1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #ifdef CONFIG_DCB 45 #include <net/dcbnl.h> 46 #endif 47 #include <net/netprio_cgroup.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_switch_tree; 60 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct bpf_prog; 69 struct xdp_buff; 70 71 void netdev_set_default_ethtool_ops(struct net_device *dev, 72 const struct ethtool_ops *ops); 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously; in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 92 * others are propagated to higher layers. 93 */ 94 95 /* qdisc ->enqueue() return codes. */ 96 #define NET_XMIT_SUCCESS 0x00 97 #define NET_XMIT_DROP 0x01 /* skb dropped */ 98 #define NET_XMIT_CN 0x02 /* congestion notification */ 99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107 /* Driver transmit return codes */ 108 #define NETDEV_TX_MASK 0xf0 109 110 enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 }; 115 typedef enum netdev_tx netdev_tx_t; 116 117 /* 118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 120 */ 121 static inline bool dev_xmit_complete(int rc) 122 { 123 /* 124 * Positive cases with an skb consumed by a driver: 125 * - successful transmission (rc == NETDEV_TX_OK) 126 * - error while transmitting (rc < 0) 127 * - error while queueing to a different device (rc & NET_XMIT_MASK) 128 */ 129 if (likely(rc < NET_XMIT_MASK)) 130 return true; 131 132 return false; 133 } 134 135 /* 136 * Compute the worst-case header length according to the protocols 137 * used. 138 */ 139 140 #if defined(CONFIG_HYPERV_NET) 141 # define LL_MAX_HEADER 128 142 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 143 # if defined(CONFIG_MAC80211_MESH) 144 # define LL_MAX_HEADER 128 145 # else 146 # define LL_MAX_HEADER 96 147 # endif 148 #else 149 # define LL_MAX_HEADER 32 150 #endif 151 152 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 153 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 154 #define MAX_HEADER LL_MAX_HEADER 155 #else 156 #define MAX_HEADER (LL_MAX_HEADER + 48) 157 #endif 158 159 /* 160 * Old network device statistics. Fields are native words 161 * (unsigned long) so they can be read and written atomically. 162 */ 163 164 struct net_device_stats { 165 unsigned long rx_packets; 166 unsigned long tx_packets; 167 unsigned long rx_bytes; 168 unsigned long tx_bytes; 169 unsigned long rx_errors; 170 unsigned long tx_errors; 171 unsigned long rx_dropped; 172 unsigned long tx_dropped; 173 unsigned long multicast; 174 unsigned long collisions; 175 unsigned long rx_length_errors; 176 unsigned long rx_over_errors; 177 unsigned long rx_crc_errors; 178 unsigned long rx_frame_errors; 179 unsigned long rx_fifo_errors; 180 unsigned long rx_missed_errors; 181 unsigned long tx_aborted_errors; 182 unsigned long tx_carrier_errors; 183 unsigned long tx_fifo_errors; 184 unsigned long tx_heartbeat_errors; 185 unsigned long tx_window_errors; 186 unsigned long rx_compressed; 187 unsigned long tx_compressed; 188 }; 189 190 191 #include <linux/cache.h> 192 #include <linux/skbuff.h> 193 194 #ifdef CONFIG_RPS 195 #include <linux/static_key.h> 196 extern struct static_key rps_needed; 197 extern struct static_key rfs_needed; 198 #endif 199 200 struct neighbour; 201 struct neigh_parms; 202 struct sk_buff; 203 204 struct netdev_hw_addr { 205 struct list_head list; 206 unsigned char addr[MAX_ADDR_LEN]; 207 unsigned char type; 208 #define NETDEV_HW_ADDR_T_LAN 1 209 #define NETDEV_HW_ADDR_T_SAN 2 210 #define NETDEV_HW_ADDR_T_SLAVE 3 211 #define NETDEV_HW_ADDR_T_UNICAST 4 212 #define NETDEV_HW_ADDR_T_MULTICAST 5 213 bool global_use; 214 int sync_cnt; 215 int refcount; 216 int synced; 217 struct rcu_head rcu_head; 218 }; 219 220 struct netdev_hw_addr_list { 221 struct list_head list; 222 int count; 223 }; 224 225 #define netdev_hw_addr_list_count(l) ((l)->count) 226 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 227 #define netdev_hw_addr_list_for_each(ha, l) \ 228 list_for_each_entry(ha, &(l)->list, list) 229 230 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 231 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 232 #define netdev_for_each_uc_addr(ha, dev) \ 233 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 234 235 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 236 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 237 #define netdev_for_each_mc_addr(ha, dev) \ 238 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 239 240 struct hh_cache { 241 unsigned int hh_len; 242 seqlock_t hh_lock; 243 244 /* cached hardware header; allow for machine alignment needs. */ 245 #define HH_DATA_MOD 16 246 #define HH_DATA_OFF(__len) \ 247 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 248 #define HH_DATA_ALIGN(__len) \ 249 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 250 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 251 }; 252 253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 254 * Alternative is: 255 * dev->hard_header_len ? (dev->hard_header_len + 256 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 257 * 258 * We could use other alignment values, but we must maintain the 259 * relationship HH alignment <= LL alignment. 260 */ 261 #define LL_RESERVED_SPACE(dev) \ 262 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 264 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 265 266 struct header_ops { 267 int (*create) (struct sk_buff *skb, struct net_device *dev, 268 unsigned short type, const void *daddr, 269 const void *saddr, unsigned int len); 270 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 272 void (*cache_update)(struct hh_cache *hh, 273 const struct net_device *dev, 274 const unsigned char *haddr); 275 bool (*validate)(const char *ll_header, unsigned int len); 276 }; 277 278 /* These flag bits are private to the generic network queueing 279 * layer; they may not be explicitly referenced by any other 280 * code. 281 */ 282 283 enum netdev_state_t { 284 __LINK_STATE_START, 285 __LINK_STATE_PRESENT, 286 __LINK_STATE_NOCARRIER, 287 __LINK_STATE_LINKWATCH_PENDING, 288 __LINK_STATE_DORMANT, 289 }; 290 291 292 /* 293 * This structure holds boot-time configured netdevice settings. They 294 * are then used in the device probing. 295 */ 296 struct netdev_boot_setup { 297 char name[IFNAMSIZ]; 298 struct ifmap map; 299 }; 300 #define NETDEV_BOOT_SETUP_MAX 8 301 302 int __init netdev_boot_setup(char *str); 303 304 /* 305 * Structure for NAPI scheduling similar to tasklet but with weighting 306 */ 307 struct napi_struct { 308 /* The poll_list must only be managed by the entity which 309 * changes the state of the NAPI_STATE_SCHED bit. This means 310 * whoever atomically sets that bit can add this napi_struct 311 * to the per-CPU poll_list, and whoever clears that bit 312 * can remove from the list right before clearing the bit. 313 */ 314 struct list_head poll_list; 315 316 unsigned long state; 317 int weight; 318 unsigned int gro_count; 319 int (*poll)(struct napi_struct *, int); 320 #ifdef CONFIG_NETPOLL 321 int poll_owner; 322 #endif 323 struct net_device *dev; 324 struct sk_buff *gro_list; 325 struct sk_buff *skb; 326 struct hrtimer timer; 327 struct list_head dev_list; 328 struct hlist_node napi_hash_node; 329 unsigned int napi_id; 330 }; 331 332 enum { 333 NAPI_STATE_SCHED, /* Poll is scheduled */ 334 NAPI_STATE_MISSED, /* reschedule a napi */ 335 NAPI_STATE_DISABLE, /* Disable pending */ 336 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 337 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 338 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 339 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 340 }; 341 342 enum { 343 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 344 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 345 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 346 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 347 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 348 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 349 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 350 }; 351 352 enum gro_result { 353 GRO_MERGED, 354 GRO_MERGED_FREE, 355 GRO_HELD, 356 GRO_NORMAL, 357 GRO_DROP, 358 GRO_CONSUMED, 359 }; 360 typedef enum gro_result gro_result_t; 361 362 /* 363 * enum rx_handler_result - Possible return values for rx_handlers. 364 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 365 * further. 366 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 367 * case skb->dev was changed by rx_handler. 368 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 369 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 370 * 371 * rx_handlers are functions called from inside __netif_receive_skb(), to do 372 * special processing of the skb, prior to delivery to protocol handlers. 373 * 374 * Currently, a net_device can only have a single rx_handler registered. Trying 375 * to register a second rx_handler will return -EBUSY. 376 * 377 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 378 * To unregister a rx_handler on a net_device, use 379 * netdev_rx_handler_unregister(). 380 * 381 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 382 * do with the skb. 383 * 384 * If the rx_handler consumed the skb in some way, it should return 385 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 386 * the skb to be delivered in some other way. 387 * 388 * If the rx_handler changed skb->dev, to divert the skb to another 389 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 390 * new device will be called if it exists. 391 * 392 * If the rx_handler decides the skb should be ignored, it should return 393 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 394 * are registered on exact device (ptype->dev == skb->dev). 395 * 396 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 397 * delivered, it should return RX_HANDLER_PASS. 398 * 399 * A device without a registered rx_handler will behave as if rx_handler 400 * returned RX_HANDLER_PASS. 401 */ 402 403 enum rx_handler_result { 404 RX_HANDLER_CONSUMED, 405 RX_HANDLER_ANOTHER, 406 RX_HANDLER_EXACT, 407 RX_HANDLER_PASS, 408 }; 409 typedef enum rx_handler_result rx_handler_result_t; 410 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 411 412 void __napi_schedule(struct napi_struct *n); 413 void __napi_schedule_irqoff(struct napi_struct *n); 414 415 static inline bool napi_disable_pending(struct napi_struct *n) 416 { 417 return test_bit(NAPI_STATE_DISABLE, &n->state); 418 } 419 420 bool napi_schedule_prep(struct napi_struct *n); 421 422 /** 423 * napi_schedule - schedule NAPI poll 424 * @n: NAPI context 425 * 426 * Schedule NAPI poll routine to be called if it is not already 427 * running. 428 */ 429 static inline void napi_schedule(struct napi_struct *n) 430 { 431 if (napi_schedule_prep(n)) 432 __napi_schedule(n); 433 } 434 435 /** 436 * napi_schedule_irqoff - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Variant of napi_schedule(), assuming hard irqs are masked. 440 */ 441 static inline void napi_schedule_irqoff(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule_irqoff(n); 445 } 446 447 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 448 static inline bool napi_reschedule(struct napi_struct *napi) 449 { 450 if (napi_schedule_prep(napi)) { 451 __napi_schedule(napi); 452 return true; 453 } 454 return false; 455 } 456 457 bool napi_complete_done(struct napi_struct *n, int work_done); 458 /** 459 * napi_complete - NAPI processing complete 460 * @n: NAPI context 461 * 462 * Mark NAPI processing as complete. 463 * Consider using napi_complete_done() instead. 464 * Return false if device should avoid rearming interrupts. 465 */ 466 static inline bool napi_complete(struct napi_struct *n) 467 { 468 return napi_complete_done(n, 0); 469 } 470 471 /** 472 * napi_hash_del - remove a NAPI from global table 473 * @napi: NAPI context 474 * 475 * Warning: caller must observe RCU grace period 476 * before freeing memory containing @napi, if 477 * this function returns true. 478 * Note: core networking stack automatically calls it 479 * from netif_napi_del(). 480 * Drivers might want to call this helper to combine all 481 * the needed RCU grace periods into a single one. 482 */ 483 bool napi_hash_del(struct napi_struct *napi); 484 485 /** 486 * napi_disable - prevent NAPI from scheduling 487 * @n: NAPI context 488 * 489 * Stop NAPI from being scheduled on this context. 490 * Waits till any outstanding processing completes. 491 */ 492 void napi_disable(struct napi_struct *n); 493 494 /** 495 * napi_enable - enable NAPI scheduling 496 * @n: NAPI context 497 * 498 * Resume NAPI from being scheduled on this context. 499 * Must be paired with napi_disable. 500 */ 501 static inline void napi_enable(struct napi_struct *n) 502 { 503 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 504 smp_mb__before_atomic(); 505 clear_bit(NAPI_STATE_SCHED, &n->state); 506 clear_bit(NAPI_STATE_NPSVC, &n->state); 507 } 508 509 /** 510 * napi_synchronize - wait until NAPI is not running 511 * @n: NAPI context 512 * 513 * Wait until NAPI is done being scheduled on this context. 514 * Waits till any outstanding processing completes but 515 * does not disable future activations. 516 */ 517 static inline void napi_synchronize(const struct napi_struct *n) 518 { 519 if (IS_ENABLED(CONFIG_SMP)) 520 while (test_bit(NAPI_STATE_SCHED, &n->state)) 521 msleep(1); 522 else 523 barrier(); 524 } 525 526 enum netdev_queue_state_t { 527 __QUEUE_STATE_DRV_XOFF, 528 __QUEUE_STATE_STACK_XOFF, 529 __QUEUE_STATE_FROZEN, 530 }; 531 532 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 533 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 534 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 535 536 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 537 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 538 QUEUE_STATE_FROZEN) 539 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 540 QUEUE_STATE_FROZEN) 541 542 /* 543 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 544 * netif_tx_* functions below are used to manipulate this flag. The 545 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 546 * queue independently. The netif_xmit_*stopped functions below are called 547 * to check if the queue has been stopped by the driver or stack (either 548 * of the XOFF bits are set in the state). Drivers should not need to call 549 * netif_xmit*stopped functions, they should only be using netif_tx_*. 550 */ 551 552 struct netdev_queue { 553 /* 554 * read-mostly part 555 */ 556 struct net_device *dev; 557 struct Qdisc __rcu *qdisc; 558 struct Qdisc *qdisc_sleeping; 559 #ifdef CONFIG_SYSFS 560 struct kobject kobj; 561 #endif 562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 int numa_node; 564 #endif 565 unsigned long tx_maxrate; 566 /* 567 * Number of TX timeouts for this queue 568 * (/sys/class/net/DEV/Q/trans_timeout) 569 */ 570 unsigned long trans_timeout; 571 /* 572 * write-mostly part 573 */ 574 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 575 int xmit_lock_owner; 576 /* 577 * Time (in jiffies) of last Tx 578 */ 579 unsigned long trans_start; 580 581 unsigned long state; 582 583 #ifdef CONFIG_BQL 584 struct dql dql; 585 #endif 586 } ____cacheline_aligned_in_smp; 587 588 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 589 { 590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 591 return q->numa_node; 592 #else 593 return NUMA_NO_NODE; 594 #endif 595 } 596 597 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 598 { 599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 q->numa_node = node; 601 #endif 602 } 603 604 #ifdef CONFIG_RPS 605 /* 606 * This structure holds an RPS map which can be of variable length. The 607 * map is an array of CPUs. 608 */ 609 struct rps_map { 610 unsigned int len; 611 struct rcu_head rcu; 612 u16 cpus[0]; 613 }; 614 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 615 616 /* 617 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 618 * tail pointer for that CPU's input queue at the time of last enqueue, and 619 * a hardware filter index. 620 */ 621 struct rps_dev_flow { 622 u16 cpu; 623 u16 filter; 624 unsigned int last_qtail; 625 }; 626 #define RPS_NO_FILTER 0xffff 627 628 /* 629 * The rps_dev_flow_table structure contains a table of flow mappings. 630 */ 631 struct rps_dev_flow_table { 632 unsigned int mask; 633 struct rcu_head rcu; 634 struct rps_dev_flow flows[0]; 635 }; 636 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 637 ((_num) * sizeof(struct rps_dev_flow))) 638 639 /* 640 * The rps_sock_flow_table contains mappings of flows to the last CPU 641 * on which they were processed by the application (set in recvmsg). 642 * Each entry is a 32bit value. Upper part is the high-order bits 643 * of flow hash, lower part is CPU number. 644 * rps_cpu_mask is used to partition the space, depending on number of 645 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 646 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 647 * meaning we use 32-6=26 bits for the hash. 648 */ 649 struct rps_sock_flow_table { 650 u32 mask; 651 652 u32 ents[0] ____cacheline_aligned_in_smp; 653 }; 654 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 655 656 #define RPS_NO_CPU 0xffff 657 658 extern u32 rps_cpu_mask; 659 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 660 661 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 662 u32 hash) 663 { 664 if (table && hash) { 665 unsigned int index = hash & table->mask; 666 u32 val = hash & ~rps_cpu_mask; 667 668 /* We only give a hint, preemption can change CPU under us */ 669 val |= raw_smp_processor_id(); 670 671 if (table->ents[index] != val) 672 table->ents[index] = val; 673 } 674 } 675 676 #ifdef CONFIG_RFS_ACCEL 677 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 678 u16 filter_id); 679 #endif 680 #endif /* CONFIG_RPS */ 681 682 /* This structure contains an instance of an RX queue. */ 683 struct netdev_rx_queue { 684 #ifdef CONFIG_RPS 685 struct rps_map __rcu *rps_map; 686 struct rps_dev_flow_table __rcu *rps_flow_table; 687 #endif 688 struct kobject kobj; 689 struct net_device *dev; 690 } ____cacheline_aligned_in_smp; 691 692 /* 693 * RX queue sysfs structures and functions. 