1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos_params.h> 35 #include <linux/timer.h> 36 #include <linux/delay.h> 37 #include <linux/mm.h> 38 #include <asm/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/device.h> 43 #include <linux/percpu.h> 44 #include <linux/rculist.h> 45 #include <linux/dmaengine.h> 46 #include <linux/workqueue.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 55 struct vlan_group; 56 struct netpoll_info; 57 struct phy_device; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* source back-compat hooks */ 61 #define SET_ETHTOOL_OPS(netdev,ops) \ 62 ( (netdev)->ethtool_ops = (ops) ) 63 64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev 65 functions are available. */ 66 #define HAVE_FREE_NETDEV /* free_netdev() */ 67 #define HAVE_NETDEV_PRIV /* netdev_priv() */ 68 69 /* hardware address assignment types */ 70 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* Initial net device group. All devices belong to group 0 by default. */ 79 #define INIT_NETDEV_GROUP 0 80 81 /* 82 * Transmit return codes: transmit return codes originate from three different 83 * namespaces: 84 * 85 * - qdisc return codes 86 * - driver transmit return codes 87 * - errno values 88 * 89 * Drivers are allowed to return any one of those in their hard_start_xmit() 90 * function. Real network devices commonly used with qdiscs should only return 91 * the driver transmit return codes though - when qdiscs are used, the actual 92 * transmission happens asynchronously, so the value is not propagated to 93 * higher layers. Virtual network devices transmit synchronously, in this case 94 * the driver transmit return codes are consumed by dev_queue_xmit(), all 95 * others are propagated to higher layers. 96 */ 97 98 /* qdisc ->enqueue() return codes. */ 99 #define NET_XMIT_SUCCESS 0x00 100 #define NET_XMIT_DROP 0x01 /* skb dropped */ 101 #define NET_XMIT_CN 0x02 /* congestion notification */ 102 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 103 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 104 105 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 106 * indicates that the device will soon be dropping packets, or already drops 107 * some packets of the same priority; prompting us to send less aggressively. */ 108 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 109 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 110 111 /* Driver transmit return codes */ 112 #define NETDEV_TX_MASK 0xf0 113 114 enum netdev_tx { 115 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 116 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 117 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 118 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 119 }; 120 typedef enum netdev_tx netdev_tx_t; 121 122 /* 123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 125 */ 126 static inline bool dev_xmit_complete(int rc) 127 { 128 /* 129 * Positive cases with an skb consumed by a driver: 130 * - successful transmission (rc == NETDEV_TX_OK) 131 * - error while transmitting (rc < 0) 132 * - error while queueing to a different device (rc & NET_XMIT_MASK) 133 */ 134 if (likely(rc < NET_XMIT_MASK)) 135 return true; 136 137 return false; 138 } 139 140 #endif 141 142 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 143 144 #ifdef __KERNEL__ 145 /* 146 * Compute the worst case header length according to the protocols 147 * used. 148 */ 149 150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 151 # if defined(CONFIG_MAC80211_MESH) 152 # define LL_MAX_HEADER 128 153 # else 154 # define LL_MAX_HEADER 96 155 # endif 156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 157 # define LL_MAX_HEADER 48 158 #else 159 # define LL_MAX_HEADER 32 160 #endif 161 162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 166 #define MAX_HEADER LL_MAX_HEADER 167 #else 168 #define MAX_HEADER (LL_MAX_HEADER + 48) 169 #endif 170 171 /* 172 * Old network device statistics. Fields are native words 173 * (unsigned long) so they can be read and written atomically. 174 */ 175 176 struct net_device_stats { 177 unsigned long rx_packets; 178 unsigned long tx_packets; 179 unsigned long rx_bytes; 180 unsigned long tx_bytes; 181 unsigned long rx_errors; 182 unsigned long tx_errors; 183 unsigned long rx_dropped; 184 unsigned long tx_dropped; 185 unsigned long multicast; 186 unsigned long collisions; 187 unsigned long rx_length_errors; 188 unsigned long rx_over_errors; 189 unsigned long rx_crc_errors; 190 unsigned long rx_frame_errors; 191 unsigned long rx_fifo_errors; 192 unsigned long rx_missed_errors; 193 unsigned long tx_aborted_errors; 194 unsigned long tx_carrier_errors; 195 unsigned long tx_fifo_errors; 196 unsigned long tx_heartbeat_errors; 197 unsigned long tx_window_errors; 198 unsigned long rx_compressed; 199 unsigned long tx_compressed; 200 }; 201 202 #endif /* __KERNEL__ */ 203 204 205 /* Media selection options. */ 206 enum { 207 IF_PORT_UNKNOWN = 0, 208 IF_PORT_10BASE2, 209 IF_PORT_10BASET, 210 IF_PORT_AUI, 211 IF_PORT_100BASET, 212 IF_PORT_100BASETX, 213 IF_PORT_100BASEFX 214 }; 215 216 #ifdef __KERNEL__ 217 218 #include <linux/cache.h> 219 #include <linux/skbuff.h> 220 221 struct neighbour; 222 struct neigh_parms; 223 struct sk_buff; 224 225 struct netdev_hw_addr { 226 struct list_head list; 227 unsigned char addr[MAX_ADDR_LEN]; 228 unsigned char type; 229 #define NETDEV_HW_ADDR_T_LAN 1 230 #define NETDEV_HW_ADDR_T_SAN 2 231 #define NETDEV_HW_ADDR_T_SLAVE 3 232 #define NETDEV_HW_ADDR_T_UNICAST 4 233 #define NETDEV_HW_ADDR_T_MULTICAST 5 234 bool synced; 235 bool global_use; 236 int refcount; 237 struct rcu_head rcu_head; 238 }; 239 240 struct netdev_hw_addr_list { 241 struct list_head list; 242 int count; 243 }; 244 245 #define netdev_hw_addr_list_count(l) ((l)->count) 246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 247 #define netdev_hw_addr_list_for_each(ha, l) \ 248 list_for_each_entry(ha, &(l)->list, list) 249 250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 252 #define netdev_for_each_uc_addr(ha, dev) \ 253 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 254 255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 257 #define netdev_for_each_mc_addr(ha, dev) \ 258 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 259 260 struct hh_cache { 261 struct hh_cache *hh_next; /* Next entry */ 262 atomic_t hh_refcnt; /* number of users */ 263 /* 264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate 265 * cache line on SMP. 266 * They are mostly read, but hh_refcnt may be changed quite frequently, 267 * incurring cache line ping pongs. 268 */ 269 __be16 hh_type ____cacheline_aligned_in_smp; 270 /* protocol identifier, f.e ETH_P_IP 271 * NOTE: For VLANs, this will be the 272 * encapuslated type. --BLG 273 */ 274 u16 hh_len; /* length of header */ 275 int (*hh_output)(struct sk_buff *skb); 276 seqlock_t hh_lock; 277 278 /* cached hardware header; allow for machine alignment needs. */ 279 #define HH_DATA_MOD 16 280 #define HH_DATA_OFF(__len) \ 281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 282 #define HH_DATA_ALIGN(__len) \ 283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 285 }; 286 287 static inline void hh_cache_put(struct hh_cache *hh) 288 { 289 if (atomic_dec_and_test(&hh->hh_refcnt)) 290 kfree(hh); 291 } 292 293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 294 * Alternative is: 295 * dev->hard_header_len ? (dev->hard_header_len + 296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 297 * 298 * We could use other alignment values, but we must maintain the 299 * relationship HH alignment <= LL alignment. 300 * 301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 302 * may need. 303 */ 304 #define LL_RESERVED_SPACE(dev) \ 305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 308 #define LL_ALLOCATED_SPACE(dev) \ 309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 311 struct header_ops { 312 int (*create) (struct sk_buff *skb, struct net_device *dev, 313 unsigned short type, const void *daddr, 314 const void *saddr, unsigned len); 315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 316 int (*rebuild)(struct sk_buff *skb); 317 #define HAVE_HEADER_CACHE 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 }; 323 324 /* These flag bits are private to the generic network queueing 325 * layer, they may not be explicitly referenced by any other 326 * code. 327 */ 328 329 enum netdev_state_t { 330 __LINK_STATE_START, 331 __LINK_STATE_PRESENT, 332 __LINK_STATE_NOCARRIER, 333 __LINK_STATE_LINKWATCH_PENDING, 334 __LINK_STATE_DORMANT, 335 }; 336 337 338 /* 339 * This structure holds at boot time configured netdevice settings. They 340 * are then used in the device probing. 341 */ 342 struct netdev_boot_setup { 343 char name[IFNAMSIZ]; 344 struct ifmap map; 345 }; 346 #define NETDEV_BOOT_SETUP_MAX 8 347 348 extern int __init netdev_boot_setup(char *str); 349 350 /* 351 * Structure for NAPI scheduling similar to tasklet but with weighting 352 */ 353 struct napi_struct { 354 /* The poll_list must only be managed by the entity which 355 * changes the state of the NAPI_STATE_SCHED bit. This means 356 * whoever atomically sets that bit can add this napi_struct 357 * to the per-cpu poll_list, and whoever clears that bit 358 * can remove from the list right before clearing the bit. 359 */ 360 struct list_head poll_list; 361 362 unsigned long state; 363 int weight; 364 int (*poll)(struct napi_struct *, int); 365 #ifdef CONFIG_NETPOLL 366 spinlock_t poll_lock; 367 int poll_owner; 368 #endif 369 370 unsigned int gro_count; 371 372 struct net_device *dev; 373 struct list_head dev_list; 374 struct sk_buff *gro_list; 375 struct sk_buff *skb; 376 }; 377 378 enum { 379 NAPI_STATE_SCHED, /* Poll is scheduled */ 380 NAPI_STATE_DISABLE, /* Disable pending */ 381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 382 }; 383 384 enum gro_result { 385 GRO_MERGED, 386 GRO_MERGED_FREE, 387 GRO_HELD, 388 GRO_NORMAL, 389 GRO_DROP, 390 }; 391 typedef enum gro_result gro_result_t; 392 393 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb); 394 395 extern void __napi_schedule(struct napi_struct *n); 396 397 static inline int napi_disable_pending(struct napi_struct *n) 398 { 399 return test_bit(NAPI_STATE_DISABLE, &n->state); 400 } 401 402 /** 403 * napi_schedule_prep - check if napi can be scheduled 404 * @n: napi context 405 * 406 * Test if NAPI routine is already running, and if not mark 407 * it as running. This is used as a condition variable 408 * insure only one NAPI poll instance runs. We also make 409 * sure there is no pending NAPI disable. 