xref: /linux-6.15/include/linux/netdevice.h (revision b8cd5831)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 #include <linux/rbtree.h>
51 #include <net/net_trackers.h>
52 
53 struct netpoll_info;
54 struct device;
55 struct ethtool_ops;
56 struct phy_device;
57 struct dsa_port;
58 struct ip_tunnel_parm;
59 struct macsec_context;
60 struct macsec_ops;
61 
62 struct sfp_bus;
63 /* 802.11 specific */
64 struct wireless_dev;
65 /* 802.15.4 specific */
66 struct wpan_dev;
67 struct mpls_dev;
68 /* UDP Tunnel offloads */
69 struct udp_tunnel_info;
70 struct udp_tunnel_nic_info;
71 struct udp_tunnel_nic;
72 struct bpf_prog;
73 struct xdp_buff;
74 
75 void synchronize_net(void);
76 void netdev_set_default_ethtool_ops(struct net_device *dev,
77 				    const struct ethtool_ops *ops);
78 
79 /* Backlog congestion levels */
80 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
81 #define NET_RX_DROP		1	/* packet dropped */
82 
83 #define MAX_NEST_DEV 8
84 
85 /*
86  * Transmit return codes: transmit return codes originate from three different
87  * namespaces:
88  *
89  * - qdisc return codes
90  * - driver transmit return codes
91  * - errno values
92  *
93  * Drivers are allowed to return any one of those in their hard_start_xmit()
94  * function. Real network devices commonly used with qdiscs should only return
95  * the driver transmit return codes though - when qdiscs are used, the actual
96  * transmission happens asynchronously, so the value is not propagated to
97  * higher layers. Virtual network devices transmit synchronously; in this case
98  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
99  * others are propagated to higher layers.
100  */
101 
102 /* qdisc ->enqueue() return codes. */
103 #define NET_XMIT_SUCCESS	0x00
104 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
105 #define NET_XMIT_CN		0x02	/* congestion notification	*/
106 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
107 
108 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
109  * indicates that the device will soon be dropping packets, or already drops
110  * some packets of the same priority; prompting us to send less aggressively. */
111 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
112 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
113 
114 /* Driver transmit return codes */
115 #define NETDEV_TX_MASK		0xf0
116 
117 enum netdev_tx {
118 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
119 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
120 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
121 };
122 typedef enum netdev_tx netdev_tx_t;
123 
124 /*
125  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
126  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
127  */
128 static inline bool dev_xmit_complete(int rc)
129 {
130 	/*
131 	 * Positive cases with an skb consumed by a driver:
132 	 * - successful transmission (rc == NETDEV_TX_OK)
133 	 * - error while transmitting (rc < 0)
134 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
135 	 */
136 	if (likely(rc < NET_XMIT_MASK))
137 		return true;
138 
139 	return false;
140 }
141 
142 /*
143  *	Compute the worst-case header length according to the protocols
144  *	used.
145  */
146 
147 #if defined(CONFIG_HYPERV_NET)
148 # define LL_MAX_HEADER 128
149 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 #  define LL_MAX_HEADER 128
152 # else
153 #  define LL_MAX_HEADER 96
154 # endif
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158 
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165 
166 /*
167  *	Old network device statistics. Fields are native words
168  *	(unsigned long) so they can be read and written atomically.
169  */
170 
171 struct net_device_stats {
172 	unsigned long	rx_packets;
173 	unsigned long	tx_packets;
174 	unsigned long	rx_bytes;
175 	unsigned long	tx_bytes;
176 	unsigned long	rx_errors;
177 	unsigned long	tx_errors;
178 	unsigned long	rx_dropped;
179 	unsigned long	tx_dropped;
180 	unsigned long	multicast;
181 	unsigned long	collisions;
182 	unsigned long	rx_length_errors;
183 	unsigned long	rx_over_errors;
184 	unsigned long	rx_crc_errors;
185 	unsigned long	rx_frame_errors;
186 	unsigned long	rx_fifo_errors;
187 	unsigned long	rx_missed_errors;
188 	unsigned long	tx_aborted_errors;
189 	unsigned long	tx_carrier_errors;
190 	unsigned long	tx_fifo_errors;
191 	unsigned long	tx_heartbeat_errors;
192 	unsigned long	tx_window_errors;
193 	unsigned long	rx_compressed;
194 	unsigned long	tx_compressed;
195 };
196 
197 
198 #include <linux/cache.h>
199 #include <linux/skbuff.h>
200 
201 #ifdef CONFIG_RPS
202 #include <linux/static_key.h>
203 extern struct static_key_false rps_needed;
204 extern struct static_key_false rfs_needed;
205 #endif
206 
207 struct neighbour;
208 struct neigh_parms;
209 struct sk_buff;
210 
211 struct netdev_hw_addr {
212 	struct list_head	list;
213 	struct rb_node		node;
214 	unsigned char		addr[MAX_ADDR_LEN];
215 	unsigned char		type;
216 #define NETDEV_HW_ADDR_T_LAN		1
217 #define NETDEV_HW_ADDR_T_SAN		2
218 #define NETDEV_HW_ADDR_T_UNICAST	3
219 #define NETDEV_HW_ADDR_T_MULTICAST	4
220 	bool			global_use;
221 	int			sync_cnt;
222 	int			refcount;
223 	int			synced;
224 	struct rcu_head		rcu_head;
225 };
226 
227 struct netdev_hw_addr_list {
228 	struct list_head	list;
229 	int			count;
230 
231 	/* Auxiliary tree for faster lookup on addition and deletion */
232 	struct rb_root		tree;
233 };
234 
235 #define netdev_hw_addr_list_count(l) ((l)->count)
236 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
237 #define netdev_hw_addr_list_for_each(ha, l) \
238 	list_for_each_entry(ha, &(l)->list, list)
239 
240 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
241 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
242 #define netdev_for_each_uc_addr(ha, dev) \
243 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
244 
245 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
246 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
247 #define netdev_for_each_mc_addr(ha, dev) \
248 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
249 
250 struct hh_cache {
251 	unsigned int	hh_len;
252 	seqlock_t	hh_lock;
253 
254 	/* cached hardware header; allow for machine alignment needs.        */
255 #define HH_DATA_MOD	16
256 #define HH_DATA_OFF(__len) \
257 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
258 #define HH_DATA_ALIGN(__len) \
259 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
260 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
261 };
262 
263 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
264  * Alternative is:
265  *   dev->hard_header_len ? (dev->hard_header_len +
266  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
267  *
268  * We could use other alignment values, but we must maintain the
269  * relationship HH alignment <= LL alignment.
270  */
271 #define LL_RESERVED_SPACE(dev) \
272 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
273 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
274 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275 
276 struct header_ops {
277 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
278 			   unsigned short type, const void *daddr,
279 			   const void *saddr, unsigned int len);
280 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
281 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
282 	void	(*cache_update)(struct hh_cache *hh,
283 				const struct net_device *dev,
284 				const unsigned char *haddr);
285 	bool	(*validate)(const char *ll_header, unsigned int len);
286 	__be16	(*parse_protocol)(const struct sk_buff *skb);
287 };
288 
289 /* These flag bits are private to the generic network queueing
290  * layer; they may not be explicitly referenced by any other
291  * code.
292  */
293 
294 enum netdev_state_t {
295 	__LINK_STATE_START,
296 	__LINK_STATE_PRESENT,
297 	__LINK_STATE_NOCARRIER,
298 	__LINK_STATE_LINKWATCH_PENDING,
299 	__LINK_STATE_DORMANT,
300 	__LINK_STATE_TESTING,
301 };
302 
303 struct gro_list {
304 	struct list_head	list;
305 	int			count;
306 };
307 
308 /*
309  * size of gro hash buckets, must less than bit number of
310  * napi_struct::gro_bitmask
311  */
312 #define GRO_HASH_BUCKETS	8
313 
314 /*
315  * Structure for NAPI scheduling similar to tasklet but with weighting
316  */
317 struct napi_struct {
318 	/* The poll_list must only be managed by the entity which
319 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
320 	 * whoever atomically sets that bit can add this napi_struct
321 	 * to the per-CPU poll_list, and whoever clears that bit
322 	 * can remove from the list right before clearing the bit.
323 	 */
324 	struct list_head	poll_list;
325 
326 	unsigned long		state;
327 	int			weight;
328 	int			defer_hard_irqs_count;
329 	unsigned long		gro_bitmask;
330 	int			(*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332 	int			poll_owner;
333 #endif
334 	struct net_device	*dev;
335 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
336 	struct sk_buff		*skb;
337 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
338 	int			rx_count; /* length of rx_list */
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 	struct task_struct	*thread;
344 };
345 
346 enum {
347 	NAPI_STATE_SCHED,		/* Poll is scheduled */
348 	NAPI_STATE_MISSED,		/* reschedule a napi */
349 	NAPI_STATE_DISABLE,		/* Disable pending */
350 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
351 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
352 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
353 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
354 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
355 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
356 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
357 };
358 
359 enum {
360 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
361 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
362 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
363 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
364 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
365 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
366 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
367 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
368 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
369 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_CONSUMED,
378 };
379 typedef enum gro_result gro_result_t;
380 
381 /*
382  * enum rx_handler_result - Possible return values for rx_handlers.
383  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384  * further.
385  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386  * case skb->dev was changed by rx_handler.
387  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389  *
390  * rx_handlers are functions called from inside __netif_receive_skb(), to do
391  * special processing of the skb, prior to delivery to protocol handlers.
392  *
393  * Currently, a net_device can only have a single rx_handler registered. Trying
394  * to register a second rx_handler will return -EBUSY.
395  *
396  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397  * To unregister a rx_handler on a net_device, use
398  * netdev_rx_handler_unregister().
399  *
400  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401  * do with the skb.
402  *
403  * If the rx_handler consumed the skb in some way, it should return
404  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405  * the skb to be delivered in some other way.
406  *
407  * If the rx_handler changed skb->dev, to divert the skb to another
408  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409  * new device will be called if it exists.
410  *
411  * If the rx_handler decides the skb should be ignored, it should return
412  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413  * are registered on exact device (ptype->dev == skb->dev).
414  *
415  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416  * delivered, it should return RX_HANDLER_PASS.
417  *
418  * A device without a registered rx_handler will behave as if rx_handler
419  * returned RX_HANDLER_PASS.
420  */
421 
422 enum rx_handler_result {
423 	RX_HANDLER_CONSUMED,
424 	RX_HANDLER_ANOTHER,
425 	RX_HANDLER_EXACT,
426 	RX_HANDLER_PASS,
427 };
428 typedef enum rx_handler_result rx_handler_result_t;
429 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430 
431 void __napi_schedule(struct napi_struct *n);
432 void __napi_schedule_irqoff(struct napi_struct *n);
433 
434 static inline bool napi_disable_pending(struct napi_struct *n)
435 {
436 	return test_bit(NAPI_STATE_DISABLE, &n->state);
437 }
438 
439 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442 }
443 
444 bool napi_schedule_prep(struct napi_struct *n);
445 
446 /**
447  *	napi_schedule - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Schedule NAPI poll routine to be called if it is not already
451  * running.
452  */
453 static inline void napi_schedule(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule(n);
457 }
458 
459 /**
460  *	napi_schedule_irqoff - schedule NAPI poll
461  *	@n: NAPI context
462  *
463  * Variant of napi_schedule(), assuming hard irqs are masked.
464  */
465 static inline void napi_schedule_irqoff(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule_irqoff(n);
469 }
470 
471 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
472 static inline bool napi_reschedule(struct napi_struct *napi)
473 {
474 	if (napi_schedule_prep(napi)) {
475 		__napi_schedule(napi);
476 		return true;
477 	}
478 	return false;
479 }
480 
481 bool napi_complete_done(struct napi_struct *n, int work_done);
482 /**
483  *	napi_complete - NAPI processing complete
484  *	@n: NAPI context
485  *
486  * Mark NAPI processing as complete.
487  * Consider using napi_complete_done() instead.
488  * Return false if device should avoid rearming interrupts.
489  */
490 static inline bool napi_complete(struct napi_struct *n)
491 {
492 	return napi_complete_done(n, 0);
493 }
494 
495 int dev_set_threaded(struct net_device *dev, bool threaded);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 void napi_enable(struct napi_struct *n);
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 /**
526  *	napi_if_scheduled_mark_missed - if napi is running, set the
527  *	NAPIF_STATE_MISSED
528  *	@n: NAPI context
529  *
530  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531  * NAPI is scheduled.
532  **/
533 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534 {
535 	unsigned long val, new;
536 
537 	do {
538 		val = READ_ONCE(n->state);
539 		if (val & NAPIF_STATE_DISABLE)
540 			return true;
541 
542 		if (!(val & NAPIF_STATE_SCHED))
543 			return false;
544 
545 		new = val | NAPIF_STATE_MISSED;
546 	} while (cmpxchg(&n->state, val, new) != val);
547 
548 	return true;
549 }
550 
551 enum netdev_queue_state_t {
552 	__QUEUE_STATE_DRV_XOFF,
553 	__QUEUE_STATE_STACK_XOFF,
554 	__QUEUE_STATE_FROZEN,
555 };
556 
557 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
558 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
559 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
560 
561 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563 					QUEUE_STATE_FROZEN)
564 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565 					QUEUE_STATE_FROZEN)
566 
567 /*
568  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
569  * netif_tx_* functions below are used to manipulate this flag.  The
570  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571  * queue independently.  The netif_xmit_*stopped functions below are called
572  * to check if the queue has been stopped by the driver or stack (either
573  * of the XOFF bits are set in the state).  Drivers should not need to call
574  * netif_xmit*stopped functions, they should only be using netif_tx_*.
575  */
576 
577 struct netdev_queue {
578 /*
579  * read-mostly part
580  */
581 	struct net_device	*dev;
582 	netdevice_tracker	dev_tracker;
583 
584 	struct Qdisc __rcu	*qdisc;
585 	struct Qdisc		*qdisc_sleeping;
586 #ifdef CONFIG_SYSFS
587 	struct kobject		kobj;
588 #endif
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	int			numa_node;
591 #endif
592 	unsigned long		tx_maxrate;
593 	/*
594 	 * Number of TX timeouts for this queue
595 	 * (/sys/class/net/DEV/Q/trans_timeout)
596 	 */
597 	atomic_long_t		trans_timeout;
598 
599 	/* Subordinate device that the queue has been assigned to */
600 	struct net_device	*sb_dev;
601 #ifdef CONFIG_XDP_SOCKETS
602 	struct xsk_buff_pool    *pool;
603 #endif
604 /*
605  * write-mostly part
606  */
607 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
608 	int			xmit_lock_owner;
609 	/*
610 	 * Time (in jiffies) of last Tx
611 	 */
612 	unsigned long		trans_start;
613 
614 	unsigned long		state;
615 
616 #ifdef CONFIG_BQL
617 	struct dql		dql;
618 #endif
619 } ____cacheline_aligned_in_smp;
620 
621 extern int sysctl_fb_tunnels_only_for_init_net;
622 extern int sysctl_devconf_inherit_init_net;
623 
624 /*
625  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
626  *                                     == 1 : For initns only
627  *                                     == 2 : For none.
628  */
629 static inline bool net_has_fallback_tunnels(const struct net *net)
630 {
631 	return !IS_ENABLED(CONFIG_SYSCTL) ||
632 	       !sysctl_fb_tunnels_only_for_init_net ||
633 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
634 }
635 
636 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
637 {
638 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
639 	return q->numa_node;
640 #else
641 	return NUMA_NO_NODE;
642 #endif
643 }
644 
645 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
646 {
647 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 	q->numa_node = node;
649 #endif
650 }
651 
652 #ifdef CONFIG_RPS
653 /*
654  * This structure holds an RPS map which can be of variable length.  The
655  * map is an array of CPUs.
656  */
657 struct rps_map {
658 	unsigned int len;
659 	struct rcu_head rcu;
660 	u16 cpus[];
661 };
662 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
663 
664 /*
665  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
666  * tail pointer for that CPU's input queue at the time of last enqueue, and
667  * a hardware filter index.
668  */
669 struct rps_dev_flow {
670 	u16 cpu;
671 	u16 filter;
672 	unsigned int last_qtail;
673 };
674 #define RPS_NO_FILTER 0xffff
675 
676 /*
677  * The rps_dev_flow_table structure contains a table of flow mappings.
678  */
679 struct rps_dev_flow_table {
680 	unsigned int mask;
681 	struct rcu_head rcu;
682 	struct rps_dev_flow flows[];
683 };
684 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
685     ((_num) * sizeof(struct rps_dev_flow)))
686 
687 /*
688  * The rps_sock_flow_table contains mappings of flows to the last CPU
689  * on which they were processed by the application (set in recvmsg).
690  * Each entry is a 32bit value. Upper part is the high-order bits
691  * of flow hash, lower part is CPU number.
692  * rps_cpu_mask is used to partition the space, depending on number of
693  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
694  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
695  * meaning we use 32-6=26 bits for the hash.
696  */
697 struct rps_sock_flow_table {
698 	u32	mask;
699 
700 	u32	ents[] ____cacheline_aligned_in_smp;
701 };
702 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
703 
704 #define RPS_NO_CPU 0xffff
705 
706 extern u32 rps_cpu_mask;
707 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
708 
709 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
710 					u32 hash)
711 {
712 	if (table && hash) {
713 		unsigned int index = hash & table->mask;
714 		u32 val = hash & ~rps_cpu_mask;
715 
716 		/* We only give a hint, preemption can change CPU under us */
717 		val |= raw_smp_processor_id();
718 
719 		if (table->ents[index] != val)
720 			table->ents[index] = val;
721 	}
722 }
723 
724 #ifdef CONFIG_RFS_ACCEL
725 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
726 			 u16 filter_id);
727 #endif
728 #endif /* CONFIG_RPS */
729 
730 /* This structure contains an instance of an RX queue. */
731 struct netdev_rx_queue {
732 	struct xdp_rxq_info		xdp_rxq;
733 #ifdef CONFIG_RPS
734 	struct rps_map __rcu		*rps_map;
735 	struct rps_dev_flow_table __rcu	*rps_flow_table;
736 #endif
737 	struct kobject			kobj;
738 	struct net_device		*dev;
739 	netdevice_tracker		dev_tracker;
740 
741 #ifdef CONFIG_XDP_SOCKETS
742 	struct xsk_buff_pool            *pool;
743 #endif
744 } ____cacheline_aligned_in_smp;
745 
746 /*
747  * RX queue sysfs structures and functions.
748  */
749 struct rx_queue_attribute {
750 	struct attribute attr;
751 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
752 	ssize_t (*store)(struct netdev_rx_queue *queue,
753 			 const char *buf, size_t len);
754 };
755 
756 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
757 enum xps_map_type {
758 	XPS_CPUS = 0,
759 	XPS_RXQS,
760 	XPS_MAPS_MAX,
761 };
762 
763 #ifdef CONFIG_XPS
764 /*
765  * This structure holds an XPS map which can be of variable length.  The
766  * map is an array of queues.
767  */
768 struct xps_map {
769 	unsigned int len;
770 	unsigned int alloc_len;
771 	struct rcu_head rcu;
772 	u16 queues[];
773 };
774 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776        - sizeof(struct xps_map)) / sizeof(u16))
777 
778 /*
779  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
780  *
781  * We keep track of the number of cpus/rxqs used when the struct is allocated,
782  * in nr_ids. This will help not accessing out-of-bound memory.
783  *
784  * We keep track of the number of traffic classes used when the struct is
785  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
786  * not crossing its upper bound, as the original dev->num_tc can be updated in
787  * the meantime.
788  */
789 struct xps_dev_maps {
790 	struct rcu_head rcu;
791 	unsigned int nr_ids;
792 	s16 num_tc;
793 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
794 };
795 
796 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
797 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
798 
799 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
800 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
801 
802 #endif /* CONFIG_XPS */
803 
804 #define TC_MAX_QUEUE	16
805 #define TC_BITMASK	15
806 /* HW offloaded queuing disciplines txq count and offset maps */
807 struct netdev_tc_txq {
808 	u16 count;
809 	u16 offset;
810 };
811 
812 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
813 /*
814  * This structure is to hold information about the device
815  * configured to run FCoE protocol stack.