694 */ 695 struct rx_queue_attribute { 696 struct attribute attr; 697 ssize_t (*show)(struct netdev_rx_queue *queue, 698 struct rx_queue_attribute *attr, char *buf); 699 ssize_t (*store)(struct netdev_rx_queue *queue, 700 struct rx_queue_attribute *attr, const char *buf, size_t len); 701 }; 702 703 #ifdef CONFIG_XPS 704 /* 705 * This structure holds an XPS map which can be of variable length. The 706 * map is an array of queues. 707 */ 708 struct xps_map { 709 unsigned int len; 710 unsigned int alloc_len; 711 struct rcu_head rcu; 712 u16 queues[0]; 713 }; 714 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 715 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 716 - sizeof(struct xps_map)) / sizeof(u16)) 717 718 /* 719 * This structure holds all XPS maps for device. Maps are indexed by CPU. 720 */ 721 struct xps_dev_maps { 722 struct rcu_head rcu; 723 struct xps_map __rcu *cpu_map[0]; 724 }; 725 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 726 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 727 #endif /* CONFIG_XPS */ 728 729 #define TC_MAX_QUEUE 16 730 #define TC_BITMASK 15 731 /* HW offloaded queuing disciplines txq count and offset maps */ 732 struct netdev_tc_txq { 733 u16 count; 734 u16 offset; 735 }; 736 737 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 738 /* 739 * This structure is to hold information about the device 740 * configured to run FCoE protocol stack. 741 */ 742 struct netdev_fcoe_hbainfo { 743 char manufacturer[64]; 744 char serial_number[64]; 745 char hardware_version[64]; 746 char driver_version[64]; 747 char optionrom_version[64]; 748 char firmware_version[64]; 749 char model[256]; 750 char model_description[256]; 751 }; 752 #endif 753 754 #define MAX_PHYS_ITEM_ID_LEN 32 755 756 /* This structure holds a unique identifier to identify some 757 * physical item (port for example) used by a netdevice. 758 */ 759 struct netdev_phys_item_id { 760 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 761 unsigned char id_len; 762 }; 763 764 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 765 struct netdev_phys_item_id *b) 766 { 767 return a->id_len == b->id_len && 768 memcmp(a->id, b->id, a->id_len) == 0; 769 } 770 771 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 772 struct sk_buff *skb); 773 774 /* These structures hold the attributes of qdisc and classifiers 775 * that are being passed to the netdevice through the setup_tc op. 776 */ 777 enum { 778 TC_SETUP_MQPRIO, 779 TC_SETUP_CLSU32, 780 TC_SETUP_CLSFLOWER, 781 TC_SETUP_MATCHALL, 782 TC_SETUP_CLSBPF, 783 }; 784 785 struct tc_cls_u32_offload; 786 787 struct tc_to_netdev { 788 unsigned int type; 789 union { 790 struct tc_cls_u32_offload *cls_u32; 791 struct tc_cls_flower_offload *cls_flower; 792 struct tc_cls_matchall_offload *cls_mall; 793 struct tc_cls_bpf_offload *cls_bpf; 794 struct tc_mqprio_qopt *mqprio; 795 }; 796 bool egress_dev; 797 }; 798 799 /* These structures hold the attributes of xdp state that are being passed 800 * to the netdevice through the xdp op. 801 */ 802 enum xdp_netdev_command { 803 /* Set or clear a bpf program used in the earliest stages of packet 804 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 805 * is responsible for calling bpf_prog_put on any old progs that are 806 * stored. In case of error, the callee need not release the new prog 807 * reference, but on success it takes ownership and must bpf_prog_put 808 * when it is no longer used. 809 */ 810 XDP_SETUP_PROG, 811 XDP_SETUP_PROG_HW, 812 /* Check if a bpf program is set on the device. The callee should 813 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 814 * is equivalent to XDP_ATTACHED_DRV. 815 */ 816 XDP_QUERY_PROG, 817 }; 818 819 struct netlink_ext_ack; 820 821 struct netdev_xdp { 822 enum xdp_netdev_command command; 823 union { 824 /* XDP_SETUP_PROG */ 825 struct { 826 u32 flags; 827 struct bpf_prog *prog; 828 struct netlink_ext_ack *extack; 829 }; 830 /* XDP_QUERY_PROG */ 831 struct { 832 u8 prog_attached; 833 u32 prog_id; 834 }; 835 }; 836 }; 837 838 #ifdef CONFIG_XFRM_OFFLOAD 839 struct xfrmdev_ops { 840 int (*xdo_dev_state_add) (struct xfrm_state *x); 841 void (*xdo_dev_state_delete) (struct xfrm_state *x); 842 void (*xdo_dev_state_free) (struct xfrm_state *x); 843 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 844 struct xfrm_state *x); 845 }; 846 #endif 847 848 /* 849 * This structure defines the management hooks for network devices. 850 * The following hooks can be defined; unless noted otherwise, they are 851 * optional and can be filled with a null pointer. 852 * 853 * int (*ndo_init)(struct net_device *dev); 854 * This function is called once when a network device is registered. 855 * The network device can use this for any late stage initialization 856 * or semantic validation. It can fail with an error code which will 857 * be propagated back to register_netdev. 858 * 859 * void (*ndo_uninit)(struct net_device *dev); 860 * This function is called when device is unregistered or when registration 861 * fails. It is not called if init fails. 862 * 863 * int (*ndo_open)(struct net_device *dev); 864 * This function is called when a network device transitions to the up 865 * state. 866 * 867 * int (*ndo_stop)(struct net_device *dev); 868 * This function is called when a network device transitions to the down 869 * state. 870 * 871 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 872 * struct net_device *dev); 873 * Called when a packet needs to be transmitted. 874 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 875 * the queue before that can happen; it's for obsolete devices and weird 876 * corner cases, but the stack really does a non-trivial amount 877 * of useless work if you return NETDEV_TX_BUSY. 878 * Required; cannot be NULL. 879 * 880 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 881 * struct net_device *dev 882 * netdev_features_t features); 883 * Called by core transmit path to determine if device is capable of 884 * performing offload operations on a given packet. This is to give 885 * the device an opportunity to implement any restrictions that cannot 886 * be otherwise expressed by feature flags. The check is called with 887 * the set of features that the stack has calculated and it returns 888 * those the driver believes to be appropriate. 889 * 890 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 891 * void *accel_priv, select_queue_fallback_t fallback); 892 * Called to decide which queue to use when device supports multiple 893 * transmit queues. 894 * 895 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 896 * This function is called to allow device receiver to make 897 * changes to configuration when multicast or promiscuous is enabled. 898 * 899 * void (*ndo_set_rx_mode)(struct net_device *dev); 900 * This function is called device changes address list filtering. 901 * If driver handles unicast address filtering, it should set 902 * IFF_UNICAST_FLT in its priv_flags. 903 * 904 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 905 * This function is called when the Media Access Control address 906 * needs to be changed. If this interface is not defined, the 907 * MAC address can not be changed. 908 * 909 * int (*ndo_validate_addr)(struct net_device *dev); 910 * Test if Media Access Control address is valid for the device. 911 * 912 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 913 * Called when a user requests an ioctl which can't be handled by 914 * the generic interface code. If not defined ioctls return 915 * not supported error code. 916 * 917 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 918 * Used to set network devices bus interface parameters. This interface 919 * is retained for legacy reasons; new devices should use the bus 920 * interface (PCI) for low level management. 921 * 922 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 923 * Called when a user wants to change the Maximum Transfer Unit 924 * of a device. 925 * 926 * void (*ndo_tx_timeout)(struct net_device *dev); 927 * Callback used when the transmitter has not made any progress 928 * for dev->watchdog ticks. 929 * 930 * void (*ndo_get_stats64)(struct net_device *dev, 931 * struct rtnl_link_stats64 *storage); 932 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 933 * Called when a user wants to get the network device usage 934 * statistics. Drivers must do one of the following: 935 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 936 * rtnl_link_stats64 structure passed by the caller. 937 * 2. Define @ndo_get_stats to update a net_device_stats structure 938 * (which should normally be dev->stats) and return a pointer to 939 * it. The structure may be changed asynchronously only if each 940 * field is written atomically. 941 * 3. Update dev->stats asynchronously and atomically, and define 942 * neither operation. 943 * 944 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 945 * Return true if this device supports offload stats of this attr_id. 946 * 947 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 948 * void *attr_data) 949 * Get statistics for offload operations by attr_id. Write it into the 950 * attr_data pointer. 951 * 952 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 953 * If device supports VLAN filtering this function is called when a 954 * VLAN id is registered. 955 * 956 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 957 * If device supports VLAN filtering this function is called when a 958 * VLAN id is unregistered. 959 * 960 * void (*ndo_poll_controller)(struct net_device *dev); 961 * 962 * SR-IOV management functions. 963 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 964 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 965 * u8 qos, __be16 proto); 966 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 967 * int max_tx_rate); 968 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 969 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 970 * int (*ndo_get_vf_config)(struct net_device *dev, 971 * int vf, struct ifla_vf_info *ivf); 972 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 973 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 974 * struct nlattr *port[]); 975 * 976 * Enable or disable the VF ability to query its RSS Redirection Table and 977 * Hash Key. This is needed since on some devices VF share this information 978 * with PF and querying it may introduce a theoretical security risk. 979 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 980 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 981 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle, u32 chain_index, 982 * __be16 protocol, struct tc_to_netdev *tc); 983 * Called to setup any 'tc' scheduler, classifier or action on @dev. 984 * This is always called from the stack with the rtnl lock held and netif 985 * tx queues stopped. This allows the netdevice to perform queue 986 * management safely. 987 * 988 * Fiber Channel over Ethernet (FCoE) offload functions. 989 * int (*ndo_fcoe_enable)(struct net_device *dev); 990 * Called when the FCoE protocol stack wants to start using LLD for FCoE 991 * so the underlying device can perform whatever needed configuration or 992 * initialization to support acceleration of FCoE traffic. 993 * 994 * int (*ndo_fcoe_disable)(struct net_device *dev); 995 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 996 * so the underlying device can perform whatever needed clean-ups to 997 * stop supporting acceleration of FCoE traffic. 998 * 999 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1000 * struct scatterlist *sgl, unsigned int sgc); 1001 * Called when the FCoE Initiator wants to initialize an I/O that 1002 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1003 * perform necessary setup and returns 1 to indicate the device is set up 1004 * successfully to perform DDP on this I/O, otherwise this returns 0. 1005 * 1006 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1007 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1008 * indicated by the FC exchange id 'xid', so the underlying device can 1009 * clean up and reuse resources for later DDP requests. 1010 * 1011 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1012 * struct scatterlist *sgl, unsigned int sgc); 1013 * Called when the FCoE Target wants to initialize an I/O that 1014 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1015 * perform necessary setup and returns 1 to indicate the device is set up 1016 * successfully to perform DDP on this I/O, otherwise this returns 0. 1017 * 1018 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1019 * struct netdev_fcoe_hbainfo *hbainfo); 1020 * Called when the FCoE Protocol stack wants information on the underlying 1021 * device. This information is utilized by the FCoE protocol stack to 1022 * register attributes with Fiber Channel management service as per the 1023 * FC-GS Fabric Device Management Information(FDMI) specification. 1024 * 1025 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1026 * Called when the underlying device wants to override default World Wide 1027 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1028 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1029 * protocol stack to use. 1030 * 1031 * RFS acceleration. 1032 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1033 * u16 rxq_index, u32 flow_id); 1034 * Set hardware filter for RFS. rxq_index is the target queue index; 1035 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1036 * Return the filter ID on success, or a negative error code. 1037 * 1038 * Slave management functions (for bridge, bonding, etc). 1039 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1040 * Called to make another netdev an underling. 1041 * 1042 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1043 * Called to release previously enslaved netdev. 1044 * 1045 * Feature/offload setting functions. 1046 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1047 * netdev_features_t features); 1048 * Adjusts the requested feature flags according to device-specific 1049 * constraints, and returns the resulting flags. Must not modify 1050 * the device state. 1051 * 1052 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1053 * Called to update device configuration to new features. Passed 1054 * feature set might be less than what was returned by ndo_fix_features()). 1055 * Must return >0 or -errno if it changed dev->features itself. 1056 * 1057 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1058 * struct net_device *dev, 1059 * const unsigned char *addr, u16 vid, u16 flags) 1060 * Adds an FDB entry to dev for addr. 1061 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1062 * struct net_device *dev, 1063 * const unsigned char *addr, u16 vid) 1064 * Deletes the FDB entry from dev coresponding to addr. 1065 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1066 * struct net_device *dev, struct net_device *filter_dev, 1067 * int *idx) 1068 * Used to add FDB entries to dump requests. Implementers should add 1069 * entries to skb and update idx with the number of entries. 1070 * 1071 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1072 * u16 flags) 1073 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1074 * struct net_device *dev, u32 filter_mask, 1075 * int nlflags) 1076 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1077 * u16 flags); 1078 * 1079 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1080 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1081 * which do not represent real hardware may define this to allow their 1082 * userspace components to manage their virtual carrier state. Devices 1083 * that determine carrier state from physical hardware properties (eg 1084 * network cables) or protocol-dependent mechanisms (eg 1085 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1086 * 1087 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1088 * struct netdev_phys_item_id *ppid); 1089 * Called to get ID of physical port of this device. If driver does 1090 * not implement this, it is assumed that the hw is not able to have 1091 * multiple net devices on single physical port. 1092 * 1093 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1094 * struct udp_tunnel_info *ti); 1095 * Called by UDP tunnel to notify a driver about the UDP port and socket 1096 * address family that a UDP tunnel is listnening to. It is called only 1097 * when a new port starts listening. The operation is protected by the 1098 * RTNL. 1099 * 1100 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1101 * struct udp_tunnel_info *ti); 1102 * Called by UDP tunnel to notify the driver about a UDP port and socket 1103 * address family that the UDP tunnel is not listening to anymore. The 1104 * operation is protected by the RTNL. 1105 * 1106 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1107 * struct net_device *dev) 1108 * Called by upper layer devices to accelerate switching or other 1109 * station functionality into hardware. 'pdev is the lowerdev 1110 * to use for the offload and 'dev' is the net device that will 1111 * back the offload. Returns a pointer to the private structure 1112 * the upper layer will maintain. 1113 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1114 * Called by upper layer device to delete the station created 1115 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1116 * the station and priv is the structure returned by the add 1117 * operation. 1118 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1119 * int queue_index, u32 maxrate); 1120 * Called when a user wants to set a max-rate limitation of specific 1121 * TX queue. 1122 * int (*ndo_get_iflink)(const struct net_device *dev); 1123 * Called to get the iflink value of this device. 