xref: /linux-6.15/include/linux/netdevice.h (revision b47d1fcd)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_config;
67 struct netdev_name_node;
68 struct sd_flow_limit;
69 struct sfp_bus;
70 /* 802.11 specific */
71 struct wireless_dev;
72 /* 802.15.4 specific */
73 struct wpan_dev;
74 struct mpls_dev;
75 /* UDP Tunnel offloads */
76 struct udp_tunnel_info;
77 struct udp_tunnel_nic_info;
78 struct udp_tunnel_nic;
79 struct bpf_prog;
80 struct xdp_buff;
81 struct xdp_frame;
82 struct xdp_metadata_ops;
83 struct xdp_md;
84 struct ethtool_netdev_state;
85 struct phy_link_topology;
86 struct hwtstamp_provider;
87 
88 typedef u32 xdp_features_t;
89 
90 void synchronize_net(void);
91 void netdev_set_default_ethtool_ops(struct net_device *dev,
92 				    const struct ethtool_ops *ops);
93 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
94 
95 /* Backlog congestion levels */
96 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
97 #define NET_RX_DROP		1	/* packet dropped */
98 
99 #define MAX_NEST_DEV 8
100 
101 /*
102  * Transmit return codes: transmit return codes originate from three different
103  * namespaces:
104  *
105  * - qdisc return codes
106  * - driver transmit return codes
107  * - errno values
108  *
109  * Drivers are allowed to return any one of those in their hard_start_xmit()
110  * function. Real network devices commonly used with qdiscs should only return
111  * the driver transmit return codes though - when qdiscs are used, the actual
112  * transmission happens asynchronously, so the value is not propagated to
113  * higher layers. Virtual network devices transmit synchronously; in this case
114  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
115  * others are propagated to higher layers.
116  */
117 
118 /* qdisc ->enqueue() return codes. */
119 #define NET_XMIT_SUCCESS	0x00
120 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
121 #define NET_XMIT_CN		0x02	/* congestion notification	*/
122 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
123 
124 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
125  * indicates that the device will soon be dropping packets, or already drops
126  * some packets of the same priority; prompting us to send less aggressively. */
127 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
128 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
129 
130 /* Driver transmit return codes */
131 #define NETDEV_TX_MASK		0xf0
132 
133 enum netdev_tx {
134 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
135 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
136 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
137 };
138 typedef enum netdev_tx netdev_tx_t;
139 
140 /*
141  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
142  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
143  */
144 static inline bool dev_xmit_complete(int rc)
145 {
146 	/*
147 	 * Positive cases with an skb consumed by a driver:
148 	 * - successful transmission (rc == NETDEV_TX_OK)
149 	 * - error while transmitting (rc < 0)
150 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
151 	 */
152 	if (likely(rc < NET_XMIT_MASK))
153 		return true;
154 
155 	return false;
156 }
157 
158 /*
159  *	Compute the worst-case header length according to the protocols
160  *	used.
161  */
162 
163 #if defined(CONFIG_HYPERV_NET)
164 # define LL_MAX_HEADER 128
165 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
166 # if defined(CONFIG_MAC80211_MESH)
167 #  define LL_MAX_HEADER 128
168 # else
169 #  define LL_MAX_HEADER 96
170 # endif
171 #else
172 # define LL_MAX_HEADER 32
173 #endif
174 
175 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
176     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
177 #define MAX_HEADER LL_MAX_HEADER
178 #else
179 #define MAX_HEADER (LL_MAX_HEADER + 48)
180 #endif
181 
182 /*
183  *	Old network device statistics. Fields are native words
184  *	(unsigned long) so they can be read and written atomically.
185  */
186 
187 #define NET_DEV_STAT(FIELD)			\
188 	union {					\
189 		unsigned long FIELD;		\
190 		atomic_long_t __##FIELD;	\
191 	}
192 
193 struct net_device_stats {
194 	NET_DEV_STAT(rx_packets);
195 	NET_DEV_STAT(tx_packets);
196 	NET_DEV_STAT(rx_bytes);
197 	NET_DEV_STAT(tx_bytes);
198 	NET_DEV_STAT(rx_errors);
199 	NET_DEV_STAT(tx_errors);
200 	NET_DEV_STAT(rx_dropped);
201 	NET_DEV_STAT(tx_dropped);
202 	NET_DEV_STAT(multicast);
203 	NET_DEV_STAT(collisions);
204 	NET_DEV_STAT(rx_length_errors);
205 	NET_DEV_STAT(rx_over_errors);
206 	NET_DEV_STAT(rx_crc_errors);
207 	NET_DEV_STAT(rx_frame_errors);
208 	NET_DEV_STAT(rx_fifo_errors);
209 	NET_DEV_STAT(rx_missed_errors);
210 	NET_DEV_STAT(tx_aborted_errors);
211 	NET_DEV_STAT(tx_carrier_errors);
212 	NET_DEV_STAT(tx_fifo_errors);
213 	NET_DEV_STAT(tx_heartbeat_errors);
214 	NET_DEV_STAT(tx_window_errors);
215 	NET_DEV_STAT(rx_compressed);
216 	NET_DEV_STAT(tx_compressed);
217 };
218 #undef NET_DEV_STAT
219 
220 /* per-cpu stats, allocated on demand.
221  * Try to fit them in a single cache line, for dev_get_stats() sake.
222  */
223 struct net_device_core_stats {
224 	unsigned long	rx_dropped;
225 	unsigned long	tx_dropped;
226 	unsigned long	rx_nohandler;
227 	unsigned long	rx_otherhost_dropped;
228 } __aligned(4 * sizeof(unsigned long));
229 
230 #include <linux/cache.h>
231 #include <linux/skbuff.h>
232 
233 struct neighbour;
234 struct neigh_parms;
235 struct sk_buff;
236 
237 struct netdev_hw_addr {
238 	struct list_head	list;
239 	struct rb_node		node;
240 	unsigned char		addr[MAX_ADDR_LEN];
241 	unsigned char		type;
242 #define NETDEV_HW_ADDR_T_LAN		1
243 #define NETDEV_HW_ADDR_T_SAN		2
244 #define NETDEV_HW_ADDR_T_UNICAST	3
245 #define NETDEV_HW_ADDR_T_MULTICAST	4
246 	bool			global_use;
247 	int			sync_cnt;
248 	int			refcount;
249 	int			synced;
250 	struct rcu_head		rcu_head;
251 };
252 
253 struct netdev_hw_addr_list {
254 	struct list_head	list;
255 	int			count;
256 
257 	/* Auxiliary tree for faster lookup on addition and deletion */
258 	struct rb_root		tree;
259 };
260 
261 #define netdev_hw_addr_list_count(l) ((l)->count)
262 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
263 #define netdev_hw_addr_list_for_each(ha, l) \
264 	list_for_each_entry(ha, &(l)->list, list)
265 
266 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
267 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
268 #define netdev_for_each_uc_addr(ha, dev) \
269 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
270 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
271 	netdev_for_each_uc_addr((_ha), (_dev)) \
272 		if ((_ha)->sync_cnt)
273 
274 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
275 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
276 #define netdev_for_each_mc_addr(ha, dev) \
277 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
278 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
279 	netdev_for_each_mc_addr((_ha), (_dev)) \
280 		if ((_ha)->sync_cnt)
281 
282 struct hh_cache {
283 	unsigned int	hh_len;
284 	seqlock_t	hh_lock;
285 
286 	/* cached hardware header; allow for machine alignment needs.        */
287 #define HH_DATA_MOD	16
288 #define HH_DATA_OFF(__len) \
289 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
290 #define HH_DATA_ALIGN(__len) \
291 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
292 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
293 };
294 
295 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
296  * Alternative is:
297  *   dev->hard_header_len ? (dev->hard_header_len +
298  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
299  *
300  * We could use other alignment values, but we must maintain the
301  * relationship HH alignment <= LL alignment.
302  */
303 #define LL_RESERVED_SPACE(dev) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 
310 struct header_ops {
311 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
312 			   unsigned short type, const void *daddr,
313 			   const void *saddr, unsigned int len);
314 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
315 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
316 	void	(*cache_update)(struct hh_cache *hh,
317 				const struct net_device *dev,
318 				const unsigned char *haddr);
319 	bool	(*validate)(const char *ll_header, unsigned int len);
320 	__be16	(*parse_protocol)(const struct sk_buff *skb);
321 };
322 
323 /* These flag bits are private to the generic network queueing
324  * layer; they may not be explicitly referenced by any other
325  * code.
326  */
327 
328 enum netdev_state_t {
329 	__LINK_STATE_START,
330 	__LINK_STATE_PRESENT,
331 	__LINK_STATE_NOCARRIER,
332 	__LINK_STATE_LINKWATCH_PENDING,
333 	__LINK_STATE_DORMANT,
334 	__LINK_STATE_TESTING,
335 };
336 
337 struct gro_list {
338 	struct list_head	list;
339 	int			count;
340 };
341 
342 /*
343  * size of gro hash buckets, must less than bit number of
344  * napi_struct::gro_bitmask
345  */
346 #define GRO_HASH_BUCKETS	8
347 
348 /*
349  * Structure for per-NAPI config
350  */
351 struct napi_config {
352 	u64 gro_flush_timeout;
353 	u64 irq_suspend_timeout;
354 	u32 defer_hard_irqs;
355 	unsigned int napi_id;
356 };
357 
358 /*
359  * Structure for NAPI scheduling similar to tasklet but with weighting
360  */
361 struct napi_struct {
362 	/* The poll_list must only be managed by the entity which
363 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
364 	 * whoever atomically sets that bit can add this napi_struct
365 	 * to the per-CPU poll_list, and whoever clears that bit
366 	 * can remove from the list right before clearing the bit.
367 	 */
368 	struct list_head	poll_list;
369 
370 	unsigned long		state;
371 	int			weight;
372 	u32			defer_hard_irqs_count;
373 	unsigned long		gro_bitmask;
374 	int			(*poll)(struct napi_struct *, int);
375 #ifdef CONFIG_NETPOLL
376 	/* CPU actively polling if netpoll is configured */
377 	int			poll_owner;
378 #endif
379 	/* CPU on which NAPI has been scheduled for processing */
380 	int			list_owner;
381 	struct net_device	*dev;
382 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
383 	struct sk_buff		*skb;
384 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
385 	int			rx_count; /* length of rx_list */
386 	unsigned int		napi_id; /* protected by netdev_lock */
387 	struct hrtimer		timer;
388 	/* all fields past this point are write-protected by netdev_lock */
389 	struct task_struct	*thread;
390 	unsigned long		gro_flush_timeout;
391 	unsigned long		irq_suspend_timeout;
392 	u32			defer_hard_irqs;
393 	/* control-path-only fields follow */
394 	struct list_head	dev_list;
395 	struct hlist_node	napi_hash_node;
396 	int			irq;
397 	int			index;
398 	struct napi_config	*config;
399 };
400 
401 enum {
402 	NAPI_STATE_SCHED,		/* Poll is scheduled */
403 	NAPI_STATE_MISSED,		/* reschedule a napi */
404 	NAPI_STATE_DISABLE,		/* Disable pending */
405 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
406 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
407 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
408 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
409 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
410 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
411 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
412 };
413 
414 enum {
415 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
416 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
417 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
418 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
419 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
420 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
421 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
422 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
423 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
424 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
425 };
426 
427 enum gro_result {
428 	GRO_MERGED,
429 	GRO_MERGED_FREE,
430 	GRO_HELD,
431 	GRO_NORMAL,
432 	GRO_CONSUMED,
433 };
434 typedef enum gro_result gro_result_t;
435 
436 /*
437  * enum rx_handler_result - Possible return values for rx_handlers.
438  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
439  * further.
440  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
441  * case skb->dev was changed by rx_handler.
442  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
443  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
444  *
445  * rx_handlers are functions called from inside __netif_receive_skb(), to do
446  * special processing of the skb, prior to delivery to protocol handlers.
447  *
448  * Currently, a net_device can only have a single rx_handler registered. Trying
449  * to register a second rx_handler will return -EBUSY.
450  *
451  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
452  * To unregister a rx_handler on a net_device, use
453  * netdev_rx_handler_unregister().
454  *
455  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
456  * do with the skb.
457  *
458  * If the rx_handler consumed the skb in some way, it should return
459  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
460  * the skb to be delivered in some other way.
461  *
462  * If the rx_handler changed skb->dev, to divert the skb to another
463  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
464  * new device will be called if it exists.
465  *
466  * If the rx_handler decides the skb should be ignored, it should return
467  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
468  * are registered on exact device (ptype->dev == skb->dev).
469  *
470  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
471  * delivered, it should return RX_HANDLER_PASS.
472  *
473  * A device without a registered rx_handler will behave as if rx_handler
474  * returned RX_HANDLER_PASS.
475  */
476 
477 enum rx_handler_result {
478 	RX_HANDLER_CONSUMED,
479 	RX_HANDLER_ANOTHER,
480 	RX_HANDLER_EXACT,
481 	RX_HANDLER_PASS,
482 };
483 typedef enum rx_handler_result rx_handler_result_t;
484 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
485 
486 void __napi_schedule(struct napi_struct *n);
487 void __napi_schedule_irqoff(struct napi_struct *n);
488 
489 static inline bool napi_disable_pending(struct napi_struct *n)
490 {
491 	return test_bit(NAPI_STATE_DISABLE, &n->state);
492 }
493 
494 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
495 {
496 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
497 }
498 
499 /**
500  * napi_is_scheduled - test if NAPI is scheduled
501  * @n: NAPI context
502  *
503  * This check is "best-effort". With no locking implemented,
504  * a NAPI can be scheduled or terminate right after this check
505  * and produce not precise results.
506  *
507  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
508  * should not be used normally and napi_schedule should be
509  * used instead.
510  *
511  * Use only if the driver really needs to check if a NAPI
512  * is scheduled for example in the context of delayed timer
513  * that can be skipped if a NAPI is already scheduled.
514  *
515  * Return: True if NAPI is scheduled, False otherwise.
516  */
517 static inline bool napi_is_scheduled(struct napi_struct *n)
518 {
519 	return test_bit(NAPI_STATE_SCHED, &n->state);
520 }
521 
522 bool napi_schedule_prep(struct napi_struct *n);
523 
524 /**
525  *	napi_schedule - schedule NAPI poll
526  *	@n: NAPI context
527  *
528  * Schedule NAPI poll routine to be called if it is not already
529  * running.
530  * Return: true if we schedule a NAPI or false if not.
531  * Refer to napi_schedule_prep() for additional reason on why
532  * a NAPI might not be scheduled.
533  */
534 static inline bool napi_schedule(struct napi_struct *n)
535 {
536 	if (napi_schedule_prep(n)) {
537 		__napi_schedule(n);
538 		return true;
539 	}
540 
541 	return false;
542 }
543 
544 /**
545  *	napi_schedule_irqoff - schedule NAPI poll
546  *	@n: NAPI context
547  *
548  * Variant of napi_schedule(), assuming hard irqs are masked.
549  */
550 static inline void napi_schedule_irqoff(struct napi_struct *n)
551 {
552 	if (napi_schedule_prep(n))
553 		__napi_schedule_irqoff(n);
554 }
555 
556 /**
557  * napi_complete_done - NAPI processing complete
558  * @n: NAPI context
559  * @work_done: number of packets processed
560  *
561  * Mark NAPI processing as complete. Should only be called if poll budget
562  * has not been completely consumed.
563  * Prefer over napi_complete().
564  * Return: false if device should avoid rearming interrupts.
565  */
566 bool napi_complete_done(struct napi_struct *n, int work_done);
567 
568 static inline bool napi_complete(struct napi_struct *n)
569 {
570 	return napi_complete_done(n, 0);
571 }
572 
573 int dev_set_threaded(struct net_device *dev, bool threaded);
574 
575 void napi_disable(struct napi_struct *n);
576 void napi_disable_locked(struct napi_struct *n);
577 
578 void napi_enable(struct napi_struct *n);
579 void napi_enable_locked(struct napi_struct *n);
580 
581 /**
582  *	napi_synchronize - wait until NAPI is not running
583  *	@n: NAPI context
584  *
585  * Wait until NAPI is done being scheduled on this context.
586  * Waits till any outstanding processing completes but
587  * does not disable future activations.
588  */
589 static inline void napi_synchronize(const struct napi_struct *n)
590 {
591 	if (IS_ENABLED(CONFIG_SMP))
592 		while (test_bit(NAPI_STATE_SCHED, &n->state))
593 			msleep(1);
594 	else
595 		barrier();
596 }
597 
598 /**
599  *	napi_if_scheduled_mark_missed - if napi is running, set the
600  *	NAPIF_STATE_MISSED
601  *	@n: NAPI context
602  *
603  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
604  * NAPI is scheduled.
605  **/
606 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
607 {
608 	unsigned long val, new;
609 
610 	val = READ_ONCE(n->state);
611 	do {
612 		if (val & NAPIF_STATE_DISABLE)
613 			return true;
614 
615 		if (!(val & NAPIF_STATE_SCHED))
616 			return false;
617 
618 		new = val | NAPIF_STATE_MISSED;
619 	} while (!try_cmpxchg(&n->state, &val, new));
620 
621 	return true;
622 }
623 
624 enum netdev_queue_state_t {
625 	__QUEUE_STATE_DRV_XOFF,
626 	__QUEUE_STATE_STACK_XOFF,
627 	__QUEUE_STATE_FROZEN,
628 };
629 
630 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
631 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
632 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
633 
634 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
635 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
636 					QUEUE_STATE_FROZEN)
637 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
638 					QUEUE_STATE_FROZEN)
639 
640 /*
641  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
642  * netif_tx_* functions below are used to manipulate this flag.  The
643  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
644  * queue independently.  The netif_xmit_*stopped functions below are called
645  * to check if the queue has been stopped by the driver or stack (either
646  * of the XOFF bits are set in the state).  Drivers should not need to call
647  * netif_xmit*stopped functions, they should only be using netif_tx_*.
648  */
649 
650 struct netdev_queue {
651 /*
652  * read-mostly part
653  */
654 	struct net_device	*dev;
655 	netdevice_tracker	dev_tracker;
656 
657 	struct Qdisc __rcu	*qdisc;
658 	struct Qdisc __rcu	*qdisc_sleeping;
659 #ifdef CONFIG_SYSFS
660 	struct kobject		kobj;
661 #endif
662 	unsigned long		tx_maxrate;
663 	/*
664 	 * Number of TX timeouts for this queue
665 	 * (/sys/class/net/DEV/Q/trans_timeout)
666 	 */
667 	atomic_long_t		trans_timeout;
668 
669 	/* Subordinate device that the queue has been assigned to */
670 	struct net_device	*sb_dev;
671 #ifdef CONFIG_XDP_SOCKETS
672 	struct xsk_buff_pool    *pool;
673 #endif
674 
675 /*
676  * write-mostly part
677  */
678 #ifdef CONFIG_BQL
679 	struct dql		dql;
680 #endif
681 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
682 	int			xmit_lock_owner;
683 	/*
684 	 * Time (in jiffies) of last Tx
685 	 */
686 	unsigned long		trans_start;
687 
688 	unsigned long		state;
689 
690 /*
691  * slow- / control-path part
692  */
693 	/* NAPI instance for the queue
694 	 * Readers and writers must hold RTNL
695 	 */
696 	struct napi_struct	*napi;
697 
698 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
699 	int			numa_node;
700 #endif
701 } ____cacheline_aligned_in_smp;
702 
703 extern int sysctl_fb_tunnels_only_for_init_net;
704 extern int sysctl_devconf_inherit_init_net;
705 
706 /*
707  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
708  *                                     == 1 : For initns only
709  *                                     == 2 : For none.
710  */
711 static inline bool net_has_fallback_tunnels(const struct net *net)
712 {
713 #if IS_ENABLED(CONFIG_SYSCTL)
714 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
715 
716 	return !fb_tunnels_only_for_init_net ||
717 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
718 #else
719 	return true;
720 #endif
721 }
722 
723 static inline int net_inherit_devconf(void)
724 {
725 #if IS_ENABLED(CONFIG_SYSCTL)
726 	return READ_ONCE(sysctl_devconf_inherit_init_net);
727 #else
728 	return 0;
729 #endif
730 }
731 
732 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
733 {
734 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
735 	return q->numa_node;
736 #else
737 	return NUMA_NO_NODE;
738 #endif
739 }
740 
741 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
742 {
743 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
744 	q->numa_node = node;
745 #endif
746 }
747 
748 #ifdef CONFIG_RFS_ACCEL
749 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
750 			 u16 filter_id);
751 #endif
752 
753 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
754 enum xps_map_type {
755 	XPS_CPUS = 0,
756 	XPS_RXQS,
757 	XPS_MAPS_MAX,
758 };
759 
760 #ifdef CONFIG_XPS
761 /*
762  * This structure holds an XPS map which can be of variable length.  The
763  * map is an array of queues.
764  */
765 struct xps_map {
766 	unsigned int len;
767 	unsigned int alloc_len;
768 	struct rcu_head rcu;
769 	u16 queues[];
770 };
771 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
772 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
773        - sizeof(struct xps_map)) / sizeof(u16))
774 
775 /*
776  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
777  *
778  * We keep track of the number of cpus/rxqs used when the struct is allocated,
779  * in nr_ids. This will help not accessing out-of-bound memory.
780  *
781  * We keep track of the number of traffic classes used when the struct is
782  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
783  * not crossing its upper bound, as the original dev->num_tc can be updated in
784  * the meantime.