816  */
817 struct netdev_fcoe_hbainfo {
818 	char	manufacturer[64];
819 	char	serial_number[64];
820 	char	hardware_version[64];
821 	char	driver_version[64];
822 	char	optionrom_version[64];
823 	char	firmware_version[64];
824 	char	model[256];
825 	char	model_description[256];
826 };
827 #endif
828 
829 #define MAX_PHYS_ITEM_ID_LEN 32
830 
831 /* This structure holds a unique identifier to identify some
832  * physical item (port for example) used by a netdevice.
833  */
834 struct netdev_phys_item_id {
835 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
836 	unsigned char id_len;
837 };
838 
839 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
840 					    struct netdev_phys_item_id *b)
841 {
842 	return a->id_len == b->id_len &&
843 	       memcmp(a->id, b->id, a->id_len) == 0;
844 }
845 
846 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
847 				       struct sk_buff *skb,
848 				       struct net_device *sb_dev);
849 
850 enum net_device_path_type {
851 	DEV_PATH_ETHERNET = 0,
852 	DEV_PATH_VLAN,
853 	DEV_PATH_BRIDGE,
854 	DEV_PATH_PPPOE,
855 	DEV_PATH_DSA,
856 };
857 
858 struct net_device_path {
859 	enum net_device_path_type	type;
860 	const struct net_device		*dev;
861 	union {
862 		struct {
863 			u16		id;
864 			__be16		proto;
865 			u8		h_dest[ETH_ALEN];
866 		} encap;
867 		struct {
868 			enum {
869 				DEV_PATH_BR_VLAN_KEEP,
870 				DEV_PATH_BR_VLAN_TAG,
871 				DEV_PATH_BR_VLAN_UNTAG,
872 				DEV_PATH_BR_VLAN_UNTAG_HW,
873 			}		vlan_mode;
874 			u16		vlan_id;
875 			__be16		vlan_proto;
876 		} bridge;
877 		struct {
878 			int port;
879 			u16 proto;
880 		} dsa;
881 	};
882 };
883 
884 #define NET_DEVICE_PATH_STACK_MAX	5
885 #define NET_DEVICE_PATH_VLAN_MAX	2
886 
887 struct net_device_path_stack {
888 	int			num_paths;
889 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
890 };
891 
892 struct net_device_path_ctx {
893 	const struct net_device *dev;
894 	const u8		*daddr;
895 
896 	int			num_vlans;
897 	struct {
898 		u16		id;
899 		__be16		proto;
900 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
901 };
902 
903 enum tc_setup_type {
904 	TC_SETUP_QDISC_MQPRIO,
905 	TC_SETUP_CLSU32,
906 	TC_SETUP_CLSFLOWER,
907 	TC_SETUP_CLSMATCHALL,
908 	TC_SETUP_CLSBPF,
909 	TC_SETUP_BLOCK,
910 	TC_SETUP_QDISC_CBS,
911 	TC_SETUP_QDISC_RED,
912 	TC_SETUP_QDISC_PRIO,
913 	TC_SETUP_QDISC_MQ,
914 	TC_SETUP_QDISC_ETF,
915 	TC_SETUP_ROOT_QDISC,
916 	TC_SETUP_QDISC_GRED,
917 	TC_SETUP_QDISC_TAPRIO,
918 	TC_SETUP_FT,
919 	TC_SETUP_QDISC_ETS,
920 	TC_SETUP_QDISC_TBF,
921 	TC_SETUP_QDISC_FIFO,
922 	TC_SETUP_QDISC_HTB,
923 	TC_SETUP_ACT,
924 };
925 
926 /* These structures hold the attributes of bpf state that are being passed
927  * to the netdevice through the bpf op.
928  */
929 enum bpf_netdev_command {
930 	/* Set or clear a bpf program used in the earliest stages of packet
931 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
932 	 * is responsible for calling bpf_prog_put on any old progs that are
933 	 * stored. In case of error, the callee need not release the new prog
934 	 * reference, but on success it takes ownership and must bpf_prog_put
935 	 * when it is no longer used.
936 	 */
937 	XDP_SETUP_PROG,
938 	XDP_SETUP_PROG_HW,
939 	/* BPF program for offload callbacks, invoked at program load time. */
940 	BPF_OFFLOAD_MAP_ALLOC,
941 	BPF_OFFLOAD_MAP_FREE,
942 	XDP_SETUP_XSK_POOL,
943 };
944 
945 struct bpf_prog_offload_ops;
946 struct netlink_ext_ack;
947 struct xdp_umem;
948 struct xdp_dev_bulk_queue;
949 struct bpf_xdp_link;
950 
951 enum bpf_xdp_mode {
952 	XDP_MODE_SKB = 0,
953 	XDP_MODE_DRV = 1,
954 	XDP_MODE_HW = 2,
955 	__MAX_XDP_MODE
956 };
957 
958 struct bpf_xdp_entity {
959 	struct bpf_prog *prog;
960 	struct bpf_xdp_link *link;
961 };
962 
963 struct netdev_bpf {
964 	enum bpf_netdev_command command;
965 	union {
966 		/* XDP_SETUP_PROG */
967 		struct {
968 			u32 flags;
969 			struct bpf_prog *prog;
970 			struct netlink_ext_ack *extack;
971 		};
972 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
973 		struct {
974 			struct bpf_offloaded_map *offmap;
975 		};
976 		/* XDP_SETUP_XSK_POOL */
977 		struct {
978 			struct xsk_buff_pool *pool;
979 			u16 queue_id;
980 		} xsk;
981 	};
982 };
983 
984 /* Flags for ndo_xsk_wakeup. */
985 #define XDP_WAKEUP_RX (1 << 0)
986 #define XDP_WAKEUP_TX (1 << 1)
987 
988 #ifdef CONFIG_XFRM_OFFLOAD
989 struct xfrmdev_ops {
990 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
991 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
992 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
993 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
994 				       struct xfrm_state *x);
995 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
996 };
997 #endif
998 
999 struct dev_ifalias {
1000 	struct rcu_head rcuhead;
1001 	char ifalias[];
1002 };
1003 
1004 struct devlink;
1005 struct tlsdev_ops;
1006 
1007 struct netdev_name_node {
1008 	struct hlist_node hlist;
1009 	struct list_head list;
1010 	struct net_device *dev;
1011 	const char *name;
1012 };
1013 
1014 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1015 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1016 
1017 struct netdev_net_notifier {
1018 	struct list_head list;
1019 	struct notifier_block *nb;
1020 };
1021 
1022 /*
1023  * This structure defines the management hooks for network devices.
1024  * The following hooks can be defined; unless noted otherwise, they are
1025  * optional and can be filled with a null pointer.
1026  *
1027  * int (*ndo_init)(struct net_device *dev);
1028  *     This function is called once when a network device is registered.
1029  *     The network device can use this for any late stage initialization
1030  *     or semantic validation. It can fail with an error code which will
1031  *     be propagated back to register_netdev.
1032  *
1033  * void (*ndo_uninit)(struct net_device *dev);
1034  *     This function is called when device is unregistered or when registration
1035  *     fails. It is not called if init fails.
1036  *
1037  * int (*ndo_open)(struct net_device *dev);
1038  *     This function is called when a network device transitions to the up
1039  *     state.
1040  *
1041  * int (*ndo_stop)(struct net_device *dev);
1042  *     This function is called when a network device transitions to the down
1043  *     state.
1044  *
1045  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1046  *                               struct net_device *dev);
1047  *	Called when a packet needs to be transmitted.
1048  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1049  *	the queue before that can happen; it's for obsolete devices and weird
1050  *	corner cases, but the stack really does a non-trivial amount
1051  *	of useless work if you return NETDEV_TX_BUSY.
1052  *	Required; cannot be NULL.
1053  *
1054  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1055  *					   struct net_device *dev
1056  *					   netdev_features_t features);
1057  *	Called by core transmit path to determine if device is capable of
1058  *	performing offload operations on a given packet. This is to give
1059  *	the device an opportunity to implement any restrictions that cannot
1060  *	be otherwise expressed by feature flags. The check is called with
1061  *	the set of features that the stack has calculated and it returns
1062  *	those the driver believes to be appropriate.
1063  *
1064  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1065  *                         struct net_device *sb_dev);
1066  *	Called to decide which queue to use when device supports multiple
1067  *	transmit queues.
1068  *
1069  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1070  *	This function is called to allow device receiver to make
1071  *	changes to configuration when multicast or promiscuous is enabled.
1072  *
1073  * void (*ndo_set_rx_mode)(struct net_device *dev);
1074  *	This function is called device changes address list filtering.
1075  *	If driver handles unicast address filtering, it should set
1076  *	IFF_UNICAST_FLT in its priv_flags.
1077  *
1078  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1079  *	This function  is called when the Media Access Control address
1080  *	needs to be changed. If this interface is not defined, the
1081  *	MAC address can not be changed.
1082  *
1083  * int (*ndo_validate_addr)(struct net_device *dev);
1084  *	Test if Media Access Control address is valid for the device.
1085  *
1086  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Old-style ioctl entry point. This is used internally by the
1088  *	appletalk and ieee802154 subsystems but is no longer called by
1089  *	the device ioctl handler.
1090  *
1091  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *	Used by the bonding driver for its device specific ioctls:
1093  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1094  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1095  *
1096  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1097  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1098  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1099  *
1100  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1101  *	Used to set network devices bus interface parameters. This interface
1102  *	is retained for legacy reasons; new devices should use the bus
1103  *	interface (PCI) for low level management.
1104  *
1105  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1106  *	Called when a user wants to change the Maximum Transfer Unit
1107  *	of a device.
1108  *
1109  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1110  *	Callback used when the transmitter has not made any progress
1111  *	for dev->watchdog ticks.
1112  *
1113  * void (*ndo_get_stats64)(struct net_device *dev,
1114  *                         struct rtnl_link_stats64 *storage);
1115  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1116  *	Called when a user wants to get the network device usage
1117  *	statistics. Drivers must do one of the following:
1118  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1119  *	   rtnl_link_stats64 structure passed by the caller.
1120  *	2. Define @ndo_get_stats to update a net_device_stats structure
1121  *	   (which should normally be dev->stats) and return a pointer to
1122  *	   it. The structure may be changed asynchronously only if each
1123  *	   field is written atomically.
1124  *	3. Update dev->stats asynchronously and atomically, and define
1125  *	   neither operation.
1126  *
1127  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1128  *	Return true if this device supports offload stats of this attr_id.
1129  *
1130  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1131  *	void *attr_data)
1132  *	Get statistics for offload operations by attr_id. Write it into the
1133  *	attr_data pointer.
1134  *
1135  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1136  *	If device supports VLAN filtering this function is called when a
1137  *	VLAN id is registered.
1138  *
1139  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1140  *	If device supports VLAN filtering this function is called when a
1141  *	VLAN id is unregistered.
1142  *
1143  * void (*ndo_poll_controller)(struct net_device *dev);
1144  *
1145  *	SR-IOV management functions.
1146  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1147  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1148  *			  u8 qos, __be16 proto);
1149  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1150  *			  int max_tx_rate);
1151  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1153  * int (*ndo_get_vf_config)(struct net_device *dev,
1154  *			    int vf, struct ifla_vf_info *ivf);
1155  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1156  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1157  *			  struct nlattr *port[]);
1158  *
1159  *      Enable or disable the VF ability to query its RSS Redirection Table and
1160  *      Hash Key. This is needed since on some devices VF share this information
1161  *      with PF and querying it may introduce a theoretical security risk.
1162  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1163  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1164  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1165  *		       void *type_data);
1166  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1167  *	This is always called from the stack with the rtnl lock held and netif
1168  *	tx queues stopped. This allows the netdevice to perform queue
1169  *	management safely.
1170  *
1171  *	Fiber Channel over Ethernet (FCoE) offload functions.
1172  * int (*ndo_fcoe_enable)(struct net_device *dev);
1173  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1174  *	so the underlying device can perform whatever needed configuration or
1175  *	initialization to support acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_disable)(struct net_device *dev);
1178  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1179  *	so the underlying device can perform whatever needed clean-ups to
1180  *	stop supporting acceleration of FCoE traffic.
1181  *
1182  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1183  *			     struct scatterlist *sgl, unsigned int sgc);
1184  *	Called when the FCoE Initiator wants to initialize an I/O that
1185  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1186  *	perform necessary setup and returns 1 to indicate the device is set up
1187  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1188  *
1189  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1190  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1191  *	indicated by the FC exchange id 'xid', so the underlying device can
1192  *	clean up and reuse resources for later DDP requests.
1193  *
1194  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1195  *			      struct scatterlist *sgl, unsigned int sgc);
1196  *	Called when the FCoE Target wants to initialize an I/O that
1197  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1198  *	perform necessary setup and returns 1 to indicate the device is set up
1199  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1200  *
1201  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1202  *			       struct netdev_fcoe_hbainfo *hbainfo);
1203  *	Called when the FCoE Protocol stack wants information on the underlying
1204  *	device. This information is utilized by the FCoE protocol stack to
1205  *	register attributes with Fiber Channel management service as per the
1206  *	FC-GS Fabric Device Management Information(FDMI) specification.
1207  *
1208  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1209  *	Called when the underlying device wants to override default World Wide
1210  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1211  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1212  *	protocol stack to use.
1213  *
1214  *	RFS acceleration.
1215  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1216  *			    u16 rxq_index, u32 flow_id);
1217  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1218  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1219  *	Return the filter ID on success, or a negative error code.
1220  *
1221  *	Slave management functions (for bridge, bonding, etc).
1222  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1223  *	Called to make another netdev an underling.
1224  *
1225  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1226  *	Called to release previously enslaved netdev.
1227  *
1228  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1229  *					    struct sk_buff *skb,
1230  *					    bool all_slaves);
1231  *	Get the xmit slave of master device. If all_slaves is true, function
1232  *	assume all the slaves can transmit.
1233  *
1234  *      Feature/offload setting functions.
1235  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1236  *		netdev_features_t features);
1237  *	Adjusts the requested feature flags according to device-specific
1238  *	constraints, and returns the resulting flags. Must not modify
1239  *	the device state.
1240  *
1241  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1242  *	Called to update device configuration to new features. Passed
1243  *	feature set might be less than what was returned by ndo_fix_features()).
1244  *	Must return >0 or -errno if it changed dev->features itself.
1245  *
1246  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *		      struct net_device *dev,
1248  *		      const unsigned char *addr, u16 vid, u16 flags,
1249  *		      struct netlink_ext_ack *extack);
1250  *	Adds an FDB entry to dev for addr.
1251  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1252  *		      struct net_device *dev,
1253  *		      const unsigned char *addr, u16 vid)
1254  *	Deletes the FDB entry from dev coresponding to addr.
1255  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1256  *		       struct net_device *dev, struct net_device *filter_dev,
1257  *		       int *idx)
1258  *	Used to add FDB entries to dump requests. Implementers should add
1259  *	entries to skb and update idx with the number of entries.
1260  *
1261  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1262  *			     u16 flags, struct netlink_ext_ack *extack)
1263  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1264  *			     struct net_device *dev, u32 filter_mask,
1265  *			     int nlflags)
1266  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1267  *			     u16 flags);
1268  *
1269  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1270  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1271  *	which do not represent real hardware may define this to allow their
1272  *	userspace components to manage their virtual carrier state. Devices
1273  *	that determine carrier state from physical hardware properties (eg
1274  *	network cables) or protocol-dependent mechanisms (eg
1275  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1276  *
1277  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1278  *			       struct netdev_phys_item_id *ppid);
1279  *	Called to get ID of physical port of this device. If driver does
1280  *	not implement this, it is assumed that the hw is not able to have
1281  *	multiple net devices on single physical port.
1282  *
1283  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1284  *				 struct netdev_phys_item_id *ppid)
1285  *	Called to get the parent ID of the physical port of this device.
1286  *
1287  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1288  *				 struct net_device *dev)
1289  *	Called by upper layer devices to accelerate switching or other
1290  *	station functionality into hardware. 'pdev is the lowerdev
1291  *	to use for the offload and 'dev' is the net device that will
1292  *	back the offload. Returns a pointer to the private structure
1293  *	the upper layer will maintain.
1294  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1295  *	Called by upper layer device to delete the station created
1296  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1297  *	the station and priv is the structure returned by the add
1298  *	operation.
1299  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1300  *			     int queue_index, u32 maxrate);
1301  *	Called when a user wants to set a max-rate limitation of specific
1302  *	TX queue.
1303  * int (*ndo_get_iflink)(const struct net_device *dev);
1304  *	Called to get the iflink value of this device.
1305  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1306  *	This function is used to get egress tunnel information for given skb.
1307  *	This is useful for retrieving outer tunnel header parameters while
1308  *	sampling packet.
1309  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1310  *	This function is used to specify the headroom that the skb must
1311  *	consider when allocation skb during packet reception. Setting
1312  *	appropriate rx headroom value allows avoiding skb head copy on
1313  *	forward. Setting a negative value resets the rx headroom to the
1314  *	default value.
1315  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1316  *	This function is used to set or query state related to XDP on the
1317  *	netdevice and manage BPF offload. See definition of
1318  *	enum bpf_netdev_command for details.
1319  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1320  *			u32 flags);
1321  *	This function is used to submit @n XDP packets for transmit on a
1322  *	netdevice. Returns number of frames successfully transmitted, frames
1323  *	that got dropped are freed/returned via xdp_return_frame().
1324  *	Returns negative number, means general error invoking ndo, meaning
1325  *	no frames were xmit'ed and core-caller will free all frames.
1326  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1327  *					        struct xdp_buff *xdp);
1328  *      Get the xmit slave of master device based on the xdp_buff.
1329  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1330  *      This function is used to wake up the softirq, ksoftirqd or kthread
1331  *	responsible for sending and/or receiving packets on a specific
1332  *	queue id bound to an AF_XDP socket. The flags field specifies if
1333  *	only RX, only Tx, or both should be woken up using the flags
1334  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1335  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1336  *	Get devlink port instance associated with a given netdev.
1337  *	Called with a reference on the netdevice and devlink locks only,
1338  *	rtnl_lock is not held.
1339  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1340  *			 int cmd);
1341  *	Add, change, delete or get information on an IPv4 tunnel.
1342  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1343  *	If a device is paired with a peer device, return the peer instance.
1344  *	The caller must be under RCU read context.