1124 * void (*ndo_change_proto_down)(struct net_device *dev, 1125 * bool proto_down); 1126 * This function is used to pass protocol port error state information 1127 * to the switch driver. The switch driver can react to the proto_down 1128 * by doing a phys down on the associated switch port. 1129 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1130 * This function is used to get egress tunnel information for given skb. 1131 * This is useful for retrieving outer tunnel header parameters while 1132 * sampling packet. 1133 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1134 * This function is used to specify the headroom that the skb must 1135 * consider when allocation skb during packet reception. Setting 1136 * appropriate rx headroom value allows avoiding skb head copy on 1137 * forward. Setting a negative value resets the rx headroom to the 1138 * default value. 1139 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1140 * This function is used to set or query state related to XDP on the 1141 * netdevice. See definition of enum xdp_netdev_command for details. 1142 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp); 1143 * This function is used to submit a XDP packet for transmit on a 1144 * netdevice. 1145 * void (*ndo_xdp_flush)(struct net_device *dev); 1146 * This function is used to inform the driver to flush a paticular 1147 * xpd tx queue. Must be called on same CPU as xdp_xmit. 1148 */ 1149 struct net_device_ops { 1150 int (*ndo_init)(struct net_device *dev); 1151 void (*ndo_uninit)(struct net_device *dev); 1152 int (*ndo_open)(struct net_device *dev); 1153 int (*ndo_stop)(struct net_device *dev); 1154 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1155 struct net_device *dev); 1156 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1157 struct net_device *dev, 1158 netdev_features_t features); 1159 u16 (*ndo_select_queue)(struct net_device *dev, 1160 struct sk_buff *skb, 1161 void *accel_priv, 1162 select_queue_fallback_t fallback); 1163 void (*ndo_change_rx_flags)(struct net_device *dev, 1164 int flags); 1165 void (*ndo_set_rx_mode)(struct net_device *dev); 1166 int (*ndo_set_mac_address)(struct net_device *dev, 1167 void *addr); 1168 int (*ndo_validate_addr)(struct net_device *dev); 1169 int (*ndo_do_ioctl)(struct net_device *dev, 1170 struct ifreq *ifr, int cmd); 1171 int (*ndo_set_config)(struct net_device *dev, 1172 struct ifmap *map); 1173 int (*ndo_change_mtu)(struct net_device *dev, 1174 int new_mtu); 1175 int (*ndo_neigh_setup)(struct net_device *dev, 1176 struct neigh_parms *); 1177 void (*ndo_tx_timeout) (struct net_device *dev); 1178 1179 void (*ndo_get_stats64)(struct net_device *dev, 1180 struct rtnl_link_stats64 *storage); 1181 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1182 int (*ndo_get_offload_stats)(int attr_id, 1183 const struct net_device *dev, 1184 void *attr_data); 1185 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1186 1187 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1188 __be16 proto, u16 vid); 1189 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1190 __be16 proto, u16 vid); 1191 #ifdef CONFIG_NET_POLL_CONTROLLER 1192 void (*ndo_poll_controller)(struct net_device *dev); 1193 int (*ndo_netpoll_setup)(struct net_device *dev, 1194 struct netpoll_info *info); 1195 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1196 #endif 1197 int (*ndo_set_vf_mac)(struct net_device *dev, 1198 int queue, u8 *mac); 1199 int (*ndo_set_vf_vlan)(struct net_device *dev, 1200 int queue, u16 vlan, 1201 u8 qos, __be16 proto); 1202 int (*ndo_set_vf_rate)(struct net_device *dev, 1203 int vf, int min_tx_rate, 1204 int max_tx_rate); 1205 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1206 int vf, bool setting); 1207 int (*ndo_set_vf_trust)(struct net_device *dev, 1208 int vf, bool setting); 1209 int (*ndo_get_vf_config)(struct net_device *dev, 1210 int vf, 1211 struct ifla_vf_info *ivf); 1212 int (*ndo_set_vf_link_state)(struct net_device *dev, 1213 int vf, int link_state); 1214 int (*ndo_get_vf_stats)(struct net_device *dev, 1215 int vf, 1216 struct ifla_vf_stats 1217 *vf_stats); 1218 int (*ndo_set_vf_port)(struct net_device *dev, 1219 int vf, 1220 struct nlattr *port[]); 1221 int (*ndo_get_vf_port)(struct net_device *dev, 1222 int vf, struct sk_buff *skb); 1223 int (*ndo_set_vf_guid)(struct net_device *dev, 1224 int vf, u64 guid, 1225 int guid_type); 1226 int (*ndo_set_vf_rss_query_en)( 1227 struct net_device *dev, 1228 int vf, bool setting); 1229 int (*ndo_setup_tc)(struct net_device *dev, 1230 u32 handle, u32 chain_index, 1231 __be16 protocol, 1232 struct tc_to_netdev *tc); 1233 #if IS_ENABLED(CONFIG_FCOE) 1234 int (*ndo_fcoe_enable)(struct net_device *dev); 1235 int (*ndo_fcoe_disable)(struct net_device *dev); 1236 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1237 u16 xid, 1238 struct scatterlist *sgl, 1239 unsigned int sgc); 1240 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1241 u16 xid); 1242 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1243 u16 xid, 1244 struct scatterlist *sgl, 1245 unsigned int sgc); 1246 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1247 struct netdev_fcoe_hbainfo *hbainfo); 1248 #endif 1249 1250 #if IS_ENABLED(CONFIG_LIBFCOE) 1251 #define NETDEV_FCOE_WWNN 0 1252 #define NETDEV_FCOE_WWPN 1 1253 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1254 u64 *wwn, int type); 1255 #endif 1256 1257 #ifdef CONFIG_RFS_ACCEL 1258 int (*ndo_rx_flow_steer)(struct net_device *dev, 1259 const struct sk_buff *skb, 1260 u16 rxq_index, 1261 u32 flow_id); 1262 #endif 1263 int (*ndo_add_slave)(struct net_device *dev, 1264 struct net_device *slave_dev); 1265 int (*ndo_del_slave)(struct net_device *dev, 1266 struct net_device *slave_dev); 1267 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1268 netdev_features_t features); 1269 int (*ndo_set_features)(struct net_device *dev, 1270 netdev_features_t features); 1271 int (*ndo_neigh_construct)(struct net_device *dev, 1272 struct neighbour *n); 1273 void (*ndo_neigh_destroy)(struct net_device *dev, 1274 struct neighbour *n); 1275 1276 int (*ndo_fdb_add)(struct ndmsg *ndm, 1277 struct nlattr *tb[], 1278 struct net_device *dev, 1279 const unsigned char *addr, 1280 u16 vid, 1281 u16 flags); 1282 int (*ndo_fdb_del)(struct ndmsg *ndm, 1283 struct nlattr *tb[], 1284 struct net_device *dev, 1285 const unsigned char *addr, 1286 u16 vid); 1287 int (*ndo_fdb_dump)(struct sk_buff *skb, 1288 struct netlink_callback *cb, 1289 struct net_device *dev, 1290 struct net_device *filter_dev, 1291 int *idx); 1292 1293 int (*ndo_bridge_setlink)(struct net_device *dev, 1294 struct nlmsghdr *nlh, 1295 u16 flags); 1296 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1297 u32 pid, u32 seq, 1298 struct net_device *dev, 1299 u32 filter_mask, 1300 int nlflags); 1301 int (*ndo_bridge_dellink)(struct net_device *dev, 1302 struct nlmsghdr *nlh, 1303 u16 flags); 1304 int (*ndo_change_carrier)(struct net_device *dev, 1305 bool new_carrier); 1306 int (*ndo_get_phys_port_id)(struct net_device *dev, 1307 struct netdev_phys_item_id *ppid); 1308 int (*ndo_get_phys_port_name)(struct net_device *dev, 1309 char *name, size_t len); 1310 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1311 struct udp_tunnel_info *ti); 1312 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1313 struct udp_tunnel_info *ti); 1314 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1315 struct net_device *dev); 1316 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1317 void *priv); 1318 1319 int (*ndo_get_lock_subclass)(struct net_device *dev); 1320 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1321 int queue_index, 1322 u32 maxrate); 1323 int (*ndo_get_iflink)(const struct net_device *dev); 1324 int (*ndo_change_proto_down)(struct net_device *dev, 1325 bool proto_down); 1326 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1327 struct sk_buff *skb); 1328 void (*ndo_set_rx_headroom)(struct net_device *dev, 1329 int needed_headroom); 1330 int (*ndo_xdp)(struct net_device *dev, 1331 struct netdev_xdp *xdp); 1332 int (*ndo_xdp_xmit)(struct net_device *dev, 1333 struct xdp_buff *xdp); 1334 void (*ndo_xdp_flush)(struct net_device *dev); 1335 }; 1336 1337 /** 1338 * enum net_device_priv_flags - &struct net_device priv_flags 1339 * 1340 * These are the &struct net_device, they are only set internally 1341 * by drivers and used in the kernel. These flags are invisible to 1342 * userspace; this means that the order of these flags can change 1343 * during any kernel release. 1344 * 1345 * You should have a pretty good reason to be extending these flags. 1346 * 1347 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1348 * @IFF_EBRIDGE: Ethernet bridging device 1349 * @IFF_BONDING: bonding master or slave 1350 * @IFF_ISATAP: ISATAP interface (RFC4214) 1351 * @IFF_WAN_HDLC: WAN HDLC device 1352 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1353 * release skb->dst 1354 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1355 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1356 * @IFF_MACVLAN_PORT: device used as macvlan port 1357 * @IFF_BRIDGE_PORT: device used as bridge port 1358 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1359 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1360 * @IFF_UNICAST_FLT: Supports unicast filtering 1361 * @IFF_TEAM_PORT: device used as team port 1362 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1363 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1364 * change when it's running 1365 * @IFF_MACVLAN: Macvlan device 1366 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1367 * underlying stacked devices 1368 * @IFF_IPVLAN_MASTER: IPvlan master device 1369 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1370 * @IFF_L3MDEV_MASTER: device is an L3 master device 1371 * @IFF_NO_QUEUE: device can run without qdisc attached 1372 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1373 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1374 * @IFF_TEAM: device is a team device 1375 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1376 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1377 * entity (i.e. the master device for bridged veth) 1378 * @IFF_MACSEC: device is a MACsec device 1379 */ 1380 enum netdev_priv_flags { 1381 IFF_802_1Q_VLAN = 1<<0, 1382 IFF_EBRIDGE = 1<<1, 1383 IFF_BONDING = 1<<2, 1384 IFF_ISATAP = 1<<3, 1385 IFF_WAN_HDLC = 1<<4, 1386 IFF_XMIT_DST_RELEASE = 1<<5, 1387 IFF_DONT_BRIDGE = 1<<6, 1388 IFF_DISABLE_NETPOLL = 1<<7, 1389 IFF_MACVLAN_PORT = 1<<8, 1390 IFF_BRIDGE_PORT = 1<<9, 1391 IFF_OVS_DATAPATH = 1<<10, 1392 IFF_TX_SKB_SHARING = 1<<11, 1393 IFF_UNICAST_FLT = 1<<12, 1394 IFF_TEAM_PORT = 1<<13, 1395 IFF_SUPP_NOFCS = 1<<14, 1396 IFF_LIVE_ADDR_CHANGE = 1<<15, 1397 IFF_MACVLAN = 1<<16, 1398 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1399 IFF_IPVLAN_MASTER = 1<<18, 1400 IFF_IPVLAN_SLAVE = 1<<19, 1401 IFF_L3MDEV_MASTER = 1<<20, 1402 IFF_NO_QUEUE = 1<<21, 1403 IFF_OPENVSWITCH = 1<<22, 1404 IFF_L3MDEV_SLAVE = 1<<23, 1405 IFF_TEAM = 1<<24, 1406 IFF_RXFH_CONFIGURED = 1<<25, 1407 IFF_PHONY_HEADROOM = 1<<26, 1408 IFF_MACSEC = 1<<27, 1409 }; 1410 1411 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1412 #define IFF_EBRIDGE IFF_EBRIDGE 1413 #define IFF_BONDING IFF_BONDING 1414 #define IFF_ISATAP IFF_ISATAP 1415 #define IFF_WAN_HDLC IFF_WAN_HDLC 1416 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1417 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1418 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1419 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1420 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1421 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1422 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1423 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1424 #define IFF_TEAM_PORT IFF_TEAM_PORT 1425 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1426 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1427 #define IFF_MACVLAN IFF_MACVLAN 1428 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1429 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1430 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1431 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1432 #define IFF_NO_QUEUE IFF_NO_QUEUE 1433 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1434 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1435 #define IFF_TEAM IFF_TEAM 1436 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1437 #define IFF_MACSEC IFF_MACSEC 1438 1439 /** 1440 * struct net_device - The DEVICE structure. 1441 * 1442 * Actually, this whole structure is a big mistake. It mixes I/O 1443 * data with strictly "high-level" data, and it has to know about 1444 * almost every data structure used in the INET module. 1445 * 1446 * @name: This is the first field of the "visible" part of this structure 1447 * (i.e. as seen by users in the "Space.c" file). It is the name 1448 * of the interface. 1449 * 1450 * @name_hlist: Device name hash chain, please keep it close to name[] 1451 * @ifalias: SNMP alias 1452 * @mem_end: Shared memory end 1453 * @mem_start: Shared memory start 1454 * @base_addr: Device I/O address 1455 * @irq: Device IRQ number 1456 * 1457 * @carrier_changes: Stats to monitor carrier on<->off transitions 1458 * 1459 * @state: Generic network queuing layer state, see netdev_state_t 1460 * @dev_list: The global list of network devices 1461 * @napi_list: List entry used for polling NAPI devices 1462 * @unreg_list: List entry when we are unregistering the 1463 * device; see the function unregister_netdev 1464 * @close_list: List entry used when we are closing the device 1465 * @ptype_all: Device-specific packet handlers for all protocols 1466 * @ptype_specific: Device-specific, protocol-specific packet handlers 1467 * 1468 * @adj_list: Directly linked devices, like slaves for bonding 1469 * @features: Currently active device features 1470 * @hw_features: User-changeable features 1471 * 1472 * @wanted_features: User-requested features 1473 * @vlan_features: Mask of features inheritable by VLAN devices 1474 * 1475 * @hw_enc_features: Mask of features inherited by encapsulating devices 1476 * This field indicates what encapsulation 1477 * offloads the hardware is capable of doing, 1478 * and drivers will need to set them appropriately. 1479 * 1480 * @mpls_features: Mask of features inheritable by MPLS 1481 * 1482 * @ifindex: interface index 1483 * @group: The group the device belongs to 1484 * 1485 * @stats: Statistics struct, which was left as a legacy, use 1486 * rtnl_link_stats64 instead 1487 * 1488 * @rx_dropped: Dropped packets by core network, 1489 * do not use this in drivers 1490 * @tx_dropped: Dropped packets by core network, 1491 * do not use this in drivers 1492 * @rx_nohandler: nohandler dropped packets by core network on 1493 * inactive devices, do not use this in drivers 1494 * 1495 * @wireless_handlers: List of functions to handle Wireless Extensions, 1496 * instead of ioctl, 1497 * see <net/iw_handler.h> for details. 1498 * @wireless_data: Instance data managed by the core of wireless extensions 1499 * 1500 * @netdev_ops: Includes several pointers to callbacks, 1501 * if one wants to override the ndo_*() functions 1502 * @ethtool_ops: Management operations 1503 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1504 * discovery handling. Necessary for e.g. 6LoWPAN. 1505 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1506 * of Layer 2 headers. 1507 * 1508 * @flags: Interface flags (a la BSD) 1509 * @priv_flags: Like 'flags' but invisible to userspace, 1510 * see if.h for the definitions 1511 * @gflags: Global flags ( kept as legacy ) 1512 * @padded: How much padding added by alloc_netdev() 1513 * @operstate: RFC2863 operstate 1514 * @link_mode: Mapping policy to operstate 1515 * @if_port: Selectable AUI, TP, ... 1516 * @dma: DMA channel 1517 * @mtu: Interface MTU value 1518 * @min_mtu: Interface Minimum MTU value 1519 * @max_mtu: Interface Maximum MTU value 1520 * @type: Interface hardware type 1521 * @hard_header_len: Maximum hardware header length. 1522 * @min_header_len: Minimum hardware header length 1523 * 1524 * @needed_headroom: Extra headroom the hardware may need, but not in all 1525 * cases can this be guaranteed 1526 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1527 * cases can this be guaranteed. Some cases also use 1528 * LL_MAX_HEADER instead to allocate the skb 1529 * 1530 * interface address info: 1531 * 1532 * @perm_addr: Permanent hw address 1533 * @addr_assign_type: Hw address assignment type 1534 * @addr_len: Hardware address length 1535 * @neigh_priv_len: Used in neigh_alloc() 1536 * @dev_id: Used to differentiate devices that share 1537 * the same link layer address 1538 * @dev_port: Used to differentiate devices that share 1539 * the same function 1540 * @addr_list_lock: XXX: need comments on this one 1541 * @uc_promisc: Counter that indicates promiscuous mode 1542 * has been enabled due to the need to listen to 1543 * additional unicast addresses in a device that 1544 * does not implement ndo_set_rx_mode() 1545 * @uc: unicast mac addresses 1546 * @mc: multicast mac addresses 1547 * @dev_addrs: list of device hw addresses 1548 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1549 * @promiscuity: Number of times the NIC is told to work in 1550 * promiscuous mode; if it becomes 0 the NIC will 1551 * exit promiscuous mode 1552 * @allmulti: Counter, enables or disables allmulticast mode 1553 * 1554 * @vlan_info: VLAN info 1555 * @dsa_ptr: dsa specific data 1556 * @tipc_ptr: TIPC specific data 1557 * @atalk_ptr: AppleTalk link 1558 * @ip_ptr: IPv4 specific data 1559 * @dn_ptr: DECnet specific data 1560 * @ip6_ptr: IPv6 specific data 1561 * @ax25_ptr: AX.25 specific data 1562 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1563 * 1564 * @dev_addr: Hw address (before bcast, 1565 * because most packets are unicast) 1566 * 1567 * @_rx: Array of RX queues 1568 * @num_rx_queues: Number of RX queues 1569 * allocated at register_netdev() time 1570 * @real_num_rx_queues: Number of RX queues currently active in device 1571 * 1572 * @rx_handler: handler for received packets 1573 * @rx_handler_data: XXX: need comments on this one 1574 * @ingress_queue: XXX: need comments on this one 1575 * @broadcast: hw bcast address 1576 * 1577 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1578 * indexed by RX queue number. Assigned by driver. 