410 */ 411 static inline int napi_schedule_prep(struct napi_struct *n) 412 { 413 return !napi_disable_pending(n) && 414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 415 } 416 417 /** 418 * napi_schedule - schedule NAPI poll 419 * @n: napi context 420 * 421 * Schedule NAPI poll routine to be called if it is not already 422 * running. 423 */ 424 static inline void napi_schedule(struct napi_struct *n) 425 { 426 if (napi_schedule_prep(n)) 427 __napi_schedule(n); 428 } 429 430 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 431 static inline int napi_reschedule(struct napi_struct *napi) 432 { 433 if (napi_schedule_prep(napi)) { 434 __napi_schedule(napi); 435 return 1; 436 } 437 return 0; 438 } 439 440 /** 441 * napi_complete - NAPI processing complete 442 * @n: napi context 443 * 444 * Mark NAPI processing as complete. 445 */ 446 extern void __napi_complete(struct napi_struct *n); 447 extern void napi_complete(struct napi_struct *n); 448 449 /** 450 * napi_disable - prevent NAPI from scheduling 451 * @n: napi context 452 * 453 * Stop NAPI from being scheduled on this context. 454 * Waits till any outstanding processing completes. 455 */ 456 static inline void napi_disable(struct napi_struct *n) 457 { 458 set_bit(NAPI_STATE_DISABLE, &n->state); 459 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 460 msleep(1); 461 clear_bit(NAPI_STATE_DISABLE, &n->state); 462 } 463 464 /** 465 * napi_enable - enable NAPI scheduling 466 * @n: napi context 467 * 468 * Resume NAPI from being scheduled on this context. 469 * Must be paired with napi_disable. 470 */ 471 static inline void napi_enable(struct napi_struct *n) 472 { 473 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 474 smp_mb__before_clear_bit(); 475 clear_bit(NAPI_STATE_SCHED, &n->state); 476 } 477 478 #ifdef CONFIG_SMP 479 /** 480 * napi_synchronize - wait until NAPI is not running 481 * @n: napi context 482 * 483 * Wait until NAPI is done being scheduled on this context. 484 * Waits till any outstanding processing completes but 485 * does not disable future activations. 486 */ 487 static inline void napi_synchronize(const struct napi_struct *n) 488 { 489 while (test_bit(NAPI_STATE_SCHED, &n->state)) 490 msleep(1); 491 } 492 #else 493 # define napi_synchronize(n) barrier() 494 #endif 495 496 enum netdev_queue_state_t { 497 __QUEUE_STATE_XOFF, 498 __QUEUE_STATE_FROZEN, 499 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \ 500 (1 << __QUEUE_STATE_FROZEN)) 501 }; 502 503 struct netdev_queue { 504 /* 505 * read mostly part 506 */ 507 struct net_device *dev; 508 struct Qdisc *qdisc; 509 unsigned long state; 510 struct Qdisc *qdisc_sleeping; 511 #ifdef CONFIG_RPS 512 struct kobject kobj; 513 #endif 514 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 515 int numa_node; 516 #endif 517 /* 518 * write mostly part 519 */ 520 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 521 int xmit_lock_owner; 522 /* 523 * please use this field instead of dev->trans_start 524 */ 525 unsigned long trans_start; 526 } ____cacheline_aligned_in_smp; 527 528 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 529 { 530 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 531 return q->numa_node; 532 #else 533 return NUMA_NO_NODE; 534 #endif 535 } 536 537 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 538 { 539 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 540 q->numa_node = node; 541 #endif 542 } 543 544 #ifdef CONFIG_RPS 545 /* 546 * This structure holds an RPS map which can be of variable length. The 547 * map is an array of CPUs. 548 */ 549 struct rps_map { 550 unsigned int len; 551 struct rcu_head rcu; 552 u16 cpus[0]; 553 }; 554 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) 555 556 /* 557 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 558 * tail pointer for that CPU's input queue at the time of last enqueue, and 559 * a hardware filter index. 560 */ 561 struct rps_dev_flow { 562 u16 cpu; 563 u16 filter; 564 unsigned int last_qtail; 565 }; 566 #define RPS_NO_FILTER 0xffff 567 568 /* 569 * The rps_dev_flow_table structure contains a table of flow mappings. 570 */ 571 struct rps_dev_flow_table { 572 unsigned int mask; 573 struct rcu_head rcu; 574 struct work_struct free_work; 575 struct rps_dev_flow flows[0]; 576 }; 577 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 578 (_num * sizeof(struct rps_dev_flow))) 579 580 /* 581 * The rps_sock_flow_table contains mappings of flows to the last CPU 582 * on which they were processed by the application (set in recvmsg). 583 */ 584 struct rps_sock_flow_table { 585 unsigned int mask; 586 u16 ents[0]; 587 }; 588 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 589 (_num * sizeof(u16))) 590 591 #define RPS_NO_CPU 0xffff 592 593 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 594 u32 hash) 595 { 596 if (table && hash) { 597 unsigned int cpu, index = hash & table->mask; 598 599 /* We only give a hint, preemption can change cpu under us */ 600 cpu = raw_smp_processor_id(); 601 602 if (table->ents[index] != cpu) 603 table->ents[index] = cpu; 604 } 605 } 606 607 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 608 u32 hash) 609 { 610 if (table && hash) 611 table->ents[hash & table->mask] = RPS_NO_CPU; 612 } 613 614 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 615 616 #ifdef CONFIG_RFS_ACCEL 617 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 618 u32 flow_id, u16 filter_id); 619 #endif 620 621 /* This structure contains an instance of an RX queue. */ 622 struct netdev_rx_queue { 623 struct rps_map __rcu *rps_map; 624 struct rps_dev_flow_table __rcu *rps_flow_table; 625 struct kobject kobj; 626 struct net_device *dev; 627 } ____cacheline_aligned_in_smp; 628 #endif /* CONFIG_RPS */ 629 630 #ifdef CONFIG_XPS 631 /* 632 * This structure holds an XPS map which can be of variable length. The 633 * map is an array of queues. 634 */ 635 struct xps_map { 636 unsigned int len; 637 unsigned int alloc_len; 638 struct rcu_head rcu; 639 u16 queues[0]; 640 }; 641 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16))) 642 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 643 / sizeof(u16)) 644 645 /* 646 * This structure holds all XPS maps for device. Maps are indexed by CPU. 647 */ 648 struct xps_dev_maps { 649 struct rcu_head rcu; 650 struct xps_map __rcu *cpu_map[0]; 651 }; 652 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 653 (nr_cpu_ids * sizeof(struct xps_map *))) 654 #endif /* CONFIG_XPS */ 655 656 #define TC_MAX_QUEUE 16 657 #define TC_BITMASK 15 658 /* HW offloaded queuing disciplines txq count and offset maps */ 659 struct netdev_tc_txq { 660 u16 count; 661 u16 offset; 662 }; 663 664 /* 665 * This structure defines the management hooks for network devices. 666 * The following hooks can be defined; unless noted otherwise, they are 667 * optional and can be filled with a null pointer. 668 * 669 * int (*ndo_init)(struct net_device *dev); 670 * This function is called once when network device is registered. 671 * The network device can use this to any late stage initializaton 672 * or semantic validattion. It can fail with an error code which will 673 * be propogated back to register_netdev 674 * 675 * void (*ndo_uninit)(struct net_device *dev); 676 * This function is called when device is unregistered or when registration 677 * fails. It is not called if init fails. 678 * 679 * int (*ndo_open)(struct net_device *dev); 680 * This function is called when network device transistions to the up 681 * state. 682 * 683 * int (*ndo_stop)(struct net_device *dev); 684 * This function is called when network device transistions to the down 685 * state. 686 * 687 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 688 * struct net_device *dev); 689 * Called when a packet needs to be transmitted. 690 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 691 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 692 * Required can not be NULL. 693 * 694 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 695 * Called to decide which queue to when device supports multiple 696 * transmit queues. 697 * 698 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 699 * This function is called to allow device receiver to make 700 * changes to configuration when multicast or promiscious is enabled. 701 * 702 * void (*ndo_set_rx_mode)(struct net_device *dev); 703 * This function is called device changes address list filtering. 704 * 705 * void (*ndo_set_multicast_list)(struct net_device *dev); 706 * This function is called when the multicast address list changes. 707 * 708 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 709 * This function is called when the Media Access Control address 710 * needs to be changed. If this interface is not defined, the 711 * mac address can not be changed. 712 * 713 * int (*ndo_validate_addr)(struct net_device *dev); 714 * Test if Media Access Control address is valid for the device. 715 * 716 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 717 * Called when a user request an ioctl which can't be handled by 718 * the generic interface code. If not defined ioctl's return 719 * not supported error code. 720 * 721 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 722 * Used to set network devices bus interface parameters. This interface 723 * is retained for legacy reason, new devices should use the bus 724 * interface (PCI) for low level management. 725 * 726 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 727 * Called when a user wants to change the Maximum Transfer Unit 728 * of a device. If not defined, any request to change MTU will 729 * will return an error. 730 * 731 * void (*ndo_tx_timeout)(struct net_device *dev); 732 * Callback uses when the transmitter has not made any progress 733 * for dev->watchdog ticks. 734 * 735 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 736 * struct rtnl_link_stats64 *storage); 737 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 738 * Called when a user wants to get the network device usage 739 * statistics. Drivers must do one of the following: 740 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 741 * rtnl_link_stats64 structure passed by the caller. 742 * 2. Define @ndo_get_stats to update a net_device_stats structure 743 * (which should normally be dev->stats) and return a pointer to 744 * it. The structure may be changed asynchronously only if each 745 * field is written atomically. 746 * 3. Update dev->stats asynchronously and atomically, and define 747 * neither operation. 