xref: /linux-6.15/include/linux/netdevice.h (revision ab95465c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct ethtool_ops;
57 struct phy_device;
58 struct dsa_port;
59 struct ip_tunnel_parm;
60 struct macsec_context;
61 struct macsec_ops;
62 
63 struct sfp_bus;
64 /* 802.11 specific */
65 struct wireless_dev;
66 /* 802.15.4 specific */
67 struct wpan_dev;
68 struct mpls_dev;
69 /* UDP Tunnel offloads */
70 struct udp_tunnel_info;
71 struct udp_tunnel_nic_info;
72 struct udp_tunnel_nic;
73 struct bpf_prog;
74 struct xdp_buff;
75 
76 void synchronize_net(void);
77 void netdev_set_default_ethtool_ops(struct net_device *dev,
78 				    const struct ethtool_ops *ops);
79 
80 /* Backlog congestion levels */
81 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
82 #define NET_RX_DROP		1	/* packet dropped */
83 
84 #define MAX_NEST_DEV 8
85 
86 /*
87  * Transmit return codes: transmit return codes originate from three different
88  * namespaces:
89  *
90  * - qdisc return codes
91  * - driver transmit return codes
92  * - errno values
93  *
94  * Drivers are allowed to return any one of those in their hard_start_xmit()
95  * function. Real network devices commonly used with qdiscs should only return
96  * the driver transmit return codes though - when qdiscs are used, the actual
97  * transmission happens asynchronously, so the value is not propagated to
98  * higher layers. Virtual network devices transmit synchronously; in this case
99  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
100  * others are propagated to higher layers.
101  */
102 
103 /* qdisc ->enqueue() return codes. */
104 #define NET_XMIT_SUCCESS	0x00
105 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
106 #define NET_XMIT_CN		0x02	/* congestion notification	*/
107 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
108 
109 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
110  * indicates that the device will soon be dropping packets, or already drops
111  * some packets of the same priority; prompting us to send less aggressively. */
112 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
113 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
114 
115 /* Driver transmit return codes */
116 #define NETDEV_TX_MASK		0xf0
117 
118 enum netdev_tx {
119 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
120 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
121 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
122 };
123 typedef enum netdev_tx netdev_tx_t;
124 
125 /*
126  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
127  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
128  */
129 static inline bool dev_xmit_complete(int rc)
130 {
131 	/*
132 	 * Positive cases with an skb consumed by a driver:
133 	 * - successful transmission (rc == NETDEV_TX_OK)
134 	 * - error while transmitting (rc < 0)
135 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
136 	 */
137 	if (likely(rc < NET_XMIT_MASK))
138 		return true;
139 
140 	return false;
141 }
142 
143 /*
144  *	Compute the worst-case header length according to the protocols
145  *	used.
146  */
147 
148 #if defined(CONFIG_HYPERV_NET)
149 # define LL_MAX_HEADER 128
150 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
151 # if defined(CONFIG_MAC80211_MESH)
152 #  define LL_MAX_HEADER 128
153 # else
154 #  define LL_MAX_HEADER 96
155 # endif
156 #else
157 # define LL_MAX_HEADER 32
158 #endif
159 
160 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
161     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
162 #define MAX_HEADER LL_MAX_HEADER
163 #else
164 #define MAX_HEADER (LL_MAX_HEADER + 48)
165 #endif
166 
167 /*
168  *	Old network device statistics. Fields are native words
169  *	(unsigned long) so they can be read and written atomically.
170  */
171 
172 struct net_device_stats {
173 	unsigned long	rx_packets;
174 	unsigned long	tx_packets;
175 	unsigned long	rx_bytes;
176 	unsigned long	tx_bytes;
177 	unsigned long	rx_errors;
178 	unsigned long	tx_errors;
179 	unsigned long	rx_dropped;
180 	unsigned long	tx_dropped;
181 	unsigned long	multicast;
182 	unsigned long	collisions;
183 	unsigned long	rx_length_errors;
184 	unsigned long	rx_over_errors;
185 	unsigned long	rx_crc_errors;
186 	unsigned long	rx_frame_errors;
187 	unsigned long	rx_fifo_errors;
188 	unsigned long	rx_missed_errors;
189 	unsigned long	tx_aborted_errors;
190 	unsigned long	tx_carrier_errors;
191 	unsigned long	tx_fifo_errors;
192 	unsigned long	tx_heartbeat_errors;
193 	unsigned long	tx_window_errors;
194 	unsigned long	rx_compressed;
195 	unsigned long	tx_compressed;
196 };
197 
198 /* per-cpu stats, allocated on demand.
199  * Try to fit them in a single cache line, for dev_get_stats() sake.
200  */
201 struct net_device_core_stats {
202 	local_t		rx_dropped;
203 	local_t		tx_dropped;
204 	local_t		rx_nohandler;
205 } __aligned(4 * sizeof(local_t));
206 
207 #include <linux/cache.h>
208 #include <linux/skbuff.h>
209 
210 #ifdef CONFIG_RPS
211 #include <linux/static_key.h>
212 extern struct static_key_false rps_needed;
213 extern struct static_key_false rfs_needed;
214 #endif
215 
216 struct neighbour;
217 struct neigh_parms;
218 struct sk_buff;
219 
220 struct netdev_hw_addr {
221 	struct list_head	list;
222 	struct rb_node		node;
223 	unsigned char		addr[MAX_ADDR_LEN];
224 	unsigned char		type;
225 #define NETDEV_HW_ADDR_T_LAN		1
226 #define NETDEV_HW_ADDR_T_SAN		2
227 #define NETDEV_HW_ADDR_T_UNICAST	3
228 #define NETDEV_HW_ADDR_T_MULTICAST	4
229 	bool			global_use;
230 	int			sync_cnt;
231 	int			refcount;
232 	int			synced;
233 	struct rcu_head		rcu_head;
234 };
235 
236 struct netdev_hw_addr_list {
237 	struct list_head	list;
238 	int			count;
239 
240 	/* Auxiliary tree for faster lookup on addition and deletion */
241 	struct rb_root		tree;
242 };
243 
244 #define netdev_hw_addr_list_count(l) ((l)->count)
245 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
246 #define netdev_hw_addr_list_for_each(ha, l) \
247 	list_for_each_entry(ha, &(l)->list, list)
248 
249 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
250 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
251 #define netdev_for_each_uc_addr(ha, dev) \
252 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
253 
254 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
255 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
256 #define netdev_for_each_mc_addr(ha, dev) \
257 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
258 
259 struct hh_cache {
260 	unsigned int	hh_len;
261 	seqlock_t	hh_lock;
262 
263 	/* cached hardware header; allow for machine alignment needs.        */
264 #define HH_DATA_MOD	16
265 #define HH_DATA_OFF(__len) \
266 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
267 #define HH_DATA_ALIGN(__len) \
268 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
269 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
270 };
271 
272 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
273  * Alternative is:
274  *   dev->hard_header_len ? (dev->hard_header_len +
275  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
276  *
277  * We could use other alignment values, but we must maintain the
278  * relationship HH alignment <= LL alignment.
279  */
280 #define LL_RESERVED_SPACE(dev) \
281 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
282 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
283 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 
285 struct header_ops {
286 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
287 			   unsigned short type, const void *daddr,
288 			   const void *saddr, unsigned int len);
289 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
290 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
291 	void	(*cache_update)(struct hh_cache *hh,
292 				const struct net_device *dev,
293 				const unsigned char *haddr);
294 	bool	(*validate)(const char *ll_header, unsigned int len);
295 	__be16	(*parse_protocol)(const struct sk_buff *skb);
296 };
297 
298 /* These flag bits are private to the generic network queueing
299  * layer; they may not be explicitly referenced by any other
300  * code.
301  */
302 
303 enum netdev_state_t {
304 	__LINK_STATE_START,
305 	__LINK_STATE_PRESENT,
306 	__LINK_STATE_NOCARRIER,
307 	__LINK_STATE_LINKWATCH_PENDING,
308 	__LINK_STATE_DORMANT,
309 	__LINK_STATE_TESTING,
310 };
311 
312 struct gro_list {
313 	struct list_head	list;
314 	int			count;
315 };
316 
317 /*
318  * size of gro hash buckets, must less than bit number of
319  * napi_struct::gro_bitmask
320  */
321 #define GRO_HASH_BUCKETS	8
322 
323 /*
324  * Structure for NAPI scheduling similar to tasklet but with weighting
325  */
326 struct napi_struct {
327 	/* The poll_list must only be managed by the entity which
328 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
329 	 * whoever atomically sets that bit can add this napi_struct
330 	 * to the per-CPU poll_list, and whoever clears that bit
331 	 * can remove from the list right before clearing the bit.
332 	 */
333 	struct list_head	poll_list;
334 
335 	unsigned long		state;
336 	int			weight;
337 	int			defer_hard_irqs_count;
338 	unsigned long		gro_bitmask;
339 	int			(*poll)(struct napi_struct *, int);
340 #ifdef CONFIG_NETPOLL
341 	int			poll_owner;
342 #endif
343 	struct net_device	*dev;
344 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
345 	struct sk_buff		*skb;
346 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
347 	int			rx_count; /* length of rx_list */
348 	struct hrtimer		timer;
349 	struct list_head	dev_list;
350 	struct hlist_node	napi_hash_node;
351 	unsigned int		napi_id;
352 	struct task_struct	*thread;
353 };
354 
355 enum {
356 	NAPI_STATE_SCHED,		/* Poll is scheduled */
357 	NAPI_STATE_MISSED,		/* reschedule a napi */
358 	NAPI_STATE_DISABLE,		/* Disable pending */
359 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
360 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
361 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
362 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
363 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
364 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
365 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
366 };
367 
368 enum {
369 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
370 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
371 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
372 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
373 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
374 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
375 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
376 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
377 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
378 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
379 };
380 
381 enum gro_result {
382 	GRO_MERGED,
383 	GRO_MERGED_FREE,
384 	GRO_HELD,
385 	GRO_NORMAL,
386 	GRO_CONSUMED,
387 };
388 typedef enum gro_result gro_result_t;
389 
390 /*
391  * enum rx_handler_result - Possible return values for rx_handlers.
392  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
393  * further.
394  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
395  * case skb->dev was changed by rx_handler.
396  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
397  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
398  *
399  * rx_handlers are functions called from inside __netif_receive_skb(), to do
400  * special processing of the skb, prior to delivery to protocol handlers.
401  *
402  * Currently, a net_device can only have a single rx_handler registered. Trying
403  * to register a second rx_handler will return -EBUSY.
404  *
405  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
406  * To unregister a rx_handler on a net_device, use
407  * netdev_rx_handler_unregister().
408  *
409  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
410  * do with the skb.
411  *
412  * If the rx_handler consumed the skb in some way, it should return
413  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
414  * the skb to be delivered in some other way.
415  *
416  * If the rx_handler changed skb->dev, to divert the skb to another
417  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
418  * new device will be called if it exists.
419  *
420  * If the rx_handler decides the skb should be ignored, it should return
421  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
422  * are registered on exact device (ptype->dev == skb->dev).
423  *
424  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
425  * delivered, it should return RX_HANDLER_PASS.
426  *
427  * A device without a registered rx_handler will behave as if rx_handler
428  * returned RX_HANDLER_PASS.
429  */
430 
431 enum rx_handler_result {
432 	RX_HANDLER_CONSUMED,
433 	RX_HANDLER_ANOTHER,
434 	RX_HANDLER_EXACT,
435 	RX_HANDLER_PASS,
436 };
437 typedef enum rx_handler_result rx_handler_result_t;
438 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
439 
440 void __napi_schedule(struct napi_struct *n);
441 void __napi_schedule_irqoff(struct napi_struct *n);
442 
443 static inline bool napi_disable_pending(struct napi_struct *n)
444 {
445 	return test_bit(NAPI_STATE_DISABLE, &n->state);
446 }
447 
448 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
449 {
450 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
451 }
452 
453 bool napi_schedule_prep(struct napi_struct *n);
454 
455 /**
456  *	napi_schedule - schedule NAPI poll
457  *	@n: NAPI context
458  *
459  * Schedule NAPI poll routine to be called if it is not already
460  * running.
461  */
462 static inline void napi_schedule(struct napi_struct *n)
463 {
464 	if (napi_schedule_prep(n))
465 		__napi_schedule(n);
466 }
467 
468 /**
469  *	napi_schedule_irqoff - schedule NAPI poll
470  *	@n: NAPI context
471  *
472  * Variant of napi_schedule(), assuming hard irqs are masked.
473  */
474 static inline void napi_schedule_irqoff(struct napi_struct *n)
475 {
476 	if (napi_schedule_prep(n))
477 		__napi_schedule_irqoff(n);
478 }
479 
480 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
481 static inline bool napi_reschedule(struct napi_struct *napi)
482 {
483 	if (napi_schedule_prep(napi)) {
484 		__napi_schedule(napi);
485 		return true;
486 	}
487 	return false;
488 }
489 
490 bool napi_complete_done(struct napi_struct *n, int work_done);
491 /**
492  *	napi_complete - NAPI processing complete
493  *	@n: NAPI context
494  *
495  * Mark NAPI processing as complete.
496  * Consider using napi_complete_done() instead.
497  * Return false if device should avoid rearming interrupts.
498  */
499 static inline bool napi_complete(struct napi_struct *n)
500 {
501 	return napi_complete_done(n, 0);
502 }
503 
504 int dev_set_threaded(struct net_device *dev, bool threaded);
505 
506 /**
507  *	napi_disable - prevent NAPI from scheduling
508  *	@n: NAPI context
509  *
510  * Stop NAPI from being scheduled on this context.
511  * Waits till any outstanding processing completes.
512  */
513 void napi_disable(struct napi_struct *n);
514 
515 void napi_enable(struct napi_struct *n);
516 
517 /**
518  *	napi_synchronize - wait until NAPI is not running
519  *	@n: NAPI context
520  *
521  * Wait until NAPI is done being scheduled on this context.
522  * Waits till any outstanding processing completes but
523  * does not disable future activations.
524  */
525 static inline void napi_synchronize(const struct napi_struct *n)
526 {
527 	if (IS_ENABLED(CONFIG_SMP))
528 		while (test_bit(NAPI_STATE_SCHED, &n->state))
529 			msleep(1);
530 	else
531 		barrier();
532 }
533 
534 /**
535  *	napi_if_scheduled_mark_missed - if napi is running, set the
536  *	NAPIF_STATE_MISSED
537  *	@n: NAPI context
538  *
539  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
540  * NAPI is scheduled.
541  **/
542 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
543 {
544 	unsigned long val, new;
545 
546 	do {
547 		val = READ_ONCE(n->state);
548 		if (val & NAPIF_STATE_DISABLE)
549 			return true;
550 
551 		if (!(val & NAPIF_STATE_SCHED))
552 			return false;
553 
554 		new = val | NAPIF_STATE_MISSED;
555 	} while (cmpxchg(&n->state, val, new) != val);
556 
557 	return true;
558 }
559 
560 enum netdev_queue_state_t {
561 	__QUEUE_STATE_DRV_XOFF,
562 	__QUEUE_STATE_STACK_XOFF,
563 	__QUEUE_STATE_FROZEN,
564 };
565 
566 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
567 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
568 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
569 
570 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
572 					QUEUE_STATE_FROZEN)
573 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
574 					QUEUE_STATE_FROZEN)
575 
576 /*
577  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
578  * netif_tx_* functions below are used to manipulate this flag.  The
579  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
580  * queue independently.  The netif_xmit_*stopped functions below are called
581  * to check if the queue has been stopped by the driver or stack (either
582  * of the XOFF bits are set in the state).  Drivers should not need to call
583  * netif_xmit*stopped functions, they should only be using netif_tx_*.
584  */
585 
586 struct netdev_queue {
587 /*
588  * read-mostly part
589  */
590 	struct net_device	*dev;
591 	netdevice_tracker	dev_tracker;
592 
593 	struct Qdisc __rcu	*qdisc;
594 	struct Qdisc		*qdisc_sleeping;
595 #ifdef CONFIG_SYSFS
596 	struct kobject		kobj;
597 #endif
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 	int			numa_node;
600 #endif
601 	unsigned long		tx_maxrate;
602 	/*
603 	 * Number of TX timeouts for this queue
604 	 * (/sys/class/net/DEV/Q/trans_timeout)
605 	 */
606 	atomic_long_t		trans_timeout;
607 
608 	/* Subordinate device that the queue has been assigned to */
609 	struct net_device	*sb_dev;
610 #ifdef CONFIG_XDP_SOCKETS
611 	struct xsk_buff_pool    *pool;
612 #endif
613 /*
614  * write-mostly part
615  */
616 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
617 	int			xmit_lock_owner;
618 	/*
619 	 * Time (in jiffies) of last Tx
620 	 */
621 	unsigned long		trans_start;
622 
623 	unsigned long		state;
624 
625 #ifdef CONFIG_BQL
626 	struct dql		dql;
627 #endif
628 } ____cacheline_aligned_in_smp;
629 
630 extern int sysctl_fb_tunnels_only_for_init_net;
631 extern int sysctl_devconf_inherit_init_net;
632 
633 /*
634  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
635  *                                     == 1 : For initns only
636  *                                     == 2 : For none.
637  */
638 static inline bool net_has_fallback_tunnels(const struct net *net)
639 {
640 	return !IS_ENABLED(CONFIG_SYSCTL) ||
641 	       !sysctl_fb_tunnels_only_for_init_net ||
642 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
643 }
644 
645 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
646 {
647 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 	return q->numa_node;
649 #else
650 	return NUMA_NO_NODE;
651 #endif
652 }
653 
654 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
655 {
656 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
657 	q->numa_node = node;
658 #endif
659 }
660 
661 #ifdef CONFIG_RPS
662 /*
663  * This structure holds an RPS map which can be of variable length.  The
664  * map is an array of CPUs.
665  */
666 struct rps_map {
667 	unsigned int len;
668 	struct rcu_head rcu;
669 	u16 cpus[];
670 };
671 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
672 
673 /*
674  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
675  * tail pointer for that CPU's input queue at the time of last enqueue, and
676  * a hardware filter index.
677  */
678 struct rps_dev_flow {
679 	u16 cpu;
680 	u16 filter;
681 	unsigned int last_qtail;
682 };
683 #define RPS_NO_FILTER 0xffff
684 
685 /*
686  * The rps_dev_flow_table structure contains a table of flow mappings.
687  */
688 struct rps_dev_flow_table {
689 	unsigned int mask;
690 	struct rcu_head rcu;
691 	struct rps_dev_flow flows[];
692 };
693 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
694     ((_num) * sizeof(struct rps_dev_flow)))
695 
696 /*
697  * The rps_sock_flow_table contains mappings of flows to the last CPU
698  * on which they were processed by the application (set in recvmsg).
699  * Each entry is a 32bit value. Upper part is the high-order bits
700  * of flow hash, lower part is CPU number.
701  * rps_cpu_mask is used to partition the space, depending on number of
702  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
703  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
704  * meaning we use 32-6=26 bits for the hash.
705  */
706 struct rps_sock_flow_table {
707 	u32	mask;
708 
709 	u32	ents[] ____cacheline_aligned_in_smp;
710 };
711 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
712 
713 #define RPS_NO_CPU 0xffff
714 
715 extern u32 rps_cpu_mask;
716 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
717 
718 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
719 					u32 hash)
720 {
721 	if (table && hash) {
722 		unsigned int index = hash & table->mask;
723 		u32 val = hash & ~rps_cpu_mask;
724 
725 		/* We only give a hint, preemption can change CPU under us */
726 		val |= raw_smp_processor_id();
727 
728 		if (table->ents[index] != val)
729 			table->ents[index] = val;
730 	}
731 }
732 
733 #ifdef CONFIG_RFS_ACCEL
734 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
735 			 u16 filter_id);
736 #endif
737 #endif /* CONFIG_RPS */
738 
739 /* This structure contains an instance of an RX queue. */
740 struct netdev_rx_queue {
741 	struct xdp_rxq_info		xdp_rxq;
742 #ifdef CONFIG_RPS
743 	struct rps_map __rcu		*rps_map;
744 	struct rps_dev_flow_table __rcu	*rps_flow_table;
745 #endif
746 	struct kobject			kobj;
747 	struct net_device		*dev;
748 	netdevice_tracker		dev_tracker;
749 
750 #ifdef CONFIG_XDP_SOCKETS
751 	struct xsk_buff_pool            *pool;
752 #endif
753 } ____cacheline_aligned_in_smp;
754 
755 /*
756  * RX queue sysfs structures and functions.