1345  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1346  *     Get the forwarding path to reach the real device from the HW destination address
1347  */
1348 struct net_device_ops {
1349 	int			(*ndo_init)(struct net_device *dev);
1350 	void			(*ndo_uninit)(struct net_device *dev);
1351 	int			(*ndo_open)(struct net_device *dev);
1352 	int			(*ndo_stop)(struct net_device *dev);
1353 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1354 						  struct net_device *dev);
1355 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1356 						      struct net_device *dev,
1357 						      netdev_features_t features);
1358 	u16			(*ndo_select_queue)(struct net_device *dev,
1359 						    struct sk_buff *skb,
1360 						    struct net_device *sb_dev);
1361 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1362 						       int flags);
1363 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1364 	int			(*ndo_set_mac_address)(struct net_device *dev,
1365 						       void *addr);
1366 	int			(*ndo_validate_addr)(struct net_device *dev);
1367 	int			(*ndo_do_ioctl)(struct net_device *dev,
1368 					        struct ifreq *ifr, int cmd);
1369 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1370 						 struct ifreq *ifr, int cmd);
1371 	int			(*ndo_siocbond)(struct net_device *dev,
1372 						struct ifreq *ifr, int cmd);
1373 	int			(*ndo_siocwandev)(struct net_device *dev,
1374 						  struct if_settings *ifs);
1375 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1376 						      struct ifreq *ifr,
1377 						      void __user *data, int cmd);
1378 	int			(*ndo_set_config)(struct net_device *dev,
1379 					          struct ifmap *map);
1380 	int			(*ndo_change_mtu)(struct net_device *dev,
1381 						  int new_mtu);
1382 	int			(*ndo_neigh_setup)(struct net_device *dev,
1383 						   struct neigh_parms *);
1384 	void			(*ndo_tx_timeout) (struct net_device *dev,
1385 						   unsigned int txqueue);
1386 
1387 	void			(*ndo_get_stats64)(struct net_device *dev,
1388 						   struct rtnl_link_stats64 *storage);
1389 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1390 	int			(*ndo_get_offload_stats)(int attr_id,
1391 							 const struct net_device *dev,
1392 							 void *attr_data);
1393 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1394 
1395 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1396 						       __be16 proto, u16 vid);
1397 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1398 						        __be16 proto, u16 vid);
1399 #ifdef CONFIG_NET_POLL_CONTROLLER
1400 	void                    (*ndo_poll_controller)(struct net_device *dev);
1401 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1402 						     struct netpoll_info *info);
1403 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1404 #endif
1405 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1406 						  int queue, u8 *mac);
1407 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1408 						   int queue, u16 vlan,
1409 						   u8 qos, __be16 proto);
1410 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1411 						   int vf, int min_tx_rate,
1412 						   int max_tx_rate);
1413 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1414 						       int vf, bool setting);
1415 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1416 						    int vf, bool setting);
1417 	int			(*ndo_get_vf_config)(struct net_device *dev,
1418 						     int vf,
1419 						     struct ifla_vf_info *ivf);
1420 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1421 							 int vf, int link_state);
1422 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1423 						    int vf,
1424 						    struct ifla_vf_stats
1425 						    *vf_stats);
1426 	int			(*ndo_set_vf_port)(struct net_device *dev,
1427 						   int vf,
1428 						   struct nlattr *port[]);
1429 	int			(*ndo_get_vf_port)(struct net_device *dev,
1430 						   int vf, struct sk_buff *skb);
1431 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1432 						   int vf,
1433 						   struct ifla_vf_guid *node_guid,
1434 						   struct ifla_vf_guid *port_guid);
1435 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1436 						   int vf, u64 guid,
1437 						   int guid_type);
1438 	int			(*ndo_set_vf_rss_query_en)(
1439 						   struct net_device *dev,
1440 						   int vf, bool setting);
1441 	int			(*ndo_setup_tc)(struct net_device *dev,
1442 						enum tc_setup_type type,
1443 						void *type_data);
1444 #if IS_ENABLED(CONFIG_FCOE)
1445 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1446 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1447 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1448 						      u16 xid,
1449 						      struct scatterlist *sgl,
1450 						      unsigned int sgc);
1451 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1452 						     u16 xid);
1453 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1454 						       u16 xid,
1455 						       struct scatterlist *sgl,
1456 						       unsigned int sgc);
1457 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1458 							struct netdev_fcoe_hbainfo *hbainfo);
1459 #endif
1460 
1461 #if IS_ENABLED(CONFIG_LIBFCOE)
1462 #define NETDEV_FCOE_WWNN 0
1463 #define NETDEV_FCOE_WWPN 1
1464 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1465 						    u64 *wwn, int type);
1466 #endif
1467 
1468 #ifdef CONFIG_RFS_ACCEL
1469 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1470 						     const struct sk_buff *skb,
1471 						     u16 rxq_index,
1472 						     u32 flow_id);
1473 #endif
1474 	int			(*ndo_add_slave)(struct net_device *dev,
1475 						 struct net_device *slave_dev,
1476 						 struct netlink_ext_ack *extack);
1477 	int			(*ndo_del_slave)(struct net_device *dev,
1478 						 struct net_device *slave_dev);
1479 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1480 						      struct sk_buff *skb,
1481 						      bool all_slaves);
1482 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1483 							struct sock *sk);
1484 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1485 						    netdev_features_t features);
1486 	int			(*ndo_set_features)(struct net_device *dev,
1487 						    netdev_features_t features);
1488 	int			(*ndo_neigh_construct)(struct net_device *dev,
1489 						       struct neighbour *n);
1490 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1491 						     struct neighbour *n);
1492 
1493 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1494 					       struct nlattr *tb[],
1495 					       struct net_device *dev,
1496 					       const unsigned char *addr,
1497 					       u16 vid,
1498 					       u16 flags,
1499 					       struct netlink_ext_ack *extack);
1500 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1501 					       struct nlattr *tb[],
1502 					       struct net_device *dev,
1503 					       const unsigned char *addr,
1504 					       u16 vid);
1505 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1506 						struct netlink_callback *cb,
1507 						struct net_device *dev,
1508 						struct net_device *filter_dev,
1509 						int *idx);
1510 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1511 					       struct nlattr *tb[],
1512 					       struct net_device *dev,
1513 					       const unsigned char *addr,
1514 					       u16 vid, u32 portid, u32 seq,
1515 					       struct netlink_ext_ack *extack);
1516 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1517 						      struct nlmsghdr *nlh,
1518 						      u16 flags,
1519 						      struct netlink_ext_ack *extack);
1520 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1521 						      u32 pid, u32 seq,
1522 						      struct net_device *dev,
1523 						      u32 filter_mask,
1524 						      int nlflags);
1525 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1526 						      struct nlmsghdr *nlh,
1527 						      u16 flags);
1528 	int			(*ndo_change_carrier)(struct net_device *dev,
1529 						      bool new_carrier);
1530 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1531 							struct netdev_phys_item_id *ppid);
1532 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1533 							  struct netdev_phys_item_id *ppid);
1534 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1535 							  char *name, size_t len);
1536 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1537 							struct net_device *dev);
1538 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1539 							void *priv);
1540 
1541 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1542 						      int queue_index,
1543 						      u32 maxrate);
1544 	int			(*ndo_get_iflink)(const struct net_device *dev);
1545 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1546 						       struct sk_buff *skb);
1547 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1548 						       int needed_headroom);
1549 	int			(*ndo_bpf)(struct net_device *dev,
1550 					   struct netdev_bpf *bpf);
1551 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1552 						struct xdp_frame **xdp,
1553 						u32 flags);
1554 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1555 							  struct xdp_buff *xdp);
1556 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1557 						  u32 queue_id, u32 flags);
1558 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1559 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1560 						  struct ip_tunnel_parm *p, int cmd);
1561 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1562 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1563                                                          struct net_device_path *path);
1564 };
1565 
1566 /**
1567  * enum netdev_priv_flags - &struct net_device priv_flags
1568  *
1569  * These are the &struct net_device, they are only set internally
1570  * by drivers and used in the kernel. These flags are invisible to
1571  * userspace; this means that the order of these flags can change
1572  * during any kernel release.
1573  *
1574  * You should have a pretty good reason to be extending these flags.
1575  *
1576  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1577  * @IFF_EBRIDGE: Ethernet bridging device
1578  * @IFF_BONDING: bonding master or slave
1579  * @IFF_ISATAP: ISATAP interface (RFC4214)
1580  * @IFF_WAN_HDLC: WAN HDLC device
1581  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1582  *	release skb->dst
1583  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1584  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1585  * @IFF_MACVLAN_PORT: device used as macvlan port
1586  * @IFF_BRIDGE_PORT: device used as bridge port
1587  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1588  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1589  * @IFF_UNICAST_FLT: Supports unicast filtering
1590  * @IFF_TEAM_PORT: device used as team port
1591  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1592  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1593  *	change when it's running
1594  * @IFF_MACVLAN: Macvlan device
1595  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1596  *	underlying stacked devices
1597  * @IFF_L3MDEV_MASTER: device is an L3 master device
1598  * @IFF_NO_QUEUE: device can run without qdisc attached
1599  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1600  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1601  * @IFF_TEAM: device is a team device
1602  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1603  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1604  *	entity (i.e. the master device for bridged veth)
1605  * @IFF_MACSEC: device is a MACsec device
1606  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1607  * @IFF_FAILOVER: device is a failover master device
1608  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1609  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1610  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1611  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1612  *	skb_headlen(skb) == 0 (data starts from frag0)
1613  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1614  */
1615 enum netdev_priv_flags {
1616 	IFF_802_1Q_VLAN			= 1<<0,
1617 	IFF_EBRIDGE			= 1<<1,
1618 	IFF_BONDING			= 1<<2,
1619 	IFF_ISATAP			= 1<<3,
1620 	IFF_WAN_HDLC			= 1<<4,
1621 	IFF_XMIT_DST_RELEASE		= 1<<5,
1622 	IFF_DONT_BRIDGE			= 1<<6,
1623 	IFF_DISABLE_NETPOLL		= 1<<7,
1624 	IFF_MACVLAN_PORT		= 1<<8,
1625 	IFF_BRIDGE_PORT			= 1<<9,
1626 	IFF_OVS_DATAPATH		= 1<<10,
1627 	IFF_TX_SKB_SHARING		= 1<<11,
1628 	IFF_UNICAST_FLT			= 1<<12,
1629 	IFF_TEAM_PORT			= 1<<13,
1630 	IFF_SUPP_NOFCS			= 1<<14,
1631 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1632 	IFF_MACVLAN			= 1<<16,
1633 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1634 	IFF_L3MDEV_MASTER		= 1<<18,
1635 	IFF_NO_QUEUE			= 1<<19,
1636 	IFF_OPENVSWITCH			= 1<<20,
1637 	IFF_L3MDEV_SLAVE		= 1<<21,
1638 	IFF_TEAM			= 1<<22,
1639 	IFF_RXFH_CONFIGURED		= 1<<23,
1640 	IFF_PHONY_HEADROOM		= 1<<24,
1641 	IFF_MACSEC			= 1<<25,
1642 	IFF_NO_RX_HANDLER		= 1<<26,
1643 	IFF_FAILOVER			= 1<<27,
1644 	IFF_FAILOVER_SLAVE		= 1<<28,
1645 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1646 	IFF_LIVE_RENAME_OK		= 1<<30,
1647 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1648 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1649 };
1650 
1651 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1652 #define IFF_EBRIDGE			IFF_EBRIDGE
1653 #define IFF_BONDING			IFF_BONDING
1654 #define IFF_ISATAP			IFF_ISATAP
1655 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1656 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1657 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1658 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1659 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1660 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1661 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1662 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1663 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1664 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1665 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1666 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1667 #define IFF_MACVLAN			IFF_MACVLAN
1668 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1669 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1670 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1671 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1672 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1673 #define IFF_TEAM			IFF_TEAM
1674 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1675 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1676 #define IFF_MACSEC			IFF_MACSEC
1677 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1678 #define IFF_FAILOVER			IFF_FAILOVER
1679 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1680 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1681 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1682 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1683 
1684 /* Specifies the type of the struct net_device::ml_priv pointer */
1685 enum netdev_ml_priv_type {
1686 	ML_PRIV_NONE,
1687 	ML_PRIV_CAN,
1688 };
1689 
1690 /**
1691  *	struct net_device - The DEVICE structure.
1692  *
1693  *	Actually, this whole structure is a big mistake.  It mixes I/O
1694  *	data with strictly "high-level" data, and it has to know about
1695  *	almost every data structure used in the INET module.
1696  *
1697  *	@name:	This is the first field of the "visible" part of this structure
1698  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1699  *		of the interface.
1700  *
1701  *	@name_node:	Name hashlist node
1702  *	@ifalias:	SNMP alias
1703  *	@mem_end:	Shared memory end
1704  *	@mem_start:	Shared memory start
1705  *	@base_addr:	Device I/O address
1706  *	@irq:		Device IRQ number
1707  *
1708  *	@state:		Generic network queuing layer state, see netdev_state_t
1709  *	@dev_list:	The global list of network devices
1710  *	@napi_list:	List entry used for polling NAPI devices
1711  *	@unreg_list:	List entry  when we are unregistering the
1712  *			device; see the function unregister_netdev
1713  *	@close_list:	List entry used when we are closing the device
1714  *	@ptype_all:     Device-specific packet handlers for all protocols
1715  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1716  *
1717  *	@adj_list:	Directly linked devices, like slaves for bonding
1718  *	@features:	Currently active device features
1719  *	@hw_features:	User-changeable features
1720  *
1721  *	@wanted_features:	User-requested features
1722  *	@vlan_features:		Mask of features inheritable by VLAN devices
1723  *
1724  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1725  *				This field indicates what encapsulation
1726  *				offloads the hardware is capable of doing,
1727  *				and drivers will need to set them appropriately.
1728  *
1729  *	@mpls_features:	Mask of features inheritable by MPLS
1730  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1731  *
1732  *	@ifindex:	interface index
1733  *	@group:		The group the device belongs to
1734  *
1735  *	@stats:		Statistics struct, which was left as a legacy, use
1736  *			rtnl_link_stats64 instead
1737  *
1738  *	@rx_dropped:	Dropped packets by core network,
1739  *			do not use this in drivers
1740  *	@tx_dropped:	Dropped packets by core network,
1741  *			do not use this in drivers
1742  *	@rx_nohandler:	nohandler dropped packets by core network on
1743  *			inactive devices, do not use this in drivers
1744  *	@carrier_up_count:	Number of times the carrier has been up
1745  *	@carrier_down_count:	Number of times the carrier has been down
1746  *
1747  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1748  *				instead of ioctl,
1749  *				see <net/iw_handler.h> for details.
1750  *	@wireless_data:	Instance data managed by the core of wireless extensions
1751  *
1752  *	@netdev_ops:	Includes several pointers to callbacks,
1753  *			if one wants to override the ndo_*() functions
1754  *	@ethtool_ops:	Management operations
1755  *	@l3mdev_ops:	Layer 3 master device operations
1756  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1757  *			discovery handling. Necessary for e.g. 6LoWPAN.
1758  *	@xfrmdev_ops:	Transformation offload operations
1759  *	@tlsdev_ops:	Transport Layer Security offload operations
1760  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1761  *			of Layer 2 headers.
1762  *
1763  *	@flags:		Interface flags (a la BSD)
1764  *	@priv_flags:	Like 'flags' but invisible to userspace,
1765  *			see if.h for the definitions
1766  *	@gflags:	Global flags ( kept as legacy )
1767  *	@padded:	How much padding added by alloc_netdev()
1768  *	@operstate:	RFC2863 operstate
1769  *	@link_mode:	Mapping policy to operstate
1770  *	@if_port:	Selectable AUI, TP, ...
1771  *	@dma:		DMA channel
1772  *	@mtu:		Interface MTU value
1773  *	@min_mtu:	Interface Minimum MTU value
1774  *	@max_mtu:	Interface Maximum MTU value
1775  *	@type:		Interface hardware type
1776  *	@hard_header_len: Maximum hardware header length.
1777  *	@min_header_len:  Minimum hardware header length
1778  *
1779  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1780  *			  cases can this be guaranteed
1781  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1782  *			  cases can this be guaranteed. Some cases also use
1783  *			  LL_MAX_HEADER instead to allocate the skb
1784  *
1785  *	interface address info:
1786  *
1787  * 	@perm_addr:		Permanent hw address
1788  * 	@addr_assign_type:	Hw address assignment type
1789  * 	@addr_len:		Hardware address length
1790  *	@upper_level:		Maximum depth level of upper devices.
1791  *	@lower_level:		Maximum depth level of lower devices.
1792  *	@neigh_priv_len:	Used in neigh_alloc()
1793  * 	@dev_id:		Used to differentiate devices that share
1794  * 				the same link layer address
1795  * 	@dev_port:		Used to differentiate devices that share
1796  * 				the same function
1797  *	@addr_list_lock:	XXX: need comments on this one
1798  *	@name_assign_type:	network interface name assignment type
1799  *	@uc_promisc:		Counter that indicates promiscuous mode
1800  *				has been enabled due to the need to listen to
1801  *				additional unicast addresses in a device that
1802  *				does not implement ndo_set_rx_mode()
1803  *	@uc:			unicast mac addresses
1804  *	@mc:			multicast mac addresses
1805  *	@dev_addrs:		list of device hw addresses
1806  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1807  *	@promiscuity:		Number of times the NIC is told to work in
1808  *				promiscuous mode; if it becomes 0 the NIC will
1809  *				exit promiscuous mode
1810  *	@allmulti:		Counter, enables or disables allmulticast mode
1811  *
1812  *	@vlan_info:	VLAN info
1813  *	@dsa_ptr:	dsa specific data
1814  *	@tipc_ptr:	TIPC specific data
1815  *	@atalk_ptr:	AppleTalk link
1816  *	@ip_ptr:	IPv4 specific data
1817  *	@dn_ptr:	DECnet specific data
1818  *	@ip6_ptr:	IPv6 specific data
1819  *	@ax25_ptr:	AX.25 specific data
1820  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1821  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1822  *			 device struct
1823  *	@mpls_ptr:	mpls_dev struct pointer
1824  *	@mctp_ptr:	MCTP specific data
1825  *
1826  *	@dev_addr:	Hw address (before bcast,
1827  *			because most packets are unicast)
1828  *
1829  *	@_rx:			Array of RX queues
1830  *	@num_rx_queues:		Number of RX queues
1831  *				allocated at register_netdev() time
1832  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1833  *	@xdp_prog:		XDP sockets filter program pointer
1834  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1835  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1836  *				allow to avoid NIC hard IRQ, on busy queues.
1837  *
1838  *	@rx_handler:		handler for received packets
1839  *	@rx_handler_data: 	XXX: need comments on this one
1840  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1841  *				ingress processing
1842  *	@ingress_queue:		XXX: need comments on this one
1843  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1844  *	@broadcast:		hw bcast address
1845  *
1846  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1847  *			indexed by RX queue number. Assigned by driver.
1848  *			This must only be set if the ndo_rx_flow_steer
1849  *			operation is defined
1850  *	@index_hlist:		Device index hash chain
1851  *
1852  *	@_tx:			Array of TX queues
1853  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1854  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1855  *	@qdisc:			Root qdisc from userspace point of view
1856  *	@tx_queue_len:		Max frames per queue allowed
1857  *	@tx_global_lock: 	XXX: need comments on this one
1858  *	@xdp_bulkq:		XDP device bulk queue
1859  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1860  *
1861  *	@xps_maps:	XXX: need comments on this one
1862  *	@miniq_egress:		clsact qdisc specific data for
1863  *				egress processing
1864  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1865  *	@qdisc_hash:		qdisc hash table
1866  *	@watchdog_timeo:	Represents the timeout that is used by
1867  *				the watchdog (see dev_watchdog())
1868  *	@watchdog_timer:	List of timers
1869  *
1870  *	@proto_down_reason:	reason a netdev interface is held down
1871  *	@pcpu_refcnt:		Number of references to this device
1872  *	@dev_refcnt:		Number of references to this device
1873  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1874  *	@todo_list:		Delayed register/unregister
1875  *	@link_watch_list:	XXX: need comments on this one
1876  *
1877  *	@reg_state:		Register/unregister state machine
1878  *	@dismantle:		Device is going to be freed
1879  *	@rtnl_link_state:	This enum represents the phases of creating
1880  *				a new link
1881  *
1882  *	@needs_free_netdev:	Should unregister perform free_netdev?
1883  *	@priv_destructor:	Called from unregister
1884  *	@npinfo:		XXX: need comments on this one
1885  * 	@nd_net:		Network namespace this network device is inside
1886  *
1887  * 	@ml_priv:	Mid-layer private
1888  *	@ml_priv_type:  Mid-layer private type
1889  * 	@lstats:	Loopback statistics
1890  * 	@tstats:	Tunnel statistics
1891  * 	@dstats:	Dummy statistics
1892  * 	@vstats:	Virtual ethernet statistics
1893  *
1894  *	@garp_port:	GARP
1895  *	@mrp_port:	MRP
1896  *
1897  *	@dev:		Class/net/name entry
1898  *	@sysfs_groups:	Space for optional device, statistics and wireless
1899  *			sysfs groups
1900  *
1901  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1902  *	@rtnl_link_ops:	Rtnl_link_ops
1903  *
1904  *	@gso_max_size:	Maximum size of generic segmentation offload
1905  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1906  *			NIC for GSO
1907  *
1908  *	@dcbnl_ops:	Data Center Bridging netlink ops
1909  *	@num_tc:	Number of traffic classes in the net device
1910  *	@tc_to_txq:	XXX: need comments on this one
1911  *	@prio_tc_map:	XXX: need comments on this one
1912  *
1913  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1914  *
1915  *	@priomap:	XXX: need comments on this one
1916  *	@phydev:	Physical device may attach itself
1917  *			for hardware timestamping
1918  *	@sfp_bus:	attached &struct sfp_bus structure.
