_rmap *rx_cpu_rmap; 1155 #endif 1156 #endif 1157 1158 rx_handler_func_t __rcu *rx_handler; 1159 void __rcu *rx_handler_data; 1160 1161 struct netdev_queue __rcu *ingress_queue; 1162 1163 /* 1164 * Cache lines mostly used on transmit path 1165 */ 1166 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1167 1168 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1169 unsigned int num_tx_queues; 1170 1171 /* Number of TX queues currently active in device */ 1172 unsigned int real_num_tx_queues; 1173 1174 /* root qdisc from userspace point of view */ 1175 struct Qdisc *qdisc; 1176 1177 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1178 spinlock_t tx_global_lock; 1179 1180 #ifdef CONFIG_XPS 1181 struct xps_dev_maps __rcu *xps_maps; 1182 #endif 1183 1184 /* These may be needed for future network-power-down code. */ 1185 1186 /* 1187 * trans_start here is expensive for high speed devices on SMP, 1188 * please use netdev_queue->trans_start instead. 1189 */ 1190 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1191 1192 int watchdog_timeo; /* used by dev_watchdog() */ 1193 struct timer_list watchdog_timer; 1194 1195 /* Number of references to this device */ 1196 int __percpu *pcpu_refcnt; 1197 1198 /* delayed register/unregister */ 1199 struct list_head todo_list; 1200 /* device index hash chain */ 1201 struct hlist_node index_hlist; 1202 1203 struct list_head link_watch_list; 1204 1205 /* register/unregister state machine */ 1206 enum { NETREG_UNINITIALIZED=0, 1207 NETREG_REGISTERED, /* completed register_netdevice */ 1208 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1209 NETREG_UNREGISTERED, /* completed unregister todo */ 1210 NETREG_RELEASED, /* called free_netdev */ 1211 NETREG_DUMMY, /* dummy device for NAPI poll */ 1212 } reg_state:8; 1213 1214 bool dismantle; /* device is going do be freed */ 1215 1216 enum { 1217 RTNL_LINK_INITIALIZED, 1218 RTNL_LINK_INITIALIZING, 1219 } rtnl_link_state:16; 1220 1221 /* Called from unregister, can be used to call free_netdev */ 1222 void (*destructor)(struct net_device *dev); 1223 1224 #ifdef CONFIG_NETPOLL 1225 struct netpoll_info *npinfo; 1226 #endif 1227 1228 #ifdef CONFIG_NET_NS 1229 /* Network namespace this network device is inside */ 1230 struct net *nd_net; 1231 #endif 1232 1233 /* mid-layer private */ 1234 union { 1235 void *ml_priv; 1236 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1237 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1238 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1239 }; 1240 /* GARP */ 1241 struct garp_port __rcu *garp_port; 1242 1243 /* class/net/name entry */ 1244 struct device dev; 1245 /* space for optional device, statistics, and wireless sysfs groups */ 1246 const struct attribute_group *sysfs_groups[4]; 1247 1248 /* rtnetlink link ops */ 1249 const struct rtnl_link_ops *rtnl_link_ops; 1250 1251 /* for setting kernel sock attribute on TCP connection setup */ 1252 #define GSO_MAX_SIZE 65536 1253 unsigned int gso_max_size; 1254 1255 #ifdef CONFIG_DCB 1256 /* Data Center Bridging netlink ops */ 1257 const struct dcbnl_rtnl_ops *dcbnl_ops; 1258 #endif 1259 u8 num_tc; 1260 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1261 u8 prio_tc_map[TC_BITMASK + 1]; 1262 1263 #if IS_ENABLED(CONFIG_FCOE) 1264 /* max exchange id for FCoE LRO by ddp */ 1265 unsigned int fcoe_ddp_xid; 1266 #endif 1267 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1268 struct netprio_map __rcu *priomap; 1269 #endif 1270 /* phy device may attach itself for hardware timestamping */ 1271 struct phy_device *phydev; 1272 1273 /* group the device belongs to */ 1274 int group; 1275 }; 1276 #define to_net_dev(d) container_of(d, struct net_device, dev) 1277 1278 #define NETDEV_ALIGN 32 1279 1280 static inline 1281 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1282 { 1283 return dev->prio_tc_map[prio & TC_BITMASK]; 1284 } 1285 1286 static inline 1287 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1288 { 1289 if (tc >= dev->num_tc) 1290 return -EINVAL; 1291 1292 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1293 return 0; 1294 } 1295 1296 static inline 1297 void netdev_reset_tc(struct net_device *dev) 1298 { 1299 dev->num_tc = 0; 1300 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1301 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1302 } 1303 1304 static inline 1305 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1306 { 1307 if (tc >= dev->num_tc) 1308 return -EINVAL; 1309 1310 dev->tc_to_txq[tc].count = count; 1311 dev->tc_to_txq[tc].offset = offset; 1312 return 0; 1313 } 1314 1315 static inline 1316 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1317 { 1318 if (num_tc > TC_MAX_QUEUE) 1319 return -EINVAL; 1320 1321 dev->num_tc = num_tc; 1322 return 0; 1323 } 1324 1325 static inline 1326 int netdev_get_num_tc(struct net_device *dev) 1327 { 1328 return dev->num_tc; 1329 } 1330 1331 static inline 1332 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1333 unsigned int index) 1334 { 1335 return &dev->_tx[index]; 1336 } 1337 1338 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1339 void (*f)(struct net_device *, 1340 struct netdev_queue *, 1341 void *), 1342 void *arg) 1343 { 1344 unsigned int i; 1345 1346 for (i = 0; i < dev->num_tx_queues; i++) 1347 f(dev, &dev->_tx[i], arg); 1348 } 1349 1350 /* 1351 * Net namespace inlines 1352 */ 1353 static inline 1354 struct net *dev_net(const struct net_device *dev) 1355 { 1356 return read_pnet(&dev->nd_net); 1357 } 1358 1359 static inline 1360 void dev_net_set(struct net_device *dev, struct net *net) 1361 { 1362 #ifdef CONFIG_NET_NS 1363 release_net(dev->nd_net); 1364 dev->nd_net = hold_net(net); 1365 #endif 1366 } 1367 1368 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1369 { 1370 #ifdef CONFIG_NET_DSA_TAG_DSA 1371 if (dev->dsa_ptr != NULL) 1372 return dsa_uses_dsa_tags(dev->dsa_ptr); 1373 #endif 1374 1375 return 0; 1376 } 1377 1378 #ifndef CONFIG_NET_NS 1379 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1380 { 1381 skb->dev = dev; 1382 } 1383 #else /* CONFIG_NET_NS */ 1384 void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1385 #endif 1386 1387 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1388 { 1389 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1390 if (dev->dsa_ptr != NULL) 1391 return dsa_uses_trailer_tags(dev->dsa_ptr); 1392 #endif 1393 1394 return 0; 1395 } 1396 1397 /** 1398 * netdev_priv - access network device private data 1399 * @dev: network device 1400 * 1401 * Get network device private data 1402 */ 1403 static inline void *netdev_priv(const struct net_device *dev) 1404 { 1405 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1406 } 1407 1408 /* Set the sysfs physical device reference for the network logical device 1409 * if set prior to registration will cause a symlink during initialization. 