xref: /linux-6.15/include/linux/netdevice.h (revision c0d2b837)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40 
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55 
56 #include <linux/netdev_features.h>
57 
58 struct netpoll_info;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 					/* source back-compat hooks */
63 #define SET_ETHTOOL_OPS(netdev,ops) \
64 	( (netdev)->ethtool_ops = (ops) )
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously, in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 #endif
135 
136 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
137 
138 /* Initial net device group. All devices belong to group 0 by default. */
139 #define INIT_NETDEV_GROUP	0
140 
141 #ifdef  __KERNEL__
142 /*
143  *	Compute the worst case header length according to the protocols
144  *	used.
145  */
146 
147 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #elif IS_ENABLED(CONFIG_TR)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158 
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165 
166 /*
167  *	Old network device statistics. Fields are native words
168  *	(unsigned long) so they can be read and written atomically.
169  */
170 
171 struct net_device_stats {
172 	unsigned long	rx_packets;
173 	unsigned long	tx_packets;
174 	unsigned long	rx_bytes;
175 	unsigned long	tx_bytes;
176 	unsigned long	rx_errors;
177 	unsigned long	tx_errors;
178 	unsigned long	rx_dropped;
179 	unsigned long	tx_dropped;
180 	unsigned long	multicast;
181 	unsigned long	collisions;
182 	unsigned long	rx_length_errors;
183 	unsigned long	rx_over_errors;
184 	unsigned long	rx_crc_errors;
185 	unsigned long	rx_frame_errors;
186 	unsigned long	rx_fifo_errors;
187 	unsigned long	rx_missed_errors;
188 	unsigned long	tx_aborted_errors;
189 	unsigned long	tx_carrier_errors;
190 	unsigned long	tx_fifo_errors;
191 	unsigned long	tx_heartbeat_errors;
192 	unsigned long	tx_window_errors;
193 	unsigned long	rx_compressed;
194 	unsigned long	tx_compressed;
195 };
196 
197 #endif  /*  __KERNEL__  */
198 
199 
200 /* Media selection options. */
201 enum {
202         IF_PORT_UNKNOWN = 0,
203         IF_PORT_10BASE2,
204         IF_PORT_10BASET,
205         IF_PORT_AUI,
206         IF_PORT_100BASET,
207         IF_PORT_100BASETX,
208         IF_PORT_100BASEFX
209 };
210 
211 #ifdef __KERNEL__
212 
213 #include <linux/cache.h>
214 #include <linux/skbuff.h>
215 
216 #ifdef CONFIG_RPS
217 #include <linux/jump_label.h>
218 extern struct jump_label_key rps_needed;
219 #endif
220 
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224 
225 struct netdev_hw_addr {
226 	struct list_head	list;
227 	unsigned char		addr[MAX_ADDR_LEN];
228 	unsigned char		type;
229 #define NETDEV_HW_ADDR_T_LAN		1
230 #define NETDEV_HW_ADDR_T_SAN		2
231 #define NETDEV_HW_ADDR_T_SLAVE		3
232 #define NETDEV_HW_ADDR_T_UNICAST	4
233 #define NETDEV_HW_ADDR_T_MULTICAST	5
234 	bool			synced;
235 	bool			global_use;
236 	int			refcount;
237 	struct rcu_head		rcu_head;
238 };
239 
240 struct netdev_hw_addr_list {
241 	struct list_head	list;
242 	int			count;
243 };
244 
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 	list_for_each_entry(ha, &(l)->list, list)
249 
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254 
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259 
260 struct hh_cache {
261 	u16		hh_len;
262 	u16		__pad;
263 	seqlock_t	hh_lock;
264 
265 	/* cached hardware header; allow for machine alignment needs.        */
266 #define HH_DATA_MOD	16
267 #define HH_DATA_OFF(__len) \
268 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
269 #define HH_DATA_ALIGN(__len) \
270 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
271 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
272 };
273 
274 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
275  * Alternative is:
276  *   dev->hard_header_len ? (dev->hard_header_len +
277  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
278  *
279  * We could use other alignment values, but we must maintain the
280  * relationship HH alignment <= LL alignment.
281  */
282 #define LL_RESERVED_SPACE(dev) \
283 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
285 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 
287 struct header_ops {
288 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
289 			   unsigned short type, const void *daddr,
290 			   const void *saddr, unsigned len);
291 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
292 	int	(*rebuild)(struct sk_buff *skb);
293 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 	void	(*cache_update)(struct hh_cache *hh,
295 				const struct net_device *dev,
296 				const unsigned char *haddr);
297 };
298 
299 /* These flag bits are private to the generic network queueing
300  * layer, they may not be explicitly referenced by any other
301  * code.
302  */
303 
304 enum netdev_state_t {
305 	__LINK_STATE_START,
306 	__LINK_STATE_PRESENT,
307 	__LINK_STATE_NOCARRIER,
308 	__LINK_STATE_LINKWATCH_PENDING,
309 	__LINK_STATE_DORMANT,
310 };
311 
312 
313 /*
314  * This structure holds at boot time configured netdevice settings. They
315  * are then used in the device probing.
316  */
317 struct netdev_boot_setup {
318 	char name[IFNAMSIZ];
319 	struct ifmap map;
320 };
321 #define NETDEV_BOOT_SETUP_MAX 8
322 
323 extern int __init netdev_boot_setup(char *str);
324 
325 /*
326  * Structure for NAPI scheduling similar to tasklet but with weighting
327  */
328 struct napi_struct {
329 	/* The poll_list must only be managed by the entity which
330 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
331 	 * whoever atomically sets that bit can add this napi_struct
332 	 * to the per-cpu poll_list, and whoever clears that bit
333 	 * can remove from the list right before clearing the bit.
334 	 */
335 	struct list_head	poll_list;
336 
337 	unsigned long		state;
338 	int			weight;
339 	int			(*poll)(struct napi_struct *, int);
340 #ifdef CONFIG_NETPOLL
341 	spinlock_t		poll_lock;
342 	int			poll_owner;
343 #endif
344 
345 	unsigned int		gro_count;
346 
347 	struct net_device	*dev;
348 	struct list_head	dev_list;
349 	struct sk_buff		*gro_list;
350 	struct sk_buff		*skb;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,	/* Poll is scheduled */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 };
358 
359 enum gro_result {
360 	GRO_MERGED,
361 	GRO_MERGED_FREE,
362 	GRO_HELD,
363 	GRO_NORMAL,
364 	GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367 
368 /*
369  * enum rx_handler_result - Possible return values for rx_handlers.
370  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371  * further.
372  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373  * case skb->dev was changed by rx_handler.
374  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376  *
377  * rx_handlers are functions called from inside __netif_receive_skb(), to do
378  * special processing of the skb, prior to delivery to protocol handlers.
379  *
380  * Currently, a net_device can only have a single rx_handler registered. Trying
381  * to register a second rx_handler will return -EBUSY.
382  *
383  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384  * To unregister a rx_handler on a net_device, use
385  * netdev_rx_handler_unregister().
386  *
387  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388  * do with the skb.
389  *
390  * If the rx_handler consumed to skb in some way, it should return
391  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392  * the skb to be delivered in some other ways.
393  *
394  * If the rx_handler changed skb->dev, to divert the skb to another
395  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396  * new device will be called if it exists.
397  *
398  * If the rx_handler consider the skb should be ignored, it should return
399  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400  * are registred on exact device (ptype->dev == skb->dev).
401  *
402  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403  * delivered, it should return RX_HANDLER_PASS.
404  *
405  * A device without a registered rx_handler will behave as if rx_handler
406  * returned RX_HANDLER_PASS.
407  */
408 
409 enum rx_handler_result {
410 	RX_HANDLER_CONSUMED,
411 	RX_HANDLER_ANOTHER,
412 	RX_HANDLER_EXACT,
413 	RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417 
418 extern void __napi_schedule(struct napi_struct *n);
419 
420 static inline int napi_disable_pending(struct napi_struct *n)
421 {
422 	return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424 
425 /**
426  *	napi_schedule_prep - check if napi can be scheduled
427  *	@n: napi context
428  *
429  * Test if NAPI routine is already running, and if not mark
430  * it as running.  This is used as a condition variable
431  * insure only one NAPI poll instance runs.  We also make
432  * sure there is no pending NAPI disable.
433  */
434 static inline int napi_schedule_prep(struct napi_struct *n)
435 {
436 	return !napi_disable_pending(n) &&
437 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439 
440 /**
441  *	napi_schedule - schedule NAPI poll
442  *	@n: napi context
443  *
444  * Schedule NAPI poll routine to be called if it is not already
445  * running.
446  */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 	if (napi_schedule_prep(n))
450 		__napi_schedule(n);
451 }
452 
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
454 static inline int napi_reschedule(struct napi_struct *napi)
455 {
456 	if (napi_schedule_prep(napi)) {
457 		__napi_schedule(napi);
458 		return 1;
459 	}
460 	return 0;
461 }
462 
463 /**
464  *	napi_complete - NAPI processing complete
465  *	@n: napi context
466  *
467  * Mark NAPI processing as complete.
468  */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471 
472 /**
473  *	napi_disable - prevent NAPI from scheduling
474  *	@n: napi context
475  *
476  * Stop NAPI from being scheduled on this context.
477  * Waits till any outstanding processing completes.
478  */
479 static inline void napi_disable(struct napi_struct *n)
480 {
481 	set_bit(NAPI_STATE_DISABLE, &n->state);
482 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 		msleep(1);
484 	clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486 
487 /**
488  *	napi_enable - enable NAPI scheduling
489  *	@n: napi context
490  *
491  * Resume NAPI from being scheduled on this context.
492  * Must be paired with napi_disable.
493  */
494 static inline void napi_enable(struct napi_struct *n)
495 {
496 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 	smp_mb__before_clear_bit();
498 	clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500 
501 #ifdef CONFIG_SMP
502 /**
503  *	napi_synchronize - wait until NAPI is not running
504  *	@n: napi context
505  *
506  * Wait until NAPI is done being scheduled on this context.