757  */
758 struct rx_queue_attribute {
759 	struct attribute attr;
760 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
761 	ssize_t (*store)(struct netdev_rx_queue *queue,
762 			 const char *buf, size_t len);
763 };
764 
765 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
766 enum xps_map_type {
767 	XPS_CPUS = 0,
768 	XPS_RXQS,
769 	XPS_MAPS_MAX,
770 };
771 
772 #ifdef CONFIG_XPS
773 /*
774  * This structure holds an XPS map which can be of variable length.  The
775  * map is an array of queues.
776  */
777 struct xps_map {
778 	unsigned int len;
779 	unsigned int alloc_len;
780 	struct rcu_head rcu;
781 	u16 queues[];
782 };
783 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
784 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
785        - sizeof(struct xps_map)) / sizeof(u16))
786 
787 /*
788  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
789  *
790  * We keep track of the number of cpus/rxqs used when the struct is allocated,
791  * in nr_ids. This will help not accessing out-of-bound memory.
792  *
793  * We keep track of the number of traffic classes used when the struct is
794  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
795  * not crossing its upper bound, as the original dev->num_tc can be updated in
796  * the meantime.
797  */
798 struct xps_dev_maps {
799 	struct rcu_head rcu;
800 	unsigned int nr_ids;
801 	s16 num_tc;
802 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
803 };
804 
805 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
806 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
807 
808 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
809 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
810 
811 #endif /* CONFIG_XPS */
812 
813 #define TC_MAX_QUEUE	16
814 #define TC_BITMASK	15
815 /* HW offloaded queuing disciplines txq count and offset maps */
816 struct netdev_tc_txq {
817 	u16 count;
818 	u16 offset;
819 };
820 
821 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
822 /*
823  * This structure is to hold information about the device
824  * configured to run FCoE protocol stack.
825  */
826 struct netdev_fcoe_hbainfo {
827 	char	manufacturer[64];
828 	char	serial_number[64];
829 	char	hardware_version[64];
830 	char	driver_version[64];
831 	char	optionrom_version[64];
832 	char	firmware_version[64];
833 	char	model[256];
834 	char	model_description[256];
835 };
836 #endif
837 
838 #define MAX_PHYS_ITEM_ID_LEN 32
839 
840 /* This structure holds a unique identifier to identify some
841  * physical item (port for example) used by a netdevice.
842  */
843 struct netdev_phys_item_id {
844 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
845 	unsigned char id_len;
846 };
847 
848 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
849 					    struct netdev_phys_item_id *b)
850 {
851 	return a->id_len == b->id_len &&
852 	       memcmp(a->id, b->id, a->id_len) == 0;
853 }
854 
855 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
856 				       struct sk_buff *skb,
857 				       struct net_device *sb_dev);
858 
859 enum net_device_path_type {
860 	DEV_PATH_ETHERNET = 0,
861 	DEV_PATH_VLAN,
862 	DEV_PATH_BRIDGE,
863 	DEV_PATH_PPPOE,
864 	DEV_PATH_DSA,
865 };
866 
867 struct net_device_path {
868 	enum net_device_path_type	type;
869 	const struct net_device		*dev;
870 	union {
871 		struct {
872 			u16		id;
873 			__be16		proto;
874 			u8		h_dest[ETH_ALEN];
875 		} encap;
876 		struct {
877 			enum {
878 				DEV_PATH_BR_VLAN_KEEP,
879 				DEV_PATH_BR_VLAN_TAG,
880 				DEV_PATH_BR_VLAN_UNTAG,
881 				DEV_PATH_BR_VLAN_UNTAG_HW,
882 			}		vlan_mode;
883 			u16		vlan_id;
884 			__be16		vlan_proto;
885 		} bridge;
886 		struct {
887 			int port;
888 			u16 proto;
889 		} dsa;
890 	};
891 };
892 
893 #define NET_DEVICE_PATH_STACK_MAX	5
894 #define NET_DEVICE_PATH_VLAN_MAX	2
895 
896 struct net_device_path_stack {
897 	int			num_paths;
898 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
899 };
900 
901 struct net_device_path_ctx {
902 	const struct net_device *dev;
903 	const u8		*daddr;
904 
905 	int			num_vlans;
906 	struct {
907 		u16		id;
908 		__be16		proto;
909 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
910 };
911 
912 enum tc_setup_type {
913 	TC_SETUP_QDISC_MQPRIO,
914 	TC_SETUP_CLSU32,
915 	TC_SETUP_CLSFLOWER,
916 	TC_SETUP_CLSMATCHALL,
917 	TC_SETUP_CLSBPF,
918 	TC_SETUP_BLOCK,
919 	TC_SETUP_QDISC_CBS,
920 	TC_SETUP_QDISC_RED,
921 	TC_SETUP_QDISC_PRIO,
922 	TC_SETUP_QDISC_MQ,
923 	TC_SETUP_QDISC_ETF,
924 	TC_SETUP_ROOT_QDISC,
925 	TC_SETUP_QDISC_GRED,
926 	TC_SETUP_QDISC_TAPRIO,
927 	TC_SETUP_FT,
928 	TC_SETUP_QDISC_ETS,
929 	TC_SETUP_QDISC_TBF,
930 	TC_SETUP_QDISC_FIFO,
931 	TC_SETUP_QDISC_HTB,
932 	TC_SETUP_ACT,
933 };
934 
935 /* These structures hold the attributes of bpf state that are being passed
936  * to the netdevice through the bpf op.
937  */
938 enum bpf_netdev_command {
939 	/* Set or clear a bpf program used in the earliest stages of packet
940 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
941 	 * is responsible for calling bpf_prog_put on any old progs that are
942 	 * stored. In case of error, the callee need not release the new prog
943 	 * reference, but on success it takes ownership and must bpf_prog_put
944 	 * when it is no longer used.
945 	 */
946 	XDP_SETUP_PROG,
947 	XDP_SETUP_PROG_HW,
948 	/* BPF program for offload callbacks, invoked at program load time. */
949 	BPF_OFFLOAD_MAP_ALLOC,
950 	BPF_OFFLOAD_MAP_FREE,
951 	XDP_SETUP_XSK_POOL,
952 };
953 
954 struct bpf_prog_offload_ops;
955 struct netlink_ext_ack;
956 struct xdp_umem;
957 struct xdp_dev_bulk_queue;
958 struct bpf_xdp_link;
959 
960 enum bpf_xdp_mode {
961 	XDP_MODE_SKB = 0,
962 	XDP_MODE_DRV = 1,
963 	XDP_MODE_HW = 2,
964 	__MAX_XDP_MODE
965 };
966 
967 struct bpf_xdp_entity {
968 	struct bpf_prog *prog;
969 	struct bpf_xdp_link *link;
970 };
971 
972 struct netdev_bpf {
973 	enum bpf_netdev_command command;
974 	union {
975 		/* XDP_SETUP_PROG */
976 		struct {
977 			u32 flags;
978 			struct bpf_prog *prog;
979 			struct netlink_ext_ack *extack;
980 		};
981 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
982 		struct {
983 			struct bpf_offloaded_map *offmap;
984 		};
985 		/* XDP_SETUP_XSK_POOL */
986 		struct {
987 			struct xsk_buff_pool *pool;
988 			u16 queue_id;
989 		} xsk;
990 	};
991 };
992 
993 /* Flags for ndo_xsk_wakeup. */
994 #define XDP_WAKEUP_RX (1 << 0)
995 #define XDP_WAKEUP_TX (1 << 1)
996 
997 #ifdef CONFIG_XFRM_OFFLOAD
998 struct xfrmdev_ops {
999 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1000 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1001 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1002 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1003 				       struct xfrm_state *x);
1004 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1005 };
1006 #endif
1007 
1008 struct dev_ifalias {
1009 	struct rcu_head rcuhead;
1010 	char ifalias[];
1011 };
1012 
1013 struct devlink;
1014 struct tlsdev_ops;
1015 
1016 struct netdev_name_node {
1017 	struct hlist_node hlist;
1018 	struct list_head list;
1019 	struct net_device *dev;
1020 	const char *name;
1021 };
1022 
1023 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1024 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1025 
1026 struct netdev_net_notifier {
1027 	struct list_head list;
1028 	struct notifier_block *nb;
1029 };
1030 
1031 /*
1032  * This structure defines the management hooks for network devices.
1033  * The following hooks can be defined; unless noted otherwise, they are
1034  * optional and can be filled with a null pointer.
1035  *
1036  * int (*ndo_init)(struct net_device *dev);
1037  *     This function is called once when a network device is registered.
1038  *     The network device can use this for any late stage initialization
1039  *     or semantic validation. It can fail with an error code which will
1040  *     be propagated back to register_netdev.
1041  *
1042  * void (*ndo_uninit)(struct net_device *dev);
1043  *     This function is called when device is unregistered or when registration
1044  *     fails. It is not called if init fails.
1045  *
1046  * int (*ndo_open)(struct net_device *dev);
1047  *     This function is called when a network device transitions to the up
1048  *     state.
1049  *
1050  * int (*ndo_stop)(struct net_device *dev);
1051  *     This function is called when a network device transitions to the down
1052  *     state.
1053  *
1054  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1055  *                               struct net_device *dev);
1056  *	Called when a packet needs to be transmitted.
1057  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1058  *	the queue before that can happen; it's for obsolete devices and weird
1059  *	corner cases, but the stack really does a non-trivial amount
1060  *	of useless work if you return NETDEV_TX_BUSY.
1061  *	Required; cannot be NULL.
1062  *
1063  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1064  *					   struct net_device *dev
1065  *					   netdev_features_t features);
1066  *	Called by core transmit path to determine if device is capable of
1067  *	performing offload operations on a given packet. This is to give
1068  *	the device an opportunity to implement any restrictions that cannot
1069  *	be otherwise expressed by feature flags. The check is called with
1070  *	the set of features that the stack has calculated and it returns
1071  *	those the driver believes to be appropriate.
1072  *
1073  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1074  *                         struct net_device *sb_dev);
1075  *	Called to decide which queue to use when device supports multiple
1076  *	transmit queues.
1077  *
1078  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1079  *	This function is called to allow device receiver to make
1080  *	changes to configuration when multicast or promiscuous is enabled.
1081  *
1082  * void (*ndo_set_rx_mode)(struct net_device *dev);
1083  *	This function is called device changes address list filtering.
1084  *	If driver handles unicast address filtering, it should set
1085  *	IFF_UNICAST_FLT in its priv_flags.
1086  *
1087  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1088  *	This function  is called when the Media Access Control address
1089  *	needs to be changed. If this interface is not defined, the
1090  *	MAC address can not be changed.
1091  *
1092  * int (*ndo_validate_addr)(struct net_device *dev);
1093  *	Test if Media Access Control address is valid for the device.
1094  *
1095  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1096  *	Old-style ioctl entry point. This is used internally by the
1097  *	appletalk and ieee802154 subsystems but is no longer called by
1098  *	the device ioctl handler.
1099  *
1100  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1101  *	Used by the bonding driver for its device specific ioctls:
1102  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1103  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1104  *
1105  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1106  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1107  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1108  *
1109  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1110  *	Used to set network devices bus interface parameters. This interface
1111  *	is retained for legacy reasons; new devices should use the bus
1112  *	interface (PCI) for low level management.
1113  *
1114  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1115  *	Called when a user wants to change the Maximum Transfer Unit
1116  *	of a device.
1117  *
1118  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1119  *	Callback used when the transmitter has not made any progress
1120  *	for dev->watchdog ticks.
1121  *
1122  * void (*ndo_get_stats64)(struct net_device *dev,
1123  *                         struct rtnl_link_stats64 *storage);
1124  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1125  *	Called when a user wants to get the network device usage
1126  *	statistics. Drivers must do one of the following:
1127  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1128  *	   rtnl_link_stats64 structure passed by the caller.
1129  *	2. Define @ndo_get_stats to update a net_device_stats structure
1130  *	   (which should normally be dev->stats) and return a pointer to
1131  *	   it. The structure may be changed asynchronously only if each
1132  *	   field is written atomically.
1133  *	3. Update dev->stats asynchronously and atomically, and define
1134  *	   neither operation.
1135  *
1136  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1137  *	Return true if this device supports offload stats of this attr_id.
1138  *
1139  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1140  *	void *attr_data)
1141  *	Get statistics for offload operations by attr_id. Write it into the
1142  *	attr_data pointer.
1143  *
1144  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1145  *	If device supports VLAN filtering this function is called when a
1146  *	VLAN id is registered.
1147  *
1148  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1149  *	If device supports VLAN filtering this function is called when a
1150  *	VLAN id is unregistered.
1151  *
1152  * void (*ndo_poll_controller)(struct net_device *dev);
1153  *
1154  *	SR-IOV management functions.
1155  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1156  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1157  *			  u8 qos, __be16 proto);
1158  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1159  *			  int max_tx_rate);
1160  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1161  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1162  * int (*ndo_get_vf_config)(struct net_device *dev,
1163  *			    int vf, struct ifla_vf_info *ivf);
1164  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1165  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1166  *			  struct nlattr *port[]);
1167  *
1168  *      Enable or disable the VF ability to query its RSS Redirection Table and
1169  *      Hash Key. This is needed since on some devices VF share this information
1170  *      with PF and querying it may introduce a theoretical security risk.
1171  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1172  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1173  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1174  *		       void *type_data);
1175  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1176  *	This is always called from the stack with the rtnl lock held and netif
1177  *	tx queues stopped. This allows the netdevice to perform queue
1178  *	management safely.
1179  *
1180  *	Fiber Channel over Ethernet (FCoE) offload functions.
1181  * int (*ndo_fcoe_enable)(struct net_device *dev);
1182  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1183  *	so the underlying device can perform whatever needed configuration or
1184  *	initialization to support acceleration of FCoE traffic.
1185  *
1186  * int (*ndo_fcoe_disable)(struct net_device *dev);
1187  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1188  *	so the underlying device can perform whatever needed clean-ups to
1189  *	stop supporting acceleration of FCoE traffic.
1190  *
1191  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1192  *			     struct scatterlist *sgl, unsigned int sgc);
1193  *	Called when the FCoE Initiator wants to initialize an I/O that
1194  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1195  *	perform necessary setup and returns 1 to indicate the device is set up
1196  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1197  *
1198  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1199  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1200  *	indicated by the FC exchange id 'xid', so the underlying device can
1201  *	clean up and reuse resources for later DDP requests.
1202  *
1203  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1204  *			      struct scatterlist *sgl, unsigned int sgc);
1205  *	Called when the FCoE Target wants to initialize an I/O that
1206  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1207  *	perform necessary setup and returns 1 to indicate the device is set up
1208  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1209  *
1210  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1211  *			       struct netdev_fcoe_hbainfo *hbainfo);
1212  *	Called when the FCoE Protocol stack wants information on the underlying
1213  *	device. This information is utilized by the FCoE protocol stack to
1214  *	register attributes with Fiber Channel management service as per the
1215  *	FC-GS Fabric Device Management Information(FDMI) specification.
1216  *
1217  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1218  *	Called when the underlying device wants to override default World Wide
1219  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1220  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1221  *	protocol stack to use.
1222  *
1223  *	RFS acceleration.
1224  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1225  *			    u16 rxq_index, u32 flow_id);
1226  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1227  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1228  *	Return the filter ID on success, or a negative error code.
1229  *
1230  *	Slave management functions (for bridge, bonding, etc).
1231  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1232  *	Called to make another netdev an underling.
1233  *
1234  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1235  *	Called to release previously enslaved netdev.
1236  *
1237  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1238  *					    struct sk_buff *skb,
1239  *					    bool all_slaves);
1240  *	Get the xmit slave of master device. If all_slaves is true, function
1241  *	assume all the slaves can transmit.
1242  *
1243  *      Feature/offload setting functions.
1244  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1245  *		netdev_features_t features);
1246  *	Adjusts the requested feature flags according to device-specific
1247  *	constraints, and returns the resulting flags. Must not modify
1248  *	the device state.
1249  *
1250  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1251  *	Called to update device configuration to new features. Passed
1252  *	feature set might be less than what was returned by ndo_fix_features()).
1253  *	Must return >0 or -errno if it changed dev->features itself.
1254  *
1255  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1256  *		      struct net_device *dev,
1257  *		      const unsigned char *addr, u16 vid, u16 flags,
1258  *		      struct netlink_ext_ack *extack);
1259  *	Adds an FDB entry to dev for addr.
1260  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1261  *		      struct net_device *dev,
1262  *		      const unsigned char *addr, u16 vid)
1263  *	Deletes the FDB entry from dev coresponding to addr.
1264  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1265  *		       struct net_device *dev, struct net_device *filter_dev,
1266  *		       int *idx)
1267  *	Used to add FDB entries to dump requests. Implementers should add
1268  *	entries to skb and update idx with the number of entries.
1269  *
1270  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1271  *			     u16 flags, struct netlink_ext_ack *extack)
1272  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1273  *			     struct net_device *dev, u32 filter_mask,
1274  *			     int nlflags)
1275  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1276  *			     u16 flags);
1277  *
1278  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1279  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1280  *	which do not represent real hardware may define this to allow their
1281  *	userspace components to manage their virtual carrier state. Devices
1282  *	that determine carrier state from physical hardware properties (eg
1283  *	network cables) or protocol-dependent mechanisms (eg
1284  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1285  *
1286  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1287  *			       struct netdev_phys_item_id *ppid);
1288  *	Called to get ID of physical port of this device. If driver does
1289  *	not implement this, it is assumed that the hw is not able to have
1290  *	multiple net devices on single physical port.
1291  *
1292  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1293  *				 struct netdev_phys_item_id *ppid)
1294  *	Called to get the parent ID of the physical port of this device.
1295  *
1296  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1297  *				 struct net_device *dev)
1298  *	Called by upper layer devices to accelerate switching or other
1299  *	station functionality into hardware. 'pdev is the lowerdev
1300  *	to use for the offload and 'dev' is the net device that will
1301  *	back the offload. Returns a pointer to the private structure
1302  *	the upper layer will maintain.
1303  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1304  *	Called by upper layer device to delete the station created
1305  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1306  *	the station and priv is the structure returned by the add
1307  *	operation.
1308  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1309  *			     int queue_index, u32 maxrate);
1310  *	Called when a user wants to set a max-rate limitation of specific
1311  *	TX queue.
1312  * int (*ndo_get_iflink)(const struct net_device *dev);
1313  *	Called to get the iflink value of this device.
1314  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1315  *	This function is used to get egress tunnel information for given skb.
1316  *	This is useful for retrieving outer tunnel header parameters while
1317  *	sampling packet.
1318  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1319  *	This function is used to specify the headroom that the skb must
1320  *	consider when allocation skb during packet reception. Setting
1321  *	appropriate rx headroom value allows avoiding skb head copy on
1322  *	forward. Setting a negative value resets the rx headroom to the
1323  *	default value.
1324  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1325  *	This function is used to set or query state related to XDP on the
1326  *	netdevice and manage BPF offload. See definition of
1327  *	enum bpf_netdev_command for details.
1328  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1329  *			u32 flags);
1330  *	This function is used to submit @n XDP packets for transmit on a
1331  *	netdevice. Returns number of frames successfully transmitted, frames
1332  *	that got dropped are freed/returned via xdp_return_frame().
1333  *	Returns negative number, means general error invoking ndo, meaning
1334  *	no frames were xmit'ed and core-caller will free all frames.
1335  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1336  *					        struct xdp_buff *xdp);
1337  *      Get the xmit slave of master device based on the xdp_buff.
1338  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1339  *      This function is used to wake up the softirq, ksoftirqd or kthread
1340  *	responsible for sending and/or receiving packets on a specific
1341  *	queue id bound to an AF_XDP socket. The flags field specifies if
1342  *	only RX, only Tx, or both should be woken up using the flags
1343  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1344  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1345  *	Get devlink port instance associated with a given netdev.
1346  *	Called with a reference on the netdevice and devlink locks only,
1347  *	rtnl_lock is not held.
1348  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1349  *			 int cmd);
1350  *	Add, change, delete or get information on an IPv4 tunnel.
1351  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1352  *	If a device is paired with a peer device, return the peer instance.
1353  *	The caller must be under RCU read context.