1410 */ 1411 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1412 1413 /* Set the sysfs device type for the network logical device to allow 1414 * fin grained indentification of different network device types. For 1415 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1416 */ 1417 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1418 1419 /** 1420 * netif_napi_add - initialize a napi context 1421 * @dev: network device 1422 * @napi: napi context 1423 * @poll: polling function 1424 * @weight: default weight 1425 * 1426 * netif_napi_add() must be used to initialize a napi context prior to calling 1427 * *any* of the other napi related functions. 1428 */ 1429 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1430 int (*poll)(struct napi_struct *, int), int weight); 1431 1432 /** 1433 * netif_napi_del - remove a napi context 1434 * @napi: napi context 1435 * 1436 * netif_napi_del() removes a napi context from the network device napi list 1437 */ 1438 void netif_napi_del(struct napi_struct *napi); 1439 1440 struct napi_gro_cb { 1441 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1442 void *frag0; 1443 1444 /* Length of frag0. */ 1445 unsigned int frag0_len; 1446 1447 /* This indicates where we are processing relative to skb->data. */ 1448 int data_offset; 1449 1450 /* This is non-zero if the packet may be of the same flow. */ 1451 int same_flow; 1452 1453 /* This is non-zero if the packet cannot be merged with the new skb. */ 1454 int flush; 1455 1456 /* Number of segments aggregated. */ 1457 int count; 1458 1459 /* Free the skb? */ 1460 int free; 1461 }; 1462 1463 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1464 1465 struct packet_type { 1466 __be16 type; /* This is really htons(ether_type). */ 1467 struct net_device *dev; /* NULL is wildcarded here */ 1468 int (*func) (struct sk_buff *, 1469 struct net_device *, 1470 struct packet_type *, 1471 struct net_device *); 1472 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1473 netdev_features_t features); 1474 int (*gso_send_check)(struct sk_buff *skb); 1475 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1476 struct sk_buff *skb); 1477 int (*gro_complete)(struct sk_buff *skb); 1478 void *af_packet_priv; 1479 struct list_head list; 1480 }; 1481 1482 #include <linux/notifier.h> 1483 1484 /* netdevice notifier chain. Please remember to update the rtnetlink 1485 * notification exclusion list in rtnetlink_event() when adding new 1486 * types. 1487 */ 1488 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1489 #define NETDEV_DOWN 0x0002 1490 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1491 detected a hardware crash and restarted 1492 - we can use this eg to kick tcp sessions 1493 once done */ 1494 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1495 #define NETDEV_REGISTER 0x0005 1496 #define NETDEV_UNREGISTER 0x0006 1497 #define NETDEV_CHANGEMTU 0x0007 1498 #define NETDEV_CHANGEADDR 0x0008 1499 #define NETDEV_GOING_DOWN 0x0009 1500 #define NETDEV_CHANGENAME 0x000A 1501 #define NETDEV_FEAT_CHANGE 0x000B 1502 #define NETDEV_BONDING_FAILOVER 0x000C 1503 #define NETDEV_PRE_UP 0x000D 1504 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1505 #define NETDEV_POST_TYPE_CHANGE 0x000F 1506 #define NETDEV_POST_INIT 0x0010 1507 #define NETDEV_UNREGISTER_BATCH 0x0011 1508 #define NETDEV_RELEASE 0x0012 1509 #define NETDEV_NOTIFY_PEERS 0x0013 1510 #define NETDEV_JOIN 0x0014 1511 1512 extern int register_netdevice_notifier(struct notifier_block *nb); 1513 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1514 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1515 1516 1517 extern rwlock_t dev_base_lock; /* Device list lock */ 1518 1519 1520 #define for_each_netdev(net, d) \ 1521 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1522 #define for_each_netdev_reverse(net, d) \ 1523 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1524 #define for_each_netdev_rcu(net, d) \ 1525 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1526 #define for_each_netdev_safe(net, d, n) \ 1527 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1528 #define for_each_netdev_continue(net, d) \ 1529 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1530 #define for_each_netdev_continue_rcu(net, d) \ 1531 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1532 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1533 1534 static inline struct net_device *next_net_device(struct net_device *dev) 1535 { 1536 struct list_head *lh; 1537 struct net *net; 1538 1539 net = dev_net(dev); 1540 lh = dev->dev_list.next; 1541 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1542 } 1543 1544 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1545 { 1546 struct list_head *lh; 1547 struct net *net; 1548 1549 net = dev_net(dev); 1550 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1551 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1552 } 1553 1554 static inline struct net_device *first_net_device(struct net *net) 1555 { 1556 return list_empty(&net->dev_base_head) ? NULL : 1557 net_device_entry(net->dev_base_head.next); 1558 } 1559 1560 static inline struct net_device *first_net_device_rcu(struct net *net) 1561 { 1562 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1563 1564 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1565 } 1566 1567 extern int netdev_boot_setup_check(struct net_device *dev); 1568 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1569 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1570 const char *hwaddr); 1571 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1572 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1573 extern void dev_add_pack(struct packet_type *pt); 1574 extern void dev_remove_pack(struct packet_type *pt); 1575 extern void __dev_remove_pack(struct packet_type *pt); 1576 1577 