507  * Waits till any outstanding processing completes but
508  * does not disable future activations.
509  */
510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 	while (test_bit(NAPI_STATE_SCHED, &n->state))
513 		msleep(1);
514 }
515 #else
516 # define napi_synchronize(n)	barrier()
517 #endif
518 
519 enum netdev_queue_state_t {
520 	__QUEUE_STATE_DRV_XOFF,
521 	__QUEUE_STATE_STACK_XOFF,
522 	__QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
524 			      (1 << __QUEUE_STATE_STACK_XOFF))
525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
526 					(1 << __QUEUE_STATE_FROZEN))
527 };
528 /*
529  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
530  * netif_tx_* functions below are used to manipulate this flag.  The
531  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
532  * queue independently.  The netif_xmit_*stopped functions below are called
533  * to check if the queue has been stopped by the driver or stack (either
534  * of the XOFF bits are set in the state).  Drivers should not need to call
535  * netif_xmit*stopped functions, they should only be using netif_tx_*.
536  */
537 
538 struct netdev_queue {
539 /*
540  * read mostly part
541  */
542 	struct net_device	*dev;
543 	struct Qdisc		*qdisc;
544 	struct Qdisc		*qdisc_sleeping;
545 #ifdef CONFIG_SYSFS
546 	struct kobject		kobj;
547 #endif
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 	int			numa_node;
550 #endif
551 /*
552  * write mostly part
553  */
554 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
555 	int			xmit_lock_owner;
556 	/*
557 	 * please use this field instead of dev->trans_start
558 	 */
559 	unsigned long		trans_start;
560 
561 	/*
562 	 * Number of TX timeouts for this queue
563 	 * (/sys/class/net/DEV/Q/trans_timeout)
564 	 */
565 	unsigned long		trans_timeout;
566 
567 	unsigned long		state;
568 
569 #ifdef CONFIG_BQL
570 	struct dql		dql;
571 #endif
572 } ____cacheline_aligned_in_smp;
573 
574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
575 {
576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
577 	return q->numa_node;
578 #else
579 	return NUMA_NO_NODE;
580 #endif
581 }
582 
583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
584 {
585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
586 	q->numa_node = node;
587 #endif
588 }
589 
590 #ifdef CONFIG_RPS
591 /*
592  * This structure holds an RPS map which can be of variable length.  The
593  * map is an array of CPUs.
594  */
595 struct rps_map {
596 	unsigned int len;
597 	struct rcu_head rcu;
598 	u16 cpus[0];
599 };
600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
601 
602 /*
603  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
604  * tail pointer for that CPU's input queue at the time of last enqueue, and
605  * a hardware filter index.
606  */
607 struct rps_dev_flow {
608 	u16 cpu;
609 	u16 filter;
610 	unsigned int last_qtail;
611 };
612 #define RPS_NO_FILTER 0xffff
613 
614 /*
615  * The rps_dev_flow_table structure contains a table of flow mappings.
616  */
617 struct rps_dev_flow_table {
618 	unsigned int mask;
619 	struct rcu_head rcu;
620 	struct work_struct free_work;
621 	struct rps_dev_flow flows[0];
622 };
623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
624     ((_num) * sizeof(struct rps_dev_flow)))
625 
626 /*
627  * The rps_sock_flow_table contains mappings of flows to the last CPU
628  * on which they were processed by the application (set in recvmsg).
629  */
630 struct rps_sock_flow_table {
631 	unsigned int mask;
632 	u16 ents[0];
633 };
634 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
635     ((_num) * sizeof(u16)))
636 
637 #define RPS_NO_CPU 0xffff
638 
639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
640 					u32 hash)
641 {
642 	if (table && hash) {
643 		unsigned int cpu, index = hash & table->mask;
644 
645 		/* We only give a hint, preemption can change cpu under us */
646 		cpu = raw_smp_processor_id();
647 
648 		if (table->ents[index] != cpu)
649 			table->ents[index] = cpu;
650 	}
651 }
652 
653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
654 				       u32 hash)
655 {
656 	if (table && hash)
657 		table->ents[hash & table->mask] = RPS_NO_CPU;
658 }
659 
660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
661 
662 #ifdef CONFIG_RFS_ACCEL
663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
664 				u32 flow_id, u16 filter_id);
665 #endif
666 
667 /* This structure contains an instance of an RX queue. */
668 struct netdev_rx_queue {
669 	struct rps_map __rcu		*rps_map;
670 	struct rps_dev_flow_table __rcu	*rps_flow_table;
671 	struct kobject			kobj;
672 	struct net_device		*dev;
673 } ____cacheline_aligned_in_smp;
674 #endif /* CONFIG_RPS */
675 
676 #ifdef CONFIG_XPS
677 /*
678  * This structure holds an XPS map which can be of variable length.  The
679  * map is an array of queues.
680  */
681 struct xps_map {
682 	unsigned int len;
683 	unsigned int alloc_len;
684 	struct rcu_head rcu;
685 	u16 queues[0];
686 };
687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
689     / sizeof(u16))
690 
691 /*
692  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
693  */
694 struct xps_dev_maps {
695 	struct rcu_head rcu;
696 	struct xps_map __rcu *cpu_map[0];
697 };
698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
699     (nr_cpu_ids * sizeof(struct xps_map *)))
700 #endif /* CONFIG_XPS */
701 
702 #define TC_MAX_QUEUE	16
703 #define TC_BITMASK	15
704 /* HW offloaded queuing disciplines txq count and offset maps */
705 struct netdev_tc_txq {
706 	u16 count;
707 	u16 offset;
708 };
709 
710 /*
711  * This structure defines the management hooks for network devices.
712  * The following hooks can be defined; unless noted otherwise, they are
713  * optional and can be filled with a null pointer.
714  *
715  * int (*ndo_init)(struct net_device *dev);
716  *     This function is called once when network device is registered.
717  *     The network device can use this to any late stage initializaton
718  *     or semantic validattion. It can fail with an error code which will
719  *     be propogated back to register_netdev
720  *
721  * void (*ndo_uninit)(struct net_device *dev);
722  *     This function is called when device is unregistered or when registration
723  *     fails. It is not called if init fails.
724  *
725  * int (*ndo_open)(struct net_device *dev);
726  *     This function is called when network device transistions to the up
727  *     state.
728  *
729  * int (*ndo_stop)(struct net_device *dev);
730  *     This function is called when network device transistions to the down
731  *     state.
732  *
733  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
734  *                               struct net_device *dev);
735  *	Called when a packet needs to be transmitted.
736  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
737  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
738  *	Required can not be NULL.
739  *
740  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
741  *	Called to decide which queue to when device supports multiple
742  *	transmit queues.
743  *
744  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
745  *	This function is called to allow device receiver to make
746  *	changes to configuration when multicast or promiscious is enabled.
747  *
748  * void (*ndo_set_rx_mode)(struct net_device *dev);
749  *	This function is called device changes address list filtering.
750  *	If driver handles unicast address filtering, it should set
751  *	IFF_UNICAST_FLT to its priv_flags.
752  *
753  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
754  *	This function  is called when the Media Access Control address
755  *	needs to be changed. If this interface is not defined, the
756  *	mac address can not be changed.
757  *
758  * int (*ndo_validate_addr)(struct net_device *dev);
759  *	Test if Media Access Control address is valid for the device.
760  *
761  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
762  *	Called when a user request an ioctl which can't be handled by
763  *	the generic interface code. If not defined ioctl's return
764  *	not supported error code.
765  *
766  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
767  *	Used to set network devices bus interface parameters. This interface
768  *	is retained for legacy reason, new devices should use the bus
769  *	interface (PCI) for low level management.
770  *
771  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
772  *	Called when a user wants to change the Maximum Transfer Unit
773  *	of a device. If not defined, any request to change MTU will
774  *	will return an error.
775  *
776  * void (*ndo_tx_timeout)(struct net_device *dev);
777  *	Callback uses when the transmitter has not made any progress
778  *	for dev->watchdog ticks.
779  *
780  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
781  *                      struct rtnl_link_stats64 *storage);
782  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
783  *	Called when a user wants to get the network device usage
784  *	statistics. Drivers must do one of the following:
785  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
786  *	   rtnl_link_stats64 structure passed by the caller.
787  *	2. Define @ndo_get_stats to update a net_device_stats structure
788  *	   (which should normally be dev->stats) and return a pointer to
789  *	   it. The structure may be changed asynchronously only if each
790  *	   field is written atomically.
791  *	3. Update dev->stats asynchronously and atomically, and define
792  *	   neither operation.
793  *
794  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
795  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
796  *	this function is called when a VLAN id is registered.
797  *
798  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
799  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
800  *	this function is called when a VLAN id is unregistered.
801  *
802  * void (*ndo_poll_controller)(struct net_device *dev);
803  *
804  *	SR-IOV management functions.
805  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
806  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
807  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
808  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
809  * int (*ndo_get_vf_config)(struct net_device *dev,
810  *			    int vf, struct ifla_vf_info *ivf);
811  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
812  *			  struct nlattr *port[]);
813  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
814  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
815  * 	Called to setup 'tc' number of traffic classes in the net device. This
816  * 	is always called from the stack with the rtnl lock held and netif tx
817  * 	queues stopped. This allows the netdevice to perform queue management
818  * 	safely.
819  *
820  *	Fiber Channel over Ethernet (FCoE) offload functions.
821  * int (*ndo_fcoe_enable)(struct net_device *dev);
822  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
823  *	so the underlying device can perform whatever needed configuration or
824  *	initialization to support acceleration of FCoE traffic.
825  *
826  * int (*ndo_fcoe_disable)(struct net_device *dev);
827  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
828  *	so the underlying device can perform whatever needed clean-ups to
829  *	stop supporting acceleration of FCoE traffic.
830  *
831  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
832  *			     struct scatterlist *sgl, unsigned int sgc);
833  *	Called when the FCoE Initiator wants to initialize an I/O that
834  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
835  *	perform necessary setup and returns 1 to indicate the device is set up
836  *	successfully to perform DDP on this I/O, otherwise this returns 0.