748 * 749 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); 750 * If device support VLAN receive acceleration 751 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called 752 * when vlan groups for the device changes. Note: grp is NULL 753 * if no vlan's groups are being used. 754 * 755 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 756 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 757 * this function is called when a VLAN id is registered. 758 * 759 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 760 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 761 * this function is called when a VLAN id is unregistered. 762 * 763 * void (*ndo_poll_controller)(struct net_device *dev); 764 * 765 * SR-IOV management functions. 766 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 767 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 768 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 769 * int (*ndo_get_vf_config)(struct net_device *dev, 770 * int vf, struct ifla_vf_info *ivf); 771 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 772 * struct nlattr *port[]); 773 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 774 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 775 * Called to setup 'tc' number of traffic classes in the net device. This 776 * is always called from the stack with the rtnl lock held and netif tx 777 * queues stopped. This allows the netdevice to perform queue management 778 * safely. 779 * 780 * RFS acceleration. 781 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 782 * u16 rxq_index, u32 flow_id); 783 * Set hardware filter for RFS. rxq_index is the target queue index; 784 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 785 * Return the filter ID on success, or a negative error code. 786 * 787 * Slave management functions (for bridge, bonding, etc). User should 788 * call netdev_set_master() to set dev->master properly. 789 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 790 * Called to make another netdev an underling. 791 * 792 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 793 * Called to release previously enslaved netdev. 794 * 795 * Feature/offload setting functions. 796 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features); 797 * Adjusts the requested feature flags according to device-specific 798 * constraints, and returns the resulting flags. Must not modify 799 * the device state. 800 * 801 * int (*ndo_set_features)(struct net_device *dev, u32 features); 802 * Called to update device configuration to new features. Passed 803 * feature set might be less than what was returned by ndo_fix_features()). 804 * Must return >0 or -errno if it changed dev->features itself. 805 * 806 */ 807 #define HAVE_NET_DEVICE_OPS 808 struct net_device_ops { 809 int (*ndo_init)(struct net_device *dev); 810 void (*ndo_uninit)(struct net_device *dev); 811 int (*ndo_open)(struct net_device *dev); 812 int (*ndo_stop)(struct net_device *dev); 813 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 814 struct net_device *dev); 815 u16 (*ndo_select_queue)(struct net_device *dev, 816 struct sk_buff *skb); 817 void (*ndo_change_rx_flags)(struct net_device *dev, 818 int flags); 819 void (*ndo_set_rx_mode)(struct net_device *dev); 820 void (*ndo_set_multicast_list)(struct net_device *dev); 821 int (*ndo_set_mac_address)(struct net_device *dev, 822 void *addr); 823 int (*ndo_validate_addr)(struct net_device *dev); 824 int (*ndo_do_ioctl)(struct net_device *dev, 825 struct ifreq *ifr, int cmd); 826 int (*ndo_set_config)(struct net_device *dev, 827 struct ifmap *map); 828 int (*ndo_change_mtu)(struct net_device *dev, 829 int new_mtu); 830 int (*ndo_neigh_setup)(struct net_device *dev, 831 struct neigh_parms *); 832 void (*ndo_tx_timeout) (struct net_device *dev); 833 834 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 835 struct rtnl_link_stats64 *storage); 836 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 837 838 void (*ndo_vlan_rx_register)(struct net_device *dev, 839 struct vlan_group *grp); 840 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 841 unsigned short vid); 842 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 843 unsigned short vid); 844 #ifdef CONFIG_NET_POLL_CONTROLLER 845 void (*ndo_poll_controller)(struct net_device *dev); 846 int (*ndo_netpoll_setup)(struct net_device *dev, 847 struct netpoll_info *info); 848 void (*ndo_netpoll_cleanup)(struct net_device *dev); 849 #endif 850 int (*ndo_set_vf_mac)(struct net_device *dev, 851 int queue, u8 *mac); 852 int (*ndo_set_vf_vlan)(struct net_device *dev, 853 int queue, u16 vlan, u8 qos); 854 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 855 int vf, int rate); 856 int (*ndo_get_vf_config)(struct net_device *dev, 857 int vf, 858 struct ifla_vf_info *ivf); 859 int (*ndo_set_vf_port)(struct net_device *dev, 860 int vf, 861 struct nlattr *port[]); 862 int (*ndo_get_vf_port)(struct net_device *dev, 863 int vf, struct sk_buff *skb); 864 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 865 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 866 int (*ndo_fcoe_enable)(struct net_device *dev); 867 int (*ndo_fcoe_disable)(struct net_device *dev); 868 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 869 u16 xid, 870 struct scatterlist *sgl, 871 unsigned int sgc); 872 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 873 u16 xid); 874 #define NETDEV_FCOE_WWNN 0 875 #define NETDEV_FCOE_WWPN 1 876 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 877 u64 *wwn, int type); 878 #endif 879 #ifdef CONFIG_RFS_ACCEL 880 int (*ndo_rx_flow_steer)(struct net_device *dev, 881 const struct sk_buff *skb, 882 u16 rxq_index, 883 u32 flow_id); 884 #endif 885 int (*ndo_add_slave)(struct net_device *dev, 886 struct net_device *slave_dev); 887 int (*ndo_del_slave)(struct net_device *dev, 888 struct net_device *slave_dev); 889 u32 (*ndo_fix_features)(struct net_device *dev, 890 u32 features); 891 int (*ndo_set_features)(struct net_device *dev, 892 u32 features); 893 }; 894 895 /* 896 * The DEVICE structure. 897 * Actually, this whole structure is a big mistake. It mixes I/O 898 * data with strictly "high-level" data, and it has to know about 899 * almost every data structure used in the INET module. 900 * 901 * FIXME: cleanup struct net_device such that network protocol info 902 * moves out. 903 */ 904 905 struct net_device { 906 907 /* 908 * This is the first field of the "visible" part of this structure 909 * (i.e. as seen by users in the "Space.c" file). It is the name 910 * of the interface. 911 */ 912 char name[IFNAMSIZ]; 913 914 struct pm_qos_request_list pm_qos_req; 915 916 /* device name hash chain */ 917 struct hlist_node name_hlist; 918 /* snmp alias */ 919 char *ifalias; 920 921 /* 922 * I/O specific fields 923 * FIXME: Merge these and struct ifmap into one 924 */ 925 unsigned long mem_end; /* shared mem end */ 926 unsigned long mem_start; /* shared mem start */ 927 unsigned long base_addr; /* device I/O address */ 928 unsigned int irq; /* device IRQ number */ 929 930 /* 931 * Some hardware also needs these fields, but they are not 932 * part of the usual set specified in Space.c. 933 */ 934 935 unsigned char if_port; /* Selectable AUI, TP,..*/ 936 unsigned char dma; /* DMA channel */ 937 938 unsigned long state; 939 940 struct list_head dev_list; 941 struct list_head napi_list; 942 struct list_head unreg_list; 943 944 /* currently active device features */ 945 u32 features; 946 /* user-changeable features */ 947 u32 hw_features; 948 /* user-requested features */ 949 u32 wanted_features; 950 /* VLAN feature mask */ 951 u32 vlan_features; 952 953 /* Net device feature bits; if you change something, 954 * also update netdev_features_strings[] in ethtool.c */ 955 956 #define NETIF_F_SG 1 /* Scatter/gather IO. */ 957 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 958 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 959 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 960 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 961 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 962 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 963 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 964 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 965 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 966 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 967 #define NETIF_F_GSO 2048 /* Enable software GSO. */ 968 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 969 /* do not use LLTX in new drivers */ 970 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 971 #define NETIF_F_GRO 16384 /* Generic receive offload */ 972 #define NETIF_F_LRO 32768 /* large receive offload */ 973 974 /* the GSO_MASK reserves bits 16 through 23 */ 975 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 976 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 977 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 978 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ 979 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ 980 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */ 981 982 /* Segmentation offload features */ 983 #define NETIF_F_GSO_SHIFT 16 984 #define NETIF_F_GSO_MASK 0x00ff0000 985 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 986 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 987 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 988 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 989 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 990 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 991 992 /* Features valid for ethtool to change */ 993 /* = all defined minus driver/device-class-related */ 994 #define NETIF_F_NEVER_CHANGE (NETIF_F_HIGHDMA | NETIF_F_VLAN_CHALLENGED | \ 995 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL) 996 #define NETIF_F_ETHTOOL_BITS (0x3f3fffff & ~NETIF_F_NEVER_CHANGE) 997 998 /* List of features with software fallbacks. */ 999 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ 1000 NETIF_F_TSO6 | NETIF_F_UFO) 1001 1002 1003 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 1004 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 1005 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 1006 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 1007 1008 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1009 1010 #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \ 1011 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ 1012 NETIF_F_SCTP_CSUM | NETIF_F_FCOE_CRC) 1013 1014 /* 1015 * If one device supports one of these features, then enable them 1016 * for all in netdev_increment_features. 