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1578 unsigned short mask); 1579 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1580 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1581 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1582 extern int dev_alloc_name(struct net_device *dev, const char *name); 1583 extern int dev_open(struct net_device *dev); 1584 extern int dev_close(struct net_device *dev); 1585 extern void dev_disable_lro(struct net_device *dev); 1586 extern int dev_queue_xmit(struct sk_buff *skb); 1587 extern int register_netdevice(struct net_device *dev); 1588 extern void unregister_netdevice_queue(struct net_device *dev, 1589 struct list_head *head); 1590 extern void unregister_netdevice_many(struct list_head *head); 1591 static inline void unregister_netdevice(struct net_device *dev) 1592 { 1593 unregister_netdevice_queue(dev, NULL); 1594 } 1595 1596 extern int netdev_refcnt_read(const struct net_device *dev); 1597 extern void free_netdev(struct net_device *dev); 1598 extern void synchronize_net(void); 1599 extern int init_dummy_netdev(struct net_device *dev); 1600 extern void netdev_resync_ops(struct net_device *dev); 1601 1602 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1603 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1604 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1605 extern int dev_restart(struct net_device *dev); 1606 #ifdef CONFIG_NETPOLL_TRAP 1607 extern int netpoll_trap(void); 1608 #endif 1609 extern int skb_gro_receive(struct sk_buff **head, 1610 struct sk_buff *skb); 1611 extern void skb_gro_reset_offset(struct sk_buff *skb); 1612 1613 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1614 { 1615 return NAPI_GRO_CB(skb)->data_offset; 1616 } 1617 1618 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1619 { 1620 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1621 } 1622 1623 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1624 { 1625 NAPI_GRO_CB(skb)->data_offset += len; 1626 } 1627 1628 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1629 unsigned int offset) 1630 { 1631 return NAPI_GRO_CB(skb)->frag0 + offset; 1632 } 1633 1634 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1635 { 1636 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1637 } 1638 1639 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1640 unsigned int offset) 1641 { 1642 if (!pskb_may_pull(skb, hlen)) 1643 return NULL; 1644 1645 NAPI_GRO_CB(skb)->frag0 = NULL; 1646 NAPI_GRO_CB(skb)->frag0_len = 0; 1647 return skb->data + offset; 1648 } 1649 1650 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1651 { 1652 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1653 } 1654 1655 static inline void *skb_gro_network_header(struct sk_buff *skb) 1656 { 1657 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1658 skb_network_offset(skb); 1659 } 1660 1661 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1662 unsigned short type, 1663 const void *daddr, const void *saddr, 1664 unsigned len) 1665 { 1666 if (!dev->header_ops || !dev->header_ops->create) 1667 return 0; 1668 1669 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1670 } 1671 1672 static inline int dev_parse_header(const struct sk_buff *skb, 1673 unsigned char *haddr) 1674 { 1675 const struct net_device *dev = skb->dev; 1676 1677 if (!dev->header_ops || !dev->header_ops->parse) 1678 return 0; 1679 return dev->header_ops->parse(skb, haddr); 1680 } 1681 1682 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1683 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1684 static inline int unregister_gifconf(unsigned int family) 1685 { 1686 return register_gifconf(family, NULL); 1687 } 1688 1689 /* 1690 * Incoming packets are placed on per-cpu queues 1691 */ 1692 struct softnet_data { 1693 struct Qdisc *output_queue; 1694 struct Qdisc **output_queue_tailp; 1695 struct list_head poll_list; 1696 struct sk_buff *completion_queue; 1697 struct sk_buff_head process_queue; 1698 1699 /* stats */ 1700 unsigned int processed; 1701 unsigned int time_squeeze; 1702 unsigned int cpu_collision; 1703 unsigned int received_rps; 1704 1705 #ifdef CONFIG_RPS 1706 struct softnet_data *rps_ipi_list; 1707 1708 /* Elements below can be accessed between CPUs for RPS */ 1709 struct call_single_data csd ____cacheline_aligned_in_smp; 1710 struct softnet_data *rps_ipi_next; 1711 unsigned int cpu; 1712 unsigned int input_queue_head; 1713 unsigned int input_queue_tail; 1714 #endif 1715 unsigned dropped; 1716 struct sk_buff_head input_pkt_queue; 1717 struct napi_struct backlog; 1718 }; 1719 1720 static inline void input_queue_head_incr(struct softnet_data *sd) 1721 { 1722 #ifdef CONFIG_RPS 1723 sd->input_queue_head++; 1724 #endif 1725 } 1726 1727 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1728 unsigned int *qtail) 1729 { 1730 #ifdef CONFIG_RPS 1731 *qtail = ++sd->input_queue_tail; 1732 #endif 1733 } 1734 1735 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1736 1737 extern void __netif_schedule(struct Qdisc *q); 1738 1739 static inline void netif_schedule_queue(struct netdev_queue *txq) 1740 { 1741 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1742 __netif_schedule(txq->qdisc); 1743 } 1744 1745 static inline void netif_tx_schedule_all(struct net_device *dev) 1746 { 1747 unsigned int i; 1748 1749 for (i = 0; i < dev->num_tx_queues; i++) 1750 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1751 } 1752 1753 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1754 { 1755 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1756 } 1757 1758 /** 1759 * netif_start_queue - allow transmit 1760 * @dev: network device 1761 * 1762 * Allow upper layers to call the device hard_start_xmit routine. 1763 */ 1764 static inline void netif_start_queue(struct net_device *dev) 1765 { 1766 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1767 } 1768 1769 static inline void netif_tx_start_all_queues(struct net_device *dev) 1770 { 1771 unsigned int i; 1772 1773 for (i = 0; i < dev->num_tx_queues; i++) { 1774 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1775 netif_tx_start_queue(txq); 1776 } 1777 } 1778 1779 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1780 { 1781 #ifdef CONFIG_NETPOLL_TRAP 1782 if (netpoll_trap()) { 1783 netif_tx_start_queue(dev_queue); 1784 return; 1785 } 1786 #endif 1787 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1788 __netif_schedule(dev_queue->qdisc); 1789 } 1790 1791 /** 1792 * netif_wake_queue - restart transmit 1793 * @dev: network device 1794 * 1795 * Allow upper layers to call the device hard_start_xmit routine. 