837  *
838  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
839  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
840  *	indicated by the FC exchange id 'xid', so the underlying device can
841  *	clean up and reuse resources for later DDP requests.
842  *
843  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
844  *			      struct scatterlist *sgl, unsigned int sgc);
845  *	Called when the FCoE Target wants to initialize an I/O that
846  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
847  *	perform necessary setup and returns 1 to indicate the device is set up
848  *	successfully to perform DDP on this I/O, otherwise this returns 0.
849  *
850  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
851  *	Called when the underlying device wants to override default World Wide
852  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
853  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
854  *	protocol stack to use.
855  *
856  *	RFS acceleration.
857  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
858  *			    u16 rxq_index, u32 flow_id);
859  *	Set hardware filter for RFS.  rxq_index is the target queue index;
860  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
861  *	Return the filter ID on success, or a negative error code.
862  *
863  *	Slave management functions (for bridge, bonding, etc). User should
864  *	call netdev_set_master() to set dev->master properly.
865  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
866  *	Called to make another netdev an underling.
867  *
868  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
869  *	Called to release previously enslaved netdev.
870  *
871  *      Feature/offload setting functions.
872  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
873  *		netdev_features_t features);
874  *	Adjusts the requested feature flags according to device-specific
875  *	constraints, and returns the resulting flags. Must not modify
876  *	the device state.
877  *
878  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
879  *	Called to update device configuration to new features. Passed
880  *	feature set might be less than what was returned by ndo_fix_features()).
881  *	Must return >0 or -errno if it changed dev->features itself.
882  *
883  */
884 struct net_device_ops {
885 	int			(*ndo_init)(struct net_device *dev);
886 	void			(*ndo_uninit)(struct net_device *dev);
887 	int			(*ndo_open)(struct net_device *dev);
888 	int			(*ndo_stop)(struct net_device *dev);
889 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
890 						   struct net_device *dev);
891 	u16			(*ndo_select_queue)(struct net_device *dev,
892 						    struct sk_buff *skb);
893 	void			(*ndo_change_rx_flags)(struct net_device *dev,
894 						       int flags);
895 	void			(*ndo_set_rx_mode)(struct net_device *dev);
896 	int			(*ndo_set_mac_address)(struct net_device *dev,
897 						       void *addr);
898 	int			(*ndo_validate_addr)(struct net_device *dev);
899 	int			(*ndo_do_ioctl)(struct net_device *dev,
900 					        struct ifreq *ifr, int cmd);
901 	int			(*ndo_set_config)(struct net_device *dev,
902 					          struct ifmap *map);
903 	int			(*ndo_change_mtu)(struct net_device *dev,
904 						  int new_mtu);
905 	int			(*ndo_neigh_setup)(struct net_device *dev,
906 						   struct neigh_parms *);
907 	void			(*ndo_tx_timeout) (struct net_device *dev);
908 
909 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
910 						     struct rtnl_link_stats64 *storage);
911 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
912 
913 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
914 						       unsigned short vid);
915 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
916 						        unsigned short vid);
917 #ifdef CONFIG_NET_POLL_CONTROLLER
918 	void                    (*ndo_poll_controller)(struct net_device *dev);
919 	int			(*ndo_netpoll_setup)(struct net_device *dev,
920 						     struct netpoll_info *info);
921 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
922 #endif
923 	int			(*ndo_set_vf_mac)(struct net_device *dev,
924 						  int queue, u8 *mac);
925 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
926 						   int queue, u16 vlan, u8 qos);
927 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
928 						      int vf, int rate);
929 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
930 						       int vf, bool setting);
931 	int			(*ndo_get_vf_config)(struct net_device *dev,
932 						     int vf,
933 						     struct ifla_vf_info *ivf);
934 	int			(*ndo_set_vf_port)(struct net_device *dev,
935 						   int vf,
936 						   struct nlattr *port[]);
937 	int			(*ndo_get_vf_port)(struct net_device *dev,
938 						   int vf, struct sk_buff *skb);
939 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
940 #if IS_ENABLED(CONFIG_FCOE)
941 	int			(*ndo_fcoe_enable)(struct net_device *dev);
942 	int			(*ndo_fcoe_disable)(struct net_device *dev);
943 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
944 						      u16 xid,
945 						      struct scatterlist *sgl,
946 						      unsigned int sgc);
947 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
948 						     u16 xid);
949 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
950 						       u16 xid,
951 						       struct scatterlist *sgl,
952 						       unsigned int sgc);
953 #endif
954 
955 #if IS_ENABLED(CONFIG_LIBFCOE)
956 #define NETDEV_FCOE_WWNN 0
957 #define NETDEV_FCOE_WWPN 1
958 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
959 						    u64 *wwn, int type);
960 #endif
961 
962 #ifdef CONFIG_RFS_ACCEL
963 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
964 						     const struct sk_buff *skb,
965 						     u16 rxq_index,
966 						     u32 flow_id);
967 #endif
968 	int			(*ndo_add_slave)(struct net_device *dev,
969 						 struct net_device *slave_dev);
970 	int			(*ndo_del_slave)(struct net_device *dev,
971 						 struct net_device *slave_dev);
972 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
973 						    netdev_features_t features);
974 	int			(*ndo_set_features)(struct net_device *dev,
975 						    netdev_features_t features);
976 	int			(*ndo_neigh_construct)(struct neighbour *n);
977 	void			(*ndo_neigh_destroy)(struct neighbour *n);
978 };
979 
980 /*
981  *	The DEVICE structure.
982  *	Actually, this whole structure is a big mistake.  It mixes I/O
983  *	data with strictly "high-level" data, and it has to know about
984  *	almost every data structure used in the INET module.
985  *
986  *	FIXME: cleanup struct net_device such that network protocol info
987  *	moves out.
988  */
989 
990 struct net_device {
991 
992 	/*
993 	 * This is the first field of the "visible" part of this structure
994 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
995 	 * of the interface.
996 	 */
997 	char			name[IFNAMSIZ];
998 
999 	struct pm_qos_request	pm_qos_req;
1000 
1001 	/* device name hash chain */
1002 	struct hlist_node	name_hlist;
1003 	/* snmp alias */
1004 	char 			*ifalias;
1005 
1006 	/*
1007 	 *	I/O specific fields
1008 	 *	FIXME: Merge these and struct ifmap into one
1009 	 */
1010 	unsigned long		mem_end;	/* shared mem end	*/
1011 	unsigned long		mem_start;	/* shared mem start	*/
1012 	unsigned long		base_addr;	/* device I/O address	*/
1013 	unsigned int		irq;		/* device IRQ number	*/
1014 
1015 	/*
1016 	 *	Some hardware also needs these fields, but they are not
1017 	 *	part of the usual set specified in Space.c.
1018 	 */
1019 
1020 	unsigned long		state;
1021 
1022 	struct list_head	dev_list;
1023 	struct list_head	napi_list;
1024 	struct list_head	unreg_list;
1025 
1026 	/* currently active device features */
1027 	netdev_features_t	features;
1028 	/* user-changeable features */
1029 	netdev_features_t	hw_features;
1030 	/* user-requested features */
1031 	netdev_features_t	wanted_features;
1032 	/* mask of features inheritable by VLAN devices */
1033 	netdev_features_t	vlan_features;
1034 
1035 	/* Interface index. Unique device identifier	*/
1036 	int			ifindex;
1037 	int			iflink;
1038 
1039 	struct net_device_stats	stats;
1040 	atomic_long_t		rx_dropped; /* dropped packets by core network
1041 					     * Do not use this in drivers.
1042 					     */
1043 
1044 #ifdef CONFIG_WIRELESS_EXT
1045 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1046 	 * See <net/iw_handler.h> for details. Jean II */
1047 	const struct iw_handler_def *	wireless_handlers;
1048 	/* Instance data managed by the core of Wireless Extensions. */
1049 	struct iw_public_data *	wireless_data;
1050 #endif
1051 	/* Management operations */
1052 	const struct net_device_ops *netdev_ops;
1053 	const struct ethtool_ops *ethtool_ops;
1054 
1055 	/* Hardware header description */
1056 	const struct header_ops *header_ops;
1057 
1058 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1059 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace. */
1060 	unsigned short		gflags;
1061 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1062 
1063 	unsigned char		operstate; /* RFC2863 operstate */
1064 	unsigned char		link_mode; /* mapping policy to operstate */
1065 
1066 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1067 	unsigned char		dma;		/* DMA channel		*/
1068 
1069 	unsigned int		mtu;	/* interface MTU value		*/
1070 	unsigned short		type;	/* interface hardware type	*/
1071 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1072 
1073 	/* extra head- and tailroom the hardware may need, but not in all cases
1074 	 * can this be guaranteed, especially tailroom. Some cases also use
1075 	 * LL_MAX_HEADER instead to allocate the skb.
1076 	 */
1077 	unsigned short		needed_headroom;
1078 	unsigned short		needed_tailroom;
1079 
1080 	/* Interface address info. */
1081 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1082 	unsigned char		addr_assign_type; /* hw address assignment type */
1083 	unsigned char		addr_len;	/* hardware address length	*/
1084 	unsigned char		neigh_priv_len;
1085 	unsigned short          dev_id;		/* for shared network cards */
1086 
1087 	spinlock_t		addr_list_lock;
1088 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1089 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1090 	bool			uc_promisc;
1091 	unsigned int		promiscuity;
1092 	unsigned int		allmulti;
1093 
1094 
1095 	/* Protocol specific pointers */
1096 
1097 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1098 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1099 #endif
1100 #if IS_ENABLED(CONFIG_NET_DSA)
1101 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1102 #endif
1103 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1104 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1105 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1106 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1107 	void			*ec_ptr;	/* Econet specific data	*/
1108 	void			*ax25_ptr;	/* AX.25 specific data */
1109 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1110 						   assign before registering */
1111 
1112 /*
1113  * Cache lines mostly used on receive path (including eth_type_trans())
1114  */
1115 	unsigned long		last_rx;	/* Time of last Rx
1116 						 * This should not be set in
1117 						 * drivers, unless really needed,
1118 						 * because network stack (bonding)
1119 						 * use it if/when necessary, to
1120 						 * avoid dirtying this cache line.