1919  *
1920  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1921  *
1922  *	@proto_down:	protocol port state information can be sent to the
1923  *			switch driver and used to set the phys state of the
1924  *			switch port.
1925  *
1926  *	@wol_enabled:	Wake-on-LAN is enabled
1927  *
1928  *	@threaded:	napi threaded mode is enabled
1929  *
1930  *	@net_notifier_list:	List of per-net netdev notifier block
1931  *				that follow this device when it is moved
1932  *				to another network namespace.
1933  *
1934  *	@macsec_ops:    MACsec offloading ops
1935  *
1936  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1937  *				offload capabilities of the device
1938  *	@udp_tunnel_nic:	UDP tunnel offload state
1939  *	@xdp_state:		stores info on attached XDP BPF programs
1940  *
1941  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1942  *			dev->addr_list_lock.
1943  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1944  *			keep a list of interfaces to be deleted.
1945  *	@gro_max_size:	Maximum size of aggregated packet in generic
1946  *			receive offload (GRO)
1947  *
1948  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1949  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1950  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1951  *	@dev_registered_tracker:	tracker for reference held while
1952  *					registered
1953  *
1954  *	FIXME: cleanup struct net_device such that network protocol info
1955  *	moves out.
1956  */
1957 
1958 struct net_device {
1959 	char			name[IFNAMSIZ];
1960 	struct netdev_name_node	*name_node;
1961 	struct dev_ifalias	__rcu *ifalias;
1962 	/*
1963 	 *	I/O specific fields
1964 	 *	FIXME: Merge these and struct ifmap into one
1965 	 */
1966 	unsigned long		mem_end;
1967 	unsigned long		mem_start;
1968 	unsigned long		base_addr;
1969 
1970 	/*
1971 	 *	Some hardware also needs these fields (state,dev_list,
1972 	 *	napi_list,unreg_list,close_list) but they are not
1973 	 *	part of the usual set specified in Space.c.
1974 	 */
1975 
1976 	unsigned long		state;
1977 
1978 	struct list_head	dev_list;
1979 	struct list_head	napi_list;
1980 	struct list_head	unreg_list;
1981 	struct list_head	close_list;
1982 	struct list_head	ptype_all;
1983 	struct list_head	ptype_specific;
1984 
1985 	struct {
1986 		struct list_head upper;
1987 		struct list_head lower;
1988 	} adj_list;
1989 
1990 	/* Read-mostly cache-line for fast-path access */
1991 	unsigned int		flags;
1992 	unsigned long long	priv_flags;
1993 	const struct net_device_ops *netdev_ops;
1994 	int			ifindex;
1995 	unsigned short		gflags;
1996 	unsigned short		hard_header_len;
1997 
1998 	/* Note : dev->mtu is often read without holding a lock.
1999 	 * Writers usually hold RTNL.
2000 	 * It is recommended to use READ_ONCE() to annotate the reads,
2001 	 * and to use WRITE_ONCE() to annotate the writes.
2002 	 */
2003 	unsigned int		mtu;
2004 	unsigned short		needed_headroom;
2005 	unsigned short		needed_tailroom;
2006 
2007 	netdev_features_t	features;
2008 	netdev_features_t	hw_features;
2009 	netdev_features_t	wanted_features;
2010 	netdev_features_t	vlan_features;
2011 	netdev_features_t	hw_enc_features;
2012 	netdev_features_t	mpls_features;
2013 	netdev_features_t	gso_partial_features;
2014 
2015 	unsigned int		min_mtu;
2016 	unsigned int		max_mtu;
2017 	unsigned short		type;
2018 	unsigned char		min_header_len;
2019 	unsigned char		name_assign_type;
2020 
2021 	int			group;
2022 
2023 	struct net_device_stats	stats; /* not used by modern drivers */
2024 
2025 	atomic_long_t		rx_dropped;
2026 	atomic_long_t		tx_dropped;
2027 	atomic_long_t		rx_nohandler;
2028 
2029 	/* Stats to monitor link on/off, flapping */
2030 	atomic_t		carrier_up_count;
2031 	atomic_t		carrier_down_count;
2032 
2033 #ifdef CONFIG_WIRELESS_EXT
2034 	const struct iw_handler_def *wireless_handlers;
2035 	struct iw_public_data	*wireless_data;
2036 #endif
2037 	const struct ethtool_ops *ethtool_ops;
2038 #ifdef CONFIG_NET_L3_MASTER_DEV
2039 	const struct l3mdev_ops	*l3mdev_ops;
2040 #endif
2041 #if IS_ENABLED(CONFIG_IPV6)
2042 	const struct ndisc_ops *ndisc_ops;
2043 #endif
2044 
2045 #ifdef CONFIG_XFRM_OFFLOAD
2046 	const struct xfrmdev_ops *xfrmdev_ops;
2047 #endif
2048 
2049 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2050 	const struct tlsdev_ops *tlsdev_ops;
2051 #endif
2052 
2053 	const struct header_ops *header_ops;
2054 
2055 	unsigned char		operstate;
2056 	unsigned char		link_mode;
2057 
2058 	unsigned char		if_port;
2059 	unsigned char		dma;
2060 
2061 	/* Interface address info. */
2062 	unsigned char		perm_addr[MAX_ADDR_LEN];
2063 	unsigned char		addr_assign_type;
2064 	unsigned char		addr_len;
2065 	unsigned char		upper_level;
2066 	unsigned char		lower_level;
2067 
2068 	unsigned short		neigh_priv_len;
2069 	unsigned short          dev_id;
2070 	unsigned short          dev_port;
2071 	unsigned short		padded;
2072 
2073 	spinlock_t		addr_list_lock;
2074 	int			irq;
2075 
2076 	struct netdev_hw_addr_list	uc;
2077 	struct netdev_hw_addr_list	mc;
2078 	struct netdev_hw_addr_list	dev_addrs;
2079 
2080 #ifdef CONFIG_SYSFS
2081 	struct kset		*queues_kset;
2082 #endif
2083 #ifdef CONFIG_LOCKDEP
2084 	struct list_head	unlink_list;
2085 #endif
2086 	unsigned int		promiscuity;
2087 	unsigned int		allmulti;
2088 	bool			uc_promisc;
2089 #ifdef CONFIG_LOCKDEP
2090 	unsigned char		nested_level;
2091 #endif
2092 
2093 
2094 	/* Protocol-specific pointers */
2095 
2096 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2097 	struct vlan_info __rcu	*vlan_info;
2098 #endif
2099 #if IS_ENABLED(CONFIG_NET_DSA)
2100 	struct dsa_port		*dsa_ptr;
2101 #endif
2102 #if IS_ENABLED(CONFIG_TIPC)
2103 	struct tipc_bearer __rcu *tipc_ptr;
2104 #endif
2105 #if IS_ENABLED(CONFIG_ATALK)
2106 	void 			*atalk_ptr;
2107 #endif
2108 	struct in_device __rcu	*ip_ptr;
2109 #if IS_ENABLED(CONFIG_DECNET)
2110 	struct dn_dev __rcu     *dn_ptr;
2111 #endif
2112 	struct inet6_dev __rcu	*ip6_ptr;
2113 #if IS_ENABLED(CONFIG_AX25)
2114 	void			*ax25_ptr;
2115 #endif
2116 	struct wireless_dev	*ieee80211_ptr;
2117 	struct wpan_dev		*ieee802154_ptr;
2118 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2119 	struct mpls_dev __rcu	*mpls_ptr;
2120 #endif
2121 #if IS_ENABLED(CONFIG_MCTP)
2122 	struct mctp_dev __rcu	*mctp_ptr;
2123 #endif
2124 
2125 /*
2126  * Cache lines mostly used on receive path (including eth_type_trans())
2127  */
2128 	/* Interface address info used in eth_type_trans() */
2129 	const unsigned char	*dev_addr;
2130 
2131 	struct netdev_rx_queue	*_rx;
2132 	unsigned int		num_rx_queues;
2133 	unsigned int		real_num_rx_queues;
2134 
2135 	struct bpf_prog __rcu	*xdp_prog;
2136 	unsigned long		gro_flush_timeout;
2137 	int			napi_defer_hard_irqs;
2138 #define GRO_MAX_SIZE		65536
2139 	unsigned int		gro_max_size;
2140 	rx_handler_func_t __rcu	*rx_handler;
2141 	void __rcu		*rx_handler_data;
2142 
2143 #ifdef CONFIG_NET_CLS_ACT
2144 	struct mini_Qdisc __rcu	*miniq_ingress;
2145 #endif
2146 	struct netdev_queue __rcu *ingress_queue;
2147 #ifdef CONFIG_NETFILTER_INGRESS
2148 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2149 #endif
2150 
2151 	unsigned char		broadcast[MAX_ADDR_LEN];
2152 #ifdef CONFIG_RFS_ACCEL
2153 	struct cpu_rmap		*rx_cpu_rmap;
2154 #endif
2155 	struct hlist_node	index_hlist;
2156 
2157 /*
2158  * Cache lines mostly used on transmit path
2159  */
2160 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2161 	unsigned int		num_tx_queues;
2162 	unsigned int		real_num_tx_queues;
2163 	struct Qdisc __rcu	*qdisc;
2164 	unsigned int		tx_queue_len;
2165 	spinlock_t		tx_global_lock;
2166 
2167 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2168 
2169 #ifdef CONFIG_XPS
2170 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2171 #endif
2172 #ifdef CONFIG_NET_CLS_ACT
2173 	struct mini_Qdisc __rcu	*miniq_egress;
2174 #endif
2175 #ifdef CONFIG_NETFILTER_EGRESS
2176 	struct nf_hook_entries __rcu *nf_hooks_egress;
2177 #endif
2178 
2179 #ifdef CONFIG_NET_SCHED
2180 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2181 #endif
2182 	/* These may be needed for future network-power-down code. */
2183 	struct timer_list	watchdog_timer;
2184 	int			watchdog_timeo;
2185 
2186 	u32                     proto_down_reason;
2187 
2188 	struct list_head	todo_list;
2189 
2190 #ifdef CONFIG_PCPU_DEV_REFCNT
2191 	int __percpu		*pcpu_refcnt;
2192 #else
2193 	refcount_t		dev_refcnt;
2194 #endif
2195 	struct ref_tracker_dir	refcnt_tracker;
2196 
2197 	struct list_head	link_watch_list;
2198 
2199 	enum { NETREG_UNINITIALIZED=0,
2200 	       NETREG_REGISTERED,	/* completed register_netdevice */
2201 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2202 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2203 	       NETREG_RELEASED,		/* called free_netdev */
2204 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2205 	} reg_state:8;
2206 
2207 	bool dismantle;
2208 
2209 	enum {
2210 		RTNL_LINK_INITIALIZED,
2211 		RTNL_LINK_INITIALIZING,
2212 	} rtnl_link_state:16;
2213 
2214 	bool needs_free_netdev;
2215 	void (*priv_destructor)(struct net_device *dev);
2216 
2217 #ifdef CONFIG_NETPOLL
2218 	struct netpoll_info __rcu	*npinfo;
2219 #endif
2220 
2221 	possible_net_t			nd_net;
2222 
2223 	/* mid-layer private */
2224 	void				*ml_priv;
2225 	enum netdev_ml_priv_type	ml_priv_type;
2226 
2227 	union {
2228 		struct pcpu_lstats __percpu		*lstats;
2229 		struct pcpu_sw_netstats __percpu	*tstats;
2230 		struct pcpu_dstats __percpu		*dstats;
2231 	};
2232 
2233 #if IS_ENABLED(CONFIG_GARP)
2234 	struct garp_port __rcu	*garp_port;
2235 #endif
2236 #if IS_ENABLED(CONFIG_MRP)
2237 	struct mrp_port __rcu	*mrp_port;
2238 #endif
2239 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2240 	struct dm_hw_stat_delta __rcu *dm_private;
2241 #endif
2242 	struct device		dev;
2243 	const struct attribute_group *sysfs_groups[4];
2244 	const struct attribute_group *sysfs_rx_queue_group;
2245 
2246 	const struct rtnl_link_ops *rtnl_link_ops;
2247 
2248 	/* for setting kernel sock attribute on TCP connection setup */
2249 #define GSO_MAX_SIZE		65536
2250 	unsigned int		gso_max_size;
2251 #define GSO_MAX_SEGS		65535
2252 	u16			gso_max_segs;
2253 
2254 #ifdef CONFIG_DCB
2255 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2256 #endif
2257 	s16			num_tc;
2258 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2259 	u8			prio_tc_map[TC_BITMASK + 1];
2260 
2261 #if IS_ENABLED(CONFIG_FCOE)
2262 	unsigned int		fcoe_ddp_xid;
2263 #endif
2264 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2265 	struct netprio_map __rcu *priomap;
2266 #endif
2267 	struct phy_device	*phydev;
2268 	struct sfp_bus		*sfp_bus;
2269 	struct lock_class_key	*qdisc_tx_busylock;
2270 	bool			proto_down;
2271 	unsigned		wol_enabled:1;
2272 	unsigned		threaded:1;
2273 
2274 	struct list_head	net_notifier_list;
2275 
2276 #if IS_ENABLED(CONFIG_MACSEC)
2277 	/* MACsec management functions */
2278 	const struct macsec_ops *macsec_ops;
2279 #endif
2280 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2281 	struct udp_tunnel_nic	*udp_tunnel_nic;
2282 
2283 	/* protected by rtnl_lock */
2284 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2285 
2286 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2287 	netdevice_tracker	linkwatch_dev_tracker;
2288 	netdevice_tracker	watchdog_dev_tracker;
2289 	netdevice_tracker	dev_registered_tracker;
2290 };
2291 #define to_net_dev(d) container_of(d, struct net_device, dev)
2292 
2293 static inline bool netif_elide_gro(const struct net_device *dev)
2294 {
2295 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2296 		return true;
2297 	return false;
2298 }
2299 
2300 #define	NETDEV_ALIGN		32
2301 
2302 static inline
2303 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2304 {
2305 	return dev->prio_tc_map[prio & TC_BITMASK];
2306 }
2307 
2308 static inline
2309 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2310 {
2311 	if (tc >= dev->num_tc)
2312 		return -EINVAL;
2313 
2314 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2315 	return 0;
2316 }
2317 
2318 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2319 void netdev_reset_tc(struct net_device *dev);
2320 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2321 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2322 
2323 static inline
2324 int netdev_get_num_tc(struct net_device *dev)
2325 {
2326 	return dev->num_tc;
2327 }
2328 
2329 static inline void net_prefetch(void *p)
2330 {
2331 	prefetch(p);
2332 #if L1_CACHE_BYTES < 128
2333 	prefetch((u8 *)p + L1_CACHE_BYTES);
2334 #endif
2335 }
2336 
2337 static inline void net_prefetchw(void *p)
2338 {
2339 	prefetchw(p);
2340 #if L1_CACHE_BYTES < 128
2341 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2342 #endif
2343 }
2344 
2345 void netdev_unbind_sb_channel(struct net_device *dev,
2346 			      struct net_device *sb_dev);
2347 int netdev_bind_sb_channel_queue(struct net_device *dev,
2348 				 struct net_device *sb_dev,
2349 				 u8 tc, u16 count, u16 offset);
2350 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2351 static inline int netdev_get_sb_channel(struct net_device *dev)
2352 {
2353 	return max_t(int, -dev->num_tc, 0);
2354 }
2355 
2356 static inline
2357 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2358 					 unsigned int index)
2359 {
2360 	return &dev->_tx[index];
2361 }
2362 
2363 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2364 						    const struct sk_buff *skb)
2365 {
2366 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2367 }
2368 
2369 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2370 					    void (*f)(struct net_device *,
2371 						      struct netdev_queue *,
2372 						      void *),
2373 					    void *arg)
2374 {
2375 	unsigned int i;
2376 
2377 	for (i = 0; i < dev->num_tx_queues; i++)
2378 		f(dev, &dev->_tx[i], arg);
2379 }
2380 
2381 #define netdev_lockdep_set_classes(dev)				\
2382 {								\
2383 	static struct lock_class_key qdisc_tx_busylock_key;	\
2384 	static struct lock_class_key qdisc_xmit_lock_key;	\
2385 	static struct lock_class_key dev_addr_list_lock_key;	\
2386 	unsigned int i;						\
2387 								\
2388 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2389 	lockdep_set_class(&(dev)->addr_list_lock,		\
2390 			  &dev_addr_list_lock_key);		\
2391 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2392 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2393 				  &qdisc_xmit_lock_key);	\
2394 }
2395 
2396 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2397 		     struct net_device *sb_dev);
2398 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2399 					 struct sk_buff *skb,
2400 					 struct net_device *sb_dev);
2401 
2402 /* returns the headroom that the master device needs to take in account
2403  * when forwarding to this dev
2404  */
2405 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2406 {
2407 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2408 }
2409 
2410 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2411 {
2412 	if (dev->netdev_ops->ndo_set_rx_headroom)
2413 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2414 }
2415 
2416 /* set the device rx headroom to the dev's default */
2417 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2418 {
2419 	netdev_set_rx_headroom(dev, -1);
2420 }
2421 
2422 static inline void *netdev_get_ml_priv(struct net_device *dev,
2423 				       enum netdev_ml_priv_type type)
2424 {
2425 	if (dev->ml_priv_type != type)
2426 		return NULL;
2427 
2428 	return dev->ml_priv;
2429 }
2430 
2431 static inline void netdev_set_ml_priv(struct net_device *dev,
2432 				      void *ml_priv,
2433 				      enum netdev_ml_priv_type type)
2434 {
2435 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2436 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2437 	     dev->ml_priv_type, type);
2438 	WARN(!dev->ml_priv_type && dev->ml_priv,
2439 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2440 
2441 	dev->ml_priv = ml_priv;
2442 	dev->ml_priv_type = type;
2443 }
2444 
2445 /*
2446  * Net namespace inlines
2447  */
2448 static inline
2449 struct net *dev_net(const struct net_device *dev)
2450 {
2451 	return read_pnet(&dev->nd_net);
2452 }
2453 
2454 static inline
2455 void dev_net_set(struct net_device *dev, struct net *net)
2456 {
2457 	write_pnet(&dev->nd_net, net);
2458 }
2459 
2460 /**
2461  *	netdev_priv - access network device private data
2462  *	@dev: network device
2463  *
2464  * Get network device private data
2465  */
2466 static inline void *netdev_priv(const struct net_device *dev)
2467 {
2468 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2469 }
2470 
2471 /* Set the sysfs physical device reference for the network logical device
2472  * if set prior to registration will cause a symlink during initialization.
2473  */
2474 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2475 
2476 /* Set the sysfs device type for the network logical device to allow
2477  * fine-grained identification of different network device types. For
2478  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2479  */
2480 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2481 
2482 /* Default NAPI poll() weight
2483  * Device drivers are strongly advised to not use bigger value
2484  */
2485 #define NAPI_POLL_WEIGHT 64
2486 
2487 /**
2488  *	netif_napi_add - initialize a NAPI context
2489  *	@dev:  network device
2490  *	@napi: NAPI context
2491  *	@poll: polling function
2492  *	@weight: default weight
2493  *
2494  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2495  * *any* of the other NAPI-related functions.
2496  */
2497 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2498 		    int (*poll)(struct napi_struct *, int), int weight);
2499 
2500 /**
2501  *	netif_tx_napi_add - initialize a NAPI context
2502  *	@dev:  network device
2503  *	@napi: NAPI context
2504  *	@poll: polling function
2505  *	@weight: default weight
2506  *
2507  * This variant of netif_napi_add() should be used from drivers using NAPI
2508  * to exclusively poll a TX queue.
