1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <linux/netdev_features.h> 44 #include <linux/neighbour.h> 45 #include <linux/netdevice_xmit.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm_kern; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 struct ethtool_netdev_state; 83 struct phy_link_topology; 84 85 typedef u32 xdp_features_t; 86 87 void synchronize_net(void); 88 void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92 /* Backlog congestion levels */ 93 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94 #define NET_RX_DROP 1 /* packet dropped */ 95 96 #define MAX_NEST_DEV 8 97 98 /* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115 /* qdisc ->enqueue() return codes. */ 116 #define NET_XMIT_SUCCESS 0x00 117 #define NET_XMIT_DROP 0x01 /* skb dropped */ 118 #define NET_XMIT_CN 0x02 /* congestion notification */ 119 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127 /* Driver transmit return codes */ 128 #define NETDEV_TX_MASK 0xf0 129 130 enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134 }; 135 typedef enum netdev_tx netdev_tx_t; 136 137 /* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141 static inline bool dev_xmit_complete(int rc) 142 { 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153 } 154 155 /* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160 #if defined(CONFIG_HYPERV_NET) 161 # define LL_MAX_HEADER 128 162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163 # if defined(CONFIG_MAC80211_MESH) 164 # define LL_MAX_HEADER 128 165 # else 166 # define LL_MAX_HEADER 96 167 # endif 168 #else 169 # define LL_MAX_HEADER 32 170 #endif 171 172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174 #define MAX_HEADER LL_MAX_HEADER 175 #else 176 #define MAX_HEADER (LL_MAX_HEADER + 48) 177 #endif 178 179 /* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184 #define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190 struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214 }; 215 #undef NET_DEV_STAT 216 217 /* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220 struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225 } __aligned(4 * sizeof(unsigned long)); 226 227 #include <linux/cache.h> 228 #include <linux/skbuff.h> 229 230 struct neighbour; 231 struct neigh_parms; 232 struct sk_buff; 233 234 struct netdev_hw_addr { 235 struct list_head list; 236 struct rb_node node; 237 unsigned char addr[MAX_ADDR_LEN]; 238 unsigned char type; 239 #define NETDEV_HW_ADDR_T_LAN 1 240 #define NETDEV_HW_ADDR_T_SAN 2 241 #define NETDEV_HW_ADDR_T_UNICAST 3 242 #define NETDEV_HW_ADDR_T_MULTICAST 4 243 bool global_use; 244 int sync_cnt; 245 int refcount; 246 int synced; 247 struct rcu_head rcu_head; 248 }; 249 250 struct netdev_hw_addr_list { 251 struct list_head list; 252 int count; 253 254 /* Auxiliary tree for faster lookup on addition and deletion */ 255 struct rb_root tree; 256 }; 257 258 #define netdev_hw_addr_list_count(l) ((l)->count) 259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 260 #define netdev_hw_addr_list_for_each(ha, l) \ 261 list_for_each_entry(ha, &(l)->list, list) 262 263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 265 #define netdev_for_each_uc_addr(ha, dev) \ 266 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 268 netdev_for_each_uc_addr((_ha), (_dev)) \ 269 if ((_ha)->sync_cnt) 270 271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 273 #define netdev_for_each_mc_addr(ha, dev) \ 274 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 276 netdev_for_each_mc_addr((_ha), (_dev)) \ 277 if ((_ha)->sync_cnt) 278 279 struct hh_cache { 280 unsigned int hh_len; 281 seqlock_t hh_lock; 282 283 /* cached hardware header; allow for machine alignment needs. */ 284 #define HH_DATA_MOD 16 285 #define HH_DATA_OFF(__len) \ 286 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 287 #define HH_DATA_ALIGN(__len) \ 288 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 289 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 290 }; 291 292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 293 * Alternative is: 294 * dev->hard_header_len ? (dev->hard_header_len + 295 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 296 * 297 * We could use other alignment values, but we must maintain the 298 * relationship HH alignment <= LL alignment. 299 */ 300 #define LL_RESERVED_SPACE(dev) \ 301 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 302 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 307 struct header_ops { 308 int (*create) (struct sk_buff *skb, struct net_device *dev, 309 unsigned short type, const void *daddr, 310 const void *saddr, unsigned int len); 311 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 312 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 313 void (*cache_update)(struct hh_cache *hh, 314 const struct net_device *dev, 315 const unsigned char *haddr); 316 bool (*validate)(const char *ll_header, unsigned int len); 317 __be16 (*parse_protocol)(const struct sk_buff *skb); 318 }; 319 320 /* These flag bits are private to the generic network queueing 321 * layer; they may not be explicitly referenced by any other 322 * code. 323 */ 324 325 enum netdev_state_t { 326 __LINK_STATE_START, 327 __LINK_STATE_PRESENT, 328 __LINK_STATE_NOCARRIER, 329 __LINK_STATE_LINKWATCH_PENDING, 330 __LINK_STATE_DORMANT, 331 __LINK_STATE_TESTING, 332 }; 333 334 struct gro_list { 335 struct list_head list; 336 int count; 337 }; 338 339 /* 340 * size of gro hash buckets, must less than bit number of 341 * napi_struct::gro_bitmask 342 */ 343 #define GRO_HASH_BUCKETS 8 344 345 /* 346 * Structure for NAPI scheduling similar to tasklet but with weighting 347 */ 348 struct napi_struct { 349 /* The poll_list must only be managed by the entity which 350 * changes the state of the NAPI_STATE_SCHED bit. This means 351 * whoever atomically sets that bit can add this napi_struct 352 * to the per-CPU poll_list, and whoever clears that bit 353 * can remove from the list right before clearing the bit. 354 */ 355 struct list_head poll_list; 356 357 unsigned long state; 358 int weight; 359 int defer_hard_irqs_count; 360 unsigned long gro_bitmask; 361 int (*poll)(struct napi_struct *, int); 362 #ifdef CONFIG_NETPOLL 363 /* CPU actively polling if netpoll is configured */ 364 int poll_owner; 365 #endif 366 /* CPU on which NAPI has been scheduled for processing */ 367 int list_owner; 368 struct net_device *dev; 369 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 370 struct sk_buff *skb; 371 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 372 int rx_count; /* length of rx_list */ 373 unsigned int napi_id; 374 struct hrtimer timer; 375 struct task_struct *thread; 376 /* control-path-only fields follow */ 377 struct list_head dev_list; 378 struct hlist_node napi_hash_node; 379 int irq; 380 }; 381 382 enum { 383 NAPI_STATE_SCHED, /* Poll is scheduled */ 384 NAPI_STATE_MISSED, /* reschedule a napi */ 385 NAPI_STATE_DISABLE, /* Disable pending */ 386 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 387 NAPI_STATE_LISTED, /* NAPI added to system lists */ 388 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 389 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 390 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 391 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 392 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 393 }; 394 395 enum { 396 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 397 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 398 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 399 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 400 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 401 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 402 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 403 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 404 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 405 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 406 }; 407 408 enum gro_result { 409 GRO_MERGED, 410 GRO_MERGED_FREE, 411 GRO_HELD, 412 GRO_NORMAL, 413 GRO_CONSUMED, 414 }; 415 typedef enum gro_result gro_result_t; 416 417 /* 418 * enum rx_handler_result - Possible return values for rx_handlers. 419 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 420 * further. 421 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 422 * case skb->dev was changed by rx_handler. 423 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 424 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 425 * 426 * rx_handlers are functions called from inside __netif_receive_skb(), to do 427 * special processing of the skb, prior to delivery to protocol handlers. 428 * 429 * Currently, a net_device can only have a single rx_handler registered. Trying 430 * to register a second rx_handler will return -EBUSY. 431 * 432 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 433 * To unregister a rx_handler on a net_device, use 434 * netdev_rx_handler_unregister(). 435 * 436 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 437 * do with the skb. 438 * 439 * If the rx_handler consumed the skb in some way, it should return 440 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 441 * the skb to be delivered in some other way. 442 * 443 * If the rx_handler changed skb->dev, to divert the skb to another 444 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 445 * new device will be called if it exists. 446 * 447 * If the rx_handler decides the skb should be ignored, it should return 448 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 449 * are registered on exact device (ptype->dev == skb->dev). 450 * 451 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 452 * delivered, it should return RX_HANDLER_PASS. 453 * 454 * A device without a registered rx_handler will behave as if rx_handler 455 * returned RX_HANDLER_PASS. 456 */ 457 458 enum rx_handler_result { 459 RX_HANDLER_CONSUMED, 460 RX_HANDLER_ANOTHER, 461 RX_HANDLER_EXACT, 462 RX_HANDLER_PASS, 463 }; 464 typedef enum rx_handler_result rx_handler_result_t; 465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 466 467 void __napi_schedule(struct napi_struct *n); 468 void __napi_schedule_irqoff(struct napi_struct *n); 469 470 static inline bool napi_disable_pending(struct napi_struct *n) 471 { 472 return test_bit(NAPI_STATE_DISABLE, &n->state); 473 } 474 475 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 476 { 477 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 478 } 479 480 /** 481 * napi_is_scheduled - test if NAPI is scheduled 482 * @n: NAPI context 483 * 484 * This check is "best-effort". With no locking implemented, 485 * a NAPI can be scheduled or terminate right after this check 486 * and produce not precise results. 487 * 488 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 489 * should not be used normally and napi_schedule should be 490 * used instead. 491 * 492 * Use only if the driver really needs to check if a NAPI 493 * is scheduled for example in the context of delayed timer 494 * that can be skipped if a NAPI is already scheduled. 495 * 496 * Return True if NAPI is scheduled, False otherwise. 497 */ 498 static inline bool napi_is_scheduled(struct napi_struct *n) 499 { 500 return test_bit(NAPI_STATE_SCHED, &n->state); 501 } 502 503 bool napi_schedule_prep(struct napi_struct *n); 504 505 /** 506 * napi_schedule - schedule NAPI poll 507 * @n: NAPI context 508 * 509 * Schedule NAPI poll routine to be called if it is not already 510 * running. 511 * Return true if we schedule a NAPI or false if not. 512 * Refer to napi_schedule_prep() for additional reason on why 513 * a NAPI might not be scheduled. 514 */ 515 static inline bool napi_schedule(struct napi_struct *n) 516 { 517 if (napi_schedule_prep(n)) { 518 __napi_schedule(n); 519 return true; 520 } 521 522 return false; 523 } 524 525 /** 526 * napi_schedule_irqoff - schedule NAPI poll 527 * @n: NAPI context 528 * 529 * Variant of napi_schedule(), assuming hard irqs are masked. 530 */ 531 static inline void napi_schedule_irqoff(struct napi_struct *n) 532 { 533 if (napi_schedule_prep(n)) 534 __napi_schedule_irqoff(n); 535 } 536 537 /** 538 * napi_complete_done - NAPI processing complete 539 * @n: NAPI context 540 * @work_done: number of packets processed 541 * 542 * Mark NAPI processing as complete. Should only be called if poll budget 543 * has not been completely consumed. 544 * Prefer over napi_complete(). 545 * Return false if device should avoid rearming interrupts. 546 */ 547 bool napi_complete_done(struct napi_struct *n, int work_done); 548 549 static inline bool napi_complete(struct napi_struct *n) 550 { 551 return napi_complete_done(n, 0); 552 } 553 554 int dev_set_threaded(struct net_device *dev, bool threaded); 555 556 /** 557 * napi_disable - prevent NAPI from scheduling 558 * @n: NAPI context 559 * 560 * Stop NAPI from being scheduled on this context. 561 * Waits till any outstanding processing completes. 562 */ 563 void napi_disable(struct napi_struct *n); 564 565 void napi_enable(struct napi_struct *n); 566 567 /** 568 * napi_synchronize - wait until NAPI is not running 569 * @n: NAPI context 570 * 571 * Wait until NAPI is done being scheduled on this context. 572 * Waits till any outstanding processing completes but 573 * does not disable future activations. 574 */ 575 static inline void napi_synchronize(const struct napi_struct *n) 576 { 577 if (IS_ENABLED(CONFIG_SMP)) 578 while (test_bit(NAPI_STATE_SCHED, &n->state)) 579 msleep(1); 580 else 581 barrier(); 582 } 583 584 /** 585 * napi_if_scheduled_mark_missed - if napi is running, set the 586 * NAPIF_STATE_MISSED 587 * @n: NAPI context 588 * 589 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 590 * NAPI is scheduled. 591 **/ 592 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 593 { 594 unsigned long val, new; 595 596 val = READ_ONCE(n->state); 597 do { 598 if (val & NAPIF_STATE_DISABLE) 599 return true; 600 601 if (!(val & NAPIF_STATE_SCHED)) 602 return false; 603 604 new = val | NAPIF_STATE_MISSED; 605 } while (!try_cmpxchg(&n->state, &val, new)); 606 607 return true; 608 } 609 610 enum netdev_queue_state_t { 611 __QUEUE_STATE_DRV_XOFF, 612 __QUEUE_STATE_STACK_XOFF, 613 __QUEUE_STATE_FROZEN, 614 }; 615 616 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 617 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 618 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 619 620 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 621 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 622 QUEUE_STATE_FROZEN) 623 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 624 QUEUE_STATE_FROZEN) 625 626 /* 627 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 628 * netif_tx_* functions below are used to manipulate this flag. The 629 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 630 * queue independently. The netif_xmit_*stopped functions below are called 631 * to check if the queue has been stopped by the driver or stack (either 632 * of the XOFF bits are set in the state). Drivers should not need to call 633 * netif_xmit*stopped functions, they should only be using netif_tx_*. 634 */ 635 636 struct netdev_queue { 637 /* 638 * read-mostly part 639 */ 640 struct net_device *dev; 641 netdevice_tracker dev_tracker; 642 643 struct Qdisc __rcu *qdisc; 644 struct Qdisc __rcu *qdisc_sleeping; 645 #ifdef CONFIG_SYSFS 646 struct kobject kobj; 647 #endif 648 unsigned long tx_maxrate; 649 /* 650 * Number of TX timeouts for this queue 651 * (/sys/class/net/DEV/Q/trans_timeout) 652 */ 653 atomic_long_t trans_timeout; 654 655 /* Subordinate device that the queue has been assigned to */ 656 struct net_device *sb_dev; 657 #ifdef CONFIG_XDP_SOCKETS 658 struct xsk_buff_pool *pool; 659 #endif 660 661 /* 662 * write-mostly part 663 */ 664 #ifdef CONFIG_BQL 665 struct dql dql; 666 #endif 667 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 668 int xmit_lock_owner; 669 /* 670 * Time (in jiffies) of last Tx 671 */ 672 unsigned long trans_start; 673 674 unsigned long state; 675 676 /* 677 * slow- / control-path part 678 */ 679 /* NAPI instance for the queue 680 * Readers and writers must hold RTNL 681 */ 682 struct napi_struct *napi; 683 684 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 685 int numa_node; 686 #endif 687 } ____cacheline_aligned_in_smp; 688 689 extern int sysctl_fb_tunnels_only_for_init_net; 690 extern int sysctl_devconf_inherit_init_net; 691 692 /* 693 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 694 * == 1 : For initns only 695 * == 2 : For none. 696 */ 697 static inline bool net_has_fallback_tunnels(const struct net *net) 698 { 699 #if IS_ENABLED(CONFIG_SYSCTL) 700 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 701 702 return !fb_tunnels_only_for_init_net || 703 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 704 #else 705 return true; 706 #endif 707 } 708 709 static inline int net_inherit_devconf(void) 710 { 711 #if IS_ENABLED(CONFIG_SYSCTL) 712 return READ_ONCE(sysctl_devconf_inherit_init_net); 713 #else 714 return 0; 715 #endif 716 } 717 718 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 719 { 720 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 721 return q->numa_node; 722 #else 723 return NUMA_NO_NODE; 724 #endif 725 } 726 727 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 728 { 729 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 730 q->numa_node = node; 731 #endif 732 } 733 734 #ifdef CONFIG_RFS_ACCEL 735 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 736 u16 filter_id); 737 #endif 738 739 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 740 enum xps_map_type { 741 XPS_CPUS = 0, 742 XPS_RXQS, 743 XPS_MAPS_MAX, 744 }; 745 746 #ifdef CONFIG_XPS 747 /* 748 * This structure holds an XPS map which can be of variable length. The 749 * map is an array of queues. 750 */ 751 struct xps_map { 752 unsigned int len; 753 unsigned int alloc_len; 754 struct rcu_head rcu; 755 u16 queues[]; 756 }; 757 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 758 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 759 - sizeof(struct xps_map)) / sizeof(u16)) 760 761 /* 762 * This structure holds all XPS maps for device. Maps are indexed by CPU. 763 * 764 * We keep track of the number of cpus/rxqs used when the struct is allocated, 765 * in nr_ids. This will help not accessing out-of-bound memory. 766 * 767 * We keep track of the number of traffic classes used when the struct is 768 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 769 * not crossing its upper bound, as the original dev->num_tc can be updated in 770 * the meantime. 771 */ 772 struct xps_dev_maps { 773 struct rcu_head rcu; 774 unsigned int nr_ids; 775 s16 num_tc; 776 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 777 }; 778 779 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 780 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 781 782 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 783 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 784 785 #endif /* CONFIG_XPS */ 786 787 #define TC_MAX_QUEUE 16 788 #define TC_BITMASK 15 789 /* HW offloaded queuing disciplines txq count and offset maps */ 790 struct netdev_tc_txq { 791 u16 count; 792 u16 offset; 793 }; 794 795 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 796 /* 797 * This structure is to hold information about the device 798 * configured to run FCoE protocol stack. 799 */ 800 struct netdev_fcoe_hbainfo { 801 char manufacturer[64]; 802 char serial_number[64]; 803 char hardware_version[64]; 804 char driver_version[64]; 805 char optionrom_version[64]; 806 char firmware_version[64]; 807 char model[256]; 808 char model_description[256]; 809 }; 810 #endif 811 812 #define MAX_PHYS_ITEM_ID_LEN 32 813 814 /* This structure holds a unique identifier to identify some 815 * physical item (port for example) used by a netdevice. 