1121 						 */
1122 
1123 	struct net_device	*master; /* Pointer to master device of a group,
1124 					  * which this device is member of.
1125 					  */
1126 
1127 	/* Interface address info used in eth_type_trans() */
1128 	unsigned char		*dev_addr;	/* hw address, (before bcast
1129 						   because most packets are
1130 						   unicast) */
1131 
1132 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1133 						      hw addresses */
1134 
1135 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1136 
1137 #ifdef CONFIG_SYSFS
1138 	struct kset		*queues_kset;
1139 #endif
1140 
1141 #ifdef CONFIG_RPS
1142 	struct netdev_rx_queue	*_rx;
1143 
1144 	/* Number of RX queues allocated at register_netdev() time */
1145 	unsigned int		num_rx_queues;
1146 
1147 	/* Number of RX queues currently active in device */
1148 	unsigned int		real_num_rx_queues;
1149 
1150 #ifdef CONFIG_RFS_ACCEL
1151 	/* CPU reverse-mapping for RX completion interrupts, indexed
1152 	 * by RX queue number.  Assigned by driver.  This must only be
1153 	 * set if the ndo_rx_flow_steer operation is defined. */
1154 	struct cpu_rmap		*rx_cpu_rmap;
1155 #endif
1156 #endif
1157 
1158 	rx_handler_func_t __rcu	*rx_handler;
1159 	void __rcu		*rx_handler_data;
1160 
1161 	struct netdev_queue __rcu *ingress_queue;
1162 
1163 /*
1164  * Cache lines mostly used on transmit path
1165  */
1166 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1167 
1168 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1169 	unsigned int		num_tx_queues;
1170 
1171 	/* Number of TX queues currently active in device  */
1172 	unsigned int		real_num_tx_queues;
1173 
1174 	/* root qdisc from userspace point of view */
1175 	struct Qdisc		*qdisc;
1176 
1177 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1178 	spinlock_t		tx_global_lock;
1179 
1180 #ifdef CONFIG_XPS
1181 	struct xps_dev_maps __rcu *xps_maps;
1182 #endif
1183 
1184 	/* These may be needed for future network-power-down code. */
1185 
1186 	/*
1187 	 * trans_start here is expensive for high speed devices on SMP,
1188 	 * please use netdev_queue->trans_start instead.
1189 	 */
1190 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1191 
1192 	int			watchdog_timeo; /* used by dev_watchdog() */
1193 	struct timer_list	watchdog_timer;
1194 
1195 	/* Number of references to this device */
1196 	int __percpu		*pcpu_refcnt;
1197 
1198 	/* delayed register/unregister */
1199 	struct list_head	todo_list;
1200 	/* device index hash chain */
1201 	struct hlist_node	index_hlist;
1202 
1203 	struct list_head	link_watch_list;
1204 
1205 	/* register/unregister state machine */
1206 	enum { NETREG_UNINITIALIZED=0,
1207 	       NETREG_REGISTERED,	/* completed register_netdevice */
1208 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1209 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1210 	       NETREG_RELEASED,		/* called free_netdev */
1211 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1212 	} reg_state:8;
1213 
1214 	bool dismantle; /* device is going do be freed */
1215 
1216 	enum {
1217 		RTNL_LINK_INITIALIZED,
1218 		RTNL_LINK_INITIALIZING,
1219 	} rtnl_link_state:16;
1220 
1221 	/* Called from unregister, can be used to call free_netdev */
1222 	void (*destructor)(struct net_device *dev);
1223 
1224 #ifdef CONFIG_NETPOLL
1225 	struct netpoll_info	*npinfo;
1226 #endif
1227 
1228 #ifdef CONFIG_NET_NS
1229 	/* Network namespace this network device is inside */
1230 	struct net		*nd_net;
1231 #endif
1232 
1233 	/* mid-layer private */
1234 	union {
1235 		void				*ml_priv;
1236 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1237 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1238 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1239 	};
1240 	/* GARP */
1241 	struct garp_port __rcu	*garp_port;
1242 
1243 	/* class/net/name entry */
1244 	struct device		dev;
1245 	/* space for optional device, statistics, and wireless sysfs groups */
1246 	const struct attribute_group *sysfs_groups[4];
1247 
1248 	/* rtnetlink link ops */
1249 	const struct rtnl_link_ops *rtnl_link_ops;
1250 
1251 	/* for setting kernel sock attribute on TCP connection setup */
1252 #define GSO_MAX_SIZE		65536
1253 	unsigned int		gso_max_size;
1254 
1255 #ifdef CONFIG_DCB
1256 	/* Data Center Bridging netlink ops */
1257 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1258 #endif
1259 	u8 num_tc;
1260 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1261 	u8 prio_tc_map[TC_BITMASK + 1];
1262 
1263 #if IS_ENABLED(CONFIG_FCOE)
1264 	/* max exchange id for FCoE LRO by ddp */
1265 	unsigned int		fcoe_ddp_xid;
1266 #endif
1267 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1268 	struct netprio_map __rcu *priomap;
1269 #endif
1270 	/* phy device may attach itself for hardware timestamping */
1271 	struct phy_device *phydev;
1272 
1273 	/* group the device belongs to */
1274 	int group;
1275 };
1276 #define to_net_dev(d) container_of(d, struct net_device, dev)
1277 
1278 #define	NETDEV_ALIGN		32
1279 
1280 static inline
1281 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1282 {
1283 	return dev->prio_tc_map[prio & TC_BITMASK];
1284 }
1285 
1286 static inline
1287 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1288 {
1289 	if (tc >= dev->num_tc)
1290 		return -EINVAL;
1291 
1292 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1293 	return 0;
1294 }
1295 
1296 static inline
1297 void netdev_reset_tc(struct net_device *dev)
1298 {
1299 	dev->num_tc = 0;
1300 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1301 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1302 }
1303 
1304 static inline
1305 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1306 {
1307 	if (tc >= dev->num_tc)
1308 		return -EINVAL;
1309 
1310 	dev->tc_to_txq[tc].count = count;
1311 	dev->tc_to_txq[tc].offset = offset;
1312 	return 0;
1313 }
1314 
1315 static inline
1316 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1317 {
1318 	if (num_tc > TC_MAX_QUEUE)
1319 		return -EINVAL;
1320 
1321 	dev->num_tc = num_tc;
1322 	return 0;
1323 }
1324 
1325 static inline
1326 int netdev_get_num_tc(struct net_device *dev)
1327 {
1328 	return dev->num_tc;
1329 }
1330 
1331 static inline
1332 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1333 					 unsigned int index)
1334 {
1335 	return &dev->_tx[index];
1336 }
1337 
1338 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1339 					    void (*f)(struct net_device *,
1340 						      struct netdev_queue *,
1341 						      void *),
1342 					    void *arg)
1343 {
1344 	unsigned int i;
1345 
1346 	for (i = 0; i < dev->num_tx_queues; i++)
1347 		f(dev, &dev->_tx[i], arg);
1348 }
1349 
1350 /*
1351  * Net namespace inlines
1352  */
1353 static inline
1354 struct net *dev_net(const struct net_device *dev)
1355 {
1356 	return read_pnet(&dev->nd_net);
1357 }
1358 
1359 static inline
1360 void dev_net_set(struct net_device *dev, struct net *net)
1361 {
1362 #ifdef CONFIG_NET_NS
1363 	release_net(dev->nd_net);
1364 	dev->nd_net = hold_net(net);
1365 #endif
1366 }
1367 
1368 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1369 {
1370 #ifdef CONFIG_NET_DSA_TAG_DSA
1371 	if (dev->dsa_ptr != NULL)
1372 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1373 #endif
1374 
1375 	return 0;
1376 }
1377 
1378 #ifndef CONFIG_NET_NS
1379 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1380 {
1381 	skb->dev = dev;
1382 }
1383 #else /* CONFIG_NET_NS */
1384 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1385 #endif
1386 
1387 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1388 {
1389 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1390 	if (dev->dsa_ptr != NULL)
1391 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1392 #endif
1393 
1394 	return 0;
1395 }
1396 
1397 /**
1398  *	netdev_priv - access network device private data
1399  *	@dev: network device
1400  *
1401  * Get network device private data
1402  */
1403 static inline void *netdev_priv(const struct net_device *dev)
1404 {
1405 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1406 }
1407 
1408 /* Set the sysfs physical device reference for the network logical device
1409  * if set prior to registration will cause a symlink during initialization.
1410  */
1411 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1412 
1413 /* Set the sysfs device type for the network logical device to allow
1414  * fin grained indentification of different network device types. For
1415  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1416  */
1417 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1418 
1419 /**
1420  *	netif_napi_add - initialize a napi context
1421  *	@dev:  network device
1422  *	@napi: napi context
1423  *	@poll: polling function
1424  *	@weight: default weight
1425  *
1426  * netif_napi_add() must be used to initialize a napi context prior to calling
1427  * *any* of the other napi related functions.
1428  */
1429 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1430 		    int (*poll)(struct napi_struct *, int), int weight);
1431 
1432 /**
1433  *  netif_napi_del - remove a napi context
1434  *  @napi: napi context
1435  *
1436  *  netif_napi_del() removes a napi context from the network device napi list
1437  */
1438 void netif_napi_del(struct napi_struct *napi);
1439 
1440 struct napi_gro_cb {
1441 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1442 	void *frag0;
1443 
1444 	/* Length of frag0. */
1445 	unsigned int frag0_len;
1446 
1447 	/* This indicates where we are processing relative to skb->data. */
1448 	int data_offset;
1449 
1450 	/* This is non-zero if the packet may be of the same flow. */
1451 	int same_flow;
1452 
1453 	/* This is non-zero if the packet cannot be merged with the new skb. */
1454 	int flush;
1455 
1456 	/* Number of segments aggregated. */
1457 	int count;
1458 
1459 	/* Free the skb? */
1460 	int free;
1461 };
1462 
1463 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1464 
1465 struct packet_type {
1466 	__be16			type;	/* This is really htons(ether_type). */
1467 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1468 	int			(*func) (struct sk_buff *,
1469 					 struct net_device *,
1470 					 struct packet_type *,
1471 					 struct net_device *);
1472 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1473 						netdev_features_t features);
1474 	int			(*gso_send_check)(struct sk_buff *skb);
1475 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1476 					       struct sk_buff *skb);
1477 	int			(*gro_complete)(struct sk_buff *skb);
1478 	void			*af_packet_priv;
1479 	struct list_head	list;
1480 };
1481 
1482 #include <linux/notifier.h>
1483 
1484 /* netdevice notifier chain. Please remember to update the rtnetlink
1485  * notification exclusion list in rtnetlink_event() when adding new
1486  * types.