1017 */ 1018 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 1019 NETIF_F_SG | NETIF_F_HIGHDMA | \ 1020 NETIF_F_FRAGLIST) 1021 1022 /* changeable features with no special hardware requirements */ 1023 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO) 1024 1025 /* Interface index. Unique device identifier */ 1026 int ifindex; 1027 int iflink; 1028 1029 struct net_device_stats stats; 1030 atomic_long_t rx_dropped; /* dropped packets by core network 1031 * Do not use this in drivers. 1032 */ 1033 1034 #ifdef CONFIG_WIRELESS_EXT 1035 /* List of functions to handle Wireless Extensions (instead of ioctl). 1036 * See <net/iw_handler.h> for details. Jean II */ 1037 const struct iw_handler_def * wireless_handlers; 1038 /* Instance data managed by the core of Wireless Extensions. */ 1039 struct iw_public_data * wireless_data; 1040 #endif 1041 /* Management operations */ 1042 const struct net_device_ops *netdev_ops; 1043 const struct ethtool_ops *ethtool_ops; 1044 1045 /* Hardware header description */ 1046 const struct header_ops *header_ops; 1047 1048 unsigned int flags; /* interface flags (a la BSD) */ 1049 unsigned short gflags; 1050 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 1051 unsigned short padded; /* How much padding added by alloc_netdev() */ 1052 1053 unsigned char operstate; /* RFC2863 operstate */ 1054 unsigned char link_mode; /* mapping policy to operstate */ 1055 1056 unsigned int mtu; /* interface MTU value */ 1057 unsigned short type; /* interface hardware type */ 1058 unsigned short hard_header_len; /* hardware hdr length */ 1059 1060 /* extra head- and tailroom the hardware may need, but not in all cases 1061 * can this be guaranteed, especially tailroom. Some cases also use 1062 * LL_MAX_HEADER instead to allocate the skb. 1063 */ 1064 unsigned short needed_headroom; 1065 unsigned short needed_tailroom; 1066 1067 /* Interface address info. */ 1068 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1069 unsigned char addr_assign_type; /* hw address assignment type */ 1070 unsigned char addr_len; /* hardware address length */ 1071 unsigned short dev_id; /* for shared network cards */ 1072 1073 spinlock_t addr_list_lock; 1074 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1075 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1076 int uc_promisc; 1077 unsigned int promiscuity; 1078 unsigned int allmulti; 1079 1080 1081 /* Protocol specific pointers */ 1082 1083 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1084 struct vlan_group __rcu *vlgrp; /* VLAN group */ 1085 #endif 1086 #ifdef CONFIG_NET_DSA 1087 void *dsa_ptr; /* dsa specific data */ 1088 #endif 1089 void *atalk_ptr; /* AppleTalk link */ 1090 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1091 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1092 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1093 void *ec_ptr; /* Econet specific data */ 1094 void *ax25_ptr; /* AX.25 specific data */ 1095 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1096 assign before registering */ 1097 1098 /* 1099 * Cache lines mostly used on receive path (including eth_type_trans()) 1100 */ 1101 unsigned long last_rx; /* Time of last Rx 1102 * This should not be set in 1103 * drivers, unless really needed, 1104 * because network stack (bonding) 1105 * use it if/when necessary, to 1106 * avoid dirtying this cache line. 1107 */ 1108 1109 struct net_device *master; /* Pointer to master device of a group, 1110 * which this device is member of. 1111 */ 1112 1113 /* Interface address info used in eth_type_trans() */ 1114 unsigned char *dev_addr; /* hw address, (before bcast 1115 because most packets are 1116 unicast) */ 1117 1118 struct netdev_hw_addr_list dev_addrs; /* list of device 1119 hw addresses */ 1120 1121 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1122 1123 #ifdef CONFIG_RPS 1124 struct kset *queues_kset; 1125 1126 struct netdev_rx_queue *_rx; 1127 1128 /* Number of RX queues allocated at register_netdev() time */ 1129 unsigned int num_rx_queues; 1130 1131 /* Number of RX queues currently active in device */ 1132 unsigned int real_num_rx_queues; 1133 1134 #ifdef CONFIG_RFS_ACCEL 1135 /* CPU reverse-mapping for RX completion interrupts, indexed 1136 * by RX queue number. Assigned by driver. This must only be 1137 * set if the ndo_rx_flow_steer operation is defined. */ 1138 struct cpu_rmap *rx_cpu_rmap; 1139 #endif 1140 #endif 1141 1142 rx_handler_func_t __rcu *rx_handler; 1143 void __rcu *rx_handler_data; 1144 1145 struct netdev_queue __rcu *ingress_queue; 1146 1147 /* 1148 * Cache lines mostly used on transmit path 1149 */ 1150 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1151 1152 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1153 unsigned int num_tx_queues; 1154 1155 /* Number of TX queues currently active in device */ 1156 unsigned int real_num_tx_queues; 1157 1158 /* root qdisc from userspace point of view */ 1159 struct Qdisc *qdisc; 1160 1161 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1162 spinlock_t tx_global_lock; 1163 1164 #ifdef CONFIG_XPS 1165 struct xps_dev_maps __rcu *xps_maps; 1166 #endif 1167 1168 /* These may be needed for future network-power-down code. */ 1169 1170 /* 1171 * trans_start here is expensive for high speed devices on SMP, 1172 * please use netdev_queue->trans_start instead. 1173 */ 1174 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1175 1176 int watchdog_timeo; /* used by dev_watchdog() */ 1177 struct timer_list watchdog_timer; 1178 1179 /* Number of references to this device */ 1180 int __percpu *pcpu_refcnt; 1181 1182 /* delayed register/unregister */ 1183 struct list_head todo_list; 1184 /* device index hash chain */ 1185 struct hlist_node index_hlist; 1186 1187 struct list_head link_watch_list; 1188 1189 /* register/unregister state machine */ 1190 enum { NETREG_UNINITIALIZED=0, 1191 NETREG_REGISTERED, /* completed register_netdevice */ 1192 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1193 NETREG_UNREGISTERED, /* completed unregister todo */ 1194 NETREG_RELEASED, /* called free_netdev */ 1195 NETREG_DUMMY, /* dummy device for NAPI poll */ 1196 } reg_state:16; 1197 1198 enum { 1199 RTNL_LINK_INITIALIZED, 1200 RTNL_LINK_INITIALIZING, 1201 } rtnl_link_state:16; 1202 1203 /* Called from unregister, can be used to call free_netdev */ 1204 void (*destructor)(struct net_device *dev); 1205 1206 #ifdef CONFIG_NETPOLL 1207 struct netpoll_info *npinfo; 1208 #endif 1209 1210 #ifdef CONFIG_NET_NS 1211 /* Network namespace this network device is inside */ 1212 struct net *nd_net; 1213 #endif 1214 1215 /* mid-layer private */ 1216 union { 1217 void *ml_priv; 1218 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1219 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1220 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1221 }; 1222 /* GARP */ 1223 struct garp_port __rcu *garp_port; 1224 1225 /* class/net/name entry */ 1226 struct device dev; 1227 /* space for optional device, statistics, and wireless sysfs groups */ 1228 const struct attribute_group *sysfs_groups[4]; 1229 1230 /* rtnetlink link ops */ 1231 const struct rtnl_link_ops *rtnl_link_ops; 1232 1233 /* for setting kernel sock attribute on TCP connection setup */ 1234 #define GSO_MAX_SIZE 65536 1235 unsigned int gso_max_size; 1236 1237 #ifdef CONFIG_DCB 1238 /* Data Center Bridging netlink ops */ 1239 const struct dcbnl_rtnl_ops *dcbnl_ops; 1240 #endif 1241 u8 num_tc; 1242 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1243 u8 prio_tc_map[TC_BITMASK + 1]; 1244 1245 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 1246 /* max exchange id for FCoE LRO by ddp */ 1247 unsigned int fcoe_ddp_xid; 1248 #endif 1249 /* n-tuple filter list attached to this device */ 1250 struct ethtool_rx_ntuple_list ethtool_ntuple_list; 1251 1252 /* phy device may attach itself for hardware timestamping */ 1253 struct phy_device *phydev; 1254 1255 /* group the device belongs to */ 1256 int group; 1257 }; 1258 #define to_net_dev(d) container_of(d, struct net_device, dev) 1259 1260 #define NETDEV_ALIGN 32 1261 1262 static inline 1263 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1264 { 1265 return dev->prio_tc_map[prio & TC_BITMASK]; 1266 } 1267 1268 static inline 1269 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1270 { 1271 if (tc >= dev->num_tc) 1272 return -EINVAL; 1273 1274 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1275 return 0; 1276 } 1277 1278 static inline 1279 void netdev_reset_tc(struct net_device *dev) 1280 { 1281 dev->num_tc = 0; 1282 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1283 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1284 } 1285 1286 static inline 1287 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1288 { 1289 if (tc >= dev->num_tc) 1290 return -EINVAL; 1291 1292 dev->tc_to_txq[tc].count = count; 1293 dev->tc_to_txq[tc].offset = offset; 1294 return 0; 1295 } 1296 1297 static inline 1298 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1299 { 1300 if (num_tc > TC_MAX_QUEUE) 1301 return -EINVAL; 1302 1303 dev->num_tc = num_tc; 1304 return 0; 1305 } 1306 1307 static inline 1308 int netdev_get_num_tc(struct net_device *dev) 1309 { 1310 return dev->num_tc; 1311 } 1312 1313 static inline 1314 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1315 unsigned int index) 1316 { 1317 return &dev->_tx[index]; 1318 } 1319 1320 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1321 void (*f)(struct net_device *, 1322 struct netdev_queue *, 1323 void *), 1324 void *arg) 1325 { 1326 unsigned int i; 1327 1328 for (i = 0; i < dev->num_tx_queues; i++) 1329 f(dev, &dev->_tx[i], arg); 1330 } 1331 1332 /* 1333 * Net namespace inlines 1334 */ 1335 static inline 1336 struct net *dev_net(const struct net_device *dev) 1337 { 1338 return read_pnet(&dev->nd_net); 1339 } 1340 1341 static inline 1342 void dev_net_set(struct net_device *dev, struct net *net) 1343 { 1344 #ifdef CONFIG_NET_NS 1345 release_net(dev->nd_net); 1346 dev->nd_net = hold_net(net); 1347 #endif 1348 } 1349 1350 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1351 { 1352 #ifdef CONFIG_NET_DSA_TAG_DSA 1353 if (dev->dsa_ptr != NULL) 1354 return dsa_uses_dsa_tags(dev->dsa_ptr); 1355 #endif 1356 1357 return 0; 1358 } 1359 1360 #ifndef CONFIG_NET_NS 1361 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1362 { 1363 skb->dev = dev; 1364 } 1365 #else /* CONFIG_NET_NS */ 1366 void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1367 #endif 1368 1369 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1370 { 1371 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1372 if (dev->dsa_ptr != NULL) 1373 return dsa_uses_trailer_tags(dev->dsa_ptr); 1374 #endif 1375 1376 return 0; 1377 } 1378 1379 /** 1380 * netdev_priv - access network device private data 1381 * @dev: network device 1382 * 1383 * Get network device private data 1384 */ 1385 static inline void *netdev_priv(const struct net_device *dev) 1386 { 1387 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1388 } 1389 1390 /* Set the sysfs physical device reference for the network logical device 1391 * if set prior to registration will cause a symlink during initialization. 