xref: /linux-6.15/include/linux/netdevice.h (revision a6e263f1)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm_kern;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 struct ethtool_netdev_state;
83 struct phy_link_topology;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for per-NAPI config
347  */
348 struct napi_config {
349 	u64 gro_flush_timeout;
350 	u32 defer_hard_irqs;
351 	unsigned int napi_id;
352 };
353 
354 /*
355  * Structure for NAPI scheduling similar to tasklet but with weighting
356  */
357 struct napi_struct {
358 	/* The poll_list must only be managed by the entity which
359 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
360 	 * whoever atomically sets that bit can add this napi_struct
361 	 * to the per-CPU poll_list, and whoever clears that bit
362 	 * can remove from the list right before clearing the bit.
363 	 */
364 	struct list_head	poll_list;
365 
366 	unsigned long		state;
367 	int			weight;
368 	u32			defer_hard_irqs_count;
369 	unsigned long		gro_bitmask;
370 	int			(*poll)(struct napi_struct *, int);
371 #ifdef CONFIG_NETPOLL
372 	/* CPU actively polling if netpoll is configured */
373 	int			poll_owner;
374 #endif
375 	/* CPU on which NAPI has been scheduled for processing */
376 	int			list_owner;
377 	struct net_device	*dev;
378 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
379 	struct sk_buff		*skb;
380 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
381 	int			rx_count; /* length of rx_list */
382 	unsigned int		napi_id;
383 	struct hrtimer		timer;
384 	struct task_struct	*thread;
385 	unsigned long		gro_flush_timeout;
386 	u32			defer_hard_irqs;
387 	/* control-path-only fields follow */
388 	struct list_head	dev_list;
389 	struct hlist_node	napi_hash_node;
390 	int			irq;
391 	int			index;
392 	struct napi_config	*config;
393 };
394 
395 enum {
396 	NAPI_STATE_SCHED,		/* Poll is scheduled */
397 	NAPI_STATE_MISSED,		/* reschedule a napi */
398 	NAPI_STATE_DISABLE,		/* Disable pending */
399 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
400 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
401 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
402 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
403 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
404 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
405 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
406 };
407 
408 enum {
409 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
410 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
411 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
412 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
413 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
414 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
415 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
416 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
417 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
418 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
419 };
420 
421 enum gro_result {
422 	GRO_MERGED,
423 	GRO_MERGED_FREE,
424 	GRO_HELD,
425 	GRO_NORMAL,
426 	GRO_CONSUMED,
427 };
428 typedef enum gro_result gro_result_t;
429 
430 /*
431  * enum rx_handler_result - Possible return values for rx_handlers.
432  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
433  * further.
434  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
435  * case skb->dev was changed by rx_handler.
436  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
437  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
438  *
439  * rx_handlers are functions called from inside __netif_receive_skb(), to do
440  * special processing of the skb, prior to delivery to protocol handlers.
441  *
442  * Currently, a net_device can only have a single rx_handler registered. Trying
443  * to register a second rx_handler will return -EBUSY.
444  *
445  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
446  * To unregister a rx_handler on a net_device, use
447  * netdev_rx_handler_unregister().
448  *
449  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
450  * do with the skb.
451  *
452  * If the rx_handler consumed the skb in some way, it should return
453  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
454  * the skb to be delivered in some other way.
455  *
456  * If the rx_handler changed skb->dev, to divert the skb to another
457  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
458  * new device will be called if it exists.
459  *
460  * If the rx_handler decides the skb should be ignored, it should return
461  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
462  * are registered on exact device (ptype->dev == skb->dev).
463  *
464  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
465  * delivered, it should return RX_HANDLER_PASS.
466  *
467  * A device without a registered rx_handler will behave as if rx_handler
468  * returned RX_HANDLER_PASS.