1487  */
1488 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1489 #define NETDEV_DOWN	0x0002
1490 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1491 				   detected a hardware crash and restarted
1492 				   - we can use this eg to kick tcp sessions
1493 				   once done */
1494 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1495 #define NETDEV_REGISTER 0x0005
1496 #define NETDEV_UNREGISTER	0x0006
1497 #define NETDEV_CHANGEMTU	0x0007
1498 #define NETDEV_CHANGEADDR	0x0008
1499 #define NETDEV_GOING_DOWN	0x0009
1500 #define NETDEV_CHANGENAME	0x000A
1501 #define NETDEV_FEAT_CHANGE	0x000B
1502 #define NETDEV_BONDING_FAILOVER 0x000C
1503 #define NETDEV_PRE_UP		0x000D
1504 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1505 #define NETDEV_POST_TYPE_CHANGE	0x000F
1506 #define NETDEV_POST_INIT	0x0010
1507 #define NETDEV_UNREGISTER_BATCH 0x0011
1508 #define NETDEV_RELEASE		0x0012
1509 #define NETDEV_NOTIFY_PEERS	0x0013
1510 #define NETDEV_JOIN		0x0014
1511 
1512 extern int register_netdevice_notifier(struct notifier_block *nb);
1513 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1514 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1515 
1516 
1517 extern rwlock_t				dev_base_lock;		/* Device list lock */
1518 
1519 
1520 #define for_each_netdev(net, d)		\
1521 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1522 #define for_each_netdev_reverse(net, d)	\
1523 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1524 #define for_each_netdev_rcu(net, d)		\
1525 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1526 #define for_each_netdev_safe(net, d, n)	\
1527 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1528 #define for_each_netdev_continue(net, d)		\
1529 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1530 #define for_each_netdev_continue_rcu(net, d)		\
1531 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1532 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1533 
1534 static inline struct net_device *next_net_device(struct net_device *dev)
1535 {
1536 	struct list_head *lh;
1537 	struct net *net;
1538 
1539 	net = dev_net(dev);
1540 	lh = dev->dev_list.next;
1541 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1542 }
1543 
1544 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1545 {
1546 	struct list_head *lh;
1547 	struct net *net;
1548 
1549 	net = dev_net(dev);
1550 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1551 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1552 }
1553 
1554 static inline struct net_device *first_net_device(struct net *net)
1555 {
1556 	return list_empty(&net->dev_base_head) ? NULL :
1557 		net_device_entry(net->dev_base_head.next);
1558 }
1559 
1560 static inline struct net_device *first_net_device_rcu(struct net *net)
1561 {
1562 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1563 
1564 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1565 }
1566 
1567 extern int 			netdev_boot_setup_check(struct net_device *dev);
1568 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1569 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1570 					      const char *hwaddr);
1571 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1572 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1573 extern void		dev_add_pack(struct packet_type *pt);
1574 extern void		dev_remove_pack(struct packet_type *pt);
1575 extern void		__dev_remove_pack(struct packet_type *pt);
1576 
1577 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1578 						      unsigned short mask);
1579 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1580 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1581 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1582 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1583 extern int		dev_open(struct net_device *dev);
1584 extern int		dev_close(struct net_device *dev);
1585 extern void		dev_disable_lro(struct net_device *dev);
1586 extern int		dev_queue_xmit(struct sk_buff *skb);
1587 extern int		register_netdevice(struct net_device *dev);
1588 extern void		unregister_netdevice_queue(struct net_device *dev,
1589 						   struct list_head *head);
1590 extern void		unregister_netdevice_many(struct list_head *head);
1591 static inline void unregister_netdevice(struct net_device *dev)
1592 {
1593 	unregister_netdevice_queue(dev, NULL);
1594 }
1595 
1596 extern int 		netdev_refcnt_read(const struct net_device *dev);
1597 extern void		free_netdev(struct net_device *dev);
1598 extern void		synchronize_net(void);
1599 extern int		init_dummy_netdev(struct net_device *dev);
1600 extern void		netdev_resync_ops(struct net_device *dev);
1601 
1602 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1603 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1604 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1605 extern int		dev_restart(struct net_device *dev);
1606 #ifdef CONFIG_NETPOLL_TRAP
1607 extern int		netpoll_trap(void);
1608 #endif
1609 extern int	       skb_gro_receive(struct sk_buff **head,
1610 				       struct sk_buff *skb);
1611 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1612 
1613 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1614 {
1615 	return NAPI_GRO_CB(skb)->data_offset;
1616 }
1617 
1618 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1619 {
1620 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1621 }
1622 
1623 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1624 {
1625 	NAPI_GRO_CB(skb)->data_offset += len;
1626 }
1627 
1628 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1629 					unsigned int offset)
1630 {
1631 	return NAPI_GRO_CB(skb)->frag0 + offset;
1632 }
1633 
1634 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1635 {
1636 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1637 }
1638 
1639 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1640 					unsigned int offset)
1641 {
1642 	if (!pskb_may_pull(skb, hlen))
1643 		return NULL;
1644 
1645 	NAPI_GRO_CB(skb)->frag0 = NULL;
1646 	NAPI_GRO_CB(skb)->frag0_len = 0;
1647 	return skb->data + offset;
1648 }
1649 
1650 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1651 {
1652 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1653 }
1654 
1655 static inline void *skb_gro_network_header(struct sk_buff *skb)
1656 {
1657 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1658 	       skb_network_offset(skb);
1659 }
1660 
1661 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1662 				  unsigned short type,
1663 				  const void *daddr, const void *saddr,
1664 				  unsigned len)
1665 {
1666 	if (!dev->header_ops || !dev->header_ops->create)
1667 		return 0;
1668 
1669 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1670 }
1671 
1672 static inline int dev_parse_header(const struct sk_buff *skb,
1673 				   unsigned char *haddr)
1674 {
1675 	const struct net_device *dev = skb->dev;
1676 
1677 	if (!dev->header_ops || !dev->header_ops->parse)
1678 		return 0;
1679 	return dev->header_ops->parse(skb, haddr);
1680 }
1681 
1682 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1683 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1684 static inline int unregister_gifconf(unsigned int family)
1685 {
1686 	return register_gifconf(family, NULL);
1687 }
1688 
1689 /*
1690  * Incoming packets are placed on per-cpu queues
1691  */
1692 struct softnet_data {
1693 	struct Qdisc		*output_queue;
1694 	struct Qdisc		**output_queue_tailp;
1695 	struct list_head	poll_list;
1696 	struct sk_buff		*completion_queue;
1697 	struct sk_buff_head	process_queue;
1698 
1699 	/* stats */
1700 	unsigned int		processed;
1701 	unsigned int		time_squeeze;
1702 	unsigned int		cpu_collision;
1703 	unsigned int		received_rps;
1704 
1705 #ifdef CONFIG_RPS
1706 	struct softnet_data	*rps_ipi_list;
1707 
1708 	/* Elements below can be accessed between CPUs for RPS */
1709 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1710 	struct softnet_data	*rps_ipi_next;
1711 	unsigned int		cpu;
1712 	unsigned int		input_queue_head;
1713 	unsigned int		input_queue_tail;
1714 #endif
1715 	unsigned		dropped;
1716 	struct sk_buff_head	input_pkt_queue;
1717 	struct napi_struct	backlog;
1718 };
1719 
1720 static inline void input_queue_head_incr(struct softnet_data *sd)
1721 {
1722 #ifdef CONFIG_RPS
1723 	sd->input_queue_head++;
1724 #endif
1725 }
1726 
1727 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1728 					      unsigned int *qtail)
1729 {
1730 #ifdef CONFIG_RPS
1731 	*qtail = ++sd->input_queue_tail;
1732 #endif
1733 }
1734 
1735 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1736 
1737 extern void __netif_schedule(struct Qdisc *q);
1738 
1739 static inline void netif_schedule_queue(struct netdev_queue *txq)
1740 {
1741 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1742 		__netif_schedule(txq->qdisc);
1743 }
1744 
1745 static inline void netif_tx_schedule_all(struct net_device *dev)
1746 {
1747 	unsigned int i;
1748 
1749 	for (i = 0; i < dev->num_tx_queues; i++)
1750 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1751 }
1752 
1753 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1754 {
1755 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1756 }
1757 
1758 /**
1759  *	netif_start_queue - allow transmit
1760  *	@dev: network device
1761  *
1762  *	Allow upper layers to call the device hard_start_xmit routine.
1763  */
1764 static inline void netif_start_queue(struct net_device *dev)
1765 {
1766 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1767 }
1768 
1769 static inline void netif_tx_start_all_queues(struct net_device *dev)
1770 {
1771 	unsigned int i;
1772 
1773 	for (i = 0; i < dev->num_tx_queues; i++) {
1774 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1775 		netif_tx_start_queue(txq);
1776 	}
1777 }
1778 
1779 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1780 {
1781 #ifdef CONFIG_NETPOLL_TRAP
1782 	if (netpoll_trap()) {
1783 		netif_tx_start_queue(dev_queue);
1784 		return;
1785 	}
1786 #endif
1787 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1788 		__netif_schedule(dev_queue->qdisc);
1789 }
1790 
1791 /**
1792  *	netif_wake_queue - restart transmit
1793  *	@dev: network device
1794  *
1795  *	Allow upper layers to call the device hard_start_xmit routine.