816 */ 817 struct netdev_phys_item_id { 818 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 819 unsigned char id_len; 820 }; 821 822 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 823 struct netdev_phys_item_id *b) 824 { 825 return a->id_len == b->id_len && 826 memcmp(a->id, b->id, a->id_len) == 0; 827 } 828 829 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 830 struct sk_buff *skb, 831 struct net_device *sb_dev); 832 833 enum net_device_path_type { 834 DEV_PATH_ETHERNET = 0, 835 DEV_PATH_VLAN, 836 DEV_PATH_BRIDGE, 837 DEV_PATH_PPPOE, 838 DEV_PATH_DSA, 839 DEV_PATH_MTK_WDMA, 840 }; 841 842 struct net_device_path { 843 enum net_device_path_type type; 844 const struct net_device *dev; 845 union { 846 struct { 847 u16 id; 848 __be16 proto; 849 u8 h_dest[ETH_ALEN]; 850 } encap; 851 struct { 852 enum { 853 DEV_PATH_BR_VLAN_KEEP, 854 DEV_PATH_BR_VLAN_TAG, 855 DEV_PATH_BR_VLAN_UNTAG, 856 DEV_PATH_BR_VLAN_UNTAG_HW, 857 } vlan_mode; 858 u16 vlan_id; 859 __be16 vlan_proto; 860 } bridge; 861 struct { 862 int port; 863 u16 proto; 864 } dsa; 865 struct { 866 u8 wdma_idx; 867 u8 queue; 868 u16 wcid; 869 u8 bss; 870 u8 amsdu; 871 } mtk_wdma; 872 }; 873 }; 874 875 #define NET_DEVICE_PATH_STACK_MAX 5 876 #define NET_DEVICE_PATH_VLAN_MAX 2 877 878 struct net_device_path_stack { 879 int num_paths; 880 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 881 }; 882 883 struct net_device_path_ctx { 884 const struct net_device *dev; 885 u8 daddr[ETH_ALEN]; 886 887 int num_vlans; 888 struct { 889 u16 id; 890 __be16 proto; 891 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 892 }; 893 894 enum tc_setup_type { 895 TC_QUERY_CAPS, 896 TC_SETUP_QDISC_MQPRIO, 897 TC_SETUP_CLSU32, 898 TC_SETUP_CLSFLOWER, 899 TC_SETUP_CLSMATCHALL, 900 TC_SETUP_CLSBPF, 901 TC_SETUP_BLOCK, 902 TC_SETUP_QDISC_CBS, 903 TC_SETUP_QDISC_RED, 904 TC_SETUP_QDISC_PRIO, 905 TC_SETUP_QDISC_MQ, 906 TC_SETUP_QDISC_ETF, 907 TC_SETUP_ROOT_QDISC, 908 TC_SETUP_QDISC_GRED, 909 TC_SETUP_QDISC_TAPRIO, 910 TC_SETUP_FT, 911 TC_SETUP_QDISC_ETS, 912 TC_SETUP_QDISC_TBF, 913 TC_SETUP_QDISC_FIFO, 914 TC_SETUP_QDISC_HTB, 915 TC_SETUP_ACT, 916 }; 917 918 /* These structures hold the attributes of bpf state that are being passed 919 * to the netdevice through the bpf op. 920 */ 921 enum bpf_netdev_command { 922 /* Set or clear a bpf program used in the earliest stages of packet 923 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 924 * is responsible for calling bpf_prog_put on any old progs that are 925 * stored. In case of error, the callee need not release the new prog 926 * reference, but on success it takes ownership and must bpf_prog_put 927 * when it is no longer used. 928 */ 929 XDP_SETUP_PROG, 930 XDP_SETUP_PROG_HW, 931 /* BPF program for offload callbacks, invoked at program load time. */ 932 BPF_OFFLOAD_MAP_ALLOC, 933 BPF_OFFLOAD_MAP_FREE, 934 XDP_SETUP_XSK_POOL, 935 }; 936 937 struct bpf_prog_offload_ops; 938 struct netlink_ext_ack; 939 struct xdp_umem; 940 struct xdp_dev_bulk_queue; 941 struct bpf_xdp_link; 942 943 enum bpf_xdp_mode { 944 XDP_MODE_SKB = 0, 945 XDP_MODE_DRV = 1, 946 XDP_MODE_HW = 2, 947 __MAX_XDP_MODE 948 }; 949 950 struct bpf_xdp_entity { 951 struct bpf_prog *prog; 952 struct bpf_xdp_link *link; 953 }; 954 955 struct netdev_bpf { 956 enum bpf_netdev_command command; 957 union { 958 /* XDP_SETUP_PROG */ 959 struct { 960 u32 flags; 961 struct bpf_prog *prog; 962 struct netlink_ext_ack *extack; 963 }; 964 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 965 struct { 966 struct bpf_offloaded_map *offmap; 967 }; 968 /* XDP_SETUP_XSK_POOL */ 969 struct { 970 struct xsk_buff_pool *pool; 971 u16 queue_id; 972 } xsk; 973 }; 974 }; 975 976 /* Flags for ndo_xsk_wakeup. */ 977 #define XDP_WAKEUP_RX (1 << 0) 978 #define XDP_WAKEUP_TX (1 << 1) 979 980 #ifdef CONFIG_XFRM_OFFLOAD 981 struct xfrmdev_ops { 982 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 983 void (*xdo_dev_state_delete) (struct xfrm_state *x); 984 void (*xdo_dev_state_free) (struct xfrm_state *x); 985 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 986 struct xfrm_state *x); 987 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 988 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 989 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 990 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 991 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 992 }; 993 #endif 994 995 struct dev_ifalias { 996 struct rcu_head rcuhead; 997 char ifalias[]; 998 }; 999 1000 struct devlink; 1001 struct tlsdev_ops; 1002 1003 struct netdev_net_notifier { 1004 struct list_head list; 1005 struct notifier_block *nb; 1006 }; 1007 1008 /* 1009 * This structure defines the management hooks for network devices. 1010 * The following hooks can be defined; unless noted otherwise, they are 1011 * optional and can be filled with a null pointer. 1012 * 1013 * int (*ndo_init)(struct net_device *dev); 1014 * This function is called once when a network device is registered. 1015 * The network device can use this for any late stage initialization 1016 * or semantic validation. It can fail with an error code which will 1017 * be propagated back to register_netdev. 1018 * 1019 * void (*ndo_uninit)(struct net_device *dev); 1020 * This function is called when device is unregistered or when registration 1021 * fails. It is not called if init fails. 1022 * 1023 * int (*ndo_open)(struct net_device *dev); 1024 * This function is called when a network device transitions to the up 1025 * state. 1026 * 1027 * int (*ndo_stop)(struct net_device *dev); 1028 * This function is called when a network device transitions to the down 1029 * state. 1030 * 1031 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1032 * struct net_device *dev); 1033 * Called when a packet needs to be transmitted. 1034 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1035 * the queue before that can happen; it's for obsolete devices and weird 1036 * corner cases, but the stack really does a non-trivial amount 1037 * of useless work if you return NETDEV_TX_BUSY. 1038 * Required; cannot be NULL. 1039 * 1040 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1041 * struct net_device *dev 1042 * netdev_features_t features); 1043 * Called by core transmit path to determine if device is capable of 1044 * performing offload operations on a given packet. This is to give 1045 * the device an opportunity to implement any restrictions that cannot 1046 * be otherwise expressed by feature flags. The check is called with 1047 * the set of features that the stack has calculated and it returns 1048 * those the driver believes to be appropriate. 1049 * 1050 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1051 * struct net_device *sb_dev); 1052 * Called to decide which queue to use when device supports multiple 1053 * transmit queues. 1054 * 1055 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1056 * This function is called to allow device receiver to make 1057 * changes to configuration when multicast or promiscuous is enabled. 1058 * 1059 * void (*ndo_set_rx_mode)(struct net_device *dev); 1060 * This function is called device changes address list filtering. 1061 * If driver handles unicast address filtering, it should set 1062 * IFF_UNICAST_FLT in its priv_flags. 1063 * 1064 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1065 * This function is called when the Media Access Control address 1066 * needs to be changed. If this interface is not defined, the 1067 * MAC address can not be changed. 1068 * 1069 * int (*ndo_validate_addr)(struct net_device *dev); 1070 * Test if Media Access Control address is valid for the device. 1071 * 1072 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1073 * Old-style ioctl entry point. This is used internally by the 1074 * appletalk and ieee802154 subsystems but is no longer called by 1075 * the device ioctl handler. 1076 * 1077 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1078 * Used by the bonding driver for its device specific ioctls: 1079 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1080 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1081 * 1082 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1083 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1084 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1085 * 1086 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1087 * Used to set network devices bus interface parameters. This interface 1088 * is retained for legacy reasons; new devices should use the bus 1089 * interface (PCI) for low level management. 1090 * 1091 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1092 * Called when a user wants to change the Maximum Transfer Unit 1093 * of a device. 1094 * 1095 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1096 * Callback used when the transmitter has not made any progress 1097 * for dev->watchdog ticks. 1098 * 1099 * void (*ndo_get_stats64)(struct net_device *dev, 1100 * struct rtnl_link_stats64 *storage); 1101 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1102 * Called when a user wants to get the network device usage 1103 * statistics. Drivers must do one of the following: 1104 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1105 * rtnl_link_stats64 structure passed by the caller. 1106 * 2. Define @ndo_get_stats to update a net_device_stats structure 1107 * (which should normally be dev->stats) and return a pointer to 1108 * it. The structure may be changed asynchronously only if each 1109 * field is written atomically. 1110 * 3. Update dev->stats asynchronously and atomically, and define 1111 * neither operation. 1112 * 1113 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1114 * Return true if this device supports offload stats of this attr_id. 1115 * 1116 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1117 * void *attr_data) 1118 * Get statistics for offload operations by attr_id. Write it into the 1119 * attr_data pointer. 1120 * 1121 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1122 * If device supports VLAN filtering this function is called when a 1123 * VLAN id is registered. 1124 * 1125 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1126 * If device supports VLAN filtering this function is called when a 1127 * VLAN id is unregistered. 1128 * 1129 * void (*ndo_poll_controller)(struct net_device *dev); 1130 * 1131 * SR-IOV management functions. 1132 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1133 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1134 * u8 qos, __be16 proto); 1135 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1136 * int max_tx_rate); 1137 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1138 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1139 * int (*ndo_get_vf_config)(struct net_device *dev, 1140 * int vf, struct ifla_vf_info *ivf); 1141 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1142 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1143 * struct nlattr *port[]); 1144 * 1145 * Enable or disable the VF ability to query its RSS Redirection Table and 1146 * Hash Key. This is needed since on some devices VF share this information 1147 * with PF and querying it may introduce a theoretical security risk. 1148 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1149 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1150 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1151 * void *type_data); 1152 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1153 * This is always called from the stack with the rtnl lock held and netif 1154 * tx queues stopped. This allows the netdevice to perform queue 1155 * management safely. 1156 * 1157 * Fiber Channel over Ethernet (FCoE) offload functions. 1158 * int (*ndo_fcoe_enable)(struct net_device *dev); 1159 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1160 * so the underlying device can perform whatever needed configuration or 1161 * initialization to support acceleration of FCoE traffic. 1162 * 1163 * int (*ndo_fcoe_disable)(struct net_device *dev); 1164 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1165 * so the underlying device can perform whatever needed clean-ups to 1166 * stop supporting acceleration of FCoE traffic. 1167 * 1168 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1169 * struct scatterlist *sgl, unsigned int sgc); 1170 * Called when the FCoE Initiator wants to initialize an I/O that 1171 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1172 * perform necessary setup and returns 1 to indicate the device is set up 1173 * successfully to perform DDP on this I/O, otherwise this returns 0. 1174 * 1175 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1176 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1177 * indicated by the FC exchange id 'xid', so the underlying device can 1178 * clean up and reuse resources for later DDP requests. 1179 * 1180 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1181 * struct scatterlist *sgl, unsigned int sgc); 1182 * Called when the FCoE Target wants to initialize an I/O that 1183 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1184 * perform necessary setup and returns 1 to indicate the device is set up 1185 * successfully to perform DDP on this I/O, otherwise this returns 0. 1186 * 1187 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1188 * struct netdev_fcoe_hbainfo *hbainfo); 1189 * Called when the FCoE Protocol stack wants information on the underlying 1190 * device. This information is utilized by the FCoE protocol stack to 1191 * register attributes with Fiber Channel management service as per the 1192 * FC-GS Fabric Device Management Information(FDMI) specification. 1193 * 1194 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1195 * Called when the underlying device wants to override default World Wide 1196 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1197 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1198 * protocol stack to use. 1199 * 1200 * RFS acceleration. 1201 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1202 * u16 rxq_index, u32 flow_id); 1203 * Set hardware filter for RFS. rxq_index is the target queue index; 1204 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1205 * Return the filter ID on success, or a negative error code. 1206 * 1207 * Slave management functions (for bridge, bonding, etc). 1208 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1209 * Called to make another netdev an underling. 1210 * 1211 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1212 * Called to release previously enslaved netdev. 1213 * 1214 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1215 * struct sk_buff *skb, 1216 * bool all_slaves); 1217 * Get the xmit slave of master device. If all_slaves is true, function 1218 * assume all the slaves can transmit. 1219 * 1220 * Feature/offload setting functions. 1221 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1222 * netdev_features_t features); 1223 * Adjusts the requested feature flags according to device-specific 1224 * constraints, and returns the resulting flags. Must not modify 1225 * the device state. 1226 * 1227 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1228 * Called to update device configuration to new features. Passed 1229 * feature set might be less than what was returned by ndo_fix_features()). 1230 * Must return >0 or -errno if it changed dev->features itself. 1231 * 1232 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1233 * struct net_device *dev, 1234 * const unsigned char *addr, u16 vid, u16 flags, 1235 * struct netlink_ext_ack *extack); 1236 * Adds an FDB entry to dev for addr. 1237 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1238 * struct net_device *dev, 1239 * const unsigned char *addr, u16 vid) 1240 * Deletes the FDB entry from dev corresponding to addr. 1241 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1242 * struct netlink_ext_ack *extack); 1243 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1244 * struct net_device *dev, struct net_device *filter_dev, 1245 * int *idx) 1246 * Used to add FDB entries to dump requests. Implementers should add 1247 * entries to skb and update idx with the number of entries. 1248 * 1249 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1250 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1251 * Adds an MDB entry to dev. 1252 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1253 * struct netlink_ext_ack *extack); 1254 * Deletes the MDB entry from dev. 1255 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1256 * struct netlink_ext_ack *extack); 1257 * Bulk deletes MDB entries from dev. 1258 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1259 * struct netlink_callback *cb); 1260 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1261 * callback is used by core rtnetlink code. 1262 * 1263 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1264 * u16 flags, struct netlink_ext_ack *extack) 1265 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1266 * struct net_device *dev, u32 filter_mask, 1267 * int nlflags) 1268 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1269 * u16 flags); 1270 * 1271 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1272 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1273 * which do not represent real hardware may define this to allow their 1274 * userspace components to manage their virtual carrier state. Devices 1275 * that determine carrier state from physical hardware properties (eg 1276 * network cables) or protocol-dependent mechanisms (eg 1277 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1278 * 1279 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1280 * struct netdev_phys_item_id *ppid); 1281 * Called to get ID of physical port of this device. If driver does 1282 * not implement this, it is assumed that the hw is not able to have 1283 * multiple net devices on single physical port. 1284 * 1285 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1286 * struct netdev_phys_item_id *ppid) 1287 * Called to get the parent ID of the physical port of this device. 1288 * 1289 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1290 * struct net_device *dev) 1291 * Called by upper layer devices to accelerate switching or other 1292 * station functionality into hardware. 'pdev is the lowerdev 1293 * to use for the offload and 'dev' is the net device that will 1294 * back the offload. Returns a pointer to the private structure 1295 * the upper layer will maintain. 1296 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1297 * Called by upper layer device to delete the station created 1298 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1299 * the station and priv is the structure returned by the add 1300 * operation. 1301 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1302 * int queue_index, u32 maxrate); 1303 * Called when a user wants to set a max-rate limitation of specific 1304 * TX queue. 1305 * int (*ndo_get_iflink)(const struct net_device *dev); 1306 * Called to get the iflink value of this device. 1307 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1308 * This function is used to get egress tunnel information for given skb. 1309 * This is useful for retrieving outer tunnel header parameters while 1310 * sampling packet. 1311 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1312 * This function is used to specify the headroom that the skb must 1313 * consider when allocation skb during packet reception. Setting 1314 * appropriate rx headroom value allows avoiding skb head copy on 1315 * forward. Setting a negative value resets the rx headroom to the 1316 * default value. 1317 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1318 * This function is used to set or query state related to XDP on the 1319 * netdevice and manage BPF offload. See definition of 1320 * enum bpf_netdev_command for details. 1321 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1322 * u32 flags); 1323 * This function is used to submit @n XDP packets for transmit on a 1324 * netdevice. Returns number of frames successfully transmitted, frames 1325 * that got dropped are freed/returned via xdp_return_frame(). 1326 * Returns negative number, means general error invoking ndo, meaning 1327 * no frames were xmit'ed and core-caller will free all frames. 1328 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1329 * struct xdp_buff *xdp); 1330 * Get the xmit slave of master device based on the xdp_buff. 1331 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1332 * This function is used to wake up the softirq, ksoftirqd or kthread 1333 * responsible for sending and/or receiving packets on a specific 1334 * queue id bound to an AF_XDP socket. The flags field specifies if 1335 * only RX, only Tx, or both should be woken up using the flags 1336 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1337 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1338 * int cmd); 1339 * Add, change, delete or get information on an IPv4 tunnel. 1340 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1341 * If a device is paired with a peer device, return the peer instance. 1342 * The caller must be under RCU read context. 1343 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1344 * Get the forwarding path to reach the real device from the HW destination address 1345 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1346 * const struct skb_shared_hwtstamps *hwtstamps, 1347 * bool cycles); 1348 * Get hardware timestamp based on normal/adjustable time or free running 1349 * cycle counter. This function is required if physical clock supports a 1350 * free running cycle counter. 1351 * 1352 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1353 * struct kernel_hwtstamp_config *kernel_config); 1354 * Get the currently configured hardware timestamping parameters for the 1355 * NIC device. 1356 * 1357 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1358 * struct kernel_hwtstamp_config *kernel_config, 1359 * struct netlink_ext_ack *extack); 1360 * Change the hardware timestamping parameters for NIC device. 