1392 */ 1393 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1394 1395 /* Set the sysfs device type for the network logical device to allow 1396 * fin grained indentification of different network device types. For 1397 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1398 */ 1399 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1400 1401 /** 1402 * netif_napi_add - initialize a napi context 1403 * @dev: network device 1404 * @napi: napi context 1405 * @poll: polling function 1406 * @weight: default weight 1407 * 1408 * netif_napi_add() must be used to initialize a napi context prior to calling 1409 * *any* of the other napi related functions. 1410 */ 1411 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1412 int (*poll)(struct napi_struct *, int), int weight); 1413 1414 /** 1415 * netif_napi_del - remove a napi context 1416 * @napi: napi context 1417 * 1418 * netif_napi_del() removes a napi context from the network device napi list 1419 */ 1420 void netif_napi_del(struct napi_struct *napi); 1421 1422 struct napi_gro_cb { 1423 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1424 void *frag0; 1425 1426 /* Length of frag0. */ 1427 unsigned int frag0_len; 1428 1429 /* This indicates where we are processing relative to skb->data. */ 1430 int data_offset; 1431 1432 /* This is non-zero if the packet may be of the same flow. */ 1433 int same_flow; 1434 1435 /* This is non-zero if the packet cannot be merged with the new skb. */ 1436 int flush; 1437 1438 /* Number of segments aggregated. */ 1439 int count; 1440 1441 /* Free the skb? */ 1442 int free; 1443 }; 1444 1445 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1446 1447 struct packet_type { 1448 __be16 type; /* This is really htons(ether_type). */ 1449 struct net_device *dev; /* NULL is wildcarded here */ 1450 int (*func) (struct sk_buff *, 1451 struct net_device *, 1452 struct packet_type *, 1453 struct net_device *); 1454 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1455 u32 features); 1456 int (*gso_send_check)(struct sk_buff *skb); 1457 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1458 struct sk_buff *skb); 1459 int (*gro_complete)(struct sk_buff *skb); 1460 void *af_packet_priv; 1461 struct list_head list; 1462 }; 1463 1464 #include <linux/interrupt.h> 1465 #include <linux/notifier.h> 1466 1467 extern rwlock_t dev_base_lock; /* Device list lock */ 1468 1469 1470 #define for_each_netdev(net, d) \ 1471 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1472 #define for_each_netdev_reverse(net, d) \ 1473 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1474 #define for_each_netdev_rcu(net, d) \ 1475 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1476 #define for_each_netdev_safe(net, d, n) \ 1477 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1478 #define for_each_netdev_continue(net, d) \ 1479 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1480 #define for_each_netdev_continue_rcu(net, d) \ 1481 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1482 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1483 1484 static inline struct net_device *next_net_device(struct net_device *dev) 1485 { 1486 struct list_head *lh; 1487 struct net *net; 1488 1489 net = dev_net(dev); 1490 lh = dev->dev_list.next; 1491 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1492 } 1493 1494 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1495 { 1496 struct list_head *lh; 1497 struct net *net; 1498 1499 net = dev_net(dev); 1500 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1501 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1502 } 1503 1504 static inline struct net_device *first_net_device(struct net *net) 1505 { 1506 return list_empty(&net->dev_base_head) ? NULL : 1507 net_device_entry(net->dev_base_head.next); 1508 } 1509 1510 static inline struct net_device *first_net_device_rcu(struct net *net) 1511 { 1512 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1513 1514 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1515 } 1516 1517 extern int netdev_boot_setup_check(struct net_device *dev); 1518 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1519 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1520 const char *hwaddr); 1521 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1522 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1523 extern void dev_add_pack(struct packet_type *pt); 1524 extern void dev_remove_pack(struct packet_type *pt); 1525 extern void __dev_remove_pack(struct packet_type *pt); 1526 1527 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1528 unsigned short mask); 1529 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1530 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1531 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1532 extern int dev_alloc_name(struct net_device *dev, const char *name); 1533 extern int dev_open(struct net_device *dev); 1534 extern int dev_close(struct net_device *dev); 1535 extern void dev_disable_lro(struct net_device *dev); 1536 extern int dev_queue_xmit(struct sk_buff *skb); 1537 extern int register_netdevice(struct net_device *dev); 1538 extern void unregister_netdevice_queue(struct net_device *dev, 1539 struct list_head *head); 1540 extern void unregister_netdevice_many(struct list_head *head); 1541 static inline void unregister_netdevice(struct net_device *dev) 1542 { 1543 unregister_netdevice_queue(dev, NULL); 1544 } 1545 1546 extern int netdev_refcnt_read(const struct net_device *dev); 1547 extern void free_netdev(struct net_device *dev); 1548 extern void synchronize_net(void); 1549 extern int register_netdevice_notifier(struct notifier_block *nb); 1550 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1551 extern int init_dummy_netdev(struct net_device *dev); 1552 extern void netdev_resync_ops(struct net_device *dev); 1553 1554 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1555 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1556 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1557 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1558 extern int dev_restart(struct net_device *dev); 1559 #ifdef CONFIG_NETPOLL_TRAP 1560 extern int netpoll_trap(void); 1561 #endif 1562 extern int skb_gro_receive(struct sk_buff **head, 1563 struct sk_buff *skb); 1564 extern void skb_gro_reset_offset(struct sk_buff *skb); 1565 1566 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1567 { 1568 return NAPI_GRO_CB(skb)->data_offset; 1569 } 1570 1571 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1572 { 1573 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1574 } 1575 1576 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1577 { 1578 NAPI_GRO_CB(skb)->data_offset += len; 1579 } 1580 1581 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1582 unsigned int offset) 1583 { 1584 return NAPI_GRO_CB(skb)->frag0 + offset; 1585 } 1586 1587 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1588 { 1589 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1590 } 1591 1592 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1593 unsigned int offset) 1594 { 1595 NAPI_GRO_CB(skb)->frag0 = NULL; 1596 NAPI_GRO_CB(skb)->frag0_len = 0; 1597 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 1598 } 1599 1600 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1601 { 1602 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1603 } 1604 1605 static inline void *skb_gro_network_header(struct sk_buff *skb) 1606 { 1607 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1608 skb_network_offset(skb); 1609 } 1610 1611 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1612 unsigned short type, 1613 const void *daddr, const void *saddr, 1614 unsigned len) 1615 { 1616 if (!dev->header_ops || !dev->header_ops->create) 1617 return 0; 1618 1619 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1620 } 1621 1622 static inline int dev_parse_header(const struct sk_buff *skb, 1623 unsigned char *haddr) 1624 { 1625 const struct net_device *dev = skb->dev; 1626 1627 if (!dev->header_ops || !dev->header_ops->parse) 1628 return 0; 1629 return dev->header_ops->parse(skb, haddr); 1630 } 1631 1632 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1633 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1634 static inline int unregister_gifconf(unsigned int family) 1635 { 1636 return register_gifconf(family, NULL); 1637 } 1638 1639 /* 1640 * Incoming packets are placed on per-cpu queues 1641 */ 1642 struct softnet_data { 1643 struct Qdisc *output_queue; 1644 struct Qdisc **output_queue_tailp; 1645 struct list_head poll_list; 1646 struct sk_buff *completion_queue; 1647 struct sk_buff_head process_queue; 1648 1649 /* stats */ 1650 unsigned int processed; 1651 unsigned int time_squeeze; 1652 unsigned int cpu_collision; 1653 unsigned int received_rps; 1654 1655 #ifdef CONFIG_RPS 1656 struct softnet_data *rps_ipi_list; 1657 1658 /* Elements below can be accessed between CPUs for RPS */ 1659 struct call_single_data csd ____cacheline_aligned_in_smp; 1660 struct softnet_data *rps_ipi_next; 1661 unsigned int cpu; 1662 unsigned int input_queue_head; 1663 unsigned int input_queue_tail; 1664 #endif 1665 unsigned dropped; 1666 struct sk_buff_head input_pkt_queue; 1667 struct napi_struct backlog; 1668 }; 1669 1670 static inline void input_queue_head_incr(struct softnet_data *sd) 1671 { 1672 #ifdef CONFIG_RPS 1673 sd->input_queue_head++; 1674 #endif 1675 } 1676 1677 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1678 unsigned int *qtail) 1679 { 1680 #ifdef CONFIG_RPS 1681 *qtail = ++sd->input_queue_tail; 1682 #endif 1683 } 1684 1685 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1686 1687 #define HAVE_NETIF_QUEUE 1688 1689 extern void __netif_schedule(struct Qdisc *q); 1690 1691 static inline void netif_schedule_queue(struct netdev_queue *txq) 1692 { 1693 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1694 __netif_schedule(txq->qdisc); 1695 } 1696 1697 static inline void netif_tx_schedule_all(struct net_device *dev) 1698 { 1699 unsigned int i; 1700 1701 for (i = 0; i < dev->num_tx_queues; i++) 1702 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1703 } 1704 1705 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1706 { 1707 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1708 } 1709 1710 /** 1711 * netif_start_queue - allow transmit 1712 * @dev: network device 1713 * 1714 * Allow upper layers to call the device hard_start_xmit routine. 