785  */
786 struct xps_dev_maps {
787 	struct rcu_head rcu;
788 	unsigned int nr_ids;
789 	s16 num_tc;
790 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
791 };
792 
793 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
794 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
795 
796 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
797 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
798 
799 #endif /* CONFIG_XPS */
800 
801 #define TC_MAX_QUEUE	16
802 #define TC_BITMASK	15
803 /* HW offloaded queuing disciplines txq count and offset maps */
804 struct netdev_tc_txq {
805 	u16 count;
806 	u16 offset;
807 };
808 
809 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
810 /*
811  * This structure is to hold information about the device
812  * configured to run FCoE protocol stack.
813  */
814 struct netdev_fcoe_hbainfo {
815 	char	manufacturer[64];
816 	char	serial_number[64];
817 	char	hardware_version[64];
818 	char	driver_version[64];
819 	char	optionrom_version[64];
820 	char	firmware_version[64];
821 	char	model[256];
822 	char	model_description[256];
823 };
824 #endif
825 
826 #define MAX_PHYS_ITEM_ID_LEN 32
827 
828 /* This structure holds a unique identifier to identify some
829  * physical item (port for example) used by a netdevice.
830  */
831 struct netdev_phys_item_id {
832 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
833 	unsigned char id_len;
834 };
835 
836 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
837 					    struct netdev_phys_item_id *b)
838 {
839 	return a->id_len == b->id_len &&
840 	       memcmp(a->id, b->id, a->id_len) == 0;
841 }
842 
843 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
844 				       struct sk_buff *skb,
845 				       struct net_device *sb_dev);
846 
847 enum net_device_path_type {
848 	DEV_PATH_ETHERNET = 0,
849 	DEV_PATH_VLAN,
850 	DEV_PATH_BRIDGE,
851 	DEV_PATH_PPPOE,
852 	DEV_PATH_DSA,
853 	DEV_PATH_MTK_WDMA,
854 };
855 
856 struct net_device_path {
857 	enum net_device_path_type	type;
858 	const struct net_device		*dev;
859 	union {
860 		struct {
861 			u16		id;
862 			__be16		proto;
863 			u8		h_dest[ETH_ALEN];
864 		} encap;
865 		struct {
866 			enum {
867 				DEV_PATH_BR_VLAN_KEEP,
868 				DEV_PATH_BR_VLAN_TAG,
869 				DEV_PATH_BR_VLAN_UNTAG,
870 				DEV_PATH_BR_VLAN_UNTAG_HW,
871 			}		vlan_mode;
872 			u16		vlan_id;
873 			__be16		vlan_proto;
874 		} bridge;
875 		struct {
876 			int port;
877 			u16 proto;
878 		} dsa;
879 		struct {
880 			u8 wdma_idx;
881 			u8 queue;
882 			u16 wcid;
883 			u8 bss;
884 			u8 amsdu;
885 		} mtk_wdma;
886 	};
887 };
888 
889 #define NET_DEVICE_PATH_STACK_MAX	5
890 #define NET_DEVICE_PATH_VLAN_MAX	2
891 
892 struct net_device_path_stack {
893 	int			num_paths;
894 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
895 };
896 
897 struct net_device_path_ctx {
898 	const struct net_device *dev;
899 	u8			daddr[ETH_ALEN];
900 
901 	int			num_vlans;
902 	struct {
903 		u16		id;
904 		__be16		proto;
905 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
906 };
907 
908 enum tc_setup_type {
909 	TC_QUERY_CAPS,
910 	TC_SETUP_QDISC_MQPRIO,
911 	TC_SETUP_CLSU32,
912 	TC_SETUP_CLSFLOWER,
913 	TC_SETUP_CLSMATCHALL,
914 	TC_SETUP_CLSBPF,
915 	TC_SETUP_BLOCK,
916 	TC_SETUP_QDISC_CBS,
917 	TC_SETUP_QDISC_RED,
918 	TC_SETUP_QDISC_PRIO,
919 	TC_SETUP_QDISC_MQ,
920 	TC_SETUP_QDISC_ETF,
921 	TC_SETUP_ROOT_QDISC,
922 	TC_SETUP_QDISC_GRED,
923 	TC_SETUP_QDISC_TAPRIO,
924 	TC_SETUP_FT,
925 	TC_SETUP_QDISC_ETS,
926 	TC_SETUP_QDISC_TBF,
927 	TC_SETUP_QDISC_FIFO,
928 	TC_SETUP_QDISC_HTB,
929 	TC_SETUP_ACT,
930 };
931 
932 /* These structures hold the attributes of bpf state that are being passed
933  * to the netdevice through the bpf op.
934  */
935 enum bpf_netdev_command {
936 	/* Set or clear a bpf program used in the earliest stages of packet
937 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
938 	 * is responsible for calling bpf_prog_put on any old progs that are
939 	 * stored. In case of error, the callee need not release the new prog
940 	 * reference, but on success it takes ownership and must bpf_prog_put
941 	 * when it is no longer used.
942 	 */
943 	XDP_SETUP_PROG,
944 	XDP_SETUP_PROG_HW,
945 	/* BPF program for offload callbacks, invoked at program load time. */
946 	BPF_OFFLOAD_MAP_ALLOC,
947 	BPF_OFFLOAD_MAP_FREE,
948 	XDP_SETUP_XSK_POOL,
949 };
950 
951 struct bpf_prog_offload_ops;
952 struct netlink_ext_ack;
953 struct xdp_umem;
954 struct xdp_dev_bulk_queue;
955 struct bpf_xdp_link;
956 
957 enum bpf_xdp_mode {
958 	XDP_MODE_SKB = 0,
959 	XDP_MODE_DRV = 1,
960 	XDP_MODE_HW = 2,
961 	__MAX_XDP_MODE
962 };
963 
964 struct bpf_xdp_entity {
965 	struct bpf_prog *prog;
966 	struct bpf_xdp_link *link;
967 };
968 
969 struct netdev_bpf {
970 	enum bpf_netdev_command command;
971 	union {
972 		/* XDP_SETUP_PROG */
973 		struct {
974 			u32 flags;
975 			struct bpf_prog *prog;
976 			struct netlink_ext_ack *extack;
977 		};
978 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
979 		struct {
980 			struct bpf_offloaded_map *offmap;
981 		};
982 		/* XDP_SETUP_XSK_POOL */
983 		struct {
984 			struct xsk_buff_pool *pool;
985 			u16 queue_id;
986 		} xsk;
987 	};
988 };
989 
990 /* Flags for ndo_xsk_wakeup. */
991 #define XDP_WAKEUP_RX (1 << 0)
992 #define XDP_WAKEUP_TX (1 << 1)
993 
994 #ifdef CONFIG_XFRM_OFFLOAD
995 struct xfrmdev_ops {
996 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
997 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
998 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
999 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1000 				       struct xfrm_state *x);
1001 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1002 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1003 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1004 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1005 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1006 };
1007 #endif
1008 
1009 struct dev_ifalias {
1010 	struct rcu_head rcuhead;
1011 	char ifalias[];
1012 };
1013 
1014 struct devlink;
1015 struct tlsdev_ops;
1016 
1017 struct netdev_net_notifier {
1018 	struct list_head list;
1019 	struct notifier_block *nb;
1020 };
1021 
1022 /*
1023  * This structure defines the management hooks for network devices.
1024  * The following hooks can be defined; unless noted otherwise, they are
1025  * optional and can be filled with a null pointer.
1026  *
1027  * int (*ndo_init)(struct net_device *dev);
1028  *     This function is called once when a network device is registered.
1029  *     The network device can use this for any late stage initialization
1030  *     or semantic validation. It can fail with an error code which will
1031  *     be propagated back to register_netdev.
1032  *
1033  * void (*ndo_uninit)(struct net_device *dev);
1034  *     This function is called when device is unregistered or when registration
1035  *     fails. It is not called if init fails.
1036  *
1037  * int (*ndo_open)(struct net_device *dev);
1038  *     This function is called when a network device transitions to the up
1039  *     state.
1040  *
1041  * int (*ndo_stop)(struct net_device *dev);
1042  *     This function is called when a network device transitions to the down
1043  *     state.
1044  *
1045  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1046  *                               struct net_device *dev);
1047  *	Called when a packet needs to be transmitted.
1048  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1049  *	the queue before that can happen; it's for obsolete devices and weird
1050  *	corner cases, but the stack really does a non-trivial amount
1051  *	of useless work if you return NETDEV_TX_BUSY.
1052  *	Required; cannot be NULL.
1053  *
1054  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1055  *					   struct net_device *dev
1056  *					   netdev_features_t features);
1057  *	Called by core transmit path to determine if device is capable of
1058  *	performing offload operations on a given packet. This is to give
1059  *	the device an opportunity to implement any restrictions that cannot
1060  *	be otherwise expressed by feature flags. The check is called with
1061  *	the set of features that the stack has calculated and it returns
1062  *	those the driver believes to be appropriate.
1063  *
1064  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1065  *                         struct net_device *sb_dev);
1066  *	Called to decide which queue to use when device supports multiple
1067  *	transmit queues.
1068  *
1069  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1070  *	This function is called to allow device receiver to make
1071  *	changes to configuration when multicast or promiscuous is enabled.
1072  *
1073  * void (*ndo_set_rx_mode)(struct net_device *dev);
1074  *	This function is called device changes address list filtering.
1075  *	If driver handles unicast address filtering, it should set
1076  *	IFF_UNICAST_FLT in its priv_flags.
1077  *
1078  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1079  *	This function  is called when the Media Access Control address
1080  *	needs to be changed. If this interface is not defined, the
1081  *	MAC address can not be changed.
1082  *
1083  * int (*ndo_validate_addr)(struct net_device *dev);
1084  *	Test if Media Access Control address is valid for the device.
1085  *
1086  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Old-style ioctl entry point. This is used internally by the
1088  *	ieee802154 subsystem but is no longer called by the device
1089  *	ioctl handler.
1090  *
1091  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *	Used by the bonding driver for its device specific ioctls:
1093  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1094  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1095  *
1096  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1097  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1098  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1099  *
1100  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1101  *	Used to set network devices bus interface parameters. This interface
1102  *	is retained for legacy reasons; new devices should use the bus
1103  *	interface (PCI) for low level management.
1104  *
1105  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1106  *	Called when a user wants to change the Maximum Transfer Unit
1107  *	of a device.
1108  *
1109  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1110  *	Callback used when the transmitter has not made any progress
1111  *	for dev->watchdog ticks.
1112  *
1113  * void (*ndo_get_stats64)(struct net_device *dev,
1114  *                         struct rtnl_link_stats64 *storage);
1115  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1116  *	Called when a user wants to get the network device usage
1117  *	statistics. Drivers must do one of the following:
1118  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1119  *	   rtnl_link_stats64 structure passed by the caller.
1120  *	2. Define @ndo_get_stats to update a net_device_stats structure
1121  *	   (which should normally be dev->stats) and return a pointer to
1122  *	   it. The structure may be changed asynchronously only if each
1123  *	   field is written atomically.
1124  *	3. Update dev->stats asynchronously and atomically, and define
1125  *	   neither operation.
1126  *
1127  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1128  *	Return true if this device supports offload stats of this attr_id.
1129  *
1130  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1131  *	void *attr_data)
1132  *	Get statistics for offload operations by attr_id. Write it into the
1133  *	attr_data pointer.
1134  *
1135  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1136  *	If device supports VLAN filtering this function is called when a
1137  *	VLAN id is registered.
1138  *
1139  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1140  *	If device supports VLAN filtering this function is called when a
1141  *	VLAN id is unregistered.
1142  *
1143  * void (*ndo_poll_controller)(struct net_device *dev);
1144  *
1145  *	SR-IOV management functions.
1146  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1147  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1148  *			  u8 qos, __be16 proto);
1149  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1150  *			  int max_tx_rate);
1151  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1153  * int (*ndo_get_vf_config)(struct net_device *dev,
1154  *			    int vf, struct ifla_vf_info *ivf);
1155  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1156  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1157  *			  struct nlattr *port[]);
1158  *
1159  *      Enable or disable the VF ability to query its RSS Redirection Table and
1160  *      Hash Key. This is needed since on some devices VF share this information
1161  *      with PF and querying it may introduce a theoretical security risk.
1162  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1163  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1164  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1165  *		       void *type_data);
1166  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1167  *	This is always called from the stack with the rtnl lock held and netif
1168  *	tx queues stopped. This allows the netdevice to perform queue
1169  *	management safely.
1170  *
1171  *	Fiber Channel over Ethernet (FCoE) offload functions.
1172  * int (*ndo_fcoe_enable)(struct net_device *dev);
1173  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1174  *	so the underlying device can perform whatever needed configuration or
1175  *	initialization to support acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_disable)(struct net_device *dev);
1178  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1179  *	so the underlying device can perform whatever needed clean-ups to
1180  *	stop supporting acceleration of FCoE traffic.
1181  *
1182  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1183  *			     struct scatterlist *sgl, unsigned int sgc);
1184  *	Called when the FCoE Initiator wants to initialize an I/O that
1185  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1186  *	perform necessary setup and returns 1 to indicate the device is set up
1187  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1188  *
1189  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1190  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1191  *	indicated by the FC exchange id 'xid', so the underlying device can
1192  *	clean up and reuse resources for later DDP requests.
1193  *
1194  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1195  *			      struct scatterlist *sgl, unsigned int sgc);
1196  *	Called when the FCoE Target wants to initialize an I/O that
1197  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1198  *	perform necessary setup and returns 1 to indicate the device is set up
1199  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1200  *
1201  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1202  *			       struct netdev_fcoe_hbainfo *hbainfo);
1203  *	Called when the FCoE Protocol stack wants information on the underlying
1204  *	device. This information is utilized by the FCoE protocol stack to
1205  *	register attributes with Fiber Channel management service as per the
1206  *	FC-GS Fabric Device Management Information(FDMI) specification.
1207  *
1208  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1209  *	Called when the underlying device wants to override default World Wide
1210  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1211  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1212  *	protocol stack to use.
1213  *
1214  *	RFS acceleration.
1215  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1216  *			    u16 rxq_index, u32 flow_id);
1217  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1218  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1219  *	Return the filter ID on success, or a negative error code.
1220  *
1221  *	Slave management functions (for bridge, bonding, etc).
1222  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1223  *	Called to make another netdev an underling.
1224  *
1225  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1226  *	Called to release previously enslaved netdev.
1227  *
1228  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1229  *					    struct sk_buff *skb,
1230  *					    bool all_slaves);
1231  *	Get the xmit slave of master device. If all_slaves is true, function
1232  *	assume all the slaves can transmit.
1233  *
1234  *      Feature/offload setting functions.
1235  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1236  *		netdev_features_t features);
1237  *	Adjusts the requested feature flags according to device-specific
1238  *	constraints, and returns the resulting flags. Must not modify
1239  *	the device state.
1240  *
1241  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1242  *	Called to update device configuration to new features. Passed
1243  *	feature set might be less than what was returned by ndo_fix_features()).
1244  *	Must return >0 or -errno if it changed dev->features itself.
1245  *
1246  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *		      struct net_device *dev,
1248  *		      const unsigned char *addr, u16 vid, u16 flags,
1249  *		      bool *notified, struct netlink_ext_ack *extack);
1250  *	Adds an FDB entry to dev for addr.
1251  *	Callee shall set *notified to true if it sent any appropriate
1252  *	notification(s). Otherwise core will send a generic one.
1253  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1254  *		      struct net_device *dev,
1255  *		      const unsigned char *addr, u16 vid
1256  *		      bool *notified, struct netlink_ext_ack *extack);
1257  *	Deletes the FDB entry from dev corresponding to addr.
1258  *	Callee shall set *notified to true if it sent any appropriate
1259  *	notification(s). Otherwise core will send a generic one.
1260  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1261  *			   struct netlink_ext_ack *extack);
1262  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1263  *		       struct net_device *dev, struct net_device *filter_dev,
1264  *		       int *idx)
1265  *	Used to add FDB entries to dump requests. Implementers should add
1266  *	entries to skb and update idx with the number of entries.
1267  *
1268  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1269  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1270  *	Adds an MDB entry to dev.
1271  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1272  *		      struct netlink_ext_ack *extack);
1273  *	Deletes the MDB entry from dev.
1274  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1275  *			   struct netlink_ext_ack *extack);
1276  *	Bulk deletes MDB entries from dev.
1277  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1278  *		       struct netlink_callback *cb);
1279  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1280  *	callback is used by core rtnetlink code.
1281  *
1282  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1283  *			     u16 flags, struct netlink_ext_ack *extack)
1284  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1285  *			     struct net_device *dev, u32 filter_mask,
1286  *			     int nlflags)
1287  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1288  *			     u16 flags);
1289  *
1290  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1291  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1292  *	which do not represent real hardware may define this to allow their
1293  *	userspace components to manage their virtual carrier state. Devices
1294  *	that determine carrier state from physical hardware properties (eg
1295  *	network cables) or protocol-dependent mechanisms (eg
1296  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1297  *
1298  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1299  *			       struct netdev_phys_item_id *ppid);
1300  *	Called to get ID of physical port of this device. If driver does
1301  *	not implement this, it is assumed that the hw is not able to have
1302  *	multiple net devices on single physical port.
1303  *
1304  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1305  *				 struct netdev_phys_item_id *ppid)
1306  *	Called to get the parent ID of the physical port of this device.
1307  *
1308  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1309  *				 struct net_device *dev)
1310  *	Called by upper layer devices to accelerate switching or other
1311  *	station functionality into hardware. 'pdev is the lowerdev
1312  *	to use for the offload and 'dev' is the net device that will
1313  *	back the offload. Returns a pointer to the private structure
1314  *	the upper layer will maintain.
1315  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1316  *	Called by upper layer device to delete the station created
1317  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1318  *	the station and priv is the structure returned by the add
1319  *	operation.
1320  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1321  *			     int queue_index, u32 maxrate);
1322  *	Called when a user wants to set a max-rate limitation of specific
1323  *	TX queue.
1324  * int (*ndo_get_iflink)(const struct net_device *dev);
1325  *	Called to get the iflink value of this device.
1326  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1327  *	This function is used to get egress tunnel information for given skb.
1328  *	This is useful for retrieving outer tunnel header parameters while
1329  *	sampling packet.
1330  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1331  *	This function is used to specify the headroom that the skb must
1332  *	consider when allocation skb during packet reception. Setting
1333  *	appropriate rx headroom value allows avoiding skb head copy on
1334  *	forward. Setting a negative value resets the rx headroom to the
1335  *	default value.
1336  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1337  *	This function is used to set or query state related to XDP on the
1338  *	netdevice and manage BPF offload. See definition of
1339  *	enum bpf_netdev_command for details.
1340  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1341  *			u32 flags);
1342  *	This function is used to submit @n XDP packets for transmit on a
1343  *	netdevice. Returns number of frames successfully transmitted, frames
1344  *	that got dropped are freed/returned via xdp_return_frame().
1345  *	Returns negative number, means general error invoking ndo, meaning
1346  *	no frames were xmit'ed and core-caller will free all frames.
1347  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1348  *					        struct xdp_buff *xdp);
1349  *      Get the xmit slave of master device based on the xdp_buff.
1350  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1351  *      This function is used to wake up the softirq, ksoftirqd or kthread
1352  *	responsible for sending and/or receiving packets on a specific
1353  *	queue id bound to an AF_XDP socket. The flags field specifies if
1354  *	only RX, only Tx, or both should be woken up using the flags
1355  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1356  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1357  *			 int cmd);
1358  *	Add, change, delete or get information on an IPv4 tunnel.
1359  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1360  *	If a device is paired with a peer device, return the peer instance.
1361  *	The caller must be under RCU read context.
1362  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1363  *     Get the forwarding path to reach the real device from the HW destination address
1364  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1365  *			     const struct skb_shared_hwtstamps *hwtstamps,
1366  *			     bool cycles);
1367  *	Get hardware timestamp based on normal/adjustable time or free running
1368  *	cycle counter. This function is required if physical clock supports a
1369  *	free running cycle counter.
1370  *
1371  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1372  *			   struct kernel_hwtstamp_config *kernel_config);
1373  *	Get the currently configured hardware timestamping parameters for the
1374  *	NIC device.
1375  *
1376  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1377  *			   struct kernel_hwtstamp_config *kernel_config,
1378  *			   struct netlink_ext_ack *extack);
1379  *	Change the hardware timestamping parameters for NIC device.