1361 */ 1362 struct net_device_ops { 1363 int (*ndo_init)(struct net_device *dev); 1364 void (*ndo_uninit)(struct net_device *dev); 1365 int (*ndo_open)(struct net_device *dev); 1366 int (*ndo_stop)(struct net_device *dev); 1367 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1368 struct net_device *dev); 1369 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1370 struct net_device *dev, 1371 netdev_features_t features); 1372 u16 (*ndo_select_queue)(struct net_device *dev, 1373 struct sk_buff *skb, 1374 struct net_device *sb_dev); 1375 void (*ndo_change_rx_flags)(struct net_device *dev, 1376 int flags); 1377 void (*ndo_set_rx_mode)(struct net_device *dev); 1378 int (*ndo_set_mac_address)(struct net_device *dev, 1379 void *addr); 1380 int (*ndo_validate_addr)(struct net_device *dev); 1381 int (*ndo_do_ioctl)(struct net_device *dev, 1382 struct ifreq *ifr, int cmd); 1383 int (*ndo_eth_ioctl)(struct net_device *dev, 1384 struct ifreq *ifr, int cmd); 1385 int (*ndo_siocbond)(struct net_device *dev, 1386 struct ifreq *ifr, int cmd); 1387 int (*ndo_siocwandev)(struct net_device *dev, 1388 struct if_settings *ifs); 1389 int (*ndo_siocdevprivate)(struct net_device *dev, 1390 struct ifreq *ifr, 1391 void __user *data, int cmd); 1392 int (*ndo_set_config)(struct net_device *dev, 1393 struct ifmap *map); 1394 int (*ndo_change_mtu)(struct net_device *dev, 1395 int new_mtu); 1396 int (*ndo_neigh_setup)(struct net_device *dev, 1397 struct neigh_parms *); 1398 void (*ndo_tx_timeout) (struct net_device *dev, 1399 unsigned int txqueue); 1400 1401 void (*ndo_get_stats64)(struct net_device *dev, 1402 struct rtnl_link_stats64 *storage); 1403 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1404 int (*ndo_get_offload_stats)(int attr_id, 1405 const struct net_device *dev, 1406 void *attr_data); 1407 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1408 1409 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1410 __be16 proto, u16 vid); 1411 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1412 __be16 proto, u16 vid); 1413 #ifdef CONFIG_NET_POLL_CONTROLLER 1414 void (*ndo_poll_controller)(struct net_device *dev); 1415 int (*ndo_netpoll_setup)(struct net_device *dev, 1416 struct netpoll_info *info); 1417 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1418 #endif 1419 int (*ndo_set_vf_mac)(struct net_device *dev, 1420 int queue, u8 *mac); 1421 int (*ndo_set_vf_vlan)(struct net_device *dev, 1422 int queue, u16 vlan, 1423 u8 qos, __be16 proto); 1424 int (*ndo_set_vf_rate)(struct net_device *dev, 1425 int vf, int min_tx_rate, 1426 int max_tx_rate); 1427 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1428 int vf, bool setting); 1429 int (*ndo_set_vf_trust)(struct net_device *dev, 1430 int vf, bool setting); 1431 int (*ndo_get_vf_config)(struct net_device *dev, 1432 int vf, 1433 struct ifla_vf_info *ivf); 1434 int (*ndo_set_vf_link_state)(struct net_device *dev, 1435 int vf, int link_state); 1436 int (*ndo_get_vf_stats)(struct net_device *dev, 1437 int vf, 1438 struct ifla_vf_stats 1439 *vf_stats); 1440 int (*ndo_set_vf_port)(struct net_device *dev, 1441 int vf, 1442 struct nlattr *port[]); 1443 int (*ndo_get_vf_port)(struct net_device *dev, 1444 int vf, struct sk_buff *skb); 1445 int (*ndo_get_vf_guid)(struct net_device *dev, 1446 int vf, 1447 struct ifla_vf_guid *node_guid, 1448 struct ifla_vf_guid *port_guid); 1449 int (*ndo_set_vf_guid)(struct net_device *dev, 1450 int vf, u64 guid, 1451 int guid_type); 1452 int (*ndo_set_vf_rss_query_en)( 1453 struct net_device *dev, 1454 int vf, bool setting); 1455 int (*ndo_setup_tc)(struct net_device *dev, 1456 enum tc_setup_type type, 1457 void *type_data); 1458 #if IS_ENABLED(CONFIG_FCOE) 1459 int (*ndo_fcoe_enable)(struct net_device *dev); 1460 int (*ndo_fcoe_disable)(struct net_device *dev); 1461 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1462 u16 xid, 1463 struct scatterlist *sgl, 1464 unsigned int sgc); 1465 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1466 u16 xid); 1467 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1468 u16 xid, 1469 struct scatterlist *sgl, 1470 unsigned int sgc); 1471 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1472 struct netdev_fcoe_hbainfo *hbainfo); 1473 #endif 1474 1475 #if IS_ENABLED(CONFIG_LIBFCOE) 1476 #define NETDEV_FCOE_WWNN 0 1477 #define NETDEV_FCOE_WWPN 1 1478 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1479 u64 *wwn, int type); 1480 #endif 1481 1482 #ifdef CONFIG_RFS_ACCEL 1483 int (*ndo_rx_flow_steer)(struct net_device *dev, 1484 const struct sk_buff *skb, 1485 u16 rxq_index, 1486 u32 flow_id); 1487 #endif 1488 int (*ndo_add_slave)(struct net_device *dev, 1489 struct net_device *slave_dev, 1490 struct netlink_ext_ack *extack); 1491 int (*ndo_del_slave)(struct net_device *dev, 1492 struct net_device *slave_dev); 1493 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1494 struct sk_buff *skb, 1495 bool all_slaves); 1496 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1497 struct sock *sk); 1498 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1499 netdev_features_t features); 1500 int (*ndo_set_features)(struct net_device *dev, 1501 netdev_features_t features); 1502 int (*ndo_neigh_construct)(struct net_device *dev, 1503 struct neighbour *n); 1504 void (*ndo_neigh_destroy)(struct net_device *dev, 1505 struct neighbour *n); 1506 1507 int (*ndo_fdb_add)(struct ndmsg *ndm, 1508 struct nlattr *tb[], 1509 struct net_device *dev, 1510 const unsigned char *addr, 1511 u16 vid, 1512 u16 flags, 1513 struct netlink_ext_ack *extack); 1514 int (*ndo_fdb_del)(struct ndmsg *ndm, 1515 struct nlattr *tb[], 1516 struct net_device *dev, 1517 const unsigned char *addr, 1518 u16 vid, struct netlink_ext_ack *extack); 1519 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1520 struct net_device *dev, 1521 struct netlink_ext_ack *extack); 1522 int (*ndo_fdb_dump)(struct sk_buff *skb, 1523 struct netlink_callback *cb, 1524 struct net_device *dev, 1525 struct net_device *filter_dev, 1526 int *idx); 1527 int (*ndo_fdb_get)(struct sk_buff *skb, 1528 struct nlattr *tb[], 1529 struct net_device *dev, 1530 const unsigned char *addr, 1531 u16 vid, u32 portid, u32 seq, 1532 struct netlink_ext_ack *extack); 1533 int (*ndo_mdb_add)(struct net_device *dev, 1534 struct nlattr *tb[], 1535 u16 nlmsg_flags, 1536 struct netlink_ext_ack *extack); 1537 int (*ndo_mdb_del)(struct net_device *dev, 1538 struct nlattr *tb[], 1539 struct netlink_ext_ack *extack); 1540 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1541 struct nlattr *tb[], 1542 struct netlink_ext_ack *extack); 1543 int (*ndo_mdb_dump)(struct net_device *dev, 1544 struct sk_buff *skb, 1545 struct netlink_callback *cb); 1546 int (*ndo_mdb_get)(struct net_device *dev, 1547 struct nlattr *tb[], u32 portid, 1548 u32 seq, 1549 struct netlink_ext_ack *extack); 1550 int (*ndo_bridge_setlink)(struct net_device *dev, 1551 struct nlmsghdr *nlh, 1552 u16 flags, 1553 struct netlink_ext_ack *extack); 1554 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1555 u32 pid, u32 seq, 1556 struct net_device *dev, 1557 u32 filter_mask, 1558 int nlflags); 1559 int (*ndo_bridge_dellink)(struct net_device *dev, 1560 struct nlmsghdr *nlh, 1561 u16 flags); 1562 int (*ndo_change_carrier)(struct net_device *dev, 1563 bool new_carrier); 1564 int (*ndo_get_phys_port_id)(struct net_device *dev, 1565 struct netdev_phys_item_id *ppid); 1566 int (*ndo_get_port_parent_id)(struct net_device *dev, 1567 struct netdev_phys_item_id *ppid); 1568 int (*ndo_get_phys_port_name)(struct net_device *dev, 1569 char *name, size_t len); 1570 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1571 struct net_device *dev); 1572 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1573 void *priv); 1574 1575 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1576 int queue_index, 1577 u32 maxrate); 1578 int (*ndo_get_iflink)(const struct net_device *dev); 1579 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1580 struct sk_buff *skb); 1581 void (*ndo_set_rx_headroom)(struct net_device *dev, 1582 int needed_headroom); 1583 int (*ndo_bpf)(struct net_device *dev, 1584 struct netdev_bpf *bpf); 1585 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1586 struct xdp_frame **xdp, 1587 u32 flags); 1588 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1589 struct xdp_buff *xdp); 1590 int (*ndo_xsk_wakeup)(struct net_device *dev, 1591 u32 queue_id, u32 flags); 1592 int (*ndo_tunnel_ctl)(struct net_device *dev, 1593 struct ip_tunnel_parm_kern *p, 1594 int cmd); 1595 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1596 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1597 struct net_device_path *path); 1598 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1599 const struct skb_shared_hwtstamps *hwtstamps, 1600 bool cycles); 1601 int (*ndo_hwtstamp_get)(struct net_device *dev, 1602 struct kernel_hwtstamp_config *kernel_config); 1603 int (*ndo_hwtstamp_set)(struct net_device *dev, 1604 struct kernel_hwtstamp_config *kernel_config, 1605 struct netlink_ext_ack *extack); 1606 }; 1607 1608 /** 1609 * enum netdev_priv_flags - &struct net_device priv_flags 1610 * 1611 * These are the &struct net_device, they are only set internally 1612 * by drivers and used in the kernel. These flags are invisible to 1613 * userspace; this means that the order of these flags can change 1614 * during any kernel release. 1615 * 1616 * You should have a pretty good reason to be extending these flags. 1617 * 1618 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1619 * @IFF_EBRIDGE: Ethernet bridging device 1620 * @IFF_BONDING: bonding master or slave 1621 * @IFF_ISATAP: ISATAP interface (RFC4214) 1622 * @IFF_WAN_HDLC: WAN HDLC device 1623 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1624 * release skb->dst 1625 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1626 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1627 * @IFF_MACVLAN_PORT: device used as macvlan port 1628 * @IFF_BRIDGE_PORT: device used as bridge port 1629 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1630 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1631 * @IFF_UNICAST_FLT: Supports unicast filtering 1632 * @IFF_TEAM_PORT: device used as team port 1633 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1634 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1635 * change when it's running 1636 * @IFF_MACVLAN: Macvlan device 1637 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1638 * underlying stacked devices 1639 * @IFF_L3MDEV_MASTER: device is an L3 master device 1640 * @IFF_NO_QUEUE: device can run without qdisc attached 1641 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1642 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1643 * @IFF_TEAM: device is a team device 1644 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1645 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1646 * entity (i.e. the master device for bridged veth) 1647 * @IFF_MACSEC: device is a MACsec device 1648 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1649 * @IFF_FAILOVER: device is a failover master device 1650 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1651 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1652 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1653 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1654 * skb_headlen(skb) == 0 (data starts from frag0) 1655 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1656 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1657 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1658 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1659 */ 1660 enum netdev_priv_flags { 1661 IFF_802_1Q_VLAN = 1<<0, 1662 IFF_EBRIDGE = 1<<1, 1663 IFF_BONDING = 1<<2, 1664 IFF_ISATAP = 1<<3, 1665 IFF_WAN_HDLC = 1<<4, 1666 IFF_XMIT_DST_RELEASE = 1<<5, 1667 IFF_DONT_BRIDGE = 1<<6, 1668 IFF_DISABLE_NETPOLL = 1<<7, 1669 IFF_MACVLAN_PORT = 1<<8, 1670 IFF_BRIDGE_PORT = 1<<9, 1671 IFF_OVS_DATAPATH = 1<<10, 1672 IFF_TX_SKB_SHARING = 1<<11, 1673 IFF_UNICAST_FLT = 1<<12, 1674 IFF_TEAM_PORT = 1<<13, 1675 IFF_SUPP_NOFCS = 1<<14, 1676 IFF_LIVE_ADDR_CHANGE = 1<<15, 1677 IFF_MACVLAN = 1<<16, 1678 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1679 IFF_L3MDEV_MASTER = 1<<18, 1680 IFF_NO_QUEUE = 1<<19, 1681 IFF_OPENVSWITCH = 1<<20, 1682 IFF_L3MDEV_SLAVE = 1<<21, 1683 IFF_TEAM = 1<<22, 1684 IFF_RXFH_CONFIGURED = 1<<23, 1685 IFF_PHONY_HEADROOM = 1<<24, 1686 IFF_MACSEC = 1<<25, 1687 IFF_NO_RX_HANDLER = 1<<26, 1688 IFF_FAILOVER = 1<<27, 1689 IFF_FAILOVER_SLAVE = 1<<28, 1690 IFF_L3MDEV_RX_HANDLER = 1<<29, 1691 IFF_NO_ADDRCONF = BIT_ULL(30), 1692 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1693 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1694 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1695 }; 1696 1697 /* Specifies the type of the struct net_device::ml_priv pointer */ 1698 enum netdev_ml_priv_type { 1699 ML_PRIV_NONE, 1700 ML_PRIV_CAN, 1701 }; 1702 1703 enum netdev_stat_type { 1704 NETDEV_PCPU_STAT_NONE, 1705 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1706 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1707 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1708 }; 1709 1710 enum netdev_reg_state { 1711 NETREG_UNINITIALIZED = 0, 1712 NETREG_REGISTERED, /* completed register_netdevice */ 1713 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1714 NETREG_UNREGISTERED, /* completed unregister todo */ 1715 NETREG_RELEASED, /* called free_netdev */ 1716 NETREG_DUMMY, /* dummy device for NAPI poll */ 1717 }; 1718 1719 /** 1720 * struct net_device - The DEVICE structure. 1721 * 1722 * Actually, this whole structure is a big mistake. It mixes I/O 1723 * data with strictly "high-level" data, and it has to know about 1724 * almost every data structure used in the INET module. 1725 * 1726 * @name: This is the first field of the "visible" part of this structure 1727 * (i.e. as seen by users in the "Space.c" file). It is the name 1728 * of the interface. 1729 * 1730 * @name_node: Name hashlist node 1731 * @ifalias: SNMP alias 1732 * @mem_end: Shared memory end 1733 * @mem_start: Shared memory start 1734 * @base_addr: Device I/O address 1735 * @irq: Device IRQ number 1736 * 1737 * @state: Generic network queuing layer state, see netdev_state_t 1738 * @dev_list: The global list of network devices 1739 * @napi_list: List entry used for polling NAPI devices 1740 * @unreg_list: List entry when we are unregistering the 1741 * device; see the function unregister_netdev 1742 * @close_list: List entry used when we are closing the device 1743 * @ptype_all: Device-specific packet handlers for all protocols 1744 * @ptype_specific: Device-specific, protocol-specific packet handlers 1745 * 1746 * @adj_list: Directly linked devices, like slaves for bonding 1747 * @features: Currently active device features 1748 * @hw_features: User-changeable features 1749 * 1750 * @wanted_features: User-requested features 1751 * @vlan_features: Mask of features inheritable by VLAN devices 1752 * 1753 * @hw_enc_features: Mask of features inherited by encapsulating devices 1754 * This field indicates what encapsulation 1755 * offloads the hardware is capable of doing, 1756 * and drivers will need to set them appropriately. 1757 * 1758 * @mpls_features: Mask of features inheritable by MPLS 1759 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1760 * 1761 * @ifindex: interface index 1762 * @group: The group the device belongs to 1763 * 1764 * @stats: Statistics struct, which was left as a legacy, use 1765 * rtnl_link_stats64 instead 1766 * 1767 * @core_stats: core networking counters, 1768 * do not use this in drivers 1769 * @carrier_up_count: Number of times the carrier has been up 1770 * @carrier_down_count: Number of times the carrier has been down 1771 * 1772 * @wireless_handlers: List of functions to handle Wireless Extensions, 1773 * instead of ioctl, 1774 * see <net/iw_handler.h> for details. 1775 * @wireless_data: Instance data managed by the core of wireless extensions 1776 * 1777 * @netdev_ops: Includes several pointers to callbacks, 1778 * if one wants to override the ndo_*() functions 1779 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1780 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1781 * @ethtool_ops: Management operations 1782 * @l3mdev_ops: Layer 3 master device operations 1783 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1784 * discovery handling. Necessary for e.g. 6LoWPAN. 1785 * @xfrmdev_ops: Transformation offload operations 1786 * @tlsdev_ops: Transport Layer Security offload operations 1787 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1788 * of Layer 2 headers. 1789 * 1790 * @flags: Interface flags (a la BSD) 1791 * @xdp_features: XDP capability supported by the device 1792 * @priv_flags: Like 'flags' but invisible to userspace, 1793 * see if.h for the definitions 1794 * @gflags: Global flags ( kept as legacy ) 1795 * @priv_len: Size of the ->priv flexible array 1796 * @priv: Flexible array containing private data 1797 * @operstate: RFC2863 operstate 1798 * @link_mode: Mapping policy to operstate 1799 * @if_port: Selectable AUI, TP, ... 1800 * @dma: DMA channel 1801 * @mtu: Interface MTU value 1802 * @min_mtu: Interface Minimum MTU value 1803 * @max_mtu: Interface Maximum MTU value 1804 * @type: Interface hardware type 1805 * @hard_header_len: Maximum hardware header length. 1806 * @min_header_len: Minimum hardware header length 1807 * 1808 * @needed_headroom: Extra headroom the hardware may need, but not in all 1809 * cases can this be guaranteed 1810 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1811 * cases can this be guaranteed. Some cases also use 1812 * LL_MAX_HEADER instead to allocate the skb 1813 * 1814 * interface address info: 1815 * 1816 * @perm_addr: Permanent hw address 1817 * @addr_assign_type: Hw address assignment type 1818 * @addr_len: Hardware address length 1819 * @upper_level: Maximum depth level of upper devices. 1820 * @lower_level: Maximum depth level of lower devices. 1821 * @neigh_priv_len: Used in neigh_alloc() 1822 * @dev_id: Used to differentiate devices that share 1823 * the same link layer address 1824 * @dev_port: Used to differentiate devices that share 1825 * the same function 1826 * @addr_list_lock: XXX: need comments on this one 1827 * @name_assign_type: network interface name assignment type 1828 * @uc_promisc: Counter that indicates promiscuous mode 1829 * has been enabled due to the need to listen to 1830 * additional unicast addresses in a device that 1831 * does not implement ndo_set_rx_mode() 1832 * @uc: unicast mac addresses 1833 * @mc: multicast mac addresses 1834 * @dev_addrs: list of device hw addresses 1835 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1836 * @promiscuity: Number of times the NIC is told to work in 1837 * promiscuous mode; if it becomes 0 the NIC will 1838 * exit promiscuous mode 1839 * @allmulti: Counter, enables or disables allmulticast mode 1840 * 1841 * @vlan_info: VLAN info 1842 * @dsa_ptr: dsa specific data 1843 * @tipc_ptr: TIPC specific data 1844 * @atalk_ptr: AppleTalk link 1845 * @ip_ptr: IPv4 specific data 1846 * @ip6_ptr: IPv6 specific data 1847 * @ax25_ptr: AX.25 specific data 1848 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1849 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1850 * device struct 1851 * @mpls_ptr: mpls_dev struct pointer 1852 * @mctp_ptr: MCTP specific data 1853 * 1854 * @dev_addr: Hw address (before bcast, 1855 * because most packets are unicast) 1856 * 1857 * @_rx: Array of RX queues 1858 * @num_rx_queues: Number of RX queues 1859 * allocated at register_netdev() time 1860 * @real_num_rx_queues: Number of RX queues currently active in device 1861 * @xdp_prog: XDP sockets filter program pointer 1862 * @gro_flush_timeout: timeout for GRO layer in NAPI 1863 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1864 * allow to avoid NIC hard IRQ, on busy queues. 1865 * 1866 * @rx_handler: handler for received packets 1867 * @rx_handler_data: XXX: need comments on this one 1868 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1869 * @ingress_queue: XXX: need comments on this one 1870 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1871 * @broadcast: hw bcast address 1872 * 1873 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1874 * indexed by RX queue number. Assigned by driver. 1875 * This must only be set if the ndo_rx_flow_steer 1876 * operation is defined 1877 * @index_hlist: Device index hash chain 1878 * 1879 * @_tx: Array of TX queues 1880 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1881 * @real_num_tx_queues: Number of TX queues currently active in device 1882 * @qdisc: Root qdisc from userspace point of view 1883 * @tx_queue_len: Max frames per queue allowed 1884 * @tx_global_lock: XXX: need comments on this one 1885 * @xdp_bulkq: XDP device bulk queue 1886 * @xps_maps: all CPUs/RXQs maps for XPS device 1887 * 1888 * @xps_maps: XXX: need comments on this one 1889 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1890 * @nf_hooks_egress: netfilter hooks executed for egress packets 1891 * @qdisc_hash: qdisc hash table 1892 * @watchdog_timeo: Represents the timeout that is used by 1893 * the watchdog (see dev_watchdog()) 1894 * @watchdog_timer: List of timers 1895 * 1896 * @proto_down_reason: reason a netdev interface is held down 1897 * @pcpu_refcnt: Number of references to this device 1898 * @dev_refcnt: Number of references to this device 1899 * @refcnt_tracker: Tracker directory for tracked references to this device 1900 * @todo_list: Delayed register/unregister 1901 * @link_watch_list: XXX: need comments on this one 1902 * 1903 * @reg_state: Register/unregister state machine 1904 * @dismantle: Device is going to be freed 1905 * @rtnl_link_state: This enum represents the phases of creating 1906 * a new link 1907 * 1908 * @needs_free_netdev: Should unregister perform free_netdev? 