1354  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1355  *     Get the forwarding path to reach the real device from the HW destination address
1356  */
1357 struct net_device_ops {
1358 	int			(*ndo_init)(struct net_device *dev);
1359 	void			(*ndo_uninit)(struct net_device *dev);
1360 	int			(*ndo_open)(struct net_device *dev);
1361 	int			(*ndo_stop)(struct net_device *dev);
1362 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1363 						  struct net_device *dev);
1364 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1365 						      struct net_device *dev,
1366 						      netdev_features_t features);
1367 	u16			(*ndo_select_queue)(struct net_device *dev,
1368 						    struct sk_buff *skb,
1369 						    struct net_device *sb_dev);
1370 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1371 						       int flags);
1372 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1373 	int			(*ndo_set_mac_address)(struct net_device *dev,
1374 						       void *addr);
1375 	int			(*ndo_validate_addr)(struct net_device *dev);
1376 	int			(*ndo_do_ioctl)(struct net_device *dev,
1377 					        struct ifreq *ifr, int cmd);
1378 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1379 						 struct ifreq *ifr, int cmd);
1380 	int			(*ndo_siocbond)(struct net_device *dev,
1381 						struct ifreq *ifr, int cmd);
1382 	int			(*ndo_siocwandev)(struct net_device *dev,
1383 						  struct if_settings *ifs);
1384 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1385 						      struct ifreq *ifr,
1386 						      void __user *data, int cmd);
1387 	int			(*ndo_set_config)(struct net_device *dev,
1388 					          struct ifmap *map);
1389 	int			(*ndo_change_mtu)(struct net_device *dev,
1390 						  int new_mtu);
1391 	int			(*ndo_neigh_setup)(struct net_device *dev,
1392 						   struct neigh_parms *);
1393 	void			(*ndo_tx_timeout) (struct net_device *dev,
1394 						   unsigned int txqueue);
1395 
1396 	void			(*ndo_get_stats64)(struct net_device *dev,
1397 						   struct rtnl_link_stats64 *storage);
1398 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1399 	int			(*ndo_get_offload_stats)(int attr_id,
1400 							 const struct net_device *dev,
1401 							 void *attr_data);
1402 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1403 
1404 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1405 						       __be16 proto, u16 vid);
1406 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1407 						        __be16 proto, u16 vid);
1408 #ifdef CONFIG_NET_POLL_CONTROLLER
1409 	void                    (*ndo_poll_controller)(struct net_device *dev);
1410 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1411 						     struct netpoll_info *info);
1412 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1413 #endif
1414 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1415 						  int queue, u8 *mac);
1416 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1417 						   int queue, u16 vlan,
1418 						   u8 qos, __be16 proto);
1419 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1420 						   int vf, int min_tx_rate,
1421 						   int max_tx_rate);
1422 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1423 						       int vf, bool setting);
1424 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1425 						    int vf, bool setting);
1426 	int			(*ndo_get_vf_config)(struct net_device *dev,
1427 						     int vf,
1428 						     struct ifla_vf_info *ivf);
1429 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1430 							 int vf, int link_state);
1431 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1432 						    int vf,
1433 						    struct ifla_vf_stats
1434 						    *vf_stats);
1435 	int			(*ndo_set_vf_port)(struct net_device *dev,
1436 						   int vf,
1437 						   struct nlattr *port[]);
1438 	int			(*ndo_get_vf_port)(struct net_device *dev,
1439 						   int vf, struct sk_buff *skb);
1440 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1441 						   int vf,
1442 						   struct ifla_vf_guid *node_guid,
1443 						   struct ifla_vf_guid *port_guid);
1444 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1445 						   int vf, u64 guid,
1446 						   int guid_type);
1447 	int			(*ndo_set_vf_rss_query_en)(
1448 						   struct net_device *dev,
1449 						   int vf, bool setting);
1450 	int			(*ndo_setup_tc)(struct net_device *dev,
1451 						enum tc_setup_type type,
1452 						void *type_data);
1453 #if IS_ENABLED(CONFIG_FCOE)
1454 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1455 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1456 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1457 						      u16 xid,
1458 						      struct scatterlist *sgl,
1459 						      unsigned int sgc);
1460 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1461 						     u16 xid);
1462 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1463 						       u16 xid,
1464 						       struct scatterlist *sgl,
1465 						       unsigned int sgc);
1466 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1467 							struct netdev_fcoe_hbainfo *hbainfo);
1468 #endif
1469 
1470 #if IS_ENABLED(CONFIG_LIBFCOE)
1471 #define NETDEV_FCOE_WWNN 0
1472 #define NETDEV_FCOE_WWPN 1
1473 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1474 						    u64 *wwn, int type);
1475 #endif
1476 
1477 #ifdef CONFIG_RFS_ACCEL
1478 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1479 						     const struct sk_buff *skb,
1480 						     u16 rxq_index,
1481 						     u32 flow_id);
1482 #endif
1483 	int			(*ndo_add_slave)(struct net_device *dev,
1484 						 struct net_device *slave_dev,
1485 						 struct netlink_ext_ack *extack);
1486 	int			(*ndo_del_slave)(struct net_device *dev,
1487 						 struct net_device *slave_dev);
1488 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1489 						      struct sk_buff *skb,
1490 						      bool all_slaves);
1491 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1492 							struct sock *sk);
1493 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1494 						    netdev_features_t features);
1495 	int			(*ndo_set_features)(struct net_device *dev,
1496 						    netdev_features_t features);
1497 	int			(*ndo_neigh_construct)(struct net_device *dev,
1498 						       struct neighbour *n);
1499 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1500 						     struct neighbour *n);
1501 
1502 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1503 					       struct nlattr *tb[],
1504 					       struct net_device *dev,
1505 					       const unsigned char *addr,
1506 					       u16 vid,
1507 					       u16 flags,
1508 					       struct netlink_ext_ack *extack);
1509 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1510 					       struct nlattr *tb[],
1511 					       struct net_device *dev,
1512 					       const unsigned char *addr,
1513 					       u16 vid);
1514 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1515 						struct netlink_callback *cb,
1516 						struct net_device *dev,
1517 						struct net_device *filter_dev,
1518 						int *idx);
1519 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1520 					       struct nlattr *tb[],
1521 					       struct net_device *dev,
1522 					       const unsigned char *addr,
1523 					       u16 vid, u32 portid, u32 seq,
1524 					       struct netlink_ext_ack *extack);
1525 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1526 						      struct nlmsghdr *nlh,
1527 						      u16 flags,
1528 						      struct netlink_ext_ack *extack);
1529 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1530 						      u32 pid, u32 seq,
1531 						      struct net_device *dev,
1532 						      u32 filter_mask,
1533 						      int nlflags);
1534 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1535 						      struct nlmsghdr *nlh,
1536 						      u16 flags);
1537 	int			(*ndo_change_carrier)(struct net_device *dev,
1538 						      bool new_carrier);
1539 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1540 							struct netdev_phys_item_id *ppid);
1541 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1542 							  struct netdev_phys_item_id *ppid);
1543 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1544 							  char *name, size_t len);
1545 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1546 							struct net_device *dev);
1547 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1548 							void *priv);
1549 
1550 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1551 						      int queue_index,
1552 						      u32 maxrate);
1553 	int			(*ndo_get_iflink)(const struct net_device *dev);
1554 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1555 						       struct sk_buff *skb);
1556 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1557 						       int needed_headroom);
1558 	int			(*ndo_bpf)(struct net_device *dev,
1559 					   struct netdev_bpf *bpf);
1560 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1561 						struct xdp_frame **xdp,
1562 						u32 flags);
1563 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1564 							  struct xdp_buff *xdp);
1565 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1566 						  u32 queue_id, u32 flags);
1567 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1568 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1569 						  struct ip_tunnel_parm *p, int cmd);
1570 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1571 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1572                                                          struct net_device_path *path);
1573 };
1574 
1575 /**
1576  * enum netdev_priv_flags - &struct net_device priv_flags
1577  *
1578  * These are the &struct net_device, they are only set internally
1579  * by drivers and used in the kernel. These flags are invisible to
1580  * userspace; this means that the order of these flags can change
1581  * during any kernel release.
1582  *
1583  * You should have a pretty good reason to be extending these flags.
1584  *
1585  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1586  * @IFF_EBRIDGE: Ethernet bridging device
1587  * @IFF_BONDING: bonding master or slave
1588  * @IFF_ISATAP: ISATAP interface (RFC4214)
1589  * @IFF_WAN_HDLC: WAN HDLC device
1590  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1591  *	release skb->dst
1592  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1593  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1594  * @IFF_MACVLAN_PORT: device used as macvlan port
1595  * @IFF_BRIDGE_PORT: device used as bridge port
1596  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1597  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1598  * @IFF_UNICAST_FLT: Supports unicast filtering
1599  * @IFF_TEAM_PORT: device used as team port
1600  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1601  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1602  *	change when it's running
1603  * @IFF_MACVLAN: Macvlan device
1604  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1605  *	underlying stacked devices
1606  * @IFF_L3MDEV_MASTER: device is an L3 master device
1607  * @IFF_NO_QUEUE: device can run without qdisc attached
1608  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1609  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1610  * @IFF_TEAM: device is a team device
1611  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1612  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1613  *	entity (i.e. the master device for bridged veth)
1614  * @IFF_MACSEC: device is a MACsec device
1615  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1616  * @IFF_FAILOVER: device is a failover master device
1617  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1618  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1619  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1620  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1621  *	skb_headlen(skb) == 0 (data starts from frag0)
1622  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1623  */
1624 enum netdev_priv_flags {
1625 	IFF_802_1Q_VLAN			= 1<<0,
1626 	IFF_EBRIDGE			= 1<<1,
1627 	IFF_BONDING			= 1<<2,
1628 	IFF_ISATAP			= 1<<3,
1629 	IFF_WAN_HDLC			= 1<<4,
1630 	IFF_XMIT_DST_RELEASE		= 1<<5,
1631 	IFF_DONT_BRIDGE			= 1<<6,
1632 	IFF_DISABLE_NETPOLL		= 1<<7,
1633 	IFF_MACVLAN_PORT		= 1<<8,
1634 	IFF_BRIDGE_PORT			= 1<<9,
1635 	IFF_OVS_DATAPATH		= 1<<10,
1636 	IFF_TX_SKB_SHARING		= 1<<11,
1637 	IFF_UNICAST_FLT			= 1<<12,
1638 	IFF_TEAM_PORT			= 1<<13,
1639 	IFF_SUPP_NOFCS			= 1<<14,
1640 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1641 	IFF_MACVLAN			= 1<<16,
1642 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1643 	IFF_L3MDEV_MASTER		= 1<<18,
1644 	IFF_NO_QUEUE			= 1<<19,
1645 	IFF_OPENVSWITCH			= 1<<20,
1646 	IFF_L3MDEV_SLAVE		= 1<<21,
1647 	IFF_TEAM			= 1<<22,
1648 	IFF_RXFH_CONFIGURED		= 1<<23,
1649 	IFF_PHONY_HEADROOM		= 1<<24,
1650 	IFF_MACSEC			= 1<<25,
1651 	IFF_NO_RX_HANDLER		= 1<<26,
1652 	IFF_FAILOVER			= 1<<27,
1653 	IFF_FAILOVER_SLAVE		= 1<<28,
1654 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1655 	IFF_LIVE_RENAME_OK		= 1<<30,
1656 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1657 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1658 };
1659 
1660 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1661 #define IFF_EBRIDGE			IFF_EBRIDGE
1662 #define IFF_BONDING			IFF_BONDING
1663 #define IFF_ISATAP			IFF_ISATAP
1664 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1665 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1666 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1667 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1668 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1669 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1670 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1671 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1672 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1673 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1674 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1675 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1676 #define IFF_MACVLAN			IFF_MACVLAN
1677 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1678 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1679 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1680 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1681 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1682 #define IFF_TEAM			IFF_TEAM
1683 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1684 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1685 #define IFF_MACSEC			IFF_MACSEC
1686 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1687 #define IFF_FAILOVER			IFF_FAILOVER
1688 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1689 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1690 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1691 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1692 
1693 /* Specifies the type of the struct net_device::ml_priv pointer */
1694 enum netdev_ml_priv_type {
1695 	ML_PRIV_NONE,
1696 	ML_PRIV_CAN,
1697 };
1698 
1699 /**
1700  *	struct net_device - The DEVICE structure.
1701  *
1702  *	Actually, this whole structure is a big mistake.  It mixes I/O
1703  *	data with strictly "high-level" data, and it has to know about
1704  *	almost every data structure used in the INET module.
1705  *
1706  *	@name:	This is the first field of the "visible" part of this structure
1707  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1708  *		of the interface.
1709  *
1710  *	@name_node:	Name hashlist node
1711  *	@ifalias:	SNMP alias
1712  *	@mem_end:	Shared memory end
1713  *	@mem_start:	Shared memory start
1714  *	@base_addr:	Device I/O address
1715  *	@irq:		Device IRQ number
1716  *
1717  *	@state:		Generic network queuing layer state, see netdev_state_t
1718  *	@dev_list:	The global list of network devices
1719  *	@napi_list:	List entry used for polling NAPI devices
1720  *	@unreg_list:	List entry  when we are unregistering the
1721  *			device; see the function unregister_netdev
1722  *	@close_list:	List entry used when we are closing the device
1723  *	@ptype_all:     Device-specific packet handlers for all protocols
1724  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1725  *
1726  *	@adj_list:	Directly linked devices, like slaves for bonding
1727  *	@features:	Currently active device features
1728  *	@hw_features:	User-changeable features
1729  *
1730  *	@wanted_features:	User-requested features
1731  *	@vlan_features:		Mask of features inheritable by VLAN devices
1732  *
1733  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1734  *				This field indicates what encapsulation
1735  *				offloads the hardware is capable of doing,
1736  *				and drivers will need to set them appropriately.
1737  *
1738  *	@mpls_features:	Mask of features inheritable by MPLS
1739  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1740  *
1741  *	@ifindex:	interface index
1742  *	@group:		The group the device belongs to
1743  *
1744  *	@stats:		Statistics struct, which was left as a legacy, use
1745  *			rtnl_link_stats64 instead
1746  *
1747  *	@core_stats:	core networking counters,
1748  *			do not use this in drivers
1749  *	@carrier_up_count:	Number of times the carrier has been up
1750  *	@carrier_down_count:	Number of times the carrier has been down
1751  *
1752  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1753  *				instead of ioctl,
1754  *				see <net/iw_handler.h> for details.
1755  *	@wireless_data:	Instance data managed by the core of wireless extensions
1756  *
1757  *	@netdev_ops:	Includes several pointers to callbacks,
1758  *			if one wants to override the ndo_*() functions
1759  *	@ethtool_ops:	Management operations
1760  *	@l3mdev_ops:	Layer 3 master device operations
1761  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1762  *			discovery handling. Necessary for e.g. 6LoWPAN.
1763  *	@xfrmdev_ops:	Transformation offload operations
1764  *	@tlsdev_ops:	Transport Layer Security offload operations
1765  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1766  *			of Layer 2 headers.
1767  *
1768  *	@flags:		Interface flags (a la BSD)
1769  *	@priv_flags:	Like 'flags' but invisible to userspace,
1770  *			see if.h for the definitions
1771  *	@gflags:	Global flags ( kept as legacy )
1772  *	@padded:	How much padding added by alloc_netdev()
1773  *	@operstate:	RFC2863 operstate
1774  *	@link_mode:	Mapping policy to operstate
1775  *	@if_port:	Selectable AUI, TP, ...
1776  *	@dma:		DMA channel
1777  *	@mtu:		Interface MTU value
1778  *	@min_mtu:	Interface Minimum MTU value
1779  *	@max_mtu:	Interface Maximum MTU value
1780  *	@type:		Interface hardware type
1781  *	@hard_header_len: Maximum hardware header length.
1782  *	@min_header_len:  Minimum hardware header length
1783  *
1784  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1785  *			  cases can this be guaranteed
1786  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1787  *			  cases can this be guaranteed. Some cases also use
1788  *			  LL_MAX_HEADER instead to allocate the skb
1789  *
1790  *	interface address info:
1791  *
1792  * 	@perm_addr:		Permanent hw address
1793  * 	@addr_assign_type:	Hw address assignment type
1794  * 	@addr_len:		Hardware address length
1795  *	@upper_level:		Maximum depth level of upper devices.
1796  *	@lower_level:		Maximum depth level of lower devices.
1797  *	@neigh_priv_len:	Used in neigh_alloc()
1798  * 	@dev_id:		Used to differentiate devices that share
1799  * 				the same link layer address
1800  * 	@dev_port:		Used to differentiate devices that share
1801  * 				the same function
1802  *	@addr_list_lock:	XXX: need comments on this one
1803  *	@name_assign_type:	network interface name assignment type
1804  *	@uc_promisc:		Counter that indicates promiscuous mode
1805  *				has been enabled due to the need to listen to
1806  *				additional unicast addresses in a device that
1807  *				does not implement ndo_set_rx_mode()
1808  *	@uc:			unicast mac addresses
1809  *	@mc:			multicast mac addresses
1810  *	@dev_addrs:		list of device hw addresses
1811  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1812  *	@promiscuity:		Number of times the NIC is told to work in
1813  *				promiscuous mode; if it becomes 0 the NIC will
1814  *				exit promiscuous mode
1815  *	@allmulti:		Counter, enables or disables allmulticast mode
1816  *
1817  *	@vlan_info:	VLAN info
1818  *	@dsa_ptr:	dsa specific data
1819  *	@tipc_ptr:	TIPC specific data
1820  *	@atalk_ptr:	AppleTalk link
1821  *	@ip_ptr:	IPv4 specific data
1822  *	@dn_ptr:	DECnet specific data
1823  *	@ip6_ptr:	IPv6 specific data
1824  *	@ax25_ptr:	AX.25 specific data
1825  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1826  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1827  *			 device struct
1828  *	@mpls_ptr:	mpls_dev struct pointer
1829  *	@mctp_ptr:	MCTP specific data
1830  *
1831  *	@dev_addr:	Hw address (before bcast,
1832  *			because most packets are unicast)
1833  *
1834  *	@_rx:			Array of RX queues
1835  *	@num_rx_queues:		Number of RX queues
1836  *				allocated at register_netdev() time
1837  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1838  *	@xdp_prog:		XDP sockets filter program pointer
1839  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1840  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1841  *				allow to avoid NIC hard IRQ, on busy queues.
1842  *
1843  *	@rx_handler:		handler for received packets
1844  *	@rx_handler_data: 	XXX: need comments on this one
1845  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1846  *				ingress processing
1847  *	@ingress_queue:		XXX: need comments on this one
1848  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1849  *	@broadcast:		hw bcast address
1850  *
1851  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1852  *			indexed by RX queue number. Assigned by driver.
1853  *			This must only be set if the ndo_rx_flow_steer
1854  *			operation is defined
1855  *	@index_hlist:		Device index hash chain
1856  *
1857  *	@_tx:			Array of TX queues
1858  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1859  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1860  *	@qdisc:			Root qdisc from userspace point of view
1861  *	@tx_queue_len:		Max frames per queue allowed
1862  *	@tx_global_lock: 	XXX: need comments on this one
1863  *	@xdp_bulkq:		XDP device bulk queue
1864  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1865  *
1866  *	@xps_maps:	XXX: need comments on this one
1867  *	@miniq_egress:		clsact qdisc specific data for
1868  *				egress processing
1869  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1870  *	@qdisc_hash:		qdisc hash table
1871  *	@watchdog_timeo:	Represents the timeout that is used by
1872  *				the watchdog (see dev_watchdog())
1873  *	@watchdog_timer:	List of timers
1874  *
1875  *	@proto_down_reason:	reason a netdev interface is held down
1876  *	@pcpu_refcnt:		Number of references to this device
1877  *	@dev_refcnt:		Number of references to this device
1878  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1879  *	@todo_list:		Delayed register/unregister
1880  *	@link_watch_list:	XXX: need comments on this one
1881  *
1882  *	@reg_state:		Register/unregister state machine
1883  *	@dismantle:		Device is going to be freed
1884  *	@rtnl_link_state:	This enum represents the phases of creating
1885  *				a new link
1886  *
1887  *	@needs_free_netdev:	Should unregister perform free_netdev?