1796 * Used for flow control when transmit resources are available. 1797 */ 1798 static inline void netif_wake_queue(struct net_device *dev) 1799 { 1800 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1801 } 1802 1803 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1804 { 1805 unsigned int i; 1806 1807 for (i = 0; i < dev->num_tx_queues; i++) { 1808 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1809 netif_tx_wake_queue(txq); 1810 } 1811 } 1812 1813 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1814 { 1815 if (WARN_ON(!dev_queue)) { 1816 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1817 return; 1818 } 1819 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1820 } 1821 1822 /** 1823 * netif_stop_queue - stop transmitted packets 1824 * @dev: network device 1825 * 1826 * Stop upper layers calling the device hard_start_xmit routine. 1827 * Used for flow control when transmit resources are unavailable. 1828 */ 1829 static inline void netif_stop_queue(struct net_device *dev) 1830 { 1831 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1832 } 1833 1834 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1835 { 1836 unsigned int i; 1837 1838 for (i = 0; i < dev->num_tx_queues; i++) { 1839 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1840 netif_tx_stop_queue(txq); 1841 } 1842 } 1843 1844 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1845 { 1846 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1847 } 1848 1849 /** 1850 * netif_queue_stopped - test if transmit queue is flowblocked 1851 * @dev: network device 1852 * 1853 * Test if transmit queue on device is currently unable to send. 1854 */ 1855 static inline int netif_queue_stopped(const struct net_device *dev) 1856 { 1857 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1858 } 1859 1860 static inline int netif_xmit_stopped(const struct netdev_queue *dev_queue) 1861 { 1862 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1863 } 1864 1865 static inline int netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1866 { 1867 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1868 } 1869 1870 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1871 unsigned int bytes) 1872 { 1873 #ifdef CONFIG_BQL 1874 dql_queued(&dev_queue->dql, bytes); 1875 if (unlikely(dql_avail(&dev_queue->dql) < 0)) { 1876 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1877 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1878 clear_bit(__QUEUE_STATE_STACK_XOFF, 1879 &dev_queue->state); 1880 } 1881 #endif 1882 } 1883 1884 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1885 { 1886 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1887 } 1888 1889 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1890 unsigned pkts, unsigned bytes) 1891 { 1892 #ifdef CONFIG_BQL 1893 if (likely(bytes)) { 1894 dql_completed(&dev_queue->dql, bytes); 1895 if (unlikely(test_bit(__QUEUE_STATE_STACK_XOFF, 1896 &dev_queue->state) && 1897 dql_avail(&dev_queue->dql) >= 0)) { 1898 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, 1899 &dev_queue->state)) 1900 netif_schedule_queue(dev_queue); 1901 } 1902 } 1903 #endif 1904 } 1905 1906 static inline void netdev_completed_queue(struct net_device *dev, 1907 unsigned pkts, unsigned bytes) 1908 { 1909 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1910 } 1911 1912 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1913 { 1914 #ifdef CONFIG_BQL 1915 dql_reset(&q->dql); 1916 #endif 1917 } 1918 1919 static inline void netdev_reset_queue(struct net_device *dev_queue) 1920 { 1921 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 1922 } 1923 1924 /** 1925 * netif_running - test if up 1926 * @dev: network device 1927 * 1928 * Test if the device has been brought up. 1929 */ 1930 static inline int netif_running(const struct net_device *dev) 1931 { 1932 return test_bit(__LINK_STATE_START, &dev->state); 1933 } 1934 1935 /* 1936 * Routines to manage the subqueues on a device. We only need start 1937 * stop, and a check if it's stopped. All other device management is 1938 * done at the overall netdevice level. 1939 * Also test the device if we're multiqueue. 1940 */ 1941 1942 /** 1943 * netif_start_subqueue - allow sending packets on subqueue 1944 * @dev: network device 1945 * @queue_index: sub queue index 1946 * 1947 * Start individual transmit queue of a device with multiple transmit queues. 1948 */ 1949 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1950 { 1951 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1952 1953 netif_tx_start_queue(txq); 1954 } 1955 1956 /** 1957 * netif_stop_subqueue - stop sending packets on subqueue 1958 * @dev: network device 1959 * @queue_index: sub queue index 1960 * 1961 * Stop individual transmit queue of a device with multiple transmit queues. 1962 */ 1963 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1964 { 1965 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1966 #ifdef CONFIG_NETPOLL_TRAP 1967 if (netpoll_trap()) 1968 return; 1969 #endif 1970 netif_tx_stop_queue(txq); 1971 } 1972 1973 /** 1974 * netif_subqueue_stopped - test status of subqueue 1975 * @dev: network device 1976 * @queue_index: sub queue index 1977 * 1978 * Check individual transmit queue of a device with multiple transmit queues. 1979 */ 1980 static inline int __netif_subqueue_stopped(const struct net_device *dev, 1981 u16 queue_index) 1982 { 1983 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1984 1985 return netif_tx_queue_stopped(txq); 1986 } 1987 1988 static inline int netif_subqueue_stopped(const struct net_device *dev, 1989 struct sk_buff *skb) 1990 { 1991 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1992 } 1993 1994 /** 1995 * netif_wake_subqueue - allow sending packets on subqueue 1996 * @dev: network device 1997 * @queue_index: sub queue index 1998 * 1999 * Resume individual transmit queue of a device with multiple transmit queues. 