1909 * @priv_destructor: Called from unregister 1910 * @npinfo: XXX: need comments on this one 1911 * @nd_net: Network namespace this network device is inside 1912 * 1913 * @ml_priv: Mid-layer private 1914 * @ml_priv_type: Mid-layer private type 1915 * 1916 * @pcpu_stat_type: Type of device statistics which the core should 1917 * allocate/free: none, lstats, tstats, dstats. none 1918 * means the driver is handling statistics allocation/ 1919 * freeing internally. 1920 * @lstats: Loopback statistics: packets, bytes 1921 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1922 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1923 * 1924 * @garp_port: GARP 1925 * @mrp_port: MRP 1926 * 1927 * @dm_private: Drop monitor private 1928 * 1929 * @dev: Class/net/name entry 1930 * @sysfs_groups: Space for optional device, statistics and wireless 1931 * sysfs groups 1932 * 1933 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1934 * @rtnl_link_ops: Rtnl_link_ops 1935 * @stat_ops: Optional ops for queue-aware statistics 1936 * @queue_mgmt_ops: Optional ops for queue management 1937 * 1938 * @gso_max_size: Maximum size of generic segmentation offload 1939 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1940 * @gso_max_segs: Maximum number of segments that can be passed to the 1941 * NIC for GSO 1942 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1943 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1944 * for IPv4. 1945 * 1946 * @dcbnl_ops: Data Center Bridging netlink ops 1947 * @num_tc: Number of traffic classes in the net device 1948 * @tc_to_txq: XXX: need comments on this one 1949 * @prio_tc_map: XXX: need comments on this one 1950 * 1951 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1952 * 1953 * @priomap: XXX: need comments on this one 1954 * @link_topo: Physical link topology tracking attached PHYs 1955 * @phydev: Physical device may attach itself 1956 * for hardware timestamping 1957 * @sfp_bus: attached &struct sfp_bus structure. 1958 * 1959 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1960 * 1961 * @proto_down: protocol port state information can be sent to the 1962 * switch driver and used to set the phys state of the 1963 * switch port. 1964 * 1965 * @threaded: napi threaded mode is enabled 1966 * 1967 * @net_notifier_list: List of per-net netdev notifier block 1968 * that follow this device when it is moved 1969 * to another network namespace. 1970 * 1971 * @macsec_ops: MACsec offloading ops 1972 * 1973 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1974 * offload capabilities of the device 1975 * @udp_tunnel_nic: UDP tunnel offload state 1976 * @ethtool: ethtool related state 1977 * @xdp_state: stores info on attached XDP BPF programs 1978 * 1979 * @nested_level: Used as a parameter of spin_lock_nested() of 1980 * dev->addr_list_lock. 1981 * @unlink_list: As netif_addr_lock() can be called recursively, 1982 * keep a list of interfaces to be deleted. 1983 * @gro_max_size: Maximum size of aggregated packet in generic 1984 * receive offload (GRO) 1985 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 1986 * receive offload (GRO), for IPv4. 1987 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 1988 * zero copy driver 1989 * 1990 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 1991 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 1992 * @watchdog_dev_tracker: refcount tracker used by watchdog. 1993 * @dev_registered_tracker: tracker for reference held while 1994 * registered 1995 * @offload_xstats_l3: L3 HW stats for this netdevice. 1996 * 1997 * @devlink_port: Pointer to related devlink port structure. 1998 * Assigned by a driver before netdev registration using 1999 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2000 * during the time netdevice is registered. 2001 * 2002 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2003 * where the clock is recovered. 2004 * 2005 * FIXME: cleanup struct net_device such that network protocol info 2006 * moves out. 2007 */ 2008 2009 struct net_device { 2010 /* Cacheline organization can be found documented in 2011 * Documentation/networking/net_cachelines/net_device.rst. 2012 * Please update the document when adding new fields. 2013 */ 2014 2015 /* TX read-mostly hotpath */ 2016 __cacheline_group_begin(net_device_read_tx); 2017 unsigned long long priv_flags; 2018 const struct net_device_ops *netdev_ops; 2019 const struct header_ops *header_ops; 2020 struct netdev_queue *_tx; 2021 netdev_features_t gso_partial_features; 2022 unsigned int real_num_tx_queues; 2023 unsigned int gso_max_size; 2024 unsigned int gso_ipv4_max_size; 2025 u16 gso_max_segs; 2026 s16 num_tc; 2027 /* Note : dev->mtu is often read without holding a lock. 2028 * Writers usually hold RTNL. 2029 * It is recommended to use READ_ONCE() to annotate the reads, 2030 * and to use WRITE_ONCE() to annotate the writes. 2031 */ 2032 unsigned int mtu; 2033 unsigned short needed_headroom; 2034 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2035 #ifdef CONFIG_XPS 2036 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2037 #endif 2038 #ifdef CONFIG_NETFILTER_EGRESS 2039 struct nf_hook_entries __rcu *nf_hooks_egress; 2040 #endif 2041 #ifdef CONFIG_NET_XGRESS 2042 struct bpf_mprog_entry __rcu *tcx_egress; 2043 #endif 2044 __cacheline_group_end(net_device_read_tx); 2045 2046 /* TXRX read-mostly hotpath */ 2047 __cacheline_group_begin(net_device_read_txrx); 2048 union { 2049 struct pcpu_lstats __percpu *lstats; 2050 struct pcpu_sw_netstats __percpu *tstats; 2051 struct pcpu_dstats __percpu *dstats; 2052 }; 2053 unsigned long state; 2054 unsigned int flags; 2055 unsigned short hard_header_len; 2056 netdev_features_t features; 2057 struct inet6_dev __rcu *ip6_ptr; 2058 __cacheline_group_end(net_device_read_txrx); 2059 2060 /* RX read-mostly hotpath */ 2061 __cacheline_group_begin(net_device_read_rx); 2062 struct bpf_prog __rcu *xdp_prog; 2063 struct list_head ptype_specific; 2064 int ifindex; 2065 unsigned int real_num_rx_queues; 2066 struct netdev_rx_queue *_rx; 2067 unsigned long gro_flush_timeout; 2068 int napi_defer_hard_irqs; 2069 unsigned int gro_max_size; 2070 unsigned int gro_ipv4_max_size; 2071 rx_handler_func_t __rcu *rx_handler; 2072 void __rcu *rx_handler_data; 2073 possible_net_t nd_net; 2074 #ifdef CONFIG_NETPOLL 2075 struct netpoll_info __rcu *npinfo; 2076 #endif 2077 #ifdef CONFIG_NET_XGRESS 2078 struct bpf_mprog_entry __rcu *tcx_ingress; 2079 #endif 2080 __cacheline_group_end(net_device_read_rx); 2081 2082 char name[IFNAMSIZ]; 2083 struct netdev_name_node *name_node; 2084 struct dev_ifalias __rcu *ifalias; 2085 /* 2086 * I/O specific fields 2087 * FIXME: Merge these and struct ifmap into one 2088 */ 2089 unsigned long mem_end; 2090 unsigned long mem_start; 2091 unsigned long base_addr; 2092 2093 /* 2094 * Some hardware also needs these fields (state,dev_list, 2095 * napi_list,unreg_list,close_list) but they are not 2096 * part of the usual set specified in Space.c. 2097 */ 2098 2099 2100 struct list_head dev_list; 2101 struct list_head napi_list; 2102 struct list_head unreg_list; 2103 struct list_head close_list; 2104 struct list_head ptype_all; 2105 2106 struct { 2107 struct list_head upper; 2108 struct list_head lower; 2109 } adj_list; 2110 2111 /* Read-mostly cache-line for fast-path access */ 2112 xdp_features_t xdp_features; 2113 const struct xdp_metadata_ops *xdp_metadata_ops; 2114 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2115 unsigned short gflags; 2116 2117 unsigned short needed_tailroom; 2118 2119 netdev_features_t hw_features; 2120 netdev_features_t wanted_features; 2121 netdev_features_t vlan_features; 2122 netdev_features_t hw_enc_features; 2123 netdev_features_t mpls_features; 2124 2125 unsigned int min_mtu; 2126 unsigned int max_mtu; 2127 unsigned short type; 2128 unsigned char min_header_len; 2129 unsigned char name_assign_type; 2130 2131 int group; 2132 2133 struct net_device_stats stats; /* not used by modern drivers */ 2134 2135 struct net_device_core_stats __percpu *core_stats; 2136 2137 /* Stats to monitor link on/off, flapping */ 2138 atomic_t carrier_up_count; 2139 atomic_t carrier_down_count; 2140 2141 #ifdef CONFIG_WIRELESS_EXT 2142 const struct iw_handler_def *wireless_handlers; 2143 struct iw_public_data *wireless_data; 2144 #endif 2145 const struct ethtool_ops *ethtool_ops; 2146 #ifdef CONFIG_NET_L3_MASTER_DEV 2147 const struct l3mdev_ops *l3mdev_ops; 2148 #endif 2149 #if IS_ENABLED(CONFIG_IPV6) 2150 const struct ndisc_ops *ndisc_ops; 2151 #endif 2152 2153 #ifdef CONFIG_XFRM_OFFLOAD 2154 const struct xfrmdev_ops *xfrmdev_ops; 2155 #endif 2156 2157 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2158 const struct tlsdev_ops *tlsdev_ops; 2159 #endif 2160 2161 unsigned int operstate; 2162 unsigned char link_mode; 2163 2164 unsigned char if_port; 2165 unsigned char dma; 2166 2167 /* Interface address info. */ 2168 unsigned char perm_addr[MAX_ADDR_LEN]; 2169 unsigned char addr_assign_type; 2170 unsigned char addr_len; 2171 unsigned char upper_level; 2172 unsigned char lower_level; 2173 2174 unsigned short neigh_priv_len; 2175 unsigned short dev_id; 2176 unsigned short dev_port; 2177 int irq; 2178 u32 priv_len; 2179 2180 spinlock_t addr_list_lock; 2181 2182 struct netdev_hw_addr_list uc; 2183 struct netdev_hw_addr_list mc; 2184 struct netdev_hw_addr_list dev_addrs; 2185 2186 #ifdef CONFIG_SYSFS 2187 struct kset *queues_kset; 2188 #endif 2189 #ifdef CONFIG_LOCKDEP 2190 struct list_head unlink_list; 2191 #endif 2192 unsigned int promiscuity; 2193 unsigned int allmulti; 2194 bool uc_promisc; 2195 #ifdef CONFIG_LOCKDEP 2196 unsigned char nested_level; 2197 #endif 2198 2199 2200 /* Protocol-specific pointers */ 2201 struct in_device __rcu *ip_ptr; 2202 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2203 struct vlan_info __rcu *vlan_info; 2204 #endif 2205 #if IS_ENABLED(CONFIG_NET_DSA) 2206 struct dsa_port *dsa_ptr; 2207 #endif 2208 #if IS_ENABLED(CONFIG_TIPC) 2209 struct tipc_bearer __rcu *tipc_ptr; 2210 #endif 2211 #if IS_ENABLED(CONFIG_ATALK) 2212 void *atalk_ptr; 2213 #endif 2214 #if IS_ENABLED(CONFIG_AX25) 2215 void *ax25_ptr; 2216 #endif 2217 #if IS_ENABLED(CONFIG_CFG80211) 2218 struct wireless_dev *ieee80211_ptr; 2219 #endif 2220 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2221 struct wpan_dev *ieee802154_ptr; 2222 #endif 2223 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2224 struct mpls_dev __rcu *mpls_ptr; 2225 #endif 2226 #if IS_ENABLED(CONFIG_MCTP) 2227 struct mctp_dev __rcu *mctp_ptr; 2228 #endif 2229 2230 /* 2231 * Cache lines mostly used on receive path (including eth_type_trans()) 2232 */ 2233 /* Interface address info used in eth_type_trans() */ 2234 const unsigned char *dev_addr; 2235 2236 unsigned int num_rx_queues; 2237 #define GRO_LEGACY_MAX_SIZE 65536u 2238 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2239 * and shinfo->gso_segs is a 16bit field. 2240 */ 2241 #define GRO_MAX_SIZE (8 * 65535u) 2242 unsigned int xdp_zc_max_segs; 2243 struct netdev_queue __rcu *ingress_queue; 2244 #ifdef CONFIG_NETFILTER_INGRESS 2245 struct nf_hook_entries __rcu *nf_hooks_ingress; 2246 #endif 2247 2248 unsigned char broadcast[MAX_ADDR_LEN]; 2249 #ifdef CONFIG_RFS_ACCEL 2250 struct cpu_rmap *rx_cpu_rmap; 2251 #endif 2252 struct hlist_node index_hlist; 2253 2254 /* 2255 * Cache lines mostly used on transmit path 2256 */ 2257 unsigned int num_tx_queues; 2258 struct Qdisc __rcu *qdisc; 2259 unsigned int tx_queue_len; 2260 spinlock_t tx_global_lock; 2261 2262 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2263 2264 #ifdef CONFIG_NET_SCHED 2265 DECLARE_HASHTABLE (qdisc_hash, 4); 2266 #endif 2267 /* These may be needed for future network-power-down code. */ 2268 struct timer_list watchdog_timer; 2269 int watchdog_timeo; 2270 2271 u32 proto_down_reason; 2272 2273 struct list_head todo_list; 2274 2275 #ifdef CONFIG_PCPU_DEV_REFCNT 2276 int __percpu *pcpu_refcnt; 2277 #else 2278 refcount_t dev_refcnt; 2279 #endif 2280 struct ref_tracker_dir refcnt_tracker; 2281 2282 struct list_head link_watch_list; 2283 2284 u8 reg_state; 2285 2286 bool dismantle; 2287 2288 enum { 2289 RTNL_LINK_INITIALIZED, 2290 RTNL_LINK_INITIALIZING, 2291 } rtnl_link_state:16; 2292 2293 bool needs_free_netdev; 2294 void (*priv_destructor)(struct net_device *dev); 2295 2296 /* mid-layer private */ 2297 void *ml_priv; 2298 enum netdev_ml_priv_type ml_priv_type; 2299 2300 enum netdev_stat_type pcpu_stat_type:8; 2301 2302 #if IS_ENABLED(CONFIG_GARP) 2303 struct garp_port __rcu *garp_port; 2304 #endif 2305 #if IS_ENABLED(CONFIG_MRP) 2306 struct mrp_port __rcu *mrp_port; 2307 #endif 2308 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2309 struct dm_hw_stat_delta __rcu *dm_private; 2310 #endif 2311 struct device dev; 2312 const struct attribute_group *sysfs_groups[4]; 2313 const struct attribute_group *sysfs_rx_queue_group; 2314 2315 const struct rtnl_link_ops *rtnl_link_ops; 2316 2317 const struct netdev_stat_ops *stat_ops; 2318 2319 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2320 2321 /* for setting kernel sock attribute on TCP connection setup */ 2322 #define GSO_MAX_SEGS 65535u 2323 #define GSO_LEGACY_MAX_SIZE 65536u 2324 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2325 * and shinfo->gso_segs is a 16bit field. 2326 */ 2327 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2328 2329 #define TSO_LEGACY_MAX_SIZE 65536 2330 #define TSO_MAX_SIZE UINT_MAX 2331 unsigned int tso_max_size; 2332 #define TSO_MAX_SEGS U16_MAX 2333 u16 tso_max_segs; 2334 2335 #ifdef CONFIG_DCB 2336 const struct dcbnl_rtnl_ops *dcbnl_ops; 2337 #endif 2338 u8 prio_tc_map[TC_BITMASK + 1]; 2339 2340 #if IS_ENABLED(CONFIG_FCOE) 2341 unsigned int fcoe_ddp_xid; 2342 #endif 2343 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2344 struct netprio_map __rcu *priomap; 2345 #endif 2346 struct phy_link_topology *link_topo; 2347 struct phy_device *phydev; 2348 struct sfp_bus *sfp_bus; 2349 struct lock_class_key *qdisc_tx_busylock; 2350 bool proto_down; 2351 bool threaded; 2352 2353 struct list_head net_notifier_list; 2354 2355 #if IS_ENABLED(CONFIG_MACSEC) 2356 /* MACsec management functions */ 2357 const struct macsec_ops *macsec_ops; 2358 #endif 2359 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2360 struct udp_tunnel_nic *udp_tunnel_nic; 2361 2362 struct ethtool_netdev_state *ethtool; 2363 2364 /* protected by rtnl_lock */ 2365 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2366 2367 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2368 netdevice_tracker linkwatch_dev_tracker; 2369 netdevice_tracker watchdog_dev_tracker; 2370 netdevice_tracker dev_registered_tracker; 2371 struct rtnl_hw_stats64 *offload_xstats_l3; 2372 2373 struct devlink_port *devlink_port; 2374 2375 #if IS_ENABLED(CONFIG_DPLL) 2376 struct dpll_pin __rcu *dpll_pin; 2377 #endif 2378 #if IS_ENABLED(CONFIG_PAGE_POOL) 2379 /** @page_pools: page pools created for this netdevice */ 2380 struct hlist_head page_pools; 2381 #endif 2382 2383 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ 2384 struct dim_irq_moder *irq_moder; 2385 2386 u8 priv[] ____cacheline_aligned 2387 __counted_by(priv_len); 2388 } ____cacheline_aligned; 2389 #define to_net_dev(d) container_of(d, struct net_device, dev) 2390 2391 /* 2392 * Driver should use this to assign devlink port instance to a netdevice 2393 * before it registers the netdevice. Therefore devlink_port is static 2394 * during the netdev lifetime after it is registered. 2395 */ 2396 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2397 ({ \ 2398 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2399 ((dev)->devlink_port = (port)); \ 2400 }) 2401 2402 static inline bool netif_elide_gro(const struct net_device *dev) 2403 { 2404 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2405 return true; 2406 return false; 2407 } 2408 2409 #define NETDEV_ALIGN 32 2410 2411 static inline 2412 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2413 { 2414 return dev->prio_tc_map[prio & TC_BITMASK]; 2415 } 2416 2417 static inline 2418 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2419 { 2420 if (tc >= dev->num_tc) 2421 return -EINVAL; 2422 2423 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2424 return 0; 2425 } 2426 2427 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2428 void netdev_reset_tc(struct net_device *dev); 2429 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2430 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2431 2432 static inline 2433 int netdev_get_num_tc(struct net_device *dev) 2434 { 2435 return dev->num_tc; 2436 } 2437 2438 static inline void net_prefetch(void *p) 2439 { 2440 prefetch(p); 2441 #if L1_CACHE_BYTES < 128 2442 prefetch((u8 *)p + L1_CACHE_BYTES); 2443 #endif 2444 } 2445 2446 static inline void net_prefetchw(void *p) 2447 { 2448 prefetchw(p); 2449 #if L1_CACHE_BYTES < 128 2450 prefetchw((u8 *)p + L1_CACHE_BYTES); 2451 #endif 2452 } 2453 2454 void netdev_unbind_sb_channel(struct net_device *dev, 2455 struct net_device *sb_dev); 2456 int netdev_bind_sb_channel_queue(struct net_device *dev, 2457 struct net_device *sb_dev, 2458 u8 tc, u16 count, u16 offset); 2459 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2460 static inline int netdev_get_sb_channel(struct net_device *dev) 2461 { 2462 return max_t(int, -dev->num_tc, 0); 2463 } 2464 2465 static inline 2466 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2467 unsigned int index) 2468 { 2469 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2470 return &dev->_tx[index]; 2471 } 2472 2473 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2474 const struct sk_buff *skb) 2475 { 2476 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2477 } 2478 2479 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2480 void (*f)(struct net_device *, 2481 struct netdev_queue *, 2482 void *), 2483 void *arg) 2484 { 2485 unsigned int i; 2486 2487 for (i = 0; i < dev->num_tx_queues; i++) 2488 f(dev, &dev->_tx[i], arg); 2489 } 2490 2491 #define netdev_lockdep_set_classes(dev) \ 2492 { \ 2493 static struct lock_class_key qdisc_tx_busylock_key; \ 2494 static struct lock_class_key qdisc_xmit_lock_key; \ 2495 static struct lock_class_key dev_addr_list_lock_key; \ 2496 unsigned int i; \ 2497 \ 2498 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2499 lockdep_set_class(&(dev)->addr_list_lock, \ 2500 &dev_addr_list_lock_key); \ 2501 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2502 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2503 &qdisc_xmit_lock_key); \ 2504 } 2505 2506 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2507 struct net_device *sb_dev); 2508 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2509 struct sk_buff *skb, 2510 struct net_device *sb_dev); 2511 2512 /* returns the headroom that the master device needs to take in account 2513 * when forwarding to this dev 2514 */ 2515 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2516 { 2517 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2518 } 2519 2520 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2521 { 2522 if (dev->netdev_ops->ndo_set_rx_headroom) 2523 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2524 } 2525 2526 /* set the device rx headroom to the dev's default */ 2527 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2528 { 2529 netdev_set_rx_headroom(dev, -1); 2530 } 2531 2532 static inline void *netdev_get_ml_priv(struct net_device *dev, 2533 enum netdev_ml_priv_type type) 2534 { 2535 if (dev->ml_priv_type != type) 2536 return NULL; 2537 2538 return dev->ml_priv; 2539 } 2540 2541 static inline void netdev_set_ml_priv(struct net_device *dev, 2542 void *ml_priv, 2543 enum netdev_ml_priv_type type) 2544 { 2545 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2546 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2547 dev->ml_priv_type, type); 2548 WARN(!dev->ml_priv_type && dev->ml_priv, 2549 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2550 2551 dev->ml_priv = ml_priv; 2552 dev->ml_priv_type = type; 2553 } 2554 2555 /* 2556 * Net namespace inlines 2557 */ 2558 static inline 2559 struct net *dev_net(const struct net_device *dev) 2560 { 2561 return read_pnet(&dev->nd_net); 2562 } 2563 2564 static inline 2565 void dev_net_set(struct net_device *dev, struct net *net) 2566 { 2567 write_pnet(&dev->nd_net, net); 2568 } 2569 2570 /** 2571 * netdev_priv - access network device private data 2572 * @dev: network device 2573 * 2574 * Get network device private data 2575 */ 2576 static inline void *netdev_priv(const struct net_device *dev) 2577 { 2578 return (void *)dev->priv; 2579 } 2580 2581 /* Set the sysfs physical device reference for the network logical device 2582 * if set prior to registration will cause a symlink during initialization. 