1888  *	@priv_destructor:	Called from unregister
1889  *	@npinfo:		XXX: need comments on this one
1890  * 	@nd_net:		Network namespace this network device is inside
1891  *
1892  * 	@ml_priv:	Mid-layer private
1893  *	@ml_priv_type:  Mid-layer private type
1894  * 	@lstats:	Loopback statistics
1895  * 	@tstats:	Tunnel statistics
1896  * 	@dstats:	Dummy statistics
1897  * 	@vstats:	Virtual ethernet statistics
1898  *
1899  *	@garp_port:	GARP
1900  *	@mrp_port:	MRP
1901  *
1902  *	@dev:		Class/net/name entry
1903  *	@sysfs_groups:	Space for optional device, statistics and wireless
1904  *			sysfs groups
1905  *
1906  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1907  *	@rtnl_link_ops:	Rtnl_link_ops
1908  *
1909  *	@gso_max_size:	Maximum size of generic segmentation offload
1910  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1911  *			NIC for GSO
1912  *
1913  *	@dcbnl_ops:	Data Center Bridging netlink ops
1914  *	@num_tc:	Number of traffic classes in the net device
1915  *	@tc_to_txq:	XXX: need comments on this one
1916  *	@prio_tc_map:	XXX: need comments on this one
1917  *
1918  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1919  *
1920  *	@priomap:	XXX: need comments on this one
1921  *	@phydev:	Physical device may attach itself
1922  *			for hardware timestamping
1923  *	@sfp_bus:	attached &struct sfp_bus structure.
1924  *
1925  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1926  *
1927  *	@proto_down:	protocol port state information can be sent to the
1928  *			switch driver and used to set the phys state of the
1929  *			switch port.
1930  *
1931  *	@wol_enabled:	Wake-on-LAN is enabled
1932  *
1933  *	@threaded:	napi threaded mode is enabled
1934  *
1935  *	@net_notifier_list:	List of per-net netdev notifier block
1936  *				that follow this device when it is moved
1937  *				to another network namespace.
1938  *
1939  *	@macsec_ops:    MACsec offloading ops
1940  *
1941  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1942  *				offload capabilities of the device
1943  *	@udp_tunnel_nic:	UDP tunnel offload state
1944  *	@xdp_state:		stores info on attached XDP BPF programs
1945  *
1946  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1947  *			dev->addr_list_lock.
1948  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1949  *			keep a list of interfaces to be deleted.
1950  *	@gro_max_size:	Maximum size of aggregated packet in generic
1951  *			receive offload (GRO)
1952  *
1953  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1954  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1955  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1956  *	@dev_registered_tracker:	tracker for reference held while
1957  *					registered
1958  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1959  *
1960  *	FIXME: cleanup struct net_device such that network protocol info
1961  *	moves out.
1962  */
1963 
1964 struct net_device {
1965 	char			name[IFNAMSIZ];
1966 	struct netdev_name_node	*name_node;
1967 	struct dev_ifalias	__rcu *ifalias;
1968 	/*
1969 	 *	I/O specific fields
1970 	 *	FIXME: Merge these and struct ifmap into one
1971 	 */
1972 	unsigned long		mem_end;
1973 	unsigned long		mem_start;
1974 	unsigned long		base_addr;
1975 
1976 	/*
1977 	 *	Some hardware also needs these fields (state,dev_list,
1978 	 *	napi_list,unreg_list,close_list) but they are not
1979 	 *	part of the usual set specified in Space.c.
1980 	 */
1981 
1982 	unsigned long		state;
1983 
1984 	struct list_head	dev_list;
1985 	struct list_head	napi_list;
1986 	struct list_head	unreg_list;
1987 	struct list_head	close_list;
1988 	struct list_head	ptype_all;
1989 	struct list_head	ptype_specific;
1990 
1991 	struct {
1992 		struct list_head upper;
1993 		struct list_head lower;
1994 	} adj_list;
1995 
1996 	/* Read-mostly cache-line for fast-path access */
1997 	unsigned int		flags;
1998 	unsigned long long	priv_flags;
1999 	const struct net_device_ops *netdev_ops;
2000 	int			ifindex;
2001 	unsigned short		gflags;
2002 	unsigned short		hard_header_len;
2003 
2004 	/* Note : dev->mtu is often read without holding a lock.
2005 	 * Writers usually hold RTNL.
2006 	 * It is recommended to use READ_ONCE() to annotate the reads,
2007 	 * and to use WRITE_ONCE() to annotate the writes.
2008 	 */
2009 	unsigned int		mtu;
2010 	unsigned short		needed_headroom;
2011 	unsigned short		needed_tailroom;
2012 
2013 	netdev_features_t	features;
2014 	netdev_features_t	hw_features;
2015 	netdev_features_t	wanted_features;
2016 	netdev_features_t	vlan_features;
2017 	netdev_features_t	hw_enc_features;
2018 	netdev_features_t	mpls_features;
2019 	netdev_features_t	gso_partial_features;
2020 
2021 	unsigned int		min_mtu;
2022 	unsigned int		max_mtu;
2023 	unsigned short		type;
2024 	unsigned char		min_header_len;
2025 	unsigned char		name_assign_type;
2026 
2027 	int			group;
2028 
2029 	struct net_device_stats	stats; /* not used by modern drivers */
2030 
2031 	struct net_device_core_stats __percpu *core_stats;
2032 
2033 	/* Stats to monitor link on/off, flapping */
2034 	atomic_t		carrier_up_count;
2035 	atomic_t		carrier_down_count;
2036 
2037 #ifdef CONFIG_WIRELESS_EXT
2038 	const struct iw_handler_def *wireless_handlers;
2039 	struct iw_public_data	*wireless_data;
2040 #endif
2041 	const struct ethtool_ops *ethtool_ops;
2042 #ifdef CONFIG_NET_L3_MASTER_DEV
2043 	const struct l3mdev_ops	*l3mdev_ops;
2044 #endif
2045 #if IS_ENABLED(CONFIG_IPV6)
2046 	const struct ndisc_ops *ndisc_ops;
2047 #endif
2048 
2049 #ifdef CONFIG_XFRM_OFFLOAD
2050 	const struct xfrmdev_ops *xfrmdev_ops;
2051 #endif
2052 
2053 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2054 	const struct tlsdev_ops *tlsdev_ops;
2055 #endif
2056 
2057 	const struct header_ops *header_ops;
2058 
2059 	unsigned char		operstate;
2060 	unsigned char		link_mode;
2061 
2062 	unsigned char		if_port;
2063 	unsigned char		dma;
2064 
2065 	/* Interface address info. */
2066 	unsigned char		perm_addr[MAX_ADDR_LEN];
2067 	unsigned char		addr_assign_type;
2068 	unsigned char		addr_len;
2069 	unsigned char		upper_level;
2070 	unsigned char		lower_level;
2071 
2072 	unsigned short		neigh_priv_len;
2073 	unsigned short          dev_id;
2074 	unsigned short          dev_port;
2075 	unsigned short		padded;
2076 
2077 	spinlock_t		addr_list_lock;
2078 	int			irq;
2079 
2080 	struct netdev_hw_addr_list	uc;
2081 	struct netdev_hw_addr_list	mc;
2082 	struct netdev_hw_addr_list	dev_addrs;
2083 
2084 #ifdef CONFIG_SYSFS
2085 	struct kset		*queues_kset;
2086 #endif
2087 #ifdef CONFIG_LOCKDEP
2088 	struct list_head	unlink_list;
2089 #endif
2090 	unsigned int		promiscuity;
2091 	unsigned int		allmulti;
2092 	bool			uc_promisc;
2093 #ifdef CONFIG_LOCKDEP
2094 	unsigned char		nested_level;
2095 #endif
2096 
2097 
2098 	/* Protocol-specific pointers */
2099 
2100 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2101 	struct vlan_info __rcu	*vlan_info;
2102 #endif
2103 #if IS_ENABLED(CONFIG_NET_DSA)
2104 	struct dsa_port		*dsa_ptr;
2105 #endif
2106 #if IS_ENABLED(CONFIG_TIPC)
2107 	struct tipc_bearer __rcu *tipc_ptr;
2108 #endif
2109 #if IS_ENABLED(CONFIG_ATALK)
2110 	void 			*atalk_ptr;
2111 #endif
2112 	struct in_device __rcu	*ip_ptr;
2113 #if IS_ENABLED(CONFIG_DECNET)
2114 	struct dn_dev __rcu     *dn_ptr;
2115 #endif
2116 	struct inet6_dev __rcu	*ip6_ptr;
2117 #if IS_ENABLED(CONFIG_AX25)
2118 	void			*ax25_ptr;
2119 #endif
2120 	struct wireless_dev	*ieee80211_ptr;
2121 	struct wpan_dev		*ieee802154_ptr;
2122 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2123 	struct mpls_dev __rcu	*mpls_ptr;
2124 #endif
2125 #if IS_ENABLED(CONFIG_MCTP)
2126 	struct mctp_dev __rcu	*mctp_ptr;
2127 #endif
2128 
2129 /*
2130  * Cache lines mostly used on receive path (including eth_type_trans())
2131  */
2132 	/* Interface address info used in eth_type_trans() */
2133 	const unsigned char	*dev_addr;
2134 
2135 	struct netdev_rx_queue	*_rx;
2136 	unsigned int		num_rx_queues;
2137 	unsigned int		real_num_rx_queues;
2138 
2139 	struct bpf_prog __rcu	*xdp_prog;
2140 	unsigned long		gro_flush_timeout;
2141 	int			napi_defer_hard_irqs;
2142 #define GRO_MAX_SIZE		65536
2143 	unsigned int		gro_max_size;
2144 	rx_handler_func_t __rcu	*rx_handler;
2145 	void __rcu		*rx_handler_data;
2146 
2147 #ifdef CONFIG_NET_CLS_ACT
2148 	struct mini_Qdisc __rcu	*miniq_ingress;
2149 #endif
2150 	struct netdev_queue __rcu *ingress_queue;
2151 #ifdef CONFIG_NETFILTER_INGRESS
2152 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2153 #endif
2154 
2155 	unsigned char		broadcast[MAX_ADDR_LEN];
2156 #ifdef CONFIG_RFS_ACCEL
2157 	struct cpu_rmap		*rx_cpu_rmap;
2158 #endif
2159 	struct hlist_node	index_hlist;
2160 
2161 /*
2162  * Cache lines mostly used on transmit path
2163  */
2164 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2165 	unsigned int		num_tx_queues;
2166 	unsigned int		real_num_tx_queues;
2167 	struct Qdisc __rcu	*qdisc;
2168 	unsigned int		tx_queue_len;
2169 	spinlock_t		tx_global_lock;
2170 
2171 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2172 
2173 #ifdef CONFIG_XPS
2174 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2175 #endif
2176 #ifdef CONFIG_NET_CLS_ACT
2177 	struct mini_Qdisc __rcu	*miniq_egress;
2178 #endif
2179 #ifdef CONFIG_NETFILTER_EGRESS
2180 	struct nf_hook_entries __rcu *nf_hooks_egress;
2181 #endif
2182 
2183 #ifdef CONFIG_NET_SCHED
2184 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2185 #endif
2186 	/* These may be needed for future network-power-down code. */
2187 	struct timer_list	watchdog_timer;
2188 	int			watchdog_timeo;
2189 
2190 	u32                     proto_down_reason;
2191 
2192 	struct list_head	todo_list;
2193 
2194 #ifdef CONFIG_PCPU_DEV_REFCNT
2195 	int __percpu		*pcpu_refcnt;
2196 #else
2197 	refcount_t		dev_refcnt;
2198 #endif
2199 	struct ref_tracker_dir	refcnt_tracker;
2200 
2201 	struct list_head	link_watch_list;
2202 
2203 	enum { NETREG_UNINITIALIZED=0,
2204 	       NETREG_REGISTERED,	/* completed register_netdevice */
2205 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2206 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2207 	       NETREG_RELEASED,		/* called free_netdev */
2208 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2209 	} reg_state:8;
2210 
2211 	bool dismantle;
2212 
2213 	enum {
2214 		RTNL_LINK_INITIALIZED,
2215 		RTNL_LINK_INITIALIZING,
2216 	} rtnl_link_state:16;
2217 
2218 	bool needs_free_netdev;
2219 	void (*priv_destructor)(struct net_device *dev);
2220 
2221 #ifdef CONFIG_NETPOLL
2222 	struct netpoll_info __rcu	*npinfo;
2223 #endif
2224 
2225 	possible_net_t			nd_net;
2226 
2227 	/* mid-layer private */
2228 	void				*ml_priv;
2229 	enum netdev_ml_priv_type	ml_priv_type;
2230 
2231 	union {
2232 		struct pcpu_lstats __percpu		*lstats;
2233 		struct pcpu_sw_netstats __percpu	*tstats;
2234 		struct pcpu_dstats __percpu		*dstats;
2235 	};
2236 
2237 #if IS_ENABLED(CONFIG_GARP)
2238 	struct garp_port __rcu	*garp_port;
2239 #endif
2240 #if IS_ENABLED(CONFIG_MRP)
2241 	struct mrp_port __rcu	*mrp_port;
2242 #endif
2243 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2244 	struct dm_hw_stat_delta __rcu *dm_private;
2245 #endif
2246 	struct device		dev;
2247 	const struct attribute_group *sysfs_groups[4];
2248 	const struct attribute_group *sysfs_rx_queue_group;
2249 
2250 	const struct rtnl_link_ops *rtnl_link_ops;
2251 
2252 	/* for setting kernel sock attribute on TCP connection setup */
2253 #define GSO_MAX_SIZE		65536
2254 	unsigned int		gso_max_size;
2255 #define GSO_MAX_SEGS		65535
2256 	u16			gso_max_segs;
2257 
2258 #ifdef CONFIG_DCB
2259 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2260 #endif
2261 	s16			num_tc;
2262 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2263 	u8			prio_tc_map[TC_BITMASK + 1];
2264 
2265 #if IS_ENABLED(CONFIG_FCOE)
2266 	unsigned int		fcoe_ddp_xid;
2267 #endif
2268 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2269 	struct netprio_map __rcu *priomap;
2270 #endif
2271 	struct phy_device	*phydev;
2272 	struct sfp_bus		*sfp_bus;
2273 	struct lock_class_key	*qdisc_tx_busylock;
2274 	bool			proto_down;
2275 	unsigned		wol_enabled:1;
2276 	unsigned		threaded:1;
2277 
2278 	struct list_head	net_notifier_list;
2279 
2280 #if IS_ENABLED(CONFIG_MACSEC)
2281 	/* MACsec management functions */
2282 	const struct macsec_ops *macsec_ops;
2283 #endif
2284 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2285 	struct udp_tunnel_nic	*udp_tunnel_nic;
2286 
2287 	/* protected by rtnl_lock */
2288 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2289 
2290 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2291 	netdevice_tracker	linkwatch_dev_tracker;
2292 	netdevice_tracker	watchdog_dev_tracker;
2293 	netdevice_tracker	dev_registered_tracker;
2294 	struct rtnl_hw_stats64	*offload_xstats_l3;
2295 };
2296 #define to_net_dev(d) container_of(d, struct net_device, dev)
2297 
2298 static inline bool netif_elide_gro(const struct net_device *dev)
2299 {
2300 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2301 		return true;
2302 	return false;
2303 }
2304 
2305 #define	NETDEV_ALIGN		32
2306 
2307 static inline
2308 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2309 {
2310 	return dev->prio_tc_map[prio & TC_BITMASK];
2311 }
2312 
2313 static inline
2314 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2315 {
2316 	if (tc >= dev->num_tc)
2317 		return -EINVAL;
2318 
2319 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2320 	return 0;
2321 }
2322 
2323 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2324 void netdev_reset_tc(struct net_device *dev);
2325 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2326 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2327 
2328 static inline
2329 int netdev_get_num_tc(struct net_device *dev)
2330 {
2331 	return dev->num_tc;
2332 }
2333 
2334 static inline void net_prefetch(void *p)
2335 {
2336 	prefetch(p);
2337 #if L1_CACHE_BYTES < 128
2338 	prefetch((u8 *)p + L1_CACHE_BYTES);
2339 #endif
2340 }
2341 
2342 static inline void net_prefetchw(void *p)
2343 {
2344 	prefetchw(p);
2345 #if L1_CACHE_BYTES < 128
2346 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2347 #endif
2348 }
2349 
2350 void netdev_unbind_sb_channel(struct net_device *dev,
2351 			      struct net_device *sb_dev);
2352 int netdev_bind_sb_channel_queue(struct net_device *dev,
2353 				 struct net_device *sb_dev,
2354 				 u8 tc, u16 count, u16 offset);
2355 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2356 static inline int netdev_get_sb_channel(struct net_device *dev)
2357 {
2358 	return max_t(int, -dev->num_tc, 0);
2359 }
2360 
2361 static inline
2362 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2363 					 unsigned int index)
2364 {
2365 	return &dev->_tx[index];
2366 }
2367 
2368 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2369 						    const struct sk_buff *skb)
2370 {
2371 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2372 }
2373 
2374 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2375 					    void (*f)(struct net_device *,
2376 						      struct netdev_queue *,
2377 						      void *),
2378 					    void *arg)
2379 {
2380 	unsigned int i;
2381 
2382 	for (i = 0; i < dev->num_tx_queues; i++)
2383 		f(dev, &dev->_tx[i], arg);
2384 }
2385 
2386 #define netdev_lockdep_set_classes(dev)				\
2387 {								\
2388 	static struct lock_class_key qdisc_tx_busylock_key;	\
2389 	static struct lock_class_key qdisc_xmit_lock_key;	\
2390 	static struct lock_class_key dev_addr_list_lock_key;	\
2391 	unsigned int i;						\
2392 								\
2393 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2394 	lockdep_set_class(&(dev)->addr_list_lock,		\
2395 			  &dev_addr_list_lock_key);		\
2396 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2397 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2398 				  &qdisc_xmit_lock_key);	\
2399 }
2400 
2401 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2402 		     struct net_device *sb_dev);
2403 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2404 					 struct sk_buff *skb,
2405 					 struct net_device *sb_dev);
2406 
2407 /* returns the headroom that the master device needs to take in account
2408  * when forwarding to this dev
2409  */
2410 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2411 {
2412 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2413 }
2414 
2415 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2416 {
2417 	if (dev->netdev_ops->ndo_set_rx_headroom)
2418 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2419 }
2420 
2421 /* set the device rx headroom to the dev's default */
2422 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2423 {
2424 	netdev_set_rx_headroom(dev, -1);
2425 }
2426 
2427 static inline void *netdev_get_ml_priv(struct net_device *dev,
2428 				       enum netdev_ml_priv_type type)
2429 {
2430 	if (dev->ml_priv_type != type)
2431 		return NULL;
2432 
2433 	return dev->ml_priv;
2434 }
2435 
2436 static inline void netdev_set_ml_priv(struct net_device *dev,
2437 				      void *ml_priv,
2438 				      enum netdev_ml_priv_type type)
2439 {
2440 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2441 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2442 	     dev->ml_priv_type, type);
2443 	WARN(!dev->ml_priv_type && dev->ml_priv,
2444 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2445 
2446 	dev->ml_priv = ml_priv;
2447 	dev->ml_priv_type = type;
2448 }
2449 
2450 /*
2451  * Net namespace inlines
2452  */
2453 static inline
2454 struct net *dev_net(const struct net_device *dev)
2455 {
2456 	return read_pnet(&dev->nd_net);
2457 }
2458 
2459 static inline
2460 void dev_net_set(struct net_device *dev, struct net *net)
2461 {
2462 	write_pnet(&dev->nd_net, net);
2463 }
2464 
2465 /**
2466  *	netdev_priv - access network device private data
2467  *	@dev: network device
2468  *
2469  * Get network device private data
2470  */
2471 static inline void *netdev_priv(const struct net_device *dev)
2472 {
2473 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2474 }
2475 
2476 /* Set the sysfs physical device reference for the network logical device
2477  * if set prior to registration will cause a symlink during initialization.
2478  */
2479 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2480 
2481 /* Set the sysfs device type for the network logical device to allow
2482  * fine-grained identification of different network device types. For
2483  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2484  */
2485 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2486 
2487 /* Default NAPI poll() weight
2488  * Device drivers are strongly advised to not use bigger value
2489  */
2490 #define NAPI_POLL_WEIGHT 64
2491 
2492 /**
2493  *	netif_napi_add - initialize a NAPI context
2494  *	@dev:  network device
2495  *	@napi: NAPI context
2496  *	@poll: polling function
2497  *	@weight: default weight
2498  *
2499  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2500  * *any* of the other NAPI-related functions.
2501  */
2502 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2503 		    int (*poll)(struct napi_struct *, int), int weight);
2504 
2505 /**
2506  *	netif_tx_napi_add - initialize a NAPI context
2507  *	@dev:  network device
2508  *	@napi: NAPI context
2509  *	@poll: polling function
2510  *	@weight: default weight
2511  *
2512  * This variant of netif_napi_add() should be used from drivers using NAPI
2513  * to exclusively poll a TX queue.