1579 * This must only be set if the ndo_rx_flow_steer 1580 * operation is defined 1581 * @index_hlist: Device index hash chain 1582 * 1583 * @_tx: Array of TX queues 1584 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1585 * @real_num_tx_queues: Number of TX queues currently active in device 1586 * @qdisc: Root qdisc from userspace point of view 1587 * @tx_queue_len: Max frames per queue allowed 1588 * @tx_global_lock: XXX: need comments on this one 1589 * 1590 * @xps_maps: XXX: need comments on this one 1591 * 1592 * @watchdog_timeo: Represents the timeout that is used by 1593 * the watchdog (see dev_watchdog()) 1594 * @watchdog_timer: List of timers 1595 * 1596 * @pcpu_refcnt: Number of references to this device 1597 * @todo_list: Delayed register/unregister 1598 * @link_watch_list: XXX: need comments on this one 1599 * 1600 * @reg_state: Register/unregister state machine 1601 * @dismantle: Device is going to be freed 1602 * @rtnl_link_state: This enum represents the phases of creating 1603 * a new link 1604 * 1605 * @needs_free_netdev: Should unregister perform free_netdev? 1606 * @priv_destructor: Called from unregister 1607 * @npinfo: XXX: need comments on this one 1608 * @nd_net: Network namespace this network device is inside 1609 * 1610 * @ml_priv: Mid-layer private 1611 * @lstats: Loopback statistics 1612 * @tstats: Tunnel statistics 1613 * @dstats: Dummy statistics 1614 * @vstats: Virtual ethernet statistics 1615 * 1616 * @garp_port: GARP 1617 * @mrp_port: MRP 1618 * 1619 * @dev: Class/net/name entry 1620 * @sysfs_groups: Space for optional device, statistics and wireless 1621 * sysfs groups 1622 * 1623 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1624 * @rtnl_link_ops: Rtnl_link_ops 1625 * 1626 * @gso_max_size: Maximum size of generic segmentation offload 1627 * @gso_max_segs: Maximum number of segments that can be passed to the 1628 * NIC for GSO 1629 * 1630 * @dcbnl_ops: Data Center Bridging netlink ops 1631 * @num_tc: Number of traffic classes in the net device 1632 * @tc_to_txq: XXX: need comments on this one 1633 * @prio_tc_map: XXX: need comments on this one 1634 * 1635 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1636 * 1637 * @priomap: XXX: need comments on this one 1638 * @phydev: Physical device may attach itself 1639 * for hardware timestamping 1640 * 1641 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1642 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1643 * 1644 * @proto_down: protocol port state information can be sent to the 1645 * switch driver and used to set the phys state of the 1646 * switch port. 1647 * 1648 * FIXME: cleanup struct net_device such that network protocol info 1649 * moves out. 1650 */ 1651 1652 struct net_device { 1653 char name[IFNAMSIZ]; 1654 struct hlist_node name_hlist; 1655 char *ifalias; 1656 /* 1657 * I/O specific fields 1658 * FIXME: Merge these and struct ifmap into one 1659 */ 1660 unsigned long mem_end; 1661 unsigned long mem_start; 1662 unsigned long base_addr; 1663 int irq; 1664 1665 atomic_t carrier_changes; 1666 1667 /* 1668 * Some hardware also needs these fields (state,dev_list, 1669 * napi_list,unreg_list,close_list) but they are not 1670 * part of the usual set specified in Space.c. 1671 */ 1672 1673 unsigned long state; 1674 1675 struct list_head dev_list; 1676 struct list_head napi_list; 1677 struct list_head unreg_list; 1678 struct list_head close_list; 1679 struct list_head ptype_all; 1680 struct list_head ptype_specific; 1681 1682 struct { 1683 struct list_head upper; 1684 struct list_head lower; 1685 } adj_list; 1686 1687 netdev_features_t features; 1688 netdev_features_t hw_features; 1689 netdev_features_t wanted_features; 1690 netdev_features_t vlan_features; 1691 netdev_features_t hw_enc_features; 1692 netdev_features_t mpls_features; 1693 netdev_features_t gso_partial_features; 1694 1695 int ifindex; 1696 int group; 1697 1698 struct net_device_stats stats; 1699 1700 atomic_long_t rx_dropped; 1701 atomic_long_t tx_dropped; 1702 atomic_long_t rx_nohandler; 1703 1704 #ifdef CONFIG_WIRELESS_EXT 1705 const struct iw_handler_def *wireless_handlers; 1706 struct iw_public_data *wireless_data; 1707 #endif 1708 const struct net_device_ops *netdev_ops; 1709 const struct ethtool_ops *ethtool_ops; 1710 #ifdef CONFIG_NET_SWITCHDEV 1711 const struct switchdev_ops *switchdev_ops; 1712 #endif 1713 #ifdef CONFIG_NET_L3_MASTER_DEV 1714 const struct l3mdev_ops *l3mdev_ops; 1715 #endif 1716 #if IS_ENABLED(CONFIG_IPV6) 1717 const struct ndisc_ops *ndisc_ops; 1718 #endif 1719 1720 #ifdef CONFIG_XFRM 1721 const struct xfrmdev_ops *xfrmdev_ops; 1722 #endif 1723 1724 const struct header_ops *header_ops; 1725 1726 unsigned int flags; 1727 unsigned int priv_flags; 1728 1729 unsigned short gflags; 1730 unsigned short padded; 1731 1732 unsigned char operstate; 1733 unsigned char link_mode; 1734 1735 unsigned char if_port; 1736 unsigned char dma; 1737 1738 unsigned int mtu; 1739 unsigned int min_mtu; 1740 unsigned int max_mtu; 1741 unsigned short type; 1742 unsigned short hard_header_len; 1743 unsigned char min_header_len; 1744 1745 unsigned short needed_headroom; 1746 unsigned short needed_tailroom; 1747 1748 /* Interface address info. */ 1749 unsigned char perm_addr[MAX_ADDR_LEN]; 1750 unsigned char addr_assign_type; 1751 unsigned char addr_len; 1752 unsigned short neigh_priv_len; 1753 unsigned short dev_id; 1754 unsigned short dev_port; 1755 spinlock_t addr_list_lock; 1756 unsigned char name_assign_type; 1757 bool uc_promisc; 1758 struct netdev_hw_addr_list uc; 1759 struct netdev_hw_addr_list mc; 1760 struct netdev_hw_addr_list dev_addrs; 1761 1762 #ifdef CONFIG_SYSFS 1763 struct kset *queues_kset; 1764 #endif 1765 unsigned int promiscuity; 1766 unsigned int allmulti; 1767 1768 1769 /* Protocol-specific pointers */ 1770 1771 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1772 struct vlan_info __rcu *vlan_info; 1773 #endif 1774 #if IS_ENABLED(CONFIG_NET_DSA) 1775 struct dsa_switch_tree *dsa_ptr; 1776 #endif 1777 #if IS_ENABLED(CONFIG_TIPC) 1778 struct tipc_bearer __rcu *tipc_ptr; 1779 #endif 1780 void *atalk_ptr; 1781 struct in_device __rcu *ip_ptr; 1782 struct dn_dev __rcu *dn_ptr; 1783 struct inet6_dev __rcu *ip6_ptr; 1784 void *ax25_ptr; 1785 struct wireless_dev *ieee80211_ptr; 1786 struct wpan_dev *ieee802154_ptr; 1787 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1788 struct mpls_dev __rcu *mpls_ptr; 1789 #endif 1790 1791 /* 1792 * Cache lines mostly used on receive path (including eth_type_trans()) 1793 */ 1794 /* Interface address info used in eth_type_trans() */ 1795 unsigned char *dev_addr; 1796 1797 #ifdef CONFIG_SYSFS 1798 struct netdev_rx_queue *_rx; 1799 1800 unsigned int num_rx_queues; 1801 unsigned int real_num_rx_queues; 1802 #endif 1803 1804 struct bpf_prog __rcu *xdp_prog; 1805 unsigned long gro_flush_timeout; 1806 rx_handler_func_t __rcu *rx_handler; 1807 void __rcu *rx_handler_data; 1808 1809 #ifdef CONFIG_NET_CLS_ACT 1810 struct tcf_proto __rcu *ingress_cl_list; 1811 #endif 1812 struct netdev_queue __rcu *ingress_queue; 1813 #ifdef CONFIG_NETFILTER_INGRESS 1814 struct nf_hook_entry __rcu *nf_hooks_ingress; 1815 #endif 1816 1817 unsigned char broadcast[MAX_ADDR_LEN]; 1818 #ifdef CONFIG_RFS_ACCEL 1819 struct cpu_rmap *rx_cpu_rmap; 1820 #endif 1821 struct hlist_node index_hlist; 1822 1823 /* 1824 * Cache lines mostly used on transmit path 1825 */ 1826 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1827 unsigned int num_tx_queues; 1828 unsigned int real_num_tx_queues; 1829 struct Qdisc *qdisc; 1830 #ifdef CONFIG_NET_SCHED 1831 DECLARE_HASHTABLE (qdisc_hash, 4); 1832 #endif 1833 unsigned int tx_queue_len; 1834 spinlock_t tx_global_lock; 1835 int watchdog_timeo; 1836 1837 #ifdef CONFIG_XPS 1838 struct xps_dev_maps __rcu *xps_maps; 1839 #endif 1840 #ifdef CONFIG_NET_CLS_ACT 1841 struct tcf_proto __rcu *egress_cl_list; 1842 #endif 1843 1844 /* These may be needed for future network-power-down code. */ 1845 struct timer_list watchdog_timer; 1846 1847 int __percpu *pcpu_refcnt; 1848 struct list_head todo_list; 1849 1850 struct list_head link_watch_list; 1851 1852 enum { NETREG_UNINITIALIZED=0, 1853 NETREG_REGISTERED, /* completed register_netdevice */ 1854 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1855 NETREG_UNREGISTERED, /* completed unregister todo */ 1856 NETREG_RELEASED, /* called free_netdev */ 1857 NETREG_DUMMY, /* dummy device for NAPI poll */ 1858 } reg_state:8; 1859 1860 bool dismantle; 1861 1862 enum { 1863 RTNL_LINK_INITIALIZED, 1864 RTNL_LINK_INITIALIZING, 1865 } rtnl_link_state:16; 1866 1867 bool needs_free_netdev; 1868 void (*priv_destructor)(struct net_device *dev); 1869 1870 #ifdef CONFIG_NETPOLL 1871 struct netpoll_info __rcu *npinfo; 1872 #endif 1873 1874 possible_net_t nd_net; 1875 1876 /* mid-layer private */ 1877 union { 1878 void *ml_priv; 1879 struct pcpu_lstats __percpu *lstats; 1880 struct pcpu_sw_netstats __percpu *tstats; 1881 struct pcpu_dstats __percpu *dstats; 1882 struct pcpu_vstats __percpu *vstats; 1883 }; 1884 1885 #if IS_ENABLED(CONFIG_GARP) 1886 struct garp_port __rcu *garp_port; 1887 #endif 1888 #if IS_ENABLED(CONFIG_MRP) 1889 struct mrp_port __rcu *mrp_port; 1890 #endif 1891 1892 struct device dev; 1893 const struct attribute_group *sysfs_groups[4]; 1894 const struct attribute_group *sysfs_rx_queue_group; 1895 1896 const struct rtnl_link_ops *rtnl_link_ops; 1897 1898 /* for setting kernel sock attribute on TCP connection setup */ 1899 #define GSO_MAX_SIZE 65536 1900 unsigned int gso_max_size; 1901 #define GSO_MAX_SEGS 65535 1902 u16 gso_max_segs; 1903 1904 #ifdef CONFIG_DCB 1905 const struct dcbnl_rtnl_ops *dcbnl_ops; 1906 #endif 1907 u8 num_tc; 1908 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1909 u8 prio_tc_map[TC_BITMASK + 1]; 1910 1911 #if IS_ENABLED(CONFIG_FCOE) 1912 unsigned int fcoe_ddp_xid; 1913 #endif 1914 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1915 struct netprio_map __rcu *priomap; 1916 #endif 1917 struct phy_device *phydev; 1918 struct lock_class_key *qdisc_tx_busylock; 1919 struct lock_class_key *qdisc_running_key; 1920 bool proto_down; 1921 }; 1922 #define to_net_dev(d) container_of(d, struct net_device, dev) 1923 1924 static inline bool netif_elide_gro(const struct net_device *dev) 1925 { 1926 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1927 return true; 1928 return false; 1929 } 1930 1931 #define NETDEV_ALIGN 32 1932 1933 static inline 1934 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1935 { 1936 return dev->prio_tc_map[prio & TC_BITMASK]; 1937 } 1938 1939 static inline 1940 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1941 { 1942 if (tc >= dev->num_tc) 1943 return -EINVAL; 1944 1945 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1946 return 0; 1947 } 1948 1949 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1950 void netdev_reset_tc(struct net_device *dev); 1951 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1952 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1953 1954 static inline 1955 int netdev_get_num_tc(struct net_device *dev) 1956 { 1957 return dev->num_tc; 1958 } 1959 1960 static inline 1961 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1962 unsigned int index) 1963 { 1964 return &dev->_tx[index]; 1965 } 1966 1967 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1968 const struct sk_buff *skb) 1969 { 1970 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1971 } 1972 1973 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1974 void (*f)(struct net_device *, 1975 struct netdev_queue *, 1976 void *), 1977 void *arg) 1978 { 1979 unsigned int i; 1980 1981 for (i = 0; i < dev->num_tx_queues; i++) 1982 f(dev, &dev->_tx[i], arg); 1983 } 1984 1985 #define netdev_lockdep_set_classes(dev) \ 1986 { \ 1987 static struct lock_class_key qdisc_tx_busylock_key; \ 1988 static struct lock_class_key qdisc_running_key; \ 1989 static struct lock_class_key qdisc_xmit_lock_key; \ 1990 static struct lock_class_key dev_addr_list_lock_key; \ 1991 unsigned int i; \ 1992 \ 1993 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1994 (dev)->qdisc_running_key = &qdisc_running_key; \ 1995 lockdep_set_class(&(dev)->addr_list_lock, \ 1996 &dev_addr_list_lock_key); \ 1997 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1998 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1999 &qdisc_xmit_lock_key); \ 2000 } 2001 2002 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2003 struct sk_buff *skb, 2004 void *accel_priv); 2005 2006 /* returns the headroom that the master device needs to take in account 2007 * when forwarding to this dev 2008 */ 2009 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2010 { 2011 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2012 } 2013 2014 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2015 { 2016 if (dev->netdev_ops->ndo_set_rx_headroom) 2017 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2018 } 2019 2020 /* set the device rx headroom to the dev's default */ 2021 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2022 { 2023 netdev_set_rx_headroom(dev, -1); 2024 } 2025 2026 /* 2027 * Net namespace inlines 2028 */ 2029 static inline 2030 struct net *dev_net(const struct net_device *dev) 2031 { 2032 return read_pnet(&dev->nd_net); 2033 } 2034 2035 static inline 2036 void dev_net_set(struct net_device *dev, struct net *net) 2037 { 2038 write_pnet(&dev->nd_net, net); 2039 } 2040 2041 /** 2042 * netdev_priv - access network device private data 2043 * @dev: network device 2044 * 2045 * Get network device private data 2046 */ 2047 static inline void *netdev_priv(const struct net_device *dev) 2048 { 2049 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2050 } 2051 2052 /* Set the sysfs physical device reference for the network logical device 2053 * if set prior to registration will cause a symlink during initialization. 2054 */ 2055 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2056 2057 /* Set the sysfs device type for the network logical device to allow 2058 * fine-grained identification of different network device types. For 2059 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2060 */ 2061 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2062 2063 /* Default NAPI poll() weight 2064 * Device drivers are strongly advised to not use bigger value 2065 */ 2066 #define NAPI_POLL_WEIGHT 64 2067 2068 /** 2069 * netif_napi_add - initialize a NAPI context 2070 * @dev: network device 2071 * @napi: NAPI context 2072 * @poll: polling function 2073 * @weight: default weight 2074 * 2075 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2076 * *any* of the other NAPI-related functions. 2077 */ 2078 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2079 int (*poll)(struct napi_struct *, int), int weight); 2080 2081 /** 2082 * netif_tx_napi_add - initialize a NAPI context 2083 * @dev: network device 2084 * @napi: NAPI context 2085 * @poll: polling function 2086 * @weight: default weight 2087 * 2088 * This variant of netif_napi_add() should be used from drivers using NAPI 2089 * to exclusively poll a TX queue. 