2583 */ 2584 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2585 2586 /* Set the sysfs device type for the network logical device to allow 2587 * fine-grained identification of different network device types. For 2588 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2589 */ 2590 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2591 2592 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2593 enum netdev_queue_type type, 2594 struct napi_struct *napi); 2595 2596 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2597 { 2598 napi->irq = irq; 2599 } 2600 2601 /* Default NAPI poll() weight 2602 * Device drivers are strongly advised to not use bigger value 2603 */ 2604 #define NAPI_POLL_WEIGHT 64 2605 2606 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2607 int (*poll)(struct napi_struct *, int), int weight); 2608 2609 /** 2610 * netif_napi_add() - initialize a NAPI context 2611 * @dev: network device 2612 * @napi: NAPI context 2613 * @poll: polling function 2614 * 2615 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2616 * *any* of the other NAPI-related functions. 2617 */ 2618 static inline void 2619 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2620 int (*poll)(struct napi_struct *, int)) 2621 { 2622 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2623 } 2624 2625 static inline void 2626 netif_napi_add_tx_weight(struct net_device *dev, 2627 struct napi_struct *napi, 2628 int (*poll)(struct napi_struct *, int), 2629 int weight) 2630 { 2631 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2632 netif_napi_add_weight(dev, napi, poll, weight); 2633 } 2634 2635 /** 2636 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2637 * @dev: network device 2638 * @napi: NAPI context 2639 * @poll: polling function 2640 * 2641 * This variant of netif_napi_add() should be used from drivers using NAPI 2642 * to exclusively poll a TX queue. 2643 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2644 */ 2645 static inline void netif_napi_add_tx(struct net_device *dev, 2646 struct napi_struct *napi, 2647 int (*poll)(struct napi_struct *, int)) 2648 { 2649 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2650 } 2651 2652 /** 2653 * __netif_napi_del - remove a NAPI context 2654 * @napi: NAPI context 2655 * 2656 * Warning: caller must observe RCU grace period before freeing memory 2657 * containing @napi. Drivers might want to call this helper to combine 2658 * all the needed RCU grace periods into a single one. 2659 */ 2660 void __netif_napi_del(struct napi_struct *napi); 2661 2662 /** 2663 * netif_napi_del - remove a NAPI context 2664 * @napi: NAPI context 2665 * 2666 * netif_napi_del() removes a NAPI context from the network device NAPI list 2667 */ 2668 static inline void netif_napi_del(struct napi_struct *napi) 2669 { 2670 __netif_napi_del(napi); 2671 synchronize_net(); 2672 } 2673 2674 struct packet_type { 2675 __be16 type; /* This is really htons(ether_type). */ 2676 bool ignore_outgoing; 2677 struct net_device *dev; /* NULL is wildcarded here */ 2678 netdevice_tracker dev_tracker; 2679 int (*func) (struct sk_buff *, 2680 struct net_device *, 2681 struct packet_type *, 2682 struct net_device *); 2683 void (*list_func) (struct list_head *, 2684 struct packet_type *, 2685 struct net_device *); 2686 bool (*id_match)(struct packet_type *ptype, 2687 struct sock *sk); 2688 struct net *af_packet_net; 2689 void *af_packet_priv; 2690 struct list_head list; 2691 }; 2692 2693 struct offload_callbacks { 2694 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2695 netdev_features_t features); 2696 struct sk_buff *(*gro_receive)(struct list_head *head, 2697 struct sk_buff *skb); 2698 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2699 }; 2700 2701 struct packet_offload { 2702 __be16 type; /* This is really htons(ether_type). */ 2703 u16 priority; 2704 struct offload_callbacks callbacks; 2705 struct list_head list; 2706 }; 2707 2708 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2709 struct pcpu_sw_netstats { 2710 u64_stats_t rx_packets; 2711 u64_stats_t rx_bytes; 2712 u64_stats_t tx_packets; 2713 u64_stats_t tx_bytes; 2714 struct u64_stats_sync syncp; 2715 } __aligned(4 * sizeof(u64)); 2716 2717 struct pcpu_dstats { 2718 u64_stats_t rx_packets; 2719 u64_stats_t rx_bytes; 2720 u64_stats_t rx_drops; 2721 u64_stats_t tx_packets; 2722 u64_stats_t tx_bytes; 2723 u64_stats_t tx_drops; 2724 struct u64_stats_sync syncp; 2725 } __aligned(8 * sizeof(u64)); 2726 2727 struct pcpu_lstats { 2728 u64_stats_t packets; 2729 u64_stats_t bytes; 2730 struct u64_stats_sync syncp; 2731 } __aligned(2 * sizeof(u64)); 2732 2733 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2734 2735 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2736 { 2737 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2738 2739 u64_stats_update_begin(&tstats->syncp); 2740 u64_stats_add(&tstats->rx_bytes, len); 2741 u64_stats_inc(&tstats->rx_packets); 2742 u64_stats_update_end(&tstats->syncp); 2743 } 2744 2745 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2746 unsigned int packets, 2747 unsigned int len) 2748 { 2749 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2750 2751 u64_stats_update_begin(&tstats->syncp); 2752 u64_stats_add(&tstats->tx_bytes, len); 2753 u64_stats_add(&tstats->tx_packets, packets); 2754 u64_stats_update_end(&tstats->syncp); 2755 } 2756 2757 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2758 { 2759 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2760 2761 u64_stats_update_begin(&lstats->syncp); 2762 u64_stats_add(&lstats->bytes, len); 2763 u64_stats_inc(&lstats->packets); 2764 u64_stats_update_end(&lstats->syncp); 2765 } 2766 2767 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2768 ({ \ 2769 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2770 if (pcpu_stats) { \ 2771 int __cpu; \ 2772 for_each_possible_cpu(__cpu) { \ 2773 typeof(type) *stat; \ 2774 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2775 u64_stats_init(&stat->syncp); \ 2776 } \ 2777 } \ 2778 pcpu_stats; \ 2779 }) 2780 2781 #define netdev_alloc_pcpu_stats(type) \ 2782 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2783 2784 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2785 ({ \ 2786 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2787 if (pcpu_stats) { \ 2788 int __cpu; \ 2789 for_each_possible_cpu(__cpu) { \ 2790 typeof(type) *stat; \ 2791 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2792 u64_stats_init(&stat->syncp); \ 2793 } \ 2794 } \ 2795 pcpu_stats; \ 2796 }) 2797 2798 enum netdev_lag_tx_type { 2799 NETDEV_LAG_TX_TYPE_UNKNOWN, 2800 NETDEV_LAG_TX_TYPE_RANDOM, 2801 NETDEV_LAG_TX_TYPE_BROADCAST, 2802 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2803 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2804 NETDEV_LAG_TX_TYPE_HASH, 2805 }; 2806 2807 enum netdev_lag_hash { 2808 NETDEV_LAG_HASH_NONE, 2809 NETDEV_LAG_HASH_L2, 2810 NETDEV_LAG_HASH_L34, 2811 NETDEV_LAG_HASH_L23, 2812 NETDEV_LAG_HASH_E23, 2813 NETDEV_LAG_HASH_E34, 2814 NETDEV_LAG_HASH_VLAN_SRCMAC, 2815 NETDEV_LAG_HASH_UNKNOWN, 2816 }; 2817 2818 struct netdev_lag_upper_info { 2819 enum netdev_lag_tx_type tx_type; 2820 enum netdev_lag_hash hash_type; 2821 }; 2822 2823 struct netdev_lag_lower_state_info { 2824 u8 link_up : 1, 2825 tx_enabled : 1; 2826 }; 2827 2828 #include <linux/notifier.h> 2829 2830 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2831 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2832 * adding new types. 2833 */ 2834 enum netdev_cmd { 2835 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2836 NETDEV_DOWN, 2837 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2838 detected a hardware crash and restarted 2839 - we can use this eg to kick tcp sessions 2840 once done */ 2841 NETDEV_CHANGE, /* Notify device state change */ 2842 NETDEV_REGISTER, 2843 NETDEV_UNREGISTER, 2844 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2845 NETDEV_CHANGEADDR, /* notify after the address change */ 2846 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2847 NETDEV_GOING_DOWN, 2848 NETDEV_CHANGENAME, 2849 NETDEV_FEAT_CHANGE, 2850 NETDEV_BONDING_FAILOVER, 2851 NETDEV_PRE_UP, 2852 NETDEV_PRE_TYPE_CHANGE, 2853 NETDEV_POST_TYPE_CHANGE, 2854 NETDEV_POST_INIT, 2855 NETDEV_PRE_UNINIT, 2856 NETDEV_RELEASE, 2857 NETDEV_NOTIFY_PEERS, 2858 NETDEV_JOIN, 2859 NETDEV_CHANGEUPPER, 2860 NETDEV_RESEND_IGMP, 2861 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2862 NETDEV_CHANGEINFODATA, 2863 NETDEV_BONDING_INFO, 2864 NETDEV_PRECHANGEUPPER, 2865 NETDEV_CHANGELOWERSTATE, 2866 NETDEV_UDP_TUNNEL_PUSH_INFO, 2867 NETDEV_UDP_TUNNEL_DROP_INFO, 2868 NETDEV_CHANGE_TX_QUEUE_LEN, 2869 NETDEV_CVLAN_FILTER_PUSH_INFO, 2870 NETDEV_CVLAN_FILTER_DROP_INFO, 2871 NETDEV_SVLAN_FILTER_PUSH_INFO, 2872 NETDEV_SVLAN_FILTER_DROP_INFO, 2873 NETDEV_OFFLOAD_XSTATS_ENABLE, 2874 NETDEV_OFFLOAD_XSTATS_DISABLE, 2875 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2876 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2877 NETDEV_XDP_FEAT_CHANGE, 2878 }; 2879 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2880 2881 int register_netdevice_notifier(struct notifier_block *nb); 2882 int unregister_netdevice_notifier(struct notifier_block *nb); 2883 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2884 int unregister_netdevice_notifier_net(struct net *net, 2885 struct notifier_block *nb); 2886 int register_netdevice_notifier_dev_net(struct net_device *dev, 2887 struct notifier_block *nb, 2888 struct netdev_net_notifier *nn); 2889 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2890 struct notifier_block *nb, 2891 struct netdev_net_notifier *nn); 2892 2893 struct netdev_notifier_info { 2894 struct net_device *dev; 2895 struct netlink_ext_ack *extack; 2896 }; 2897 2898 struct netdev_notifier_info_ext { 2899 struct netdev_notifier_info info; /* must be first */ 2900 union { 2901 u32 mtu; 2902 } ext; 2903 }; 2904 2905 struct netdev_notifier_change_info { 2906 struct netdev_notifier_info info; /* must be first */ 2907 unsigned int flags_changed; 2908 }; 2909 2910 struct netdev_notifier_changeupper_info { 2911 struct netdev_notifier_info info; /* must be first */ 2912 struct net_device *upper_dev; /* new upper dev */ 2913 bool master; /* is upper dev master */ 2914 bool linking; /* is the notification for link or unlink */ 2915 void *upper_info; /* upper dev info */ 2916 }; 2917 2918 struct netdev_notifier_changelowerstate_info { 2919 struct netdev_notifier_info info; /* must be first */ 2920 void *lower_state_info; /* is lower dev state */ 2921 }; 2922 2923 struct netdev_notifier_pre_changeaddr_info { 2924 struct netdev_notifier_info info; /* must be first */ 2925 const unsigned char *dev_addr; 2926 }; 2927 2928 enum netdev_offload_xstats_type { 2929 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2930 }; 2931 2932 struct netdev_notifier_offload_xstats_info { 2933 struct netdev_notifier_info info; /* must be first */ 2934 enum netdev_offload_xstats_type type; 2935 2936 union { 2937 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2938 struct netdev_notifier_offload_xstats_rd *report_delta; 2939 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2940 struct netdev_notifier_offload_xstats_ru *report_used; 2941 }; 2942 }; 2943 2944 int netdev_offload_xstats_enable(struct net_device *dev, 2945 enum netdev_offload_xstats_type type, 2946 struct netlink_ext_ack *extack); 2947 int netdev_offload_xstats_disable(struct net_device *dev, 2948 enum netdev_offload_xstats_type type); 2949 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2950 enum netdev_offload_xstats_type type); 2951 int netdev_offload_xstats_get(struct net_device *dev, 2952 enum netdev_offload_xstats_type type, 2953 struct rtnl_hw_stats64 *stats, bool *used, 2954 struct netlink_ext_ack *extack); 2955 void 2956 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2957 const struct rtnl_hw_stats64 *stats); 2958 void 2959 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2960 void netdev_offload_xstats_push_delta(struct net_device *dev, 2961 enum netdev_offload_xstats_type type, 2962 const struct rtnl_hw_stats64 *stats); 2963 2964 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2965 struct net_device *dev) 2966 { 2967 info->dev = dev; 2968 info->extack = NULL; 2969 } 2970 2971 static inline struct net_device * 2972 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2973 { 2974 return info->dev; 2975 } 2976 2977 static inline struct netlink_ext_ack * 2978 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2979 { 2980 return info->extack; 2981 } 2982 2983 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2984 int call_netdevice_notifiers_info(unsigned long val, 2985 struct netdev_notifier_info *info); 2986 2987 #define for_each_netdev(net, d) \ 2988 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2989 #define for_each_netdev_reverse(net, d) \ 2990 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2991 #define for_each_netdev_rcu(net, d) \ 2992 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2993 #define for_each_netdev_safe(net, d, n) \ 2994 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2995 #define for_each_netdev_continue(net, d) \ 2996 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2997 #define for_each_netdev_continue_reverse(net, d) \ 2998 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2999 dev_list) 3000 #define for_each_netdev_continue_rcu(net, d) \ 3001 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3002 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3003 for_each_netdev_rcu(&init_net, slave) \ 3004 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3005 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3006 3007 #define for_each_netdev_dump(net, d, ifindex) \ 3008 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ 3009 ULONG_MAX, XA_PRESENT)); ifindex++) 3010 3011 static inline struct net_device *next_net_device(struct net_device *dev) 3012 { 3013 struct list_head *lh; 3014 struct net *net; 3015 3016 net = dev_net(dev); 3017 lh = dev->dev_list.next; 3018 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3019 } 3020 3021 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3022 { 3023 struct list_head *lh; 3024 struct net *net; 3025 3026 net = dev_net(dev); 3027 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3028 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3029 } 3030 3031 static inline struct net_device *first_net_device(struct net *net) 3032 { 3033 return list_empty(&net->dev_base_head) ? NULL : 3034 net_device_entry(net->dev_base_head.next); 3035 } 3036 3037 static inline struct net_device *first_net_device_rcu(struct net *net) 3038 { 3039 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3040 3041 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3042 } 3043 3044 int netdev_boot_setup_check(struct net_device *dev); 3045 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3046 const char *hwaddr); 3047 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3048 void dev_add_pack(struct packet_type *pt); 3049 void dev_remove_pack(struct packet_type *pt); 3050 void __dev_remove_pack(struct packet_type *pt); 3051 void dev_add_offload(struct packet_offload *po); 3052 void dev_remove_offload(struct packet_offload *po); 3053 3054 int dev_get_iflink(const struct net_device *dev); 3055 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3056 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3057 struct net_device_path_stack *stack); 3058 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3059 unsigned short mask); 3060 struct net_device *dev_get_by_name(struct net *net, const char *name); 3061 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3062 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3063 bool netdev_name_in_use(struct net *net, const char *name); 3064 int dev_alloc_name(struct net_device *dev, const char *name); 3065 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3066 void dev_close(struct net_device *dev); 3067 void dev_close_many(struct list_head *head, bool unlink); 3068 void dev_disable_lro(struct net_device *dev); 3069 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3070 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3071 struct net_device *sb_dev); 3072 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3073 struct net_device *sb_dev); 3074 3075 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3076 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3077 3078 static inline int dev_queue_xmit(struct sk_buff *skb) 3079 { 3080 return __dev_queue_xmit(skb, NULL); 3081 } 3082 3083 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3084 struct net_device *sb_dev) 3085 { 3086 return __dev_queue_xmit(skb, sb_dev); 3087 } 3088 3089 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3090 { 3091 int ret; 3092 3093 ret = __dev_direct_xmit(skb, queue_id); 3094 if (!dev_xmit_complete(ret)) 3095 kfree_skb(skb); 3096 return ret; 3097 } 3098 3099 int register_netdevice(struct net_device *dev); 3100 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3101 void unregister_netdevice_many(struct list_head *head); 3102 static inline void unregister_netdevice(struct net_device *dev) 3103 { 3104 unregister_netdevice_queue(dev, NULL); 3105 } 3106 3107 int netdev_refcnt_read(const struct net_device *dev); 3108 void free_netdev(struct net_device *dev); 3109 void init_dummy_netdev(struct net_device *dev); 3110 3111 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3112 struct sk_buff *skb, 3113 bool all_slaves); 3114 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3115 struct sock *sk); 3116 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3117 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3118 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3119 netdevice_tracker *tracker, gfp_t gfp); 3120 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3121 netdevice_tracker *tracker, gfp_t gfp); 3122 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3123 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3124 void netdev_copy_name(struct net_device *dev, char *name); 3125 3126 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3127 unsigned short type, 3128 const void *daddr, const void *saddr, 3129 unsigned int len) 3130 { 3131 if (!dev->header_ops || !dev->header_ops->create) 3132 return 0; 3133 3134 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3135 } 3136 3137 static inline int dev_parse_header(const struct sk_buff *skb, 3138 unsigned char *haddr) 3139 { 3140 const struct net_device *dev = skb->dev; 3141 3142 if (!dev->header_ops || !dev->header_ops->parse) 3143 return 0; 3144 return dev->header_ops->parse(skb, haddr); 3145 } 3146 3147 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3148 { 3149 const struct net_device *dev = skb->dev; 3150 3151 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3152 return 0; 3153 return dev->header_ops->parse_protocol(skb); 3154 } 3155 3156 /* ll_header must have at least hard_header_len allocated */ 3157 static inline bool dev_validate_header(const struct net_device *dev, 3158 char *ll_header, int len) 3159 { 3160 if (likely(len >= dev->hard_header_len)) 3161 return true; 3162 if (len < dev->min_header_len) 3163 return false; 3164 3165 if (capable(CAP_SYS_RAWIO)) { 3166 memset(ll_header + len, 0, dev->hard_header_len - len); 3167 return true; 3168 } 3169 3170 if (dev->header_ops && dev->header_ops->validate) 3171 return dev->header_ops->validate(ll_header, len); 3172 3173 return false; 3174 } 3175 3176 static inline bool dev_has_header(const struct net_device *dev) 3177 { 3178 return dev->header_ops && dev->header_ops->create; 3179 } 3180 3181 /* 3182 * Incoming packets are placed on per-CPU queues 3183 */ 3184 struct softnet_data { 3185 struct list_head poll_list; 3186 struct sk_buff_head process_queue; 3187 local_lock_t process_queue_bh_lock; 3188 3189 /* stats */ 3190 unsigned int processed; 3191 unsigned int time_squeeze; 3192 #ifdef CONFIG_RPS 3193 struct softnet_data *rps_ipi_list; 3194 #endif 3195 3196 unsigned int received_rps; 3197 bool in_net_rx_action; 3198 bool in_napi_threaded_poll; 3199 3200 #ifdef CONFIG_NET_FLOW_LIMIT 3201 struct sd_flow_limit __rcu *flow_limit; 3202 #endif 3203 struct Qdisc *output_queue; 3204 struct Qdisc **output_queue_tailp; 3205 struct sk_buff *completion_queue; 3206 #ifdef CONFIG_XFRM_OFFLOAD 3207 struct sk_buff_head xfrm_backlog; 3208 #endif 3209 /* written and read only by owning cpu: */ 3210 struct netdev_xmit xmit; 3211 #ifdef CONFIG_RPS 3212 /* input_queue_head should be written by cpu owning this struct, 3213 * and only read by other cpus. Worth using a cache line. 3214 */ 3215 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3216 3217 /* Elements below can be accessed between CPUs for RPS/RFS */ 3218 call_single_data_t csd ____cacheline_aligned_in_smp; 3219 struct softnet_data *rps_ipi_next; 3220 unsigned int cpu; 3221 unsigned int input_queue_tail; 3222 #endif 3223 struct sk_buff_head input_pkt_queue; 3224 struct napi_struct backlog; 3225 3226 atomic_t dropped ____cacheline_aligned_in_smp; 3227 3228 /* Another possibly contended cache line */ 3229 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3230 int defer_count; 3231 int defer_ipi_scheduled; 3232 struct sk_buff *defer_list; 3233 call_single_data_t defer_csd; 3234 }; 3235 3236 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3237 3238 #ifndef CONFIG_PREEMPT_RT 3239 static inline int dev_recursion_level(void) 3240 { 3241 return this_cpu_read(softnet_data.xmit.recursion); 3242 } 3243 #else 3244 static inline int dev_recursion_level(void) 3245 { 3246 return current->net_xmit.recursion; 3247 } 3248 3249 #endif 3250 3251 void __netif_schedule(struct Qdisc *q); 3252 void netif_schedule_queue(struct netdev_queue *txq); 3253 3254 static inline void netif_tx_schedule_all(struct net_device *dev) 3255 { 3256 unsigned int i; 3257 3258 for (i = 0; i < dev->num_tx_queues; i++) 3259 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3260 } 3261 3262 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3263 { 3264 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3265 } 3266 3267 /** 3268 * netif_start_queue - allow transmit 3269 * @dev: network device 3270 * 3271 * Allow upper layers to call the device hard_start_xmit routine. 