1380  */
1381 struct net_device_ops {
1382 	int			(*ndo_init)(struct net_device *dev);
1383 	void			(*ndo_uninit)(struct net_device *dev);
1384 	int			(*ndo_open)(struct net_device *dev);
1385 	int			(*ndo_stop)(struct net_device *dev);
1386 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1387 						  struct net_device *dev);
1388 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1389 						      struct net_device *dev,
1390 						      netdev_features_t features);
1391 	u16			(*ndo_select_queue)(struct net_device *dev,
1392 						    struct sk_buff *skb,
1393 						    struct net_device *sb_dev);
1394 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1395 						       int flags);
1396 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1397 	int			(*ndo_set_mac_address)(struct net_device *dev,
1398 						       void *addr);
1399 	int			(*ndo_validate_addr)(struct net_device *dev);
1400 	int			(*ndo_do_ioctl)(struct net_device *dev,
1401 					        struct ifreq *ifr, int cmd);
1402 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1403 						 struct ifreq *ifr, int cmd);
1404 	int			(*ndo_siocbond)(struct net_device *dev,
1405 						struct ifreq *ifr, int cmd);
1406 	int			(*ndo_siocwandev)(struct net_device *dev,
1407 						  struct if_settings *ifs);
1408 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1409 						      struct ifreq *ifr,
1410 						      void __user *data, int cmd);
1411 	int			(*ndo_set_config)(struct net_device *dev,
1412 					          struct ifmap *map);
1413 	int			(*ndo_change_mtu)(struct net_device *dev,
1414 						  int new_mtu);
1415 	int			(*ndo_neigh_setup)(struct net_device *dev,
1416 						   struct neigh_parms *);
1417 	void			(*ndo_tx_timeout) (struct net_device *dev,
1418 						   unsigned int txqueue);
1419 
1420 	void			(*ndo_get_stats64)(struct net_device *dev,
1421 						   struct rtnl_link_stats64 *storage);
1422 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1423 	int			(*ndo_get_offload_stats)(int attr_id,
1424 							 const struct net_device *dev,
1425 							 void *attr_data);
1426 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1427 
1428 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1429 						       __be16 proto, u16 vid);
1430 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1431 						        __be16 proto, u16 vid);
1432 #ifdef CONFIG_NET_POLL_CONTROLLER
1433 	void                    (*ndo_poll_controller)(struct net_device *dev);
1434 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1435 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1436 #endif
1437 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1438 						  int queue, u8 *mac);
1439 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1440 						   int queue, u16 vlan,
1441 						   u8 qos, __be16 proto);
1442 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1443 						   int vf, int min_tx_rate,
1444 						   int max_tx_rate);
1445 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1446 						       int vf, bool setting);
1447 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1448 						    int vf, bool setting);
1449 	int			(*ndo_get_vf_config)(struct net_device *dev,
1450 						     int vf,
1451 						     struct ifla_vf_info *ivf);
1452 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1453 							 int vf, int link_state);
1454 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1455 						    int vf,
1456 						    struct ifla_vf_stats
1457 						    *vf_stats);
1458 	int			(*ndo_set_vf_port)(struct net_device *dev,
1459 						   int vf,
1460 						   struct nlattr *port[]);
1461 	int			(*ndo_get_vf_port)(struct net_device *dev,
1462 						   int vf, struct sk_buff *skb);
1463 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1464 						   int vf,
1465 						   struct ifla_vf_guid *node_guid,
1466 						   struct ifla_vf_guid *port_guid);
1467 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1468 						   int vf, u64 guid,
1469 						   int guid_type);
1470 	int			(*ndo_set_vf_rss_query_en)(
1471 						   struct net_device *dev,
1472 						   int vf, bool setting);
1473 	int			(*ndo_setup_tc)(struct net_device *dev,
1474 						enum tc_setup_type type,
1475 						void *type_data);
1476 #if IS_ENABLED(CONFIG_FCOE)
1477 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1478 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1479 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1480 						      u16 xid,
1481 						      struct scatterlist *sgl,
1482 						      unsigned int sgc);
1483 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1484 						     u16 xid);
1485 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1486 						       u16 xid,
1487 						       struct scatterlist *sgl,
1488 						       unsigned int sgc);
1489 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1490 							struct netdev_fcoe_hbainfo *hbainfo);
1491 #endif
1492 
1493 #if IS_ENABLED(CONFIG_LIBFCOE)
1494 #define NETDEV_FCOE_WWNN 0
1495 #define NETDEV_FCOE_WWPN 1
1496 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1497 						    u64 *wwn, int type);
1498 #endif
1499 
1500 #ifdef CONFIG_RFS_ACCEL
1501 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1502 						     const struct sk_buff *skb,
1503 						     u16 rxq_index,
1504 						     u32 flow_id);
1505 #endif
1506 	int			(*ndo_add_slave)(struct net_device *dev,
1507 						 struct net_device *slave_dev,
1508 						 struct netlink_ext_ack *extack);
1509 	int			(*ndo_del_slave)(struct net_device *dev,
1510 						 struct net_device *slave_dev);
1511 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1512 						      struct sk_buff *skb,
1513 						      bool all_slaves);
1514 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1515 							struct sock *sk);
1516 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1517 						    netdev_features_t features);
1518 	int			(*ndo_set_features)(struct net_device *dev,
1519 						    netdev_features_t features);
1520 	int			(*ndo_neigh_construct)(struct net_device *dev,
1521 						       struct neighbour *n);
1522 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1523 						     struct neighbour *n);
1524 
1525 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1526 					       struct nlattr *tb[],
1527 					       struct net_device *dev,
1528 					       const unsigned char *addr,
1529 					       u16 vid,
1530 					       u16 flags,
1531 					       bool *notified,
1532 					       struct netlink_ext_ack *extack);
1533 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1534 					       struct nlattr *tb[],
1535 					       struct net_device *dev,
1536 					       const unsigned char *addr,
1537 					       u16 vid,
1538 					       bool *notified,
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1541 						    struct net_device *dev,
1542 						    struct netlink_ext_ack *extack);
1543 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1544 						struct netlink_callback *cb,
1545 						struct net_device *dev,
1546 						struct net_device *filter_dev,
1547 						int *idx);
1548 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1549 					       struct nlattr *tb[],
1550 					       struct net_device *dev,
1551 					       const unsigned char *addr,
1552 					       u16 vid, u32 portid, u32 seq,
1553 					       struct netlink_ext_ack *extack);
1554 	int			(*ndo_mdb_add)(struct net_device *dev,
1555 					       struct nlattr *tb[],
1556 					       u16 nlmsg_flags,
1557 					       struct netlink_ext_ack *extack);
1558 	int			(*ndo_mdb_del)(struct net_device *dev,
1559 					       struct nlattr *tb[],
1560 					       struct netlink_ext_ack *extack);
1561 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1562 						    struct nlattr *tb[],
1563 						    struct netlink_ext_ack *extack);
1564 	int			(*ndo_mdb_dump)(struct net_device *dev,
1565 						struct sk_buff *skb,
1566 						struct netlink_callback *cb);
1567 	int			(*ndo_mdb_get)(struct net_device *dev,
1568 					       struct nlattr *tb[], u32 portid,
1569 					       u32 seq,
1570 					       struct netlink_ext_ack *extack);
1571 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1572 						      struct nlmsghdr *nlh,
1573 						      u16 flags,
1574 						      struct netlink_ext_ack *extack);
1575 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1576 						      u32 pid, u32 seq,
1577 						      struct net_device *dev,
1578 						      u32 filter_mask,
1579 						      int nlflags);
1580 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1581 						      struct nlmsghdr *nlh,
1582 						      u16 flags);
1583 	int			(*ndo_change_carrier)(struct net_device *dev,
1584 						      bool new_carrier);
1585 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1586 							struct netdev_phys_item_id *ppid);
1587 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1588 							  struct netdev_phys_item_id *ppid);
1589 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1590 							  char *name, size_t len);
1591 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1592 							struct net_device *dev);
1593 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1594 							void *priv);
1595 
1596 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1597 						      int queue_index,
1598 						      u32 maxrate);
1599 	int			(*ndo_get_iflink)(const struct net_device *dev);
1600 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1601 						       struct sk_buff *skb);
1602 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1603 						       int needed_headroom);
1604 	int			(*ndo_bpf)(struct net_device *dev,
1605 					   struct netdev_bpf *bpf);
1606 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1607 						struct xdp_frame **xdp,
1608 						u32 flags);
1609 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1610 							  struct xdp_buff *xdp);
1611 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1612 						  u32 queue_id, u32 flags);
1613 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1614 						  struct ip_tunnel_parm_kern *p,
1615 						  int cmd);
1616 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1617 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1618                                                          struct net_device_path *path);
1619 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1620 						  const struct skb_shared_hwtstamps *hwtstamps,
1621 						  bool cycles);
1622 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1623 						    struct kernel_hwtstamp_config *kernel_config);
1624 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1625 						    struct kernel_hwtstamp_config *kernel_config,
1626 						    struct netlink_ext_ack *extack);
1627 
1628 #if IS_ENABLED(CONFIG_NET_SHAPER)
1629 	/**
1630 	 * @net_shaper_ops: Device shaping offload operations
1631 	 * see include/net/net_shapers.h
1632 	 */
1633 	const struct net_shaper_ops *net_shaper_ops;
1634 #endif
1635 };
1636 
1637 /**
1638  * enum netdev_priv_flags - &struct net_device priv_flags
1639  *
1640  * These are the &struct net_device, they are only set internally
1641  * by drivers and used in the kernel. These flags are invisible to
1642  * userspace; this means that the order of these flags can change
1643  * during any kernel release.
1644  *
1645  * You should add bitfield booleans after either net_device::priv_flags
1646  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1647  *
1648  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1649  * @IFF_EBRIDGE: Ethernet bridging device
1650  * @IFF_BONDING: bonding master or slave
1651  * @IFF_ISATAP: ISATAP interface (RFC4214)
1652  * @IFF_WAN_HDLC: WAN HDLC device
1653  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1654  *	release skb->dst
1655  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1656  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1657  * @IFF_MACVLAN_PORT: device used as macvlan port
1658  * @IFF_BRIDGE_PORT: device used as bridge port
1659  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1660  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1661  * @IFF_UNICAST_FLT: Supports unicast filtering
1662  * @IFF_TEAM_PORT: device used as team port
1663  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1664  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1665  *	change when it's running
1666  * @IFF_MACVLAN: Macvlan device
1667  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1668  *	underlying stacked devices
1669  * @IFF_L3MDEV_MASTER: device is an L3 master device
1670  * @IFF_NO_QUEUE: device can run without qdisc attached
1671  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1672  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1673  * @IFF_TEAM: device is a team device
1674  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1675  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1676  *	entity (i.e. the master device for bridged veth)
1677  * @IFF_MACSEC: device is a MACsec device
1678  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1679  * @IFF_FAILOVER: device is a failover master device
1680  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1681  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1682  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1683  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1684  *	skb_headlen(skb) == 0 (data starts from frag0)
1685  */
1686 enum netdev_priv_flags {
1687 	IFF_802_1Q_VLAN			= 1<<0,
1688 	IFF_EBRIDGE			= 1<<1,
1689 	IFF_BONDING			= 1<<2,
1690 	IFF_ISATAP			= 1<<3,
1691 	IFF_WAN_HDLC			= 1<<4,
1692 	IFF_XMIT_DST_RELEASE		= 1<<5,
1693 	IFF_DONT_BRIDGE			= 1<<6,
1694 	IFF_DISABLE_NETPOLL		= 1<<7,
1695 	IFF_MACVLAN_PORT		= 1<<8,
1696 	IFF_BRIDGE_PORT			= 1<<9,
1697 	IFF_OVS_DATAPATH		= 1<<10,
1698 	IFF_TX_SKB_SHARING		= 1<<11,
1699 	IFF_UNICAST_FLT			= 1<<12,
1700 	IFF_TEAM_PORT			= 1<<13,
1701 	IFF_SUPP_NOFCS			= 1<<14,
1702 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1703 	IFF_MACVLAN			= 1<<16,
1704 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1705 	IFF_L3MDEV_MASTER		= 1<<18,
1706 	IFF_NO_QUEUE			= 1<<19,
1707 	IFF_OPENVSWITCH			= 1<<20,
1708 	IFF_L3MDEV_SLAVE		= 1<<21,
1709 	IFF_TEAM			= 1<<22,
1710 	IFF_RXFH_CONFIGURED		= 1<<23,
1711 	IFF_PHONY_HEADROOM		= 1<<24,
1712 	IFF_MACSEC			= 1<<25,
1713 	IFF_NO_RX_HANDLER		= 1<<26,
1714 	IFF_FAILOVER			= 1<<27,
1715 	IFF_FAILOVER_SLAVE		= 1<<28,
1716 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1717 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1718 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1719 };
1720 
1721 /* Specifies the type of the struct net_device::ml_priv pointer */
1722 enum netdev_ml_priv_type {
1723 	ML_PRIV_NONE,
1724 	ML_PRIV_CAN,
1725 };
1726 
1727 enum netdev_stat_type {
1728 	NETDEV_PCPU_STAT_NONE,
1729 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1730 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1731 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1732 };
1733 
1734 enum netdev_reg_state {
1735 	NETREG_UNINITIALIZED = 0,
1736 	NETREG_REGISTERED,	/* completed register_netdevice */
1737 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1738 	NETREG_UNREGISTERED,	/* completed unregister todo */
1739 	NETREG_RELEASED,	/* called free_netdev */
1740 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1741 };
1742 
1743 /**
1744  *	struct net_device - The DEVICE structure.
1745  *
1746  *	Actually, this whole structure is a big mistake.  It mixes I/O
1747  *	data with strictly "high-level" data, and it has to know about
1748  *	almost every data structure used in the INET module.
1749  *
1750  *	@priv_flags:	flags invisible to userspace defined as bits, see
1751  *			enum netdev_priv_flags for the definitions
1752  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1753  *			drivers. Mainly used by logical interfaces, such as
1754  *			bonding and tunnels
1755  *
1756  *	@name:	This is the first field of the "visible" part of this structure
1757  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1758  *		of the interface.
1759  *
1760  *	@name_node:	Name hashlist node
1761  *	@ifalias:	SNMP alias
1762  *	@mem_end:	Shared memory end
1763  *	@mem_start:	Shared memory start
1764  *	@base_addr:	Device I/O address
1765  *	@irq:		Device IRQ number
1766  *
1767  *	@state:		Generic network queuing layer state, see netdev_state_t
1768  *	@dev_list:	The global list of network devices
1769  *	@napi_list:	List entry used for polling NAPI devices
1770  *	@unreg_list:	List entry  when we are unregistering the
1771  *			device; see the function unregister_netdev
1772  *	@close_list:	List entry used when we are closing the device
1773  *	@ptype_all:     Device-specific packet handlers for all protocols
1774  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1775  *
1776  *	@adj_list:	Directly linked devices, like slaves for bonding
1777  *	@features:	Currently active device features
1778  *	@hw_features:	User-changeable features
1779  *
1780  *	@wanted_features:	User-requested features
1781  *	@vlan_features:		Mask of features inheritable by VLAN devices
1782  *
1783  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1784  *				This field indicates what encapsulation
1785  *				offloads the hardware is capable of doing,
1786  *				and drivers will need to set them appropriately.
1787  *
1788  *	@mpls_features:	Mask of features inheritable by MPLS
1789  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1790  *
1791  *	@ifindex:	interface index
1792  *	@group:		The group the device belongs to
1793  *
1794  *	@stats:		Statistics struct, which was left as a legacy, use
1795  *			rtnl_link_stats64 instead
1796  *
1797  *	@core_stats:	core networking counters,
1798  *			do not use this in drivers
1799  *	@carrier_up_count:	Number of times the carrier has been up
1800  *	@carrier_down_count:	Number of times the carrier has been down
1801  *
1802  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1803  *				instead of ioctl,
1804  *				see <net/iw_handler.h> for details.
1805  *
1806  *	@netdev_ops:	Includes several pointers to callbacks,
1807  *			if one wants to override the ndo_*() functions
1808  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1809  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1810  *	@ethtool_ops:	Management operations
1811  *	@l3mdev_ops:	Layer 3 master device operations
1812  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1813  *			discovery handling. Necessary for e.g. 6LoWPAN.
1814  *	@xfrmdev_ops:	Transformation offload operations
1815  *	@tlsdev_ops:	Transport Layer Security offload operations
1816  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1817  *			of Layer 2 headers.
1818  *
1819  *	@flags:		Interface flags (a la BSD)
1820  *	@xdp_features:	XDP capability supported by the device
1821  *	@gflags:	Global flags ( kept as legacy )
1822  *	@priv_len:	Size of the ->priv flexible array
1823  *	@priv:		Flexible array containing private data
1824  *	@operstate:	RFC2863 operstate
1825  *	@link_mode:	Mapping policy to operstate
1826  *	@if_port:	Selectable AUI, TP, ...
1827  *	@dma:		DMA channel
1828  *	@mtu:		Interface MTU value
1829  *	@min_mtu:	Interface Minimum MTU value
1830  *	@max_mtu:	Interface Maximum MTU value
1831  *	@type:		Interface hardware type
1832  *	@hard_header_len: Maximum hardware header length.
1833  *	@min_header_len:  Minimum hardware header length
1834  *
1835  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1836  *			  cases can this be guaranteed
1837  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1838  *			  cases can this be guaranteed. Some cases also use
1839  *			  LL_MAX_HEADER instead to allocate the skb
1840  *
1841  *	interface address info:
1842  *
1843  * 	@perm_addr:		Permanent hw address
1844  * 	@addr_assign_type:	Hw address assignment type
1845  * 	@addr_len:		Hardware address length
1846  *	@upper_level:		Maximum depth level of upper devices.
1847  *	@lower_level:		Maximum depth level of lower devices.
1848  *	@neigh_priv_len:	Used in neigh_alloc()
1849  * 	@dev_id:		Used to differentiate devices that share
1850  * 				the same link layer address
1851  * 	@dev_port:		Used to differentiate devices that share
1852  * 				the same function
1853  *	@addr_list_lock:	XXX: need comments on this one
1854  *	@name_assign_type:	network interface name assignment type
1855  *	@uc_promisc:		Counter that indicates promiscuous mode
1856  *				has been enabled due to the need to listen to
1857  *				additional unicast addresses in a device that
1858  *				does not implement ndo_set_rx_mode()
1859  *	@uc:			unicast mac addresses
1860  *	@mc:			multicast mac addresses
1861  *	@dev_addrs:		list of device hw addresses
1862  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1863  *	@promiscuity:		Number of times the NIC is told to work in
1864  *				promiscuous mode; if it becomes 0 the NIC will
1865  *				exit promiscuous mode
1866  *	@allmulti:		Counter, enables or disables allmulticast mode
1867  *
1868  *	@vlan_info:	VLAN info
1869  *	@dsa_ptr:	dsa specific data
1870  *	@tipc_ptr:	TIPC specific data
1871  *	@atalk_ptr:	AppleTalk link
1872  *	@ip_ptr:	IPv4 specific data
1873  *	@ip6_ptr:	IPv6 specific data
1874  *	@ax25_ptr:	AX.25 specific data
1875  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1876  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1877  *			 device struct
1878  *	@mpls_ptr:	mpls_dev struct pointer
1879  *	@mctp_ptr:	MCTP specific data
1880  *
1881  *	@dev_addr:	Hw address (before bcast,
1882  *			because most packets are unicast)
1883  *
1884  *	@_rx:			Array of RX queues
1885  *	@num_rx_queues:		Number of RX queues
1886  *				allocated at register_netdev() time
1887  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1888  *	@xdp_prog:		XDP sockets filter program pointer
1889  *
1890  *	@rx_handler:		handler for received packets
1891  *	@rx_handler_data: 	XXX: need comments on this one
1892  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1893  *	@ingress_queue:		XXX: need comments on this one
1894  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1895  *	@broadcast:		hw bcast address
1896  *
1897  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1898  *			indexed by RX queue number. Assigned by driver.
1899  *			This must only be set if the ndo_rx_flow_steer
1900  *			operation is defined
1901  *	@index_hlist:		Device index hash chain
1902  *
1903  *	@_tx:			Array of TX queues
1904  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1905  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1906  *	@qdisc:			Root qdisc from userspace point of view
1907  *	@tx_queue_len:		Max frames per queue allowed
1908  *	@tx_global_lock: 	XXX: need comments on this one
1909  *	@xdp_bulkq:		XDP device bulk queue
1910  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1911  *
1912  *	@xps_maps:	XXX: need comments on this one
1913  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1914  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1915  *	@qdisc_hash:		qdisc hash table
1916  *	@watchdog_timeo:	Represents the timeout that is used by
1917  *				the watchdog (see dev_watchdog())
1918  *	@watchdog_timer:	List of timers
1919  *
1920  *	@proto_down_reason:	reason a netdev interface is held down
1921  *	@pcpu_refcnt:		Number of references to this device
1922  *	@dev_refcnt:		Number of references to this device
1923  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1924  *	@todo_list:		Delayed register/unregister
1925  *	@link_watch_list:	XXX: need comments on this one
1926  *
1927  *	@reg_state:		Register/unregister state machine
1928  *	@dismantle:		Device is going to be freed
1929  *	@rtnl_link_state:	This enum represents the phases of creating
1930  *				a new link
1931  *
1932  *	@needs_free_netdev:	Should unregister perform free_netdev?
1933  *	@priv_destructor:	Called from unregister
1934  *	@npinfo:		XXX: need comments on this one
1935  * 	@nd_net:		Network namespace this network device is inside
1936  *
1937  * 	@ml_priv:	Mid-layer private
1938  *	@ml_priv_type:  Mid-layer private type
1939  *
1940  *	@pcpu_stat_type:	Type of device statistics which the core should
1941  *				allocate/free: none, lstats, tstats, dstats. none
1942  *				means the driver is handling statistics allocation/
1943  *				freeing internally.
1944  *	@lstats:		Loopback statistics: packets, bytes
1945  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1946  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1947  *
1948  *	@garp_port:	GARP
1949  *	@mrp_port:	MRP
1950  *
1951  *	@dm_private:	Drop monitor private
1952  *
1953  *	@dev:		Class/net/name entry
1954  *	@sysfs_groups:	Space for optional device, statistics and wireless
1955  *			sysfs groups
1956  *
1957  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1958  *	@rtnl_link_ops:	Rtnl_link_ops
1959  *	@stat_ops:	Optional ops for queue-aware statistics
1960  *	@queue_mgmt_ops:	Optional ops for queue management
1961  *
1962  *	@gso_max_size:	Maximum size of generic segmentation offload
1963  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1964  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1965  *			NIC for GSO
1966  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1967  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1968  * 				for IPv4.
1969  *
1970  *	@dcbnl_ops:	Data Center Bridging netlink ops
1971  *	@num_tc:	Number of traffic classes in the net device
1972  *	@tc_to_txq:	XXX: need comments on this one
1973  *	@prio_tc_map:	XXX: need comments on this one
1974  *
1975  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1976  *
1977  *	@priomap:	XXX: need comments on this one
1978  *	@link_topo:	Physical link topology tracking attached PHYs
1979  *	@phydev:	Physical device may attach itself
1980  *			for hardware timestamping
1981  *	@sfp_bus:	attached &struct sfp_bus structure.