2090 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2091 */ 2092 static inline void netif_tx_napi_add(struct net_device *dev, 2093 struct napi_struct *napi, 2094 int (*poll)(struct napi_struct *, int), 2095 int weight) 2096 { 2097 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2098 netif_napi_add(dev, napi, poll, weight); 2099 } 2100 2101 /** 2102 * netif_napi_del - remove a NAPI context 2103 * @napi: NAPI context 2104 * 2105 * netif_napi_del() removes a NAPI context from the network device NAPI list 2106 */ 2107 void netif_napi_del(struct napi_struct *napi); 2108 2109 struct napi_gro_cb { 2110 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2111 void *frag0; 2112 2113 /* Length of frag0. */ 2114 unsigned int frag0_len; 2115 2116 /* This indicates where we are processing relative to skb->data. */ 2117 int data_offset; 2118 2119 /* This is non-zero if the packet cannot be merged with the new skb. */ 2120 u16 flush; 2121 2122 /* Save the IP ID here and check when we get to the transport layer */ 2123 u16 flush_id; 2124 2125 /* Number of segments aggregated. */ 2126 u16 count; 2127 2128 /* Start offset for remote checksum offload */ 2129 u16 gro_remcsum_start; 2130 2131 /* jiffies when first packet was created/queued */ 2132 unsigned long age; 2133 2134 /* Used in ipv6_gro_receive() and foo-over-udp */ 2135 u16 proto; 2136 2137 /* This is non-zero if the packet may be of the same flow. */ 2138 u8 same_flow:1; 2139 2140 /* Used in tunnel GRO receive */ 2141 u8 encap_mark:1; 2142 2143 /* GRO checksum is valid */ 2144 u8 csum_valid:1; 2145 2146 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2147 u8 csum_cnt:3; 2148 2149 /* Free the skb? */ 2150 u8 free:2; 2151 #define NAPI_GRO_FREE 1 2152 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2153 2154 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2155 u8 is_ipv6:1; 2156 2157 /* Used in GRE, set in fou/gue_gro_receive */ 2158 u8 is_fou:1; 2159 2160 /* Used to determine if flush_id can be ignored */ 2161 u8 is_atomic:1; 2162 2163 /* Number of gro_receive callbacks this packet already went through */ 2164 u8 recursion_counter:4; 2165 2166 /* 1 bit hole */ 2167 2168 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2169 __wsum csum; 2170 2171 /* used in skb_gro_receive() slow path */ 2172 struct sk_buff *last; 2173 }; 2174 2175 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2176 2177 #define GRO_RECURSION_LIMIT 15 2178 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2179 { 2180 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2181 } 2182 2183 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2184 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2185 struct sk_buff **head, 2186 struct sk_buff *skb) 2187 { 2188 if (unlikely(gro_recursion_inc_test(skb))) { 2189 NAPI_GRO_CB(skb)->flush |= 1; 2190 return NULL; 2191 } 2192 2193 return cb(head, skb); 2194 } 2195 2196 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2197 struct sk_buff *); 2198 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2199 struct sock *sk, 2200 struct sk_buff **head, 2201 struct sk_buff *skb) 2202 { 2203 if (unlikely(gro_recursion_inc_test(skb))) { 2204 NAPI_GRO_CB(skb)->flush |= 1; 2205 return NULL; 2206 } 2207 2208 return cb(sk, head, skb); 2209 } 2210 2211 struct packet_type { 2212 __be16 type; /* This is really htons(ether_type). */ 2213 struct net_device *dev; /* NULL is wildcarded here */ 2214 int (*func) (struct sk_buff *, 2215 struct net_device *, 2216 struct packet_type *, 2217 struct net_device *); 2218 bool (*id_match)(struct packet_type *ptype, 2219 struct sock *sk); 2220 void *af_packet_priv; 2221 struct list_head list; 2222 }; 2223 2224 struct offload_callbacks { 2225 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2226 netdev_features_t features); 2227 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2228 struct sk_buff *skb); 2229 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2230 }; 2231 2232 struct packet_offload { 2233 __be16 type; /* This is really htons(ether_type). */ 2234 u16 priority; 2235 struct offload_callbacks callbacks; 2236 struct list_head list; 2237 }; 2238 2239 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2240 struct pcpu_sw_netstats { 2241 u64 rx_packets; 2242 u64 rx_bytes; 2243 u64 tx_packets; 2244 u64 tx_bytes; 2245 struct u64_stats_sync syncp; 2246 }; 2247 2248 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2249 ({ \ 2250 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2251 if (pcpu_stats) { \ 2252 int __cpu; \ 2253 for_each_possible_cpu(__cpu) { \ 2254 typeof(type) *stat; \ 2255 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2256 u64_stats_init(&stat->syncp); \ 2257 } \ 2258 } \ 2259 pcpu_stats; \ 2260 }) 2261 2262 #define netdev_alloc_pcpu_stats(type) \ 2263 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2264 2265 enum netdev_lag_tx_type { 2266 NETDEV_LAG_TX_TYPE_UNKNOWN, 2267 NETDEV_LAG_TX_TYPE_RANDOM, 2268 NETDEV_LAG_TX_TYPE_BROADCAST, 2269 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2270 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2271 NETDEV_LAG_TX_TYPE_HASH, 2272 }; 2273 2274 struct netdev_lag_upper_info { 2275 enum netdev_lag_tx_type tx_type; 2276 }; 2277 2278 struct netdev_lag_lower_state_info { 2279 u8 link_up : 1, 2280 tx_enabled : 1; 2281 }; 2282 2283 #include <linux/notifier.h> 2284 2285 /* netdevice notifier chain. Please remember to update the rtnetlink 2286 * notification exclusion list in rtnetlink_event() when adding new 2287 * types. 2288 */ 2289 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2290 #define NETDEV_DOWN 0x0002 2291 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2292 detected a hardware crash and restarted 2293 - we can use this eg to kick tcp sessions 2294 once done */ 2295 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2296 #define NETDEV_REGISTER 0x0005 2297 #define NETDEV_UNREGISTER 0x0006 2298 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2299 #define NETDEV_CHANGEADDR 0x0008 2300 #define NETDEV_GOING_DOWN 0x0009 2301 #define NETDEV_CHANGENAME 0x000A 2302 #define NETDEV_FEAT_CHANGE 0x000B 2303 #define NETDEV_BONDING_FAILOVER 0x000C 2304 #define NETDEV_PRE_UP 0x000D 2305 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2306 #define NETDEV_POST_TYPE_CHANGE 0x000F 2307 #define NETDEV_POST_INIT 0x0010 2308 #define NETDEV_UNREGISTER_FINAL 0x0011 2309 #define NETDEV_RELEASE 0x0012 2310 #define NETDEV_NOTIFY_PEERS 0x0013 2311 #define NETDEV_JOIN 0x0014 2312 #define NETDEV_CHANGEUPPER 0x0015 2313 #define NETDEV_RESEND_IGMP 0x0016 2314 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2315 #define NETDEV_CHANGEINFODATA 0x0018 2316 #define NETDEV_BONDING_INFO 0x0019 2317 #define NETDEV_PRECHANGEUPPER 0x001A 2318 #define NETDEV_CHANGELOWERSTATE 0x001B 2319 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2320 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D 2321 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2322 2323 int register_netdevice_notifier(struct notifier_block *nb); 2324 int unregister_netdevice_notifier(struct notifier_block *nb); 2325 2326 struct netdev_notifier_info { 2327 struct net_device *dev; 2328 }; 2329 2330 struct netdev_notifier_change_info { 2331 struct netdev_notifier_info info; /* must be first */ 2332 unsigned int flags_changed; 2333 }; 2334 2335 struct netdev_notifier_changeupper_info { 2336 struct netdev_notifier_info info; /* must be first */ 2337 struct net_device *upper_dev; /* new upper dev */ 2338 bool master; /* is upper dev master */ 2339 bool linking; /* is the notification for link or unlink */ 2340 void *upper_info; /* upper dev info */ 2341 }; 2342 2343 struct netdev_notifier_changelowerstate_info { 2344 struct netdev_notifier_info info; /* must be first */ 2345 void *lower_state_info; /* is lower dev state */ 2346 }; 2347 2348 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2349 struct net_device *dev) 2350 { 2351 info->dev = dev; 2352 } 2353 2354 static inline struct net_device * 2355 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2356 { 2357 return info->dev; 2358 } 2359 2360 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2361 2362 2363 extern rwlock_t dev_base_lock; /* Device list lock */ 2364 2365 #define for_each_netdev(net, d) \ 2366 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2367 #define for_each_netdev_reverse(net, d) \ 2368 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2369 #define for_each_netdev_rcu(net, d) \ 2370 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2371 #define for_each_netdev_safe(net, d, n) \ 2372 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2373 #define for_each_netdev_continue(net, d) \ 2374 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2375 #define for_each_netdev_continue_rcu(net, d) \ 2376 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2377 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2378 for_each_netdev_rcu(&init_net, slave) \ 2379 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2380 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2381 2382 static inline struct net_device *next_net_device(struct net_device *dev) 2383 { 2384 struct list_head *lh; 2385 struct net *net; 2386 2387 net = dev_net(dev); 2388 lh = dev->dev_list.next; 2389 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2390 } 2391 2392 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2393 { 2394 struct list_head *lh; 2395 struct net *net; 2396 2397 net = dev_net(dev); 2398 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2399 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2400 } 2401 2402 static inline struct net_device *first_net_device(struct net *net) 2403 { 2404 return list_empty(&net->dev_base_head) ? NULL : 2405 net_device_entry(net->dev_base_head.next); 2406 } 2407 2408 static inline struct net_device *first_net_device_rcu(struct net *net) 2409 { 2410 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2411 2412 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2413 } 2414 2415 int netdev_boot_setup_check(struct net_device *dev); 2416 unsigned long netdev_boot_base(const char *prefix, int unit); 2417 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2418 const char *hwaddr); 2419 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2420 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2421 void dev_add_pack(struct packet_type *pt); 2422 void dev_remove_pack(struct packet_type *pt); 2423 void __dev_remove_pack(struct packet_type *pt); 2424 void dev_add_offload(struct packet_offload *po); 2425 void dev_remove_offload(struct packet_offload *po); 2426 2427 int dev_get_iflink(const struct net_device *dev); 2428 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2429 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2430 unsigned short mask); 2431 struct net_device *dev_get_by_name(struct net *net, const char *name); 2432 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2433 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2434 int dev_alloc_name(struct net_device *dev, const char *name); 2435 int dev_open(struct net_device *dev); 2436 void dev_close(struct net_device *dev); 2437 void dev_close_many(struct list_head *head, bool unlink); 2438 void dev_disable_lro(struct net_device *dev); 2439 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2440 int dev_queue_xmit(struct sk_buff *skb); 2441 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2442 int register_netdevice(struct net_device *dev); 2443 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2444 void unregister_netdevice_many(struct list_head *head); 2445 static inline void unregister_netdevice(struct net_device *dev) 2446 { 2447 unregister_netdevice_queue(dev, NULL); 2448 } 2449 2450 int netdev_refcnt_read(const struct net_device *dev); 2451 void free_netdev(struct net_device *dev); 2452 void netdev_freemem(struct net_device *dev); 2453 void synchronize_net(void); 2454 int init_dummy_netdev(struct net_device *dev); 2455 2456 DECLARE_PER_CPU(int, xmit_recursion); 2457 #define XMIT_RECURSION_LIMIT 10 2458 2459 static inline int dev_recursion_level(void) 2460 { 2461 return this_cpu_read(xmit_recursion); 2462 } 2463 2464 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2465 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2466 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2467 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2468 int netdev_get_name(struct net *net, char *name, int ifindex); 2469 int dev_restart(struct net_device *dev); 2470 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2471 2472 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2473 { 2474 return NAPI_GRO_CB(skb)->data_offset; 2475 } 2476 2477 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2478 { 2479 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2480 } 2481 2482 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2483 { 2484 NAPI_GRO_CB(skb)->data_offset += len; 2485 } 2486 2487 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2488 unsigned int offset) 2489 { 2490 return NAPI_GRO_CB(skb)->frag0 + offset; 2491 } 2492 2493 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2494 { 2495 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2496 } 2497 2498 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2499 { 2500 NAPI_GRO_CB(skb)->frag0 = NULL; 2501 NAPI_GRO_CB(skb)->frag0_len = 0; 2502 } 2503 2504 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2505 unsigned int offset) 2506 { 2507 if (!pskb_may_pull(skb, hlen)) 2508 return NULL; 2509 2510 skb_gro_frag0_invalidate(skb); 2511 return skb->data + offset; 2512 } 2513 2514 static inline void *skb_gro_network_header(struct sk_buff *skb) 2515 { 2516 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2517 skb_network_offset(skb); 2518 } 2519 2520 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2521 const void *start, unsigned int len) 2522 { 2523 if (NAPI_GRO_CB(skb)->csum_valid) 2524 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2525 csum_partial(start, len, 0)); 2526 } 2527 2528 /* GRO checksum functions. These are logical equivalents of the normal 2529 * checksum functions (in skbuff.h) except that they operate on the GRO 2530 * offsets and fields in sk_buff. 2531 */ 2532 2533 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2534 2535 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2536 { 2537 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2538 } 2539 2540 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2541 bool zero_okay, 2542 __sum16 check) 2543 { 2544 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2545 skb_checksum_start_offset(skb) < 2546 skb_gro_offset(skb)) && 2547 !skb_at_gro_remcsum_start(skb) && 2548 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2549 (!zero_okay || check)); 2550 } 2551 2552 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2553 __wsum psum) 2554 { 2555 if (NAPI_GRO_CB(skb)->csum_valid && 2556 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2557 return 0; 2558 2559 NAPI_GRO_CB(skb)->csum = psum; 2560 2561 return __skb_gro_checksum_complete(skb); 2562 } 2563 2564 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2565 { 2566 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2567 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2568 NAPI_GRO_CB(skb)->csum_cnt--; 2569 } else { 2570 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2571 * verified a new top level checksum or an encapsulated one 2572 * during GRO. This saves work if we fallback to normal path. 2573 */ 2574 __skb_incr_checksum_unnecessary(skb); 2575 } 2576 } 2577 2578 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2579 compute_pseudo) \ 2580 ({ \ 2581 __sum16 __ret = 0; \ 2582 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2583 __ret = __skb_gro_checksum_validate_complete(skb, \ 2584 compute_pseudo(skb, proto)); \ 2585 if (!__ret) \ 2586 skb_gro_incr_csum_unnecessary(skb); \ 2587 __ret; \ 2588 }) 2589 2590 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2591 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2592 2593 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2594 compute_pseudo) \ 2595 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2596 2597 #define skb_gro_checksum_simple_validate(skb) \ 2598 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2599 2600 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2601 { 2602 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2603 !NAPI_GRO_CB(skb)->csum_valid); 2604 } 2605 2606 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2607 __sum16 check, __wsum pseudo) 2608 { 2609 NAPI_GRO_CB(skb)->csum = ~pseudo; 2610 NAPI_GRO_CB(skb)->csum_valid = 1; 2611 } 2612 2613 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2614 do { \ 2615 if (__skb_gro_checksum_convert_check(skb)) \ 2616 __skb_gro_checksum_convert(skb, check, \ 2617 compute_pseudo(skb, proto)); \ 2618 } while (0) 2619 2620 struct gro_remcsum { 2621 int offset; 2622 __wsum delta; 2623 }; 2624 2625 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2626 { 2627 grc->offset = 0; 2628 grc->delta = 0; 2629 } 2630 2631 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2632 unsigned int off, size_t hdrlen, 2633 int start, int offset, 2634 struct gro_remcsum *grc, 2635 bool nopartial) 2636 { 2637 __wsum delta; 2638 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2639 2640 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2641 2642 if (!nopartial) { 2643 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2644 return ptr; 2645 } 2646 2647 ptr = skb_gro_header_fast(skb, off); 2648 if (skb_gro_header_hard(skb, off + plen)) { 2649 ptr = skb_gro_header_slow(skb, off + plen, off); 2650 if (!ptr) 2651 return NULL; 2652 } 2653 2654 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2655 start, offset); 2656 2657 /* Adjust skb->csum since we changed the packet */ 2658 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2659 2660 grc->offset = off + hdrlen + offset; 2661 grc->delta = delta; 2662 2663 return ptr; 2664 } 2665 2666 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2667 struct gro_remcsum *grc) 2668 { 2669 void *ptr; 2670 size_t plen = grc->offset + sizeof(u16); 2671 2672 if (!grc->delta) 2673 return; 2674 2675 ptr = skb_gro_header_fast(skb, grc->offset); 2676 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2677 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2678 if (!ptr) 2679 return; 2680 } 2681 2682 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2683 } 2684 2685 #ifdef CONFIG_XFRM_OFFLOAD 2686 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2687 { 2688 if (PTR_ERR(pp) != -EINPROGRESS) 2689 NAPI_GRO_CB(skb)->flush |= flush; 2690 } 2691 #else 2692 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2693 { 2694 NAPI_GRO_CB(skb)->flush |= flush; 2695 } 2696 #endif 2697 2698 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2699 unsigned short type, 2700 const void *daddr, const void *saddr, 2701 unsigned int len) 2702 { 2703 if (!dev->header_ops || !dev->header_ops->create) 2704 return 0; 2705 2706 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2707 } 2708 2709 static inline int dev_parse_header(const struct sk_buff *skb, 2710 unsigned char *haddr) 2711 { 2712 const struct net_device *dev = skb->dev; 2713 2714 if (!dev->header_ops || !dev->header_ops->parse) 2715 return 0; 2716 return dev->header_ops->parse(skb, haddr); 2717 } 2718 2719 /* ll_header must have at least hard_header_len allocated */ 2720 static inline bool dev_validate_header(const struct net_device *dev, 2721 char *ll_header, int len) 2722 { 2723 if (likely(len >= dev->hard_header_len)) 2724 return true; 2725 if (len < dev->min_header_len) 2726 return false; 2727 2728 if (capable(CAP_SYS_RAWIO)) { 2729 memset(ll_header + len, 0, dev->hard_header_len - len); 2730 return true; 2731 } 2732 2733 if (dev->header_ops && dev->header_ops->validate) 2734 return dev->header_ops->validate(ll_header, len); 2735 2736 return false; 2737 } 2738 2739 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2740 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2741 static inline int unregister_gifconf(unsigned int family) 2742 { 2743 return register_gifconf(family, NULL); 2744 } 2745 2746 #ifdef CONFIG_NET_FLOW_LIMIT 2747 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2748 struct sd_flow_limit { 2749 u64 count; 2750 unsigned int num_buckets; 2751 unsigned int history_head; 2752 u16 history[FLOW_LIMIT_HISTORY]; 2753 u8 buckets[]; 2754 }; 2755 2756 extern int netdev_flow_limit_table_len; 2757 #endif /* CONFIG_NET_FLOW_LIMIT */ 2758 2759 /* 2760 * Incoming packets are placed on per-CPU queues 2761 */ 2762 struct softnet_data { 2763 struct list_head poll_list; 2764 struct sk_buff_head process_queue; 2765 2766 /* stats */ 2767 unsigned int processed; 2768 unsigned int time_squeeze; 2769 unsigned int received_rps; 2770 #ifdef CONFIG_RPS 2771 struct softnet_data *rps_ipi_list; 2772 #endif 2773 #ifdef CONFIG_NET_FLOW_LIMIT 2774 struct sd_flow_limit __rcu *flow_limit; 2775 #endif 2776 struct Qdisc *output_queue; 2777 struct Qdisc **output_queue_tailp; 2778 struct sk_buff *completion_queue; 2779 2780 #ifdef CONFIG_RPS 2781 /* input_queue_head should be written by cpu owning this struct, 2782 * and only read by other cpus. Worth using a cache line. 2783 */ 2784 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2785 2786 /* Elements below can be accessed between CPUs for RPS/RFS */ 2787 struct call_single_data csd ____cacheline_aligned_in_smp; 2788 struct softnet_data *rps_ipi_next; 2789 unsigned int cpu; 2790 unsigned int input_queue_tail; 2791 #endif 2792 unsigned int dropped; 2793 struct sk_buff_head input_pkt_queue; 2794 struct napi_struct backlog; 2795 2796 }; 2797 2798 static inline void input_queue_head_incr(struct softnet_data *sd) 2799 { 2800 #ifdef CONFIG_RPS 2801 sd->input_queue_head++; 2802 #endif 2803 } 2804 2805 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2806 unsigned int *qtail) 2807 { 2808 #ifdef CONFIG_RPS 2809 *qtail = ++sd->input_queue_tail; 2810 #endif 2811 } 2812 2813 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2814 2815 void __netif_schedule(struct Qdisc *q); 2816 void netif_schedule_queue(struct netdev_queue *txq); 2817 2818 static inline void netif_tx_schedule_all(struct net_device *dev) 2819 { 2820 unsigned int i; 2821 2822 for (i = 0; i < dev->num_tx_queues; i++) 2823 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2824 } 2825 2826 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2827 { 2828 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2829 } 2830 2831 /** 2832 * netif_start_queue - allow transmit 2833 * @dev: network device 2834 * 2835 * Allow upper layers to call the device hard_start_xmit routine. 