2509  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2510  */
2511 static inline void netif_tx_napi_add(struct net_device *dev,
2512 				     struct napi_struct *napi,
2513 				     int (*poll)(struct napi_struct *, int),
2514 				     int weight)
2515 {
2516 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2517 	netif_napi_add(dev, napi, poll, weight);
2518 }
2519 
2520 /**
2521  *  __netif_napi_del - remove a NAPI context
2522  *  @napi: NAPI context
2523  *
2524  * Warning: caller must observe RCU grace period before freeing memory
2525  * containing @napi. Drivers might want to call this helper to combine
2526  * all the needed RCU grace periods into a single one.
2527  */
2528 void __netif_napi_del(struct napi_struct *napi);
2529 
2530 /**
2531  *  netif_napi_del - remove a NAPI context
2532  *  @napi: NAPI context
2533  *
2534  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2535  */
2536 static inline void netif_napi_del(struct napi_struct *napi)
2537 {
2538 	__netif_napi_del(napi);
2539 	synchronize_net();
2540 }
2541 
2542 struct packet_type {
2543 	__be16			type;	/* This is really htons(ether_type). */
2544 	bool			ignore_outgoing;
2545 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2546 	netdevice_tracker	dev_tracker;
2547 	int			(*func) (struct sk_buff *,
2548 					 struct net_device *,
2549 					 struct packet_type *,
2550 					 struct net_device *);
2551 	void			(*list_func) (struct list_head *,
2552 					      struct packet_type *,
2553 					      struct net_device *);
2554 	bool			(*id_match)(struct packet_type *ptype,
2555 					    struct sock *sk);
2556 	struct net		*af_packet_net;
2557 	void			*af_packet_priv;
2558 	struct list_head	list;
2559 };
2560 
2561 struct offload_callbacks {
2562 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2563 						netdev_features_t features);
2564 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2565 						struct sk_buff *skb);
2566 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2567 };
2568 
2569 struct packet_offload {
2570 	__be16			 type;	/* This is really htons(ether_type). */
2571 	u16			 priority;
2572 	struct offload_callbacks callbacks;
2573 	struct list_head	 list;
2574 };
2575 
2576 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2577 struct pcpu_sw_netstats {
2578 	u64     rx_packets;
2579 	u64     rx_bytes;
2580 	u64     tx_packets;
2581 	u64     tx_bytes;
2582 	struct u64_stats_sync   syncp;
2583 } __aligned(4 * sizeof(u64));
2584 
2585 struct pcpu_lstats {
2586 	u64_stats_t packets;
2587 	u64_stats_t bytes;
2588 	struct u64_stats_sync syncp;
2589 } __aligned(2 * sizeof(u64));
2590 
2591 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2592 
2593 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2594 {
2595 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2596 
2597 	u64_stats_update_begin(&tstats->syncp);
2598 	tstats->rx_bytes += len;
2599 	tstats->rx_packets++;
2600 	u64_stats_update_end(&tstats->syncp);
2601 }
2602 
2603 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2604 					  unsigned int packets,
2605 					  unsigned int len)
2606 {
2607 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2608 
2609 	u64_stats_update_begin(&tstats->syncp);
2610 	tstats->tx_bytes += len;
2611 	tstats->tx_packets += packets;
2612 	u64_stats_update_end(&tstats->syncp);
2613 }
2614 
2615 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2616 {
2617 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2618 
2619 	u64_stats_update_begin(&lstats->syncp);
2620 	u64_stats_add(&lstats->bytes, len);
2621 	u64_stats_inc(&lstats->packets);
2622 	u64_stats_update_end(&lstats->syncp);
2623 }
2624 
2625 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2626 ({									\
2627 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2628 	if (pcpu_stats)	{						\
2629 		int __cpu;						\
2630 		for_each_possible_cpu(__cpu) {				\
2631 			typeof(type) *stat;				\
2632 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2633 			u64_stats_init(&stat->syncp);			\
2634 		}							\
2635 	}								\
2636 	pcpu_stats;							\
2637 })
2638 
2639 #define netdev_alloc_pcpu_stats(type)					\
2640 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2641 
2642 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2643 ({									\
2644 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2645 	if (pcpu_stats) {						\
2646 		int __cpu;						\
2647 		for_each_possible_cpu(__cpu) {				\
2648 			typeof(type) *stat;				\
2649 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2650 			u64_stats_init(&stat->syncp);			\
2651 		}							\
2652 	}								\
2653 	pcpu_stats;							\
2654 })
2655 
2656 enum netdev_lag_tx_type {
2657 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2658 	NETDEV_LAG_TX_TYPE_RANDOM,
2659 	NETDEV_LAG_TX_TYPE_BROADCAST,
2660 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2661 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2662 	NETDEV_LAG_TX_TYPE_HASH,
2663 };
2664 
2665 enum netdev_lag_hash {
2666 	NETDEV_LAG_HASH_NONE,
2667 	NETDEV_LAG_HASH_L2,
2668 	NETDEV_LAG_HASH_L34,
2669 	NETDEV_LAG_HASH_L23,
2670 	NETDEV_LAG_HASH_E23,
2671 	NETDEV_LAG_HASH_E34,
2672 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2673 	NETDEV_LAG_HASH_UNKNOWN,
2674 };
2675 
2676 struct netdev_lag_upper_info {
2677 	enum netdev_lag_tx_type tx_type;
2678 	enum netdev_lag_hash hash_type;
2679 };
2680 
2681 struct netdev_lag_lower_state_info {
2682 	u8 link_up : 1,
2683 	   tx_enabled : 1;
2684 };
2685 
2686 #include <linux/notifier.h>
2687 
2688 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2689  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2690  * adding new types.
2691  */
2692 enum netdev_cmd {
2693 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2694 	NETDEV_DOWN,
2695 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2696 				   detected a hardware crash and restarted
2697 				   - we can use this eg to kick tcp sessions
2698 				   once done */
2699 	NETDEV_CHANGE,		/* Notify device state change */
2700 	NETDEV_REGISTER,
2701 	NETDEV_UNREGISTER,
2702 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2703 	NETDEV_CHANGEADDR,	/* notify after the address change */
2704 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2705 	NETDEV_GOING_DOWN,
2706 	NETDEV_CHANGENAME,
2707 	NETDEV_FEAT_CHANGE,
2708 	NETDEV_BONDING_FAILOVER,
2709 	NETDEV_PRE_UP,
2710 	NETDEV_PRE_TYPE_CHANGE,
2711 	NETDEV_POST_TYPE_CHANGE,
2712 	NETDEV_POST_INIT,
2713 	NETDEV_RELEASE,
2714 	NETDEV_NOTIFY_PEERS,
2715 	NETDEV_JOIN,
2716 	NETDEV_CHANGEUPPER,
2717 	NETDEV_RESEND_IGMP,
2718 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2719 	NETDEV_CHANGEINFODATA,
2720 	NETDEV_BONDING_INFO,
2721 	NETDEV_PRECHANGEUPPER,
2722 	NETDEV_CHANGELOWERSTATE,
2723 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2724 	NETDEV_UDP_TUNNEL_DROP_INFO,
2725 	NETDEV_CHANGE_TX_QUEUE_LEN,
2726 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2727 	NETDEV_CVLAN_FILTER_DROP_INFO,
2728 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2729 	NETDEV_SVLAN_FILTER_DROP_INFO,
2730 };
2731 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2732 
2733 int register_netdevice_notifier(struct notifier_block *nb);
2734 int unregister_netdevice_notifier(struct notifier_block *nb);
2735 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2736 int unregister_netdevice_notifier_net(struct net *net,
2737 				      struct notifier_block *nb);
2738 int register_netdevice_notifier_dev_net(struct net_device *dev,
2739 					struct notifier_block *nb,
2740 					struct netdev_net_notifier *nn);
2741 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2742 					  struct notifier_block *nb,
2743 					  struct netdev_net_notifier *nn);
2744 
2745 struct netdev_notifier_info {
2746 	struct net_device	*dev;
2747 	struct netlink_ext_ack	*extack;
2748 };
2749 
2750 struct netdev_notifier_info_ext {
2751 	struct netdev_notifier_info info; /* must be first */
2752 	union {
2753 		u32 mtu;
2754 	} ext;
2755 };
2756 
2757 struct netdev_notifier_change_info {
2758 	struct netdev_notifier_info info; /* must be first */
2759 	unsigned int flags_changed;
2760 };
2761 
2762 struct netdev_notifier_changeupper_info {
2763 	struct netdev_notifier_info info; /* must be first */
2764 	struct net_device *upper_dev; /* new upper dev */
2765 	bool master; /* is upper dev master */
2766 	bool linking; /* is the notification for link or unlink */
2767 	void *upper_info; /* upper dev info */
2768 };
2769 
2770 struct netdev_notifier_changelowerstate_info {
2771 	struct netdev_notifier_info info; /* must be first */
2772 	void *lower_state_info; /* is lower dev state */
2773 };
2774 
2775 struct netdev_notifier_pre_changeaddr_info {
2776 	struct netdev_notifier_info info; /* must be first */
2777 	const unsigned char *dev_addr;
2778 };
2779 
2780 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2781 					     struct net_device *dev)
2782 {
2783 	info->dev = dev;
2784 	info->extack = NULL;
2785 }
2786 
2787 static inline struct net_device *
2788 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2789 {
2790 	return info->dev;
2791 }
2792 
2793 static inline struct netlink_ext_ack *
2794 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2795 {
2796 	return info->extack;
2797 }
2798 
2799 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2800 
2801 
2802 extern rwlock_t				dev_base_lock;		/* Device list lock */
2803 
2804 #define for_each_netdev(net, d)		\
2805 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2806 #define for_each_netdev_reverse(net, d)	\
2807 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2808 #define for_each_netdev_rcu(net, d)		\
2809 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2810 #define for_each_netdev_safe(net, d, n)	\
2811 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2812 #define for_each_netdev_continue(net, d)		\
2813 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2814 #define for_each_netdev_continue_reverse(net, d)		\
2815 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2816 						     dev_list)
2817 #define for_each_netdev_continue_rcu(net, d)		\
2818 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2819 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2820 		for_each_netdev_rcu(&init_net, slave)	\
2821 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2822 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2823 
2824 static inline struct net_device *next_net_device(struct net_device *dev)
2825 {
2826 	struct list_head *lh;
2827 	struct net *net;
2828 
2829 	net = dev_net(dev);
2830 	lh = dev->dev_list.next;
2831 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2832 }
2833 
2834 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2835 {
2836 	struct list_head *lh;
2837 	struct net *net;
2838 
2839 	net = dev_net(dev);
2840 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2841 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2842 }
2843 
2844 static inline struct net_device *first_net_device(struct net *net)
2845 {
2846 	return list_empty(&net->dev_base_head) ? NULL :
2847 		net_device_entry(net->dev_base_head.next);
2848 }
2849 
2850 static inline struct net_device *first_net_device_rcu(struct net *net)
2851 {
2852 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2853 
2854 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2855 }
2856 
2857 int netdev_boot_setup_check(struct net_device *dev);
2858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2859 				       const char *hwaddr);
2860 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2861 void dev_add_pack(struct packet_type *pt);
2862 void dev_remove_pack(struct packet_type *pt);
2863 void __dev_remove_pack(struct packet_type *pt);
2864 void dev_add_offload(struct packet_offload *po);
2865 void dev_remove_offload(struct packet_offload *po);
2866 
2867 int dev_get_iflink(const struct net_device *dev);
2868 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2869 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2870 			  struct net_device_path_stack *stack);
2871 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2872 				      unsigned short mask);
2873 struct net_device *dev_get_by_name(struct net *net, const char *name);
2874 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2875 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2876 bool netdev_name_in_use(struct net *net, const char *name);
2877 int dev_alloc_name(struct net_device *dev, const char *name);
2878 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2879 void dev_close(struct net_device *dev);
2880 void dev_close_many(struct list_head *head, bool unlink);
2881 void dev_disable_lro(struct net_device *dev);
2882 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2883 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2884 		     struct net_device *sb_dev);
2885 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2886 		       struct net_device *sb_dev);
2887 
2888 int dev_queue_xmit(struct sk_buff *skb);
2889 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2890 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2891 
2892 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2893 {
2894 	int ret;
2895 
2896 	ret = __dev_direct_xmit(skb, queue_id);
2897 	if (!dev_xmit_complete(ret))
2898 		kfree_skb(skb);
2899 	return ret;
2900 }
2901 
2902 int register_netdevice(struct net_device *dev);
2903 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2904 void unregister_netdevice_many(struct list_head *head);
2905 static inline void unregister_netdevice(struct net_device *dev)
2906 {
2907 	unregister_netdevice_queue(dev, NULL);
2908 }
2909 
2910 int netdev_refcnt_read(const struct net_device *dev);
2911 void free_netdev(struct net_device *dev);
2912 void netdev_freemem(struct net_device *dev);
2913 int init_dummy_netdev(struct net_device *dev);
2914 
2915 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2916 					 struct sk_buff *skb,
2917 					 bool all_slaves);
2918 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2919 					    struct sock *sk);
2920 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2921 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2922 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2923 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2924 int netdev_get_name(struct net *net, char *name, int ifindex);
2925 int dev_restart(struct net_device *dev);
2926 
2927 
2928 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2929 				  unsigned short type,
2930 				  const void *daddr, const void *saddr,
2931 				  unsigned int len)
2932 {
2933 	if (!dev->header_ops || !dev->header_ops->create)
2934 		return 0;
2935 
2936 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2937 }
2938 
2939 static inline int dev_parse_header(const struct sk_buff *skb,
2940 				   unsigned char *haddr)
2941 {
2942 	const struct net_device *dev = skb->dev;
2943 
2944 	if (!dev->header_ops || !dev->header_ops->parse)
2945 		return 0;
2946 	return dev->header_ops->parse(skb, haddr);
2947 }
2948 
2949 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2950 {
2951 	const struct net_device *dev = skb->dev;
2952 
2953 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2954 		return 0;
2955 	return dev->header_ops->parse_protocol(skb);
2956 }
2957 
2958 /* ll_header must have at least hard_header_len allocated */
2959 static inline bool dev_validate_header(const struct net_device *dev,
2960 				       char *ll_header, int len)
2961 {
2962 	if (likely(len >= dev->hard_header_len))
2963 		return true;
2964 	if (len < dev->min_header_len)
2965 		return false;
2966 
2967 	if (capable(CAP_SYS_RAWIO)) {
2968 		memset(ll_header + len, 0, dev->hard_header_len - len);
2969 		return true;
2970 	}
2971 
2972 	if (dev->header_ops && dev->header_ops->validate)
2973 		return dev->header_ops->validate(ll_header, len);
2974 
2975 	return false;
2976 }
2977 
2978 static inline bool dev_has_header(const struct net_device *dev)
2979 {
2980 	return dev->header_ops && dev->header_ops->create;
2981 }
2982 
2983 #ifdef CONFIG_NET_FLOW_LIMIT
2984 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2985 struct sd_flow_limit {
2986 	u64			count;
2987 	unsigned int		num_buckets;
2988 	unsigned int		history_head;
2989 	u16			history[FLOW_LIMIT_HISTORY];
2990 	u8			buckets[];
2991 };
2992 
2993 extern int netdev_flow_limit_table_len;
2994 #endif /* CONFIG_NET_FLOW_LIMIT */
2995 
2996 /*
2997  * Incoming packets are placed on per-CPU queues
2998  */
2999 struct softnet_data {
3000 	struct list_head	poll_list;
3001 	struct sk_buff_head	process_queue;
3002 
3003 	/* stats */
3004 	unsigned int		processed;
3005 	unsigned int		time_squeeze;
3006 	unsigned int		received_rps;
3007 #ifdef CONFIG_RPS
3008 	struct softnet_data	*rps_ipi_list;
3009 #endif
3010 #ifdef CONFIG_NET_FLOW_LIMIT
3011 	struct sd_flow_limit __rcu *flow_limit;
3012 #endif
3013 	struct Qdisc		*output_queue;
3014 	struct Qdisc		**output_queue_tailp;
3015 	struct sk_buff		*completion_queue;
3016 #ifdef CONFIG_XFRM_OFFLOAD
3017 	struct sk_buff_head	xfrm_backlog;
3018 #endif
3019 	/* written and read only by owning cpu: */
3020 	struct {
3021 		u16 recursion;
3022 		u8  more;
3023 	} xmit;
3024 #ifdef CONFIG_RPS
3025 	/* input_queue_head should be written by cpu owning this struct,
3026 	 * and only read by other cpus. Worth using a cache line.
3027 	 */
3028 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3029 
3030 	/* Elements below can be accessed between CPUs for RPS/RFS */
3031 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3032 	struct softnet_data	*rps_ipi_next;
3033 	unsigned int		cpu;
3034 	unsigned int		input_queue_tail;
3035 #endif
3036 	unsigned int		dropped;
3037 	struct sk_buff_head	input_pkt_queue;
3038 	struct napi_struct	backlog;
3039 
3040 };
3041 
3042 static inline void input_queue_head_incr(struct softnet_data *sd)
3043 {
3044 #ifdef CONFIG_RPS
3045 	sd->input_queue_head++;
3046 #endif
3047 }
3048 
3049 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3050 					      unsigned int *qtail)
3051 {
3052 #ifdef CONFIG_RPS
3053 	*qtail = ++sd->input_queue_tail;
3054 #endif
3055 }
3056 
3057 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3058 
3059 static inline int dev_recursion_level(void)
3060 {
3061 	return this_cpu_read(softnet_data.xmit.recursion);
3062 }
3063 
3064 #define XMIT_RECURSION_LIMIT	8
3065 static inline bool dev_xmit_recursion(void)
3066 {
3067 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3068 			XMIT_RECURSION_LIMIT);
3069 }
3070 
3071 static inline void dev_xmit_recursion_inc(void)
3072 {
3073 	__this_cpu_inc(softnet_data.xmit.recursion);
3074 }
3075 
3076 static inline void dev_xmit_recursion_dec(void)
3077 {
3078 	__this_cpu_dec(softnet_data.xmit.recursion);
3079 }
3080 
3081 void __netif_schedule(struct Qdisc *q);
3082 void netif_schedule_queue(struct netdev_queue *txq);
3083 
3084 static inline void netif_tx_schedule_all(struct net_device *dev)
3085 {
3086 	unsigned int i;
3087 
3088 	for (i = 0; i < dev->num_tx_queues; i++)
3089 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3090 }
3091 
3092 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3093 {
3094 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3095 }
3096 
3097 /**
3098  *	netif_start_queue - allow transmit
3099  *	@dev: network device
3100  *
3101  *	Allow upper layers to call the device hard_start_xmit routine.
3102  */
3103 static inline void netif_start_queue(struct net_device *dev)
3104 {
3105 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3106 }
3107 
3108 static inline void netif_tx_start_all_queues(struct net_device *dev)
3109 {
3110 	unsigned int i;
3111 
3112 	for (i = 0; i < dev->num_tx_queues; i++) {
3113 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3114 		netif_tx_start_queue(txq);
3115 	}
3116 }
3117 
3118 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3119 
3120 /**
3121  *	netif_wake_queue - restart transmit
3122  *	@dev: network device
3123  *
3124  *	Allow upper layers to call the device hard_start_xmit routine.
3125  *	Used for flow control when transmit resources are available.
3126  */
3127 static inline void netif_wake_queue(struct net_device *dev)
3128 {
3129 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3130 }
3131 
3132 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3133 {
3134 	unsigned int i;
3135 
3136 	for (i = 0; i < dev->num_tx_queues; i++) {
3137 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3138 		netif_tx_wake_queue(txq);
3139 	}
3140 }
3141 
3142 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3143 {
3144 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3145 }
3146 
3147 /**
3148  *	netif_stop_queue - stop transmitted packets
3149  *	@dev: network device
3150  *
3151  *	Stop upper layers calling the device hard_start_xmit routine.
3152  *	Used for flow control when transmit resources are unavailable.