1982  *
1983  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1984  *
1985  *	@proto_down:	protocol port state information can be sent to the
1986  *			switch driver and used to set the phys state of the
1987  *			switch port.
1988  *
1989  *	@threaded:	napi threaded mode is enabled
1990  *
1991  *	@see_all_hwtstamp_requests: device wants to see calls to
1992  *			ndo_hwtstamp_set() for all timestamp requests
1993  *			regardless of source, even if those aren't
1994  *			HWTSTAMP_SOURCE_NETDEV
1995  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1996  *	@netns_local: interface can't change network namespaces
1997  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
1998  *
1999  *	@net_notifier_list:	List of per-net netdev notifier block
2000  *				that follow this device when it is moved
2001  *				to another network namespace.
2002  *
2003  *	@macsec_ops:    MACsec offloading ops
2004  *
2005  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2006  *				offload capabilities of the device
2007  *	@udp_tunnel_nic:	UDP tunnel offload state
2008  *	@ethtool:	ethtool related state
2009  *	@xdp_state:		stores info on attached XDP BPF programs
2010  *
2011  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2012  *			dev->addr_list_lock.
2013  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2014  *			keep a list of interfaces to be deleted.
2015  *	@gro_max_size:	Maximum size of aggregated packet in generic
2016  *			receive offload (GRO)
2017  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2018  * 				receive offload (GRO), for IPv4.
2019  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2020  *				zero copy driver
2021  *
2022  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2023  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2024  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2025  *	@dev_registered_tracker:	tracker for reference held while
2026  *					registered
2027  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2028  *
2029  *	@devlink_port:	Pointer to related devlink port structure.
2030  *			Assigned by a driver before netdev registration using
2031  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2032  *			during the time netdevice is registered.
2033  *
2034  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2035  *		   where the clock is recovered.
2036  *
2037  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2038  *	@napi_config: An array of napi_config structures containing per-NAPI
2039  *		      settings.
2040  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2041  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2042  *				allow to avoid NIC hard IRQ, on busy queues.
2043  *
2044  *	@neighbours:	List heads pointing to this device's neighbours'
2045  *			dev_list, one per address-family.
2046  *	@hwprov: Tracks which PTP performs hardware packet time stamping.
2047  *
2048  *	FIXME: cleanup struct net_device such that network protocol info
2049  *	moves out.
2050  */
2051 
2052 struct net_device {
2053 	/* Cacheline organization can be found documented in
2054 	 * Documentation/networking/net_cachelines/net_device.rst.
2055 	 * Please update the document when adding new fields.
2056 	 */
2057 
2058 	/* TX read-mostly hotpath */
2059 	__cacheline_group_begin(net_device_read_tx);
2060 	struct_group(priv_flags_fast,
2061 		unsigned long		priv_flags:32;
2062 		unsigned long		lltx:1;
2063 	);
2064 	const struct net_device_ops *netdev_ops;
2065 	const struct header_ops *header_ops;
2066 	struct netdev_queue	*_tx;
2067 	netdev_features_t	gso_partial_features;
2068 	unsigned int		real_num_tx_queues;
2069 	unsigned int		gso_max_size;
2070 	unsigned int		gso_ipv4_max_size;
2071 	u16			gso_max_segs;
2072 	s16			num_tc;
2073 	/* Note : dev->mtu is often read without holding a lock.
2074 	 * Writers usually hold RTNL.
2075 	 * It is recommended to use READ_ONCE() to annotate the reads,
2076 	 * and to use WRITE_ONCE() to annotate the writes.
2077 	 */
2078 	unsigned int		mtu;
2079 	unsigned short		needed_headroom;
2080 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2081 #ifdef CONFIG_XPS
2082 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2083 #endif
2084 #ifdef CONFIG_NETFILTER_EGRESS
2085 	struct nf_hook_entries __rcu *nf_hooks_egress;
2086 #endif
2087 #ifdef CONFIG_NET_XGRESS
2088 	struct bpf_mprog_entry __rcu *tcx_egress;
2089 #endif
2090 	__cacheline_group_end(net_device_read_tx);
2091 
2092 	/* TXRX read-mostly hotpath */
2093 	__cacheline_group_begin(net_device_read_txrx);
2094 	union {
2095 		struct pcpu_lstats __percpu		*lstats;
2096 		struct pcpu_sw_netstats __percpu	*tstats;
2097 		struct pcpu_dstats __percpu		*dstats;
2098 	};
2099 	unsigned long		state;
2100 	unsigned int		flags;
2101 	unsigned short		hard_header_len;
2102 	netdev_features_t	features;
2103 	struct inet6_dev __rcu	*ip6_ptr;
2104 	__cacheline_group_end(net_device_read_txrx);
2105 
2106 	/* RX read-mostly hotpath */
2107 	__cacheline_group_begin(net_device_read_rx);
2108 	struct bpf_prog __rcu	*xdp_prog;
2109 	struct list_head	ptype_specific;
2110 	int			ifindex;
2111 	unsigned int		real_num_rx_queues;
2112 	struct netdev_rx_queue	*_rx;
2113 	unsigned int		gro_max_size;
2114 	unsigned int		gro_ipv4_max_size;
2115 	rx_handler_func_t __rcu	*rx_handler;
2116 	void __rcu		*rx_handler_data;
2117 	possible_net_t			nd_net;
2118 #ifdef CONFIG_NETPOLL
2119 	struct netpoll_info __rcu	*npinfo;
2120 #endif
2121 #ifdef CONFIG_NET_XGRESS
2122 	struct bpf_mprog_entry __rcu *tcx_ingress;
2123 #endif
2124 	__cacheline_group_end(net_device_read_rx);
2125 
2126 	char			name[IFNAMSIZ];
2127 	struct netdev_name_node	*name_node;
2128 	struct dev_ifalias	__rcu *ifalias;
2129 	/*
2130 	 *	I/O specific fields
2131 	 *	FIXME: Merge these and struct ifmap into one
2132 	 */
2133 	unsigned long		mem_end;
2134 	unsigned long		mem_start;
2135 	unsigned long		base_addr;
2136 
2137 	/*
2138 	 *	Some hardware also needs these fields (state,dev_list,
2139 	 *	napi_list,unreg_list,close_list) but they are not
2140 	 *	part of the usual set specified in Space.c.
2141 	 */
2142 
2143 
2144 	struct list_head	dev_list;
2145 	struct list_head	napi_list;
2146 	struct list_head	unreg_list;
2147 	struct list_head	close_list;
2148 	struct list_head	ptype_all;
2149 
2150 	struct {
2151 		struct list_head upper;
2152 		struct list_head lower;
2153 	} adj_list;
2154 
2155 	/* Read-mostly cache-line for fast-path access */
2156 	xdp_features_t		xdp_features;
2157 	const struct xdp_metadata_ops *xdp_metadata_ops;
2158 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2159 	unsigned short		gflags;
2160 
2161 	unsigned short		needed_tailroom;
2162 
2163 	netdev_features_t	hw_features;
2164 	netdev_features_t	wanted_features;
2165 	netdev_features_t	vlan_features;
2166 	netdev_features_t	hw_enc_features;
2167 	netdev_features_t	mpls_features;
2168 
2169 	unsigned int		min_mtu;
2170 	unsigned int		max_mtu;
2171 	unsigned short		type;
2172 	unsigned char		min_header_len;
2173 	unsigned char		name_assign_type;
2174 
2175 	int			group;
2176 
2177 	struct net_device_stats	stats; /* not used by modern drivers */
2178 
2179 	struct net_device_core_stats __percpu *core_stats;
2180 
2181 	/* Stats to monitor link on/off, flapping */
2182 	atomic_t		carrier_up_count;
2183 	atomic_t		carrier_down_count;
2184 
2185 #ifdef CONFIG_WIRELESS_EXT
2186 	const struct iw_handler_def *wireless_handlers;
2187 #endif
2188 	const struct ethtool_ops *ethtool_ops;
2189 #ifdef CONFIG_NET_L3_MASTER_DEV
2190 	const struct l3mdev_ops	*l3mdev_ops;
2191 #endif
2192 #if IS_ENABLED(CONFIG_IPV6)
2193 	const struct ndisc_ops *ndisc_ops;
2194 #endif
2195 
2196 #ifdef CONFIG_XFRM_OFFLOAD
2197 	const struct xfrmdev_ops *xfrmdev_ops;
2198 #endif
2199 
2200 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2201 	const struct tlsdev_ops *tlsdev_ops;
2202 #endif
2203 
2204 	unsigned int		operstate;
2205 	unsigned char		link_mode;
2206 
2207 	unsigned char		if_port;
2208 	unsigned char		dma;
2209 
2210 	/* Interface address info. */
2211 	unsigned char		perm_addr[MAX_ADDR_LEN];
2212 	unsigned char		addr_assign_type;
2213 	unsigned char		addr_len;
2214 	unsigned char		upper_level;
2215 	unsigned char		lower_level;
2216 
2217 	unsigned short		neigh_priv_len;
2218 	unsigned short          dev_id;
2219 	unsigned short          dev_port;
2220 	int			irq;
2221 	u32			priv_len;
2222 
2223 	spinlock_t		addr_list_lock;
2224 
2225 	struct netdev_hw_addr_list	uc;
2226 	struct netdev_hw_addr_list	mc;
2227 	struct netdev_hw_addr_list	dev_addrs;
2228 
2229 #ifdef CONFIG_SYSFS
2230 	struct kset		*queues_kset;
2231 #endif
2232 #ifdef CONFIG_LOCKDEP
2233 	struct list_head	unlink_list;
2234 #endif
2235 	unsigned int		promiscuity;
2236 	unsigned int		allmulti;
2237 	bool			uc_promisc;
2238 #ifdef CONFIG_LOCKDEP
2239 	unsigned char		nested_level;
2240 #endif
2241 
2242 
2243 	/* Protocol-specific pointers */
2244 	struct in_device __rcu	*ip_ptr;
2245 	/** @fib_nh_head: nexthops associated with this netdev */
2246 	struct hlist_head	fib_nh_head;
2247 
2248 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2249 	struct vlan_info __rcu	*vlan_info;
2250 #endif
2251 #if IS_ENABLED(CONFIG_NET_DSA)
2252 	struct dsa_port		*dsa_ptr;
2253 #endif
2254 #if IS_ENABLED(CONFIG_TIPC)
2255 	struct tipc_bearer __rcu *tipc_ptr;
2256 #endif
2257 #if IS_ENABLED(CONFIG_ATALK)
2258 	void 			*atalk_ptr;
2259 #endif
2260 #if IS_ENABLED(CONFIG_AX25)
2261 	struct ax25_dev	__rcu	*ax25_ptr;
2262 #endif
2263 #if IS_ENABLED(CONFIG_CFG80211)
2264 	struct wireless_dev	*ieee80211_ptr;
2265 #endif
2266 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2267 	struct wpan_dev		*ieee802154_ptr;
2268 #endif
2269 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2270 	struct mpls_dev __rcu	*mpls_ptr;
2271 #endif
2272 #if IS_ENABLED(CONFIG_MCTP)
2273 	struct mctp_dev __rcu	*mctp_ptr;
2274 #endif
2275 
2276 /*
2277  * Cache lines mostly used on receive path (including eth_type_trans())
2278  */
2279 	/* Interface address info used in eth_type_trans() */
2280 	const unsigned char	*dev_addr;
2281 
2282 	unsigned int		num_rx_queues;
2283 #define GRO_LEGACY_MAX_SIZE	65536u
2284 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2285  * and shinfo->gso_segs is a 16bit field.
2286  */
2287 #define GRO_MAX_SIZE		(8 * 65535u)
2288 	unsigned int		xdp_zc_max_segs;
2289 	struct netdev_queue __rcu *ingress_queue;
2290 #ifdef CONFIG_NETFILTER_INGRESS
2291 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2292 #endif
2293 
2294 	unsigned char		broadcast[MAX_ADDR_LEN];
2295 #ifdef CONFIG_RFS_ACCEL
2296 	struct cpu_rmap		*rx_cpu_rmap;
2297 #endif
2298 	struct hlist_node	index_hlist;
2299 
2300 /*
2301  * Cache lines mostly used on transmit path
2302  */
2303 	unsigned int		num_tx_queues;
2304 	struct Qdisc __rcu	*qdisc;
2305 	unsigned int		tx_queue_len;
2306 	spinlock_t		tx_global_lock;
2307 
2308 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2309 
2310 #ifdef CONFIG_NET_SCHED
2311 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2312 #endif
2313 	/* These may be needed for future network-power-down code. */
2314 	struct timer_list	watchdog_timer;
2315 	int			watchdog_timeo;
2316 
2317 	u32                     proto_down_reason;
2318 
2319 	struct list_head	todo_list;
2320 
2321 #ifdef CONFIG_PCPU_DEV_REFCNT
2322 	int __percpu		*pcpu_refcnt;
2323 #else
2324 	refcount_t		dev_refcnt;
2325 #endif
2326 	struct ref_tracker_dir	refcnt_tracker;
2327 
2328 	struct list_head	link_watch_list;
2329 
2330 	u8 reg_state;
2331 
2332 	bool dismantle;
2333 
2334 	enum {
2335 		RTNL_LINK_INITIALIZED,
2336 		RTNL_LINK_INITIALIZING,
2337 	} rtnl_link_state:16;
2338 
2339 	bool needs_free_netdev;
2340 	void (*priv_destructor)(struct net_device *dev);
2341 
2342 	/* mid-layer private */
2343 	void				*ml_priv;
2344 	enum netdev_ml_priv_type	ml_priv_type;
2345 
2346 	enum netdev_stat_type		pcpu_stat_type:8;
2347 
2348 #if IS_ENABLED(CONFIG_GARP)
2349 	struct garp_port __rcu	*garp_port;
2350 #endif
2351 #if IS_ENABLED(CONFIG_MRP)
2352 	struct mrp_port __rcu	*mrp_port;
2353 #endif
2354 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2355 	struct dm_hw_stat_delta __rcu *dm_private;
2356 #endif
2357 	struct device		dev;
2358 	const struct attribute_group *sysfs_groups[4];
2359 	const struct attribute_group *sysfs_rx_queue_group;
2360 
2361 	const struct rtnl_link_ops *rtnl_link_ops;
2362 
2363 	const struct netdev_stat_ops *stat_ops;
2364 
2365 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2366 
2367 	/* for setting kernel sock attribute on TCP connection setup */
2368 #define GSO_MAX_SEGS		65535u
2369 #define GSO_LEGACY_MAX_SIZE	65536u
2370 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2371  * and shinfo->gso_segs is a 16bit field.
2372  */
2373 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2374 
2375 #define TSO_LEGACY_MAX_SIZE	65536
2376 #define TSO_MAX_SIZE		UINT_MAX
2377 	unsigned int		tso_max_size;
2378 #define TSO_MAX_SEGS		U16_MAX
2379 	u16			tso_max_segs;
2380 
2381 #ifdef CONFIG_DCB
2382 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2383 #endif
2384 	u8			prio_tc_map[TC_BITMASK + 1];
2385 
2386 #if IS_ENABLED(CONFIG_FCOE)
2387 	unsigned int		fcoe_ddp_xid;
2388 #endif
2389 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2390 	struct netprio_map __rcu *priomap;
2391 #endif
2392 	struct phy_link_topology	*link_topo;
2393 	struct phy_device	*phydev;
2394 	struct sfp_bus		*sfp_bus;
2395 	struct lock_class_key	*qdisc_tx_busylock;
2396 	bool			proto_down;
2397 	bool			threaded;
2398 
2399 	/* priv_flags_slow, ungrouped to save space */
2400 	unsigned long		see_all_hwtstamp_requests:1;
2401 	unsigned long		change_proto_down:1;
2402 	unsigned long		netns_local:1;
2403 	unsigned long		fcoe_mtu:1;
2404 
2405 	struct list_head	net_notifier_list;
2406 
2407 #if IS_ENABLED(CONFIG_MACSEC)
2408 	/* MACsec management functions */
2409 	const struct macsec_ops *macsec_ops;
2410 #endif
2411 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2412 	struct udp_tunnel_nic	*udp_tunnel_nic;
2413 
2414 	/** @cfg: net_device queue-related configuration */
2415 	struct netdev_config	*cfg;
2416 	/**
2417 	 * @cfg_pending: same as @cfg but when device is being actively
2418 	 *	reconfigured includes any changes to the configuration
2419 	 *	requested by the user, but which may or may not be rejected.
2420 	 */
2421 	struct netdev_config	*cfg_pending;
2422 	struct ethtool_netdev_state *ethtool;
2423 
2424 	/* protected by rtnl_lock */
2425 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2426 
2427 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2428 	netdevice_tracker	linkwatch_dev_tracker;
2429 	netdevice_tracker	watchdog_dev_tracker;
2430 	netdevice_tracker	dev_registered_tracker;
2431 	struct rtnl_hw_stats64	*offload_xstats_l3;
2432 
2433 	struct devlink_port	*devlink_port;
2434 
2435 #if IS_ENABLED(CONFIG_DPLL)
2436 	struct dpll_pin	__rcu	*dpll_pin;
2437 #endif
2438 #if IS_ENABLED(CONFIG_PAGE_POOL)
2439 	/** @page_pools: page pools created for this netdevice */
2440 	struct hlist_head	page_pools;
2441 #endif
2442 
2443 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2444 	struct dim_irq_moder	*irq_moder;
2445 
2446 	u64			max_pacing_offload_horizon;
2447 	struct napi_config	*napi_config;
2448 	unsigned long		gro_flush_timeout;
2449 	u32			napi_defer_hard_irqs;
2450 
2451 	/**
2452 	 * @up: copy of @state's IFF_UP, but safe to read with just @lock.
2453 	 *	May report false negatives while the device is being opened
2454 	 *	or closed (@lock does not protect .ndo_open, or .ndo_close).
2455 	 */
2456 	bool			up;
2457 
2458 	/**
2459 	 * @lock: netdev-scope lock, protects a small selection of fields.
2460 	 * Should always be taken using netdev_lock() / netdev_unlock() helpers.
2461 	 * Drivers are free to use it for other protection.
2462 	 *
2463 	 * Protects:
2464 	 *	@gro_flush_timeout, @napi_defer_hard_irqs, @napi_list,
2465 	 *	@net_shaper_hierarchy, @reg_state, @threaded
2466 	 *
2467 	 * Partially protects (writers must hold both @lock and rtnl_lock):
2468 	 *	@up
2469 	 *
2470 	 * Also protects some fields in struct napi_struct.
2471 	 *
2472 	 * Ordering: take after rtnl_lock.
2473 	 */
2474 	struct mutex		lock;
2475 
2476 #if IS_ENABLED(CONFIG_NET_SHAPER)
2477 	/**
2478 	 * @net_shaper_hierarchy: data tracking the current shaper status
2479 	 *  see include/net/net_shapers.h
2480 	 */
2481 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2482 #endif
2483 
2484 	struct hlist_head neighbours[NEIGH_NR_TABLES];
2485 
2486 	struct hwtstamp_provider __rcu	*hwprov;
2487 
2488 	u8			priv[] ____cacheline_aligned
2489 				       __counted_by(priv_len);
2490 } ____cacheline_aligned;
2491 #define to_net_dev(d) container_of(d, struct net_device, dev)
2492 
2493 /*
2494  * Driver should use this to assign devlink port instance to a netdevice
2495  * before it registers the netdevice. Therefore devlink_port is static
2496  * during the netdev lifetime after it is registered.