2514  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2515  */
2516 static inline void netif_tx_napi_add(struct net_device *dev,
2517 				     struct napi_struct *napi,
2518 				     int (*poll)(struct napi_struct *, int),
2519 				     int weight)
2520 {
2521 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2522 	netif_napi_add(dev, napi, poll, weight);
2523 }
2524 
2525 /**
2526  *  __netif_napi_del - remove a NAPI context
2527  *  @napi: NAPI context
2528  *
2529  * Warning: caller must observe RCU grace period before freeing memory
2530  * containing @napi. Drivers might want to call this helper to combine
2531  * all the needed RCU grace periods into a single one.
2532  */
2533 void __netif_napi_del(struct napi_struct *napi);
2534 
2535 /**
2536  *  netif_napi_del - remove a NAPI context
2537  *  @napi: NAPI context
2538  *
2539  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2540  */
2541 static inline void netif_napi_del(struct napi_struct *napi)
2542 {
2543 	__netif_napi_del(napi);
2544 	synchronize_net();
2545 }
2546 
2547 struct packet_type {
2548 	__be16			type;	/* This is really htons(ether_type). */
2549 	bool			ignore_outgoing;
2550 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2551 	netdevice_tracker	dev_tracker;
2552 	int			(*func) (struct sk_buff *,
2553 					 struct net_device *,
2554 					 struct packet_type *,
2555 					 struct net_device *);
2556 	void			(*list_func) (struct list_head *,
2557 					      struct packet_type *,
2558 					      struct net_device *);
2559 	bool			(*id_match)(struct packet_type *ptype,
2560 					    struct sock *sk);
2561 	struct net		*af_packet_net;
2562 	void			*af_packet_priv;
2563 	struct list_head	list;
2564 };
2565 
2566 struct offload_callbacks {
2567 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2568 						netdev_features_t features);
2569 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2570 						struct sk_buff *skb);
2571 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2572 };
2573 
2574 struct packet_offload {
2575 	__be16			 type;	/* This is really htons(ether_type). */
2576 	u16			 priority;
2577 	struct offload_callbacks callbacks;
2578 	struct list_head	 list;
2579 };
2580 
2581 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2582 struct pcpu_sw_netstats {
2583 	u64     rx_packets;
2584 	u64     rx_bytes;
2585 	u64     tx_packets;
2586 	u64     tx_bytes;
2587 	struct u64_stats_sync   syncp;
2588 } __aligned(4 * sizeof(u64));
2589 
2590 struct pcpu_lstats {
2591 	u64_stats_t packets;
2592 	u64_stats_t bytes;
2593 	struct u64_stats_sync syncp;
2594 } __aligned(2 * sizeof(u64));
2595 
2596 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2597 
2598 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2599 {
2600 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2601 
2602 	u64_stats_update_begin(&tstats->syncp);
2603 	tstats->rx_bytes += len;
2604 	tstats->rx_packets++;
2605 	u64_stats_update_end(&tstats->syncp);
2606 }
2607 
2608 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2609 					  unsigned int packets,
2610 					  unsigned int len)
2611 {
2612 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2613 
2614 	u64_stats_update_begin(&tstats->syncp);
2615 	tstats->tx_bytes += len;
2616 	tstats->tx_packets += packets;
2617 	u64_stats_update_end(&tstats->syncp);
2618 }
2619 
2620 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2621 {
2622 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2623 
2624 	u64_stats_update_begin(&lstats->syncp);
2625 	u64_stats_add(&lstats->bytes, len);
2626 	u64_stats_inc(&lstats->packets);
2627 	u64_stats_update_end(&lstats->syncp);
2628 }
2629 
2630 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2631 ({									\
2632 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2633 	if (pcpu_stats)	{						\
2634 		int __cpu;						\
2635 		for_each_possible_cpu(__cpu) {				\
2636 			typeof(type) *stat;				\
2637 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2638 			u64_stats_init(&stat->syncp);			\
2639 		}							\
2640 	}								\
2641 	pcpu_stats;							\
2642 })
2643 
2644 #define netdev_alloc_pcpu_stats(type)					\
2645 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2646 
2647 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2648 ({									\
2649 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2650 	if (pcpu_stats) {						\
2651 		int __cpu;						\
2652 		for_each_possible_cpu(__cpu) {				\
2653 			typeof(type) *stat;				\
2654 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2655 			u64_stats_init(&stat->syncp);			\
2656 		}							\
2657 	}								\
2658 	pcpu_stats;							\
2659 })
2660 
2661 enum netdev_lag_tx_type {
2662 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2663 	NETDEV_LAG_TX_TYPE_RANDOM,
2664 	NETDEV_LAG_TX_TYPE_BROADCAST,
2665 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2666 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2667 	NETDEV_LAG_TX_TYPE_HASH,
2668 };
2669 
2670 enum netdev_lag_hash {
2671 	NETDEV_LAG_HASH_NONE,
2672 	NETDEV_LAG_HASH_L2,
2673 	NETDEV_LAG_HASH_L34,
2674 	NETDEV_LAG_HASH_L23,
2675 	NETDEV_LAG_HASH_E23,
2676 	NETDEV_LAG_HASH_E34,
2677 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2678 	NETDEV_LAG_HASH_UNKNOWN,
2679 };
2680 
2681 struct netdev_lag_upper_info {
2682 	enum netdev_lag_tx_type tx_type;
2683 	enum netdev_lag_hash hash_type;
2684 };
2685 
2686 struct netdev_lag_lower_state_info {
2687 	u8 link_up : 1,
2688 	   tx_enabled : 1;
2689 };
2690 
2691 #include <linux/notifier.h>
2692 
2693 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2694  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2695  * adding new types.
2696  */
2697 enum netdev_cmd {
2698 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2699 	NETDEV_DOWN,
2700 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2701 				   detected a hardware crash and restarted
2702 				   - we can use this eg to kick tcp sessions
2703 				   once done */
2704 	NETDEV_CHANGE,		/* Notify device state change */
2705 	NETDEV_REGISTER,
2706 	NETDEV_UNREGISTER,
2707 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2708 	NETDEV_CHANGEADDR,	/* notify after the address change */
2709 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2710 	NETDEV_GOING_DOWN,
2711 	NETDEV_CHANGENAME,
2712 	NETDEV_FEAT_CHANGE,
2713 	NETDEV_BONDING_FAILOVER,
2714 	NETDEV_PRE_UP,
2715 	NETDEV_PRE_TYPE_CHANGE,
2716 	NETDEV_POST_TYPE_CHANGE,
2717 	NETDEV_POST_INIT,
2718 	NETDEV_RELEASE,
2719 	NETDEV_NOTIFY_PEERS,
2720 	NETDEV_JOIN,
2721 	NETDEV_CHANGEUPPER,
2722 	NETDEV_RESEND_IGMP,
2723 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2724 	NETDEV_CHANGEINFODATA,
2725 	NETDEV_BONDING_INFO,
2726 	NETDEV_PRECHANGEUPPER,
2727 	NETDEV_CHANGELOWERSTATE,
2728 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2729 	NETDEV_UDP_TUNNEL_DROP_INFO,
2730 	NETDEV_CHANGE_TX_QUEUE_LEN,
2731 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2732 	NETDEV_CVLAN_FILTER_DROP_INFO,
2733 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2734 	NETDEV_SVLAN_FILTER_DROP_INFO,
2735 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2736 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2737 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2738 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2739 };
2740 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2741 
2742 int register_netdevice_notifier(struct notifier_block *nb);
2743 int unregister_netdevice_notifier(struct notifier_block *nb);
2744 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2745 int unregister_netdevice_notifier_net(struct net *net,
2746 				      struct notifier_block *nb);
2747 int register_netdevice_notifier_dev_net(struct net_device *dev,
2748 					struct notifier_block *nb,
2749 					struct netdev_net_notifier *nn);
2750 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2751 					  struct notifier_block *nb,
2752 					  struct netdev_net_notifier *nn);
2753 
2754 struct netdev_notifier_info {
2755 	struct net_device	*dev;
2756 	struct netlink_ext_ack	*extack;
2757 };
2758 
2759 struct netdev_notifier_info_ext {
2760 	struct netdev_notifier_info info; /* must be first */
2761 	union {
2762 		u32 mtu;
2763 	} ext;
2764 };
2765 
2766 struct netdev_notifier_change_info {
2767 	struct netdev_notifier_info info; /* must be first */
2768 	unsigned int flags_changed;
2769 };
2770 
2771 struct netdev_notifier_changeupper_info {
2772 	struct netdev_notifier_info info; /* must be first */
2773 	struct net_device *upper_dev; /* new upper dev */
2774 	bool master; /* is upper dev master */
2775 	bool linking; /* is the notification for link or unlink */
2776 	void *upper_info; /* upper dev info */
2777 };
2778 
2779 struct netdev_notifier_changelowerstate_info {
2780 	struct netdev_notifier_info info; /* must be first */
2781 	void *lower_state_info; /* is lower dev state */
2782 };
2783 
2784 struct netdev_notifier_pre_changeaddr_info {
2785 	struct netdev_notifier_info info; /* must be first */
2786 	const unsigned char *dev_addr;
2787 };
2788 
2789 enum netdev_offload_xstats_type {
2790 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2791 };
2792 
2793 struct netdev_notifier_offload_xstats_info {
2794 	struct netdev_notifier_info info; /* must be first */
2795 	enum netdev_offload_xstats_type type;
2796 
2797 	union {
2798 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2799 		struct netdev_notifier_offload_xstats_rd *report_delta;
2800 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2801 		struct netdev_notifier_offload_xstats_ru *report_used;
2802 	};
2803 };
2804 
2805 int netdev_offload_xstats_enable(struct net_device *dev,
2806 				 enum netdev_offload_xstats_type type,
2807 				 struct netlink_ext_ack *extack);
2808 int netdev_offload_xstats_disable(struct net_device *dev,
2809 				  enum netdev_offload_xstats_type type);
2810 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2811 				   enum netdev_offload_xstats_type type);
2812 int netdev_offload_xstats_get(struct net_device *dev,
2813 			      enum netdev_offload_xstats_type type,
2814 			      struct rtnl_hw_stats64 *stats, bool *used,
2815 			      struct netlink_ext_ack *extack);
2816 void
2817 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2818 				   const struct rtnl_hw_stats64 *stats);
2819 void
2820 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2821 void netdev_offload_xstats_push_delta(struct net_device *dev,
2822 				      enum netdev_offload_xstats_type type,
2823 				      const struct rtnl_hw_stats64 *stats);
2824 
2825 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2826 					     struct net_device *dev)
2827 {
2828 	info->dev = dev;
2829 	info->extack = NULL;
2830 }
2831 
2832 static inline struct net_device *
2833 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2834 {
2835 	return info->dev;
2836 }
2837 
2838 static inline struct netlink_ext_ack *
2839 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2840 {
2841 	return info->extack;
2842 }
2843 
2844 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2845 
2846 
2847 extern rwlock_t				dev_base_lock;		/* Device list lock */
2848 
2849 #define for_each_netdev(net, d)		\
2850 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2851 #define for_each_netdev_reverse(net, d)	\
2852 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2853 #define for_each_netdev_rcu(net, d)		\
2854 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2855 #define for_each_netdev_safe(net, d, n)	\
2856 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2857 #define for_each_netdev_continue(net, d)		\
2858 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2859 #define for_each_netdev_continue_reverse(net, d)		\
2860 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2861 						     dev_list)
2862 #define for_each_netdev_continue_rcu(net, d)		\
2863 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2864 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2865 		for_each_netdev_rcu(&init_net, slave)	\
2866 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2867 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2868 
2869 static inline struct net_device *next_net_device(struct net_device *dev)
2870 {
2871 	struct list_head *lh;
2872 	struct net *net;
2873 
2874 	net = dev_net(dev);
2875 	lh = dev->dev_list.next;
2876 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2877 }
2878 
2879 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2880 {
2881 	struct list_head *lh;
2882 	struct net *net;
2883 
2884 	net = dev_net(dev);
2885 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2886 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2887 }
2888 
2889 static inline struct net_device *first_net_device(struct net *net)
2890 {
2891 	return list_empty(&net->dev_base_head) ? NULL :
2892 		net_device_entry(net->dev_base_head.next);
2893 }
2894 
2895 static inline struct net_device *first_net_device_rcu(struct net *net)
2896 {
2897 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2898 
2899 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2900 }
2901 
2902 int netdev_boot_setup_check(struct net_device *dev);
2903 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2904 				       const char *hwaddr);
2905 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2906 void dev_add_pack(struct packet_type *pt);
2907 void dev_remove_pack(struct packet_type *pt);
2908 void __dev_remove_pack(struct packet_type *pt);
2909 void dev_add_offload(struct packet_offload *po);
2910 void dev_remove_offload(struct packet_offload *po);
2911 
2912 int dev_get_iflink(const struct net_device *dev);
2913 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2914 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2915 			  struct net_device_path_stack *stack);
2916 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2917 				      unsigned short mask);
2918 struct net_device *dev_get_by_name(struct net *net, const char *name);
2919 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2920 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2921 bool netdev_name_in_use(struct net *net, const char *name);
2922 int dev_alloc_name(struct net_device *dev, const char *name);
2923 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2924 void dev_close(struct net_device *dev);
2925 void dev_close_many(struct list_head *head, bool unlink);
2926 void dev_disable_lro(struct net_device *dev);
2927 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2928 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2929 		     struct net_device *sb_dev);
2930 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2931 		       struct net_device *sb_dev);
2932 
2933 int dev_queue_xmit(struct sk_buff *skb);
2934 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2935 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2936 
2937 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2938 {
2939 	int ret;
2940 
2941 	ret = __dev_direct_xmit(skb, queue_id);
2942 	if (!dev_xmit_complete(ret))
2943 		kfree_skb(skb);
2944 	return ret;
2945 }
2946 
2947 int register_netdevice(struct net_device *dev);
2948 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2949 void unregister_netdevice_many(struct list_head *head);
2950 static inline void unregister_netdevice(struct net_device *dev)
2951 {
2952 	unregister_netdevice_queue(dev, NULL);
2953 }
2954 
2955 int netdev_refcnt_read(const struct net_device *dev);
2956 void free_netdev(struct net_device *dev);
2957 void netdev_freemem(struct net_device *dev);
2958 int init_dummy_netdev(struct net_device *dev);
2959 
2960 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2961 					 struct sk_buff *skb,
2962 					 bool all_slaves);
2963 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2964 					    struct sock *sk);
2965 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2966 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2967 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2968 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2969 int netdev_get_name(struct net *net, char *name, int ifindex);
2970 int dev_restart(struct net_device *dev);
2971 
2972 
2973 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2974 				  unsigned short type,
2975 				  const void *daddr, const void *saddr,
2976 				  unsigned int len)
2977 {
2978 	if (!dev->header_ops || !dev->header_ops->create)
2979 		return 0;
2980 
2981 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2982 }
2983 
2984 static inline int dev_parse_header(const struct sk_buff *skb,
2985 				   unsigned char *haddr)
2986 {
2987 	const struct net_device *dev = skb->dev;
2988 
2989 	if (!dev->header_ops || !dev->header_ops->parse)
2990 		return 0;
2991 	return dev->header_ops->parse(skb, haddr);
2992 }
2993 
2994 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2995 {
2996 	const struct net_device *dev = skb->dev;
2997 
2998 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2999 		return 0;
3000 	return dev->header_ops->parse_protocol(skb);
3001 }
3002 
3003 /* ll_header must have at least hard_header_len allocated */
3004 static inline bool dev_validate_header(const struct net_device *dev,
3005 				       char *ll_header, int len)
3006 {
3007 	if (likely(len >= dev->hard_header_len))
3008 		return true;
3009 	if (len < dev->min_header_len)
3010 		return false;
3011 
3012 	if (capable(CAP_SYS_RAWIO)) {
3013 		memset(ll_header + len, 0, dev->hard_header_len - len);
3014 		return true;
3015 	}
3016 
3017 	if (dev->header_ops && dev->header_ops->validate)
3018 		return dev->header_ops->validate(ll_header, len);
3019 
3020 	return false;
3021 }
3022 
3023 static inline bool dev_has_header(const struct net_device *dev)
3024 {
3025 	return dev->header_ops && dev->header_ops->create;
3026 }
3027 
3028 #ifdef CONFIG_NET_FLOW_LIMIT
3029 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3030 struct sd_flow_limit {
3031 	u64			count;
3032 	unsigned int		num_buckets;
3033 	unsigned int		history_head;
3034 	u16			history[FLOW_LIMIT_HISTORY];
3035 	u8			buckets[];
3036 };
3037 
3038 extern int netdev_flow_limit_table_len;
3039 #endif /* CONFIG_NET_FLOW_LIMIT */
3040 
3041 /*
3042  * Incoming packets are placed on per-CPU queues
3043  */
3044 struct softnet_data {
3045 	struct list_head	poll_list;
3046 	struct sk_buff_head	process_queue;
3047 
3048 	/* stats */
3049 	unsigned int		processed;
3050 	unsigned int		time_squeeze;
3051 	unsigned int		received_rps;
3052 #ifdef CONFIG_RPS
3053 	struct softnet_data	*rps_ipi_list;
3054 #endif
3055 #ifdef CONFIG_NET_FLOW_LIMIT
3056 	struct sd_flow_limit __rcu *flow_limit;
3057 #endif
3058 	struct Qdisc		*output_queue;
3059 	struct Qdisc		**output_queue_tailp;
3060 	struct sk_buff		*completion_queue;
3061 #ifdef CONFIG_XFRM_OFFLOAD
3062 	struct sk_buff_head	xfrm_backlog;
3063 #endif
3064 	/* written and read only by owning cpu: */
3065 	struct {
3066 		u16 recursion;
3067 		u8  more;
3068 	} xmit;
3069 #ifdef CONFIG_RPS
3070 	/* input_queue_head should be written by cpu owning this struct,
3071 	 * and only read by other cpus. Worth using a cache line.
3072 	 */
3073 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3074 
3075 	/* Elements below can be accessed between CPUs for RPS/RFS */
3076 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3077 	struct softnet_data	*rps_ipi_next;
3078 	unsigned int		cpu;
3079 	unsigned int		input_queue_tail;
3080 #endif
3081 	unsigned int		dropped;
3082 	struct sk_buff_head	input_pkt_queue;
3083 	struct napi_struct	backlog;
3084 
3085 };
3086 
3087 static inline void input_queue_head_incr(struct softnet_data *sd)
3088 {
3089 #ifdef CONFIG_RPS
3090 	sd->input_queue_head++;
3091 #endif
3092 }
3093 
3094 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3095 					      unsigned int *qtail)
3096 {
3097 #ifdef CONFIG_RPS
3098 	*qtail = ++sd->input_queue_tail;
3099 #endif
3100 }
3101 
3102 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3103 
3104 static inline int dev_recursion_level(void)
3105 {
3106 	return this_cpu_read(softnet_data.xmit.recursion);
3107 }
3108 
3109 #define XMIT_RECURSION_LIMIT	8
3110 static inline bool dev_xmit_recursion(void)
3111 {
3112 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3113 			XMIT_RECURSION_LIMIT);
3114 }
3115 
3116 static inline void dev_xmit_recursion_inc(void)
3117 {
3118 	__this_cpu_inc(softnet_data.xmit.recursion);
3119 }
3120 
3121 static inline void dev_xmit_recursion_dec(void)
3122 {
3123 	__this_cpu_dec(softnet_data.xmit.recursion);
3124 }
3125 
3126 void __netif_schedule(struct Qdisc *q);
3127 void netif_schedule_queue(struct netdev_queue *txq);
3128 
3129 static inline void netif_tx_schedule_all(struct net_device *dev)
3130 {
3131 	unsigned int i;
3132 
3133 	for (i = 0; i < dev->num_tx_queues; i++)
3134 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3135 }
3136 
3137 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3138 {
3139 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3140 }
3141 
3142 /**
3143  *	netif_start_queue - allow transmit
3144  *	@dev: network device
3145  *
3146  *	Allow upper layers to call the device hard_start_xmit routine.
3147  */
3148 static inline void netif_start_queue(struct net_device *dev)
3149 {
3150 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3151 }
3152 
3153 static inline void netif_tx_start_all_queues(struct net_device *dev)
3154 {
3155 	unsigned int i;
3156 
3157 	for (i = 0; i < dev->num_tx_queues; i++) {
3158 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3159 		netif_tx_start_queue(txq);
3160 	}
3161 }
3162 
3163 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3164 
3165 /**
3166  *	netif_wake_queue - restart transmit
3167  *	@dev: network device
3168  *
3169  *	Allow upper layers to call the device hard_start_xmit routine.