3153  */
3154 static inline void netif_stop_queue(struct net_device *dev)
3155 {
3156 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3157 }
3158 
3159 void netif_tx_stop_all_queues(struct net_device *dev);
3160 
3161 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3162 {
3163 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3164 }
3165 
3166 /**
3167  *	netif_queue_stopped - test if transmit queue is flowblocked
3168  *	@dev: network device
3169  *
3170  *	Test if transmit queue on device is currently unable to send.
3171  */
3172 static inline bool netif_queue_stopped(const struct net_device *dev)
3173 {
3174 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3175 }
3176 
3177 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3178 {
3179 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3180 }
3181 
3182 static inline bool
3183 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3184 {
3185 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3186 }
3187 
3188 static inline bool
3189 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3190 {
3191 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3192 }
3193 
3194 /**
3195  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3196  *	@dev_queue: pointer to transmit queue
3197  *	@min_limit: dql minimum limit
3198  *
3199  * Forces xmit_more() to return true until the minimum threshold
3200  * defined by @min_limit is reached (or until the tx queue is
3201  * empty). Warning: to be use with care, misuse will impact the
3202  * latency.
3203  */
3204 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3205 						  unsigned int min_limit)
3206 {
3207 #ifdef CONFIG_BQL
3208 	dev_queue->dql.min_limit = min_limit;
3209 #endif
3210 }
3211 
3212 /**
3213  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3214  *	@dev_queue: pointer to transmit queue
3215  *
3216  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3217  * to give appropriate hint to the CPU.
3218  */
3219 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3220 {
3221 #ifdef CONFIG_BQL
3222 	prefetchw(&dev_queue->dql.num_queued);
3223 #endif
3224 }
3225 
3226 /**
3227  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3228  *	@dev_queue: pointer to transmit queue
3229  *
3230  * BQL enabled drivers might use this helper in their TX completion path,
3231  * to give appropriate hint to the CPU.
3232  */
3233 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3234 {
3235 #ifdef CONFIG_BQL
3236 	prefetchw(&dev_queue->dql.limit);
3237 #endif
3238 }
3239 
3240 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3241 					unsigned int bytes)
3242 {
3243 #ifdef CONFIG_BQL
3244 	dql_queued(&dev_queue->dql, bytes);
3245 
3246 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3247 		return;
3248 
3249 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3250 
3251 	/*
3252 	 * The XOFF flag must be set before checking the dql_avail below,
3253 	 * because in netdev_tx_completed_queue we update the dql_completed
3254 	 * before checking the XOFF flag.
3255 	 */
3256 	smp_mb();
3257 
3258 	/* check again in case another CPU has just made room avail */
3259 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3260 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3261 #endif
3262 }
3263 
3264 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3265  * that they should not test BQL status themselves.
3266  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3267  * skb of a batch.
3268  * Returns true if the doorbell must be used to kick the NIC.
3269  */
3270 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3271 					  unsigned int bytes,
3272 					  bool xmit_more)
3273 {
3274 	if (xmit_more) {
3275 #ifdef CONFIG_BQL
3276 		dql_queued(&dev_queue->dql, bytes);
3277 #endif
3278 		return netif_tx_queue_stopped(dev_queue);
3279 	}
3280 	netdev_tx_sent_queue(dev_queue, bytes);
3281 	return true;
3282 }
3283 
3284 /**
3285  * 	netdev_sent_queue - report the number of bytes queued to hardware
3286  * 	@dev: network device
3287  * 	@bytes: number of bytes queued to the hardware device queue
3288  *
3289  * 	Report the number of bytes queued for sending/completion to the network
3290  * 	device hardware queue. @bytes should be a good approximation and should
3291  * 	exactly match netdev_completed_queue() @bytes
3292  */
3293 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3294 {
3295 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3296 }
3297 
3298 static inline bool __netdev_sent_queue(struct net_device *dev,
3299 				       unsigned int bytes,
3300 				       bool xmit_more)
3301 {
3302 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3303 				      xmit_more);
3304 }
3305 
3306 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3307 					     unsigned int pkts, unsigned int bytes)
3308 {
3309 #ifdef CONFIG_BQL
3310 	if (unlikely(!bytes))
3311 		return;
3312 
3313 	dql_completed(&dev_queue->dql, bytes);
3314 
3315 	/*
3316 	 * Without the memory barrier there is a small possiblity that
3317 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3318 	 * be stopped forever
3319 	 */
3320 	smp_mb();
3321 
3322 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3323 		return;
3324 
3325 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3326 		netif_schedule_queue(dev_queue);
3327 #endif
3328 }
3329 
3330 /**
3331  * 	netdev_completed_queue - report bytes and packets completed by device
3332  * 	@dev: network device
3333  * 	@pkts: actual number of packets sent over the medium
3334  * 	@bytes: actual number of bytes sent over the medium
3335  *
3336  * 	Report the number of bytes and packets transmitted by the network device
3337  * 	hardware queue over the physical medium, @bytes must exactly match the
3338  * 	@bytes amount passed to netdev_sent_queue()
3339  */
3340 static inline void netdev_completed_queue(struct net_device *dev,
3341 					  unsigned int pkts, unsigned int bytes)
3342 {
3343 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3344 }
3345 
3346 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3347 {
3348 #ifdef CONFIG_BQL
3349 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3350 	dql_reset(&q->dql);
3351 #endif
3352 }
3353 
3354 /**
3355  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3356  * 	@dev_queue: network device
3357  *
3358  * 	Reset the bytes and packet count of a network device and clear the
3359  * 	software flow control OFF bit for this network device
3360  */
3361 static inline void netdev_reset_queue(struct net_device *dev_queue)
3362 {
3363 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3364 }
3365 
3366 /**
3367  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3368  * 	@dev: network device
3369  * 	@queue_index: given tx queue index
3370  *
3371  * 	Returns 0 if given tx queue index >= number of device tx queues,
3372  * 	otherwise returns the originally passed tx queue index.
3373  */
3374 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3375 {
3376 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3377 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3378 				     dev->name, queue_index,
3379 				     dev->real_num_tx_queues);
3380 		return 0;
3381 	}
3382 
3383 	return queue_index;
3384 }
3385 
3386 /**
3387  *	netif_running - test if up
3388  *	@dev: network device
3389  *
3390  *	Test if the device has been brought up.
3391  */
3392 static inline bool netif_running(const struct net_device *dev)
3393 {
3394 	return test_bit(__LINK_STATE_START, &dev->state);
3395 }
3396 
3397 /*
3398  * Routines to manage the subqueues on a device.  We only need start,
3399  * stop, and a check if it's stopped.  All other device management is
3400  * done at the overall netdevice level.
3401  * Also test the device if we're multiqueue.
3402  */
3403 
3404 /**
3405  *	netif_start_subqueue - allow sending packets on subqueue
3406  *	@dev: network device
3407  *	@queue_index: sub queue index
3408  *
3409  * Start individual transmit queue of a device with multiple transmit queues.
3410  */
3411 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3412 {
3413 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3414 
3415 	netif_tx_start_queue(txq);
3416 }
3417 
3418 /**
3419  *	netif_stop_subqueue - stop sending packets on subqueue
3420  *	@dev: network device
3421  *	@queue_index: sub queue index
3422  *
3423  * Stop individual transmit queue of a device with multiple transmit queues.
3424  */
3425 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3426 {
3427 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3428 	netif_tx_stop_queue(txq);
3429 }
3430 
3431 /**
3432  *	__netif_subqueue_stopped - test status of subqueue
3433  *	@dev: network device
3434  *	@queue_index: sub queue index
3435  *
3436  * Check individual transmit queue of a device with multiple transmit queues.
3437  */
3438 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3439 					    u16 queue_index)
3440 {
3441 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3442 
3443 	return netif_tx_queue_stopped(txq);
3444 }
3445 
3446 /**
3447  *	netif_subqueue_stopped - test status of subqueue
3448  *	@dev: network device
3449  *	@skb: sub queue buffer pointer
3450  *
3451  * Check individual transmit queue of a device with multiple transmit queues.
3452  */
3453 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3454 					  struct sk_buff *skb)
3455 {
3456 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3457 }
3458 
3459 /**
3460  *	netif_wake_subqueue - allow sending packets on subqueue
3461  *	@dev: network device
3462  *	@queue_index: sub queue index
3463  *
3464  * Resume individual transmit queue of a device with multiple transmit queues.
3465  */
3466 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3467 {
3468 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3469 
3470 	netif_tx_wake_queue(txq);
3471 }
3472 
3473 #ifdef CONFIG_XPS
3474 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3475 			u16 index);
3476 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3477 			  u16 index, enum xps_map_type type);
3478 
3479 /**
3480  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3481  *	@j: CPU/Rx queue index
3482  *	@mask: bitmask of all cpus/rx queues
3483  *	@nr_bits: number of bits in the bitmask
3484  *
3485  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3486  */
3487 static inline bool netif_attr_test_mask(unsigned long j,
3488 					const unsigned long *mask,
3489 					unsigned int nr_bits)
3490 {
3491 	cpu_max_bits_warn(j, nr_bits);
3492 	return test_bit(j, mask);
3493 }
3494 
3495 /**
3496  *	netif_attr_test_online - Test for online CPU/Rx queue
3497  *	@j: CPU/Rx queue index
3498  *	@online_mask: bitmask for CPUs/Rx queues that are online
3499  *	@nr_bits: number of bits in the bitmask
3500  *
3501  * Returns true if a CPU/Rx queue is online.
3502  */
3503 static inline bool netif_attr_test_online(unsigned long j,
3504 					  const unsigned long *online_mask,
3505 					  unsigned int nr_bits)
3506 {
3507 	cpu_max_bits_warn(j, nr_bits);
3508 
3509 	if (online_mask)
3510 		return test_bit(j, online_mask);
3511 
3512 	return (j < nr_bits);
3513 }
3514 
3515 /**
3516  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3517  *	@n: CPU/Rx queue index
3518  *	@srcp: the cpumask/Rx queue mask pointer
3519  *	@nr_bits: number of bits in the bitmask
3520  *
3521  * Returns >= nr_bits if no further CPUs/Rx queues set.
3522  */
3523 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3524 					       unsigned int nr_bits)
3525 {
3526 	/* -1 is a legal arg here. */
3527 	if (n != -1)
3528 		cpu_max_bits_warn(n, nr_bits);
3529 
3530 	if (srcp)
3531 		return find_next_bit(srcp, nr_bits, n + 1);
3532 
3533 	return n + 1;
3534 }
3535 
3536 /**
3537  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3538  *	@n: CPU/Rx queue index
3539  *	@src1p: the first CPUs/Rx queues mask pointer
3540  *	@src2p: the second CPUs/Rx queues mask pointer
3541  *	@nr_bits: number of bits in the bitmask
3542  *
3543  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3544  */
3545 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3546 					  const unsigned long *src2p,
3547 					  unsigned int nr_bits)
3548 {
3549 	/* -1 is a legal arg here. */
3550 	if (n != -1)
3551 		cpu_max_bits_warn(n, nr_bits);
3552 
3553 	if (src1p && src2p)
3554 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3555 	else if (src1p)
3556 		return find_next_bit(src1p, nr_bits, n + 1);
3557 	else if (src2p)
3558 		return find_next_bit(src2p, nr_bits, n + 1);
3559 
3560 	return n + 1;
3561 }
3562 #else
3563 static inline int netif_set_xps_queue(struct net_device *dev,
3564 				      const struct cpumask *mask,
3565 				      u16 index)
3566 {
3567 	return 0;
3568 }
3569 
3570 static inline int __netif_set_xps_queue(struct net_device *dev,
3571 					const unsigned long *mask,
3572 					u16 index, enum xps_map_type type)
3573 {
3574 	return 0;
3575 }
3576 #endif
3577 
3578 /**
3579  *	netif_is_multiqueue - test if device has multiple transmit queues
3580  *	@dev: network device
3581  *
3582  * Check if device has multiple transmit queues
3583  */
3584 static inline bool netif_is_multiqueue(const struct net_device *dev)
3585 {
3586 	return dev->num_tx_queues > 1;
3587 }
3588 
3589 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3590 
3591 #ifdef CONFIG_SYSFS
3592 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3593 #else
3594 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3595 						unsigned int rxqs)
3596 {
3597 	dev->real_num_rx_queues = rxqs;
3598 	return 0;
3599 }
3600 #endif
3601 int netif_set_real_num_queues(struct net_device *dev,
3602 			      unsigned int txq, unsigned int rxq);
3603 
3604 static inline struct netdev_rx_queue *
3605 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3606 {
3607 	return dev->_rx + rxq;
3608 }
3609 
3610 #ifdef CONFIG_SYSFS
3611 static inline unsigned int get_netdev_rx_queue_index(
3612 		struct netdev_rx_queue *queue)
3613 {
3614 	struct net_device *dev = queue->dev;
3615 	int index = queue - dev->_rx;
3616 
3617 	BUG_ON(index >= dev->num_rx_queues);
3618 	return index;
3619 }
3620 #endif
3621 
3622 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3623 int netif_get_num_default_rss_queues(void);
3624 
3625 enum skb_free_reason {
3626 	SKB_REASON_CONSUMED,
3627 	SKB_REASON_DROPPED,
3628 };
3629 
3630 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3631 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3632 
3633 /*
3634  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3635  * interrupt context or with hardware interrupts being disabled.
3636  * (in_hardirq() || irqs_disabled())
3637  *
3638  * We provide four helpers that can be used in following contexts :
3639  *
3640  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3641  *  replacing kfree_skb(skb)
3642  *
3643  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3644  *  Typically used in place of consume_skb(skb) in TX completion path
3645  *
3646  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3647  *  replacing kfree_skb(skb)
3648  *
3649  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3650  *  and consumed a packet. Used in place of consume_skb(skb)
3651  */
3652 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3653 {
3654 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3655 }
3656 
3657 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3658 {
3659 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3660 }
3661 
3662 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3663 {
3664 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3665 }
3666 
3667 static inline void dev_consume_skb_any(struct sk_buff *skb)
3668 {
3669 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3670 }
3671 
3672 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3673 			     struct bpf_prog *xdp_prog);
3674 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3675 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3676 int netif_rx(struct sk_buff *skb);
3677 int __netif_rx(struct sk_buff *skb);
3678 
3679 static inline int netif_rx_ni(struct sk_buff *skb)
3680 {
3681 	return netif_rx(skb);
3682 }
3683 
3684 static inline int netif_rx_any_context(struct sk_buff *skb)
3685 {
3686 	return netif_rx(skb);
3687 }
3688 
3689 int netif_receive_skb(struct sk_buff *skb);
3690 int netif_receive_skb_core(struct sk_buff *skb);
3691 void netif_receive_skb_list_internal(struct list_head *head);
3692 void netif_receive_skb_list(struct list_head *head);
3693 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3694 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3695 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3696 gro_result_t napi_gro_frags(struct napi_struct *napi);
3697 struct packet_offload *gro_find_receive_by_type(__be16 type);
3698 struct packet_offload *gro_find_complete_by_type(__be16 type);
3699 
3700 static inline void napi_free_frags(struct napi_struct *napi)
3701 {
3702 	kfree_skb(napi->skb);
3703 	napi->skb = NULL;
3704 }
3705 
3706 bool netdev_is_rx_handler_busy(struct net_device *dev);
3707 int netdev_rx_handler_register(struct net_device *dev,
3708 			       rx_handler_func_t *rx_handler,
3709 			       void *rx_handler_data);
3710 void netdev_rx_handler_unregister(struct net_device *dev);
3711 
3712 bool dev_valid_name(const char *name);
3713 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3714 {
3715 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3716 }
3717 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3718 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3719 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3720 		void __user *data, bool *need_copyout);
3721 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3722 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3723 unsigned int dev_get_flags(const struct net_device *);
3724 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3725 		       struct netlink_ext_ack *extack);
3726 int dev_change_flags(struct net_device *dev, unsigned int flags,
3727 		     struct netlink_ext_ack *extack);
3728 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3729 			unsigned int gchanges);
3730 int dev_change_name(struct net_device *, const char *);
3731 int dev_set_alias(struct net_device *, const char *, size_t);
3732 int dev_get_alias(const struct net_device *, char *, size_t);
3733 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3734 			       const char *pat, int new_ifindex);
3735 static inline
3736 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3737 			     const char *pat)
3738 {
3739 	return __dev_change_net_namespace(dev, net, pat, 0);
3740 }
3741 int __dev_set_mtu(struct net_device *, int);
3742 int dev_validate_mtu(struct net_device *dev, int mtu,
3743 		     struct netlink_ext_ack *extack);
3744 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3745 		    struct netlink_ext_ack *extack);
3746 int dev_set_mtu(struct net_device *, int);
3747 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3748 void dev_set_group(struct net_device *, int);
3749 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3750 			      struct netlink_ext_ack *extack);
3751 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3752 			struct netlink_ext_ack *extack);
3753 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3754 			     struct netlink_ext_ack *extack);
3755 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3756 int dev_change_carrier(struct net_device *, bool new_carrier);
3757 int dev_get_phys_port_id(struct net_device *dev,
3758 			 struct netdev_phys_item_id *ppid);
3759 int dev_get_phys_port_name(struct net_device *dev,
3760 			   char *name, size_t len);
3761 int dev_get_port_parent_id(struct net_device *dev,
3762 			   struct netdev_phys_item_id *ppid, bool recurse);
3763 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3764 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3765 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3766 				  u32 value);
3767 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3768 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3769 				    struct netdev_queue *txq, int *ret);
3770 
3771 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3772 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3773 		      int fd, int expected_fd, u32 flags);
3774 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3775 u8 dev_xdp_prog_count(struct net_device *dev);
3776 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3777 
3778 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3779 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3780 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3781 bool is_skb_forwardable(const struct net_device *dev,
3782 			const struct sk_buff *skb);
3783 
3784 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3785 						 const struct sk_buff *skb,
3786 						 const bool check_mtu)
3787 {
3788 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3789 	unsigned int len;
3790 
3791 	if (!(dev->flags & IFF_UP))
3792 		return false;
3793 
3794 	if (!check_mtu)
3795 		return true;
3796 
3797 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3798 	if (skb->len <= len)
3799 		return true;
3800 
3801 	/* if TSO is enabled, we don't care about the length as the packet
3802 	 * could be forwarded without being segmented before
3803 	 */
3804 	if (skb_is_gso(skb))
3805 		return true;
3806 
3807 	return false;
3808 }
3809 
3810 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3811 					       struct sk_buff *skb,
3812 					       const bool check_mtu)
3813 {
3814 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3815 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3816 		atomic_long_inc(&dev->rx_dropped);
3817 		kfree_skb(skb);
3818 		return NET_RX_DROP;
3819 	}
3820 
3821 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3822 	skb->priority = 0;
3823 	return 0;
3824 }
3825 
3826 bool dev_nit_active(struct net_device *dev);
3827 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3828 
3829 extern int		netdev_budget;
3830 extern unsigned int	netdev_budget_usecs;
3831 
3832 /* Called by rtnetlink.c:rtnl_unlock() */
3833 void netdev_run_todo(void);
3834 
3835 static inline void __dev_put(struct net_device *dev)
3836 {
3837 	if (dev) {
3838 #ifdef CONFIG_PCPU_DEV_REFCNT
3839 		this_cpu_dec(*dev->pcpu_refcnt);
3840 #else
3841 		refcount_dec(&dev->dev_refcnt);
3842 #endif
3843 	}
3844 }
3845 
3846 static inline void __dev_hold(struct net_device *dev)
3847 {
3848 	if (dev) {
3849 #ifdef CONFIG_PCPU_DEV_REFCNT
3850 		this_cpu_inc(*dev->pcpu_refcnt);
3851 #else
3852 		refcount_inc(&dev->dev_refcnt);
3853 #endif
3854 	}
3855 }
3856 
3857 static inline void __netdev_tracker_alloc(struct net_device *dev,
3858 					  netdevice_tracker *tracker,
3859 					  gfp_t gfp)
3860 {
3861 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3862 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3863 #endif
3864 }
3865 
3866 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3867  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3868  */
3869 static inline void netdev_tracker_alloc(struct net_device *dev,
3870 					netdevice_tracker *tracker, gfp_t gfp)
3871 {
3872 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3873 	refcount_dec(&dev->refcnt_tracker.no_tracker);
3874 	__netdev_tracker_alloc(dev, tracker, gfp);
3875 #endif
3876 }
3877 
3878 static inline void netdev_tracker_free(struct net_device *dev,
3879 				       netdevice_tracker *tracker)
3880 {
3881 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3882 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3883 #endif
3884 }
3885 
3886 static inline void dev_hold_track(struct net_device *dev,
3887 				  netdevice_tracker *tracker, gfp_t gfp)
3888 {
3889 	if (dev) {
3890 		__dev_hold(dev);
3891 		__netdev_tracker_alloc(dev, tracker, gfp);
3892 	}
3893 }
3894 
3895 static inline void dev_put_track(struct net_device *dev,
3896 				 netdevice_tracker *tracker)
3897 {
3898 	if (dev) {
3899 		netdev_tracker_free(dev, tracker);
3900 		__dev_put(dev);
3901 	}
3902 }
3903 
3904 /**
3905  *	dev_hold - get reference to device
3906  *	@dev: network device
3907  *
3908  * Hold reference to device to keep it from being freed.