2497  */
2498 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2499 ({								\
2500 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2501 	((dev)->devlink_port = (port));				\
2502 })
2503 
2504 static inline bool netif_elide_gro(const struct net_device *dev)
2505 {
2506 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2507 		return true;
2508 	return false;
2509 }
2510 
2511 #define	NETDEV_ALIGN		32
2512 
2513 static inline
2514 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2515 {
2516 	return dev->prio_tc_map[prio & TC_BITMASK];
2517 }
2518 
2519 static inline
2520 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2521 {
2522 	if (tc >= dev->num_tc)
2523 		return -EINVAL;
2524 
2525 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2526 	return 0;
2527 }
2528 
2529 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2530 void netdev_reset_tc(struct net_device *dev);
2531 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2532 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2533 
2534 static inline
2535 int netdev_get_num_tc(struct net_device *dev)
2536 {
2537 	return dev->num_tc;
2538 }
2539 
2540 static inline void net_prefetch(void *p)
2541 {
2542 	prefetch(p);
2543 #if L1_CACHE_BYTES < 128
2544 	prefetch((u8 *)p + L1_CACHE_BYTES);
2545 #endif
2546 }
2547 
2548 static inline void net_prefetchw(void *p)
2549 {
2550 	prefetchw(p);
2551 #if L1_CACHE_BYTES < 128
2552 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2553 #endif
2554 }
2555 
2556 void netdev_unbind_sb_channel(struct net_device *dev,
2557 			      struct net_device *sb_dev);
2558 int netdev_bind_sb_channel_queue(struct net_device *dev,
2559 				 struct net_device *sb_dev,
2560 				 u8 tc, u16 count, u16 offset);
2561 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2562 static inline int netdev_get_sb_channel(struct net_device *dev)
2563 {
2564 	return max_t(int, -dev->num_tc, 0);
2565 }
2566 
2567 static inline
2568 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2569 					 unsigned int index)
2570 {
2571 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2572 	return &dev->_tx[index];
2573 }
2574 
2575 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2576 						    const struct sk_buff *skb)
2577 {
2578 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2579 }
2580 
2581 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2582 					    void (*f)(struct net_device *,
2583 						      struct netdev_queue *,
2584 						      void *),
2585 					    void *arg)
2586 {
2587 	unsigned int i;
2588 
2589 	for (i = 0; i < dev->num_tx_queues; i++)
2590 		f(dev, &dev->_tx[i], arg);
2591 }
2592 
2593 #define netdev_lockdep_set_classes(dev)				\
2594 {								\
2595 	static struct lock_class_key qdisc_tx_busylock_key;	\
2596 	static struct lock_class_key qdisc_xmit_lock_key;	\
2597 	static struct lock_class_key dev_addr_list_lock_key;	\
2598 	unsigned int i;						\
2599 								\
2600 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2601 	lockdep_set_class(&(dev)->addr_list_lock,		\
2602 			  &dev_addr_list_lock_key);		\
2603 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2604 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2605 				  &qdisc_xmit_lock_key);	\
2606 }
2607 
2608 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2609 		     struct net_device *sb_dev);
2610 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2611 					 struct sk_buff *skb,
2612 					 struct net_device *sb_dev);
2613 
2614 /* returns the headroom that the master device needs to take in account
2615  * when forwarding to this dev
2616  */
2617 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2618 {
2619 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2620 }
2621 
2622 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2623 {
2624 	if (dev->netdev_ops->ndo_set_rx_headroom)
2625 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2626 }
2627 
2628 /* set the device rx headroom to the dev's default */
2629 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2630 {
2631 	netdev_set_rx_headroom(dev, -1);
2632 }
2633 
2634 static inline void *netdev_get_ml_priv(struct net_device *dev,
2635 				       enum netdev_ml_priv_type type)
2636 {
2637 	if (dev->ml_priv_type != type)
2638 		return NULL;
2639 
2640 	return dev->ml_priv;
2641 }
2642 
2643 static inline void netdev_set_ml_priv(struct net_device *dev,
2644 				      void *ml_priv,
2645 				      enum netdev_ml_priv_type type)
2646 {
2647 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2648 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2649 	     dev->ml_priv_type, type);
2650 	WARN(!dev->ml_priv_type && dev->ml_priv,
2651 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2652 
2653 	dev->ml_priv = ml_priv;
2654 	dev->ml_priv_type = type;
2655 }
2656 
2657 /*
2658  * Net namespace inlines
2659  */
2660 static inline
2661 struct net *dev_net(const struct net_device *dev)
2662 {
2663 	return read_pnet(&dev->nd_net);
2664 }
2665 
2666 static inline
2667 struct net *dev_net_rcu(const struct net_device *dev)
2668 {
2669 	return read_pnet_rcu(&dev->nd_net);
2670 }
2671 
2672 static inline
2673 void dev_net_set(struct net_device *dev, struct net *net)
2674 {
2675 	write_pnet(&dev->nd_net, net);
2676 }
2677 
2678 /**
2679  *	netdev_priv - access network device private data
2680  *	@dev: network device
2681  *
2682  * Get network device private data
2683  */
2684 static inline void *netdev_priv(const struct net_device *dev)
2685 {
2686 	return (void *)dev->priv;
2687 }
2688 
2689 /* Set the sysfs physical device reference for the network logical device
2690  * if set prior to registration will cause a symlink during initialization.
2691  */
2692 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2693 
2694 /* Set the sysfs device type for the network logical device to allow
2695  * fine-grained identification of different network device types. For
2696  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2697  */
2698 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2699 
2700 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2701 			  enum netdev_queue_type type,
2702 			  struct napi_struct *napi);
2703 
2704 static inline void netdev_lock(struct net_device *dev)
2705 {
2706 	mutex_lock(&dev->lock);
2707 }
2708 
2709 static inline void netdev_unlock(struct net_device *dev)
2710 {
2711 	mutex_unlock(&dev->lock);
2712 }
2713 
2714 static inline void netdev_assert_locked(struct net_device *dev)
2715 {
2716 	lockdep_assert_held(&dev->lock);
2717 }
2718 
2719 static inline void netdev_assert_locked_or_invisible(struct net_device *dev)
2720 {
2721 	if (dev->reg_state == NETREG_REGISTERED ||
2722 	    dev->reg_state == NETREG_UNREGISTERING)
2723 		netdev_assert_locked(dev);
2724 }
2725 
2726 static inline void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
2727 {
2728 	napi->irq = irq;
2729 }
2730 
2731 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2732 {
2733 	netdev_lock(napi->dev);
2734 	netif_napi_set_irq_locked(napi, irq);
2735 	netdev_unlock(napi->dev);
2736 }
2737 
2738 /* Default NAPI poll() weight
2739  * Device drivers are strongly advised to not use bigger value
2740  */
2741 #define NAPI_POLL_WEIGHT 64
2742 
2743 void netif_napi_add_weight_locked(struct net_device *dev,
2744 				  struct napi_struct *napi,
2745 				  int (*poll)(struct napi_struct *, int),
2746 				  int weight);
2747 
2748 static inline void
2749 netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2750 		      int (*poll)(struct napi_struct *, int), int weight)
2751 {
2752 	netdev_lock(dev);
2753 	netif_napi_add_weight_locked(dev, napi, poll, weight);
2754 	netdev_unlock(dev);
2755 }
2756 
2757 /**
2758  * netif_napi_add() - initialize a NAPI context
2759  * @dev:  network device
2760  * @napi: NAPI context
2761  * @poll: polling function
2762  *
2763  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2764  * *any* of the other NAPI-related functions.
2765  */
2766 static inline void
2767 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2768 	       int (*poll)(struct napi_struct *, int))
2769 {
2770 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2771 }
2772 
2773 static inline void
2774 netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi,
2775 		      int (*poll)(struct napi_struct *, int))
2776 {
2777 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2778 }
2779 
2780 static inline void
2781 netif_napi_add_tx_weight(struct net_device *dev,
2782 			 struct napi_struct *napi,
2783 			 int (*poll)(struct napi_struct *, int),
2784 			 int weight)
2785 {
2786 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2787 	netif_napi_add_weight(dev, napi, poll, weight);
2788 }
2789 
2790 static inline void
2791 netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi,
2792 			     int (*poll)(struct napi_struct *, int), int index)
2793 {
2794 	napi->index = index;
2795 	napi->config = &dev->napi_config[index];
2796 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2797 }
2798 
2799 /**
2800  * netif_napi_add_config - initialize a NAPI context with persistent config
2801  * @dev: network device
2802  * @napi: NAPI context
2803  * @poll: polling function
2804  * @index: the NAPI index
2805  */
2806 static inline void
2807 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2808 		      int (*poll)(struct napi_struct *, int), int index)
2809 {
2810 	netdev_lock(dev);
2811 	netif_napi_add_config_locked(dev, napi, poll, index);
2812 	netdev_unlock(dev);
2813 }
2814 
2815 /**
2816  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2817  * @dev:  network device
2818  * @napi: NAPI context
2819  * @poll: polling function
2820  *
2821  * This variant of netif_napi_add() should be used from drivers using NAPI
2822  * to exclusively poll a TX queue.
2823  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2824  */
2825 static inline void netif_napi_add_tx(struct net_device *dev,
2826 				     struct napi_struct *napi,
2827 				     int (*poll)(struct napi_struct *, int))
2828 {
2829 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2830 }
2831 
2832 void __netif_napi_del_locked(struct napi_struct *napi);
2833 
2834 /**
2835  *  __netif_napi_del - remove a NAPI context
2836  *  @napi: NAPI context
2837  *
2838  * Warning: caller must observe RCU grace period before freeing memory
2839  * containing @napi. Drivers might want to call this helper to combine
2840  * all the needed RCU grace periods into a single one.
2841  */
2842 static inline void __netif_napi_del(struct napi_struct *napi)
2843 {
2844 	netdev_lock(napi->dev);
2845 	__netif_napi_del_locked(napi);
2846 	netdev_unlock(napi->dev);
2847 }
2848 
2849 static inline void netif_napi_del_locked(struct napi_struct *napi)
2850 {
2851 	__netif_napi_del_locked(napi);
2852 	synchronize_net();
2853 }
2854 
2855 /**
2856  *  netif_napi_del - remove a NAPI context
2857  *  @napi: NAPI context
2858  *
2859  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2860  */
2861 static inline void netif_napi_del(struct napi_struct *napi)
2862 {
2863 	__netif_napi_del(napi);
2864 	synchronize_net();
2865 }
2866 
2867 struct packet_type {
2868 	__be16			type;	/* This is really htons(ether_type). */
2869 	bool			ignore_outgoing;
2870 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2871 	netdevice_tracker	dev_tracker;
2872 	int			(*func) (struct sk_buff *,
2873 					 struct net_device *,
2874 					 struct packet_type *,
2875 					 struct net_device *);
2876 	void			(*list_func) (struct list_head *,
2877 					      struct packet_type *,
2878 					      struct net_device *);
2879 	bool			(*id_match)(struct packet_type *ptype,
2880 					    struct sock *sk);
2881 	struct net		*af_packet_net;
2882 	void			*af_packet_priv;
2883 	struct list_head	list;
2884 };
2885 
2886 struct offload_callbacks {
2887 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2888 						netdev_features_t features);
2889 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2890 						struct sk_buff *skb);
2891 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2892 };
2893 
2894 struct packet_offload {
2895 	__be16			 type;	/* This is really htons(ether_type). */
2896 	u16			 priority;
2897 	struct offload_callbacks callbacks;
2898 	struct list_head	 list;
2899 };
2900 
2901 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2902 struct pcpu_sw_netstats {
2903 	u64_stats_t		rx_packets;
2904 	u64_stats_t		rx_bytes;
2905 	u64_stats_t		tx_packets;
2906 	u64_stats_t		tx_bytes;
2907 	struct u64_stats_sync   syncp;
2908 } __aligned(4 * sizeof(u64));
2909 
2910 struct pcpu_dstats {
2911 	u64_stats_t		rx_packets;
2912 	u64_stats_t		rx_bytes;
2913 	u64_stats_t		tx_packets;
2914 	u64_stats_t		tx_bytes;
2915 	u64_stats_t		rx_drops;
2916 	u64_stats_t		tx_drops;
2917 	struct u64_stats_sync	syncp;
2918 } __aligned(8 * sizeof(u64));
2919 
2920 struct pcpu_lstats {
2921 	u64_stats_t packets;
2922 	u64_stats_t bytes;
2923 	struct u64_stats_sync syncp;
2924 } __aligned(2 * sizeof(u64));
2925 
2926 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2927 
2928 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2929 {
2930 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2931 
2932 	u64_stats_update_begin(&tstats->syncp);
2933 	u64_stats_add(&tstats->rx_bytes, len);
2934 	u64_stats_inc(&tstats->rx_packets);
2935 	u64_stats_update_end(&tstats->syncp);
2936 }
2937 
2938 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2939 					  unsigned int packets,
2940 					  unsigned int len)
2941 {
2942 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2943 
2944 	u64_stats_update_begin(&tstats->syncp);
2945 	u64_stats_add(&tstats->tx_bytes, len);
2946 	u64_stats_add(&tstats->tx_packets, packets);
2947 	u64_stats_update_end(&tstats->syncp);
2948 }
2949 
2950 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2951 {
2952 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2953 
2954 	u64_stats_update_begin(&lstats->syncp);
2955 	u64_stats_add(&lstats->bytes, len);
2956 	u64_stats_inc(&lstats->packets);
2957 	u64_stats_update_end(&lstats->syncp);
2958 }
2959 
2960 static inline void dev_dstats_rx_add(struct net_device *dev,
2961 				     unsigned int len)
2962 {
2963 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2964 
2965 	u64_stats_update_begin(&dstats->syncp);
2966 	u64_stats_inc(&dstats->rx_packets);
2967 	u64_stats_add(&dstats->rx_bytes, len);
2968 	u64_stats_update_end(&dstats->syncp);
2969 }
2970 
2971 static inline void dev_dstats_rx_dropped(struct net_device *dev)
2972 {
2973 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2974 
2975 	u64_stats_update_begin(&dstats->syncp);
2976 	u64_stats_inc(&dstats->rx_drops);
2977 	u64_stats_update_end(&dstats->syncp);
2978 }
2979 
2980 static inline void dev_dstats_tx_add(struct net_device *dev,
2981 				     unsigned int len)
2982 {
2983 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2984 
2985 	u64_stats_update_begin(&dstats->syncp);
2986 	u64_stats_inc(&dstats->tx_packets);
2987 	u64_stats_add(&dstats->tx_bytes, len);
2988 	u64_stats_update_end(&dstats->syncp);
2989 }
2990 
2991 static inline void dev_dstats_tx_dropped(struct net_device *dev)
2992 {
2993 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2994 
2995 	u64_stats_update_begin(&dstats->syncp);
2996 	u64_stats_inc(&dstats->tx_drops);
2997 	u64_stats_update_end(&dstats->syncp);
2998 }
2999 
3000 #define __netdev_alloc_pcpu_stats(type, gfp)				\
3001 ({									\
3002 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
3003 	if (pcpu_stats)	{						\
3004 		int __cpu;						\
3005 		for_each_possible_cpu(__cpu) {				\
3006 			typeof(type) *stat;				\
3007 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3008 			u64_stats_init(&stat->syncp);			\
3009 		}							\
3010 	}								\
3011 	pcpu_stats;							\
3012 })
3013 
3014 #define netdev_alloc_pcpu_stats(type)					\
3015 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
3016 
3017 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
3018 ({									\
3019 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
3020 	if (pcpu_stats) {						\
3021 		int __cpu;						\
3022 		for_each_possible_cpu(__cpu) {				\
3023 			typeof(type) *stat;				\
3024 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3025 			u64_stats_init(&stat->syncp);			\
3026 		}							\
3027 	}								\
3028 	pcpu_stats;							\
3029 })
3030 
3031 enum netdev_lag_tx_type {
3032 	NETDEV_LAG_TX_TYPE_UNKNOWN,
3033 	NETDEV_LAG_TX_TYPE_RANDOM,
3034 	NETDEV_LAG_TX_TYPE_BROADCAST,
3035 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
3036 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
3037 	NETDEV_LAG_TX_TYPE_HASH,
3038 };
3039 
3040 enum netdev_lag_hash {
3041 	NETDEV_LAG_HASH_NONE,
3042 	NETDEV_LAG_HASH_L2,
3043 	NETDEV_LAG_HASH_L34,
3044 	NETDEV_LAG_HASH_L23,
3045 	NETDEV_LAG_HASH_E23,
3046 	NETDEV_LAG_HASH_E34,
3047 	NETDEV_LAG_HASH_VLAN_SRCMAC,
3048 	NETDEV_LAG_HASH_UNKNOWN,
3049 };
3050 
3051 struct netdev_lag_upper_info {
3052 	enum netdev_lag_tx_type tx_type;
3053 	enum netdev_lag_hash hash_type;
3054 };
3055 
3056 struct netdev_lag_lower_state_info {
3057 	u8 link_up : 1,
3058 	   tx_enabled : 1;
3059 };
3060 
3061 #include <linux/notifier.h>
3062 
3063 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
3064  * and the rtnetlink notification exclusion list in rtnetlink_event() when
3065  * adding new types.
3066  */
3067 enum netdev_cmd {
3068 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
3069 	NETDEV_DOWN,
3070 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
3071 				   detected a hardware crash and restarted
3072 				   - we can use this eg to kick tcp sessions
3073 				   once done */
3074 	NETDEV_CHANGE,		/* Notify device state change */
3075 	NETDEV_REGISTER,
3076 	NETDEV_UNREGISTER,
3077 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
3078 	NETDEV_CHANGEADDR,	/* notify after the address change */
3079 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
3080 	NETDEV_GOING_DOWN,
3081 	NETDEV_CHANGENAME,
3082 	NETDEV_FEAT_CHANGE,
3083 	NETDEV_BONDING_FAILOVER,
3084 	NETDEV_PRE_UP,
3085 	NETDEV_PRE_TYPE_CHANGE,
3086 	NETDEV_POST_TYPE_CHANGE,
3087 	NETDEV_POST_INIT,
3088 	NETDEV_PRE_UNINIT,
3089 	NETDEV_RELEASE,
3090 	NETDEV_NOTIFY_PEERS,
3091 	NETDEV_JOIN,
3092 	NETDEV_CHANGEUPPER,
3093 	NETDEV_RESEND_IGMP,
3094 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
3095 	NETDEV_CHANGEINFODATA,
3096 	NETDEV_BONDING_INFO,
3097 	NETDEV_PRECHANGEUPPER,
3098 	NETDEV_CHANGELOWERSTATE,
3099 	NETDEV_UDP_TUNNEL_PUSH_INFO,
3100 	NETDEV_UDP_TUNNEL_DROP_INFO,
3101 	NETDEV_CHANGE_TX_QUEUE_LEN,
3102 	NETDEV_CVLAN_FILTER_PUSH_INFO,
3103 	NETDEV_CVLAN_FILTER_DROP_INFO,
3104 	NETDEV_SVLAN_FILTER_PUSH_INFO,
3105 	NETDEV_SVLAN_FILTER_DROP_INFO,
3106 	NETDEV_OFFLOAD_XSTATS_ENABLE,
3107 	NETDEV_OFFLOAD_XSTATS_DISABLE,
3108 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
3109 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
3110 	NETDEV_XDP_FEAT_CHANGE,
3111 };
3112 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
3113 
3114 int register_netdevice_notifier(struct notifier_block *nb);
3115 int unregister_netdevice_notifier(struct notifier_block *nb);
3116 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
3117 int unregister_netdevice_notifier_net(struct net *net,
3118 				      struct notifier_block *nb);
3119 int register_netdevice_notifier_dev_net(struct net_device *dev,
3120 					struct notifier_block *nb,
3121 					struct netdev_net_notifier *nn);
3122 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
3123 					  struct notifier_block *nb,
3124 					  struct netdev_net_notifier *nn);
3125 
3126 struct netdev_notifier_info {
3127 	struct net_device	*dev;
3128 	struct netlink_ext_ack	*extack;
3129 };
3130 
3131 struct netdev_notifier_info_ext {
3132 	struct netdev_notifier_info info; /* must be first */
3133 	union {
3134 		u32 mtu;
3135 	} ext;
3136 };
3137 
3138 struct netdev_notifier_change_info {
3139 	struct netdev_notifier_info info; /* must be first */
3140 	unsigned int flags_changed;
3141 };
3142 
3143 struct netdev_notifier_changeupper_info {
3144 	struct netdev_notifier_info info; /* must be first */
3145 	struct net_device *upper_dev; /* new upper dev */
3146 	bool master; /* is upper dev master */
3147 	bool linking; /* is the notification for link or unlink */
3148 	void *upper_info; /* upper dev info */
3149 };
3150 
3151 struct netdev_notifier_changelowerstate_info {
3152 	struct netdev_notifier_info info; /* must be first */
3153 	void *lower_state_info; /* is lower dev state */
3154 };
3155 
3156 struct netdev_notifier_pre_changeaddr_info {
3157 	struct netdev_notifier_info info; /* must be first */
3158 	const unsigned char *dev_addr;
3159 };
3160 
3161 enum netdev_offload_xstats_type {
3162 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3163 };
3164 
3165 struct netdev_notifier_offload_xstats_info {
3166 	struct netdev_notifier_info info; /* must be first */
3167 	enum netdev_offload_xstats_type type;
3168 
3169 	union {
3170 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3171 		struct netdev_notifier_offload_xstats_rd *report_delta;
3172 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3173 		struct netdev_notifier_offload_xstats_ru *report_used;
3174 	};
3175 };
3176 
3177 int netdev_offload_xstats_enable(struct net_device *dev,
3178 				 enum netdev_offload_xstats_type type,
3179 				 struct netlink_ext_ack *extack);
3180 int netdev_offload_xstats_disable(struct net_device *dev,
3181 				  enum netdev_offload_xstats_type type);
3182 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3183 				   enum netdev_offload_xstats_type type);
3184 int netdev_offload_xstats_get(struct net_device *dev,
3185 			      enum netdev_offload_xstats_type type,
3186 			      struct rtnl_hw_stats64 *stats, bool *used,
3187 			      struct netlink_ext_ack *extack);
3188 void
3189 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3190 				   const struct rtnl_hw_stats64 *stats);
3191 void
3192 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3193 void netdev_offload_xstats_push_delta(struct net_device *dev,
3194 				      enum netdev_offload_xstats_type type,
3195 				      const struct rtnl_hw_stats64 *stats);
3196 
3197 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3198 					     struct net_device *dev)
3199 {
3200 	info->dev = dev;
3201 	info->extack = NULL;
3202 }
3203 
3204 static inline struct net_device *
3205 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3206 {
3207 	return info->dev;
3208 }
3209 
3210 static inline struct netlink_ext_ack *
3211 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3212 {
3213 	return info->extack;
3214 }
3215 
3216 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3217 int call_netdevice_notifiers_info(unsigned long val,
3218 				  struct netdev_notifier_info *info);
3219 
3220 #define for_each_netdev(net, d)		\
3221 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3222 #define for_each_netdev_reverse(net, d)	\
3223 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3224 #define for_each_netdev_rcu(net, d)		\
3225 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3226 #define for_each_netdev_safe(net, d, n)	\
3227 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3228 #define for_each_netdev_continue(net, d)		\
3229 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3230 #define for_each_netdev_continue_reverse(net, d)		\
3231 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3232 						     dev_list)
3233 #define for_each_netdev_continue_rcu(net, d)		\
3234 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3235 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3236 		for_each_netdev_rcu(&init_net, slave)	\
3237 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3238 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3239 
3240 #define for_each_netdev_dump(net, d, ifindex)				\
3241 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3242 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3243 
3244 static inline struct net_device *next_net_device(struct net_device *dev)
3245 {
3246 	struct list_head *lh;
3247 	struct net *net;
3248 
3249 	net = dev_net(dev);
3250 	lh = dev->dev_list.next;
3251 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3252 }
3253 
3254 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3255 {
3256 	struct list_head *lh;
3257 	struct net *net;
3258 
3259 	net = dev_net(dev);
3260 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3261 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3262 }
3263 
3264 static inline struct net_device *first_net_device(struct net *net)
3265 {
3266 	return list_empty(&net->dev_base_head) ? NULL :
3267 		net_device_entry(net->dev_base_head.next);
3268 }
3269 
3270 static inline struct net_device *first_net_device_rcu(struct net *net)
3271 {
3272 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3273 
3274 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3275 }
3276 
3277 int netdev_boot_setup_check(struct net_device *dev);
3278 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3279 				       const char *hwaddr);
3280 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3281 void dev_add_pack(struct packet_type *pt);
3282 void dev_remove_pack(struct packet_type *pt);
3283 void __dev_remove_pack(struct packet_type *pt);
3284 void dev_add_offload(struct packet_offload *po);
3285 void dev_remove_offload(struct packet_offload *po);
3286 
3287 int dev_get_iflink(const struct net_device *dev);
3288 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3289 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3290 			  struct net_device_path_stack *stack);
3291 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3292 				      unsigned short mask);
3293 struct net_device *dev_get_by_name(struct net *net, const char *name);
3294 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3295 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3296 bool netdev_name_in_use(struct net *net, const char *name);
3297 int dev_alloc_name(struct net_device *dev, const char *name);
3298 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3299 void dev_close(struct net_device *dev);
3300 void dev_close_many(struct list_head *head, bool unlink);
3301 void dev_disable_lro(struct net_device *dev);
3302 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3303 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3304 		     struct net_device *sb_dev);
3305 
3306 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3307 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3308 
3309 static inline int dev_queue_xmit(struct sk_buff *skb)
3310 {
3311 	return __dev_queue_xmit(skb, NULL);
3312 }
3313 
3314 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3315 				       struct net_device *sb_dev)
3316 {
3317 	return __dev_queue_xmit(skb, sb_dev);
3318 }
3319 
3320 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3321 {
3322 	int ret;
3323 
3324 	ret = __dev_direct_xmit(skb, queue_id);
3325 	if (!dev_xmit_complete(ret))
3326 		kfree_skb(skb);
3327 	return ret;
3328 }
3329 
3330 int register_netdevice(struct net_device *dev);
3331 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3332 void unregister_netdevice_many(struct list_head *head);
3333 static inline void unregister_netdevice(struct net_device *dev)
3334 {
3335 	unregister_netdevice_queue(dev, NULL);
3336 }
3337 
3338 int netdev_refcnt_read(const struct net_device *dev);
3339 void free_netdev(struct net_device *dev);
3340 
3341 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3342 					 struct sk_buff *skb,
3343 					 bool all_slaves);
3344 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3345 					    struct sock *sk);
3346 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3347 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3348 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3349 				       netdevice_tracker *tracker, gfp_t gfp);
3350 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3351 				      netdevice_tracker *tracker, gfp_t gfp);
3352 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3353 void netdev_copy_name(struct net_device *dev, char *name);
3354 
3355 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3356 				  unsigned short type,
3357 				  const void *daddr, const void *saddr,
3358 				  unsigned int len)
3359 {
3360 	if (!dev->header_ops || !dev->header_ops->create)
3361 		return 0;
3362 
3363 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3364 }
3365 
3366 static inline int dev_parse_header(const struct sk_buff *skb,
3367 				   unsigned char *haddr)
3368 {
3369 	const struct net_device *dev = skb->dev;
3370 
3371 	if (!dev->header_ops || !dev->header_ops->parse)
3372 		return 0;
3373 	return dev->header_ops->parse(skb, haddr);
3374 }
3375 
3376 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3377 {
3378 	const struct net_device *dev = skb->dev;
3379 
3380 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3381 		return 0;
3382 	return dev->header_ops->parse_protocol(skb);
3383 }
3384 
3385 /* ll_header must have at least hard_header_len allocated */
3386 static inline bool dev_validate_header(const struct net_device *dev,
3387 				       char *ll_header, int len)
3388 {
3389 	if (likely(len >= dev->hard_header_len))
3390 		return true;
3391 	if (len < dev->min_header_len)
3392 		return false;
3393 
3394 	if (capable(CAP_SYS_RAWIO)) {
3395 		memset(ll_header + len, 0, dev->hard_header_len - len);
3396 		return true;
3397 	}
3398 
3399 	if (dev->header_ops && dev->header_ops->validate)
3400 		return dev->header_ops->validate(ll_header, len);
3401 
3402 	return false;
3403 }
3404 
3405 static inline bool dev_has_header(const struct net_device *dev)
3406 {
3407 	return dev->header_ops && dev->header_ops->create;
3408 }
3409 
3410 /*
3411  * Incoming packets are placed on per-CPU queues
3412  */
3413 struct softnet_data {
3414 	struct list_head	poll_list;
3415 	struct sk_buff_head	process_queue;
3416 	local_lock_t		process_queue_bh_lock;
3417 
3418 	/* stats */
3419 	unsigned int		processed;
3420 	unsigned int		time_squeeze;
3421 #ifdef CONFIG_RPS
3422 	struct softnet_data	*rps_ipi_list;
3423 #endif
3424 
3425 	unsigned int		received_rps;
3426 	bool			in_net_rx_action;
3427 	bool			in_napi_threaded_poll;
3428 
3429 #ifdef CONFIG_NET_FLOW_LIMIT
3430 	struct sd_flow_limit __rcu *flow_limit;
3431 #endif
3432 	struct Qdisc		*output_queue;
3433 	struct Qdisc		**output_queue_tailp;
3434 	struct sk_buff		*completion_queue;
3435 #ifdef CONFIG_XFRM_OFFLOAD
3436 	struct sk_buff_head	xfrm_backlog;
3437 #endif
3438 	/* written and read only by owning cpu: */
3439 	struct netdev_xmit xmit;
3440 #ifdef CONFIG_RPS
3441 	/* input_queue_head should be written by cpu owning this struct,
3442 	 * and only read by other cpus. Worth using a cache line.