2836 */ 2837 static inline void netif_start_queue(struct net_device *dev) 2838 { 2839 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2840 } 2841 2842 static inline void netif_tx_start_all_queues(struct net_device *dev) 2843 { 2844 unsigned int i; 2845 2846 for (i = 0; i < dev->num_tx_queues; i++) { 2847 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2848 netif_tx_start_queue(txq); 2849 } 2850 } 2851 2852 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2853 2854 /** 2855 * netif_wake_queue - restart transmit 2856 * @dev: network device 2857 * 2858 * Allow upper layers to call the device hard_start_xmit routine. 2859 * Used for flow control when transmit resources are available. 2860 */ 2861 static inline void netif_wake_queue(struct net_device *dev) 2862 { 2863 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2864 } 2865 2866 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2867 { 2868 unsigned int i; 2869 2870 for (i = 0; i < dev->num_tx_queues; i++) { 2871 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2872 netif_tx_wake_queue(txq); 2873 } 2874 } 2875 2876 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2877 { 2878 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2879 } 2880 2881 /** 2882 * netif_stop_queue - stop transmitted packets 2883 * @dev: network device 2884 * 2885 * Stop upper layers calling the device hard_start_xmit routine. 2886 * Used for flow control when transmit resources are unavailable. 2887 */ 2888 static inline void netif_stop_queue(struct net_device *dev) 2889 { 2890 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2891 } 2892 2893 void netif_tx_stop_all_queues(struct net_device *dev); 2894 2895 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2896 { 2897 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2898 } 2899 2900 /** 2901 * netif_queue_stopped - test if transmit queue is flowblocked 2902 * @dev: network device 2903 * 2904 * Test if transmit queue on device is currently unable to send. 2905 */ 2906 static inline bool netif_queue_stopped(const struct net_device *dev) 2907 { 2908 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2909 } 2910 2911 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2912 { 2913 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2914 } 2915 2916 static inline bool 2917 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2918 { 2919 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2920 } 2921 2922 static inline bool 2923 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2924 { 2925 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2926 } 2927 2928 /** 2929 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2930 * @dev_queue: pointer to transmit queue 2931 * 2932 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2933 * to give appropriate hint to the CPU. 2934 */ 2935 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2936 { 2937 #ifdef CONFIG_BQL 2938 prefetchw(&dev_queue->dql.num_queued); 2939 #endif 2940 } 2941 2942 /** 2943 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2944 * @dev_queue: pointer to transmit queue 2945 * 2946 * BQL enabled drivers might use this helper in their TX completion path, 2947 * to give appropriate hint to the CPU. 2948 */ 2949 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2950 { 2951 #ifdef CONFIG_BQL 2952 prefetchw(&dev_queue->dql.limit); 2953 #endif 2954 } 2955 2956 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2957 unsigned int bytes) 2958 { 2959 #ifdef CONFIG_BQL 2960 dql_queued(&dev_queue->dql, bytes); 2961 2962 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2963 return; 2964 2965 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2966 2967 /* 2968 * The XOFF flag must be set before checking the dql_avail below, 2969 * because in netdev_tx_completed_queue we update the dql_completed 2970 * before checking the XOFF flag. 2971 */ 2972 smp_mb(); 2973 2974 /* check again in case another CPU has just made room avail */ 2975 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2976 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2977 #endif 2978 } 2979 2980 /** 2981 * netdev_sent_queue - report the number of bytes queued to hardware 2982 * @dev: network device 2983 * @bytes: number of bytes queued to the hardware device queue 2984 * 2985 * Report the number of bytes queued for sending/completion to the network 2986 * device hardware queue. @bytes should be a good approximation and should 2987 * exactly match netdev_completed_queue() @bytes 2988 */ 2989 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2990 { 2991 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2992 } 2993 2994 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2995 unsigned int pkts, unsigned int bytes) 2996 { 2997 #ifdef CONFIG_BQL 2998 if (unlikely(!bytes)) 2999 return; 3000 3001 dql_completed(&dev_queue->dql, bytes); 3002 3003 /* 3004 * Without the memory barrier there is a small possiblity that 3005 * netdev_tx_sent_queue will miss the update and cause the queue to 3006 * be stopped forever 3007 */ 3008 smp_mb(); 3009 3010 if (dql_avail(&dev_queue->dql) < 0) 3011 return; 3012 3013 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3014 netif_schedule_queue(dev_queue); 3015 #endif 3016 } 3017 3018 /** 3019 * netdev_completed_queue - report bytes and packets completed by device 3020 * @dev: network device 3021 * @pkts: actual number of packets sent over the medium 3022 * @bytes: actual number of bytes sent over the medium 3023 * 3024 * Report the number of bytes and packets transmitted by the network device 3025 * hardware queue over the physical medium, @bytes must exactly match the 3026 * @bytes amount passed to netdev_sent_queue() 3027 */ 3028 static inline void netdev_completed_queue(struct net_device *dev, 3029 unsigned int pkts, unsigned int bytes) 3030 { 3031 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3032 } 3033 3034 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3035 { 3036 #ifdef CONFIG_BQL 3037 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3038 dql_reset(&q->dql); 3039 #endif 3040 } 3041 3042 /** 3043 * netdev_reset_queue - reset the packets and bytes count of a network device 3044 * @dev_queue: network device 3045 * 3046 * Reset the bytes and packet count of a network device and clear the 3047 * software flow control OFF bit for this network device 3048 */ 3049 static inline void netdev_reset_queue(struct net_device *dev_queue) 3050 { 3051 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3052 } 3053 3054 /** 3055 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3056 * @dev: network device 3057 * @queue_index: given tx queue index 3058 * 3059 * Returns 0 if given tx queue index >= number of device tx queues, 3060 * otherwise returns the originally passed tx queue index. 3061 */ 3062 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3063 { 3064 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3065 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3066 dev->name, queue_index, 3067 dev->real_num_tx_queues); 3068 return 0; 3069 } 3070 3071 return queue_index; 3072 } 3073 3074 /** 3075 * netif_running - test if up 3076 * @dev: network device 3077 * 3078 * Test if the device has been brought up. 3079 */ 3080 static inline bool netif_running(const struct net_device *dev) 3081 { 3082 return test_bit(__LINK_STATE_START, &dev->state); 3083 } 3084 3085 /* 3086 * Routines to manage the subqueues on a device. We only need start, 3087 * stop, and a check if it's stopped. All other device management is 3088 * done at the overall netdevice level. 3089 * Also test the device if we're multiqueue. 3090 */ 3091 3092 /** 3093 * netif_start_subqueue - allow sending packets on subqueue 3094 * @dev: network device 3095 * @queue_index: sub queue index 3096 * 3097 * Start individual transmit queue of a device with multiple transmit queues. 3098 */ 3099 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3100 { 3101 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3102 3103 netif_tx_start_queue(txq); 3104 } 3105 3106 /** 3107 * netif_stop_subqueue - stop sending packets on subqueue 3108 * @dev: network device 3109 * @queue_index: sub queue index 3110 * 3111 * Stop individual transmit queue of a device with multiple transmit queues. 3112 */ 3113 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3114 { 3115 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3116 netif_tx_stop_queue(txq); 3117 } 3118 3119 /** 3120 * netif_subqueue_stopped - test status of subqueue 3121 * @dev: network device 3122 * @queue_index: sub queue index 3123 * 3124 * Check individual transmit queue of a device with multiple transmit queues. 3125 */ 3126 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3127 u16 queue_index) 3128 { 3129 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3130 3131 return netif_tx_queue_stopped(txq); 3132 } 3133 3134 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3135 struct sk_buff *skb) 3136 { 3137 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3138 } 3139 3140 /** 3141 * netif_wake_subqueue - allow sending packets on subqueue 3142 * @dev: network device 3143 * @queue_index: sub queue index 3144 * 3145 * Resume individual transmit queue of a device with multiple transmit queues. 3146 */ 3147 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3148 { 3149 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3150 3151 netif_tx_wake_queue(txq); 3152 } 3153 3154 #ifdef CONFIG_XPS 3155 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3156 u16 index); 3157 #else 3158 static inline int netif_set_xps_queue(struct net_device *dev, 3159 const struct cpumask *mask, 3160 u16 index) 3161 { 3162 return 0; 3163 } 3164 #endif 3165 3166 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3167 unsigned int num_tx_queues); 3168 3169 /* 3170 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3171 * as a distribution range limit for the returned value. 3172 */ 3173 static inline u16 skb_tx_hash(const struct net_device *dev, 3174 struct sk_buff *skb) 3175 { 3176 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3177 } 3178 3179 /** 3180 * netif_is_multiqueue - test if device has multiple transmit queues 3181 * @dev: network device 3182 * 3183 * Check if device has multiple transmit queues 3184 */ 3185 static inline bool netif_is_multiqueue(const struct net_device *dev) 3186 { 3187 return dev->num_tx_queues > 1; 3188 } 3189 3190 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3191 3192 #ifdef CONFIG_SYSFS 3193 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3194 #else 3195 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3196 unsigned int rxq) 3197 { 3198 return 0; 3199 } 3200 #endif 3201 3202 #ifdef CONFIG_SYSFS 3203 static inline unsigned int get_netdev_rx_queue_index( 3204 struct netdev_rx_queue *queue) 3205 { 3206 struct net_device *dev = queue->dev; 3207 int index = queue - dev->_rx; 3208 3209 BUG_ON(index >= dev->num_rx_queues); 3210 return index; 3211 } 3212 #endif 3213 3214 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3215 int netif_get_num_default_rss_queues(void); 3216 3217 enum skb_free_reason { 3218 SKB_REASON_CONSUMED, 3219 SKB_REASON_DROPPED, 3220 }; 3221 3222 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3223 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3224 3225 /* 3226 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3227 * interrupt context or with hardware interrupts being disabled. 3228 * (in_irq() || irqs_disabled()) 3229 * 3230 * We provide four helpers that can be used in following contexts : 3231 * 3232 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3233 * replacing kfree_skb(skb) 3234 * 3235 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3236 * Typically used in place of consume_skb(skb) in TX completion path 3237 * 3238 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3239 * replacing kfree_skb(skb) 3240 * 3241 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3242 * and consumed a packet. Used in place of consume_skb(skb) 3243 */ 3244 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3245 { 3246 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3247 } 3248 3249 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3250 { 3251 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3252 } 3253 3254 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3255 { 3256 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3257 } 3258 3259 static inline void dev_consume_skb_any(struct sk_buff *skb) 3260 { 3261 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3262 } 3263 3264 int netif_rx(struct sk_buff *skb); 3265 int netif_rx_ni(struct sk_buff *skb); 3266 int netif_receive_skb(struct sk_buff *skb); 3267 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3268 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3269 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3270 gro_result_t napi_gro_frags(struct napi_struct *napi); 3271 struct packet_offload *gro_find_receive_by_type(__be16 type); 3272 struct packet_offload *gro_find_complete_by_type(__be16 type); 3273 3274 static inline void napi_free_frags(struct napi_struct *napi) 3275 { 3276 kfree_skb(napi->skb); 3277 napi->skb = NULL; 3278 } 3279 3280 bool netdev_is_rx_handler_busy(struct net_device *dev); 3281 int netdev_rx_handler_register(struct net_device *dev, 3282 rx_handler_func_t *rx_handler, 3283 void *rx_handler_data); 3284 void netdev_rx_handler_unregister(struct net_device *dev); 3285 3286 bool dev_valid_name(const char *name); 3287 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3288 int dev_ethtool(struct net *net, struct ifreq *); 3289 unsigned int dev_get_flags(const struct net_device *); 3290 int __dev_change_flags(struct net_device *, unsigned int flags); 3291 int dev_change_flags(struct net_device *, unsigned int); 3292 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3293 unsigned int gchanges); 3294 int dev_change_name(struct net_device *, const char *); 3295 int dev_set_alias(struct net_device *, const char *, size_t); 3296 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3297 int __dev_set_mtu(struct net_device *, int); 3298 int dev_set_mtu(struct net_device *, int); 3299 void dev_set_group(struct net_device *, int); 3300 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3301 int dev_change_carrier(struct net_device *, bool new_carrier); 3302 int dev_get_phys_port_id(struct net_device *dev, 3303 struct netdev_phys_item_id *ppid); 3304 int dev_get_phys_port_name(struct net_device *dev, 3305 char *name, size_t len); 3306 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3307 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3308 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3309 struct netdev_queue *txq, int *ret); 3310 3311 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp); 3312 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3313 int fd, u32 flags); 3314 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id); 3315 3316 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3317 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3318 bool is_skb_forwardable(const struct net_device *dev, 3319 const struct sk_buff *skb); 3320 3321 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3322 struct sk_buff *skb) 3323 { 3324 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3325 unlikely(!is_skb_forwardable(dev, skb))) { 3326 atomic_long_inc(&dev->rx_dropped); 3327 kfree_skb(skb); 3328 return NET_RX_DROP; 3329 } 3330 3331 skb_scrub_packet(skb, true); 3332 skb->priority = 0; 3333 return 0; 3334 } 3335 3336 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3337 3338 extern int netdev_budget; 3339 extern unsigned int netdev_budget_usecs; 3340 3341 /* Called by rtnetlink.c:rtnl_unlock() */ 3342 void netdev_run_todo(void); 3343 3344 /** 3345 * dev_put - release reference to device 3346 * @dev: network device 3347 * 3348 * Release reference to device to allow it to be freed. 