2000 */ 2001 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2002 { 2003 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2004 #ifdef CONFIG_NETPOLL_TRAP 2005 if (netpoll_trap()) 2006 return; 2007 #endif 2008 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2009 __netif_schedule(txq->qdisc); 2010 } 2011 2012 /* 2013 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2014 * as a distribution range limit for the returned value. 2015 */ 2016 static inline u16 skb_tx_hash(const struct net_device *dev, 2017 const struct sk_buff *skb) 2018 { 2019 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2020 } 2021 2022 /** 2023 * netif_is_multiqueue - test if device has multiple transmit queues 2024 * @dev: network device 2025 * 2026 * Check if device has multiple transmit queues 2027 */ 2028 static inline int netif_is_multiqueue(const struct net_device *dev) 2029 { 2030 return dev->num_tx_queues > 1; 2031 } 2032 2033 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2034 unsigned int txq); 2035 2036 #ifdef CONFIG_RPS 2037 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2038 unsigned int rxq); 2039 #else 2040 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2041 unsigned int rxq) 2042 { 2043 return 0; 2044 } 2045 #endif 2046 2047 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2048 const struct net_device *from_dev) 2049 { 2050 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2051 #ifdef CONFIG_RPS 2052 return netif_set_real_num_rx_queues(to_dev, 2053 from_dev->real_num_rx_queues); 2054 #else 2055 return 0; 2056 #endif 2057 } 2058 2059 /* Use this variant when it is known for sure that it 2060 * is executing from hardware interrupt context or with hardware interrupts 2061 * disabled. 2062 */ 2063 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2064 2065 /* Use this variant in places where it could be invoked 2066 * from either hardware interrupt or other context, with hardware interrupts 2067 * either disabled or enabled. 2068 */ 2069 extern void dev_kfree_skb_any(struct sk_buff *skb); 2070 2071 extern int netif_rx(struct sk_buff *skb); 2072 extern int netif_rx_ni(struct sk_buff *skb); 2073 extern int netif_receive_skb(struct sk_buff *skb); 2074 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2075 struct sk_buff *skb); 2076 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2077 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2078 struct sk_buff *skb); 2079 extern void napi_gro_flush(struct napi_struct *napi); 2080 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2081 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2082 struct sk_buff *skb, 2083 gro_result_t ret); 2084 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2085 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2086 2087 static inline void napi_free_frags(struct napi_struct *napi) 2088 { 2089 kfree_skb(napi->skb); 2090 napi->skb = NULL; 2091 } 2092 2093 extern int netdev_rx_handler_register(struct net_device *dev, 2094 rx_handler_func_t *rx_handler, 2095 void *rx_handler_data); 2096 extern void netdev_rx_handler_unregister(struct net_device *dev); 2097 2098 extern int dev_valid_name(const char *name); 2099 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2100 extern int dev_ethtool(struct net *net, struct ifreq *); 2101 extern unsigned dev_get_flags(const struct net_device *); 2102 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2103 extern int dev_change_flags(struct net_device *, unsigned); 2104 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2105 extern int dev_change_name(struct net_device *, const char *); 2106 extern int dev_set_alias(struct net_device *, const char *, size_t); 2107 extern int dev_change_net_namespace(struct net_device *, 2108 struct net *, const char *); 2109 extern int dev_set_mtu(struct net_device *, int); 2110 extern void dev_set_group(struct net_device *, int); 2111 extern int dev_set_mac_address(struct net_device *, 2112 struct sockaddr *); 2113 extern int dev_hard_start_xmit(struct sk_buff *skb, 2114 struct net_device *dev, 2115 struct netdev_queue *txq); 2116 extern int dev_forward_skb(struct net_device *dev, 2117 struct sk_buff *skb); 2118 2119 extern int netdev_budget; 2120 2121 /* Called by rtnetlink.c:rtnl_unlock() */ 2122 extern void netdev_run_todo(void); 2123 2124 /** 2125 * dev_put - release reference to device 2126 * @dev: network device 2127 * 2128 * Release reference to device to allow it to be freed. 2129 */ 2130 static inline void dev_put(struct net_device *dev) 2131 { 2132 irqsafe_cpu_dec(*dev->pcpu_refcnt); 2133 } 2134 2135 /** 2136 * dev_hold - get reference to device 2137 * @dev: network device 2138 * 2139 * Hold reference to device to keep it from being freed. 2140 */ 2141 static inline void dev_hold(struct net_device *dev) 2142 { 2143 irqsafe_cpu_inc(*dev->pcpu_refcnt); 2144 } 2145 2146 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2147 * and _off may be called from IRQ context, but it is caller 2148 * who is responsible for serialization of these calls. 2149 * 2150 * The name carrier is inappropriate, these functions should really be 2151 * called netif_lowerlayer_*() because they represent the state of any 2152 * kind of lower layer not just hardware media. 2153 */ 2154 2155 extern void linkwatch_fire_event(struct net_device *dev); 2156 extern void linkwatch_forget_dev(struct net_device *dev); 2157 2158 /** 2159 * netif_carrier_ok - test if carrier present 2160 * @dev: network device 2161 * 2162 * Check if carrier is present on device 2163 */ 2164 static inline int netif_carrier_ok(const struct net_device *dev) 2165 { 2166 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2167 } 2168 2169 extern unsigned long dev_trans_start(struct net_device *dev); 2170 2171 extern void __netdev_watchdog_up(struct net_device *dev); 2172 2173 extern void netif_carrier_on(struct net_device *dev); 2174 2175 extern void netif_carrier_off(struct net_device *dev); 2176 2177 extern void netif_notify_peers(struct net_device *dev); 2178 2179 /** 2180 * netif_dormant_on - mark device as dormant. 2181 * @dev: network device 2182 * 2183 * Mark device as dormant (as per RFC2863). 2184 * 2185 * The dormant state indicates that the relevant interface is not 2186 * actually in a condition to pass packets (i.e., it is not 'up') but is 2187 * in a "pending" state, waiting for some external event. For "on- 2188 * demand" interfaces, this new state identifies the situation where the 2189 * interface is waiting for events to place it in the up state. 