3272 */ 3273 static inline void netif_start_queue(struct net_device *dev) 3274 { 3275 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3276 } 3277 3278 static inline void netif_tx_start_all_queues(struct net_device *dev) 3279 { 3280 unsigned int i; 3281 3282 for (i = 0; i < dev->num_tx_queues; i++) { 3283 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3284 netif_tx_start_queue(txq); 3285 } 3286 } 3287 3288 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3289 3290 /** 3291 * netif_wake_queue - restart transmit 3292 * @dev: network device 3293 * 3294 * Allow upper layers to call the device hard_start_xmit routine. 3295 * Used for flow control when transmit resources are available. 3296 */ 3297 static inline void netif_wake_queue(struct net_device *dev) 3298 { 3299 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3300 } 3301 3302 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3303 { 3304 unsigned int i; 3305 3306 for (i = 0; i < dev->num_tx_queues; i++) { 3307 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3308 netif_tx_wake_queue(txq); 3309 } 3310 } 3311 3312 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3313 { 3314 /* Must be an atomic op see netif_txq_try_stop() */ 3315 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3316 } 3317 3318 /** 3319 * netif_stop_queue - stop transmitted packets 3320 * @dev: network device 3321 * 3322 * Stop upper layers calling the device hard_start_xmit routine. 3323 * Used for flow control when transmit resources are unavailable. 3324 */ 3325 static inline void netif_stop_queue(struct net_device *dev) 3326 { 3327 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3328 } 3329 3330 void netif_tx_stop_all_queues(struct net_device *dev); 3331 3332 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3333 { 3334 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3335 } 3336 3337 /** 3338 * netif_queue_stopped - test if transmit queue is flowblocked 3339 * @dev: network device 3340 * 3341 * Test if transmit queue on device is currently unable to send. 3342 */ 3343 static inline bool netif_queue_stopped(const struct net_device *dev) 3344 { 3345 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3346 } 3347 3348 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3349 { 3350 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3351 } 3352 3353 static inline bool 3354 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3355 { 3356 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3357 } 3358 3359 static inline bool 3360 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3361 { 3362 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3363 } 3364 3365 /** 3366 * netdev_queue_set_dql_min_limit - set dql minimum limit 3367 * @dev_queue: pointer to transmit queue 3368 * @min_limit: dql minimum limit 3369 * 3370 * Forces xmit_more() to return true until the minimum threshold 3371 * defined by @min_limit is reached (or until the tx queue is 3372 * empty). Warning: to be use with care, misuse will impact the 3373 * latency. 3374 */ 3375 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3376 unsigned int min_limit) 3377 { 3378 #ifdef CONFIG_BQL 3379 dev_queue->dql.min_limit = min_limit; 3380 #endif 3381 } 3382 3383 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3384 { 3385 #ifdef CONFIG_BQL 3386 /* Non-BQL migrated drivers will return 0, too. */ 3387 return dql_avail(&txq->dql); 3388 #else 3389 return 0; 3390 #endif 3391 } 3392 3393 /** 3394 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3395 * @dev_queue: pointer to transmit queue 3396 * 3397 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3398 * to give appropriate hint to the CPU. 3399 */ 3400 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3401 { 3402 #ifdef CONFIG_BQL 3403 prefetchw(&dev_queue->dql.num_queued); 3404 #endif 3405 } 3406 3407 /** 3408 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3409 * @dev_queue: pointer to transmit queue 3410 * 3411 * BQL enabled drivers might use this helper in their TX completion path, 3412 * to give appropriate hint to the CPU. 3413 */ 3414 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3415 { 3416 #ifdef CONFIG_BQL 3417 prefetchw(&dev_queue->dql.limit); 3418 #endif 3419 } 3420 3421 /** 3422 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3423 * @dev_queue: network device queue 3424 * @bytes: number of bytes queued to the device queue 3425 * 3426 * Report the number of bytes queued for sending/completion to the network 3427 * device hardware queue. @bytes should be a good approximation and should 3428 * exactly match netdev_completed_queue() @bytes. 3429 * This is typically called once per packet, from ndo_start_xmit(). 3430 */ 3431 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3432 unsigned int bytes) 3433 { 3434 #ifdef CONFIG_BQL 3435 dql_queued(&dev_queue->dql, bytes); 3436 3437 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3438 return; 3439 3440 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3441 3442 /* 3443 * The XOFF flag must be set before checking the dql_avail below, 3444 * because in netdev_tx_completed_queue we update the dql_completed 3445 * before checking the XOFF flag. 3446 */ 3447 smp_mb(); 3448 3449 /* check again in case another CPU has just made room avail */ 3450 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3451 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3452 #endif 3453 } 3454 3455 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3456 * that they should not test BQL status themselves. 3457 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3458 * skb of a batch. 3459 * Returns true if the doorbell must be used to kick the NIC. 3460 */ 3461 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3462 unsigned int bytes, 3463 bool xmit_more) 3464 { 3465 if (xmit_more) { 3466 #ifdef CONFIG_BQL 3467 dql_queued(&dev_queue->dql, bytes); 3468 #endif 3469 return netif_tx_queue_stopped(dev_queue); 3470 } 3471 netdev_tx_sent_queue(dev_queue, bytes); 3472 return true; 3473 } 3474 3475 /** 3476 * netdev_sent_queue - report the number of bytes queued to hardware 3477 * @dev: network device 3478 * @bytes: number of bytes queued to the hardware device queue 3479 * 3480 * Report the number of bytes queued for sending/completion to the network 3481 * device hardware queue#0. @bytes should be a good approximation and should 3482 * exactly match netdev_completed_queue() @bytes. 3483 * This is typically called once per packet, from ndo_start_xmit(). 3484 */ 3485 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3486 { 3487 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3488 } 3489 3490 static inline bool __netdev_sent_queue(struct net_device *dev, 3491 unsigned int bytes, 3492 bool xmit_more) 3493 { 3494 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3495 xmit_more); 3496 } 3497 3498 /** 3499 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3500 * @dev_queue: network device queue 3501 * @pkts: number of packets (currently ignored) 3502 * @bytes: number of bytes dequeued from the device queue 3503 * 3504 * Must be called at most once per TX completion round (and not per 3505 * individual packet), so that BQL can adjust its limits appropriately. 3506 */ 3507 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3508 unsigned int pkts, unsigned int bytes) 3509 { 3510 #ifdef CONFIG_BQL 3511 if (unlikely(!bytes)) 3512 return; 3513 3514 dql_completed(&dev_queue->dql, bytes); 3515 3516 /* 3517 * Without the memory barrier there is a small possibility that 3518 * netdev_tx_sent_queue will miss the update and cause the queue to 3519 * be stopped forever 3520 */ 3521 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3522 3523 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3524 return; 3525 3526 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3527 netif_schedule_queue(dev_queue); 3528 #endif 3529 } 3530 3531 /** 3532 * netdev_completed_queue - report bytes and packets completed by device 3533 * @dev: network device 3534 * @pkts: actual number of packets sent over the medium 3535 * @bytes: actual number of bytes sent over the medium 3536 * 3537 * Report the number of bytes and packets transmitted by the network device 3538 * hardware queue over the physical medium, @bytes must exactly match the 3539 * @bytes amount passed to netdev_sent_queue() 3540 */ 3541 static inline void netdev_completed_queue(struct net_device *dev, 3542 unsigned int pkts, unsigned int bytes) 3543 { 3544 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3545 } 3546 3547 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3548 { 3549 #ifdef CONFIG_BQL 3550 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3551 dql_reset(&q->dql); 3552 #endif 3553 } 3554 3555 /** 3556 * netdev_reset_queue - reset the packets and bytes count of a network device 3557 * @dev_queue: network device 3558 * 3559 * Reset the bytes and packet count of a network device and clear the 3560 * software flow control OFF bit for this network device 3561 */ 3562 static inline void netdev_reset_queue(struct net_device *dev_queue) 3563 { 3564 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3565 } 3566 3567 /** 3568 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3569 * @dev: network device 3570 * @queue_index: given tx queue index 3571 * 3572 * Returns 0 if given tx queue index >= number of device tx queues, 3573 * otherwise returns the originally passed tx queue index. 3574 */ 3575 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3576 { 3577 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3578 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3579 dev->name, queue_index, 3580 dev->real_num_tx_queues); 3581 return 0; 3582 } 3583 3584 return queue_index; 3585 } 3586 3587 /** 3588 * netif_running - test if up 3589 * @dev: network device 3590 * 3591 * Test if the device has been brought up. 3592 */ 3593 static inline bool netif_running(const struct net_device *dev) 3594 { 3595 return test_bit(__LINK_STATE_START, &dev->state); 3596 } 3597 3598 /* 3599 * Routines to manage the subqueues on a device. We only need start, 3600 * stop, and a check if it's stopped. All other device management is 3601 * done at the overall netdevice level. 3602 * Also test the device if we're multiqueue. 3603 */ 3604 3605 /** 3606 * netif_start_subqueue - allow sending packets on subqueue 3607 * @dev: network device 3608 * @queue_index: sub queue index 3609 * 3610 * Start individual transmit queue of a device with multiple transmit queues. 3611 */ 3612 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3613 { 3614 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3615 3616 netif_tx_start_queue(txq); 3617 } 3618 3619 /** 3620 * netif_stop_subqueue - stop sending packets on subqueue 3621 * @dev: network device 3622 * @queue_index: sub queue index 3623 * 3624 * Stop individual transmit queue of a device with multiple transmit queues. 3625 */ 3626 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3627 { 3628 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3629 netif_tx_stop_queue(txq); 3630 } 3631 3632 /** 3633 * __netif_subqueue_stopped - test status of subqueue 3634 * @dev: network device 3635 * @queue_index: sub queue index 3636 * 3637 * Check individual transmit queue of a device with multiple transmit queues. 3638 */ 3639 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3640 u16 queue_index) 3641 { 3642 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3643 3644 return netif_tx_queue_stopped(txq); 3645 } 3646 3647 /** 3648 * netif_subqueue_stopped - test status of subqueue 3649 * @dev: network device 3650 * @skb: sub queue buffer pointer 3651 * 3652 * Check individual transmit queue of a device with multiple transmit queues. 3653 */ 3654 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3655 struct sk_buff *skb) 3656 { 3657 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3658 } 3659 3660 /** 3661 * netif_wake_subqueue - allow sending packets on subqueue 3662 * @dev: network device 3663 * @queue_index: sub queue index 3664 * 3665 * Resume individual transmit queue of a device with multiple transmit queues. 3666 */ 3667 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3668 { 3669 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3670 3671 netif_tx_wake_queue(txq); 3672 } 3673 3674 #ifdef CONFIG_XPS 3675 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3676 u16 index); 3677 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3678 u16 index, enum xps_map_type type); 3679 3680 /** 3681 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3682 * @j: CPU/Rx queue index 3683 * @mask: bitmask of all cpus/rx queues 3684 * @nr_bits: number of bits in the bitmask 3685 * 3686 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3687 */ 3688 static inline bool netif_attr_test_mask(unsigned long j, 3689 const unsigned long *mask, 3690 unsigned int nr_bits) 3691 { 3692 cpu_max_bits_warn(j, nr_bits); 3693 return test_bit(j, mask); 3694 } 3695 3696 /** 3697 * netif_attr_test_online - Test for online CPU/Rx queue 3698 * @j: CPU/Rx queue index 3699 * @online_mask: bitmask for CPUs/Rx queues that are online 3700 * @nr_bits: number of bits in the bitmask 3701 * 3702 * Returns true if a CPU/Rx queue is online. 3703 */ 3704 static inline bool netif_attr_test_online(unsigned long j, 3705 const unsigned long *online_mask, 3706 unsigned int nr_bits) 3707 { 3708 cpu_max_bits_warn(j, nr_bits); 3709 3710 if (online_mask) 3711 return test_bit(j, online_mask); 3712 3713 return (j < nr_bits); 3714 } 3715 3716 /** 3717 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3718 * @n: CPU/Rx queue index 3719 * @srcp: the cpumask/Rx queue mask pointer 3720 * @nr_bits: number of bits in the bitmask 3721 * 3722 * Returns >= nr_bits if no further CPUs/Rx queues set. 3723 */ 3724 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3725 unsigned int nr_bits) 3726 { 3727 /* -1 is a legal arg here. */ 3728 if (n != -1) 3729 cpu_max_bits_warn(n, nr_bits); 3730 3731 if (srcp) 3732 return find_next_bit(srcp, nr_bits, n + 1); 3733 3734 return n + 1; 3735 } 3736 3737 /** 3738 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3739 * @n: CPU/Rx queue index 3740 * @src1p: the first CPUs/Rx queues mask pointer 3741 * @src2p: the second CPUs/Rx queues mask pointer 3742 * @nr_bits: number of bits in the bitmask 3743 * 3744 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3745 */ 3746 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3747 const unsigned long *src2p, 3748 unsigned int nr_bits) 3749 { 3750 /* -1 is a legal arg here. */ 3751 if (n != -1) 3752 cpu_max_bits_warn(n, nr_bits); 3753 3754 if (src1p && src2p) 3755 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3756 else if (src1p) 3757 return find_next_bit(src1p, nr_bits, n + 1); 3758 else if (src2p) 3759 return find_next_bit(src2p, nr_bits, n + 1); 3760 3761 return n + 1; 3762 } 3763 #else 3764 static inline int netif_set_xps_queue(struct net_device *dev, 3765 const struct cpumask *mask, 3766 u16 index) 3767 { 3768 return 0; 3769 } 3770 3771 static inline int __netif_set_xps_queue(struct net_device *dev, 3772 const unsigned long *mask, 3773 u16 index, enum xps_map_type type) 3774 { 3775 return 0; 3776 } 3777 #endif 3778 3779 /** 3780 * netif_is_multiqueue - test if device has multiple transmit queues 3781 * @dev: network device 3782 * 3783 * Check if device has multiple transmit queues 3784 */ 3785 static inline bool netif_is_multiqueue(const struct net_device *dev) 3786 { 3787 return dev->num_tx_queues > 1; 3788 } 3789 3790 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3791 3792 #ifdef CONFIG_SYSFS 3793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3794 #else 3795 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3796 unsigned int rxqs) 3797 { 3798 dev->real_num_rx_queues = rxqs; 3799 return 0; 3800 } 3801 #endif 3802 int netif_set_real_num_queues(struct net_device *dev, 3803 unsigned int txq, unsigned int rxq); 3804 3805 int netif_get_num_default_rss_queues(void); 3806 3807 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3808 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3809 3810 /* 3811 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3812 * interrupt context or with hardware interrupts being disabled. 3813 * (in_hardirq() || irqs_disabled()) 3814 * 3815 * We provide four helpers that can be used in following contexts : 3816 * 3817 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3818 * replacing kfree_skb(skb) 3819 * 3820 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3821 * Typically used in place of consume_skb(skb) in TX completion path 3822 * 3823 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3824 * replacing kfree_skb(skb) 3825 * 3826 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3827 * and consumed a packet. Used in place of consume_skb(skb) 3828 */ 3829 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3830 { 3831 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3832 } 3833 3834 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3835 { 3836 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3837 } 3838 3839 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3840 { 3841 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3842 } 3843 3844 static inline void dev_consume_skb_any(struct sk_buff *skb) 3845 { 3846 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3847 } 3848 3849 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3850 struct bpf_prog *xdp_prog); 3851 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3852 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb); 3853 int netif_rx(struct sk_buff *skb); 3854 int __netif_rx(struct sk_buff *skb); 3855 3856 int netif_receive_skb(struct sk_buff *skb); 3857 int netif_receive_skb_core(struct sk_buff *skb); 3858 void netif_receive_skb_list_internal(struct list_head *head); 3859 void netif_receive_skb_list(struct list_head *head); 3860 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3861 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3862 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3863 void napi_get_frags_check(struct napi_struct *napi); 3864 gro_result_t napi_gro_frags(struct napi_struct *napi); 3865 3866 static inline void napi_free_frags(struct napi_struct *napi) 3867 { 3868 kfree_skb(napi->skb); 3869 napi->skb = NULL; 3870 } 3871 3872 bool netdev_is_rx_handler_busy(struct net_device *dev); 3873 int netdev_rx_handler_register(struct net_device *dev, 3874 rx_handler_func_t *rx_handler, 3875 void *rx_handler_data); 3876 void netdev_rx_handler_unregister(struct net_device *dev); 3877 3878 bool dev_valid_name(const char *name); 3879 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3880 { 3881 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3882 } 3883 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3884 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3885 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3886 void __user *data, bool *need_copyout); 3887 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3888 int generic_hwtstamp_get_lower(struct net_device *dev, 3889 struct kernel_hwtstamp_config *kernel_cfg); 3890 int generic_hwtstamp_set_lower(struct net_device *dev, 3891 struct kernel_hwtstamp_config *kernel_cfg, 3892 struct netlink_ext_ack *extack); 3893 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3894 unsigned int dev_get_flags(const struct net_device *); 3895 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3896 struct netlink_ext_ack *extack); 3897 int dev_change_flags(struct net_device *dev, unsigned int flags, 3898 struct netlink_ext_ack *extack); 3899 int dev_set_alias(struct net_device *, const char *, size_t); 3900 int dev_get_alias(const struct net_device *, char *, size_t); 3901 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3902 const char *pat, int new_ifindex); 3903 static inline 3904 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3905 const char *pat) 3906 { 3907 return __dev_change_net_namespace(dev, net, pat, 0); 3908 } 3909 int __dev_set_mtu(struct net_device *, int); 3910 int dev_set_mtu(struct net_device *, int); 3911 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3912 struct netlink_ext_ack *extack); 3913 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3914 struct netlink_ext_ack *extack); 3915 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3916 struct netlink_ext_ack *extack); 3917 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3918 int dev_get_port_parent_id(struct net_device *dev, 3919 struct netdev_phys_item_id *ppid, bool recurse); 3920 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3921 3922 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3923 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3924 struct netdev_queue *txq, int *ret); 3925 3926 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3927 u8 dev_xdp_prog_count(struct net_device *dev); 3928 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 3929 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3930 3931 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3933 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3934 bool is_skb_forwardable(const struct net_device *dev, 3935 const struct sk_buff *skb); 3936 3937 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3938 const struct sk_buff *skb, 3939 const bool check_mtu) 3940 { 3941 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3942 unsigned int len; 3943 3944 if (!