3349 */ 3350 static inline void dev_put(struct net_device *dev) 3351 { 3352 this_cpu_dec(*dev->pcpu_refcnt); 3353 } 3354 3355 /** 3356 * dev_hold - get reference to device 3357 * @dev: network device 3358 * 3359 * Hold reference to device to keep it from being freed. 3360 */ 3361 static inline void dev_hold(struct net_device *dev) 3362 { 3363 this_cpu_inc(*dev->pcpu_refcnt); 3364 } 3365 3366 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3367 * and _off may be called from IRQ context, but it is caller 3368 * who is responsible for serialization of these calls. 3369 * 3370 * The name carrier is inappropriate, these functions should really be 3371 * called netif_lowerlayer_*() because they represent the state of any 3372 * kind of lower layer not just hardware media. 3373 */ 3374 3375 void linkwatch_init_dev(struct net_device *dev); 3376 void linkwatch_fire_event(struct net_device *dev); 3377 void linkwatch_forget_dev(struct net_device *dev); 3378 3379 /** 3380 * netif_carrier_ok - test if carrier present 3381 * @dev: network device 3382 * 3383 * Check if carrier is present on device 3384 */ 3385 static inline bool netif_carrier_ok(const struct net_device *dev) 3386 { 3387 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3388 } 3389 3390 unsigned long dev_trans_start(struct net_device *dev); 3391 3392 void __netdev_watchdog_up(struct net_device *dev); 3393 3394 void netif_carrier_on(struct net_device *dev); 3395 3396 void netif_carrier_off(struct net_device *dev); 3397 3398 /** 3399 * netif_dormant_on - mark device as dormant. 3400 * @dev: network device 3401 * 3402 * Mark device as dormant (as per RFC2863). 3403 * 3404 * The dormant state indicates that the relevant interface is not 3405 * actually in a condition to pass packets (i.e., it is not 'up') but is 3406 * in a "pending" state, waiting for some external event. For "on- 3407 * demand" interfaces, this new state identifies the situation where the 3408 * interface is waiting for events to place it in the up state. 3409 */ 3410 static inline void netif_dormant_on(struct net_device *dev) 3411 { 3412 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3413 linkwatch_fire_event(dev); 3414 } 3415 3416 /** 3417 * netif_dormant_off - set device as not dormant. 3418 * @dev: network device 3419 * 3420 * Device is not in dormant state. 3421 */ 3422 static inline void netif_dormant_off(struct net_device *dev) 3423 { 3424 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3425 linkwatch_fire_event(dev); 3426 } 3427 3428 /** 3429 * netif_dormant - test if device is dormant 3430 * @dev: network device 3431 * 3432 * Check if device is dormant. 3433 */ 3434 static inline bool netif_dormant(const struct net_device *dev) 3435 { 3436 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3437 } 3438 3439 3440 /** 3441 * netif_oper_up - test if device is operational 3442 * @dev: network device 3443 * 3444 * Check if carrier is operational 3445 */ 3446 static inline bool netif_oper_up(const struct net_device *dev) 3447 { 3448 return (dev->operstate == IF_OPER_UP || 3449 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3450 } 3451 3452 /** 3453 * netif_device_present - is device available or removed 3454 * @dev: network device 3455 * 3456 * Check if device has not been removed from system. 3457 */ 3458 static inline bool netif_device_present(struct net_device *dev) 3459 { 3460 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3461 } 3462 3463 void netif_device_detach(struct net_device *dev); 3464 3465 void netif_device_attach(struct net_device *dev); 3466 3467 /* 3468 * Network interface message level settings 3469 */ 3470 3471 enum { 3472 NETIF_MSG_DRV = 0x0001, 3473 NETIF_MSG_PROBE = 0x0002, 3474 NETIF_MSG_LINK = 0x0004, 3475 NETIF_MSG_TIMER = 0x0008, 3476 NETIF_MSG_IFDOWN = 0x0010, 3477 NETIF_MSG_IFUP = 0x0020, 3478 NETIF_MSG_RX_ERR = 0x0040, 3479 NETIF_MSG_TX_ERR = 0x0080, 3480 NETIF_MSG_TX_QUEUED = 0x0100, 3481 NETIF_MSG_INTR = 0x0200, 3482 NETIF_MSG_TX_DONE = 0x0400, 3483 NETIF_MSG_RX_STATUS = 0x0800, 3484 NETIF_MSG_PKTDATA = 0x1000, 3485 NETIF_MSG_HW = 0x2000, 3486 NETIF_MSG_WOL = 0x4000, 3487 }; 3488 3489 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3490 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3491 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3492 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3493 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3494 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3495 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3496 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3497 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3498 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3499 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3500 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3501 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3502 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3503 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3504 3505 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3506 { 3507 /* use default */ 3508 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3509 return default_msg_enable_bits; 3510 if (debug_value == 0) /* no output */ 3511 return 0; 3512 /* set low N bits */ 3513 return (1 << debug_value) - 1; 3514 } 3515 3516 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3517 { 3518 spin_lock(&txq->_xmit_lock); 3519 txq->xmit_lock_owner = cpu; 3520 } 3521 3522 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3523 { 3524 __acquire(&txq->_xmit_lock); 3525 return true; 3526 } 3527 3528 static inline void __netif_tx_release(struct netdev_queue *txq) 3529 { 3530 __release(&txq->_xmit_lock); 3531 } 3532 3533 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3534 { 3535 spin_lock_bh(&txq->_xmit_lock); 3536 txq->xmit_lock_owner = smp_processor_id(); 3537 } 3538 3539 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3540 { 3541 bool ok = spin_trylock(&txq->_xmit_lock); 3542 if (likely(ok)) 3543 txq->xmit_lock_owner = smp_processor_id(); 3544 return ok; 3545 } 3546 3547 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3548 { 3549 txq->xmit_lock_owner = -1; 3550 spin_unlock(&txq->_xmit_lock); 3551 } 3552 3553 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3554 { 3555 txq->xmit_lock_owner = -1; 3556 spin_unlock_bh(&txq->_xmit_lock); 3557 } 3558 3559 static inline void txq_trans_update(struct netdev_queue *txq) 3560 { 3561 if (txq->xmit_lock_owner != -1) 3562 txq->trans_start = jiffies; 3563 } 3564 3565 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3566 static inline void netif_trans_update(struct net_device *dev) 3567 { 3568 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3569 3570 if (txq->trans_start != jiffies) 3571 txq->trans_start = jiffies; 3572 } 3573 3574 /** 3575 * netif_tx_lock - grab network device transmit lock 3576 * @dev: network device 3577 * 3578 * Get network device transmit lock 3579 */ 3580 static inline void netif_tx_lock(struct net_device *dev) 3581 { 3582 unsigned int i; 3583 int cpu; 3584 3585 spin_lock(&dev->tx_global_lock); 3586 cpu = smp_processor_id(); 3587 for (i = 0; i < dev->num_tx_queues; i++) { 3588 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3589 3590 /* We are the only thread of execution doing a 3591 * freeze, but we have to grab the _xmit_lock in 3592 * order to synchronize with threads which are in 3593 * the ->hard_start_xmit() handler and already 3594 * checked the frozen bit. 3595 */ 3596 __netif_tx_lock(txq, cpu); 3597 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3598 __netif_tx_unlock(txq); 3599 } 3600 } 3601 3602 static inline void netif_tx_lock_bh(struct net_device *dev) 3603 { 3604 local_bh_disable(); 3605 netif_tx_lock(dev); 3606 } 3607 3608 static inline void netif_tx_unlock(struct net_device *dev) 3609 { 3610 unsigned int i; 3611 3612 for (i = 0; i < dev->num_tx_queues; i++) { 3613 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3614 3615 /* No need to grab the _xmit_lock here. If the 3616 * queue is not stopped for another reason, we 3617 * force a schedule. 3618 */ 3619 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3620 netif_schedule_queue(txq); 3621 } 3622 spin_unlock(&dev->tx_global_lock); 3623 } 3624 3625 static inline void netif_tx_unlock_bh(struct net_device *dev) 3626 { 3627 netif_tx_unlock(dev); 3628 local_bh_enable(); 3629 } 3630 3631 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3632 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3633 __netif_tx_lock(txq, cpu); \ 3634 } else { \ 3635 __netif_tx_acquire(txq); \ 3636 } \ 3637 } 3638 3639 #define HARD_TX_TRYLOCK(dev, txq) \ 3640 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3641 __netif_tx_trylock(txq) : \ 3642 __netif_tx_acquire(txq)) 3643 3644 #define HARD_TX_UNLOCK(dev, txq) { \ 3645 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3646 __netif_tx_unlock(txq); \ 3647 } else { \ 3648 __netif_tx_release(txq); \ 3649 } \ 3650 } 3651 3652 static inline void netif_tx_disable(struct net_device *dev) 3653 { 3654 unsigned int i; 3655 int cpu; 3656 3657 local_bh_disable(); 3658 cpu = smp_processor_id(); 3659 for (i = 0; i < dev->num_tx_queues; i++) { 3660 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3661 3662 __netif_tx_lock(txq, cpu); 3663 netif_tx_stop_queue(txq); 3664 __netif_tx_unlock(txq); 3665 } 3666 local_bh_enable(); 3667 } 3668 3669 static inline void netif_addr_lock(struct net_device *dev) 3670 { 3671 spin_lock(&dev->addr_list_lock); 3672 } 3673 3674 static inline void netif_addr_lock_nested(struct net_device *dev) 3675 { 3676 int subclass = SINGLE_DEPTH_NESTING; 3677 3678 if (dev->netdev_ops->ndo_get_lock_subclass) 3679 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3680 3681 spin_lock_nested(&dev->addr_list_lock, subclass); 3682 } 3683 3684 static inline void netif_addr_lock_bh(struct net_device *dev) 3685 { 3686 spin_lock_bh(&dev->addr_list_lock); 3687 } 3688 3689 static inline void netif_addr_unlock(struct net_device *dev) 3690 { 3691 spin_unlock(&dev->addr_list_lock); 3692 } 3693 3694 static inline void netif_addr_unlock_bh(struct net_device *dev) 3695 { 3696 spin_unlock_bh(&dev->addr_list_lock); 3697 } 3698 3699 /* 3700 * dev_addrs walker. Should be used only for read access. Call with 3701 * rcu_read_lock held. 3702 */ 3703 #define for_each_dev_addr(dev, ha) \ 3704 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3705 3706 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3707 3708 void ether_setup(struct net_device *dev); 3709 3710 /* Support for loadable net-drivers */ 3711 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3712 unsigned char name_assign_type, 3713 void (*setup)(struct net_device *), 3714 unsigned int txqs, unsigned int rxqs); 3715 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3716 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3717 3718 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3719 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3720 count) 3721 3722 int register_netdev(struct net_device *dev); 3723 void unregister_netdev(struct net_device *dev); 3724 3725 /* General hardware address lists handling functions */ 3726 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3727 struct netdev_hw_addr_list *from_list, int addr_len); 3728 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3729 struct netdev_hw_addr_list *from_list, int addr_len); 3730 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3731 struct net_device *dev, 3732 int (*sync)(struct net_device *, const unsigned char *), 3733 int (*unsync)(struct net_device *, 3734 const unsigned char *)); 3735 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3736 struct net_device *dev, 3737 int (*unsync)(struct net_device *, 3738 const unsigned char *)); 3739 void __hw_addr_init(struct netdev_hw_addr_list *list); 3740 3741 /* Functions used for device addresses handling */ 3742 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3743 unsigned char addr_type); 3744 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3745 unsigned char addr_type); 3746 void dev_addr_flush(struct net_device *dev); 3747 int dev_addr_init(struct net_device *dev); 3748 3749 /* Functions used for unicast addresses handling */ 3750 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3751 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3752 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3753 int dev_uc_sync(struct net_device *to, struct net_device *from); 3754 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3755 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3756 void dev_uc_flush(struct net_device *dev); 3757 void dev_uc_init(struct net_device *dev); 3758 3759 /** 3760 * __dev_uc_sync - Synchonize device's unicast list 3761 * @dev: device to sync 3762 * @sync: function to call if address should be added 3763 * @unsync: function to call if address should be removed 3764 * 3765 * Add newly added addresses to the interface, and release 3766 * addresses that have been deleted. 3767 */ 3768 static inline int __dev_uc_sync(struct net_device *dev, 3769 int (*sync)(struct net_device *, 3770 const unsigned char *), 3771 int (*unsync)(struct net_device *, 3772 const unsigned char *)) 3773 { 3774 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3775 } 3776 3777 /** 3778 * __dev_uc_unsync - Remove synchronized addresses from device 3779 * @dev: device to sync 3780 * @unsync: function to call if address should be removed 3781 * 3782 * Remove all addresses that were added to the device by dev_uc_sync(). 3783 */ 3784 static inline void __dev_uc_unsync(struct net_device *dev, 3785 int (*unsync)(struct net_device *, 3786 const unsigned char *)) 3787 { 3788 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3789 } 3790 3791 /* Functions used for multicast addresses handling */ 3792 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3793 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3794 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3795 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3796 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3797 int dev_mc_sync(struct net_device *to, struct net_device *from); 3798 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3799 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3800 void dev_mc_flush(struct net_device *dev); 3801 void dev_mc_init(struct net_device *dev); 3802 3803 /** 3804 * __dev_mc_sync - Synchonize device's multicast list 3805 * @dev: device to sync 3806 * @sync: function to call if address should be added 3807 * @unsync: function to call if address should be removed 3808 * 3809 * Add newly added addresses to the interface, and release 3810 * addresses that have been deleted. 3811 */ 3812 static inline int __dev_mc_sync(struct net_device *dev, 3813 int (*sync)(struct net_device *, 3814 const unsigned char *), 3815 int (*unsync)(struct net_device *, 3816 const unsigned char *)) 3817 { 3818 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3819 } 3820 3821 /** 3822 * __dev_mc_unsync - Remove synchronized addresses from device 3823 * @dev: device to sync 3824 * @unsync: function to call if address should be removed 3825 * 3826 * Remove all addresses that were added to the device by dev_mc_sync(). 