2190 * 2191 */ 2192 static inline void netif_dormant_on(struct net_device *dev) 2193 { 2194 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2195 linkwatch_fire_event(dev); 2196 } 2197 2198 /** 2199 * netif_dormant_off - set device as not dormant. 2200 * @dev: network device 2201 * 2202 * Device is not in dormant state. 2203 */ 2204 static inline void netif_dormant_off(struct net_device *dev) 2205 { 2206 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2207 linkwatch_fire_event(dev); 2208 } 2209 2210 /** 2211 * netif_dormant - test if carrier present 2212 * @dev: network device 2213 * 2214 * Check if carrier is present on device 2215 */ 2216 static inline int netif_dormant(const struct net_device *dev) 2217 { 2218 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2219 } 2220 2221 2222 /** 2223 * netif_oper_up - test if device is operational 2224 * @dev: network device 2225 * 2226 * Check if carrier is operational 2227 */ 2228 static inline int netif_oper_up(const struct net_device *dev) 2229 { 2230 return (dev->operstate == IF_OPER_UP || 2231 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2232 } 2233 2234 /** 2235 * netif_device_present - is device available or removed 2236 * @dev: network device 2237 * 2238 * Check if device has not been removed from system. 2239 */ 2240 static inline int netif_device_present(struct net_device *dev) 2241 { 2242 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2243 } 2244 2245 extern void netif_device_detach(struct net_device *dev); 2246 2247 extern void netif_device_attach(struct net_device *dev); 2248 2249 /* 2250 * Network interface message level settings 2251 */ 2252 2253 enum { 2254 NETIF_MSG_DRV = 0x0001, 2255 NETIF_MSG_PROBE = 0x0002, 2256 NETIF_MSG_LINK = 0x0004, 2257 NETIF_MSG_TIMER = 0x0008, 2258 NETIF_MSG_IFDOWN = 0x0010, 2259 NETIF_MSG_IFUP = 0x0020, 2260 NETIF_MSG_RX_ERR = 0x0040, 2261 NETIF_MSG_TX_ERR = 0x0080, 2262 NETIF_MSG_TX_QUEUED = 0x0100, 2263 NETIF_MSG_INTR = 0x0200, 2264 NETIF_MSG_TX_DONE = 0x0400, 2265 NETIF_MSG_RX_STATUS = 0x0800, 2266 NETIF_MSG_PKTDATA = 0x1000, 2267 NETIF_MSG_HW = 0x2000, 2268 NETIF_MSG_WOL = 0x4000, 2269 }; 2270 2271 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2272 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2273 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2274 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2275 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2276 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2277 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2278 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2279 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2280 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2281 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2282 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2283 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2284 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2285 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2286 2287 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2288 { 2289 /* use default */ 2290 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2291 return default_msg_enable_bits; 2292 if (debug_value == 0) /* no output */ 2293 return 0; 2294 /* set low N bits */ 2295 return (1 << debug_value) - 1; 2296 } 2297 2298 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2299 { 2300 spin_lock(&txq->_xmit_lock); 2301 txq->xmit_lock_owner = cpu; 2302 } 2303 2304 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2305 { 2306 spin_lock_bh(&txq->_xmit_lock); 2307 txq->xmit_lock_owner = smp_processor_id(); 2308 } 2309 2310 static inline int __netif_tx_trylock(struct netdev_queue *txq) 2311 { 2312 int ok = spin_trylock(&txq->_xmit_lock); 2313 if (likely(ok)) 2314 txq->xmit_lock_owner = smp_processor_id(); 2315 return ok; 2316 } 2317 2318 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2319 { 2320 txq->xmit_lock_owner = -1; 2321 spin_unlock(&txq->_xmit_lock); 2322 } 2323 2324 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2325 { 2326 txq->xmit_lock_owner = -1; 2327 spin_unlock_bh(&txq->_xmit_lock); 2328 } 2329 2330 static inline void txq_trans_update(struct netdev_queue *txq) 2331 { 2332 if (txq->xmit_lock_owner != -1) 2333 txq->trans_start = jiffies; 2334 } 2335 2336 /** 2337 * netif_tx_lock - grab network device transmit lock 2338 * @dev: network device 2339 * 2340 * Get network device transmit lock 2341 */ 2342 static inline void netif_tx_lock(struct net_device *dev) 2343 { 2344 unsigned int i; 2345 int cpu; 2346 2347 spin_lock(&dev->tx_global_lock); 2348 cpu = smp_processor_id(); 2349 for (i = 0; i < dev->num_tx_queues; i++) { 2350 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2351 2352 /* We are the only thread of execution doing a 2353 * freeze, but we have to grab the _xmit_lock in 2354 * order to synchronize with threads which are in 2355 * the ->hard_start_xmit() handler and already 2356 * checked the frozen bit. 2357 */ 2358 __netif_tx_lock(txq, cpu); 2359 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2360 __netif_tx_unlock(txq); 2361 } 2362 } 2363 2364 static inline void netif_tx_lock_bh(struct net_device *dev) 2365 { 2366 local_bh_disable(); 2367 netif_tx_lock(dev); 2368 } 2369 2370 static inline void netif_tx_unlock(struct net_device *dev) 2371 { 2372 unsigned int i; 2373 2374 for (i = 0; i < dev->num_tx_queues; i++) { 2375 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2376 2377 /* No need to grab the _xmit_lock here. If the 2378 * queue is not stopped for another reason, we 2379 * force a schedule. 