3170  *	Used for flow control when transmit resources are available.
3171  */
3172 static inline void netif_wake_queue(struct net_device *dev)
3173 {
3174 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3175 }
3176 
3177 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3178 {
3179 	unsigned int i;
3180 
3181 	for (i = 0; i < dev->num_tx_queues; i++) {
3182 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3183 		netif_tx_wake_queue(txq);
3184 	}
3185 }
3186 
3187 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3188 {
3189 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3190 }
3191 
3192 /**
3193  *	netif_stop_queue - stop transmitted packets
3194  *	@dev: network device
3195  *
3196  *	Stop upper layers calling the device hard_start_xmit routine.
3197  *	Used for flow control when transmit resources are unavailable.
3198  */
3199 static inline void netif_stop_queue(struct net_device *dev)
3200 {
3201 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3202 }
3203 
3204 void netif_tx_stop_all_queues(struct net_device *dev);
3205 
3206 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3207 {
3208 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3209 }
3210 
3211 /**
3212  *	netif_queue_stopped - test if transmit queue is flowblocked
3213  *	@dev: network device
3214  *
3215  *	Test if transmit queue on device is currently unable to send.
3216  */
3217 static inline bool netif_queue_stopped(const struct net_device *dev)
3218 {
3219 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3220 }
3221 
3222 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3223 {
3224 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3225 }
3226 
3227 static inline bool
3228 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3229 {
3230 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3231 }
3232 
3233 static inline bool
3234 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3235 {
3236 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3237 }
3238 
3239 /**
3240  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3241  *	@dev_queue: pointer to transmit queue
3242  *	@min_limit: dql minimum limit
3243  *
3244  * Forces xmit_more() to return true until the minimum threshold
3245  * defined by @min_limit is reached (or until the tx queue is
3246  * empty). Warning: to be use with care, misuse will impact the
3247  * latency.
3248  */
3249 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3250 						  unsigned int min_limit)
3251 {
3252 #ifdef CONFIG_BQL
3253 	dev_queue->dql.min_limit = min_limit;
3254 #endif
3255 }
3256 
3257 /**
3258  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3259  *	@dev_queue: pointer to transmit queue
3260  *
3261  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3262  * to give appropriate hint to the CPU.
3263  */
3264 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3265 {
3266 #ifdef CONFIG_BQL
3267 	prefetchw(&dev_queue->dql.num_queued);
3268 #endif
3269 }
3270 
3271 /**
3272  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3273  *	@dev_queue: pointer to transmit queue
3274  *
3275  * BQL enabled drivers might use this helper in their TX completion path,
3276  * to give appropriate hint to the CPU.
3277  */
3278 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3279 {
3280 #ifdef CONFIG_BQL
3281 	prefetchw(&dev_queue->dql.limit);
3282 #endif
3283 }
3284 
3285 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3286 					unsigned int bytes)
3287 {
3288 #ifdef CONFIG_BQL
3289 	dql_queued(&dev_queue->dql, bytes);
3290 
3291 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3292 		return;
3293 
3294 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3295 
3296 	/*
3297 	 * The XOFF flag must be set before checking the dql_avail below,
3298 	 * because in netdev_tx_completed_queue we update the dql_completed
3299 	 * before checking the XOFF flag.
3300 	 */
3301 	smp_mb();
3302 
3303 	/* check again in case another CPU has just made room avail */
3304 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3305 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3306 #endif
3307 }
3308 
3309 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3310  * that they should not test BQL status themselves.
3311  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3312  * skb of a batch.
3313  * Returns true if the doorbell must be used to kick the NIC.
3314  */
3315 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3316 					  unsigned int bytes,
3317 					  bool xmit_more)
3318 {
3319 	if (xmit_more) {
3320 #ifdef CONFIG_BQL
3321 		dql_queued(&dev_queue->dql, bytes);
3322 #endif
3323 		return netif_tx_queue_stopped(dev_queue);
3324 	}
3325 	netdev_tx_sent_queue(dev_queue, bytes);
3326 	return true;
3327 }
3328 
3329 /**
3330  * 	netdev_sent_queue - report the number of bytes queued to hardware
3331  * 	@dev: network device
3332  * 	@bytes: number of bytes queued to the hardware device queue
3333  *
3334  * 	Report the number of bytes queued for sending/completion to the network
3335  * 	device hardware queue. @bytes should be a good approximation and should
3336  * 	exactly match netdev_completed_queue() @bytes
3337  */
3338 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3339 {
3340 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3341 }
3342 
3343 static inline bool __netdev_sent_queue(struct net_device *dev,
3344 				       unsigned int bytes,
3345 				       bool xmit_more)
3346 {
3347 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3348 				      xmit_more);
3349 }
3350 
3351 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3352 					     unsigned int pkts, unsigned int bytes)
3353 {
3354 #ifdef CONFIG_BQL
3355 	if (unlikely(!bytes))
3356 		return;
3357 
3358 	dql_completed(&dev_queue->dql, bytes);
3359 
3360 	/*
3361 	 * Without the memory barrier there is a small possiblity that
3362 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3363 	 * be stopped forever
3364 	 */
3365 	smp_mb();
3366 
3367 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3368 		return;
3369 
3370 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3371 		netif_schedule_queue(dev_queue);
3372 #endif
3373 }
3374 
3375 /**
3376  * 	netdev_completed_queue - report bytes and packets completed by device
3377  * 	@dev: network device
3378  * 	@pkts: actual number of packets sent over the medium
3379  * 	@bytes: actual number of bytes sent over the medium
3380  *
3381  * 	Report the number of bytes and packets transmitted by the network device
3382  * 	hardware queue over the physical medium, @bytes must exactly match the
3383  * 	@bytes amount passed to netdev_sent_queue()
3384  */
3385 static inline void netdev_completed_queue(struct net_device *dev,
3386 					  unsigned int pkts, unsigned int bytes)
3387 {
3388 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3389 }
3390 
3391 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3392 {
3393 #ifdef CONFIG_BQL
3394 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3395 	dql_reset(&q->dql);
3396 #endif
3397 }
3398 
3399 /**
3400  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3401  * 	@dev_queue: network device
3402  *
3403  * 	Reset the bytes and packet count of a network device and clear the
3404  * 	software flow control OFF bit for this network device
3405  */
3406 static inline void netdev_reset_queue(struct net_device *dev_queue)
3407 {
3408 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3409 }
3410 
3411 /**
3412  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3413  * 	@dev: network device
3414  * 	@queue_index: given tx queue index
3415  *
3416  * 	Returns 0 if given tx queue index >= number of device tx queues,
3417  * 	otherwise returns the originally passed tx queue index.
3418  */
3419 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3420 {
3421 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3422 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3423 				     dev->name, queue_index,
3424 				     dev->real_num_tx_queues);
3425 		return 0;
3426 	}
3427 
3428 	return queue_index;
3429 }
3430 
3431 /**
3432  *	netif_running - test if up
3433  *	@dev: network device
3434  *
3435  *	Test if the device has been brought up.
3436  */
3437 static inline bool netif_running(const struct net_device *dev)
3438 {
3439 	return test_bit(__LINK_STATE_START, &dev->state);
3440 }
3441 
3442 /*
3443  * Routines to manage the subqueues on a device.  We only need start,
3444  * stop, and a check if it's stopped.  All other device management is
3445  * done at the overall netdevice level.
3446  * Also test the device if we're multiqueue.
3447  */
3448 
3449 /**
3450  *	netif_start_subqueue - allow sending packets on subqueue
3451  *	@dev: network device
3452  *	@queue_index: sub queue index
3453  *
3454  * Start individual transmit queue of a device with multiple transmit queues.
3455  */
3456 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3457 {
3458 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3459 
3460 	netif_tx_start_queue(txq);
3461 }
3462 
3463 /**
3464  *	netif_stop_subqueue - stop sending packets on subqueue
3465  *	@dev: network device
3466  *	@queue_index: sub queue index
3467  *
3468  * Stop individual transmit queue of a device with multiple transmit queues.
3469  */
3470 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3471 {
3472 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3473 	netif_tx_stop_queue(txq);
3474 }
3475 
3476 /**
3477  *	__netif_subqueue_stopped - test status of subqueue
3478  *	@dev: network device
3479  *	@queue_index: sub queue index
3480  *
3481  * Check individual transmit queue of a device with multiple transmit queues.
3482  */
3483 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3484 					    u16 queue_index)
3485 {
3486 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3487 
3488 	return netif_tx_queue_stopped(txq);
3489 }
3490 
3491 /**
3492  *	netif_subqueue_stopped - test status of subqueue
3493  *	@dev: network device
3494  *	@skb: sub queue buffer pointer
3495  *
3496  * Check individual transmit queue of a device with multiple transmit queues.
3497  */
3498 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3499 					  struct sk_buff *skb)
3500 {
3501 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3502 }
3503 
3504 /**
3505  *	netif_wake_subqueue - allow sending packets on subqueue
3506  *	@dev: network device
3507  *	@queue_index: sub queue index
3508  *
3509  * Resume individual transmit queue of a device with multiple transmit queues.
3510  */
3511 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3512 {
3513 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3514 
3515 	netif_tx_wake_queue(txq);
3516 }
3517 
3518 #ifdef CONFIG_XPS
3519 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3520 			u16 index);
3521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3522 			  u16 index, enum xps_map_type type);
3523 
3524 /**
3525  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3526  *	@j: CPU/Rx queue index
3527  *	@mask: bitmask of all cpus/rx queues
3528  *	@nr_bits: number of bits in the bitmask
3529  *
3530  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3531  */
3532 static inline bool netif_attr_test_mask(unsigned long j,
3533 					const unsigned long *mask,
3534 					unsigned int nr_bits)
3535 {
3536 	cpu_max_bits_warn(j, nr_bits);
3537 	return test_bit(j, mask);
3538 }
3539 
3540 /**
3541  *	netif_attr_test_online - Test for online CPU/Rx queue
3542  *	@j: CPU/Rx queue index
3543  *	@online_mask: bitmask for CPUs/Rx queues that are online
3544  *	@nr_bits: number of bits in the bitmask
3545  *
3546  * Returns true if a CPU/Rx queue is online.
3547  */
3548 static inline bool netif_attr_test_online(unsigned long j,
3549 					  const unsigned long *online_mask,
3550 					  unsigned int nr_bits)
3551 {
3552 	cpu_max_bits_warn(j, nr_bits);
3553 
3554 	if (online_mask)
3555 		return test_bit(j, online_mask);
3556 
3557 	return (j < nr_bits);
3558 }
3559 
3560 /**
3561  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3562  *	@n: CPU/Rx queue index
3563  *	@srcp: the cpumask/Rx queue mask pointer
3564  *	@nr_bits: number of bits in the bitmask
3565  *
3566  * Returns >= nr_bits if no further CPUs/Rx queues set.
3567  */
3568 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3569 					       unsigned int nr_bits)
3570 {
3571 	/* -1 is a legal arg here. */
3572 	if (n != -1)
3573 		cpu_max_bits_warn(n, nr_bits);
3574 
3575 	if (srcp)
3576 		return find_next_bit(srcp, nr_bits, n + 1);
3577 
3578 	return n + 1;
3579 }
3580 
3581 /**
3582  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3583  *	@n: CPU/Rx queue index
3584  *	@src1p: the first CPUs/Rx queues mask pointer
3585  *	@src2p: the second CPUs/Rx queues mask pointer
3586  *	@nr_bits: number of bits in the bitmask
3587  *
3588  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3589  */
3590 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3591 					  const unsigned long *src2p,
3592 					  unsigned int nr_bits)
3593 {
3594 	/* -1 is a legal arg here. */
3595 	if (n != -1)
3596 		cpu_max_bits_warn(n, nr_bits);
3597 
3598 	if (src1p && src2p)
3599 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3600 	else if (src1p)
3601 		return find_next_bit(src1p, nr_bits, n + 1);
3602 	else if (src2p)
3603 		return find_next_bit(src2p, nr_bits, n + 1);
3604 
3605 	return n + 1;
3606 }
3607 #else
3608 static inline int netif_set_xps_queue(struct net_device *dev,
3609 				      const struct cpumask *mask,
3610 				      u16 index)
3611 {
3612 	return 0;
3613 }
3614 
3615 static inline int __netif_set_xps_queue(struct net_device *dev,
3616 					const unsigned long *mask,
3617 					u16 index, enum xps_map_type type)
3618 {
3619 	return 0;
3620 }
3621 #endif
3622 
3623 /**
3624  *	netif_is_multiqueue - test if device has multiple transmit queues
3625  *	@dev: network device
3626  *
3627  * Check if device has multiple transmit queues
3628  */
3629 static inline bool netif_is_multiqueue(const struct net_device *dev)
3630 {
3631 	return dev->num_tx_queues > 1;
3632 }
3633 
3634 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3635 
3636 #ifdef CONFIG_SYSFS
3637 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3638 #else
3639 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3640 						unsigned int rxqs)
3641 {
3642 	dev->real_num_rx_queues = rxqs;
3643 	return 0;
3644 }
3645 #endif
3646 int netif_set_real_num_queues(struct net_device *dev,
3647 			      unsigned int txq, unsigned int rxq);
3648 
3649 static inline struct netdev_rx_queue *
3650 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3651 {
3652 	return dev->_rx + rxq;
3653 }
3654 
3655 #ifdef CONFIG_SYSFS
3656 static inline unsigned int get_netdev_rx_queue_index(
3657 		struct netdev_rx_queue *queue)
3658 {
3659 	struct net_device *dev = queue->dev;
3660 	int index = queue - dev->_rx;
3661 
3662 	BUG_ON(index >= dev->num_rx_queues);
3663 	return index;
3664 }
3665 #endif
3666 
3667 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3668 int netif_get_num_default_rss_queues(void);
3669 
3670 enum skb_free_reason {
3671 	SKB_REASON_CONSUMED,
3672 	SKB_REASON_DROPPED,
3673 };
3674 
3675 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3676 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3677 
3678 /*
3679  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3680  * interrupt context or with hardware interrupts being disabled.
3681  * (in_hardirq() || irqs_disabled())
3682  *
3683  * We provide four helpers that can be used in following contexts :
3684  *
3685  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3686  *  replacing kfree_skb(skb)
3687  *
3688  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3689  *  Typically used in place of consume_skb(skb) in TX completion path
3690  *
3691  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3692  *  replacing kfree_skb(skb)
3693  *
3694  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3695  *  and consumed a packet. Used in place of consume_skb(skb)
3696  */
3697 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3698 {
3699 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3700 }
3701 
3702 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3703 {
3704 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3705 }
3706 
3707 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3708 {
3709 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3710 }
3711 
3712 static inline void dev_consume_skb_any(struct sk_buff *skb)
3713 {
3714 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3715 }
3716 
3717 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3718 			     struct bpf_prog *xdp_prog);
3719 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3720 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3721 int netif_rx(struct sk_buff *skb);
3722 int __netif_rx(struct sk_buff *skb);
3723 
3724 int netif_receive_skb(struct sk_buff *skb);
3725 int netif_receive_skb_core(struct sk_buff *skb);
3726 void netif_receive_skb_list_internal(struct list_head *head);
3727 void netif_receive_skb_list(struct list_head *head);
3728 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3729 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3730 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3731 gro_result_t napi_gro_frags(struct napi_struct *napi);
3732 struct packet_offload *gro_find_receive_by_type(__be16 type);
3733 struct packet_offload *gro_find_complete_by_type(__be16 type);
3734 
3735 static inline void napi_free_frags(struct napi_struct *napi)
3736 {
3737 	kfree_skb(napi->skb);
3738 	napi->skb = NULL;
3739 }
3740 
3741 bool netdev_is_rx_handler_busy(struct net_device *dev);
3742 int netdev_rx_handler_register(struct net_device *dev,
3743 			       rx_handler_func_t *rx_handler,
3744 			       void *rx_handler_data);
3745 void netdev_rx_handler_unregister(struct net_device *dev);
3746 
3747 bool dev_valid_name(const char *name);
3748 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3749 {
3750 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3751 }
3752 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3753 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3754 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3755 		void __user *data, bool *need_copyout);
3756 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3757 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3758 unsigned int dev_get_flags(const struct net_device *);
3759 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3760 		       struct netlink_ext_ack *extack);
3761 int dev_change_flags(struct net_device *dev, unsigned int flags,
3762 		     struct netlink_ext_ack *extack);
3763 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3764 			unsigned int gchanges);
3765 int dev_change_name(struct net_device *, const char *);
3766 int dev_set_alias(struct net_device *, const char *, size_t);
3767 int dev_get_alias(const struct net_device *, char *, size_t);
3768 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3769 			       const char *pat, int new_ifindex);
3770 static inline
3771 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3772 			     const char *pat)
3773 {
3774 	return __dev_change_net_namespace(dev, net, pat, 0);
3775 }
3776 int __dev_set_mtu(struct net_device *, int);
3777 int dev_validate_mtu(struct net_device *dev, int mtu,
3778 		     struct netlink_ext_ack *extack);
3779 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3780 		    struct netlink_ext_ack *extack);
3781 int dev_set_mtu(struct net_device *, int);
3782 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3783 void dev_set_group(struct net_device *, int);
3784 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3785 			      struct netlink_ext_ack *extack);
3786 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3787 			struct netlink_ext_ack *extack);
3788 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3789 			     struct netlink_ext_ack *extack);
3790 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3791 int dev_change_carrier(struct net_device *, bool new_carrier);
3792 int dev_get_phys_port_id(struct net_device *dev,
3793 			 struct netdev_phys_item_id *ppid);
3794 int dev_get_phys_port_name(struct net_device *dev,
3795 			   char *name, size_t len);
3796 int dev_get_port_parent_id(struct net_device *dev,
3797 			   struct netdev_phys_item_id *ppid, bool recurse);
3798 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3799 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3800 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3801 				  u32 value);
3802 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3803 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3804 				    struct netdev_queue *txq, int *ret);
3805 
3806 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3807 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3808 		      int fd, int expected_fd, u32 flags);
3809 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3810 u8 dev_xdp_prog_count(struct net_device *dev);
3811 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3812 
3813 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3814 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3815 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3816 bool is_skb_forwardable(const struct net_device *dev,
3817 			const struct sk_buff *skb);
3818 
3819 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3820 						 const struct sk_buff *skb,
3821 						 const bool check_mtu)
3822 {
3823 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3824 	unsigned int len;
3825 
3826 	if (!(dev->flags & IFF_UP))
3827 		return false;
3828 
3829 	if (!check_mtu)
3830 		return true;
3831 
3832 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3833 	if (skb->len <= len)
3834 		return true;
3835 
3836 	/* if TSO is enabled, we don't care about the length as the packet
3837 	 * could be forwarded without being segmented before
3838 	 */
3839 	if (skb_is_gso(skb))
3840 		return true;
3841 
3842 	return false;
3843 }
3844 
3845 struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev);
3846 
3847 static inline struct net_device_core_stats *dev_core_stats(struct net_device *dev)
3848 {
3849 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3850 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3851 
3852 	if (likely(p))
3853 		return this_cpu_ptr(p);
3854 
3855 	return netdev_core_stats_alloc(dev);
3856 }
3857 
3858 #define DEV_CORE_STATS_INC(FIELD)						\
3859 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3860 {										\
3861 	struct net_device_core_stats *p;					\
3862 										\
3863 	preempt_disable();							\
3864 	p = dev_core_stats(dev);						\
3865 										\
3866 	if (p)									\
3867 		local_inc(&p->FIELD);						\
3868 	preempt_enable();							\
3869 }
3870 DEV_CORE_STATS_INC(rx_dropped)
3871 DEV_CORE_STATS_INC(tx_dropped)
3872 DEV_CORE_STATS_INC(rx_nohandler)
3873 
3874 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3875 					       struct sk_buff *skb,
3876 					       const bool check_mtu)
3877 {
3878 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3879 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3880 		dev_core_stats_rx_dropped_inc(dev);
3881 		kfree_skb(skb);
3882 		return NET_RX_DROP;
3883 	}
3884 
3885 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3886 	skb->priority = 0;
3887 	return 0;
3888 }
3889 
3890 bool dev_nit_active(struct net_device *dev);
3891 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3892 
3893 extern int		netdev_budget;
3894 extern unsigned int	netdev_budget_usecs;
3895 
3896 /* Called by rtnetlink.c:rtnl_unlock() */
3897 void netdev_run_todo(void);
3898 
3899 static inline void __dev_put(struct net_device *dev)
3900 {
3901 	if (dev) {
3902 #ifdef CONFIG_PCPU_DEV_REFCNT
3903 		this_cpu_dec(*dev->pcpu_refcnt);
3904 #else
3905 		refcount_dec(&dev->dev_refcnt);
3906 #endif
3907 	}
3908 }
3909 
3910 static inline void __dev_hold(struct net_device *dev)
3911 {
3912 	if (dev) {
3913 #ifdef CONFIG_PCPU_DEV_REFCNT
3914 		this_cpu_inc(*dev->pcpu_refcnt);
3915 #else
3916 		refcount_inc(&dev->dev_refcnt);
3917 #endif
3918 	}
3919 }
3920 
3921 static inline void __netdev_tracker_alloc(struct net_device *dev,
3922 					  netdevice_tracker *tracker,
3923 					  gfp_t gfp)
3924 {
3925 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3926 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3927 #endif
3928 }
3929 
3930 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3931  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3932  */
3933 static inline void netdev_tracker_alloc(struct net_device *dev,
3934 					netdevice_tracker *tracker, gfp_t gfp)
3935 {
3936 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3937 	refcount_dec(&dev->refcnt_tracker.no_tracker);
3938 	__netdev_tracker_alloc(dev, tracker, gfp);
3939 #endif
3940 }
3941 
3942 static inline void netdev_tracker_free(struct net_device *dev,
3943 				       netdevice_tracker *tracker)
3944 {
3945 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3946 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3947 #endif
3948 }
3949 
3950 static inline void dev_hold_track(struct net_device *dev,
3951 				  netdevice_tracker *tracker, gfp_t gfp)
3952 {
3953 	if (dev) {
3954 		__dev_hold(dev);
3955 		__netdev_tracker_alloc(dev, tracker, gfp);
3956 	}
3957 }
3958 
3959 static inline void dev_put_track(struct net_device *dev,
3960 				 netdevice_tracker *tracker)
3961 {
3962 	if (dev) {
3963 		netdev_tracker_free(dev, tracker);
3964 		__dev_put(dev);
3965 	}
3966 }
3967 
3968 /**
3969  *	dev_hold - get reference to device
3970  *	@dev: network device
3971  *
3972  * Hold reference to device to keep it from being freed.