(dev->flags & IFF_UP)) 3945 return false; 3946 3947 if (!check_mtu) 3948 return true; 3949 3950 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3951 if (skb->len <= len) 3952 return true; 3953 3954 /* if TSO is enabled, we don't care about the length as the packet 3955 * could be forwarded without being segmented before 3956 */ 3957 if (skb_is_gso(skb)) 3958 return true; 3959 3960 return false; 3961 } 3962 3963 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 3964 3965 #define DEV_CORE_STATS_INC(FIELD) \ 3966 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3967 { \ 3968 netdev_core_stats_inc(dev, \ 3969 offsetof(struct net_device_core_stats, FIELD)); \ 3970 } 3971 DEV_CORE_STATS_INC(rx_dropped) 3972 DEV_CORE_STATS_INC(tx_dropped) 3973 DEV_CORE_STATS_INC(rx_nohandler) 3974 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3975 #undef DEV_CORE_STATS_INC 3976 3977 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3978 struct sk_buff *skb, 3979 const bool check_mtu) 3980 { 3981 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3982 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3983 dev_core_stats_rx_dropped_inc(dev); 3984 kfree_skb(skb); 3985 return NET_RX_DROP; 3986 } 3987 3988 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 3989 skb->priority = 0; 3990 return 0; 3991 } 3992 3993 bool dev_nit_active(struct net_device *dev); 3994 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3995 3996 static inline void __dev_put(struct net_device *dev) 3997 { 3998 if (dev) { 3999 #ifdef CONFIG_PCPU_DEV_REFCNT 4000 this_cpu_dec(*dev->pcpu_refcnt); 4001 #else 4002 refcount_dec(&dev->dev_refcnt); 4003 #endif 4004 } 4005 } 4006 4007 static inline void __dev_hold(struct net_device *dev) 4008 { 4009 if (dev) { 4010 #ifdef CONFIG_PCPU_DEV_REFCNT 4011 this_cpu_inc(*dev->pcpu_refcnt); 4012 #else 4013 refcount_inc(&dev->dev_refcnt); 4014 #endif 4015 } 4016 } 4017 4018 static inline void __netdev_tracker_alloc(struct net_device *dev, 4019 netdevice_tracker *tracker, 4020 gfp_t gfp) 4021 { 4022 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4023 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4024 #endif 4025 } 4026 4027 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4028 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4029 */ 4030 static inline void netdev_tracker_alloc(struct net_device *dev, 4031 netdevice_tracker *tracker, gfp_t gfp) 4032 { 4033 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4034 refcount_dec(&dev->refcnt_tracker.no_tracker); 4035 __netdev_tracker_alloc(dev, tracker, gfp); 4036 #endif 4037 } 4038 4039 static inline void netdev_tracker_free(struct net_device *dev, 4040 netdevice_tracker *tracker) 4041 { 4042 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4043 ref_tracker_free(&dev->refcnt_tracker, tracker); 4044 #endif 4045 } 4046 4047 static inline void netdev_hold(struct net_device *dev, 4048 netdevice_tracker *tracker, gfp_t gfp) 4049 { 4050 if (dev) { 4051 __dev_hold(dev); 4052 __netdev_tracker_alloc(dev, tracker, gfp); 4053 } 4054 } 4055 4056 static inline void netdev_put(struct net_device *dev, 4057 netdevice_tracker *tracker) 4058 { 4059 if (dev) { 4060 netdev_tracker_free(dev, tracker); 4061 __dev_put(dev); 4062 } 4063 } 4064 4065 /** 4066 * dev_hold - get reference to device 4067 * @dev: network device 4068 * 4069 * Hold reference to device to keep it from being freed. 4070 * Try using netdev_hold() instead. 4071 */ 4072 static inline void dev_hold(struct net_device *dev) 4073 { 4074 netdev_hold(dev, NULL, GFP_ATOMIC); 4075 } 4076 4077 /** 4078 * dev_put - release reference to device 4079 * @dev: network device 4080 * 4081 * Release reference to device to allow it to be freed. 4082 * Try using netdev_put() instead. 4083 */ 4084 static inline void dev_put(struct net_device *dev) 4085 { 4086 netdev_put(dev, NULL); 4087 } 4088 4089 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4090 4091 static inline void netdev_ref_replace(struct net_device *odev, 4092 struct net_device *ndev, 4093 netdevice_tracker *tracker, 4094 gfp_t gfp) 4095 { 4096 if (odev) 4097 netdev_tracker_free(odev, tracker); 4098 4099 __dev_hold(ndev); 4100 __dev_put(odev); 4101 4102 if (ndev) 4103 __netdev_tracker_alloc(ndev, tracker, gfp); 4104 } 4105 4106 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4107 * and _off may be called from IRQ context, but it is caller 4108 * who is responsible for serialization of these calls. 4109 * 4110 * The name carrier is inappropriate, these functions should really be 4111 * called netif_lowerlayer_*() because they represent the state of any 4112 * kind of lower layer not just hardware media. 4113 */ 4114 void linkwatch_fire_event(struct net_device *dev); 4115 4116 /** 4117 * linkwatch_sync_dev - sync linkwatch for the given device 4118 * @dev: network device to sync linkwatch for 4119 * 4120 * Sync linkwatch for the given device, removing it from the 4121 * pending work list (if queued). 4122 */ 4123 void linkwatch_sync_dev(struct net_device *dev); 4124 4125 /** 4126 * netif_carrier_ok - test if carrier present 4127 * @dev: network device 4128 * 4129 * Check if carrier is present on device 4130 */ 4131 static inline bool netif_carrier_ok(const struct net_device *dev) 4132 { 4133 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4134 } 4135 4136 unsigned long dev_trans_start(struct net_device *dev); 4137 4138 void __netdev_watchdog_up(struct net_device *dev); 4139 4140 void netif_carrier_on(struct net_device *dev); 4141 void netif_carrier_off(struct net_device *dev); 4142 void netif_carrier_event(struct net_device *dev); 4143 4144 /** 4145 * netif_dormant_on - mark device as dormant. 4146 * @dev: network device 4147 * 4148 * Mark device as dormant (as per RFC2863). 4149 * 4150 * The dormant state indicates that the relevant interface is not 4151 * actually in a condition to pass packets (i.e., it is not 'up') but is 4152 * in a "pending" state, waiting for some external event. For "on- 4153 * demand" interfaces, this new state identifies the situation where the 4154 * interface is waiting for events to place it in the up state. 4155 */ 4156 static inline void netif_dormant_on(struct net_device *dev) 4157 { 4158 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4159 linkwatch_fire_event(dev); 4160 } 4161 4162 /** 4163 * netif_dormant_off - set device as not dormant. 4164 * @dev: network device 4165 * 4166 * Device is not in dormant state. 4167 */ 4168 static inline void netif_dormant_off(struct net_device *dev) 4169 { 4170 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4171 linkwatch_fire_event(dev); 4172 } 4173 4174 /** 4175 * netif_dormant - test if device is dormant 4176 * @dev: network device 4177 * 4178 * Check if device is dormant. 4179 */ 4180 static inline bool netif_dormant(const struct net_device *dev) 4181 { 4182 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4183 } 4184 4185 4186 /** 4187 * netif_testing_on - mark device as under test. 4188 * @dev: network device 4189 * 4190 * Mark device as under test (as per RFC2863). 4191 * 4192 * The testing state indicates that some test(s) must be performed on 4193 * the interface. After completion, of the test, the interface state 4194 * will change to up, dormant, or down, as appropriate. 4195 */ 4196 static inline void netif_testing_on(struct net_device *dev) 4197 { 4198 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4199 linkwatch_fire_event(dev); 4200 } 4201 4202 /** 4203 * netif_testing_off - set device as not under test. 4204 * @dev: network device 4205 * 4206 * Device is not in testing state. 4207 */ 4208 static inline void netif_testing_off(struct net_device *dev) 4209 { 4210 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4211 linkwatch_fire_event(dev); 4212 } 4213 4214 /** 4215 * netif_testing - test if device is under test 4216 * @dev: network device 4217 * 4218 * Check if device is under test 4219 */ 4220 static inline bool netif_testing(const struct net_device *dev) 4221 { 4222 return test_bit(__LINK_STATE_TESTING, &dev->state); 4223 } 4224 4225 4226 /** 4227 * netif_oper_up - test if device is operational 4228 * @dev: network device 4229 * 4230 * Check if carrier is operational 4231 */ 4232 static inline bool netif_oper_up(const struct net_device *dev) 4233 { 4234 unsigned int operstate = READ_ONCE(dev->operstate); 4235 4236 return operstate == IF_OPER_UP || 4237 operstate == IF_OPER_UNKNOWN /* backward compat */; 4238 } 4239 4240 /** 4241 * netif_device_present - is device available or removed 4242 * @dev: network device 4243 * 4244 * Check if device has not been removed from system. 4245 */ 4246 static inline bool netif_device_present(const struct net_device *dev) 4247 { 4248 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4249 } 4250 4251 void netif_device_detach(struct net_device *dev); 4252 4253 void netif_device_attach(struct net_device *dev); 4254 4255 /* 4256 * Network interface message level settings 4257 */ 4258 4259 enum { 4260 NETIF_MSG_DRV_BIT, 4261 NETIF_MSG_PROBE_BIT, 4262 NETIF_MSG_LINK_BIT, 4263 NETIF_MSG_TIMER_BIT, 4264 NETIF_MSG_IFDOWN_BIT, 4265 NETIF_MSG_IFUP_BIT, 4266 NETIF_MSG_RX_ERR_BIT, 4267 NETIF_MSG_TX_ERR_BIT, 4268 NETIF_MSG_TX_QUEUED_BIT, 4269 NETIF_MSG_INTR_BIT, 4270 NETIF_MSG_TX_DONE_BIT, 4271 NETIF_MSG_RX_STATUS_BIT, 4272 NETIF_MSG_PKTDATA_BIT, 4273 NETIF_MSG_HW_BIT, 4274 NETIF_MSG_WOL_BIT, 4275 4276 /* When you add a new bit above, update netif_msg_class_names array 4277 * in net/ethtool/common.c 4278 */ 4279 NETIF_MSG_CLASS_COUNT, 4280 }; 4281 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4282 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4283 4284 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4285 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4286 4287 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4288 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4289 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4290 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4291 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4292 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4293 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4294 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4295 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4296 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4297 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4298 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4299 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4300 #define NETIF_MSG_HW __NETIF_MSG(HW) 4301 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4302 4303 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4304 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4305 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4306 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4307 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4308 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4309 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4310 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4311 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4312 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4313 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4314 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4315 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4316 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4317 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4318 4319 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4320 { 4321 /* use default */ 4322 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4323 return default_msg_enable_bits; 4324 if (debug_value == 0) /* no output */ 4325 return 0; 4326 /* set low N bits */ 4327 return (1U << debug_value) - 1; 4328 } 4329 4330 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4331 { 4332 spin_lock(&txq->_xmit_lock); 4333 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4334 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4335 } 4336 4337 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4338 { 4339 __acquire(&txq->_xmit_lock); 4340 return true; 4341 } 4342 4343 static inline void __netif_tx_release(struct netdev_queue *txq) 4344 { 4345 __release(&txq->_xmit_lock); 4346 } 4347 4348 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4349 { 4350 spin_lock_bh(&txq->_xmit_lock); 4351 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4352 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4353 } 4354 4355 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4356 { 4357 bool ok = spin_trylock(&txq->_xmit_lock); 4358 4359 if (likely(ok)) { 4360 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4361 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4362 } 4363 return ok; 4364 } 4365 4366 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4367 { 4368 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4369 WRITE_ONCE(txq->xmit_lock_owner, -1); 4370 spin_unlock(&txq->_xmit_lock); 4371 } 4372 4373 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4374 { 4375 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4376 WRITE_ONCE(txq->xmit_lock_owner, -1); 4377 spin_unlock_bh(&txq->_xmit_lock); 4378 } 4379 4380 /* 4381 * txq->trans_start can be read locklessly from dev_watchdog() 4382 */ 4383 static inline void txq_trans_update(struct netdev_queue *txq) 4384 { 4385 if (txq->xmit_lock_owner != -1) 4386 WRITE_ONCE(txq->trans_start, jiffies); 4387 } 4388 4389 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4390 { 4391 unsigned long now = jiffies; 4392 4393 if (READ_ONCE(txq->trans_start) != now) 4394 WRITE_ONCE(txq->trans_start, now); 4395 } 4396 4397 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4398 static inline void netif_trans_update(struct net_device *dev) 4399 { 4400 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4401 4402 txq_trans_cond_update(txq); 4403 } 4404 4405 /** 4406 * netif_tx_lock - grab network device transmit lock 4407 * @dev: network device 4408 * 4409 * Get network device transmit lock 4410 */ 4411 void netif_tx_lock(struct net_device *dev); 4412 4413 static inline void netif_tx_lock_bh(struct net_device *dev) 4414 { 4415 local_bh_disable(); 4416 netif_tx_lock(dev); 4417 } 4418 4419 void netif_tx_unlock(struct net_device *dev); 4420 4421 static inline void netif_tx_unlock_bh(struct net_device *dev) 4422 { 4423 netif_tx_unlock(dev); 4424 local_bh_enable(); 4425 } 4426 4427 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4428 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4429 __netif_tx_lock(txq, cpu); \ 4430 } else { \ 4431 __netif_tx_acquire(txq); \ 4432 } \ 4433 } 4434 4435 #define HARD_TX_TRYLOCK(dev, txq) \ 4436 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4437 __netif_tx_trylock(txq) : \ 4438 __netif_tx_acquire(txq)) 4439 4440 #define HARD_TX_UNLOCK(dev, txq) { \ 4441 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4442 __netif_tx_unlock(txq); \ 4443 } else { \ 4444 __netif_tx_release(txq); \ 4445 } \ 4446 } 4447 4448 static inline void netif_tx_disable(struct net_device *dev) 4449 { 4450 unsigned int i; 4451 int cpu; 4452 4453 local_bh_disable(); 4454 cpu = smp_processor_id(); 4455 spin_lock(&dev->tx_global_lock); 4456 for (i = 0; i < dev->num_tx_queues; i++) { 4457 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4458 4459 __netif_tx_lock(txq, cpu); 4460 netif_tx_stop_queue(txq); 4461 __netif_tx_unlock(txq); 4462 } 4463 spin_unlock(&dev->tx_global_lock); 4464 local_bh_enable(); 4465 } 4466 4467 static inline void netif_addr_lock(struct net_device *dev) 4468 { 4469 unsigned char nest_level = 0; 4470 4471 #ifdef CONFIG_LOCKDEP 4472 nest_level = dev->nested_level; 4473 #endif 4474 spin_lock_nested(&dev->addr_list_lock, nest_level); 4475 } 4476 4477 static inline void netif_addr_lock_bh(struct net_device *dev) 4478 { 4479 unsigned char nest_level = 0; 4480 4481 #ifdef CONFIG_LOCKDEP 4482 nest_level = dev->nested_level; 4483 #endif 4484 local_bh_disable(); 4485 spin_lock_nested(&dev->addr_list_lock, nest_level); 4486 } 4487 4488 static inline void netif_addr_unlock(struct net_device *dev) 4489 { 4490 spin_unlock(&dev->addr_list_lock); 4491 } 4492 4493 static inline void netif_addr_unlock_bh(struct net_device *dev) 4494 { 4495 spin_unlock_bh(&dev->addr_list_lock); 4496 } 4497 4498 /* 4499 * dev_addrs walker. Should be used only for read access. Call with 4500 * rcu_read_lock held. 4501 */ 4502 #define for_each_dev_addr(dev, ha) \ 4503 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4504 4505 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4506 4507 void ether_setup(struct net_device *dev); 4508 4509 /* Allocate dummy net_device */ 4510 struct net_device *alloc_netdev_dummy(int sizeof_priv); 4511 4512 /* Support for loadable net-drivers */ 4513 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4514 unsigned char name_assign_type, 4515 void (*setup)(struct net_device *), 4516 unsigned int txqs, unsigned int rxqs); 4517 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4518 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4519 4520 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4521 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4522 count) 4523 4524 int register_netdev(struct net_device *dev); 4525 void unregister_netdev(struct net_device *dev); 4526 4527 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4528 4529 /* General hardware address lists handling functions */ 4530 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4531 struct netdev_hw_addr_list *from_list, int addr_len); 4532 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4533 struct netdev_hw_addr_list *from_list, int addr_len); 4534 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4535 struct net_device *dev, 4536 int (*sync)(struct net_device *, const unsigned char *), 4537 int (*unsync)(struct net_device *, 4538 const unsigned char *)); 4539 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4540 struct net_device *dev, 4541 int (*sync)(struct net_device *, 4542 const unsigned char *, int), 4543 int (*unsync)(struct net_device *, 4544 const unsigned char *, int)); 4545 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4546 struct net_device *dev, 4547 int (*unsync)(struct net_device *, 4548 const unsigned char *, int)); 4549 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4550 struct net_device *dev, 4551 int (*unsync)(struct net_device *, 4552 const unsigned char *)); 4553 void __hw_addr_init(struct netdev_hw_addr_list *list); 4554 4555 /* Functions used for device addresses handling */ 4556 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4557 const void *addr, size_t len); 4558 4559 static inline void 4560 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4561 { 4562 dev_addr_mod(dev, 0, addr, len); 4563 } 4564 4565 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4566 { 4567 __dev_addr_set(dev, addr, dev->addr_len); 4568 } 4569 4570 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4571 unsigned char addr_type); 4572 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4573 unsigned char addr_type); 4574 4575 /* Functions used for unicast addresses handling */ 4576 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4577 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4578 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4579 int dev_uc_sync(struct net_device *to, struct net_device *from); 4580 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4581 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4582 void dev_uc_flush(struct net_device *dev); 4583 void dev_uc_init(struct net_device *dev); 4584 4585 /** 4586 * __dev_uc_sync - Synchronize device's unicast list 4587 * @dev: device to sync 4588 * @sync: function to call if address should be added 4589 * @unsync: function to call if address should be removed 4590 * 4591 * Add newly added addresses to the interface, and release 4592 * addresses that have been deleted. 