2380 */ 2381 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2382 netif_schedule_queue(txq); 2383 } 2384 spin_unlock(&dev->tx_global_lock); 2385 } 2386 2387 static inline void netif_tx_unlock_bh(struct net_device *dev) 2388 { 2389 netif_tx_unlock(dev); 2390 local_bh_enable(); 2391 } 2392 2393 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2394 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2395 __netif_tx_lock(txq, cpu); \ 2396 } \ 2397 } 2398 2399 #define HARD_TX_UNLOCK(dev, txq) { \ 2400 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2401 __netif_tx_unlock(txq); \ 2402 } \ 2403 } 2404 2405 static inline void netif_tx_disable(struct net_device *dev) 2406 { 2407 unsigned int i; 2408 int cpu; 2409 2410 local_bh_disable(); 2411 cpu = smp_processor_id(); 2412 for (i = 0; i < dev->num_tx_queues; i++) { 2413 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2414 2415 __netif_tx_lock(txq, cpu); 2416 netif_tx_stop_queue(txq); 2417 __netif_tx_unlock(txq); 2418 } 2419 local_bh_enable(); 2420 } 2421 2422 static inline void netif_addr_lock(struct net_device *dev) 2423 { 2424 spin_lock(&dev->addr_list_lock); 2425 } 2426 2427 static inline void netif_addr_lock_bh(struct net_device *dev) 2428 { 2429 spin_lock_bh(&dev->addr_list_lock); 2430 } 2431 2432 static inline void netif_addr_unlock(struct net_device *dev) 2433 { 2434 spin_unlock(&dev->addr_list_lock); 2435 } 2436 2437 static inline void netif_addr_unlock_bh(struct net_device *dev) 2438 { 2439 spin_unlock_bh(&dev->addr_list_lock); 2440 } 2441 2442 /* 2443 * dev_addrs walker. Should be used only for read access. Call with 2444 * rcu_read_lock held. 2445 */ 2446 #define for_each_dev_addr(dev, ha) \ 2447 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2448 2449 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2450 2451 extern void ether_setup(struct net_device *dev); 2452 2453 /* Support for loadable net-drivers */ 2454 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2455 void (*setup)(struct net_device *), 2456 unsigned int txqs, unsigned int rxqs); 2457 #define alloc_netdev(sizeof_priv, name, setup) \ 2458 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2459 2460 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2461 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2462 2463 extern int register_netdev(struct net_device *dev); 2464 extern void unregister_netdev(struct net_device *dev); 2465 2466 /* General hardware address lists handling functions */ 2467 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2468 struct netdev_hw_addr_list *from_list, 2469 int addr_len, unsigned char addr_type); 2470 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2471 struct netdev_hw_addr_list *from_list, 2472 int addr_len, unsigned char addr_type); 2473 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2474 struct netdev_hw_addr_list *from_list, 2475 int addr_len); 2476 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2477 struct netdev_hw_addr_list *from_list, 2478 int addr_len); 2479 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2480 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2481 2482 /* Functions used for device addresses handling */ 2483 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2484 unsigned char addr_type); 2485 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2486 unsigned char addr_type); 2487 extern int dev_addr_add_multiple(struct net_device *to_dev, 2488 struct net_device *from_dev, 2489 unsigned char addr_type); 2490 extern int dev_addr_del_multiple(struct net_device *to_dev, 2491 struct net_device *from_dev, 2492 unsigned char addr_type); 2493 extern void dev_addr_flush(struct net_device *dev); 2494 extern int dev_addr_init(struct net_device *dev); 2495 2496 /* Functions used for unicast addresses handling */ 2497 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2498 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2499 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2500 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2501 extern void dev_uc_flush(struct net_device *dev); 2502 extern void dev_uc_init(struct net_device *dev); 2503 2504 /* Functions used for multicast addresses handling */ 2505 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2506 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2507 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2508 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2509 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2510 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2511 extern void dev_mc_flush(struct net_device *dev); 2512 extern void dev_mc_init(struct net_device *dev); 2513 2514 /* Functions used for secondary unicast and multicast support */ 2515 extern void dev_set_rx_mode(struct net_device *dev); 2516 extern void __dev_set_rx_mode(struct net_device *dev); 2517 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2518 extern int dev_set_allmulti(struct net_device *dev, int inc); 2519 extern void netdev_state_change(struct net_device *dev); 2520 extern int netdev_bonding_change(struct net_device *dev, 2521 unsigned long event); 2522 extern void netdev_features_change(struct net_device *dev); 2523 /* Load a device via the kmod */ 2524 extern void dev_load(struct net *net, const char *name); 2525 extern void dev_mcast_init(void); 2526 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2527 struct rtnl_link_stats64 *storage); 2528 2529 extern int netdev_max_backlog; 2530 extern int netdev_tstamp_prequeue; 2531 extern int weight_p; 2532 extern int bpf_jit_enable; 2533 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2534 extern int netdev_set_bond_master(struct net_device *dev, 2535 struct net_device *master); 2536 extern int skb_checksum_help(struct sk_buff *skb); 2537 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2538 netdev_features_t features); 2539 #ifdef CONFIG_BUG 2540 extern void netdev_rx_csum_fault(struct net_device *dev); 2541 #else 2542 static inline void netdev_rx_csum_fault(struct net_device *dev) 2543 { 2544 } 2545 #endif 2546 /* rx skb timestamps */ 2547 extern void net_enable_timestamp(void); 2548 extern void net_disable_timestamp(void); 2549 2550 #ifdef CONFIG_PROC_FS 2551 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2552 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2553 extern void dev_seq_stop(struct seq_file *seq, void *v); 2554 extern int dev_seq_open_ops(struct inode *inode, struct file *file, 2555 const struct seq_operations *ops); 2556 #endif 2557 2558 extern int netdev_class_create_file(struct class_attribute *class_attr); 2559 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2560 2561 extern struct kobj_ns_type_operations net_ns_type_operations; 2562 2563 extern const char *netdev_drivername(const struct net_device *dev); 2564 2565 extern void linkwatch_run_queue(void); 2566 2567 static inline netdev_features_t netdev_get_wanted_features( 2568 struct net_device *dev) 2569 { 2570 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2571 } 2572 netdev_features_t