469  */
470 
471 enum rx_handler_result {
472 	RX_HANDLER_CONSUMED,
473 	RX_HANDLER_ANOTHER,
474 	RX_HANDLER_EXACT,
475 	RX_HANDLER_PASS,
476 };
477 typedef enum rx_handler_result rx_handler_result_t;
478 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
479 
480 void __napi_schedule(struct napi_struct *n);
481 void __napi_schedule_irqoff(struct napi_struct *n);
482 
483 static inline bool napi_disable_pending(struct napi_struct *n)
484 {
485 	return test_bit(NAPI_STATE_DISABLE, &n->state);
486 }
487 
488 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
489 {
490 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
491 }
492 
493 /**
494  * napi_is_scheduled - test if NAPI is scheduled
495  * @n: NAPI context
496  *
497  * This check is "best-effort". With no locking implemented,
498  * a NAPI can be scheduled or terminate right after this check
499  * and produce not precise results.
500  *
501  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
502  * should not be used normally and napi_schedule should be
503  * used instead.
504  *
505  * Use only if the driver really needs to check if a NAPI
506  * is scheduled for example in the context of delayed timer
507  * that can be skipped if a NAPI is already scheduled.
508  *
509  * Return True if NAPI is scheduled, False otherwise.
510  */
511 static inline bool napi_is_scheduled(struct napi_struct *n)
512 {
513 	return test_bit(NAPI_STATE_SCHED, &n->state);
514 }
515 
516 bool napi_schedule_prep(struct napi_struct *n);
517 
518 /**
519  *	napi_schedule - schedule NAPI poll
520  *	@n: NAPI context
521  *
522  * Schedule NAPI poll routine to be called if it is not already
523  * running.
524  * Return true if we schedule a NAPI or false if not.
525  * Refer to napi_schedule_prep() for additional reason on why
526  * a NAPI might not be scheduled.
527  */
528 static inline bool napi_schedule(struct napi_struct *n)
529 {
530 	if (napi_schedule_prep(n)) {
531 		__napi_schedule(n);
532 		return true;
533 	}
534 
535 	return false;
536 }
537 
538 /**
539  *	napi_schedule_irqoff - schedule NAPI poll
540  *	@n: NAPI context
541  *
542  * Variant of napi_schedule(), assuming hard irqs are masked.
543  */
544 static inline void napi_schedule_irqoff(struct napi_struct *n)
545 {
546 	if (napi_schedule_prep(n))
547 		__napi_schedule_irqoff(n);
548 }
549 
550 /**
551  * napi_complete_done - NAPI processing complete
552  * @n: NAPI context
553  * @work_done: number of packets processed
554  *
555  * Mark NAPI processing as complete. Should only be called if poll budget
556  * has not been completely consumed.
557  * Prefer over napi_complete().
558  * Return false if device should avoid rearming interrupts.
559  */
560 bool napi_complete_done(struct napi_struct *n, int work_done);
561 
562 static inline bool napi_complete(struct napi_struct *n)
563 {
564 	return napi_complete_done(n, 0);
565 }
566 
567 int dev_set_threaded(struct net_device *dev, bool threaded);
568 
569 /**
570  *	napi_disable - prevent NAPI from scheduling
571  *	@n: NAPI context
572  *
573  * Stop NAPI from being scheduled on this context.
574  * Waits till any outstanding processing completes.
575  */
576 void napi_disable(struct napi_struct *n);
577 
578 void napi_enable(struct napi_struct *n);
579 
580 /**
581  *	napi_synchronize - wait until NAPI is not running
582  *	@n: NAPI context
583  *
584  * Wait until NAPI is done being scheduled on this context.
585  * Waits till any outstanding processing completes but
586  * does not disable future activations.
587  */
588 static inline void napi_synchronize(const struct napi_struct *n)
589 {
590 	if (IS_ENABLED(CONFIG_SMP))
591 		while (test_bit(NAPI_STATE_SCHED, &n->state))
592 			msleep(1);
593 	else
594 		barrier();
595 }
596 
597 /**
598  *	napi_if_scheduled_mark_missed - if napi is running, set the
599  *	NAPIF_STATE_MISSED
600  *	@n: NAPI context
601  *
602  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
603  * NAPI is scheduled.