4593 */ 4594 static inline int __dev_uc_sync(struct net_device *dev, 4595 int (*sync)(struct net_device *, 4596 const unsigned char *), 4597 int (*unsync)(struct net_device *, 4598 const unsigned char *)) 4599 { 4600 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4601 } 4602 4603 /** 4604 * __dev_uc_unsync - Remove synchronized addresses from device 4605 * @dev: device to sync 4606 * @unsync: function to call if address should be removed 4607 * 4608 * Remove all addresses that were added to the device by dev_uc_sync(). 4609 */ 4610 static inline void __dev_uc_unsync(struct net_device *dev, 4611 int (*unsync)(struct net_device *, 4612 const unsigned char *)) 4613 { 4614 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4615 } 4616 4617 /* Functions used for multicast addresses handling */ 4618 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4619 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4620 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4621 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4622 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4623 int dev_mc_sync(struct net_device *to, struct net_device *from); 4624 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4625 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4626 void dev_mc_flush(struct net_device *dev); 4627 void dev_mc_init(struct net_device *dev); 4628 4629 /** 4630 * __dev_mc_sync - Synchronize device's multicast list 4631 * @dev: device to sync 4632 * @sync: function to call if address should be added 4633 * @unsync: function to call if address should be removed 4634 * 4635 * Add newly added addresses to the interface, and release 4636 * addresses that have been deleted. 4637 */ 4638 static inline int __dev_mc_sync(struct net_device *dev, 4639 int (*sync)(struct net_device *, 4640 const unsigned char *), 4641 int (*unsync)(struct net_device *, 4642 const unsigned char *)) 4643 { 4644 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4645 } 4646 4647 /** 4648 * __dev_mc_unsync - Remove synchronized addresses from device 4649 * @dev: device to sync 4650 * @unsync: function to call if address should be removed 4651 * 4652 * Remove all addresses that were added to the device by dev_mc_sync(). 4653 */ 4654 static inline void __dev_mc_unsync(struct net_device *dev, 4655 int (*unsync)(struct net_device *, 4656 const unsigned char *)) 4657 { 4658 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4659 } 4660 4661 /* Functions used for secondary unicast and multicast support */ 4662 void dev_set_rx_mode(struct net_device *dev); 4663 int dev_set_promiscuity(struct net_device *dev, int inc); 4664 int dev_set_allmulti(struct net_device *dev, int inc); 4665 void netdev_state_change(struct net_device *dev); 4666 void __netdev_notify_peers(struct net_device *dev); 4667 void netdev_notify_peers(struct net_device *dev); 4668 void netdev_features_change(struct net_device *dev); 4669 /* Load a device via the kmod */ 4670 void dev_load(struct net *net, const char *name); 4671 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4672 struct rtnl_link_stats64 *storage); 4673 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4674 const struct net_device_stats *netdev_stats); 4675 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4676 const struct pcpu_sw_netstats __percpu *netstats); 4677 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4678 4679 enum { 4680 NESTED_SYNC_IMM_BIT, 4681 NESTED_SYNC_TODO_BIT, 4682 }; 4683 4684 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4685 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4686 4687 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4688 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4689 4690 struct netdev_nested_priv { 4691 unsigned char flags; 4692 void *data; 4693 }; 4694 4695 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4696 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4697 struct list_head **iter); 4698 4699 /* iterate through upper list, must be called under RCU read lock */ 4700 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4701 for (iter = &(dev)->adj_list.upper, \ 4702 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4703 updev; \ 4704 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4705 4706 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4707 int (*fn)(struct net_device *upper_dev, 4708 struct netdev_nested_priv *priv), 4709 struct netdev_nested_priv *priv); 4710 4711 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4712 struct net_device *upper_dev); 4713 4714 bool netdev_has_any_upper_dev(struct net_device *dev); 4715 4716 void *netdev_lower_get_next_private(struct net_device *dev, 4717 struct list_head **iter); 4718 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4719 struct list_head **iter); 4720 4721 #define netdev_for_each_lower_private(dev, priv, iter) \ 4722 for (iter = (dev)->adj_list.lower.next, \ 4723 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4724 priv; \ 4725 priv = netdev_lower_get_next_private(dev, &(iter))) 4726 4727 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4728 for (iter = &(dev)->adj_list.lower, \ 4729 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4730 priv; \ 4731 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4732 4733 void *netdev_lower_get_next(struct net_device *dev, 4734 struct list_head **iter); 4735 4736 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4737 for (iter = (dev)->adj_list.lower.next, \ 4738 ldev = netdev_lower_get_next(dev, &(iter)); \ 4739 ldev; \ 4740 ldev = netdev_lower_get_next(dev, &(iter))) 4741 4742 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4743 struct list_head **iter); 4744 int netdev_walk_all_lower_dev(struct net_device *dev, 4745 int (*fn)(struct net_device *lower_dev, 4746 struct netdev_nested_priv *priv), 4747 struct netdev_nested_priv *priv); 4748 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4749 int (*fn)(struct net_device *lower_dev, 4750 struct netdev_nested_priv *priv), 4751 struct netdev_nested_priv *priv); 4752 4753 void *netdev_adjacent_get_private(struct list_head *adj_list); 4754 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4755 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4756 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4757 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4758 struct netlink_ext_ack *extack); 4759 int netdev_master_upper_dev_link(struct net_device *dev, 4760 struct net_device *upper_dev, 4761 void *upper_priv, void *upper_info, 4762 struct netlink_ext_ack *extack); 4763 void netdev_upper_dev_unlink(struct net_device *dev, 4764 struct net_device *upper_dev); 4765 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4766 struct net_device *new_dev, 4767 struct net_device *dev, 4768 struct netlink_ext_ack *extack); 4769 void netdev_adjacent_change_commit(struct net_device *old_dev, 4770 struct net_device *new_dev, 4771 struct net_device *dev); 4772 void netdev_adjacent_change_abort(struct net_device *old_dev, 4773 struct net_device *new_dev, 4774 struct net_device *dev); 4775 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4776 void *netdev_lower_dev_get_private(struct net_device *dev, 4777 struct net_device *lower_dev); 4778 void netdev_lower_state_changed(struct net_device *lower_dev, 4779 void *lower_state_info); 4780 4781 /* RSS keys are 40 or 52 bytes long */ 4782 #define NETDEV_RSS_KEY_LEN 52 4783 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4784 void netdev_rss_key_fill(void *buffer, size_t len); 4785 4786 int skb_checksum_help(struct sk_buff *skb); 4787 int skb_crc32c_csum_help(struct sk_buff *skb); 4788 int skb_csum_hwoffload_help(struct sk_buff *skb, 4789 const netdev_features_t features); 4790 4791 struct netdev_bonding_info { 4792 ifslave slave; 4793 ifbond master; 4794 }; 4795 4796 struct netdev_notifier_bonding_info { 4797 struct netdev_notifier_info info; /* must be first */ 4798 struct netdev_bonding_info bonding_info; 4799 }; 4800 4801 void netdev_bonding_info_change(struct net_device *dev, 4802 struct netdev_bonding_info *bonding_info); 4803 4804 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4805 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4806 #else 4807 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4808 const void *data) 4809 { 4810 } 4811 #endif 4812 4813 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4814 4815 static inline bool can_checksum_protocol(netdev_features_t features, 4816 __be16 protocol) 4817 { 4818 if (protocol == htons(ETH_P_FCOE)) 4819 return !!(features & NETIF_F_FCOE_CRC); 4820 4821 /* Assume this is an IP checksum (not SCTP CRC) */ 4822 4823 if (features & NETIF_F_HW_CSUM) { 4824 /* Can checksum everything */ 4825 return true; 4826 } 4827 4828 switch (protocol) { 4829 case htons(ETH_P_IP): 4830 return !!(features & NETIF_F_IP_CSUM); 4831 case htons(ETH_P_IPV6): 4832 return !!(features & NETIF_F_IPV6_CSUM); 4833 default: 4834 return false; 4835 } 4836 } 4837 4838 #ifdef CONFIG_BUG 4839 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4840 #else 4841 static inline void netdev_rx_csum_fault(struct net_device *dev, 4842 struct sk_buff *skb) 4843 { 4844 } 4845 #endif 4846 /* rx skb timestamps */ 4847 void net_enable_timestamp(void); 4848 void net_disable_timestamp(void); 4849 4850 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4851 const struct skb_shared_hwtstamps *hwtstamps, 4852 bool cycles) 4853 { 4854 const struct net_device_ops *ops = dev->netdev_ops; 4855 4856 if (ops->ndo_get_tstamp) 4857 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4858 4859 return hwtstamps->hwtstamp; 4860 } 4861 4862 #ifndef CONFIG_PREEMPT_RT 4863 static inline void netdev_xmit_set_more(bool more) 4864 { 4865 __this_cpu_write(softnet_data.xmit.more, more); 4866 } 4867 4868 static inline bool netdev_xmit_more(void) 4869 { 4870 return __this_cpu_read(softnet_data.xmit.more); 4871 } 4872 #else 4873 static inline void netdev_xmit_set_more(bool more) 4874 { 4875 current->net_xmit.more = more; 4876 } 4877 4878 static inline bool netdev_xmit_more(void) 4879 { 4880 return current->net_xmit.more; 4881 } 4882 #endif 4883 4884 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4885 struct sk_buff *skb, struct net_device *dev, 4886 bool more) 4887 { 4888 netdev_xmit_set_more(more); 4889 return ops->ndo_start_xmit(skb, dev); 4890 } 4891 4892 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4893 struct netdev_queue *txq, bool more) 4894 { 4895 const struct net_device_ops *ops = dev->netdev_ops; 4896 netdev_tx_t rc; 4897 4898 rc = __netdev_start_xmit(ops, skb, dev, more); 4899 if (rc == NETDEV_TX_OK) 4900 txq_trans_update(txq); 4901 4902 return rc; 4903 } 4904 4905 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4906 const void *ns); 4907 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4908 const void *ns); 4909 4910 extern const struct kobj_ns_type_operations net_ns_type_operations; 4911 4912 const char *netdev_drivername(const struct net_device *dev); 4913 4914 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4915 netdev_features_t f2) 4916 { 4917 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4918 if (f1 & NETIF_F_HW_CSUM) 4919 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4920 else 4921 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4922 } 4923 4924 return f1 & f2; 4925 } 4926 4927 static inline netdev_features_t netdev_get_wanted_features( 4928 struct net_device *dev) 4929 { 4930 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4931 } 4932 netdev_features_t netdev_increment_features(netdev_features_t all, 4933 netdev_features_t one, netdev_features_t mask); 4934 4935 /* Allow TSO being used on stacked device : 4936 * Performing the GSO segmentation before last device 4937 * is a performance improvement. 4938 */ 4939 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4940 netdev_features_t mask) 4941 { 4942 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4943 } 4944 4945 int __netdev_update_features(struct net_device *dev); 4946 void netdev_update_features(struct net_device *dev); 4947 void netdev_change_features(struct net_device *dev); 4948 4949 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4950 struct net_device *dev); 4951 4952 netdev_features_t passthru_features_check(struct sk_buff *skb, 4953 struct net_device *dev, 4954 netdev_features_t features); 4955 netdev_features_t netif_skb_features(struct sk_buff *skb); 4956 void skb_warn_bad_offload(const struct sk_buff *skb); 4957 4958 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4959 { 4960 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4961 4962 /* check flags correspondence */ 4963 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4964 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4965 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4966 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4967 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4968 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4969 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4970 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4971 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4972 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4973 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4974 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4975 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4976 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4977 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4978 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4979 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4980 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4981 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4982 4983 return (features & feature) == feature; 4984 } 4985 4986 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4987 { 4988 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4989 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4990 } 4991 4992 static inline bool netif_needs_gso(struct sk_buff *skb, 4993 netdev_features_t features) 4994 { 4995 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4996 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4997 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4998 } 4999 5000 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5001 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5002 void netif_inherit_tso_max(struct net_device *to, 5003 const struct net_device *from); 5004 5005 static inline bool netif_is_macsec(const struct net_device *dev) 5006 { 5007 return dev->priv_flags & IFF_MACSEC; 5008 } 5009 5010 static inline bool netif_is_macvlan(const struct net_device *dev) 5011 { 5012 return dev->priv_flags & IFF_MACVLAN; 5013 } 5014 5015 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5016 { 5017 return dev->priv_flags & IFF_MACVLAN_PORT; 5018 } 5019 5020 static inline bool netif_is_bond_master(const struct net_device *dev) 5021 { 5022 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5023 } 5024 5025 static inline bool netif_is_bond_slave(const struct net_device *dev) 5026 { 5027 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5028 } 5029 5030 static inline bool netif_supports_nofcs(struct net_device *dev) 5031 { 5032 return dev->priv_flags & IFF_SUPP_NOFCS; 5033 } 5034 5035 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5036 { 5037 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5038 } 5039 5040 static inline bool netif_is_l3_master(const struct net_device *dev) 5041 { 5042 return dev->priv_flags & IFF_L3MDEV_MASTER; 5043 } 5044 5045 static inline bool netif_is_l3_slave(const struct net_device *dev) 5046 { 5047 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5048 } 5049 5050 static inline int dev_sdif(const struct net_device *dev) 5051 { 5052 #ifdef CONFIG_NET_L3_MASTER_DEV 5053 if (netif_is_l3_slave(dev)) 5054 return dev->ifindex; 5055 #endif 5056 return 0; 5057 } 5058 5059 static inline bool netif_is_bridge_master(const struct net_device *dev) 5060 { 5061 return dev->priv_flags & IFF_EBRIDGE; 5062 } 5063 5064 static inline bool netif_is_bridge_port(const struct net_device *dev) 5065 { 5066 return dev->priv_flags & IFF_BRIDGE_PORT; 5067 } 5068 5069 static inline bool netif_is_ovs_master(const struct net_device *dev) 5070 { 5071 return dev->priv_flags & IFF_OPENVSWITCH; 5072 } 5073 5074 static inline bool netif_is_ovs_port(const struct net_device *dev) 5075 { 5076 return dev->priv_flags & IFF_OVS_DATAPATH; 5077 } 5078 5079 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5080 { 5081 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5082 } 5083 5084 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5085 { 5086 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5087 } 5088 5089 static inline bool netif_is_team_master(const struct net_device *dev) 5090 { 5091 return dev->priv_flags & IFF_TEAM; 5092 } 5093 5094 static inline bool netif_is_team_port(const struct net_device *dev) 5095 { 5096 return dev->priv_flags & IFF_TEAM_PORT; 5097 } 5098 5099 static inline bool netif_is_lag_master(const struct net_device *dev) 5100 { 5101 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5102 } 5103 5104 static inline bool netif_is_lag_port(const struct net_device *dev) 5105 { 5106 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5107 } 5108 5109 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5110 { 5111 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5112 } 5113 5114 static inline bool netif_is_failover(const struct net_device *dev) 5115 { 5116 return dev->priv_flags & IFF_FAILOVER; 5117 } 5118 5119 static inline bool netif_is_failover_slave(const struct net_device *dev) 5120 { 5121 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5122 } 5123 5124 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5125 static inline void netif_keep_dst(struct net_device *dev) 5126 { 5127 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5128 } 5129 5130 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5131 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5132 { 5133 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5134 return netif_is_macsec(dev); 5135 } 5136 5137 extern struct pernet_operations __net_initdata loopback_net_ops; 5138 5139 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5140 5141 /* netdev_printk helpers, similar to dev_printk */ 5142 5143 static inline const char *netdev_name(const struct net_device *dev) 5144 { 5145 if (!dev->name[0] || strchr(dev->name, '%')) 5146 return "(unnamed net_device)"; 5147 return dev->name; 5148 } 5149 5150 static inline const char *netdev_reg_state(const struct net_device *dev) 5151 { 5152 u8 reg_state = READ_ONCE(dev->reg_state); 5153 5154 switch (reg_state) { 5155 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5156 case NETREG_REGISTERED: return ""; 5157 case NETREG_UNREGISTERING: return " (unregistering)"; 5158 case NETREG_UNREGISTERED: return " (unregistered)"; 5159 case NETREG_RELEASED: return " (released)"; 5160 case NETREG_DUMMY: return " (dummy)"; 5161 } 5162 5163 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5164 return " (unknown)"; 5165 } 5166 5167 #define MODULE_ALIAS_NETDEV(device) \ 5168 MODULE_ALIAS("netdev-" device) 5169 5170 /* 5171 * netdev_WARN() acts like dev_printk(), but with the key difference 5172 * of using a WARN/WARN_ON to get the message out, including the 5173 * file/line information and a backtrace. 5174 */ 5175 #define netdev_WARN(dev, format, args...) \ 5176 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5177 netdev_reg_state(dev), ##args) 5178 5179 #define netdev_WARN_ONCE(dev, format, args...) \ 5180 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5181 netdev_reg_state(dev), ##args) 5182 5183 /* 5184 * The list of packet types we will receive (as opposed to discard) 5185 * and the routines to invoke. 5186 * 5187 * Why 16. Because with 16 the only overlap we get on a hash of the 5188 * low nibble of the protocol value is RARP/SNAP/X.25. 5189 * 5190 * 0800 IP 5191 * 0001 802.3 5192 * 0002 AX.25 5193 * 0004 802.2 5194 * 8035 RARP 5195 * 0005 SNAP 5196 * 0805 X.25 5197 * 0806 ARP 5198 * 8137 IPX 5199 * 0009 Localtalk 5200 * 86DD IPv6 5201 */ 5202 #define PTYPE_HASH_SIZE (16) 5203 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5204 5205 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5206 5207 extern struct net_device *blackhole_netdev; 5208 5209 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5210 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5211 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5212 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5213 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5214 5215 #endif /* _LINUX_NETDEVICE_H */ 5216