netdev_increment_features(netdev_features_t all, 2573 netdev_features_t one, netdev_features_t mask); 2574 int __netdev_update_features(struct net_device *dev); 2575 void netdev_update_features(struct net_device *dev); 2576 void netdev_change_features(struct net_device *dev); 2577 2578 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2579 struct net_device *dev); 2580 2581 netdev_features_t netif_skb_features(struct sk_buff *skb); 2582 2583 static inline int net_gso_ok(netdev_features_t features, int gso_type) 2584 { 2585 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2586 2587 /* check flags correspondence */ 2588 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2589 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2590 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2591 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2592 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2593 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2594 2595 return (features & feature) == feature; 2596 } 2597 2598 static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2599 { 2600 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2601 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2602 } 2603 2604 static inline int netif_needs_gso(struct sk_buff *skb, 2605 netdev_features_t features) 2606 { 2607 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2608 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2609 } 2610 2611 static inline void netif_set_gso_max_size(struct net_device *dev, 2612 unsigned int size) 2613 { 2614 dev->gso_max_size = size; 2615 } 2616 2617 static inline int netif_is_bond_slave(struct net_device *dev) 2618 { 2619 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2620 } 2621 2622 extern struct pernet_operations __net_initdata loopback_net_ops; 2623 2624 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2625 2626 /* netdev_printk helpers, similar to dev_printk */ 2627 2628 static inline const char *netdev_name(const struct net_device *dev) 2629 { 2630 if (dev->reg_state != NETREG_REGISTERED) 2631 return "(unregistered net_device)"; 2632 return dev->name; 2633 } 2634 2635 extern int __netdev_printk(const char *level, const struct net_device *dev, 2636 struct va_format *vaf); 2637 2638 extern __printf(3, 4) 2639 int netdev_printk(const char *level, const struct net_device *dev, 2640 const char *format, ...); 2641 extern __printf(2, 3) 2642 int netdev_emerg(const struct net_device *dev, const char *format, ...); 2643 extern __printf(2, 3) 2644 int netdev_alert(const struct net_device *dev, const char *format, ...); 2645 extern __printf(2, 3) 2646 int netdev_crit(const struct net_device *dev, const char *format, ...); 2647 extern __printf(2, 3) 2648 int netdev_err(const struct net_device *dev, const char *format, ...); 2649 extern __printf(2, 3) 2650 int netdev_warn(const struct net_device *dev, const char *format, ...); 2651 extern __printf(2, 3) 2652 int netdev_notice(const struct net_device *dev, const char *format, ...); 2653 extern __printf(2, 3) 2654 int netdev_info(const struct net_device *dev, const char *format, ...); 2655 2656 #define MODULE_ALIAS_NETDEV(device) \ 2657 MODULE_ALIAS("netdev-" device) 2658 2659 #if defined(DEBUG) 2660 #define netdev_dbg(__dev, format, args...) \ 2661 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2662 #elif defined(CONFIG_DYNAMIC_DEBUG) 2663 #define netdev_dbg(__dev, format, args...) \ 2664 do { \ 2665 dynamic_netdev_dbg(__dev, format, ##args); \ 2666 } while (0) 2667 #else 2668 #define netdev_dbg(__dev, format, args...) \ 2669 ({ \ 2670 if (0) \ 2671 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2672 0; \ 2673 }) 2674 #endif 2675 2676 #if defined(VERBOSE_DEBUG) 2677 #define netdev_vdbg netdev_dbg 2678 #else 2679 2680 #define netdev_vdbg(dev, format, args...) \ 2681 ({ \ 2682 if (0) \ 2683 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2684 0; \ 2685 }) 2686 #endif 2687 2688 /* 2689 * netdev_WARN() acts like dev_printk(), but with the key difference 2690 * of using a WARN/WARN_ON to get the message out, including the 2691 * file/line information and a backtrace. 2692 */ 2693 #define netdev_WARN(dev, format, args...) \ 2694 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2695 2696 /* netif printk helpers, similar to netdev_printk */ 2697 2698 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2699 do { \ 2700 if (netif_msg_##type(priv)) \ 2701 netdev_printk(level, (dev), fmt, ##args); \ 2702 } while (0) 2703 2704 #define netif_level(level, priv, type, dev, fmt, args...) \ 2705 do { \ 2706 if (netif_msg_##type(priv)) \ 2707 netdev_##level(dev, fmt, ##args); \ 2708 } while (0) 2709 2710 #define netif_emerg(priv, type, dev, fmt, args...) \ 2711 netif_level(emerg, priv, type, dev, fmt, ##args) 2712 #define netif_alert(priv, type, dev, fmt, args...) \ 2713 netif_level(alert, priv, type, dev, fmt, ##args) 2714 #define netif_crit(priv, type, dev, fmt, args...) \ 2715 netif_level(crit, priv, type, dev, fmt, ##args) 2716 #define netif_err(priv, type, dev, fmt, args...) \ 2717 netif_level(err, priv, type, dev, fmt, ##args) 2718 #define netif_warn(priv, type, dev, fmt, args...) \ 2719 netif_level(warn, priv, type, dev, fmt, ##args) 2720 #define netif_notice(priv, type, dev, fmt, args...) \ 2721 netif_level(notice, priv, type, dev, fmt, ##args) 2722 #define netif_info(priv, type, dev, fmt, args...) \ 2723 netif_level(info, priv, type, dev, fmt, ##args) 2724 2725 #if defined(DEBUG) 2726 #define netif_dbg(priv, type, dev, format, args...) \ 2727 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2728 #elif defined(CONFIG_DYNAMIC_DEBUG) 2729 #define netif_dbg(priv, type, netdev, format, args...) \ 2730 do { \ 2731 if (netif_msg_##type(priv)) \ 2732 dynamic_netdev_dbg(netdev, format, ##args); \ 2733 } while (0) 2734 #else 2735 #define netif_dbg(priv, type, dev, format, args...) \ 2736 ({ \ 2737 if (0) \ 2738 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2739 0; \ 2740 }) 2741 #endif 2742 2743 #if defined(VERBOSE_DEBUG) 2744 #define netif_vdbg netif_dbg 2745 #else 2746 #define netif_vdbg(priv, type, dev, format, args...) \ 2747 ({ \ 2748 if (0) \ 2749 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2750 0; \ 2751 }) 2752 #endif 2753 2754 #endif /* __KERNEL__ */ 2755 2756 #endif /* _LINUX_NETDEVICE_H */ 2757