3909  * Try using dev_hold_track() instead.
3910  */
3911 static inline void dev_hold(struct net_device *dev)
3912 {
3913 	dev_hold_track(dev, NULL, GFP_ATOMIC);
3914 }
3915 
3916 /**
3917  *	dev_put - release reference to device
3918  *	@dev: network device
3919  *
3920  * Release reference to device to allow it to be freed.
3921  * Try using dev_put_track() instead.
3922  */
3923 static inline void dev_put(struct net_device *dev)
3924 {
3925 	dev_put_track(dev, NULL);
3926 }
3927 
3928 static inline void dev_replace_track(struct net_device *odev,
3929 				     struct net_device *ndev,
3930 				     netdevice_tracker *tracker,
3931 				     gfp_t gfp)
3932 {
3933 	if (odev)
3934 		netdev_tracker_free(odev, tracker);
3935 
3936 	__dev_hold(ndev);
3937 	__dev_put(odev);
3938 
3939 	if (ndev)
3940 		__netdev_tracker_alloc(ndev, tracker, gfp);
3941 }
3942 
3943 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3944  * and _off may be called from IRQ context, but it is caller
3945  * who is responsible for serialization of these calls.
3946  *
3947  * The name carrier is inappropriate, these functions should really be
3948  * called netif_lowerlayer_*() because they represent the state of any
3949  * kind of lower layer not just hardware media.
3950  */
3951 
3952 void linkwatch_init_dev(struct net_device *dev);
3953 void linkwatch_fire_event(struct net_device *dev);
3954 void linkwatch_forget_dev(struct net_device *dev);
3955 
3956 /**
3957  *	netif_carrier_ok - test if carrier present
3958  *	@dev: network device
3959  *
3960  * Check if carrier is present on device
3961  */
3962 static inline bool netif_carrier_ok(const struct net_device *dev)
3963 {
3964 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3965 }
3966 
3967 unsigned long dev_trans_start(struct net_device *dev);
3968 
3969 void __netdev_watchdog_up(struct net_device *dev);
3970 
3971 void netif_carrier_on(struct net_device *dev);
3972 void netif_carrier_off(struct net_device *dev);
3973 void netif_carrier_event(struct net_device *dev);
3974 
3975 /**
3976  *	netif_dormant_on - mark device as dormant.
3977  *	@dev: network device
3978  *
3979  * Mark device as dormant (as per RFC2863).
3980  *
3981  * The dormant state indicates that the relevant interface is not
3982  * actually in a condition to pass packets (i.e., it is not 'up') but is
3983  * in a "pending" state, waiting for some external event.  For "on-
3984  * demand" interfaces, this new state identifies the situation where the
3985  * interface is waiting for events to place it in the up state.
3986  */
3987 static inline void netif_dormant_on(struct net_device *dev)
3988 {
3989 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3990 		linkwatch_fire_event(dev);
3991 }
3992 
3993 /**
3994  *	netif_dormant_off - set device as not dormant.
3995  *	@dev: network device
3996  *
3997  * Device is not in dormant state.
3998  */
3999 static inline void netif_dormant_off(struct net_device *dev)
4000 {
4001 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4002 		linkwatch_fire_event(dev);
4003 }
4004 
4005 /**
4006  *	netif_dormant - test if device is dormant
4007  *	@dev: network device
4008  *
4009  * Check if device is dormant.
4010  */
4011 static inline bool netif_dormant(const struct net_device *dev)
4012 {
4013 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4014 }
4015 
4016 
4017 /**
4018  *	netif_testing_on - mark device as under test.
4019  *	@dev: network device
4020  *
4021  * Mark device as under test (as per RFC2863).
4022  *
4023  * The testing state indicates that some test(s) must be performed on
4024  * the interface. After completion, of the test, the interface state
4025  * will change to up, dormant, or down, as appropriate.
4026  */
4027 static inline void netif_testing_on(struct net_device *dev)
4028 {
4029 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4030 		linkwatch_fire_event(dev);
4031 }
4032 
4033 /**
4034  *	netif_testing_off - set device as not under test.
4035  *	@dev: network device
4036  *
4037  * Device is not in testing state.
4038  */
4039 static inline void netif_testing_off(struct net_device *dev)
4040 {
4041 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4042 		linkwatch_fire_event(dev);
4043 }
4044 
4045 /**
4046  *	netif_testing - test if device is under test
4047  *	@dev: network device
4048  *
4049  * Check if device is under test
4050  */
4051 static inline bool netif_testing(const struct net_device *dev)
4052 {
4053 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4054 }
4055 
4056 
4057 /**
4058  *	netif_oper_up - test if device is operational
4059  *	@dev: network device
4060  *
4061  * Check if carrier is operational
4062  */
4063 static inline bool netif_oper_up(const struct net_device *dev)
4064 {
4065 	return (dev->operstate == IF_OPER_UP ||
4066 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4067 }
4068 
4069 /**
4070  *	netif_device_present - is device available or removed
4071  *	@dev: network device
4072  *
4073  * Check if device has not been removed from system.
4074  */
4075 static inline bool netif_device_present(const struct net_device *dev)
4076 {
4077 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4078 }
4079 
4080 void netif_device_detach(struct net_device *dev);
4081 
4082 void netif_device_attach(struct net_device *dev);
4083 
4084 /*
4085  * Network interface message level settings
4086  */
4087 
4088 enum {
4089 	NETIF_MSG_DRV_BIT,
4090 	NETIF_MSG_PROBE_BIT,
4091 	NETIF_MSG_LINK_BIT,
4092 	NETIF_MSG_TIMER_BIT,
4093 	NETIF_MSG_IFDOWN_BIT,
4094 	NETIF_MSG_IFUP_BIT,
4095 	NETIF_MSG_RX_ERR_BIT,
4096 	NETIF_MSG_TX_ERR_BIT,
4097 	NETIF_MSG_TX_QUEUED_BIT,
4098 	NETIF_MSG_INTR_BIT,
4099 	NETIF_MSG_TX_DONE_BIT,
4100 	NETIF_MSG_RX_STATUS_BIT,
4101 	NETIF_MSG_PKTDATA_BIT,
4102 	NETIF_MSG_HW_BIT,
4103 	NETIF_MSG_WOL_BIT,
4104 
4105 	/* When you add a new bit above, update netif_msg_class_names array
4106 	 * in net/ethtool/common.c
4107 	 */
4108 	NETIF_MSG_CLASS_COUNT,
4109 };
4110 /* Both ethtool_ops interface and internal driver implementation use u32 */
4111 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4112 
4113 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4114 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4115 
4116 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4117 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4118 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4119 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4120 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4121 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4122 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4123 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4124 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4125 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4126 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4127 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4128 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4129 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4130 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4131 
4132 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4133 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4134 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4135 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4136 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4137 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4138 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4139 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4140 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4141 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4142 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4143 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4144 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4145 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4146 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4147 
4148 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4149 {
4150 	/* use default */
4151 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4152 		return default_msg_enable_bits;
4153 	if (debug_value == 0)	/* no output */
4154 		return 0;
4155 	/* set low N bits */
4156 	return (1U << debug_value) - 1;
4157 }
4158 
4159 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4160 {
4161 	spin_lock(&txq->_xmit_lock);
4162 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4163 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4164 }
4165 
4166 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4167 {
4168 	__acquire(&txq->_xmit_lock);
4169 	return true;
4170 }
4171 
4172 static inline void __netif_tx_release(struct netdev_queue *txq)
4173 {
4174 	__release(&txq->_xmit_lock);
4175 }
4176 
4177 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4178 {
4179 	spin_lock_bh(&txq->_xmit_lock);
4180 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4181 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4182 }
4183 
4184 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4185 {
4186 	bool ok = spin_trylock(&txq->_xmit_lock);
4187 
4188 	if (likely(ok)) {
4189 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4190 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4191 	}
4192 	return ok;
4193 }
4194 
4195 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4196 {
4197 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4198 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4199 	spin_unlock(&txq->_xmit_lock);
4200 }
4201 
4202 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4203 {
4204 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4205 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4206 	spin_unlock_bh(&txq->_xmit_lock);
4207 }
4208 
4209 /*
4210  * txq->trans_start can be read locklessly from dev_watchdog()
4211  */
4212 static inline void txq_trans_update(struct netdev_queue *txq)
4213 {
4214 	if (txq->xmit_lock_owner != -1)
4215 		WRITE_ONCE(txq->trans_start, jiffies);
4216 }
4217 
4218 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4219 {
4220 	unsigned long now = jiffies;
4221 
4222 	if (READ_ONCE(txq->trans_start) != now)
4223 		WRITE_ONCE(txq->trans_start, now);
4224 }
4225 
4226 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4227 static inline void netif_trans_update(struct net_device *dev)
4228 {
4229 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4230 
4231 	txq_trans_cond_update(txq);
4232 }
4233 
4234 /**
4235  *	netif_tx_lock - grab network device transmit lock
4236  *	@dev: network device
4237  *
4238  * Get network device transmit lock
4239  */
4240 void netif_tx_lock(struct net_device *dev);
4241 
4242 static inline void netif_tx_lock_bh(struct net_device *dev)
4243 {
4244 	local_bh_disable();
4245 	netif_tx_lock(dev);
4246 }
4247 
4248 void netif_tx_unlock(struct net_device *dev);
4249 
4250 static inline void netif_tx_unlock_bh(struct net_device *dev)
4251 {
4252 	netif_tx_unlock(dev);
4253 	local_bh_enable();
4254 }
4255 
4256 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4257 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4258 		__netif_tx_lock(txq, cpu);		\
4259 	} else {					\
4260 		__netif_tx_acquire(txq);		\
4261 	}						\
4262 }
4263 
4264 #define HARD_TX_TRYLOCK(dev, txq)			\
4265 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4266 		__netif_tx_trylock(txq) :		\
4267 		__netif_tx_acquire(txq))
4268 
4269 #define HARD_TX_UNLOCK(dev, txq) {			\
4270 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4271 		__netif_tx_unlock(txq);			\
4272 	} else {					\
4273 		__netif_tx_release(txq);		\
4274 	}						\
4275 }
4276 
4277 static inline void netif_tx_disable(struct net_device *dev)
4278 {
4279 	unsigned int i;
4280 	int cpu;
4281 
4282 	local_bh_disable();
4283 	cpu = smp_processor_id();
4284 	spin_lock(&dev->tx_global_lock);
4285 	for (i = 0; i < dev->num_tx_queues; i++) {
4286 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4287 
4288 		__netif_tx_lock(txq, cpu);
4289 		netif_tx_stop_queue(txq);
4290 		__netif_tx_unlock(txq);
4291 	}
4292 	spin_unlock(&dev->tx_global_lock);
4293 	local_bh_enable();
4294 }
4295 
4296 static inline void netif_addr_lock(struct net_device *dev)
4297 {
4298 	unsigned char nest_level = 0;
4299 
4300 #ifdef CONFIG_LOCKDEP
4301 	nest_level = dev->nested_level;
4302 #endif
4303 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4304 }
4305 
4306 static inline void netif_addr_lock_bh(struct net_device *dev)
4307 {
4308 	unsigned char nest_level = 0;
4309 
4310 #ifdef CONFIG_LOCKDEP
4311 	nest_level = dev->nested_level;
4312 #endif
4313 	local_bh_disable();
4314 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4315 }
4316 
4317 static inline void netif_addr_unlock(struct net_device *dev)
4318 {
4319 	spin_unlock(&dev->addr_list_lock);
4320 }
4321 
4322 static inline void netif_addr_unlock_bh(struct net_device *dev)
4323 {
4324 	spin_unlock_bh(&dev->addr_list_lock);
4325 }
4326 
4327 /*
4328  * dev_addrs walker. Should be used only for read access. Call with
4329  * rcu_read_lock held.
4330  */
4331 #define for_each_dev_addr(dev, ha) \
4332 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4333 
4334 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4335 
4336 void ether_setup(struct net_device *dev);
4337 
4338 /* Support for loadable net-drivers */
4339 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4340 				    unsigned char name_assign_type,
4341 				    void (*setup)(struct net_device *),
4342 				    unsigned int txqs, unsigned int rxqs);
4343 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4344 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4345 
4346 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4347 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4348 			 count)
4349 
4350 int register_netdev(struct net_device *dev);
4351 void unregister_netdev(struct net_device *dev);
4352 
4353 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4354 
4355 /* General hardware address lists handling functions */
4356 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4357 		   struct netdev_hw_addr_list *from_list, int addr_len);
4358 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4359 		      struct netdev_hw_addr_list *from_list, int addr_len);
4360 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4361 		       struct net_device *dev,
4362 		       int (*sync)(struct net_device *, const unsigned char *),
4363 		       int (*unsync)(struct net_device *,
4364 				     const unsigned char *));
4365 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4366 			   struct net_device *dev,
4367 			   int (*sync)(struct net_device *,
4368 				       const unsigned char *, int),
4369 			   int (*unsync)(struct net_device *,
4370 					 const unsigned char *, int));
4371 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4372 			      struct net_device *dev,
4373 			      int (*unsync)(struct net_device *,
4374 					    const unsigned char *, int));
4375 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4376 			  struct net_device *dev,
4377 			  int (*unsync)(struct net_device *,
4378 					const unsigned char *));
4379 void __hw_addr_init(struct netdev_hw_addr_list *list);
4380 
4381 /* Functions used for device addresses handling */
4382 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4383 		  const void *addr, size_t len);
4384 
4385 static inline void
4386 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4387 {
4388 	dev_addr_mod(dev, 0, addr, len);
4389 }
4390 
4391 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4392 {
4393 	__dev_addr_set(dev, addr, dev->addr_len);
4394 }
4395 
4396 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4397 		 unsigned char addr_type);
4398 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4399 		 unsigned char addr_type);
4400 void dev_addr_flush(struct net_device *dev);
4401 int dev_addr_init(struct net_device *dev);
4402 void dev_addr_check(struct net_device *dev);
4403 
4404 /* Functions used for unicast addresses handling */
4405 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4406 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4407 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4408 int dev_uc_sync(struct net_device *to, struct net_device *from);
4409 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4410 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4411 void dev_uc_flush(struct net_device *dev);
4412 void dev_uc_init(struct net_device *dev);
4413 
4414 /**
4415  *  __dev_uc_sync - Synchonize device's unicast list
4416  *  @dev:  device to sync
4417  *  @sync: function to call if address should be added
4418  *  @unsync: function to call if address should be removed
4419  *
4420  *  Add newly added addresses to the interface, and release
4421  *  addresses that have been deleted.
4422  */
4423 static inline int __dev_uc_sync(struct net_device *dev,
4424 				int (*sync)(struct net_device *,
4425 					    const unsigned char *),
4426 				int (*unsync)(struct net_device *,
4427 					      const unsigned char *))
4428 {
4429 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4430 }
4431 
4432 /**
4433  *  __dev_uc_unsync - Remove synchronized addresses from device
4434  *  @dev:  device to sync
4435  *  @unsync: function to call if address should be removed
4436  *
4437  *  Remove all addresses that were added to the device by dev_uc_sync().
4438  */
4439 static inline void __dev_uc_unsync(struct net_device *dev,
4440 				   int (*unsync)(struct net_device *,
4441 						 const unsigned char *))
4442 {
4443 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4444 }
4445 
4446 /* Functions used for multicast addresses handling */
4447 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4448 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4449 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4450 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4451 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4452 int dev_mc_sync(struct net_device *to, struct net_device *from);
4453 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4454 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4455 void dev_mc_flush(struct net_device *dev);
4456 void dev_mc_init(struct net_device *dev);
4457 
4458 /**
4459  *  __dev_mc_sync - Synchonize device's multicast list
4460  *  @dev:  device to sync
4461  *  @sync: function to call if address should be added
4462  *  @unsync: function to call if address should be removed
4463  *
4464  *  Add newly added addresses to the interface, and release
4465  *  addresses that have been deleted.
4466  */
4467 static inline int __dev_mc_sync(struct net_device *dev,
4468 				int (*sync)(struct net_device *,
4469 					    const unsigned char *),
4470 				int (*unsync)(struct net_device *,
4471 					      const unsigned char *))
4472 {
4473 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4474 }
4475 
4476 /**
4477  *  __dev_mc_unsync - Remove synchronized addresses from device
4478  *  @dev:  device to sync
4479  *  @unsync: function to call if address should be removed
4480  *
4481  *  Remove all addresses that were added to the device by dev_mc_sync().