3443 	 */
3444 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3445 
3446 	/* Elements below can be accessed between CPUs for RPS/RFS */
3447 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3448 	struct softnet_data	*rps_ipi_next;
3449 	unsigned int		cpu;
3450 	unsigned int		input_queue_tail;
3451 #endif
3452 	struct sk_buff_head	input_pkt_queue;
3453 	struct napi_struct	backlog;
3454 
3455 	atomic_t		dropped ____cacheline_aligned_in_smp;
3456 
3457 	/* Another possibly contended cache line */
3458 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3459 	int			defer_count;
3460 	int			defer_ipi_scheduled;
3461 	struct sk_buff		*defer_list;
3462 	call_single_data_t	defer_csd;
3463 };
3464 
3465 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3466 DECLARE_PER_CPU(struct page_pool *, system_page_pool);
3467 
3468 #ifndef CONFIG_PREEMPT_RT
3469 static inline int dev_recursion_level(void)
3470 {
3471 	return this_cpu_read(softnet_data.xmit.recursion);
3472 }
3473 #else
3474 static inline int dev_recursion_level(void)
3475 {
3476 	return current->net_xmit.recursion;
3477 }
3478 
3479 #endif
3480 
3481 void __netif_schedule(struct Qdisc *q);
3482 void netif_schedule_queue(struct netdev_queue *txq);
3483 
3484 static inline void netif_tx_schedule_all(struct net_device *dev)
3485 {
3486 	unsigned int i;
3487 
3488 	for (i = 0; i < dev->num_tx_queues; i++)
3489 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3490 }
3491 
3492 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3493 {
3494 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3495 }
3496 
3497 /**
3498  *	netif_start_queue - allow transmit
3499  *	@dev: network device
3500  *
3501  *	Allow upper layers to call the device hard_start_xmit routine.
3502  */
3503 static inline void netif_start_queue(struct net_device *dev)
3504 {
3505 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3506 }
3507 
3508 static inline void netif_tx_start_all_queues(struct net_device *dev)
3509 {
3510 	unsigned int i;
3511 
3512 	for (i = 0; i < dev->num_tx_queues; i++) {
3513 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3514 		netif_tx_start_queue(txq);
3515 	}
3516 }
3517 
3518 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3519 
3520 /**
3521  *	netif_wake_queue - restart transmit
3522  *	@dev: network device
3523  *
3524  *	Allow upper layers to call the device hard_start_xmit routine.
3525  *	Used for flow control when transmit resources are available.
3526  */
3527 static inline void netif_wake_queue(struct net_device *dev)
3528 {
3529 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3530 }
3531 
3532 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3533 {
3534 	unsigned int i;
3535 
3536 	for (i = 0; i < dev->num_tx_queues; i++) {
3537 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3538 		netif_tx_wake_queue(txq);
3539 	}
3540 }
3541 
3542 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3543 {
3544 	/* Paired with READ_ONCE() from dev_watchdog() */
3545 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3546 
3547 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3548 	smp_mb__before_atomic();
3549 
3550 	/* Must be an atomic op see netif_txq_try_stop() */
3551 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3552 }
3553 
3554 /**
3555  *	netif_stop_queue - stop transmitted packets
3556  *	@dev: network device
3557  *
3558  *	Stop upper layers calling the device hard_start_xmit routine.
3559  *	Used for flow control when transmit resources are unavailable.
3560  */
3561 static inline void netif_stop_queue(struct net_device *dev)
3562 {
3563 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3564 }
3565 
3566 void netif_tx_stop_all_queues(struct net_device *dev);
3567 
3568 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3569 {
3570 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3571 }
3572 
3573 /**
3574  *	netif_queue_stopped - test if transmit queue is flowblocked
3575  *	@dev: network device
3576  *
3577  *	Test if transmit queue on device is currently unable to send.
3578  */
3579 static inline bool netif_queue_stopped(const struct net_device *dev)
3580 {
3581 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3582 }
3583 
3584 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3585 {
3586 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3587 }
3588 
3589 static inline bool
3590 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3591 {
3592 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3593 }
3594 
3595 static inline bool
3596 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3597 {
3598 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3599 }
3600 
3601 /**
3602  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3603  *	@dev_queue: pointer to transmit queue
3604  *	@min_limit: dql minimum limit
3605  *
3606  * Forces xmit_more() to return true until the minimum threshold
3607  * defined by @min_limit is reached (or until the tx queue is
3608  * empty). Warning: to be use with care, misuse will impact the
3609  * latency.
3610  */
3611 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3612 						  unsigned int min_limit)
3613 {
3614 #ifdef CONFIG_BQL
3615 	dev_queue->dql.min_limit = min_limit;
3616 #endif
3617 }
3618 
3619 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3620 {
3621 #ifdef CONFIG_BQL
3622 	/* Non-BQL migrated drivers will return 0, too. */
3623 	return dql_avail(&txq->dql);
3624 #else
3625 	return 0;
3626 #endif
3627 }
3628 
3629 /**
3630  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3631  *	@dev_queue: pointer to transmit queue
3632  *
3633  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3634  * to give appropriate hint to the CPU.
3635  */
3636 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3637 {
3638 #ifdef CONFIG_BQL
3639 	prefetchw(&dev_queue->dql.num_queued);
3640 #endif
3641 }
3642 
3643 /**
3644  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3645  *	@dev_queue: pointer to transmit queue
3646  *
3647  * BQL enabled drivers might use this helper in their TX completion path,
3648  * to give appropriate hint to the CPU.
3649  */
3650 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3651 {
3652 #ifdef CONFIG_BQL
3653 	prefetchw(&dev_queue->dql.limit);
3654 #endif
3655 }
3656 
3657 /**
3658  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3659  *	@dev_queue: network device queue
3660  *	@bytes: number of bytes queued to the device queue
3661  *
3662  *	Report the number of bytes queued for sending/completion to the network
3663  *	device hardware queue. @bytes should be a good approximation and should
3664  *	exactly match netdev_completed_queue() @bytes.
3665  *	This is typically called once per packet, from ndo_start_xmit().
3666  */
3667 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3668 					unsigned int bytes)
3669 {
3670 #ifdef CONFIG_BQL
3671 	dql_queued(&dev_queue->dql, bytes);
3672 
3673 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3674 		return;
3675 
3676 	/* Paired with READ_ONCE() from dev_watchdog() */
3677 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3678 
3679 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3680 	smp_mb__before_atomic();
3681 
3682 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3683 
3684 	/*
3685 	 * The XOFF flag must be set before checking the dql_avail below,
3686 	 * because in netdev_tx_completed_queue we update the dql_completed
3687 	 * before checking the XOFF flag.
3688 	 */
3689 	smp_mb__after_atomic();
3690 
3691 	/* check again in case another CPU has just made room avail */
3692 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3693 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3694 #endif
3695 }
3696 
3697 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3698  * that they should not test BQL status themselves.
3699  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3700  * skb of a batch.
3701  * Returns true if the doorbell must be used to kick the NIC.
3702  */
3703 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3704 					  unsigned int bytes,
3705 					  bool xmit_more)
3706 {
3707 	if (xmit_more) {
3708 #ifdef CONFIG_BQL
3709 		dql_queued(&dev_queue->dql, bytes);
3710 #endif
3711 		return netif_tx_queue_stopped(dev_queue);
3712 	}
3713 	netdev_tx_sent_queue(dev_queue, bytes);
3714 	return true;
3715 }
3716 
3717 /**
3718  *	netdev_sent_queue - report the number of bytes queued to hardware
3719  *	@dev: network device
3720  *	@bytes: number of bytes queued to the hardware device queue
3721  *
3722  *	Report the number of bytes queued for sending/completion to the network
3723  *	device hardware queue#0. @bytes should be a good approximation and should
3724  *	exactly match netdev_completed_queue() @bytes.
3725  *	This is typically called once per packet, from ndo_start_xmit().
3726  */
3727 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3728 {
3729 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3730 }
3731 
3732 static inline bool __netdev_sent_queue(struct net_device *dev,
3733 				       unsigned int bytes,
3734 				       bool xmit_more)
3735 {
3736 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3737 				      xmit_more);
3738 }
3739 
3740 /**
3741  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3742  *	@dev_queue: network device queue
3743  *	@pkts: number of packets (currently ignored)
3744  *	@bytes: number of bytes dequeued from the device queue
3745  *
3746  *	Must be called at most once per TX completion round (and not per
3747  *	individual packet), so that BQL can adjust its limits appropriately.
3748  */
3749 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3750 					     unsigned int pkts, unsigned int bytes)
3751 {
3752 #ifdef CONFIG_BQL
3753 	if (unlikely(!bytes))
3754 		return;
3755 
3756 	dql_completed(&dev_queue->dql, bytes);
3757 
3758 	/*
3759 	 * Without the memory barrier there is a small possibility that
3760 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3761 	 * be stopped forever
3762 	 */
3763 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3764 
3765 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3766 		return;
3767 
3768 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3769 		netif_schedule_queue(dev_queue);
3770 #endif
3771 }
3772 
3773 /**
3774  * 	netdev_completed_queue - report bytes and packets completed by device
3775  * 	@dev: network device
3776  * 	@pkts: actual number of packets sent over the medium
3777  * 	@bytes: actual number of bytes sent over the medium
3778  *
3779  * 	Report the number of bytes and packets transmitted by the network device
3780  * 	hardware queue over the physical medium, @bytes must exactly match the
3781  * 	@bytes amount passed to netdev_sent_queue()
3782  */
3783 static inline void netdev_completed_queue(struct net_device *dev,
3784 					  unsigned int pkts, unsigned int bytes)
3785 {
3786 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3787 }
3788 
3789 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3790 {
3791 #ifdef CONFIG_BQL
3792 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3793 	dql_reset(&q->dql);
3794 #endif
3795 }
3796 
3797 /**
3798  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3799  * @dev: network device
3800  * @qid: stack index of the queue to reset
3801  */
3802 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3803 					    u32 qid)
3804 {
3805 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3806 }
3807 
3808 /**
3809  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3810  * 	@dev_queue: network device
3811  *
3812  * 	Reset the bytes and packet count of a network device and clear the
3813  * 	software flow control OFF bit for this network device
3814  */
3815 static inline void netdev_reset_queue(struct net_device *dev_queue)
3816 {
3817 	netdev_tx_reset_subqueue(dev_queue, 0);
3818 }
3819 
3820 /**
3821  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3822  * 	@dev: network device
3823  * 	@queue_index: given tx queue index
3824  *
3825  * 	Returns 0 if given tx queue index >= number of device tx queues,
3826  * 	otherwise returns the originally passed tx queue index.
3827  */
3828 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3829 {
3830 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3831 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3832 				     dev->name, queue_index,
3833 				     dev->real_num_tx_queues);
3834 		return 0;
3835 	}
3836 
3837 	return queue_index;
3838 }
3839 
3840 /**
3841  *	netif_running - test if up
3842  *	@dev: network device
3843  *
3844  *	Test if the device has been brought up.
3845  */
3846 static inline bool netif_running(const struct net_device *dev)
3847 {
3848 	return test_bit(__LINK_STATE_START, &dev->state);
3849 }
3850 
3851 /*
3852  * Routines to manage the subqueues on a device.  We only need start,
3853  * stop, and a check if it's stopped.  All other device management is
3854  * done at the overall netdevice level.
3855  * Also test the device if we're multiqueue.
3856  */
3857 
3858 /**
3859  *	netif_start_subqueue - allow sending packets on subqueue
3860  *	@dev: network device
3861  *	@queue_index: sub queue index
3862  *
3863  * Start individual transmit queue of a device with multiple transmit queues.
3864  */
3865 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3866 {
3867 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3868 
3869 	netif_tx_start_queue(txq);
3870 }
3871 
3872 /**
3873  *	netif_stop_subqueue - stop sending packets on subqueue
3874  *	@dev: network device
3875  *	@queue_index: sub queue index
3876  *
3877  * Stop individual transmit queue of a device with multiple transmit queues.
3878  */
3879 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3880 {
3881 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3882 	netif_tx_stop_queue(txq);
3883 }
3884 
3885 /**
3886  *	__netif_subqueue_stopped - test status of subqueue
3887  *	@dev: network device
3888  *	@queue_index: sub queue index
3889  *
3890  * Check individual transmit queue of a device with multiple transmit queues.
3891  */
3892 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3893 					    u16 queue_index)
3894 {
3895 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3896 
3897 	return netif_tx_queue_stopped(txq);
3898 }
3899 
3900 /**
3901  *	netif_subqueue_stopped - test status of subqueue
3902  *	@dev: network device
3903  *	@skb: sub queue buffer pointer
3904  *
3905  * Check individual transmit queue of a device with multiple transmit queues.
3906  */
3907 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3908 					  struct sk_buff *skb)
3909 {
3910 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3911 }
3912 
3913 /**
3914  *	netif_wake_subqueue - allow sending packets on subqueue
3915  *	@dev: network device
3916  *	@queue_index: sub queue index
3917  *
3918  * Resume individual transmit queue of a device with multiple transmit queues.
3919  */
3920 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3921 {
3922 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3923 
3924 	netif_tx_wake_queue(txq);
3925 }
3926 
3927 #ifdef CONFIG_XPS
3928 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3929 			u16 index);
3930 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3931 			  u16 index, enum xps_map_type type);
3932 
3933 /**
3934  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3935  *	@j: CPU/Rx queue index
3936  *	@mask: bitmask of all cpus/rx queues
3937  *	@nr_bits: number of bits in the bitmask
3938  *
3939  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3940  */
3941 static inline bool netif_attr_test_mask(unsigned long j,
3942 					const unsigned long *mask,
3943 					unsigned int nr_bits)
3944 {
3945 	cpu_max_bits_warn(j, nr_bits);
3946 	return test_bit(j, mask);
3947 }
3948 
3949 /**
3950  *	netif_attr_test_online - Test for online CPU/Rx queue
3951  *	@j: CPU/Rx queue index
3952  *	@online_mask: bitmask for CPUs/Rx queues that are online
3953  *	@nr_bits: number of bits in the bitmask
3954  *
3955  * Returns: true if a CPU/Rx queue is online.
3956  */
3957 static inline bool netif_attr_test_online(unsigned long j,
3958 					  const unsigned long *online_mask,
3959 					  unsigned int nr_bits)
3960 {
3961 	cpu_max_bits_warn(j, nr_bits);
3962 
3963 	if (online_mask)
3964 		return test_bit(j, online_mask);
3965 
3966 	return (j < nr_bits);
3967 }
3968 
3969 /**
3970  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3971  *	@n: CPU/Rx queue index
3972  *	@srcp: the cpumask/Rx queue mask pointer
3973  *	@nr_bits: number of bits in the bitmask
3974  *
3975  * Returns: next (after n) CPU/Rx queue index in the mask;
3976  * >= nr_bits if no further CPUs/Rx queues set.
3977  */
3978 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3979 					       unsigned int nr_bits)
3980 {
3981 	/* -1 is a legal arg here. */
3982 	if (n != -1)
3983 		cpu_max_bits_warn(n, nr_bits);
3984 
3985 	if (srcp)
3986 		return find_next_bit(srcp, nr_bits, n + 1);
3987 
3988 	return n + 1;
3989 }
3990 
3991 /**
3992  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3993  *	@n: CPU/Rx queue index
3994  *	@src1p: the first CPUs/Rx queues mask pointer
3995  *	@src2p: the second CPUs/Rx queues mask pointer
3996  *	@nr_bits: number of bits in the bitmask
3997  *
3998  * Returns: next (after n) CPU/Rx queue index set in both masks;
3999  * >= nr_bits if no further CPUs/Rx queues set in both.