1715 */ 1716 static inline void netif_start_queue(struct net_device *dev) 1717 { 1718 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1719 } 1720 1721 static inline void netif_tx_start_all_queues(struct net_device *dev) 1722 { 1723 unsigned int i; 1724 1725 for (i = 0; i < dev->num_tx_queues; i++) { 1726 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1727 netif_tx_start_queue(txq); 1728 } 1729 } 1730 1731 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1732 { 1733 #ifdef CONFIG_NETPOLL_TRAP 1734 if (netpoll_trap()) { 1735 netif_tx_start_queue(dev_queue); 1736 return; 1737 } 1738 #endif 1739 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1740 __netif_schedule(dev_queue->qdisc); 1741 } 1742 1743 /** 1744 * netif_wake_queue - restart transmit 1745 * @dev: network device 1746 * 1747 * Allow upper layers to call the device hard_start_xmit routine. 1748 * Used for flow control when transmit resources are available. 1749 */ 1750 static inline void netif_wake_queue(struct net_device *dev) 1751 { 1752 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1753 } 1754 1755 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1756 { 1757 unsigned int i; 1758 1759 for (i = 0; i < dev->num_tx_queues; i++) { 1760 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1761 netif_tx_wake_queue(txq); 1762 } 1763 } 1764 1765 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1766 { 1767 if (WARN_ON(!dev_queue)) { 1768 printk(KERN_INFO "netif_stop_queue() cannot be called before " 1769 "register_netdev()"); 1770 return; 1771 } 1772 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1773 } 1774 1775 /** 1776 * netif_stop_queue - stop transmitted packets 1777 * @dev: network device 1778 * 1779 * Stop upper layers calling the device hard_start_xmit routine. 1780 * Used for flow control when transmit resources are unavailable. 1781 */ 1782 static inline void netif_stop_queue(struct net_device *dev) 1783 { 1784 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1785 } 1786 1787 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1788 { 1789 unsigned int i; 1790 1791 for (i = 0; i < dev->num_tx_queues; i++) { 1792 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1793 netif_tx_stop_queue(txq); 1794 } 1795 } 1796 1797 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1798 { 1799 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1800 } 1801 1802 /** 1803 * netif_queue_stopped - test if transmit queue is flowblocked 1804 * @dev: network device 1805 * 1806 * Test if transmit queue on device is currently unable to send. 1807 */ 1808 static inline int netif_queue_stopped(const struct net_device *dev) 1809 { 1810 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1811 } 1812 1813 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue) 1814 { 1815 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN; 1816 } 1817 1818 /** 1819 * netif_running - test if up 1820 * @dev: network device 1821 * 1822 * Test if the device has been brought up. 1823 */ 1824 static inline int netif_running(const struct net_device *dev) 1825 { 1826 return test_bit(__LINK_STATE_START, &dev->state); 1827 } 1828 1829 /* 1830 * Routines to manage the subqueues on a device. We only need start 1831 * stop, and a check if it's stopped. All other device management is 1832 * done at the overall netdevice level. 1833 * Also test the device if we're multiqueue. 1834 */ 1835 1836 /** 1837 * netif_start_subqueue - allow sending packets on subqueue 1838 * @dev: network device 1839 * @queue_index: sub queue index 1840 * 1841 * Start individual transmit queue of a device with multiple transmit queues. 1842 */ 1843 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1844 { 1845 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1846 1847 netif_tx_start_queue(txq); 1848 } 1849 1850 /** 1851 * netif_stop_subqueue - stop sending packets on subqueue 1852 * @dev: network device 1853 * @queue_index: sub queue index 1854 * 1855 * Stop individual transmit queue of a device with multiple transmit queues. 1856 */ 1857 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1858 { 1859 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1860 #ifdef CONFIG_NETPOLL_TRAP 1861 if (netpoll_trap()) 1862 return; 1863 #endif 1864 netif_tx_stop_queue(txq); 1865 } 1866 1867 /** 1868 * netif_subqueue_stopped - test status of subqueue 1869 * @dev: network device 1870 * @queue_index: sub queue index 1871 * 1872 * Check individual transmit queue of a device with multiple transmit queues. 1873 */ 1874 static inline int __netif_subqueue_stopped(const struct net_device *dev, 1875 u16 queue_index) 1876 { 1877 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1878 1879 return netif_tx_queue_stopped(txq); 1880 } 1881 1882 static inline int netif_subqueue_stopped(const struct net_device *dev, 1883 struct sk_buff *skb) 1884 { 1885 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1886 } 1887 1888 /** 1889 * netif_wake_subqueue - allow sending packets on subqueue 1890 * @dev: network device 1891 * @queue_index: sub queue index 1892 * 1893 * Resume individual transmit queue of a device with multiple transmit queues. 1894 */ 1895 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1896 { 1897 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1898 #ifdef CONFIG_NETPOLL_TRAP 1899 if (netpoll_trap()) 1900 return; 1901 #endif 1902 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 1903 __netif_schedule(txq->qdisc); 1904 } 1905 1906 /* 1907 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 1908 * as a distribution range limit for the returned value. 1909 */ 1910 static inline u16 skb_tx_hash(const struct net_device *dev, 1911 const struct sk_buff *skb) 1912 { 1913 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 1914 } 1915 1916 /** 1917 * netif_is_multiqueue - test if device has multiple transmit queues 1918 * @dev: network device 1919 * 1920 * Check if device has multiple transmit queues 1921 */ 1922 static inline int netif_is_multiqueue(const struct net_device *dev) 1923 { 1924 return dev->num_tx_queues > 1; 1925 } 1926 1927 extern int netif_set_real_num_tx_queues(struct net_device *dev, 1928 unsigned int txq); 1929 1930 #ifdef CONFIG_RPS 1931 extern int netif_set_real_num_rx_queues(struct net_device *dev, 1932 unsigned int rxq); 1933 #else 1934 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 1935 unsigned int rxq) 1936 { 1937 return 0; 1938 } 1939 #endif 1940 1941 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 1942 const struct net_device *from_dev) 1943 { 1944 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 1945 #ifdef CONFIG_RPS 1946 return netif_set_real_num_rx_queues(to_dev, 1947 from_dev->real_num_rx_queues); 1948 #else 1949 return 0; 1950 #endif 1951 } 1952 1953 /* Use this variant when it is known for sure that it 1954 * is executing from hardware interrupt context or with hardware interrupts 1955 * disabled. 1956 */ 1957 extern void dev_kfree_skb_irq(struct sk_buff *skb); 1958 1959 /* Use this variant in places where it could be invoked 1960 * from either hardware interrupt or other context, with hardware interrupts 1961 * either disabled or enabled. 1962 */ 1963 extern void dev_kfree_skb_any(struct sk_buff *skb); 1964 1965 #define HAVE_NETIF_RX 1 1966 extern int netif_rx(struct sk_buff *skb); 1967 extern int netif_rx_ni(struct sk_buff *skb); 1968 #define HAVE_NETIF_RECEIVE_SKB 1 1969 extern int netif_receive_skb(struct sk_buff *skb); 1970 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 1971 struct sk_buff *skb); 1972 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 1973 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 1974 struct sk_buff *skb); 1975 extern void napi_gro_flush(struct napi_struct *napi); 1976 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 1977 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 1978 struct sk_buff *skb, 1979 gro_result_t ret); 1980 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 1981 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 1982 1983 static inline void napi_free_frags(struct napi_struct *napi) 1984 { 1985 kfree_skb(napi->skb); 1986 napi->skb = NULL; 1987 } 1988 1989 extern int netdev_rx_handler_register(struct net_device *dev, 1990 rx_handler_func_t *rx_handler, 1991 void *rx_handler_data); 1992 extern void netdev_rx_handler_unregister(struct net_device *dev); 1993 1994 extern int dev_valid_name(const char *name); 1995 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 1996 extern int dev_ethtool(struct net *net, struct ifreq *); 1997 extern unsigned dev_get_flags(const struct net_device *); 1998 extern int __dev_change_flags(struct net_device *, unsigned int flags); 1999 extern int dev_change_flags(struct net_device *, unsigned); 2000 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2001 extern int dev_change_name(struct net_device *, const char *); 2002 extern int dev_set_alias(struct net_device *, const char *, size_t); 2003 extern int dev_change_net_namespace(struct net_device *, 2004 struct net *, const char *); 2005 extern int dev_set_mtu(struct net_device *, int); 2006 extern void dev_set_group(struct net_device *, int); 2007 extern int dev_set_mac_address(struct net_device *, 2008 struct sockaddr *); 2009 extern int dev_hard_start_xmit(struct sk_buff *skb, 2010 struct net_device *dev, 2011 struct netdev_queue *txq); 2012 extern int dev_forward_skb(struct net_device *dev, 2013 struct sk_buff *skb); 2014 2015 extern int netdev_budget; 2016 2017 /* Called by rtnetlink.c:rtnl_unlock() */ 2018 extern void netdev_run_todo(void); 2019 2020 /** 2021 * dev_put - release reference to device 2022 * @dev: network device 2023 * 2024 * Release reference to device to allow it to be freed. 