3827 */ 3828 static inline void __dev_mc_unsync(struct net_device *dev, 3829 int (*unsync)(struct net_device *, 3830 const unsigned char *)) 3831 { 3832 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3833 } 3834 3835 /* Functions used for secondary unicast and multicast support */ 3836 void dev_set_rx_mode(struct net_device *dev); 3837 void __dev_set_rx_mode(struct net_device *dev); 3838 int dev_set_promiscuity(struct net_device *dev, int inc); 3839 int dev_set_allmulti(struct net_device *dev, int inc); 3840 void netdev_state_change(struct net_device *dev); 3841 void netdev_notify_peers(struct net_device *dev); 3842 void netdev_features_change(struct net_device *dev); 3843 /* Load a device via the kmod */ 3844 void dev_load(struct net *net, const char *name); 3845 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3846 struct rtnl_link_stats64 *storage); 3847 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3848 const struct net_device_stats *netdev_stats); 3849 3850 extern int netdev_max_backlog; 3851 extern int netdev_tstamp_prequeue; 3852 extern int weight_p; 3853 extern int dev_weight_rx_bias; 3854 extern int dev_weight_tx_bias; 3855 extern int dev_rx_weight; 3856 extern int dev_tx_weight; 3857 3858 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3859 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3860 struct list_head **iter); 3861 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3862 struct list_head **iter); 3863 3864 /* iterate through upper list, must be called under RCU read lock */ 3865 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3866 for (iter = &(dev)->adj_list.upper, \ 3867 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3868 updev; \ 3869 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3870 3871 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3872 int (*fn)(struct net_device *upper_dev, 3873 void *data), 3874 void *data); 3875 3876 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3877 struct net_device *upper_dev); 3878 3879 void *netdev_lower_get_next_private(struct net_device *dev, 3880 struct list_head **iter); 3881 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3882 struct list_head **iter); 3883 3884 #define netdev_for_each_lower_private(dev, priv, iter) \ 3885 for (iter = (dev)->adj_list.lower.next, \ 3886 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3887 priv; \ 3888 priv = netdev_lower_get_next_private(dev, &(iter))) 3889 3890 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3891 for (iter = &(dev)->adj_list.lower, \ 3892 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3893 priv; \ 3894 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3895 3896 void *netdev_lower_get_next(struct net_device *dev, 3897 struct list_head **iter); 3898 3899 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3900 for (iter = (dev)->adj_list.lower.next, \ 3901 ldev = netdev_lower_get_next(dev, &(iter)); \ 3902 ldev; \ 3903 ldev = netdev_lower_get_next(dev, &(iter))) 3904 3905 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3906 struct list_head **iter); 3907 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3908 struct list_head **iter); 3909 3910 int netdev_walk_all_lower_dev(struct net_device *dev, 3911 int (*fn)(struct net_device *lower_dev, 3912 void *data), 3913 void *data); 3914 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3915 int (*fn)(struct net_device *lower_dev, 3916 void *data), 3917 void *data); 3918 3919 void *netdev_adjacent_get_private(struct list_head *adj_list); 3920 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3921 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3922 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3923 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3924 int netdev_master_upper_dev_link(struct net_device *dev, 3925 struct net_device *upper_dev, 3926 void *upper_priv, void *upper_info); 3927 void netdev_upper_dev_unlink(struct net_device *dev, 3928 struct net_device *upper_dev); 3929 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3930 void *netdev_lower_dev_get_private(struct net_device *dev, 3931 struct net_device *lower_dev); 3932 void netdev_lower_state_changed(struct net_device *lower_dev, 3933 void *lower_state_info); 3934 3935 /* RSS keys are 40 or 52 bytes long */ 3936 #define NETDEV_RSS_KEY_LEN 52 3937 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3938 void netdev_rss_key_fill(void *buffer, size_t len); 3939 3940 int dev_get_nest_level(struct net_device *dev); 3941 int skb_checksum_help(struct sk_buff *skb); 3942 int skb_crc32c_csum_help(struct sk_buff *skb); 3943 int skb_csum_hwoffload_help(struct sk_buff *skb, 3944 const netdev_features_t features); 3945 3946 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3947 netdev_features_t features, bool tx_path); 3948 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3949 netdev_features_t features); 3950 3951 struct netdev_bonding_info { 3952 ifslave slave; 3953 ifbond master; 3954 }; 3955 3956 struct netdev_notifier_bonding_info { 3957 struct netdev_notifier_info info; /* must be first */ 3958 struct netdev_bonding_info bonding_info; 3959 }; 3960 3961 void netdev_bonding_info_change(struct net_device *dev, 3962 struct netdev_bonding_info *bonding_info); 3963 3964 static inline 3965 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3966 { 3967 return __skb_gso_segment(skb, features, true); 3968 } 3969 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3970 3971 static inline bool can_checksum_protocol(netdev_features_t features, 3972 __be16 protocol) 3973 { 3974 if (protocol == htons(ETH_P_FCOE)) 3975 return !!(features & NETIF_F_FCOE_CRC); 3976 3977 /* Assume this is an IP checksum (not SCTP CRC) */ 3978 3979 if (features & NETIF_F_HW_CSUM) { 3980 /* Can checksum everything */ 3981 return true; 3982 } 3983 3984 switch (protocol) { 3985 case htons(ETH_P_IP): 3986 return !!(features & NETIF_F_IP_CSUM); 3987 case htons(ETH_P_IPV6): 3988 return !!(features & NETIF_F_IPV6_CSUM); 3989 default: 3990 return false; 3991 } 3992 } 3993 3994 #ifdef CONFIG_BUG 3995 void netdev_rx_csum_fault(struct net_device *dev); 3996 #else 3997 static inline void netdev_rx_csum_fault(struct net_device *dev) 3998 { 3999 } 4000 #endif 4001 /* rx skb timestamps */ 4002 void net_enable_timestamp(void); 4003 void net_disable_timestamp(void); 4004 4005 #ifdef CONFIG_PROC_FS 4006 int __init dev_proc_init(void); 4007 #else 4008 #define dev_proc_init() 0 4009 #endif 4010 4011 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4012 struct sk_buff *skb, struct net_device *dev, 4013 bool more) 4014 { 4015 skb->xmit_more = more ? 1 : 0; 4016 return ops->ndo_start_xmit(skb, dev); 4017 } 4018 4019 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4020 struct netdev_queue *txq, bool more) 4021 { 4022 const struct net_device_ops *ops = dev->netdev_ops; 4023 int rc; 4024 4025 rc = __netdev_start_xmit(ops, skb, dev, more); 4026 if (rc == NETDEV_TX_OK) 4027 txq_trans_update(txq); 4028 4029 return rc; 4030 } 4031 4032 int netdev_class_create_file_ns(struct class_attribute *class_attr, 4033 const void *ns); 4034 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 4035 const void *ns); 4036 4037 static inline int netdev_class_create_file(struct class_attribute *class_attr) 4038 { 4039 return netdev_class_create_file_ns(class_attr, NULL); 4040 } 4041 4042 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 4043 { 4044 netdev_class_remove_file_ns(class_attr, NULL); 4045 } 4046 4047 extern struct kobj_ns_type_operations net_ns_type_operations; 4048 4049 const char *netdev_drivername(const struct net_device *dev); 4050 4051 void linkwatch_run_queue(void); 4052 4053 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4054 netdev_features_t f2) 4055 { 4056 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4057 if (f1 & NETIF_F_HW_CSUM) 4058 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4059 else 4060 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4061 } 4062 4063 return f1 & f2; 4064 } 4065 4066 static inline netdev_features_t netdev_get_wanted_features( 4067 struct net_device *dev) 4068 { 4069 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4070 } 4071 netdev_features_t netdev_increment_features(netdev_features_t all, 4072 netdev_features_t one, netdev_features_t mask); 4073 4074 /* Allow TSO being used on stacked device : 4075 * Performing the GSO segmentation before last device 4076 * is a performance improvement. 4077 */ 4078 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4079 netdev_features_t mask) 4080 { 4081 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4082 } 4083 4084 int __netdev_update_features(struct net_device *dev); 4085 void netdev_update_features(struct net_device *dev); 4086 void netdev_change_features(struct net_device *dev); 4087 4088 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4089 struct net_device *dev); 4090 4091 netdev_features_t passthru_features_check(struct sk_buff *skb, 4092 struct net_device *dev, 4093 netdev_features_t features); 4094 netdev_features_t netif_skb_features(struct sk_buff *skb); 4095 4096 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4097 { 4098 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4099 4100 /* check flags correspondence */ 4101 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4102 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4103 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4104 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4105 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4106 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4107 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4108 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4109 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4110 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4111 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4112 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4113 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4114 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4115 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4116 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4117 4118 return (features & feature) == feature; 4119 } 4120 4121 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4122 { 4123 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4124 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4125 } 4126 4127 static inline bool netif_needs_gso(struct sk_buff *skb, 4128 netdev_features_t features) 4129 { 4130 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4131 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4132 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4133 } 4134 4135 static inline void netif_set_gso_max_size(struct net_device *dev, 4136 unsigned int size) 4137 { 4138 dev->gso_max_size = size; 4139 } 4140 4141 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4142 int pulled_hlen, u16 mac_offset, 4143 int mac_len) 4144 { 4145 skb->protocol = protocol; 4146 skb->encapsulation = 1; 4147 skb_push(skb, pulled_hlen); 4148 skb_reset_transport_header(skb); 4149 skb->mac_header = mac_offset; 4150 skb->network_header = skb->mac_header + mac_len; 4151 skb->mac_len = mac_len; 4152 } 4153 4154 static inline bool netif_is_macsec(const struct net_device *dev) 4155 { 4156 return dev->priv_flags & IFF_MACSEC; 4157 } 4158 4159 static inline bool netif_is_macvlan(const struct net_device *dev) 4160 { 4161 return dev->priv_flags & IFF_MACVLAN; 4162 } 4163 4164 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4165 { 4166 return dev->priv_flags & IFF_MACVLAN_PORT; 4167 } 4168 4169 static inline bool netif_is_ipvlan(const struct net_device *dev) 4170 { 4171 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4172 } 4173 4174 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4175 { 4176 return dev->priv_flags & IFF_IPVLAN_MASTER; 4177 } 4178 4179 static inline bool netif_is_bond_master(const struct net_device *dev) 4180 { 4181 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4182 } 4183 4184 static inline bool netif_is_bond_slave(const struct net_device *dev) 4185 { 4186 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4187 } 4188 4189 static inline bool netif_supports_nofcs(struct net_device *dev) 4190 { 4191 return dev->priv_flags & IFF_SUPP_NOFCS; 4192 } 4193 4194 static inline bool netif_is_l3_master(const struct net_device *dev) 4195 { 4196 return dev->priv_flags & IFF_L3MDEV_MASTER; 4197 } 4198 4199 static inline bool netif_is_l3_slave(const struct net_device *dev) 4200 { 4201 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4202 } 4203 4204 static inline bool netif_is_bridge_master(const struct net_device *dev) 4205 { 4206 return dev->priv_flags & IFF_EBRIDGE; 4207 } 4208 4209 static inline bool netif_is_bridge_port(const struct net_device *dev) 4210 { 4211 return dev->priv_flags & IFF_BRIDGE_PORT; 4212 } 4213 4214 static inline bool netif_is_ovs_master(const struct net_device *dev) 4215 { 4216 return dev->priv_flags & IFF_OPENVSWITCH; 4217 } 4218 4219 static inline bool netif_is_ovs_port(const struct net_device *dev) 4220 { 4221 return dev->priv_flags & IFF_OVS_DATAPATH; 4222 } 4223 4224 static inline bool netif_is_team_master(const struct net_device *dev) 4225 { 4226 return dev->priv_flags & IFF_TEAM; 4227 } 4228 4229 static inline bool netif_is_team_port(const struct net_device *dev) 4230 { 4231 return dev->priv_flags & IFF_TEAM_PORT; 4232 } 4233 4234 static inline bool netif_is_lag_master(const struct net_device *dev) 4235 { 4236 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4237 } 4238 4239 static inline bool netif_is_lag_port(const struct net_device *dev) 4240 { 4241 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4242 } 4243 4244 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4245 { 4246 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4247 } 4248 4249 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4250 static inline void netif_keep_dst(struct net_device *dev) 4251 { 4252 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4253 } 4254 4255 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4256 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4257 { 4258 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4259 return dev->priv_flags & IFF_MACSEC; 4260 } 4261 4262 extern struct pernet_operations __net_initdata loopback_net_ops; 4263 4264 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4265 4266 /* netdev_printk helpers, similar to dev_printk */ 4267 4268 static inline const char *netdev_name(const struct net_device *dev) 4269 { 4270 if (!dev->name[0] || strchr(dev->name, '%')) 4271 return "(unnamed net_device)"; 4272 return dev->name; 4273 } 4274 4275 static inline bool netdev_unregistering(const struct net_device *dev) 4276 { 4277 return dev->reg_state == NETREG_UNREGISTERING; 4278 } 4279 4280 static inline const char *netdev_reg_state(const struct net_device *dev) 4281 { 4282 switch (dev->reg_state) { 4283 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4284 case NETREG_REGISTERED: return ""; 4285 case NETREG_UNREGISTERING: return " (unregistering)"; 4286 case NETREG_UNREGISTERED: return " (unregistered)"; 4287 case NETREG_RELEASED: return " (released)"; 4288 case NETREG_DUMMY: return " (dummy)"; 4289 } 4290 4291 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4292 return " (unknown)"; 4293 } 4294 4295 __printf(3, 4) 4296 void netdev_printk(const char *level, const struct net_device *dev, 4297 const char *format, ...); 4298 __printf(2, 3) 4299 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4300 __printf(2, 3) 4301 void netdev_alert(const struct net_device *dev, const char *format, ...); 4302 __printf(2, 3) 4303 void netdev_crit(const struct net_device *dev, const char *format, ...); 4304 __printf(2, 3) 4305 void netdev_err(const struct net_device *dev, const char *format, ...); 4306 __printf(2, 3) 4307 void netdev_warn(const struct net_device *dev, const char *format, ...); 4308 __printf(2, 3) 4309 void netdev_notice(const struct net_device *dev, const char *format, ...); 4310 __printf(2, 3) 4311 void netdev_info(const struct net_device *dev, const char *format, ...); 4312 4313 #define MODULE_ALIAS_NETDEV(device) \ 4314 MODULE_ALIAS("netdev-" device) 4315 4316 #if defined(CONFIG_DYNAMIC_DEBUG) 4317 #define netdev_dbg(__dev, format, args...) \ 4318 do { \ 4319 dynamic_netdev_dbg(__dev, format, ##args); \ 4320 } while (0) 4321 #elif defined(DEBUG) 4322 #define netdev_dbg(__dev, format, args...) \ 4323 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4324 #else 4325 #define netdev_dbg(__dev, format, args...) \ 4326 ({ \ 4327 if (0) \ 4328 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4329 }) 4330 #endif 4331 4332 #if defined(VERBOSE_DEBUG) 4333 #define netdev_vdbg netdev_dbg 4334 #else 4335 4336 #define netdev_vdbg(dev, format, args...) \ 4337 ({ \ 4338 if (0) \ 4339 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4340 0; \ 4341 }) 4342 #endif 4343 4344 /* 4345 * netdev_WARN() acts like dev_printk(), but with the key difference 4346 * of using a WARN/WARN_ON to get the message out, including the 4347 * file/line information and a backtrace. 4348 */ 4349 #define netdev_WARN(dev, format, args...) \ 4350 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4351 netdev_reg_state(dev), ##args) 4352 4353 /* netif printk helpers, similar to netdev_printk */ 4354 4355 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4356 do { \ 4357 if (netif_msg_##type(priv)) \ 4358 netdev_printk(level, (dev), fmt, ##args); \ 4359 } while (0) 4360 4361 #define netif_level(level, priv, type, dev, fmt, args...) \ 4362 do { \ 4363 if (netif_msg_##type(priv)) \ 4364 netdev_##level(dev, fmt, ##args); \ 4365 } while (0) 4366 4367 #define netif_emerg(priv, type, dev, fmt, args...) \ 4368 netif_level(emerg, priv, type, dev, fmt, ##args) 4369 #define netif_alert(priv, type, dev, fmt, args...) \ 4370 netif_level(alert, priv, type, dev, fmt, ##args) 4371 #define netif_crit(priv, type, dev, fmt, args...) \ 4372 netif_level(crit, priv, type, dev, fmt, ##args) 4373 #define netif_err(priv, type, dev, fmt, args...) \ 4374 netif_level(err, priv, type, dev, fmt, ##args) 4375 #define netif_warn(priv, type, dev, fmt, args...) \ 4376 netif_level(warn, priv, type, dev, fmt, ##args) 4377 #define netif_notice(priv, type, dev, fmt, args...) \ 4378 netif_level(notice, priv, type, dev, fmt, ##args) 4379 #define netif_info(priv, type, dev, fmt, args...) \ 4380 netif_level(info, priv, type, dev, fmt, ##args) 4381 4382 #if defined(CONFIG_DYNAMIC_DEBUG) 4383 #define netif_dbg(priv, type, netdev, format, args...) \ 4384 do { \ 4385 if (netif_msg_##type(priv)) \ 4386 dynamic_netdev_dbg(netdev, format, ##args); \ 4387 } while (0) 4388 #elif defined(DEBUG) 4389 #define netif_dbg(priv, type, dev, format, args...) \ 4390 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4391 #else 4392 #define netif_dbg(priv, type, dev, format, args...) \ 4393 ({ \ 4394 if (0) \ 4395 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4396 0; \ 4397 }) 4398 #endif 4399 4400 /* if @cond then downgrade to debug, else print at @level */ 4401 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4402 do { \ 4403 if (cond) \ 4404 netif_dbg(priv, type, netdev, fmt, ##args); \ 4405 else \ 4406 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4407 } while (0) 4408 4409 #if defined(VERBOSE_DEBUG) 4410 #define netif_vdbg netif_dbg 4411 #else 4412 #define netif_vdbg(priv, type, dev, format, args...) \ 4413 ({ \ 4414 if (0) \ 4415 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4416 0; \ 4417 }) 4418 #endif 4419 4420 /* 4421 * The list of packet types we will receive (as opposed to discard) 4422 * and the routines to invoke. 4423 * 4424 * Why 16. Because with 16 the only overlap we get on a hash of the 4425 * low nibble of the protocol value is RARP/SNAP/X.25. 4426 * 4427 * NOTE: That is no longer true with the addition of VLAN tags. Not 4428 * sure which should go first, but I bet it won't make much 4429 * difference if we are running VLANs. The good news is that 4430 * this protocol won't be in the list unless compiled in, so 4431 * the average user (w/out VLANs) will not be adversely affected. 4432 * --BLG 4433 * 4434 * 0800 IP 4435 * 8100 802.1Q VLAN 4436 * 0001 802.3 4437 * 0002 AX.25 4438 * 0004 802.2 4439 * 8035 RARP 4440 * 0005 SNAP 4441 * 0805 X.25 4442 * 0806 ARP 4443 * 8137 IPX 4444 * 0009 Localtalk 4445 * 86DD IPv6 4446 */ 4447 #define PTYPE_HASH_SIZE (16) 4448 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4449 4450 #endif /* _LINUX_NETDEVICE_H */ 4451