4000  */
4001 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
4002 					  const unsigned long *src2p,
4003 					  unsigned int nr_bits)
4004 {
4005 	/* -1 is a legal arg here. */
4006 	if (n != -1)
4007 		cpu_max_bits_warn(n, nr_bits);
4008 
4009 	if (src1p && src2p)
4010 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
4011 	else if (src1p)
4012 		return find_next_bit(src1p, nr_bits, n + 1);
4013 	else if (src2p)
4014 		return find_next_bit(src2p, nr_bits, n + 1);
4015 
4016 	return n + 1;
4017 }
4018 #else
4019 static inline int netif_set_xps_queue(struct net_device *dev,
4020 				      const struct cpumask *mask,
4021 				      u16 index)
4022 {
4023 	return 0;
4024 }
4025 
4026 static inline int __netif_set_xps_queue(struct net_device *dev,
4027 					const unsigned long *mask,
4028 					u16 index, enum xps_map_type type)
4029 {
4030 	return 0;
4031 }
4032 #endif
4033 
4034 /**
4035  *	netif_is_multiqueue - test if device has multiple transmit queues
4036  *	@dev: network device
4037  *
4038  * Check if device has multiple transmit queues
4039  */
4040 static inline bool netif_is_multiqueue(const struct net_device *dev)
4041 {
4042 	return dev->num_tx_queues > 1;
4043 }
4044 
4045 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
4046 
4047 #ifdef CONFIG_SYSFS
4048 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
4049 #else
4050 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
4051 						unsigned int rxqs)
4052 {
4053 	dev->real_num_rx_queues = rxqs;
4054 	return 0;
4055 }
4056 #endif
4057 int netif_set_real_num_queues(struct net_device *dev,
4058 			      unsigned int txq, unsigned int rxq);
4059 
4060 int netif_get_num_default_rss_queues(void);
4061 
4062 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4063 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4064 
4065 /*
4066  * It is not allowed to call kfree_skb() or consume_skb() from hardware
4067  * interrupt context or with hardware interrupts being disabled.
4068  * (in_hardirq() || irqs_disabled())
4069  *
4070  * We provide four helpers that can be used in following contexts :
4071  *
4072  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
4073  *  replacing kfree_skb(skb)
4074  *
4075  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
4076  *  Typically used in place of consume_skb(skb) in TX completion path
4077  *
4078  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
4079  *  replacing kfree_skb(skb)
4080  *
4081  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
4082  *  and consumed a packet. Used in place of consume_skb(skb)
4083  */
4084 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
4085 {
4086 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4087 }
4088 
4089 static inline void dev_consume_skb_irq(struct sk_buff *skb)
4090 {
4091 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
4092 }
4093 
4094 static inline void dev_kfree_skb_any(struct sk_buff *skb)
4095 {
4096 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4097 }
4098 
4099 static inline void dev_consume_skb_any(struct sk_buff *skb)
4100 {
4101 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
4102 }
4103 
4104 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4105 			     const struct bpf_prog *xdp_prog);
4106 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog);
4107 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb);
4108 int netif_rx(struct sk_buff *skb);
4109 int __netif_rx(struct sk_buff *skb);
4110 
4111 int netif_receive_skb(struct sk_buff *skb);
4112 int netif_receive_skb_core(struct sk_buff *skb);
4113 void netif_receive_skb_list_internal(struct list_head *head);
4114 void netif_receive_skb_list(struct list_head *head);
4115 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
4116 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
4117 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4118 void napi_get_frags_check(struct napi_struct *napi);
4119 gro_result_t napi_gro_frags(struct napi_struct *napi);
4120 
4121 static inline void napi_free_frags(struct napi_struct *napi)
4122 {
4123 	kfree_skb(napi->skb);
4124 	napi->skb = NULL;
4125 }
4126 
4127 bool netdev_is_rx_handler_busy(struct net_device *dev);
4128 int netdev_rx_handler_register(struct net_device *dev,
4129 			       rx_handler_func_t *rx_handler,
4130 			       void *rx_handler_data);
4131 void netdev_rx_handler_unregister(struct net_device *dev);
4132 
4133 bool dev_valid_name(const char *name);
4134 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4135 {
4136 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4137 }
4138 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4139 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4140 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4141 		void __user *data, bool *need_copyout);
4142 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4143 int generic_hwtstamp_get_lower(struct net_device *dev,
4144 			       struct kernel_hwtstamp_config *kernel_cfg);
4145 int generic_hwtstamp_set_lower(struct net_device *dev,
4146 			       struct kernel_hwtstamp_config *kernel_cfg,
4147 			       struct netlink_ext_ack *extack);
4148 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4149 unsigned int dev_get_flags(const struct net_device *);
4150 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4151 		       struct netlink_ext_ack *extack);
4152 int dev_change_flags(struct net_device *dev, unsigned int flags,
4153 		     struct netlink_ext_ack *extack);
4154 int dev_set_alias(struct net_device *, const char *, size_t);
4155 int dev_get_alias(const struct net_device *, char *, size_t);
4156 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4157 			       const char *pat, int new_ifindex);
4158 static inline
4159 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4160 			     const char *pat)
4161 {
4162 	return __dev_change_net_namespace(dev, net, pat, 0);
4163 }
4164 int __dev_set_mtu(struct net_device *, int);
4165 int dev_set_mtu(struct net_device *, int);
4166 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4167 			      struct netlink_ext_ack *extack);
4168 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4169 			struct netlink_ext_ack *extack);
4170 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4171 			     struct netlink_ext_ack *extack);
4172 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4173 int dev_get_port_parent_id(struct net_device *dev,
4174 			   struct netdev_phys_item_id *ppid, bool recurse);
4175 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4176 
4177 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4178 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4179 				    struct netdev_queue *txq, int *ret);
4180 
4181 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4182 u8 dev_xdp_prog_count(struct net_device *dev);
4183 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4184 u8 dev_xdp_sb_prog_count(struct net_device *dev);
4185 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4186 
4187 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4188 
4189 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4190 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4191 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4192 bool is_skb_forwardable(const struct net_device *dev,
4193 			const struct sk_buff *skb);
4194 
4195 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4196 						 const struct sk_buff *skb,
4197 						 const bool check_mtu)
4198 {
4199 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4200 	unsigned int len;
4201 
4202 	if (!(dev->flags & IFF_UP))
4203 		return false;
4204 
4205 	if (!check_mtu)
4206 		return true;
4207 
4208 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4209 	if (skb->len <= len)
4210 		return true;
4211 
4212 	/* if TSO is enabled, we don't care about the length as the packet
4213 	 * could be forwarded without being segmented before
4214 	 */
4215 	if (skb_is_gso(skb))
4216 		return true;
4217 
4218 	return false;
4219 }
4220 
4221 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4222 
4223 #define DEV_CORE_STATS_INC(FIELD)						\
4224 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4225 {										\
4226 	netdev_core_stats_inc(dev,						\
4227 			offsetof(struct net_device_core_stats, FIELD));		\
4228 }
4229 DEV_CORE_STATS_INC(rx_dropped)
4230 DEV_CORE_STATS_INC(tx_dropped)
4231 DEV_CORE_STATS_INC(rx_nohandler)
4232 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4233 #undef DEV_CORE_STATS_INC
4234 
4235 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4236 					       struct sk_buff *skb,
4237 					       const bool check_mtu)
4238 {
4239 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4240 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4241 		dev_core_stats_rx_dropped_inc(dev);
4242 		kfree_skb(skb);
4243 		return NET_RX_DROP;
4244 	}
4245 
4246 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4247 	skb->priority = 0;
4248 	return 0;
4249 }
4250 
4251 bool dev_nit_active(struct net_device *dev);
4252 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4253 
4254 static inline void __dev_put(struct net_device *dev)
4255 {
4256 	if (dev) {
4257 #ifdef CONFIG_PCPU_DEV_REFCNT
4258 		this_cpu_dec(*dev->pcpu_refcnt);
4259 #else
4260 		refcount_dec(&dev->dev_refcnt);
4261 #endif
4262 	}
4263 }
4264 
4265 static inline void __dev_hold(struct net_device *dev)
4266 {
4267 	if (dev) {
4268 #ifdef CONFIG_PCPU_DEV_REFCNT
4269 		this_cpu_inc(*dev->pcpu_refcnt);
4270 #else
4271 		refcount_inc(&dev->dev_refcnt);
4272 #endif
4273 	}
4274 }
4275 
4276 static inline void __netdev_tracker_alloc(struct net_device *dev,
4277 					  netdevice_tracker *tracker,
4278 					  gfp_t gfp)
4279 {
4280 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4281 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4282 #endif
4283 }
4284 
4285 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4286  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4287  */
4288 static inline void netdev_tracker_alloc(struct net_device *dev,
4289 					netdevice_tracker *tracker, gfp_t gfp)
4290 {
4291 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4292 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4293 	__netdev_tracker_alloc(dev, tracker, gfp);
4294 #endif
4295 }
4296 
4297 static inline void netdev_tracker_free(struct net_device *dev,
4298 				       netdevice_tracker *tracker)
4299 {
4300 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4301 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4302 #endif
4303 }
4304 
4305 static inline void netdev_hold(struct net_device *dev,
4306 			       netdevice_tracker *tracker, gfp_t gfp)
4307 {
4308 	if (dev) {
4309 		__dev_hold(dev);
4310 		__netdev_tracker_alloc(dev, tracker, gfp);
4311 	}
4312 }
4313 
4314 static inline void netdev_put(struct net_device *dev,
4315 			      netdevice_tracker *tracker)
4316 {
4317 	if (dev) {
4318 		netdev_tracker_free(dev, tracker);
4319 		__dev_put(dev);
4320 	}
4321 }
4322 
4323 /**
4324  *	dev_hold - get reference to device
4325  *	@dev: network device
4326  *
4327  * Hold reference to device to keep it from being freed.
4328  * Try using netdev_hold() instead.
4329  */
4330 static inline void dev_hold(struct net_device *dev)
4331 {
4332 	netdev_hold(dev, NULL, GFP_ATOMIC);
4333 }
4334 
4335 /**
4336  *	dev_put - release reference to device
4337  *	@dev: network device
4338  *
4339  * Release reference to device to allow it to be freed.
4340  * Try using netdev_put() instead.
4341  */
4342 static inline void dev_put(struct net_device *dev)
4343 {
4344 	netdev_put(dev, NULL);
4345 }
4346 
4347 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4348 
4349 static inline void netdev_ref_replace(struct net_device *odev,
4350 				      struct net_device *ndev,
4351 				      netdevice_tracker *tracker,
4352 				      gfp_t gfp)
4353 {
4354 	if (odev)
4355 		netdev_tracker_free(odev, tracker);
4356 
4357 	__dev_hold(ndev);
4358 	__dev_put(odev);
4359 
4360 	if (ndev)
4361 		__netdev_tracker_alloc(ndev, tracker, gfp);
4362 }
4363 
4364 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4365  * and _off may be called from IRQ context, but it is caller
4366  * who is responsible for serialization of these calls.
4367  *
4368  * The name carrier is inappropriate, these functions should really be
4369  * called netif_lowerlayer_*() because they represent the state of any
4370  * kind of lower layer not just hardware media.
4371  */
4372 void linkwatch_fire_event(struct net_device *dev);
4373 
4374 /**
4375  * linkwatch_sync_dev - sync linkwatch for the given device
4376  * @dev: network device to sync linkwatch for
4377  *
4378  * Sync linkwatch for the given device, removing it from the
4379  * pending work list (if queued).
4380  */
4381 void linkwatch_sync_dev(struct net_device *dev);
4382 
4383 /**
4384  *	netif_carrier_ok - test if carrier present
4385  *	@dev: network device
4386  *
4387  * Check if carrier is present on device
4388  */
4389 static inline bool netif_carrier_ok(const struct net_device *dev)
4390 {
4391 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4392 }
4393 
4394 unsigned long dev_trans_start(struct net_device *dev);
4395 
4396 void netdev_watchdog_up(struct net_device *dev);
4397 
4398 void netif_carrier_on(struct net_device *dev);
4399 void netif_carrier_off(struct net_device *dev);
4400 void netif_carrier_event(struct net_device *dev);
4401 
4402 /**
4403  *	netif_dormant_on - mark device as dormant.
4404  *	@dev: network device
4405  *
4406  * Mark device as dormant (as per RFC2863).
4407  *
4408  * The dormant state indicates that the relevant interface is not
4409  * actually in a condition to pass packets (i.e., it is not 'up') but is
4410  * in a "pending" state, waiting for some external event.  For "on-
4411  * demand" interfaces, this new state identifies the situation where the
4412  * interface is waiting for events to place it in the up state.
4413  */
4414 static inline void netif_dormant_on(struct net_device *dev)
4415 {
4416 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4417 		linkwatch_fire_event(dev);
4418 }
4419 
4420 /**
4421  *	netif_dormant_off - set device as not dormant.
4422  *	@dev: network device
4423  *
4424  * Device is not in dormant state.
4425  */
4426 static inline void netif_dormant_off(struct net_device *dev)
4427 {
4428 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4429 		linkwatch_fire_event(dev);
4430 }
4431 
4432 /**
4433  *	netif_dormant - test if device is dormant
4434  *	@dev: network device
4435  *
4436  * Check if device is dormant.
4437  */
4438 static inline bool netif_dormant(const struct net_device *dev)
4439 {
4440 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4441 }
4442 
4443 
4444 /**
4445  *	netif_testing_on - mark device as under test.
4446  *	@dev: network device
4447  *
4448  * Mark device as under test (as per RFC2863).
4449  *
4450  * The testing state indicates that some test(s) must be performed on
4451  * the interface. After completion, of the test, the interface state
4452  * will change to up, dormant, or down, as appropriate.
4453  */
4454 static inline void netif_testing_on(struct net_device *dev)
4455 {
4456 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4457 		linkwatch_fire_event(dev);
4458 }
4459 
4460 /**
4461  *	netif_testing_off - set device as not under test.
4462  *	@dev: network device
4463  *
4464  * Device is not in testing state.
4465  */
4466 static inline void netif_testing_off(struct net_device *dev)
4467 {
4468 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4469 		linkwatch_fire_event(dev);
4470 }
4471 
4472 /**
4473  *	netif_testing - test if device is under test
4474  *	@dev: network device
4475  *
4476  * Check if device is under test
4477  */
4478 static inline bool netif_testing(const struct net_device *dev)
4479 {
4480 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4481 }
4482 
4483 
4484 /**
4485  *	netif_oper_up - test if device is operational
4486  *	@dev: network device
4487  *
4488  * Check if carrier is operational
4489  */
4490 static inline bool netif_oper_up(const struct net_device *dev)
4491 {
4492 	unsigned int operstate = READ_ONCE(dev->operstate);
4493 
4494 	return	operstate == IF_OPER_UP ||
4495 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4496 }
4497 
4498 /**
4499  *	netif_device_present - is device available or removed
4500  *	@dev: network device
4501  *
4502  * Check if device has not been removed from system.
4503  */
4504 static inline bool netif_device_present(const struct net_device *dev)
4505 {
4506 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4507 }
4508 
4509 void netif_device_detach(struct net_device *dev);
4510 
4511 void netif_device_attach(struct net_device *dev);
4512 
4513 /*
4514  * Network interface message level settings
4515  */
4516 
4517 enum {
4518 	NETIF_MSG_DRV_BIT,
4519 	NETIF_MSG_PROBE_BIT,
4520 	NETIF_MSG_LINK_BIT,
4521 	NETIF_MSG_TIMER_BIT,
4522 	NETIF_MSG_IFDOWN_BIT,
4523 	NETIF_MSG_IFUP_BIT,
4524 	NETIF_MSG_RX_ERR_BIT,
4525 	NETIF_MSG_TX_ERR_BIT,
4526 	NETIF_MSG_TX_QUEUED_BIT,
4527 	NETIF_MSG_INTR_BIT,
4528 	NETIF_MSG_TX_DONE_BIT,
4529 	NETIF_MSG_RX_STATUS_BIT,
4530 	NETIF_MSG_PKTDATA_BIT,
4531 	NETIF_MSG_HW_BIT,
4532 	NETIF_MSG_WOL_BIT,
4533 
4534 	/* When you add a new bit above, update netif_msg_class_names array
4535 	 * in net/ethtool/common.c
4536 	 */
4537 	NETIF_MSG_CLASS_COUNT,
4538 };
4539 /* Both ethtool_ops interface and internal driver implementation use u32 */
4540 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4541 
4542 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4543 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4544 
4545 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4546 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4547 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4548 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4549 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4550 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4551 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4552 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4553 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4554 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4555 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4556 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4557 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4558 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4559 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4560 
4561 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4562 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4563 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4564 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4565 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4566 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4567 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4568 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4569 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4570 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4571 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4572 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4573 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4574 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4575 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4576 
4577 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4578 {
4579 	/* use default */
4580 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4581 		return default_msg_enable_bits;
4582 	if (debug_value == 0)	/* no output */
4583 		return 0;
4584 	/* set low N bits */
4585 	return (1U << debug_value) - 1;
4586 }
4587 
4588 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4589 {
4590 	spin_lock(&txq->_xmit_lock);
4591 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4592 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4593 }
4594 
4595 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4596 {
4597 	__acquire(&txq->_xmit_lock);
4598 	return true;
4599 }
4600 
4601 static inline void __netif_tx_release(struct netdev_queue *txq)
4602 {
4603 	__release(&txq->_xmit_lock);
4604 }
4605 
4606 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4607 {
4608 	spin_lock_bh(&txq->_xmit_lock);
4609 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4610 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4611 }
4612 
4613 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4614 {
4615 	bool ok = spin_trylock(&txq->_xmit_lock);
4616 
4617 	if (likely(ok)) {
4618 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4619 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4620 	}
4621 	return ok;
4622 }
4623 
4624 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4625 {
4626 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4627 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4628 	spin_unlock(&txq->_xmit_lock);
4629 }
4630 
4631 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4632 {
4633 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4634 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4635 	spin_unlock_bh(&txq->_xmit_lock);
4636 }
4637 
4638 /*
4639  * txq->trans_start can be read locklessly from dev_watchdog()
4640  */
4641 static inline void txq_trans_update(struct netdev_queue *txq)
4642 {
4643 	if (txq->xmit_lock_owner != -1)
4644 		WRITE_ONCE(txq->trans_start, jiffies);
4645 }
4646 
4647 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4648 {
4649 	unsigned long now = jiffies;
4650 
4651 	if (READ_ONCE(txq->trans_start) != now)
4652 		WRITE_ONCE(txq->trans_start, now);
4653 }
4654 
4655 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4656 static inline void netif_trans_update(struct net_device *dev)
4657 {
4658 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4659 
4660 	txq_trans_cond_update(txq);
4661 }
4662 
4663 /**
4664  *	netif_tx_lock - grab network device transmit lock
4665  *	@dev: network device
4666  *
4667  * Get network device transmit lock
4668  */
4669 void netif_tx_lock(struct net_device *dev);
4670 
4671 static inline void netif_tx_lock_bh(struct net_device *dev)
4672 {
4673 	local_bh_disable();
4674 	netif_tx_lock(dev);
4675 }
4676 
4677 void netif_tx_unlock(struct net_device *dev);
4678 
4679 static inline void netif_tx_unlock_bh(struct net_device *dev)
4680 {
4681 	netif_tx_unlock(dev);
4682 	local_bh_enable();
4683 }
4684 
4685 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4686 	if (!(dev)->lltx) {				\
4687 		__netif_tx_lock(txq, cpu);		\
4688 	} else {					\
4689 		__netif_tx_acquire(txq);		\
4690 	}						\
4691 }
4692 
4693 #define HARD_TX_TRYLOCK(dev, txq)			\
4694 	(!(dev)->lltx ?					\
4695 		__netif_tx_trylock(txq) :		\
4696 		__netif_tx_acquire(txq))
4697 
4698 #define HARD_TX_UNLOCK(dev, txq) {			\
4699 	if (!(dev)->lltx) {				\
4700 		__netif_tx_unlock(txq);			\
4701 	} else {					\
4702 		__netif_tx_release(txq);		\
4703 	}						\
4704 }
4705 
4706 static inline void netif_tx_disable(struct net_device *dev)
4707 {
4708 	unsigned int i;
4709 	int cpu;
4710 
4711 	local_bh_disable();
4712 	cpu = smp_processor_id();
4713 	spin_lock(&dev->tx_global_lock);
4714 	for (i = 0; i < dev->num_tx_queues; i++) {
4715 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4716 
4717 		__netif_tx_lock(txq, cpu);
4718 		netif_tx_stop_queue(txq);
4719 		__netif_tx_unlock(txq);
4720 	}
4721 	spin_unlock(&dev->tx_global_lock);
4722 	local_bh_enable();
4723 }
4724 
4725 static inline void netif_addr_lock(struct net_device *dev)
4726 {
4727 	unsigned char nest_level = 0;
4728 
4729 #ifdef CONFIG_LOCKDEP
4730 	nest_level = dev->nested_level;
4731 #endif
4732 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4733 }
4734 
4735 static inline void netif_addr_lock_bh(struct net_device *dev)
4736 {
4737 	unsigned char nest_level = 0;
4738 
4739 #ifdef CONFIG_LOCKDEP
4740 	nest_level = dev->nested_level;
4741 #endif
4742 	local_bh_disable();
4743 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4744 }
4745 
4746 static inline void netif_addr_unlock(struct net_device *dev)
4747 {
4748 	spin_unlock(&dev->addr_list_lock);
4749 }
4750 
4751 static inline void netif_addr_unlock_bh(struct net_device *dev)
4752 {
4753 	spin_unlock_bh(&dev->addr_list_lock);
4754 }
4755 
4756 /*
4757  * dev_addrs walker. Should be used only for read access. Call with
4758  * rcu_read_lock held.