1796  *	Used for flow control when transmit resources are available.
1797  */
1798 static inline void netif_wake_queue(struct net_device *dev)
1799 {
1800 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1801 }
1802 
1803 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1804 {
1805 	unsigned int i;
1806 
1807 	for (i = 0; i < dev->num_tx_queues; i++) {
1808 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1809 		netif_tx_wake_queue(txq);
1810 	}
1811 }
1812 
1813 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1814 {
1815 	if (WARN_ON(!dev_queue)) {
1816 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1817 		return;
1818 	}
1819 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1820 }
1821 
1822 /**
1823  *	netif_stop_queue - stop transmitted packets
1824  *	@dev: network device
1825  *
1826  *	Stop upper layers calling the device hard_start_xmit routine.
1827  *	Used for flow control when transmit resources are unavailable.
1828  */
1829 static inline void netif_stop_queue(struct net_device *dev)
1830 {
1831 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1832 }
1833 
1834 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1835 {
1836 	unsigned int i;
1837 
1838 	for (i = 0; i < dev->num_tx_queues; i++) {
1839 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1840 		netif_tx_stop_queue(txq);
1841 	}
1842 }
1843 
1844 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1845 {
1846 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1847 }
1848 
1849 /**
1850  *	netif_queue_stopped - test if transmit queue is flowblocked
1851  *	@dev: network device
1852  *
1853  *	Test if transmit queue on device is currently unable to send.
1854  */
1855 static inline int netif_queue_stopped(const struct net_device *dev)
1856 {
1857 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1858 }
1859 
1860 static inline int netif_xmit_stopped(const struct netdev_queue *dev_queue)
1861 {
1862 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1863 }
1864 
1865 static inline int netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1866 {
1867 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1868 }
1869 
1870 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1871 					unsigned int bytes)
1872 {
1873 #ifdef CONFIG_BQL
1874 	dql_queued(&dev_queue->dql, bytes);
1875 	if (unlikely(dql_avail(&dev_queue->dql) < 0)) {
1876 		set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1877 		if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1878 			clear_bit(__QUEUE_STATE_STACK_XOFF,
1879 			    &dev_queue->state);
1880 	}
1881 #endif
1882 }
1883 
1884 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1885 {
1886 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1887 }
1888 
1889 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1890 					     unsigned pkts, unsigned bytes)
1891 {
1892 #ifdef CONFIG_BQL
1893 	if (likely(bytes)) {
1894 		dql_completed(&dev_queue->dql, bytes);
1895 		if (unlikely(test_bit(__QUEUE_STATE_STACK_XOFF,
1896 		    &dev_queue->state) &&
1897 		    dql_avail(&dev_queue->dql) >= 0)) {
1898 			if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF,
1899 			     &dev_queue->state))
1900 				netif_schedule_queue(dev_queue);
1901 		}
1902 	}
1903 #endif
1904 }
1905 
1906 static inline void netdev_completed_queue(struct net_device *dev,
1907 					  unsigned pkts, unsigned bytes)
1908 {
1909 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1910 }
1911 
1912 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1913 {
1914 #ifdef CONFIG_BQL
1915 	dql_reset(&q->dql);
1916 #endif
1917 }
1918 
1919 static inline void netdev_reset_queue(struct net_device *dev_queue)
1920 {
1921 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1922 }
1923 
1924 /**
1925  *	netif_running - test if up
1926  *	@dev: network device
1927  *
1928  *	Test if the device has been brought up.
1929  */
1930 static inline int netif_running(const struct net_device *dev)
1931 {
1932 	return test_bit(__LINK_STATE_START, &dev->state);
1933 }
1934 
1935 /*
1936  * Routines to manage the subqueues on a device.  We only need start
1937  * stop, and a check if it's stopped.  All other device management is
1938  * done at the overall netdevice level.
1939  * Also test the device if we're multiqueue.
1940  */
1941 
1942 /**
1943  *	netif_start_subqueue - allow sending packets on subqueue
1944  *	@dev: network device
1945  *	@queue_index: sub queue index
1946  *
1947  * Start individual transmit queue of a device with multiple transmit queues.
1948  */
1949 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1950 {
1951 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1952 
1953 	netif_tx_start_queue(txq);
1954 }
1955 
1956 /**
1957  *	netif_stop_subqueue - stop sending packets on subqueue
1958  *	@dev: network device
1959  *	@queue_index: sub queue index
1960  *
1961  * Stop individual transmit queue of a device with multiple transmit queues.
1962  */
1963 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1964 {
1965 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1966 #ifdef CONFIG_NETPOLL_TRAP
1967 	if (netpoll_trap())
1968 		return;
1969 #endif
1970 	netif_tx_stop_queue(txq);
1971 }
1972 
1973 /**
1974  *	netif_subqueue_stopped - test status of subqueue
1975  *	@dev: network device
1976  *	@queue_index: sub queue index
1977  *
1978  * Check individual transmit queue of a device with multiple transmit queues.
1979  */
1980 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1981 					 u16 queue_index)
1982 {
1983 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1984 
1985 	return netif_tx_queue_stopped(txq);
1986 }
1987 
1988 static inline int netif_subqueue_stopped(const struct net_device *dev,
1989 					 struct sk_buff *skb)
1990 {
1991 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1992 }
1993 
1994 /**
1995  *	netif_wake_subqueue - allow sending packets on subqueue
1996  *	@dev: network device
1997  *	@queue_index: sub queue index
1998  *
1999  * Resume individual transmit queue of a device with multiple transmit queues.
2000  */
2001 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2002 {
2003 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2004 #ifdef CONFIG_NETPOLL_TRAP
2005 	if (netpoll_trap())
2006 		return;
2007 #endif
2008 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2009 		__netif_schedule(txq->qdisc);
2010 }
2011 
2012 /*
2013  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2014  * as a distribution range limit for the returned value.
2015  */
2016 static inline u16 skb_tx_hash(const struct net_device *dev,
2017 			      const struct sk_buff *skb)
2018 {
2019 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2020 }
2021 
2022 /**
2023  *	netif_is_multiqueue - test if device has multiple transmit queues
2024  *	@dev: network device
2025  *
2026  * Check if device has multiple transmit queues
2027  */
2028 static inline int netif_is_multiqueue(const struct net_device *dev)
2029 {
2030 	return dev->num_tx_queues > 1;
2031 }
2032 
2033 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2034 					unsigned int txq);
2035 
2036 #ifdef CONFIG_RPS
2037 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2038 					unsigned int rxq);
2039 #else
2040 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2041 						unsigned int rxq)
2042 {
2043 	return 0;
2044 }
2045 #endif
2046 
2047 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2048 					     const struct net_device *from_dev)
2049 {
2050 	netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2051 #ifdef CONFIG_RPS
2052 	return netif_set_real_num_rx_queues(to_dev,
2053 					    from_dev->real_num_rx_queues);
2054 #else
2055 	return 0;
2056 #endif
2057 }
2058 
2059 /* Use this variant when it is known for sure that it
2060  * is executing from hardware interrupt context or with hardware interrupts
2061  * disabled.
2062  */
2063 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2064 
2065 /* Use this variant in places where it could be invoked
2066  * from either hardware interrupt or other context, with hardware interrupts
2067  * either disabled or enabled.
2068  */
2069 extern void dev_kfree_skb_any(struct sk_buff *skb);
2070 
2071 extern int		netif_rx(struct sk_buff *skb);
2072 extern int		netif_rx_ni(struct sk_buff *skb);
2073 extern int		netif_receive_skb(struct sk_buff *skb);
2074 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2075 					struct sk_buff *skb);
2076 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2077 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2078 					 struct sk_buff *skb);
2079 extern void		napi_gro_flush(struct napi_struct *napi);
2080 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2081 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2082 					  struct sk_buff *skb,
2083 					  gro_result_t ret);
2084 extern struct sk_buff *	napi_frags_skb(struct napi_struct *napi);
2085 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2086 
2087 static inline void napi_free_frags(struct napi_struct *napi)
2088 {
2089 	kfree_skb(napi->skb);
2090 	napi->skb = NULL;
2091 }
2092 
2093 extern int netdev_rx_handler_register(struct net_device *dev,
2094 				      rx_handler_func_t *rx_handler,
2095 				      void *rx_handler_data);
2096 extern void netdev_rx_handler_unregister(struct net_device *dev);
2097 
2098 extern int		dev_valid_name(const char *name);
2099 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2100 extern int		dev_ethtool(struct net *net, struct ifreq *);
2101 extern unsigned		dev_get_flags(const struct net_device *);
2102 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2103 extern int		dev_change_flags(struct net_device *, unsigned);
2104 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2105 extern int		dev_change_name(struct net_device *, const char *);
2106 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2107 extern int		dev_change_net_namespace(struct net_device *,
2108 						 struct net *, const char *);
2109 extern int		dev_set_mtu(struct net_device *, int);
2110 extern void		dev_set_group(struct net_device *, int);
2111 extern int		dev_set_mac_address(struct net_device *,
2112 					    struct sockaddr *);
2113 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2114 					    struct net_device *dev,
2115 					    struct netdev_queue *txq);
2116 extern int		dev_forward_skb(struct net_device *dev,
2117 					struct sk_buff *skb);
2118 
2119 extern int		netdev_budget;
2120 
2121 /* Called by rtnetlink.c:rtnl_unlock() */
2122 extern void netdev_run_todo(void);
2123 
2124 /**
2125  *	dev_put - release reference to device
2126  *	@dev: network device
2127  *
2128  * Release reference to device to allow it to be freed.
2129  */
2130 static inline void dev_put(struct net_device *dev)
2131 {
2132 	irqsafe_cpu_dec(*dev->pcpu_refcnt);
2133 }
2134 
2135 /**
2136  *	dev_hold - get reference to device
2137  *	@dev: network device
2138  *
2139  * Hold reference to device to keep it from being freed.