4482  */
4483 static inline void __dev_mc_unsync(struct net_device *dev,
4484 				   int (*unsync)(struct net_device *,
4485 						 const unsigned char *))
4486 {
4487 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4488 }
4489 
4490 /* Functions used for secondary unicast and multicast support */
4491 void dev_set_rx_mode(struct net_device *dev);
4492 void __dev_set_rx_mode(struct net_device *dev);
4493 int dev_set_promiscuity(struct net_device *dev, int inc);
4494 int dev_set_allmulti(struct net_device *dev, int inc);
4495 void netdev_state_change(struct net_device *dev);
4496 void __netdev_notify_peers(struct net_device *dev);
4497 void netdev_notify_peers(struct net_device *dev);
4498 void netdev_features_change(struct net_device *dev);
4499 /* Load a device via the kmod */
4500 void dev_load(struct net *net, const char *name);
4501 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4502 					struct rtnl_link_stats64 *storage);
4503 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4504 			     const struct net_device_stats *netdev_stats);
4505 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4506 			   const struct pcpu_sw_netstats __percpu *netstats);
4507 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4508 
4509 extern int		netdev_max_backlog;
4510 extern int		netdev_tstamp_prequeue;
4511 extern int		netdev_unregister_timeout_secs;
4512 extern int		weight_p;
4513 extern int		dev_weight_rx_bias;
4514 extern int		dev_weight_tx_bias;
4515 extern int		dev_rx_weight;
4516 extern int		dev_tx_weight;
4517 extern int		gro_normal_batch;
4518 
4519 enum {
4520 	NESTED_SYNC_IMM_BIT,
4521 	NESTED_SYNC_TODO_BIT,
4522 };
4523 
4524 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4525 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4526 
4527 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4528 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4529 
4530 struct netdev_nested_priv {
4531 	unsigned char flags;
4532 	void *data;
4533 };
4534 
4535 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4536 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4537 						     struct list_head **iter);
4538 
4539 #ifdef CONFIG_LOCKDEP
4540 static LIST_HEAD(net_unlink_list);
4541 
4542 static inline void net_unlink_todo(struct net_device *dev)
4543 {
4544 	if (list_empty(&dev->unlink_list))
4545 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4546 }
4547 #endif
4548 
4549 /* iterate through upper list, must be called under RCU read lock */
4550 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4551 	for (iter = &(dev)->adj_list.upper, \
4552 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4553 	     updev; \
4554 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4555 
4556 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4557 				  int (*fn)(struct net_device *upper_dev,
4558 					    struct netdev_nested_priv *priv),
4559 				  struct netdev_nested_priv *priv);
4560 
4561 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4562 				  struct net_device *upper_dev);
4563 
4564 bool netdev_has_any_upper_dev(struct net_device *dev);
4565 
4566 void *netdev_lower_get_next_private(struct net_device *dev,
4567 				    struct list_head **iter);
4568 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4569 					struct list_head **iter);
4570 
4571 #define netdev_for_each_lower_private(dev, priv, iter) \
4572 	for (iter = (dev)->adj_list.lower.next, \
4573 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4574 	     priv; \
4575 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4576 
4577 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4578 	for (iter = &(dev)->adj_list.lower, \
4579 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4580 	     priv; \
4581 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4582 
4583 void *netdev_lower_get_next(struct net_device *dev,
4584 				struct list_head **iter);
4585 
4586 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4587 	for (iter = (dev)->adj_list.lower.next, \
4588 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4589 	     ldev; \
4590 	     ldev = netdev_lower_get_next(dev, &(iter)))
4591 
4592 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4593 					     struct list_head **iter);
4594 int netdev_walk_all_lower_dev(struct net_device *dev,
4595 			      int (*fn)(struct net_device *lower_dev,
4596 					struct netdev_nested_priv *priv),
4597 			      struct netdev_nested_priv *priv);
4598 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4599 				  int (*fn)(struct net_device *lower_dev,
4600 					    struct netdev_nested_priv *priv),
4601 				  struct netdev_nested_priv *priv);
4602 
4603 void *netdev_adjacent_get_private(struct list_head *adj_list);
4604 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4605 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4606 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4607 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4608 			  struct netlink_ext_ack *extack);
4609 int netdev_master_upper_dev_link(struct net_device *dev,
4610 				 struct net_device *upper_dev,
4611 				 void *upper_priv, void *upper_info,
4612 				 struct netlink_ext_ack *extack);
4613 void netdev_upper_dev_unlink(struct net_device *dev,
4614 			     struct net_device *upper_dev);
4615 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4616 				   struct net_device *new_dev,
4617 				   struct net_device *dev,
4618 				   struct netlink_ext_ack *extack);
4619 void netdev_adjacent_change_commit(struct net_device *old_dev,
4620 				   struct net_device *new_dev,
4621 				   struct net_device *dev);
4622 void netdev_adjacent_change_abort(struct net_device *old_dev,
4623 				  struct net_device *new_dev,
4624 				  struct net_device *dev);
4625 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4626 void *netdev_lower_dev_get_private(struct net_device *dev,
4627 				   struct net_device *lower_dev);
4628 void netdev_lower_state_changed(struct net_device *lower_dev,
4629 				void *lower_state_info);
4630 
4631 /* RSS keys are 40 or 52 bytes long */
4632 #define NETDEV_RSS_KEY_LEN 52
4633 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4634 void netdev_rss_key_fill(void *buffer, size_t len);
4635 
4636 int skb_checksum_help(struct sk_buff *skb);
4637 int skb_crc32c_csum_help(struct sk_buff *skb);
4638 int skb_csum_hwoffload_help(struct sk_buff *skb,
4639 			    const netdev_features_t features);
4640 
4641 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4642 				  netdev_features_t features, bool tx_path);
4643 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4644 				    netdev_features_t features);
4645 
4646 struct netdev_bonding_info {
4647 	ifslave	slave;
4648 	ifbond	master;
4649 };
4650 
4651 struct netdev_notifier_bonding_info {
4652 	struct netdev_notifier_info info; /* must be first */
4653 	struct netdev_bonding_info  bonding_info;
4654 };
4655 
4656 void netdev_bonding_info_change(struct net_device *dev,
4657 				struct netdev_bonding_info *bonding_info);
4658 
4659 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4660 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4661 #else
4662 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4663 				  const void *data)
4664 {
4665 }
4666 #endif
4667 
4668 static inline
4669 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4670 {
4671 	return __skb_gso_segment(skb, features, true);
4672 }
4673 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4674 
4675 static inline bool can_checksum_protocol(netdev_features_t features,
4676 					 __be16 protocol)
4677 {
4678 	if (protocol == htons(ETH_P_FCOE))
4679 		return !!(features & NETIF_F_FCOE_CRC);
4680 
4681 	/* Assume this is an IP checksum (not SCTP CRC) */
4682 
4683 	if (features & NETIF_F_HW_CSUM) {
4684 		/* Can checksum everything */
4685 		return true;
4686 	}
4687 
4688 	switch (protocol) {
4689 	case htons(ETH_P_IP):
4690 		return !!(features & NETIF_F_IP_CSUM);
4691 	case htons(ETH_P_IPV6):
4692 		return !!(features & NETIF_F_IPV6_CSUM);
4693 	default:
4694 		return false;
4695 	}
4696 }
4697 
4698 #ifdef CONFIG_BUG
4699 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4700 #else
4701 static inline void netdev_rx_csum_fault(struct net_device *dev,
4702 					struct sk_buff *skb)
4703 {
4704 }
4705 #endif
4706 /* rx skb timestamps */
4707 void net_enable_timestamp(void);
4708 void net_disable_timestamp(void);
4709 
4710 #ifdef CONFIG_PROC_FS
4711 int __init dev_proc_init(void);
4712 #else
4713 #define dev_proc_init() 0
4714 #endif
4715 
4716 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4717 					      struct sk_buff *skb, struct net_device *dev,
4718 					      bool more)
4719 {
4720 	__this_cpu_write(softnet_data.xmit.more, more);
4721 	return ops->ndo_start_xmit(skb, dev);
4722 }
4723 
4724 static inline bool netdev_xmit_more(void)
4725 {
4726 	return __this_cpu_read(softnet_data.xmit.more);
4727 }
4728 
4729 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4730 					    struct netdev_queue *txq, bool more)
4731 {
4732 	const struct net_device_ops *ops = dev->netdev_ops;
4733 	netdev_tx_t rc;
4734 
4735 	rc = __netdev_start_xmit(ops, skb, dev, more);
4736 	if (rc == NETDEV_TX_OK)
4737 		txq_trans_update(txq);
4738 
4739 	return rc;
4740 }
4741 
4742 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4743 				const void *ns);
4744 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4745 				 const void *ns);
4746 
4747 extern const struct kobj_ns_type_operations net_ns_type_operations;
4748 
4749 const char *netdev_drivername(const struct net_device *dev);
4750 
4751 void linkwatch_run_queue(void);
4752 
4753 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4754 							  netdev_features_t f2)
4755 {
4756 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4757 		if (f1 & NETIF_F_HW_CSUM)
4758 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4759 		else
4760 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4761 	}
4762 
4763 	return f1 & f2;
4764 }
4765 
4766 static inline netdev_features_t netdev_get_wanted_features(
4767 	struct net_device *dev)
4768 {
4769 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4770 }
4771 netdev_features_t netdev_increment_features(netdev_features_t all,
4772 	netdev_features_t one, netdev_features_t mask);
4773 
4774 /* Allow TSO being used on stacked device :
4775  * Performing the GSO segmentation before last device
4776  * is a performance improvement.
4777  */
4778 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4779 							netdev_features_t mask)
4780 {
4781 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4782 }
4783 
4784 int __netdev_update_features(struct net_device *dev);
4785 void netdev_update_features(struct net_device *dev);
4786 void netdev_change_features(struct net_device *dev);
4787 
4788 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4789 					struct net_device *dev);
4790 
4791 netdev_features_t passthru_features_check(struct sk_buff *skb,
4792 					  struct net_device *dev,
4793 					  netdev_features_t features);
4794 netdev_features_t netif_skb_features(struct sk_buff *skb);
4795 
4796 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4797 {
4798 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4799 
4800 	/* check flags correspondence */
4801 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4802 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4803 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4804 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4805 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4806 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4807 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4808 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4809 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4810 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4811 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4812 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4813 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4814 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4815 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4816 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4817 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4818 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4819 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4820 
4821 	return (features & feature) == feature;
4822 }
4823 
4824 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4825 {
4826 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4827 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4828 }
4829 
4830 static inline bool netif_needs_gso(struct sk_buff *skb,
4831 				   netdev_features_t features)
4832 {
4833 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4834 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4835 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4836 }
4837 
4838 static inline void netif_set_gso_max_size(struct net_device *dev,
4839 					  unsigned int size)
4840 {
4841 	/* dev->gso_max_size is read locklessly from sk_setup_caps() */
4842 	WRITE_ONCE(dev->gso_max_size, size);
4843 }
4844 
4845 static inline void netif_set_gso_max_segs(struct net_device *dev,
4846 					  unsigned int segs)
4847 {
4848 	/* dev->gso_max_segs is read locklessly from sk_setup_caps() */
4849 	WRITE_ONCE(dev->gso_max_segs, segs);
4850 }
4851 
4852 static inline void netif_set_gro_max_size(struct net_device *dev,
4853 					  unsigned int size)
4854 {
4855 	/* This pairs with the READ_ONCE() in skb_gro_receive() */
4856 	WRITE_ONCE(dev->gro_max_size, size);
4857 }
4858 
4859 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4860 					int pulled_hlen, u16 mac_offset,
4861 					int mac_len)
4862 {
4863 	skb->protocol = protocol;
4864 	skb->encapsulation = 1;
4865 	skb_push(skb, pulled_hlen);
4866 	skb_reset_transport_header(skb);
4867 	skb->mac_header = mac_offset;
4868 	skb->network_header = skb->mac_header + mac_len;
4869 	skb->mac_len = mac_len;
4870 }
4871 
4872 static inline bool netif_is_macsec(const struct net_device *dev)
4873 {
4874 	return dev->priv_flags & IFF_MACSEC;
4875 }
4876 
4877 static inline bool netif_is_macvlan(const struct net_device *dev)
4878 {
4879 	return dev->priv_flags & IFF_MACVLAN;
4880 }
4881 
4882 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4883 {
4884 	return dev->priv_flags & IFF_MACVLAN_PORT;
4885 }
4886 
4887 static inline bool netif_is_bond_master(const struct net_device *dev)
4888 {
4889 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4890 }
4891 
4892 static inline bool netif_is_bond_slave(const struct net_device *dev)
4893 {
4894 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4895 }
4896 
4897 static inline bool netif_supports_nofcs(struct net_device *dev)
4898 {
4899 	return dev->priv_flags & IFF_SUPP_NOFCS;
4900 }
4901 
4902 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4903 {
4904 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4905 }
4906 
4907 static inline bool netif_is_l3_master(const struct net_device *dev)
4908 {
4909 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4910 }
4911 
4912 static inline bool netif_is_l3_slave(const struct net_device *dev)
4913 {
4914 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4915 }
4916 
4917 static inline bool netif_is_bridge_master(const struct net_device *dev)
4918 {
4919 	return dev->priv_flags & IFF_EBRIDGE;
4920 }
4921 
4922 static inline bool netif_is_bridge_port(const struct net_device *dev)
4923 {
4924 	return dev->priv_flags & IFF_BRIDGE_PORT;
4925 }
4926 
4927 static inline bool netif_is_ovs_master(const struct net_device *dev)
4928 {
4929 	return dev->priv_flags & IFF_OPENVSWITCH;
4930 }
4931 
4932 static inline bool netif_is_ovs_port(const struct net_device *dev)
4933 {
4934 	return dev->priv_flags & IFF_OVS_DATAPATH;
4935 }
4936 
4937 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4938 {
4939 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4940 }
4941 
4942 static inline bool netif_is_team_master(const struct net_device *dev)
4943 {
4944 	return dev->priv_flags & IFF_TEAM;
4945 }
4946 
4947 static inline bool netif_is_team_port(const struct net_device *dev)
4948 {
4949 	return dev->priv_flags & IFF_TEAM_PORT;
4950 }
4951 
4952 static inline bool netif_is_lag_master(const struct net_device *dev)
4953 {
4954 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4955 }
4956 
4957 static inline bool netif_is_lag_port(const struct net_device *dev)
4958 {
4959 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4960 }
4961 
4962 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4963 {
4964 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4965 }
4966 
4967 static inline bool netif_is_failover(const struct net_device *dev)
4968 {
4969 	return dev->priv_flags & IFF_FAILOVER;
4970 }
4971 
4972 static inline bool netif_is_failover_slave(const struct net_device *dev)
4973 {
4974 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4975 }
4976 
4977 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4978 static inline void netif_keep_dst(struct net_device *dev)
4979 {
4980 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4981 }
4982 
4983 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4984 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4985 {
4986 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4987 	return netif_is_macsec(dev);
4988 }
4989 
4990 extern struct pernet_operations __net_initdata loopback_net_ops;
4991 
4992 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4993 
4994 /* netdev_printk helpers, similar to dev_printk */
4995 
4996 static inline const char *netdev_name(const struct net_device *dev)
4997 {
4998 	if (!dev->name[0] || strchr(dev->name, '%'))
4999 		return "(unnamed net_device)";
5000 	return dev->name;
5001 }
5002 
5003 static inline bool netdev_unregistering(const struct net_device *dev)
5004 {
5005 	return dev->reg_state == NETREG_UNREGISTERING;
5006 }
5007 
5008 static inline const char *netdev_reg_state(const struct net_device *dev)
5009 {
5010 	switch (dev->reg_state) {
5011 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5012 	case NETREG_REGISTERED: return "";
5013 	case NETREG_UNREGISTERING: return " (unregistering)";
5014 	case NETREG_UNREGISTERED: return " (unregistered)";
5015 	case NETREG_RELEASED: return " (released)";
5016 	case NETREG_DUMMY: return " (dummy)";
5017 	}
5018 
5019 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5020 	return " (unknown)";
5021 }
5022 
5023 __printf(3, 4) __cold
5024 void netdev_printk(const char *level, const struct net_device *dev,
5025 		   const char *format, ...);
5026 __printf(2, 3) __cold
5027 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5028 __printf(2, 3) __cold
5029 void netdev_alert(const struct net_device *dev, const char *format, ...);
5030 __printf(2, 3) __cold
5031 void netdev_crit(const struct net_device *dev, const char *format, ...);
5032 __printf(2, 3) __cold
5033 void netdev_err(const struct net_device *dev, const char *format, ...);
5034 __printf(2, 3) __cold
5035 void netdev_warn(const struct net_device *dev, const char *format, ...);
5036 __printf(2, 3) __cold
5037 void netdev_notice(const struct net_device *dev, const char *format, ...);
5038 __printf(2, 3) __cold
5039 void netdev_info(const struct net_device *dev, const char *format, ...);
5040 
5041 #define netdev_level_once(level, dev, fmt, ...)			\
5042 do {								\
5043 	static bool __section(".data.once") __print_once;	\
5044 								\
5045 	if (!__print_once) {					\
5046 		__print_once = true;				\
5047 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5048 	}							\
5049 } while (0)
5050 
5051 #define netdev_emerg_once(dev, fmt, ...) \
5052 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5053 #define netdev_alert_once(dev, fmt, ...) \
5054 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5055 #define netdev_crit_once(dev, fmt, ...) \
5056 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5057 #define netdev_err_once(dev, fmt, ...) \
5058 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5059 #define netdev_warn_once(dev, fmt, ...) \
5060 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5061 #define netdev_notice_once(dev, fmt, ...) \
5062 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5063 #define netdev_info_once(dev, fmt, ...) \
5064 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5065 
5066 #define MODULE_ALIAS_NETDEV(device) \
5067 	MODULE_ALIAS("netdev-" device)
5068 
5069 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5070 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5071 #define netdev_dbg(__dev, format, args...)			\
5072 do {								\
5073 	dynamic_netdev_dbg(__dev, format, ##args);		\
5074 } while (0)
5075 #elif defined(DEBUG)
5076 #define netdev_dbg(__dev, format, args...)			\
5077 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5078 #else
5079 #define netdev_dbg(__dev, format, args...)			\
5080 ({								\
5081 	if (0)							\
5082 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5083 })
5084 #endif
5085 
5086 #if defined(VERBOSE_DEBUG)
5087 #define netdev_vdbg	netdev_dbg
5088 #else
5089 
5090 #define netdev_vdbg(dev, format, args...)			\
5091 ({								\
5092 	if (0)							\
5093 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5094 	0;							\
5095 })
5096 #endif
5097 
5098 /*
5099  * netdev_WARN() acts like dev_printk(), but with the key difference
5100  * of using a WARN/WARN_ON to get the message out, including the
5101  * file/line information and a backtrace.
5102  */
5103 #define netdev_WARN(dev, format, args...)			\
5104 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5105 	     netdev_reg_state(dev), ##args)
5106 
5107 #define netdev_WARN_ONCE(dev, format, args...)				\
5108 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5109 		  netdev_reg_state(dev), ##args)
5110 
5111 /* netif printk helpers, similar to netdev_printk */
5112 
5113 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5114 do {					  			\
5115 	if (netif_msg_##type(priv))				\
5116 		netdev_printk(level, (dev), fmt, ##args);	\
5117 } while (0)
5118 
5119 #define netif_level(level, priv, type, dev, fmt, args...)	\
5120 do {								\
5121 	if (netif_msg_##type(priv))				\
5122 		netdev_##level(dev, fmt, ##args);		\
5123 } while (0)
5124 
5125 #define netif_emerg(priv, type, dev, fmt, args...)		\
5126 	netif_level(emerg, priv, type, dev, fmt, ##args)
5127 #define netif_alert(priv, type, dev, fmt, args...)		\
5128 	netif_level(alert, priv, type, dev, fmt, ##args)
5129 #define netif_crit(priv, type, dev, fmt, args...)		\
5130 	netif_level(crit, priv, type, dev, fmt, ##args)
5131 #define netif_err(priv, type, dev, fmt, args...)		\
5132 	netif_level(err, priv, type, dev, fmt, ##args)
5133 #define netif_warn(priv, type, dev, fmt, args...)		\
5134 	netif_level(warn, priv, type, dev, fmt, ##args)
5135 #define netif_notice(priv, type, dev, fmt, args...)		\
5136 	netif_level(notice, priv, type, dev, fmt, ##args)
5137 #define netif_info(priv, type, dev, fmt, args...)		\
5138 	netif_level(info, priv, type, dev, fmt, ##args)
5139 
5140 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5141 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5142 #define netif_dbg(priv, type, netdev, format, args...)		\
5143 do {								\
5144 	if (netif_msg_##type(priv))				\
5145 		dynamic_netdev_dbg(netdev, format, ##args);	\
5146 } while (0)
5147 #elif defined(DEBUG)
5148 #define netif_dbg(priv, type, dev, format, args...)		\
5149 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5150 #else
5151 #define netif_dbg(priv, type, dev, format, args...)			\
5152 ({									\
5153 	if (0)								\
5154 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5155 	0;								\
5156 })
5157 #endif
5158 
5159 /* if @cond then downgrade to debug, else print at @level */
5160 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5161 	do {                                                              \
5162 		if (cond)                                                 \
5163 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5164 		else                                                      \
5165 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5166 	} while (0)
5167 
5168 #if defined(VERBOSE_DEBUG)
5169 #define netif_vdbg	netif_dbg
5170 #else
5171 #define netif_vdbg(priv, type, dev, format, args...)		\
5172 ({								\
5173 	if (0)							\
5174 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5175 	0;							\
5176 })
5177 #endif
5178 
5179 /*
5180  *	The list of packet types we will receive (as opposed to discard)
5181  *	and the routines to invoke.
5182  *
5183  *	Why 16. Because with 16 the only overlap we get on a hash of the
5184  *	low nibble of the protocol value is RARP/SNAP/X.25.
5185  *
5186  *		0800	IP
5187  *		0001	802.3
5188  *		0002	AX.25
5189  *		0004	802.2
5190  *		8035	RARP
5191  *		0005	SNAP
5192  *		0805	X.25
5193  *		0806	ARP
5194  *		8137	IPX
5195  *		0009	Localtalk
5196  *		86DD	IPv6
5197  */
5198 #define PTYPE_HASH_SIZE	(16)
5199 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5200 
5201 extern struct list_head ptype_all __read_mostly;
5202 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5203 
5204 extern struct net_device *blackhole_netdev;
5205 
5206 #endif	/* _LINUX_NETDEVICE_H */
5207