2025 */ 2026 static inline void dev_put(struct net_device *dev) 2027 { 2028 irqsafe_cpu_dec(*dev->pcpu_refcnt); 2029 } 2030 2031 /** 2032 * dev_hold - get reference to device 2033 * @dev: network device 2034 * 2035 * Hold reference to device to keep it from being freed. 2036 */ 2037 static inline void dev_hold(struct net_device *dev) 2038 { 2039 irqsafe_cpu_inc(*dev->pcpu_refcnt); 2040 } 2041 2042 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2043 * and _off may be called from IRQ context, but it is caller 2044 * who is responsible for serialization of these calls. 2045 * 2046 * The name carrier is inappropriate, these functions should really be 2047 * called netif_lowerlayer_*() because they represent the state of any 2048 * kind of lower layer not just hardware media. 2049 */ 2050 2051 extern void linkwatch_fire_event(struct net_device *dev); 2052 extern void linkwatch_forget_dev(struct net_device *dev); 2053 2054 /** 2055 * netif_carrier_ok - test if carrier present 2056 * @dev: network device 2057 * 2058 * Check if carrier is present on device 2059 */ 2060 static inline int netif_carrier_ok(const struct net_device *dev) 2061 { 2062 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2063 } 2064 2065 extern unsigned long dev_trans_start(struct net_device *dev); 2066 2067 extern void __netdev_watchdog_up(struct net_device *dev); 2068 2069 extern void netif_carrier_on(struct net_device *dev); 2070 2071 extern void netif_carrier_off(struct net_device *dev); 2072 2073 extern void netif_notify_peers(struct net_device *dev); 2074 2075 /** 2076 * netif_dormant_on - mark device as dormant. 2077 * @dev: network device 2078 * 2079 * Mark device as dormant (as per RFC2863). 2080 * 2081 * The dormant state indicates that the relevant interface is not 2082 * actually in a condition to pass packets (i.e., it is not 'up') but is 2083 * in a "pending" state, waiting for some external event. For "on- 2084 * demand" interfaces, this new state identifies the situation where the 2085 * interface is waiting for events to place it in the up state. 2086 * 2087 */ 2088 static inline void netif_dormant_on(struct net_device *dev) 2089 { 2090 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2091 linkwatch_fire_event(dev); 2092 } 2093 2094 /** 2095 * netif_dormant_off - set device as not dormant. 2096 * @dev: network device 2097 * 2098 * Device is not in dormant state. 2099 */ 2100 static inline void netif_dormant_off(struct net_device *dev) 2101 { 2102 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2103 linkwatch_fire_event(dev); 2104 } 2105 2106 /** 2107 * netif_dormant - test if carrier present 2108 * @dev: network device 2109 * 2110 * Check if carrier is present on device 2111 */ 2112 static inline int netif_dormant(const struct net_device *dev) 2113 { 2114 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2115 } 2116 2117 2118 /** 2119 * netif_oper_up - test if device is operational 2120 * @dev: network device 2121 * 2122 * Check if carrier is operational 2123 */ 2124 static inline int netif_oper_up(const struct net_device *dev) 2125 { 2126 return (dev->operstate == IF_OPER_UP || 2127 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2128 } 2129 2130 /** 2131 * netif_device_present - is device available or removed 2132 * @dev: network device 2133 * 2134 * Check if device has not been removed from system. 2135 */ 2136 static inline int netif_device_present(struct net_device *dev) 2137 { 2138 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2139 } 2140 2141 extern void netif_device_detach(struct net_device *dev); 2142 2143 extern void netif_device_attach(struct net_device *dev); 2144 2145 /* 2146 * Network interface message level settings 2147 */ 2148 #define HAVE_NETIF_MSG 1 2149 2150 enum { 2151 NETIF_MSG_DRV = 0x0001, 2152 NETIF_MSG_PROBE = 0x0002, 2153 NETIF_MSG_LINK = 0x0004, 2154 NETIF_MSG_TIMER = 0x0008, 2155 NETIF_MSG_IFDOWN = 0x0010, 2156 NETIF_MSG_IFUP = 0x0020, 2157 NETIF_MSG_RX_ERR = 0x0040, 2158 NETIF_MSG_TX_ERR = 0x0080, 2159 NETIF_MSG_TX_QUEUED = 0x0100, 2160 NETIF_MSG_INTR = 0x0200, 2161 NETIF_MSG_TX_DONE = 0x0400, 2162 NETIF_MSG_RX_STATUS = 0x0800, 2163 NETIF_MSG_PKTDATA = 0x1000, 2164 NETIF_MSG_HW = 0x2000, 2165 NETIF_MSG_WOL = 0x4000, 2166 }; 2167 2168 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2169 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2170 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2171 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2172 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2173 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2174 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2175 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2176 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2177 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2178 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2179 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2180 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2181 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2182 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2183 2184 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2185 { 2186 /* use default */ 2187 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2188 return default_msg_enable_bits; 2189 if (debug_value == 0) /* no output */ 2190 return 0; 2191 /* set low N bits */ 2192 return (1 << debug_value) - 1; 2193 } 2194 2195 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2196 { 2197 spin_lock(&txq->_xmit_lock); 2198 txq->xmit_lock_owner = cpu; 2199 } 2200 2201 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2202 { 2203 spin_lock_bh(&txq->_xmit_lock); 2204 txq->xmit_lock_owner = smp_processor_id(); 2205 } 2206 2207 static inline int __netif_tx_trylock(struct netdev_queue *txq) 2208 { 2209 int ok = spin_trylock(&txq->_xmit_lock); 2210 if (likely(ok)) 2211 txq->xmit_lock_owner = smp_processor_id(); 2212 return ok; 2213 } 2214 2215 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2216 { 2217 txq->xmit_lock_owner = -1; 2218 spin_unlock(&txq->_xmit_lock); 2219 } 2220 2221 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2222 { 2223 txq->xmit_lock_owner = -1; 2224 spin_unlock_bh(&txq->_xmit_lock); 2225 } 2226 2227 static inline void txq_trans_update(struct netdev_queue *txq) 2228 { 2229 if (txq->xmit_lock_owner != -1) 2230 txq->trans_start = jiffies; 2231 } 2232 2233 /** 2234 * netif_tx_lock - grab network device transmit lock 2235 * @dev: network device 2236 * 2237 * Get network device transmit lock 2238 */ 2239 static inline void netif_tx_lock(struct net_device *dev) 2240 { 2241 unsigned int i; 2242 int cpu; 2243 2244 spin_lock(&dev->tx_global_lock); 2245 cpu = smp_processor_id(); 2246 for (i = 0; i < dev->num_tx_queues; i++) { 2247 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2248 2249 /* We are the only thread of execution doing a 2250 * freeze, but we have to grab the _xmit_lock in 2251 * order to synchronize with threads which are in 2252 * the ->hard_start_xmit() handler and already 2253 * checked the frozen bit. 2254 */ 2255 __netif_tx_lock(txq, cpu); 2256 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2257 __netif_tx_unlock(txq); 2258 } 2259 } 2260 2261 static inline void netif_tx_lock_bh(struct net_device *dev) 2262 { 2263 local_bh_disable(); 2264 netif_tx_lock(dev); 2265 } 2266 2267 static inline void netif_tx_unlock(struct net_device *dev) 2268 { 2269 unsigned int i; 2270 2271 for (i = 0; i < dev->num_tx_queues; i++) { 2272 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2273 2274 /* No need to grab the _xmit_lock here. If the 2275 * queue is not stopped for another reason, we 2276 * force a schedule. 2277 */ 2278 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2279 netif_schedule_queue(txq); 2280 } 2281 spin_unlock(&dev->tx_global_lock); 2282 } 2283 2284 static inline void netif_tx_unlock_bh(struct net_device *dev) 2285 { 2286 netif_tx_unlock(dev); 2287 local_bh_enable(); 2288 } 2289 2290 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2291 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2292 __netif_tx_lock(txq, cpu); \ 2293 } \ 2294 } 2295 2296 #define HARD_TX_UNLOCK(dev, txq) { \ 2297 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2298 __netif_tx_unlock(txq); \ 2299 } \ 2300 } 2301 2302 static inline void netif_tx_disable(struct net_device *dev) 2303 { 2304 unsigned int i; 2305 int cpu; 2306 2307 local_bh_disable(); 2308 cpu = smp_processor_id(); 2309 for (i = 0; i < dev->num_tx_queues; i++) { 2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2311 2312 __netif_tx_lock(txq, cpu); 2313 netif_tx_stop_queue(txq); 2314 __netif_tx_unlock(txq); 2315 } 2316 local_bh_enable(); 2317 } 2318 2319 static inline void netif_addr_lock(struct net_device *dev) 2320 { 2321 spin_lock(&dev->addr_list_lock); 2322 } 2323 2324 static inline void netif_addr_lock_bh(struct net_device *dev) 2325 { 2326 spin_lock_bh(&dev->addr_list_lock); 2327 } 2328 2329 static inline void netif_addr_unlock(struct net_device *dev) 2330 { 2331 spin_unlock(&dev->addr_list_lock); 2332 } 2333 2334 static inline void netif_addr_unlock_bh(struct net_device *dev) 2335 { 2336 spin_unlock_bh(&dev->addr_list_lock); 2337 } 2338 2339 /* 2340 * dev_addrs walker. Should be used only for read access. Call with 2341 * rcu_read_lock held. 2342 */ 2343 #define for_each_dev_addr(dev, ha) \ 2344 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2345 2346 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2347 2348 extern void ether_setup(struct net_device *dev); 2349 2350 /* Support for loadable net-drivers */ 2351 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2352 void (*setup)(struct net_device *), 2353 unsigned int txqs, unsigned int rxqs); 2354 #define alloc_netdev(sizeof_priv, name, setup) \ 2355 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2356 2357 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2358 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2359 2360 extern int register_netdev(struct net_device *dev); 2361 extern void unregister_netdev(struct net_device *dev); 2362 2363 /* General hardware address lists handling functions */ 2364 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2365 struct netdev_hw_addr_list *from_list, 2366 int addr_len, unsigned char addr_type); 2367 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2368 struct netdev_hw_addr_list *from_list, 2369 int addr_len, unsigned char addr_type); 2370 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2371 struct netdev_hw_addr_list *from_list, 2372 int addr_len); 2373 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2374 