2140  */
2141 static inline void dev_hold(struct net_device *dev)
2142 {
2143 	irqsafe_cpu_inc(*dev->pcpu_refcnt);
2144 }
2145 
2146 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2147  * and _off may be called from IRQ context, but it is caller
2148  * who is responsible for serialization of these calls.
2149  *
2150  * The name carrier is inappropriate, these functions should really be
2151  * called netif_lowerlayer_*() because they represent the state of any
2152  * kind of lower layer not just hardware media.
2153  */
2154 
2155 extern void linkwatch_fire_event(struct net_device *dev);
2156 extern void linkwatch_forget_dev(struct net_device *dev);
2157 
2158 /**
2159  *	netif_carrier_ok - test if carrier present
2160  *	@dev: network device
2161  *
2162  * Check if carrier is present on device
2163  */
2164 static inline int netif_carrier_ok(const struct net_device *dev)
2165 {
2166 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2167 }
2168 
2169 extern unsigned long dev_trans_start(struct net_device *dev);
2170 
2171 extern void __netdev_watchdog_up(struct net_device *dev);
2172 
2173 extern void netif_carrier_on(struct net_device *dev);
2174 
2175 extern void netif_carrier_off(struct net_device *dev);
2176 
2177 extern void netif_notify_peers(struct net_device *dev);
2178 
2179 /**
2180  *	netif_dormant_on - mark device as dormant.
2181  *	@dev: network device
2182  *
2183  * Mark device as dormant (as per RFC2863).
2184  *
2185  * The dormant state indicates that the relevant interface is not
2186  * actually in a condition to pass packets (i.e., it is not 'up') but is
2187  * in a "pending" state, waiting for some external event.  For "on-
2188  * demand" interfaces, this new state identifies the situation where the
2189  * interface is waiting for events to place it in the up state.
2190  *
2191  */
2192 static inline void netif_dormant_on(struct net_device *dev)
2193 {
2194 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2195 		linkwatch_fire_event(dev);
2196 }
2197 
2198 /**
2199  *	netif_dormant_off - set device as not dormant.
2200  *	@dev: network device
2201  *
2202  * Device is not in dormant state.
2203  */
2204 static inline void netif_dormant_off(struct net_device *dev)
2205 {
2206 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2207 		linkwatch_fire_event(dev);
2208 }
2209 
2210 /**
2211  *	netif_dormant - test if carrier present
2212  *	@dev: network device
2213  *
2214  * Check if carrier is present on device
2215  */
2216 static inline int netif_dormant(const struct net_device *dev)
2217 {
2218 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2219 }
2220 
2221 
2222 /**
2223  *	netif_oper_up - test if device is operational
2224  *	@dev: network device
2225  *
2226  * Check if carrier is operational
2227  */
2228 static inline int netif_oper_up(const struct net_device *dev)
2229 {
2230 	return (dev->operstate == IF_OPER_UP ||
2231 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2232 }
2233 
2234 /**
2235  *	netif_device_present - is device available or removed
2236  *	@dev: network device
2237  *
2238  * Check if device has not been removed from system.
2239  */
2240 static inline int netif_device_present(struct net_device *dev)
2241 {
2242 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2243 }
2244 
2245 extern void netif_device_detach(struct net_device *dev);
2246 
2247 extern void netif_device_attach(struct net_device *dev);
2248 
2249 /*
2250  * Network interface message level settings
2251  */
2252 
2253 enum {
2254 	NETIF_MSG_DRV		= 0x0001,
2255 	NETIF_MSG_PROBE		= 0x0002,
2256 	NETIF_MSG_LINK		= 0x0004,
2257 	NETIF_MSG_TIMER		= 0x0008,
2258 	NETIF_MSG_IFDOWN	= 0x0010,
2259 	NETIF_MSG_IFUP		= 0x0020,
2260 	NETIF_MSG_RX_ERR	= 0x0040,
2261 	NETIF_MSG_TX_ERR	= 0x0080,
2262 	NETIF_MSG_TX_QUEUED	= 0x0100,
2263 	NETIF_MSG_INTR		= 0x0200,
2264 	NETIF_MSG_TX_DONE	= 0x0400,
2265 	NETIF_MSG_RX_STATUS	= 0x0800,
2266 	NETIF_MSG_PKTDATA	= 0x1000,
2267 	NETIF_MSG_HW		= 0x2000,
2268 	NETIF_MSG_WOL		= 0x4000,
2269 };
2270 
2271 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2272 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2273 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2274 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2275 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2276 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2277 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2278 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2279 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2280 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2281 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2282 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2283 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2284 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2285 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2286 
2287 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2288 {
2289 	/* use default */
2290 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2291 		return default_msg_enable_bits;
2292 	if (debug_value == 0)	/* no output */
2293 		return 0;
2294 	/* set low N bits */
2295 	return (1 << debug_value) - 1;
2296 }
2297 
2298 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2299 {
2300 	spin_lock(&txq->_xmit_lock);
2301 	txq->xmit_lock_owner = cpu;
2302 }
2303 
2304 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2305 {
2306 	spin_lock_bh(&txq->_xmit_lock);
2307 	txq->xmit_lock_owner = smp_processor_id();
2308 }
2309 
2310 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2311 {
2312 	int ok = spin_trylock(&txq->_xmit_lock);
2313 	if (likely(ok))
2314 		txq->xmit_lock_owner = smp_processor_id();
2315 	return ok;
2316 }
2317 
2318 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2319 {
2320 	txq->xmit_lock_owner = -1;
2321 	spin_unlock(&txq->_xmit_lock);
2322 }
2323 
2324 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2325 {
2326 	txq->xmit_lock_owner = -1;
2327 	spin_unlock_bh(&txq->_xmit_lock);
2328 }
2329 
2330 static inline void txq_trans_update(struct netdev_queue *txq)
2331 {
2332 	if (txq->xmit_lock_owner != -1)
2333 		txq->trans_start = jiffies;
2334 }
2335 
2336 /**
2337  *	netif_tx_lock - grab network device transmit lock
2338  *	@dev: network device
2339  *
2340  * Get network device transmit lock
2341  */
2342 static inline void netif_tx_lock(struct net_device *dev)
2343 {
2344 	unsigned int i;
2345 	int cpu;
2346 
2347 	spin_lock(&dev->tx_global_lock);
2348 	cpu = smp_processor_id();
2349 	for (i = 0; i < dev->num_tx_queues; i++) {
2350 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2351 
2352 		/* We are the only thread of execution doing a
2353 		 * freeze, but we have to grab the _xmit_lock in
2354 		 * order to synchronize with threads which are in
2355 		 * the ->hard_start_xmit() handler and already
2356 		 * checked the frozen bit.
2357 		 */
2358 		__netif_tx_lock(txq, cpu);
2359 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2360 		__netif_tx_unlock(txq);
2361 	}
2362 }
2363 
2364 static inline void netif_tx_lock_bh(struct net_device *dev)
2365 {
2366 	local_bh_disable();
2367 	netif_tx_lock(dev);
2368 }
2369 
2370 static inline void netif_tx_unlock(struct net_device *dev)
2371 {
2372 	unsigned int i;
2373 
2374 	for (i = 0; i < dev->num_tx_queues; i++) {
2375 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2376 
2377 		/* No need to grab the _xmit_lock here.  If the
2378 		 * queue is not stopped for another reason, we
2379 		 * force a schedule.
2380 		 */
2381 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2382 		netif_schedule_queue(txq);
2383 	}
2384 	spin_unlock(&dev->tx_global_lock);
2385 }
2386 
2387 static inline void netif_tx_unlock_bh(struct net_device *dev)
2388 {
2389 	netif_tx_unlock(dev);
2390 	local_bh_enable();
2391 }
2392 
2393 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2394 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2395 		__netif_tx_lock(txq, cpu);		\
2396 	}						\
2397 }
2398 
2399 #define HARD_TX_UNLOCK(dev, txq) {			\
2400 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2401 		__netif_tx_unlock(txq);			\
2402 	}						\
2403 }
2404 
2405 static inline void netif_tx_disable(struct net_device *dev)
2406 {
2407 	unsigned int i;
2408 	int cpu;
2409 
2410 	local_bh_disable();
2411 	cpu = smp_processor_id();
2412 	for (i = 0; i < dev->num_tx_queues; i++) {
2413 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2414 
2415 		__netif_tx_lock(txq, cpu);
2416 		netif_tx_stop_queue(txq);
2417 		__netif_tx_unlock(txq);
2418 	}
2419 	local_bh_enable();
2420 }
2421 
2422 static inline void netif_addr_lock(struct net_device *dev)
2423 {
2424 	spin_lock(&dev->addr_list_lock);
2425 }
2426 
2427 static inline void netif_addr_lock_bh(struct net_device *dev)
2428 {
2429 	spin_lock_bh(&dev->addr_list_lock);
2430 }
2431 
2432 static inline void netif_addr_unlock(struct net_device *dev)
2433 {
2434 	spin_unlock(&dev->addr_list_lock);
2435 }
2436 
2437 static inline void netif_addr_unlock_bh(struct net_device *dev)
2438 {
2439 	spin_unlock_bh(&dev->addr_list_lock);
2440 }
2441 
2442 /*
2443  * dev_addrs walker. Should be used only for read access. Call with
2444  * rcu_read_lock held.