3973  * Try using dev_hold_track() instead.
3974  */
3975 static inline void dev_hold(struct net_device *dev)
3976 {
3977 	dev_hold_track(dev, NULL, GFP_ATOMIC);
3978 }
3979 
3980 /**
3981  *	dev_put - release reference to device
3982  *	@dev: network device
3983  *
3984  * Release reference to device to allow it to be freed.
3985  * Try using dev_put_track() instead.
3986  */
3987 static inline void dev_put(struct net_device *dev)
3988 {
3989 	dev_put_track(dev, NULL);
3990 }
3991 
3992 static inline void dev_replace_track(struct net_device *odev,
3993 				     struct net_device *ndev,
3994 				     netdevice_tracker *tracker,
3995 				     gfp_t gfp)
3996 {
3997 	if (odev)
3998 		netdev_tracker_free(odev, tracker);
3999 
4000 	__dev_hold(ndev);
4001 	__dev_put(odev);
4002 
4003 	if (ndev)
4004 		__netdev_tracker_alloc(ndev, tracker, gfp);
4005 }
4006 
4007 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4008  * and _off may be called from IRQ context, but it is caller
4009  * who is responsible for serialization of these calls.
4010  *
4011  * The name carrier is inappropriate, these functions should really be
4012  * called netif_lowerlayer_*() because they represent the state of any
4013  * kind of lower layer not just hardware media.
4014  */
4015 
4016 void linkwatch_init_dev(struct net_device *dev);
4017 void linkwatch_fire_event(struct net_device *dev);
4018 void linkwatch_forget_dev(struct net_device *dev);
4019 
4020 /**
4021  *	netif_carrier_ok - test if carrier present
4022  *	@dev: network device
4023  *
4024  * Check if carrier is present on device
4025  */
4026 static inline bool netif_carrier_ok(const struct net_device *dev)
4027 {
4028 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4029 }
4030 
4031 unsigned long dev_trans_start(struct net_device *dev);
4032 
4033 void __netdev_watchdog_up(struct net_device *dev);
4034 
4035 void netif_carrier_on(struct net_device *dev);
4036 void netif_carrier_off(struct net_device *dev);
4037 void netif_carrier_event(struct net_device *dev);
4038 
4039 /**
4040  *	netif_dormant_on - mark device as dormant.
4041  *	@dev: network device
4042  *
4043  * Mark device as dormant (as per RFC2863).
4044  *
4045  * The dormant state indicates that the relevant interface is not
4046  * actually in a condition to pass packets (i.e., it is not 'up') but is
4047  * in a "pending" state, waiting for some external event.  For "on-
4048  * demand" interfaces, this new state identifies the situation where the
4049  * interface is waiting for events to place it in the up state.
4050  */
4051 static inline void netif_dormant_on(struct net_device *dev)
4052 {
4053 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4054 		linkwatch_fire_event(dev);
4055 }
4056 
4057 /**
4058  *	netif_dormant_off - set device as not dormant.
4059  *	@dev: network device
4060  *
4061  * Device is not in dormant state.
4062  */
4063 static inline void netif_dormant_off(struct net_device *dev)
4064 {
4065 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4066 		linkwatch_fire_event(dev);
4067 }
4068 
4069 /**
4070  *	netif_dormant - test if device is dormant
4071  *	@dev: network device
4072  *
4073  * Check if device is dormant.
4074  */
4075 static inline bool netif_dormant(const struct net_device *dev)
4076 {
4077 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4078 }
4079 
4080 
4081 /**
4082  *	netif_testing_on - mark device as under test.
4083  *	@dev: network device
4084  *
4085  * Mark device as under test (as per RFC2863).
4086  *
4087  * The testing state indicates that some test(s) must be performed on
4088  * the interface. After completion, of the test, the interface state
4089  * will change to up, dormant, or down, as appropriate.
4090  */
4091 static inline void netif_testing_on(struct net_device *dev)
4092 {
4093 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4094 		linkwatch_fire_event(dev);
4095 }
4096 
4097 /**
4098  *	netif_testing_off - set device as not under test.
4099  *	@dev: network device
4100  *
4101  * Device is not in testing state.
4102  */
4103 static inline void netif_testing_off(struct net_device *dev)
4104 {
4105 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4106 		linkwatch_fire_event(dev);
4107 }
4108 
4109 /**
4110  *	netif_testing - test if device is under test
4111  *	@dev: network device
4112  *
4113  * Check if device is under test
4114  */
4115 static inline bool netif_testing(const struct net_device *dev)
4116 {
4117 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4118 }
4119 
4120 
4121 /**
4122  *	netif_oper_up - test if device is operational
4123  *	@dev: network device
4124  *
4125  * Check if carrier is operational
4126  */
4127 static inline bool netif_oper_up(const struct net_device *dev)
4128 {
4129 	return (dev->operstate == IF_OPER_UP ||
4130 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4131 }
4132 
4133 /**
4134  *	netif_device_present - is device available or removed
4135  *	@dev: network device
4136  *
4137  * Check if device has not been removed from system.
4138  */
4139 static inline bool netif_device_present(const struct net_device *dev)
4140 {
4141 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4142 }
4143 
4144 void netif_device_detach(struct net_device *dev);
4145 
4146 void netif_device_attach(struct net_device *dev);
4147 
4148 /*
4149  * Network interface message level settings
4150  */
4151 
4152 enum {
4153 	NETIF_MSG_DRV_BIT,
4154 	NETIF_MSG_PROBE_BIT,
4155 	NETIF_MSG_LINK_BIT,
4156 	NETIF_MSG_TIMER_BIT,
4157 	NETIF_MSG_IFDOWN_BIT,
4158 	NETIF_MSG_IFUP_BIT,
4159 	NETIF_MSG_RX_ERR_BIT,
4160 	NETIF_MSG_TX_ERR_BIT,
4161 	NETIF_MSG_TX_QUEUED_BIT,
4162 	NETIF_MSG_INTR_BIT,
4163 	NETIF_MSG_TX_DONE_BIT,
4164 	NETIF_MSG_RX_STATUS_BIT,
4165 	NETIF_MSG_PKTDATA_BIT,
4166 	NETIF_MSG_HW_BIT,
4167 	NETIF_MSG_WOL_BIT,
4168 
4169 	/* When you add a new bit above, update netif_msg_class_names array
4170 	 * in net/ethtool/common.c
4171 	 */
4172 	NETIF_MSG_CLASS_COUNT,
4173 };
4174 /* Both ethtool_ops interface and internal driver implementation use u32 */
4175 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4176 
4177 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4178 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4179 
4180 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4181 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4182 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4183 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4184 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4185 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4186 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4187 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4188 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4189 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4190 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4191 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4192 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4193 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4194 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4195 
4196 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4197 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4198 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4199 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4200 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4201 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4202 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4203 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4204 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4205 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4206 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4207 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4208 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4209 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4210 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4211 
4212 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4213 {
4214 	/* use default */
4215 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4216 		return default_msg_enable_bits;
4217 	if (debug_value == 0)	/* no output */
4218 		return 0;
4219 	/* set low N bits */
4220 	return (1U << debug_value) - 1;
4221 }
4222 
4223 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4224 {
4225 	spin_lock(&txq->_xmit_lock);
4226 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4227 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4228 }
4229 
4230 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4231 {
4232 	__acquire(&txq->_xmit_lock);
4233 	return true;
4234 }
4235 
4236 static inline void __netif_tx_release(struct netdev_queue *txq)
4237 {
4238 	__release(&txq->_xmit_lock);
4239 }
4240 
4241 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4242 {
4243 	spin_lock_bh(&txq->_xmit_lock);
4244 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4245 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4246 }
4247 
4248 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4249 {
4250 	bool ok = spin_trylock(&txq->_xmit_lock);
4251 
4252 	if (likely(ok)) {
4253 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4254 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4255 	}
4256 	return ok;
4257 }
4258 
4259 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4260 {
4261 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4262 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4263 	spin_unlock(&txq->_xmit_lock);
4264 }
4265 
4266 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4267 {
4268 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4269 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4270 	spin_unlock_bh(&txq->_xmit_lock);
4271 }
4272 
4273 /*
4274  * txq->trans_start can be read locklessly from dev_watchdog()
4275  */
4276 static inline void txq_trans_update(struct netdev_queue *txq)
4277 {
4278 	if (txq->xmit_lock_owner != -1)
4279 		WRITE_ONCE(txq->trans_start, jiffies);
4280 }
4281 
4282 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4283 {
4284 	unsigned long now = jiffies;
4285 
4286 	if (READ_ONCE(txq->trans_start) != now)
4287 		WRITE_ONCE(txq->trans_start, now);
4288 }
4289 
4290 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4291 static inline void netif_trans_update(struct net_device *dev)
4292 {
4293 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4294 
4295 	txq_trans_cond_update(txq);
4296 }
4297 
4298 /**
4299  *	netif_tx_lock - grab network device transmit lock
4300  *	@dev: network device
4301  *
4302  * Get network device transmit lock
4303  */
4304 void netif_tx_lock(struct net_device *dev);
4305 
4306 static inline void netif_tx_lock_bh(struct net_device *dev)
4307 {
4308 	local_bh_disable();
4309 	netif_tx_lock(dev);
4310 }
4311 
4312 void netif_tx_unlock(struct net_device *dev);
4313 
4314 static inline void netif_tx_unlock_bh(struct net_device *dev)
4315 {
4316 	netif_tx_unlock(dev);
4317 	local_bh_enable();
4318 }
4319 
4320 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4321 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4322 		__netif_tx_lock(txq, cpu);		\
4323 	} else {					\
4324 		__netif_tx_acquire(txq);		\
4325 	}						\
4326 }
4327 
4328 #define HARD_TX_TRYLOCK(dev, txq)			\
4329 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4330 		__netif_tx_trylock(txq) :		\
4331 		__netif_tx_acquire(txq))
4332 
4333 #define HARD_TX_UNLOCK(dev, txq) {			\
4334 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4335 		__netif_tx_unlock(txq);			\
4336 	} else {					\
4337 		__netif_tx_release(txq);		\
4338 	}						\
4339 }
4340 
4341 static inline void netif_tx_disable(struct net_device *dev)
4342 {
4343 	unsigned int i;
4344 	int cpu;
4345 
4346 	local_bh_disable();
4347 	cpu = smp_processor_id();
4348 	spin_lock(&dev->tx_global_lock);
4349 	for (i = 0; i < dev->num_tx_queues; i++) {
4350 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4351 
4352 		__netif_tx_lock(txq, cpu);
4353 		netif_tx_stop_queue(txq);
4354 		__netif_tx_unlock(txq);
4355 	}
4356 	spin_unlock(&dev->tx_global_lock);
4357 	local_bh_enable();
4358 }
4359 
4360 static inline void netif_addr_lock(struct net_device *dev)
4361 {
4362 	unsigned char nest_level = 0;
4363 
4364 #ifdef CONFIG_LOCKDEP
4365 	nest_level = dev->nested_level;
4366 #endif
4367 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4368 }
4369 
4370 static inline void netif_addr_lock_bh(struct net_device *dev)
4371 {
4372 	unsigned char nest_level = 0;
4373 
4374 #ifdef CONFIG_LOCKDEP
4375 	nest_level = dev->nested_level;
4376 #endif
4377 	local_bh_disable();
4378 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4379 }
4380 
4381 static inline void netif_addr_unlock(struct net_device *dev)
4382 {
4383 	spin_unlock(&dev->addr_list_lock);
4384 }
4385 
4386 static inline void netif_addr_unlock_bh(struct net_device *dev)
4387 {
4388 	spin_unlock_bh(&dev->addr_list_lock);
4389 }
4390 
4391 /*
4392  * dev_addrs walker. Should be used only for read access. Call with
4393  * rcu_read_lock held.
4394  */
4395 #define for_each_dev_addr(dev, ha) \
4396 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4397 
4398 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4399 
4400 void ether_setup(struct net_device *dev);
4401 
4402 /* Support for loadable net-drivers */
4403 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4404 				    unsigned char name_assign_type,
4405 				    void (*setup)(struct net_device *),
4406 				    unsigned int txqs, unsigned int rxqs);
4407 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4408 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4409 
4410 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4411 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4412 			 count)
4413 
4414 int register_netdev(struct net_device *dev);
4415 void unregister_netdev(struct net_device *dev);
4416 
4417 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4418 
4419 /* General hardware address lists handling functions */
4420 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4421 		   struct netdev_hw_addr_list *from_list, int addr_len);
4422 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4423 		      struct netdev_hw_addr_list *from_list, int addr_len);
4424 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4425 		       struct net_device *dev,
4426 		       int (*sync)(struct net_device *, const unsigned char *),
4427 		       int (*unsync)(struct net_device *,
4428 				     const unsigned char *));
4429 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4430 			   struct net_device *dev,
4431 			   int (*sync)(struct net_device *,
4432 				       const unsigned char *, int),
4433 			   int (*unsync)(struct net_device *,
4434 					 const unsigned char *, int));
4435 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4436 			      struct net_device *dev,
4437 			      int (*unsync)(struct net_device *,
4438 					    const unsigned char *, int));
4439 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4440 			  struct net_device *dev,
4441 			  int (*unsync)(struct net_device *,
4442 					const unsigned char *));
4443 void __hw_addr_init(struct netdev_hw_addr_list *list);
4444 
4445 /* Functions used for device addresses handling */
4446 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4447 		  const void *addr, size_t len);
4448 
4449 static inline void
4450 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4451 {
4452 	dev_addr_mod(dev, 0, addr, len);
4453 }
4454 
4455 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4456 {
4457 	__dev_addr_set(dev, addr, dev->addr_len);
4458 }
4459 
4460 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4461 		 unsigned char addr_type);
4462 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4463 		 unsigned char addr_type);
4464 void dev_addr_flush(struct net_device *dev);
4465 int dev_addr_init(struct net_device *dev);
4466 void dev_addr_check(struct net_device *dev);
4467 
4468 /* Functions used for unicast addresses handling */
4469 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4470 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4471 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4472 int dev_uc_sync(struct net_device *to, struct net_device *from);
4473 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4474 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4475 void dev_uc_flush(struct net_device *dev);
4476 void dev_uc_init(struct net_device *dev);
4477 
4478 /**
4479  *  __dev_uc_sync - Synchonize device's unicast list
4480  *  @dev:  device to sync
4481  *  @sync: function to call if address should be added
4482  *  @unsync: function to call if address should be removed
4483  *
4484  *  Add newly added addresses to the interface, and release
4485  *  addresses that have been deleted.
4486  */
4487 static inline int __dev_uc_sync(struct net_device *dev,
4488 				int (*sync)(struct net_device *,
4489 					    const unsigned char *),
4490 				int (*unsync)(struct net_device *,
4491 					      const unsigned char *))
4492 {
4493 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4494 }
4495 
4496 /**
4497  *  __dev_uc_unsync - Remove synchronized addresses from device
4498  *  @dev:  device to sync
4499  *  @unsync: function to call if address should be removed
4500  *
4501  *  Remove all addresses that were added to the device by dev_uc_sync().
4502  */
4503 static inline void __dev_uc_unsync(struct net_device *dev,
4504 				   int (*unsync)(struct net_device *,
4505 						 const unsigned char *))
4506 {
4507 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4508 }
4509 
4510 /* Functions used for multicast addresses handling */
4511 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4512 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4513 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4514 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4515 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4516 int dev_mc_sync(struct net_device *to, struct net_device *from);
4517 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4518 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4519 void dev_mc_flush(struct net_device *dev);
4520 void dev_mc_init(struct net_device *dev);
4521 
4522 /**
4523  *  __dev_mc_sync - Synchonize device's multicast list
4524  *  @dev:  device to sync
4525  *  @sync: function to call if address should be added
4526  *  @unsync: function to call if address should be removed
4527  *
4528  *  Add newly added addresses to the interface, and release
4529  *  addresses that have been deleted.
4530  */
4531 static inline int __dev_mc_sync(struct net_device *dev,
4532 				int (*sync)(struct net_device *,
4533 					    const unsigned char *),
4534 				int (*unsync)(struct net_device *,
4535 					      const unsigned char *))
4536 {
4537 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4538 }
4539 
4540 /**
4541  *  __dev_mc_unsync - Remove synchronized addresses from device
4542  *  @dev:  device to sync
4543  *  @unsync: function to call if address should be removed
4544  *
4545  *  Remove all addresses that were added to the device by dev_mc_sync().