4759  */
4760 #define for_each_dev_addr(dev, ha) \
4761 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4762 
4763 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4764 
4765 void ether_setup(struct net_device *dev);
4766 
4767 /* Allocate dummy net_device */
4768 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4769 
4770 /* Support for loadable net-drivers */
4771 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4772 				    unsigned char name_assign_type,
4773 				    void (*setup)(struct net_device *),
4774 				    unsigned int txqs, unsigned int rxqs);
4775 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4776 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4777 
4778 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4779 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4780 			 count)
4781 
4782 int register_netdev(struct net_device *dev);
4783 void unregister_netdev(struct net_device *dev);
4784 
4785 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4786 
4787 /* General hardware address lists handling functions */
4788 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4789 		   struct netdev_hw_addr_list *from_list, int addr_len);
4790 int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list,
4791 			    struct netdev_hw_addr_list *from_list,
4792 			    int addr_len);
4793 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4794 		      struct netdev_hw_addr_list *from_list, int addr_len);
4795 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4796 		       struct net_device *dev,
4797 		       int (*sync)(struct net_device *, const unsigned char *),
4798 		       int (*unsync)(struct net_device *,
4799 				     const unsigned char *));
4800 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4801 			   struct net_device *dev,
4802 			   int (*sync)(struct net_device *,
4803 				       const unsigned char *, int),
4804 			   int (*unsync)(struct net_device *,
4805 					 const unsigned char *, int));
4806 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4807 			      struct net_device *dev,
4808 			      int (*unsync)(struct net_device *,
4809 					    const unsigned char *, int));
4810 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4811 			  struct net_device *dev,
4812 			  int (*unsync)(struct net_device *,
4813 					const unsigned char *));
4814 void __hw_addr_init(struct netdev_hw_addr_list *list);
4815 
4816 /* Functions used for device addresses handling */
4817 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4818 		  const void *addr, size_t len);
4819 
4820 static inline void
4821 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4822 {
4823 	dev_addr_mod(dev, 0, addr, len);
4824 }
4825 
4826 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4827 {
4828 	__dev_addr_set(dev, addr, dev->addr_len);
4829 }
4830 
4831 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4832 		 unsigned char addr_type);
4833 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4834 		 unsigned char addr_type);
4835 
4836 /* Functions used for unicast addresses handling */
4837 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4838 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4839 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4840 int dev_uc_sync(struct net_device *to, struct net_device *from);
4841 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4842 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4843 void dev_uc_flush(struct net_device *dev);
4844 void dev_uc_init(struct net_device *dev);
4845 
4846 /**
4847  *  __dev_uc_sync - Synchronize device's unicast list
4848  *  @dev:  device to sync
4849  *  @sync: function to call if address should be added
4850  *  @unsync: function to call if address should be removed
4851  *
4852  *  Add newly added addresses to the interface, and release
4853  *  addresses that have been deleted.
4854  */
4855 static inline int __dev_uc_sync(struct net_device *dev,
4856 				int (*sync)(struct net_device *,
4857 					    const unsigned char *),
4858 				int (*unsync)(struct net_device *,
4859 					      const unsigned char *))
4860 {
4861 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4862 }
4863 
4864 /**
4865  *  __dev_uc_unsync - Remove synchronized addresses from device
4866  *  @dev:  device to sync
4867  *  @unsync: function to call if address should be removed
4868  *
4869  *  Remove all addresses that were added to the device by dev_uc_sync().
4870  */
4871 static inline void __dev_uc_unsync(struct net_device *dev,
4872 				   int (*unsync)(struct net_device *,
4873 						 const unsigned char *))
4874 {
4875 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4876 }
4877 
4878 /* Functions used for multicast addresses handling */
4879 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4880 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4881 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4882 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4883 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4884 int dev_mc_sync(struct net_device *to, struct net_device *from);
4885 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4886 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4887 void dev_mc_flush(struct net_device *dev);
4888 void dev_mc_init(struct net_device *dev);
4889 
4890 /**
4891  *  __dev_mc_sync - Synchronize device's multicast list
4892  *  @dev:  device to sync
4893  *  @sync: function to call if address should be added
4894  *  @unsync: function to call if address should be removed
4895  *
4896  *  Add newly added addresses to the interface, and release
4897  *  addresses that have been deleted.
4898  */
4899 static inline int __dev_mc_sync(struct net_device *dev,
4900 				int (*sync)(struct net_device *,
4901 					    const unsigned char *),
4902 				int (*unsync)(struct net_device *,
4903 					      const unsigned char *))
4904 {
4905 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4906 }
4907 
4908 /**
4909  *  __dev_mc_unsync - Remove synchronized addresses from device
4910  *  @dev:  device to sync
4911  *  @unsync: function to call if address should be removed
4912  *
4913  *  Remove all addresses that were added to the device by dev_mc_sync().
4914  */
4915 static inline void __dev_mc_unsync(struct net_device *dev,
4916 				   int (*unsync)(struct net_device *,
4917 						 const unsigned char *))
4918 {
4919 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4920 }
4921 
4922 /* Functions used for secondary unicast and multicast support */
4923 void dev_set_rx_mode(struct net_device *dev);
4924 int dev_set_promiscuity(struct net_device *dev, int inc);
4925 int dev_set_allmulti(struct net_device *dev, int inc);
4926 void netdev_state_change(struct net_device *dev);
4927 void __netdev_notify_peers(struct net_device *dev);
4928 void netdev_notify_peers(struct net_device *dev);
4929 void netdev_features_change(struct net_device *dev);
4930 /* Load a device via the kmod */
4931 void dev_load(struct net *net, const char *name);
4932 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4933 					struct rtnl_link_stats64 *storage);
4934 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4935 			     const struct net_device_stats *netdev_stats);
4936 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4937 			   const struct pcpu_sw_netstats __percpu *netstats);
4938 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4939 
4940 enum {
4941 	NESTED_SYNC_IMM_BIT,
4942 	NESTED_SYNC_TODO_BIT,
4943 };
4944 
4945 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4946 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4947 
4948 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4949 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4950 
4951 struct netdev_nested_priv {
4952 	unsigned char flags;
4953 	void *data;
4954 };
4955 
4956 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4957 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4958 						     struct list_head **iter);
4959 
4960 /* iterate through upper list, must be called under RCU read lock */
4961 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4962 	for (iter = &(dev)->adj_list.upper, \
4963 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4964 	     updev; \
4965 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4966 
4967 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4968 				  int (*fn)(struct net_device *upper_dev,
4969 					    struct netdev_nested_priv *priv),
4970 				  struct netdev_nested_priv *priv);
4971 
4972 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4973 				  struct net_device *upper_dev);
4974 
4975 bool netdev_has_any_upper_dev(struct net_device *dev);
4976 
4977 void *netdev_lower_get_next_private(struct net_device *dev,
4978 				    struct list_head **iter);
4979 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4980 					struct list_head **iter);
4981 
4982 #define netdev_for_each_lower_private(dev, priv, iter) \
4983 	for (iter = (dev)->adj_list.lower.next, \
4984 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4985 	     priv; \
4986 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4987 
4988 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4989 	for (iter = &(dev)->adj_list.lower, \
4990 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4991 	     priv; \
4992 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4993 
4994 void *netdev_lower_get_next(struct net_device *dev,
4995 				struct list_head **iter);
4996 
4997 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4998 	for (iter = (dev)->adj_list.lower.next, \
4999 	     ldev = netdev_lower_get_next(dev, &(iter)); \
5000 	     ldev; \
5001 	     ldev = netdev_lower_get_next(dev, &(iter)))
5002 
5003 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5004 					     struct list_head **iter);
5005 int netdev_walk_all_lower_dev(struct net_device *dev,
5006 			      int (*fn)(struct net_device *lower_dev,
5007 					struct netdev_nested_priv *priv),
5008 			      struct netdev_nested_priv *priv);
5009 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5010 				  int (*fn)(struct net_device *lower_dev,
5011 					    struct netdev_nested_priv *priv),
5012 				  struct netdev_nested_priv *priv);
5013 
5014 void *netdev_adjacent_get_private(struct list_head *adj_list);
5015 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
5016 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
5017 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
5018 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
5019 			  struct netlink_ext_ack *extack);
5020 int netdev_master_upper_dev_link(struct net_device *dev,
5021 				 struct net_device *upper_dev,
5022 				 void *upper_priv, void *upper_info,
5023 				 struct netlink_ext_ack *extack);
5024 void netdev_upper_dev_unlink(struct net_device *dev,
5025 			     struct net_device *upper_dev);
5026 int netdev_adjacent_change_prepare(struct net_device *old_dev,
5027 				   struct net_device *new_dev,
5028 				   struct net_device *dev,
5029 				   struct netlink_ext_ack *extack);
5030 void netdev_adjacent_change_commit(struct net_device *old_dev,
5031 				   struct net_device *new_dev,
5032 				   struct net_device *dev);
5033 void netdev_adjacent_change_abort(struct net_device *old_dev,
5034 				  struct net_device *new_dev,
5035 				  struct net_device *dev);
5036 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
5037 void *netdev_lower_dev_get_private(struct net_device *dev,
5038 				   struct net_device *lower_dev);
5039 void netdev_lower_state_changed(struct net_device *lower_dev,
5040 				void *lower_state_info);
5041 
5042 /* RSS keys are 40 or 52 bytes long */
5043 #define NETDEV_RSS_KEY_LEN 52
5044 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
5045 void netdev_rss_key_fill(void *buffer, size_t len);
5046 
5047 int skb_checksum_help(struct sk_buff *skb);
5048 int skb_crc32c_csum_help(struct sk_buff *skb);
5049 int skb_csum_hwoffload_help(struct sk_buff *skb,
5050 			    const netdev_features_t features);
5051 
5052 struct netdev_bonding_info {
5053 	ifslave	slave;
5054 	ifbond	master;
5055 };
5056 
5057 struct netdev_notifier_bonding_info {
5058 	struct netdev_notifier_info info; /* must be first */
5059 	struct netdev_bonding_info  bonding_info;
5060 };
5061 
5062 void netdev_bonding_info_change(struct net_device *dev,
5063 				struct netdev_bonding_info *bonding_info);
5064 
5065 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
5066 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
5067 #else
5068 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
5069 				  const void *data)
5070 {
5071 }
5072 #endif
5073 
5074 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
5075 
5076 static inline bool can_checksum_protocol(netdev_features_t features,
5077 					 __be16 protocol)
5078 {
5079 	if (protocol == htons(ETH_P_FCOE))
5080 		return !!(features & NETIF_F_FCOE_CRC);
5081 
5082 	/* Assume this is an IP checksum (not SCTP CRC) */
5083 
5084 	if (features & NETIF_F_HW_CSUM) {
5085 		/* Can checksum everything */
5086 		return true;
5087 	}
5088 
5089 	switch (protocol) {
5090 	case htons(ETH_P_IP):
5091 		return !!(features & NETIF_F_IP_CSUM);
5092 	case htons(ETH_P_IPV6):
5093 		return !!(features & NETIF_F_IPV6_CSUM);
5094 	default:
5095 		return false;
5096 	}
5097 }
5098 
5099 #ifdef CONFIG_BUG
5100 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
5101 #else
5102 static inline void netdev_rx_csum_fault(struct net_device *dev,
5103 					struct sk_buff *skb)
5104 {
5105 }
5106 #endif
5107 /* rx skb timestamps */
5108 void net_enable_timestamp(void);
5109 void net_disable_timestamp(void);
5110 
5111 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
5112 					const struct skb_shared_hwtstamps *hwtstamps,
5113 					bool cycles)
5114 {
5115 	const struct net_device_ops *ops = dev->netdev_ops;
5116 
5117 	if (ops->ndo_get_tstamp)
5118 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
5119 
5120 	return hwtstamps->hwtstamp;
5121 }
5122 
5123 #ifndef CONFIG_PREEMPT_RT
5124 static inline void netdev_xmit_set_more(bool more)
5125 {
5126 	__this_cpu_write(softnet_data.xmit.more, more);
5127 }
5128 
5129 static inline bool netdev_xmit_more(void)
5130 {
5131 	return __this_cpu_read(softnet_data.xmit.more);
5132 }
5133 #else
5134 static inline void netdev_xmit_set_more(bool more)
5135 {
5136 	current->net_xmit.more = more;
5137 }
5138 
5139 static inline bool netdev_xmit_more(void)
5140 {
5141 	return current->net_xmit.more;
5142 }
5143 #endif
5144 
5145 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5146 					      struct sk_buff *skb, struct net_device *dev,
5147 					      bool more)
5148 {
5149 	netdev_xmit_set_more(more);
5150 	return ops->ndo_start_xmit(skb, dev);
5151 }
5152 
5153 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5154 					    struct netdev_queue *txq, bool more)
5155 {
5156 	const struct net_device_ops *ops = dev->netdev_ops;
5157 	netdev_tx_t rc;
5158 
5159 	rc = __netdev_start_xmit(ops, skb, dev, more);
5160 	if (rc == NETDEV_TX_OK)
5161 		txq_trans_update(txq);
5162 
5163 	return rc;
5164 }
5165 
5166 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5167 				const void *ns);
5168 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5169 				 const void *ns);
5170 
5171 extern const struct kobj_ns_type_operations net_ns_type_operations;
5172 
5173 const char *netdev_drivername(const struct net_device *dev);
5174 
5175 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5176 							  netdev_features_t f2)
5177 {
5178 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5179 		if (f1 & NETIF_F_HW_CSUM)
5180 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5181 		else
5182 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5183 	}
5184 
5185 	return f1 & f2;
5186 }
5187 
5188 static inline netdev_features_t netdev_get_wanted_features(
5189 	struct net_device *dev)
5190 {
5191 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5192 }
5193 netdev_features_t netdev_increment_features(netdev_features_t all,
5194 	netdev_features_t one, netdev_features_t mask);
5195 
5196 /* Allow TSO being used on stacked device :
5197  * Performing the GSO segmentation before last device
5198  * is a performance improvement.
5199  */
5200 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5201 							netdev_features_t mask)
5202 {
5203 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5204 }
5205 
5206 int __netdev_update_features(struct net_device *dev);
5207 void netdev_update_features(struct net_device *dev);
5208 void netdev_change_features(struct net_device *dev);
5209 
5210 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5211 					struct net_device *dev);
5212 
5213 netdev_features_t passthru_features_check(struct sk_buff *skb,
5214 					  struct net_device *dev,
5215 					  netdev_features_t features);
5216 netdev_features_t netif_skb_features(struct sk_buff *skb);
5217 void skb_warn_bad_offload(const struct sk_buff *skb);
5218 
5219 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5220 {
5221 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5222 
5223 	/* check flags correspondence */
5224 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5225 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5226 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5227 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5228 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5229 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5230 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5231 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5232 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5233 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5234 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5235 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5236 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5237 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5238 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5239 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5240 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5241 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5242 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5243 
5244 	return (features & feature) == feature;
5245 }
5246 
5247 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5248 {
5249 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5250 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5251 }
5252 
5253 static inline bool netif_needs_gso(struct sk_buff *skb,
5254 				   netdev_features_t features)
5255 {
5256 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5257 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5258 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5259 }
5260 
5261 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5262 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5263 void netif_inherit_tso_max(struct net_device *to,
5264 			   const struct net_device *from);
5265 
5266 static inline unsigned int
5267 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5268 {
5269 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5270 	return skb->protocol == htons(ETH_P_IPV6) ?
5271 	       READ_ONCE(dev->gro_max_size) :
5272 	       READ_ONCE(dev->gro_ipv4_max_size);
5273 }
5274 
5275 static inline unsigned int
5276 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5277 {
5278 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5279 	return skb->protocol == htons(ETH_P_IPV6) ?
5280 	       READ_ONCE(dev->gso_max_size) :
5281 	       READ_ONCE(dev->gso_ipv4_max_size);
5282 }
5283 
5284 static inline bool netif_is_macsec(const struct net_device *dev)
5285 {
5286 	return dev->priv_flags & IFF_MACSEC;
5287 }
5288 
5289 static inline bool netif_is_macvlan(const struct net_device *dev)
5290 {
5291 	return dev->priv_flags & IFF_MACVLAN;
5292 }
5293 
5294 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5295 {
5296 	return dev->priv_flags & IFF_MACVLAN_PORT;
5297 }
5298 
5299 static inline bool netif_is_bond_master(const struct net_device *dev)
5300 {
5301 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5302 }
5303 
5304 static inline bool netif_is_bond_slave(const struct net_device *dev)
5305 {
5306 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5307 }
5308 
5309 static inline bool netif_supports_nofcs(struct net_device *dev)
5310 {
5311 	return dev->priv_flags & IFF_SUPP_NOFCS;
5312 }
5313 
5314 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5315 {
5316 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5317 }
5318 
5319 static inline bool netif_is_l3_master(const struct net_device *dev)
5320 {
5321 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5322 }
5323 
5324 static inline bool netif_is_l3_slave(const struct net_device *dev)
5325 {
5326 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5327 }
5328 
5329 static inline int dev_sdif(const struct net_device *dev)
5330 {
5331 #ifdef CONFIG_NET_L3_MASTER_DEV
5332 	if (netif_is_l3_slave(dev))
5333 		return dev->ifindex;
5334 #endif
5335 	return 0;
5336 }
5337 
5338 static inline bool netif_is_bridge_master(const struct net_device *dev)
5339 {
5340 	return dev->priv_flags & IFF_EBRIDGE;
5341 }
5342 
5343 static inline bool netif_is_bridge_port(const struct net_device *dev)
5344 {
5345 	return dev->priv_flags & IFF_BRIDGE_PORT;
5346 }
5347 
5348 static inline bool netif_is_ovs_master(const struct net_device *dev)
5349 {
5350 	return dev->priv_flags & IFF_OPENVSWITCH;
5351 }
5352 
5353 static inline bool netif_is_ovs_port(const struct net_device *dev)
5354 {
5355 	return dev->priv_flags & IFF_OVS_DATAPATH;
5356 }
5357 
5358 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5359 {
5360 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5361 }
5362 
5363 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5364 {
5365 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5366 }
5367 
5368 static inline bool netif_is_team_master(const struct net_device *dev)
5369 {
5370 	return dev->priv_flags & IFF_TEAM;
5371 }
5372 
5373 static inline bool netif_is_team_port(const struct net_device *dev)
5374 {
5375 	return dev->priv_flags & IFF_TEAM_PORT;
5376 }
5377 
5378 static inline bool netif_is_lag_master(const struct net_device *dev)
5379 {
5380 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5381 }
5382 
5383 static inline bool netif_is_lag_port(const struct net_device *dev)
5384 {
5385 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5386 }
5387 
5388 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5389 {
5390 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5391 }
5392 
5393 static inline bool netif_is_failover(const struct net_device *dev)
5394 {
5395 	return dev->priv_flags & IFF_FAILOVER;
5396 }
5397 
5398 static inline bool netif_is_failover_slave(const struct net_device *dev)
5399 {
5400 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5401 }
5402 
5403 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5404 static inline void netif_keep_dst(struct net_device *dev)
5405 {
5406 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5407 }
5408 
5409 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5410 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5411 {
5412 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5413 	return netif_is_macsec(dev);
5414 }
5415 
5416 extern struct pernet_operations __net_initdata loopback_net_ops;
5417 
5418 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5419 
5420 /* netdev_printk helpers, similar to dev_printk */
5421 
5422 static inline const char *netdev_name(const struct net_device *dev)
5423 {
5424 	if (!dev->name[0] || strchr(dev->name, '%'))
5425 		return "(unnamed net_device)";
5426 	return dev->name;
5427 }
5428 
5429 static inline const char *netdev_reg_state(const struct net_device *dev)
5430 {
5431 	u8 reg_state = READ_ONCE(dev->reg_state);
5432 
5433 	switch (reg_state) {
5434 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5435 	case NETREG_REGISTERED: return "";
5436 	case NETREG_UNREGISTERING: return " (unregistering)";
5437 	case NETREG_UNREGISTERED: return " (unregistered)";
5438 	case NETREG_RELEASED: return " (released)";
5439 	case NETREG_DUMMY: return " (dummy)";
5440 	}
5441 
5442 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5443 	return " (unknown)";
5444 }
5445 
5446 #define MODULE_ALIAS_NETDEV(device) \
5447 	MODULE_ALIAS("netdev-" device)
5448 
5449 /*
5450  * netdev_WARN() acts like dev_printk(), but with the key difference
5451  * of using a WARN/WARN_ON to get the message out, including the
5452  * file/line information and a backtrace.
5453  */
5454 #define netdev_WARN(dev, format, args...)			\
5455 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5456 	     netdev_reg_state(dev), ##args)
5457 
5458 #define netdev_WARN_ONCE(dev, format, args...)				\
5459 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5460 		  netdev_reg_state(dev), ##args)
5461 
5462 /*
5463  *	The list of packet types we will receive (as opposed to discard)
5464  *	and the routines to invoke.
5465  *
5466  *	Why 16. Because with 16 the only overlap we get on a hash of the
5467  *	low nibble of the protocol value is RARP/SNAP/X.25.
5468  *
5469  *		0800	IP
5470  *		0001	802.3
5471  *		0002	AX.25
5472  *		0004	802.2
5473  *		8035	RARP
5474  *		0005	SNAP
5475  *		0805	X.25
5476  *		0806	ARP
5477  *		8137	IPX
5478  *		0009	Localtalk
5479  *		86DD	IPv6
5480  */
5481 #define PTYPE_HASH_SIZE	(16)
5482 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5483 
5484 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5485 
5486 extern struct net_device *blackhole_netdev;
5487 
5488 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5489 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5490 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5491 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5492 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5493 
5494 #endif	/* _LINUX_NETDEVICE_H */
5495