struct netdev_hw_addr_list *from_list, 2375 int addr_len); 2376 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2377 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2378 2379 /* Functions used for device addresses handling */ 2380 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2381 unsigned char addr_type); 2382 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2383 unsigned char addr_type); 2384 extern int dev_addr_add_multiple(struct net_device *to_dev, 2385 struct net_device *from_dev, 2386 unsigned char addr_type); 2387 extern int dev_addr_del_multiple(struct net_device *to_dev, 2388 struct net_device *from_dev, 2389 unsigned char addr_type); 2390 extern void dev_addr_flush(struct net_device *dev); 2391 extern int dev_addr_init(struct net_device *dev); 2392 2393 /* Functions used for unicast addresses handling */ 2394 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2395 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2396 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2397 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2398 extern void dev_uc_flush(struct net_device *dev); 2399 extern void dev_uc_init(struct net_device *dev); 2400 2401 /* Functions used for multicast addresses handling */ 2402 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2403 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2404 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2405 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2406 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2407 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2408 extern void dev_mc_flush(struct net_device *dev); 2409 extern void dev_mc_init(struct net_device *dev); 2410 2411 /* Functions used for secondary unicast and multicast support */ 2412 extern void dev_set_rx_mode(struct net_device *dev); 2413 extern void __dev_set_rx_mode(struct net_device *dev); 2414 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2415 extern int dev_set_allmulti(struct net_device *dev, int inc); 2416 extern void netdev_state_change(struct net_device *dev); 2417 extern int netdev_bonding_change(struct net_device *dev, 2418 unsigned long event); 2419 extern void netdev_features_change(struct net_device *dev); 2420 /* Load a device via the kmod */ 2421 extern void dev_load(struct net *net, const char *name); 2422 extern void dev_mcast_init(void); 2423 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2424 struct rtnl_link_stats64 *storage); 2425 2426 extern int netdev_max_backlog; 2427 extern int netdev_tstamp_prequeue; 2428 extern int weight_p; 2429 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2430 extern int netdev_set_bond_master(struct net_device *dev, 2431 struct net_device *master); 2432 extern int skb_checksum_help(struct sk_buff *skb); 2433 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features); 2434 #ifdef CONFIG_BUG 2435 extern void netdev_rx_csum_fault(struct net_device *dev); 2436 #else 2437 static inline void netdev_rx_csum_fault(struct net_device *dev) 2438 { 2439 } 2440 #endif 2441 /* rx skb timestamps */ 2442 extern void net_enable_timestamp(void); 2443 extern void net_disable_timestamp(void); 2444 2445 #ifdef CONFIG_PROC_FS 2446 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2447 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2448 extern void dev_seq_stop(struct seq_file *seq, void *v); 2449 #endif 2450 2451 extern int netdev_class_create_file(struct class_attribute *class_attr); 2452 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2453 2454 extern struct kobj_ns_type_operations net_ns_type_operations; 2455 2456 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len); 2457 2458 extern void linkwatch_run_queue(void); 2459 2460 static inline u32 netdev_get_wanted_features(struct net_device *dev) 2461 { 2462 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2463 } 2464 u32 netdev_increment_features(u32 all, u32 one, u32 mask); 2465 u32 netdev_fix_features(struct net_device *dev, u32 features); 2466 void netdev_update_features(struct net_device *dev); 2467 2468 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2469 struct net_device *dev); 2470 2471 u32 netif_skb_features(struct sk_buff *skb); 2472 2473 static inline int net_gso_ok(u32 features, int gso_type) 2474 { 2475 int feature = gso_type << NETIF_F_GSO_SHIFT; 2476 return (features & feature) == feature; 2477 } 2478 2479 static inline int skb_gso_ok(struct sk_buff *skb, u32 features) 2480 { 2481 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2482 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2483 } 2484 2485 static inline int netif_needs_gso(struct sk_buff *skb, int features) 2486 { 2487 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2488 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2489 } 2490 2491 static inline void netif_set_gso_max_size(struct net_device *dev, 2492 unsigned int size) 2493 { 2494 dev->gso_max_size = size; 2495 } 2496 2497 static inline int netif_is_bond_slave(struct net_device *dev) 2498 { 2499 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2500 } 2501 2502 extern struct pernet_operations __net_initdata loopback_net_ops; 2503 2504 static inline int dev_ethtool_get_settings(struct net_device *dev, 2505 struct ethtool_cmd *cmd) 2506 { 2507 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 2508 return -EOPNOTSUPP; 2509 return dev->ethtool_ops->get_settings(dev, cmd); 2510 } 2511 2512 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2513 { 2514 if (dev->hw_features & NETIF_F_RXCSUM) 2515 return !!(dev->features & NETIF_F_RXCSUM); 2516 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2517 return 0; 2518 return dev->ethtool_ops->get_rx_csum(dev); 2519 } 2520 2521 static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2522 { 2523 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2524 return 0; 2525 return dev->ethtool_ops->get_flags(dev); 2526 } 2527 2528 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2529 2530 /* netdev_printk helpers, similar to dev_printk */ 2531 2532 static inline const char *netdev_name(const struct net_device *dev) 2533 { 2534 if (dev->reg_state != NETREG_REGISTERED) 2535 return "(unregistered net_device)"; 2536 return dev->name; 2537 } 2538 2539 extern int netdev_printk(const char *level, const struct net_device *dev, 2540 const char *format, ...) 2541 __attribute__ ((format (printf, 3, 4))); 2542 extern int netdev_emerg(const struct net_device *dev, const char *format, ...) 2543 __attribute__ ((format (printf, 2, 3))); 2544 extern int netdev_alert(const struct net_device *dev, const char *format, ...) 2545 __attribute__ ((format (printf, 2, 3))); 2546 extern int netdev_crit(const struct net_device *dev, const char *format, ...) 2547 __attribute__ ((format (printf, 2, 3))); 2548 extern int netdev_err(const struct net_device *dev, const char *format, ...) 2549 __attribute__ ((format (printf, 2, 3))); 2550 extern int netdev_warn(const struct net_device *dev, const char *format, ...) 2551 __attribute__ ((format (printf, 2, 3))); 2552 extern int netdev_notice(const struct net_device *dev, const char *format, ...) 2553 __attribute__ ((format (printf, 2, 3))); 2554 extern int netdev_info(const struct net_device *dev, const char *format, ...) 2555 __attribute__ ((format (printf, 2, 3))); 2556 2557 #if defined(DEBUG) 2558 #define netdev_dbg(__dev, format, args...) \ 2559 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2560 #elif defined(CONFIG_DYNAMIC_DEBUG) 2561 #define netdev_dbg(__dev, format, args...) \ 2562 do { \ 2563 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ 2564 netdev_name(__dev), ##args); \ 2565 } while (0) 2566 #else 2567 #define netdev_dbg(__dev, format, args...) \ 2568 ({ \ 2569 if (0) \ 2570 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2571 0; \ 2572 }) 2573 #endif 2574 2575 #if defined(VERBOSE_DEBUG) 2576 #define netdev_vdbg netdev_dbg 2577 #else 2578 2579 #define netdev_vdbg(dev, format, args...) \ 2580 ({ \ 2581 if (0) \ 2582 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2583 0; \ 2584 }) 2585 #endif 2586 2587 /* 2588 * netdev_WARN() acts like dev_printk(), but with the key difference 2589 * of using a WARN/WARN_ON to get the message out, including the 2590 * file/line information and a backtrace. 2591 */ 2592 #define netdev_WARN(dev, format, args...) \ 2593 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2594 2595 /* netif printk helpers, similar to netdev_printk */ 2596 2597 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2598 do { \ 2599 if (netif_msg_##type(priv)) \ 2600 netdev_printk(level, (dev), fmt, ##args); \ 2601 } while (0) 2602 2603 #define netif_level(level, priv, type, dev, fmt, args...) \ 2604 do { \ 2605 if (netif_msg_##type(priv)) \ 2606 netdev_##level(dev, fmt, ##args); \ 2607 } while (0) 2608 2609 #define netif_emerg(priv, type, dev, fmt, args...) \ 2610 netif_level(emerg, priv, type, dev, fmt, ##args) 2611 #define netif_alert(priv, type, dev, fmt, args...) \ 2612 netif_level(alert, priv, type, dev, fmt, ##args) 2613 #define netif_crit(priv, type, dev, fmt, args...) \ 2614 netif_level(crit, priv, type, dev, fmt, ##args) 2615 #define netif_err(priv, type, dev, fmt, args...) \ 2616 netif_level(err, priv, type, dev, fmt, ##args) 2617 #define netif_warn(priv, type, dev, fmt, args...) \ 2618 netif_level(warn, priv, type, dev, fmt, ##args) 2619 #define netif_notice(priv, type, dev, fmt, args...) \ 2620 netif_level(notice, priv, type, dev, fmt, ##args) 2621 #define netif_info(priv, type, dev, fmt, args...) \ 2622 netif_level(info, priv, type, dev, fmt, ##args) 2623 2624 #if defined(DEBUG) 2625 #define netif_dbg(priv, type, dev, format, args...) \ 2626 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2627 #elif defined(CONFIG_DYNAMIC_DEBUG) 2628 #define netif_dbg(priv, type, netdev, format, args...) \ 2629 do { \ 2630 if (netif_msg_##type(priv)) \ 2631 dynamic_dev_dbg((netdev)->dev.parent, \ 2632 "%s: " format, \ 2633 netdev_name(netdev), ##args); \ 2634 } while (0) 2635 #else 2636 #define netif_dbg(priv, type, dev, format, args...) \ 2637 ({ \ 2638 if (0) \ 2639 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2640 0; \ 2641 }) 2642 #endif 2643 2644 #if defined(VERBOSE_DEBUG) 2645 #define netif_vdbg netif_dbg 2646 #else 2647 #define netif_vdbg(priv, type, dev, format, args...) \ 2648 ({ \ 2649 if (0) \ 2650 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2651 0; \ 2652 }) 2653 #endif 2654 2655 #endif /* __KERNEL__ */ 2656 2657 #endif /* _LINUX_NETDEVICE_H */ 2658