4546  */
4547 static inline void __dev_mc_unsync(struct net_device *dev,
4548 				   int (*unsync)(struct net_device *,
4549 						 const unsigned char *))
4550 {
4551 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4552 }
4553 
4554 /* Functions used for secondary unicast and multicast support */
4555 void dev_set_rx_mode(struct net_device *dev);
4556 void __dev_set_rx_mode(struct net_device *dev);
4557 int dev_set_promiscuity(struct net_device *dev, int inc);
4558 int dev_set_allmulti(struct net_device *dev, int inc);
4559 void netdev_state_change(struct net_device *dev);
4560 void __netdev_notify_peers(struct net_device *dev);
4561 void netdev_notify_peers(struct net_device *dev);
4562 void netdev_features_change(struct net_device *dev);
4563 /* Load a device via the kmod */
4564 void dev_load(struct net *net, const char *name);
4565 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4566 					struct rtnl_link_stats64 *storage);
4567 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4568 			     const struct net_device_stats *netdev_stats);
4569 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4570 			   const struct pcpu_sw_netstats __percpu *netstats);
4571 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4572 
4573 extern int		netdev_max_backlog;
4574 extern int		netdev_tstamp_prequeue;
4575 extern int		netdev_unregister_timeout_secs;
4576 extern int		weight_p;
4577 extern int		dev_weight_rx_bias;
4578 extern int		dev_weight_tx_bias;
4579 extern int		dev_rx_weight;
4580 extern int		dev_tx_weight;
4581 extern int		gro_normal_batch;
4582 
4583 enum {
4584 	NESTED_SYNC_IMM_BIT,
4585 	NESTED_SYNC_TODO_BIT,
4586 };
4587 
4588 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4589 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4590 
4591 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4592 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4593 
4594 struct netdev_nested_priv {
4595 	unsigned char flags;
4596 	void *data;
4597 };
4598 
4599 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4600 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4601 						     struct list_head **iter);
4602 
4603 #ifdef CONFIG_LOCKDEP
4604 static LIST_HEAD(net_unlink_list);
4605 
4606 static inline void net_unlink_todo(struct net_device *dev)
4607 {
4608 	if (list_empty(&dev->unlink_list))
4609 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4610 }
4611 #endif
4612 
4613 /* iterate through upper list, must be called under RCU read lock */
4614 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4615 	for (iter = &(dev)->adj_list.upper, \
4616 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4617 	     updev; \
4618 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4619 
4620 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4621 				  int (*fn)(struct net_device *upper_dev,
4622 					    struct netdev_nested_priv *priv),
4623 				  struct netdev_nested_priv *priv);
4624 
4625 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4626 				  struct net_device *upper_dev);
4627 
4628 bool netdev_has_any_upper_dev(struct net_device *dev);
4629 
4630 void *netdev_lower_get_next_private(struct net_device *dev,
4631 				    struct list_head **iter);
4632 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4633 					struct list_head **iter);
4634 
4635 #define netdev_for_each_lower_private(dev, priv, iter) \
4636 	for (iter = (dev)->adj_list.lower.next, \
4637 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4638 	     priv; \
4639 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4640 
4641 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4642 	for (iter = &(dev)->adj_list.lower, \
4643 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4644 	     priv; \
4645 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4646 
4647 void *netdev_lower_get_next(struct net_device *dev,
4648 				struct list_head **iter);
4649 
4650 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4651 	for (iter = (dev)->adj_list.lower.next, \
4652 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4653 	     ldev; \
4654 	     ldev = netdev_lower_get_next(dev, &(iter)))
4655 
4656 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4657 					     struct list_head **iter);
4658 int netdev_walk_all_lower_dev(struct net_device *dev,
4659 			      int (*fn)(struct net_device *lower_dev,
4660 					struct netdev_nested_priv *priv),
4661 			      struct netdev_nested_priv *priv);
4662 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4663 				  int (*fn)(struct net_device *lower_dev,
4664 					    struct netdev_nested_priv *priv),
4665 				  struct netdev_nested_priv *priv);
4666 
4667 void *netdev_adjacent_get_private(struct list_head *adj_list);
4668 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4669 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4670 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4671 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4672 			  struct netlink_ext_ack *extack);
4673 int netdev_master_upper_dev_link(struct net_device *dev,
4674 				 struct net_device *upper_dev,
4675 				 void *upper_priv, void *upper_info,
4676 				 struct netlink_ext_ack *extack);
4677 void netdev_upper_dev_unlink(struct net_device *dev,
4678 			     struct net_device *upper_dev);
4679 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4680 				   struct net_device *new_dev,
4681 				   struct net_device *dev,
4682 				   struct netlink_ext_ack *extack);
4683 void netdev_adjacent_change_commit(struct net_device *old_dev,
4684 				   struct net_device *new_dev,
4685 				   struct net_device *dev);
4686 void netdev_adjacent_change_abort(struct net_device *old_dev,
4687 				  struct net_device *new_dev,
4688 				  struct net_device *dev);
4689 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4690 void *netdev_lower_dev_get_private(struct net_device *dev,
4691 				   struct net_device *lower_dev);
4692 void netdev_lower_state_changed(struct net_device *lower_dev,
4693 				void *lower_state_info);
4694 
4695 /* RSS keys are 40 or 52 bytes long */
4696 #define NETDEV_RSS_KEY_LEN 52
4697 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4698 void netdev_rss_key_fill(void *buffer, size_t len);
4699 
4700 int skb_checksum_help(struct sk_buff *skb);
4701 int skb_crc32c_csum_help(struct sk_buff *skb);
4702 int skb_csum_hwoffload_help(struct sk_buff *skb,
4703 			    const netdev_features_t features);
4704 
4705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4706 				  netdev_features_t features, bool tx_path);
4707 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4708 				    netdev_features_t features, __be16 type);
4709 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4710 				    netdev_features_t features);
4711 
4712 struct netdev_bonding_info {
4713 	ifslave	slave;
4714 	ifbond	master;
4715 };
4716 
4717 struct netdev_notifier_bonding_info {
4718 	struct netdev_notifier_info info; /* must be first */
4719 	struct netdev_bonding_info  bonding_info;
4720 };
4721 
4722 void netdev_bonding_info_change(struct net_device *dev,
4723 				struct netdev_bonding_info *bonding_info);
4724 
4725 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4726 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4727 #else
4728 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4729 				  const void *data)
4730 {
4731 }
4732 #endif
4733 
4734 static inline
4735 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4736 {
4737 	return __skb_gso_segment(skb, features, true);
4738 }
4739 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4740 
4741 static inline bool can_checksum_protocol(netdev_features_t features,
4742 					 __be16 protocol)
4743 {
4744 	if (protocol == htons(ETH_P_FCOE))
4745 		return !!(features & NETIF_F_FCOE_CRC);
4746 
4747 	/* Assume this is an IP checksum (not SCTP CRC) */
4748 
4749 	if (features & NETIF_F_HW_CSUM) {
4750 		/* Can checksum everything */
4751 		return true;
4752 	}
4753 
4754 	switch (protocol) {
4755 	case htons(ETH_P_IP):
4756 		return !!(features & NETIF_F_IP_CSUM);
4757 	case htons(ETH_P_IPV6):
4758 		return !!(features & NETIF_F_IPV6_CSUM);
4759 	default:
4760 		return false;
4761 	}
4762 }
4763 
4764 #ifdef CONFIG_BUG
4765 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4766 #else
4767 static inline void netdev_rx_csum_fault(struct net_device *dev,
4768 					struct sk_buff *skb)
4769 {
4770 }
4771 #endif
4772 /* rx skb timestamps */
4773 void net_enable_timestamp(void);
4774 void net_disable_timestamp(void);
4775 
4776 #ifdef CONFIG_PROC_FS
4777 int __init dev_proc_init(void);
4778 #else
4779 #define dev_proc_init() 0
4780 #endif
4781 
4782 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4783 					      struct sk_buff *skb, struct net_device *dev,
4784 					      bool more)
4785 {
4786 	__this_cpu_write(softnet_data.xmit.more, more);
4787 	return ops->ndo_start_xmit(skb, dev);
4788 }
4789 
4790 static inline bool netdev_xmit_more(void)
4791 {
4792 	return __this_cpu_read(softnet_data.xmit.more);
4793 }
4794 
4795 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4796 					    struct netdev_queue *txq, bool more)
4797 {
4798 	const struct net_device_ops *ops = dev->netdev_ops;
4799 	netdev_tx_t rc;
4800 
4801 	rc = __netdev_start_xmit(ops, skb, dev, more);
4802 	if (rc == NETDEV_TX_OK)
4803 		txq_trans_update(txq);
4804 
4805 	return rc;
4806 }
4807 
4808 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4809 				const void *ns);
4810 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4811 				 const void *ns);
4812 
4813 extern const struct kobj_ns_type_operations net_ns_type_operations;
4814 
4815 const char *netdev_drivername(const struct net_device *dev);
4816 
4817 void linkwatch_run_queue(void);
4818 
4819 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4820 							  netdev_features_t f2)
4821 {
4822 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4823 		if (f1 & NETIF_F_HW_CSUM)
4824 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4825 		else
4826 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4827 	}
4828 
4829 	return f1 & f2;
4830 }
4831 
4832 static inline netdev_features_t netdev_get_wanted_features(
4833 	struct net_device *dev)
4834 {
4835 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4836 }
4837 netdev_features_t netdev_increment_features(netdev_features_t all,
4838 	netdev_features_t one, netdev_features_t mask);
4839 
4840 /* Allow TSO being used on stacked device :
4841  * Performing the GSO segmentation before last device
4842  * is a performance improvement.
4843  */
4844 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4845 							netdev_features_t mask)
4846 {
4847 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4848 }
4849 
4850 int __netdev_update_features(struct net_device *dev);
4851 void netdev_update_features(struct net_device *dev);
4852 void netdev_change_features(struct net_device *dev);
4853 
4854 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4855 					struct net_device *dev);
4856 
4857 netdev_features_t passthru_features_check(struct sk_buff *skb,
4858 					  struct net_device *dev,
4859 					  netdev_features_t features);
4860 netdev_features_t netif_skb_features(struct sk_buff *skb);
4861 
4862 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4863 {
4864 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4865 
4866 	/* check flags correspondence */
4867 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4868 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4869 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4870 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4871 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4872 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4873 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4874 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4875 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4876 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4877 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4878 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4879 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4880 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4881 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4882 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4883 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4884 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4885 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4886 
4887 	return (features & feature) == feature;
4888 }
4889 
4890 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4891 {
4892 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4893 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4894 }
4895 
4896 static inline bool netif_needs_gso(struct sk_buff *skb,
4897 				   netdev_features_t features)
4898 {
4899 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4900 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4901 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4902 }
4903 
4904 static inline void netif_set_gso_max_size(struct net_device *dev,
4905 					  unsigned int size)
4906 {
4907 	/* dev->gso_max_size is read locklessly from sk_setup_caps() */
4908 	WRITE_ONCE(dev->gso_max_size, size);
4909 }
4910 
4911 static inline void netif_set_gso_max_segs(struct net_device *dev,
4912 					  unsigned int segs)
4913 {
4914 	/* dev->gso_max_segs is read locklessly from sk_setup_caps() */
4915 	WRITE_ONCE(dev->gso_max_segs, segs);
4916 }
4917 
4918 static inline void netif_set_gro_max_size(struct net_device *dev,
4919 					  unsigned int size)
4920 {
4921 	/* This pairs with the READ_ONCE() in skb_gro_receive() */
4922 	WRITE_ONCE(dev->gro_max_size, size);
4923 }
4924 
4925 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4926 					int pulled_hlen, u16 mac_offset,
4927 					int mac_len)
4928 {
4929 	skb->protocol = protocol;
4930 	skb->encapsulation = 1;
4931 	skb_push(skb, pulled_hlen);
4932 	skb_reset_transport_header(skb);
4933 	skb->mac_header = mac_offset;
4934 	skb->network_header = skb->mac_header + mac_len;
4935 	skb->mac_len = mac_len;
4936 }
4937 
4938 static inline bool netif_is_macsec(const struct net_device *dev)
4939 {
4940 	return dev->priv_flags & IFF_MACSEC;
4941 }
4942 
4943 static inline bool netif_is_macvlan(const struct net_device *dev)
4944 {
4945 	return dev->priv_flags & IFF_MACVLAN;
4946 }
4947 
4948 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4949 {
4950 	return dev->priv_flags & IFF_MACVLAN_PORT;
4951 }
4952 
4953 static inline bool netif_is_bond_master(const struct net_device *dev)
4954 {
4955 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4956 }
4957 
4958 static inline bool netif_is_bond_slave(const struct net_device *dev)
4959 {
4960 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4961 }
4962 
4963 static inline bool netif_supports_nofcs(struct net_device *dev)
4964 {
4965 	return dev->priv_flags & IFF_SUPP_NOFCS;
4966 }
4967 
4968 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4969 {
4970 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4971 }
4972 
4973 static inline bool netif_is_l3_master(const struct net_device *dev)
4974 {
4975 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4976 }
4977 
4978 static inline bool netif_is_l3_slave(const struct net_device *dev)
4979 {
4980 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4981 }
4982 
4983 static inline bool netif_is_bridge_master(const struct net_device *dev)
4984 {
4985 	return dev->priv_flags & IFF_EBRIDGE;
4986 }
4987 
4988 static inline bool netif_is_bridge_port(const struct net_device *dev)
4989 {
4990 	return dev->priv_flags & IFF_BRIDGE_PORT;
4991 }
4992 
4993 static inline bool netif_is_ovs_master(const struct net_device *dev)
4994 {
4995 	return dev->priv_flags & IFF_OPENVSWITCH;
4996 }
4997 
4998 static inline bool netif_is_ovs_port(const struct net_device *dev)
4999 {
5000 	return dev->priv_flags & IFF_OVS_DATAPATH;
5001 }
5002 
5003 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5004 {
5005 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5006 }
5007 
5008 static inline bool netif_is_team_master(const struct net_device *dev)
5009 {
5010 	return dev->priv_flags & IFF_TEAM;
5011 }
5012 
5013 static inline bool netif_is_team_port(const struct net_device *dev)
5014 {
5015 	return dev->priv_flags & IFF_TEAM_PORT;
5016 }
5017 
5018 static inline bool netif_is_lag_master(const struct net_device *dev)
5019 {
5020 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5021 }
5022 
5023 static inline bool netif_is_lag_port(const struct net_device *dev)
5024 {
5025 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5026 }
5027 
5028 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5029 {
5030 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5031 }
5032 
5033 static inline bool netif_is_failover(const struct net_device *dev)
5034 {
5035 	return dev->priv_flags & IFF_FAILOVER;
5036 }
5037 
5038 static inline bool netif_is_failover_slave(const struct net_device *dev)
5039 {
5040 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5041 }
5042 
5043 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5044 static inline void netif_keep_dst(struct net_device *dev)
5045 {
5046 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5047 }
5048 
5049 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5050 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5051 {
5052 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5053 	return netif_is_macsec(dev);
5054 }
5055 
5056 extern struct pernet_operations __net_initdata loopback_net_ops;
5057 
5058 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5059 
5060 /* netdev_printk helpers, similar to dev_printk */
5061 
5062 static inline const char *netdev_name(const struct net_device *dev)
5063 {
5064 	if (!dev->name[0] || strchr(dev->name, '%'))
5065 		return "(unnamed net_device)";
5066 	return dev->name;
5067 }
5068 
5069 static inline bool netdev_unregistering(const struct net_device *dev)
5070 {
5071 	return dev->reg_state == NETREG_UNREGISTERING;
5072 }
5073 
5074 static inline const char *netdev_reg_state(const struct net_device *dev)
5075 {
5076 	switch (dev->reg_state) {
5077 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5078 	case NETREG_REGISTERED: return "";
5079 	case NETREG_UNREGISTERING: return " (unregistering)";
5080 	case NETREG_UNREGISTERED: return " (unregistered)";
5081 	case NETREG_RELEASED: return " (released)";
5082 	case NETREG_DUMMY: return " (dummy)";
5083 	}
5084 
5085 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5086 	return " (unknown)";
5087 }
5088 
5089 __printf(3, 4) __cold
5090 void netdev_printk(const char *level, const struct net_device *dev,
5091 		   const char *format, ...);
5092 __printf(2, 3) __cold
5093 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5094 __printf(2, 3) __cold
5095 void netdev_alert(const struct net_device *dev, const char *format, ...);
5096 __printf(2, 3) __cold
5097 void netdev_crit(const struct net_device *dev, const char *format, ...);
5098 __printf(2, 3) __cold
5099 void netdev_err(const struct net_device *dev, const char *format, ...);
5100 __printf(2, 3) __cold
5101 void netdev_warn(const struct net_device *dev, const char *format, ...);
5102 __printf(2, 3) __cold
5103 void netdev_notice(const struct net_device *dev, const char *format, ...);
5104 __printf(2, 3) __cold
5105 void netdev_info(const struct net_device *dev, const char *format, ...);
5106 
5107 #define netdev_level_once(level, dev, fmt, ...)			\
5108 do {								\
5109 	static bool __section(".data.once") __print_once;	\
5110 								\
5111 	if (!__print_once) {					\
5112 		__print_once = true;				\
5113 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5114 	}							\
5115 } while (0)
5116 
5117 #define netdev_emerg_once(dev, fmt, ...) \
5118 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5119 #define netdev_alert_once(dev, fmt, ...) \
5120 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5121 #define netdev_crit_once(dev, fmt, ...) \
5122 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5123 #define netdev_err_once(dev, fmt, ...) \
5124 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5125 #define netdev_warn_once(dev, fmt, ...) \
5126 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5127 #define netdev_notice_once(dev, fmt, ...) \
5128 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5129 #define netdev_info_once(dev, fmt, ...) \
5130 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5131 
5132 #define MODULE_ALIAS_NETDEV(device) \
5133 	MODULE_ALIAS("netdev-" device)
5134 
5135 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5136 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5137 #define netdev_dbg(__dev, format, args...)			\
5138 do {								\
5139 	dynamic_netdev_dbg(__dev, format, ##args);		\
5140 } while (0)
5141 #elif defined(DEBUG)
5142 #define netdev_dbg(__dev, format, args...)			\
5143 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5144 #else
5145 #define netdev_dbg(__dev, format, args...)			\
5146 ({								\
5147 	if (0)							\
5148 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5149 })
5150 #endif
5151 
5152 #if defined(VERBOSE_DEBUG)
5153 #define netdev_vdbg	netdev_dbg
5154 #else
5155 
5156 #define netdev_vdbg(dev, format, args...)			\
5157 ({								\
5158 	if (0)							\
5159 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5160 	0;							\
5161 })
5162 #endif
5163 
5164 /*
5165  * netdev_WARN() acts like dev_printk(), but with the key difference
5166  * of using a WARN/WARN_ON to get the message out, including the
5167  * file/line information and a backtrace.
5168  */
5169 #define netdev_WARN(dev, format, args...)			\
5170 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5171 	     netdev_reg_state(dev), ##args)
5172 
5173 #define netdev_WARN_ONCE(dev, format, args...)				\
5174 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5175 		  netdev_reg_state(dev), ##args)
5176 
5177 /* netif printk helpers, similar to netdev_printk */
5178 
5179 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5180 do {					  			\
5181 	if (netif_msg_##type(priv))				\
5182 		netdev_printk(level, (dev), fmt, ##args);	\
5183 } while (0)
5184 
5185 #define netif_level(level, priv, type, dev, fmt, args...)	\
5186 do {								\
5187 	if (netif_msg_##type(priv))				\
5188 		netdev_##level(dev, fmt, ##args);		\
5189 } while (0)
5190 
5191 #define netif_emerg(priv, type, dev, fmt, args...)		\
5192 	netif_level(emerg, priv, type, dev, fmt, ##args)
5193 #define netif_alert(priv, type, dev, fmt, args...)		\
5194 	netif_level(alert, priv, type, dev, fmt, ##args)
5195 #define netif_crit(priv, type, dev, fmt, args...)		\
5196 	netif_level(crit, priv, type, dev, fmt, ##args)
5197 #define netif_err(priv, type, dev, fmt, args...)		\
5198 	netif_level(err, priv, type, dev, fmt, ##args)
5199 #define netif_warn(priv, type, dev, fmt, args...)		\
5200 	netif_level(warn, priv, type, dev, fmt, ##args)
5201 #define netif_notice(priv, type, dev, fmt, args...)		\
5202 	netif_level(notice, priv, type, dev, fmt, ##args)
5203 #define netif_info(priv, type, dev, fmt, args...)		\
5204 	netif_level(info, priv, type, dev, fmt, ##args)
5205 
5206 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5207 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5208 #define netif_dbg(priv, type, netdev, format, args...)		\
5209 do {								\
5210 	if (netif_msg_##type(priv))				\
5211 		dynamic_netdev_dbg(netdev, format, ##args);	\
5212 } while (0)
5213 #elif defined(DEBUG)
5214 #define netif_dbg(priv, type, dev, format, args...)		\
5215 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5216 #else
5217 #define netif_dbg(priv, type, dev, format, args...)			\
5218 ({									\
5219 	if (0)								\
5220 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5221 	0;								\
5222 })
5223 #endif
5224 
5225 /* if @cond then downgrade to debug, else print at @level */
5226 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5227 	do {                                                              \
5228 		if (cond)                                                 \
5229 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5230 		else                                                      \
5231 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5232 	} while (0)
5233 
5234 #if defined(VERBOSE_DEBUG)
5235 #define netif_vdbg	netif_dbg
5236 #else
5237 #define netif_vdbg(priv, type, dev, format, args...)		\
5238 ({								\
5239 	if (0)							\
5240 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5241 	0;							\
5242 })
5243 #endif
5244 
5245 /*
5246  *	The list of packet types we will receive (as opposed to discard)
5247  *	and the routines to invoke.
5248  *
5249  *	Why 16. Because with 16 the only overlap we get on a hash of the
5250  *	low nibble of the protocol value is RARP/SNAP/X.25.
5251  *
5252  *		0800	IP
5253  *		0001	802.3
5254  *		0002	AX.25
5255  *		0004	802.2
5256  *		8035	RARP
5257  *		0005	SNAP
5258  *		0805	X.25
5259  *		0806	ARP
5260  *		8137	IPX
5261  *		0009	Localtalk
5262  *		86DD	IPv6
5263  */
5264 #define PTYPE_HASH_SIZE	(16)
5265 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5266 
5267 extern struct list_head ptype_all __read_mostly;
5268 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5269 
5270 extern struct net_device *blackhole_netdev;
5271 
5272 #endif	/* _LINUX_NETDEVICE_H */
5273