2445  */
2446 #define for_each_dev_addr(dev, ha) \
2447 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2448 
2449 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2450 
2451 extern void		ether_setup(struct net_device *dev);
2452 
2453 /* Support for loadable net-drivers */
2454 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2455 				       void (*setup)(struct net_device *),
2456 				       unsigned int txqs, unsigned int rxqs);
2457 #define alloc_netdev(sizeof_priv, name, setup) \
2458 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2459 
2460 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2461 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2462 
2463 extern int		register_netdev(struct net_device *dev);
2464 extern void		unregister_netdev(struct net_device *dev);
2465 
2466 /* General hardware address lists handling functions */
2467 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2468 				  struct netdev_hw_addr_list *from_list,
2469 				  int addr_len, unsigned char addr_type);
2470 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2471 				   struct netdev_hw_addr_list *from_list,
2472 				   int addr_len, unsigned char addr_type);
2473 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2474 			  struct netdev_hw_addr_list *from_list,
2475 			  int addr_len);
2476 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2477 			     struct netdev_hw_addr_list *from_list,
2478 			     int addr_len);
2479 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2480 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2481 
2482 /* Functions used for device addresses handling */
2483 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2484 			unsigned char addr_type);
2485 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2486 			unsigned char addr_type);
2487 extern int dev_addr_add_multiple(struct net_device *to_dev,
2488 				 struct net_device *from_dev,
2489 				 unsigned char addr_type);
2490 extern int dev_addr_del_multiple(struct net_device *to_dev,
2491 				 struct net_device *from_dev,
2492 				 unsigned char addr_type);
2493 extern void dev_addr_flush(struct net_device *dev);
2494 extern int dev_addr_init(struct net_device *dev);
2495 
2496 /* Functions used for unicast addresses handling */
2497 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2498 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2499 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2500 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2501 extern void dev_uc_flush(struct net_device *dev);
2502 extern void dev_uc_init(struct net_device *dev);
2503 
2504 /* Functions used for multicast addresses handling */
2505 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2506 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2507 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2508 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2509 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2510 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2511 extern void dev_mc_flush(struct net_device *dev);
2512 extern void dev_mc_init(struct net_device *dev);
2513 
2514 /* Functions used for secondary unicast and multicast support */
2515 extern void		dev_set_rx_mode(struct net_device *dev);
2516 extern void		__dev_set_rx_mode(struct net_device *dev);
2517 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2518 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2519 extern void		netdev_state_change(struct net_device *dev);
2520 extern int		netdev_bonding_change(struct net_device *dev,
2521 					      unsigned long event);
2522 extern void		netdev_features_change(struct net_device *dev);
2523 /* Load a device via the kmod */
2524 extern void		dev_load(struct net *net, const char *name);
2525 extern void		dev_mcast_init(void);
2526 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2527 					       struct rtnl_link_stats64 *storage);
2528 
2529 extern int		netdev_max_backlog;
2530 extern int		netdev_tstamp_prequeue;
2531 extern int		weight_p;
2532 extern int		bpf_jit_enable;
2533 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2534 extern int netdev_set_bond_master(struct net_device *dev,
2535 				  struct net_device *master);
2536 extern int skb_checksum_help(struct sk_buff *skb);
2537 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2538 	netdev_features_t features);
2539 #ifdef CONFIG_BUG
2540 extern void netdev_rx_csum_fault(struct net_device *dev);
2541 #else
2542 static inline void netdev_rx_csum_fault(struct net_device *dev)
2543 {
2544 }
2545 #endif
2546 /* rx skb timestamps */
2547 extern void		net_enable_timestamp(void);
2548 extern void		net_disable_timestamp(void);
2549 
2550 #ifdef CONFIG_PROC_FS
2551 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2552 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2553 extern void dev_seq_stop(struct seq_file *seq, void *v);
2554 extern int dev_seq_open_ops(struct inode *inode, struct file *file,
2555 			    const struct seq_operations *ops);
2556 #endif
2557 
2558 extern int netdev_class_create_file(struct class_attribute *class_attr);
2559 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2560 
2561 extern struct kobj_ns_type_operations net_ns_type_operations;
2562 
2563 extern const char *netdev_drivername(const struct net_device *dev);
2564 
2565 extern void linkwatch_run_queue(void);
2566 
2567 static inline netdev_features_t netdev_get_wanted_features(
2568 	struct net_device *dev)
2569 {
2570 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2571 }
2572 netdev_features_t netdev_increment_features(netdev_features_t all,
2573 	netdev_features_t one, netdev_features_t mask);
2574 int __netdev_update_features(struct net_device *dev);
2575 void netdev_update_features(struct net_device *dev);
2576 void netdev_change_features(struct net_device *dev);
2577 
2578 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2579 					struct net_device *dev);
2580 
2581 netdev_features_t netif_skb_features(struct sk_buff *skb);
2582 
2583 static inline int net_gso_ok(netdev_features_t features, int gso_type)
2584 {
2585 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2586 
2587 	/* check flags correspondence */
2588 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2589 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2590 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2591 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2592 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2593 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2594 
2595 	return (features & feature) == feature;
2596 }
2597 
2598 static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2599 {
2600 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2601 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2602 }
2603 
2604 static inline int netif_needs_gso(struct sk_buff *skb,
2605 	netdev_features_t features)
2606 {
2607 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2608 		unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2609 }
2610 
2611 static inline void netif_set_gso_max_size(struct net_device *dev,
2612 					  unsigned int size)
2613 {
2614 	dev->gso_max_size = size;
2615 }
2616 
2617 static inline int netif_is_bond_slave(struct net_device *dev)
2618 {
2619 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2620 }
2621 
2622 extern struct pernet_operations __net_initdata loopback_net_ops;
2623 
2624 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2625 
2626 /* netdev_printk helpers, similar to dev_printk */
2627 
2628 static inline const char *netdev_name(const struct net_device *dev)
2629 {
2630 	if (dev->reg_state != NETREG_REGISTERED)
2631 		return "(unregistered net_device)";
2632 	return dev->name;
2633 }
2634 
2635 extern int __netdev_printk(const char *level, const struct net_device *dev,
2636 			struct va_format *vaf);
2637 
2638 extern __printf(3, 4)
2639 int netdev_printk(const char *level, const struct net_device *dev,
2640 		  const char *format, ...);
2641 extern __printf(2, 3)
2642 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2643 extern __printf(2, 3)
2644 int netdev_alert(const struct net_device *dev, const char *format, ...);
2645 extern __printf(2, 3)
2646 int netdev_crit(const struct net_device *dev, const char *format, ...);
2647 extern __printf(2, 3)
2648 int netdev_err(const struct net_device *dev, const char *format, ...);
2649 extern __printf(2, 3)
2650 int netdev_warn(const struct net_device *dev, const char *format, ...);
2651 extern __printf(2, 3)
2652 int netdev_notice(const struct net_device *dev, const char *format, ...);
2653 extern __printf(2, 3)
2654 int netdev_info(const struct net_device *dev, const char *format, ...);
2655 
2656 #define MODULE_ALIAS_NETDEV(device) \
2657 	MODULE_ALIAS("netdev-" device)
2658 
2659 #if defined(DEBUG)
2660 #define netdev_dbg(__dev, format, args...)			\
2661 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2662 #elif defined(CONFIG_DYNAMIC_DEBUG)
2663 #define netdev_dbg(__dev, format, args...)			\
2664 do {								\
2665 	dynamic_netdev_dbg(__dev, format, ##args);		\
2666 } while (0)
2667 #else
2668 #define netdev_dbg(__dev, format, args...)			\
2669 ({								\
2670 	if (0)							\
2671 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2672 	0;							\
2673 })
2674 #endif
2675 
2676 #if defined(VERBOSE_DEBUG)
2677 #define netdev_vdbg	netdev_dbg
2678 #else
2679 
2680 #define netdev_vdbg(dev, format, args...)			\
2681 ({								\
2682 	if (0)							\
2683 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2684 	0;							\
2685 })
2686 #endif
2687 
2688 /*
2689  * netdev_WARN() acts like dev_printk(), but with the key difference
2690  * of using a WARN/WARN_ON to get the message out, including the
2691  * file/line information and a backtrace.
2692  */
2693 #define netdev_WARN(dev, format, args...)			\
2694 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2695 
2696 /* netif printk helpers, similar to netdev_printk */
2697 
2698 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2699 do {					  			\
2700 	if (netif_msg_##type(priv))				\
2701 		netdev_printk(level, (dev), fmt, ##args);	\
2702 } while (0)
2703 
2704 #define netif_level(level, priv, type, dev, fmt, args...)	\
2705 do {								\
2706 	if (netif_msg_##type(priv))				\
2707 		netdev_##level(dev, fmt, ##args);		\
2708 } while (0)
2709 
2710 #define netif_emerg(priv, type, dev, fmt, args...)		\
2711 	netif_level(emerg, priv, type, dev, fmt, ##args)
2712 #define netif_alert(priv, type, dev, fmt, args...)		\
2713 	netif_level(alert, priv, type, dev, fmt, ##args)
2714 #define netif_crit(priv, type, dev, fmt, args...)		\
2715 	netif_level(crit, priv, type, dev, fmt, ##args)
2716 #define netif_err(priv, type, dev, fmt, args...)		\
2717 	netif_level(err, priv, type, dev, fmt, ##args)
2718 #define netif_warn(priv, type, dev, fmt, args...)		\
2719 	netif_level(warn, priv, type, dev, fmt, ##args)
2720 #define netif_notice(priv, type, dev, fmt, args...)		\
2721 	netif_level(notice, priv, type, dev, fmt, ##args)
2722 #define netif_info(priv, type, dev, fmt, args...)		\
2723 	netif_level(info, priv, type, dev, fmt, ##args)
2724 
2725 #if defined(DEBUG)
2726 #define netif_dbg(priv, type, dev, format, args...)		\
2727 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2728 #elif defined(CONFIG_DYNAMIC_DEBUG)
2729 #define netif_dbg(priv, type, netdev, format, args...)		\
2730 do {								\
2731 	if (netif_msg_##type(priv))				\
2732 		dynamic_netdev_dbg(netdev, format, ##args);	\
2733 } while (0)
2734 #else
2735 #define netif_dbg(priv, type, dev, format, args...)			\
2736 ({									\
2737 	if (0)								\
2738 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2739 	0;								\
2740 })
2741 #endif
2742 
2743 #if defined(VERBOSE_DEBUG)
2744 #define netif_vdbg	netif_dbg
2745 #else
2746 #define netif_vdbg(priv, type, dev, format, args...)		\
2747 ({								\
2748 	if (0)							\
2749 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2750 	0;							\
2751 })
2752 #endif
2753 
2754 #endif /* __KERNEL__ */
2755 
2756 #endif	/* _LINUX_NETDEVICE_H */
2757