604  **/
605 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
606 {
607 	unsigned long val, new;
608 
609 	val = READ_ONCE(n->state);
610 	do {
611 		if (val & NAPIF_STATE_DISABLE)
612 			return true;
613 
614 		if (!(val & NAPIF_STATE_SCHED))
615 			return false;
616 
617 		new = val | NAPIF_STATE_MISSED;
618 	} while (!try_cmpxchg(&n->state, &val, new));
619 
620 	return true;
621 }
622 
623 enum netdev_queue_state_t {
624 	__QUEUE_STATE_DRV_XOFF,
625 	__QUEUE_STATE_STACK_XOFF,
626 	__QUEUE_STATE_FROZEN,
627 };
628 
629 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
630 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
631 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
632 
633 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
634 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
635 					QUEUE_STATE_FROZEN)
636 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
637 					QUEUE_STATE_FROZEN)
638 
639 /*
640  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
641  * netif_tx_* functions below are used to manipulate this flag.  The
642  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
643  * queue independently.  The netif_xmit_*stopped functions below are called
644  * to check if the queue has been stopped by the driver or stack (either
645  * of the XOFF bits are set in the state).  Drivers should not need to call
646  * netif_xmit*stopped functions, they should only be using netif_tx_*.
647  */
648 
649 struct netdev_queue {
650 /*
651  * read-mostly part
652  */
653 	struct net_device	*dev;
654 	netdevice_tracker	dev_tracker;
655 
656 	struct Qdisc __rcu	*qdisc;
657 	struct Qdisc __rcu	*qdisc_sleeping;
658 #ifdef CONFIG_SYSFS
659 	struct kobject		kobj;
660 #endif
661 	unsigned long		tx_maxrate;
662 	/*
663 	 * Number of TX timeouts for this queue
664 	 * (/sys/class/net/DEV/Q/trans_timeout)
665 	 */
666 	atomic_long_t		trans_timeout;
667 
668 	/* Subordinate device that the queue has been assigned to */
669 	struct net_device	*sb_dev;
670 #ifdef CONFIG_XDP_SOCKETS
671 	struct xsk_buff_pool    *pool;
672 #endif
673 
674 /*
675  * write-mostly part
676  */
677 #ifdef CONFIG_BQL
678 	struct dql		dql;
679 #endif
680 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
681 	int			xmit_lock_owner;
682 	/*
683 	 * Time (in jiffies) of last Tx
684 	 */
685 	unsigned long		trans_start;
686 
687 	unsigned long		state;
688 
689 /*
690  * slow- / control-path part
691  */
692 	/* NAPI instance for the queue
693 	 * Readers and writers must hold RTNL
694 	 */
695 	struct napi_struct	*napi;
696 
697 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
698 	int			numa_node;
699 #endif
700 } ____cacheline_aligned_in_smp;
701 
702 extern int sysctl_fb_tunnels_only_for_init_net;
703 extern int sysctl_devconf_inherit_init_net;
704 
705 /*
706  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
707  *                                     == 1 : For initns only
708  *                                     == 2 : For none.
709  */
710 static inline bool net_has_fallback_tunnels(const struct net *net)
711 {
712 #if IS_ENABLED(CONFIG_SYSCTL)
713 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
714 
715 	return !fb_tunnels_only_for_init_net ||
716 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
717 #else
718 	return true;
719 #endif
720 }
721 
722 static inline int net_inherit_devconf(void)
723 {
724 #if IS_ENABLED(CONFIG_SYSCTL)
725 	return READ_ONCE(sysctl_devconf_inherit_init_net);
726 #else
727 	return 0;
728 #endif
729 }
730 
731 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
732 {
733 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
734 	return q->numa_node;
735 #else
736 	return NUMA_NO_NODE;
737 #endif
738 }
739 
740 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
741 {
742 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
743 	q->numa_node = node;
744 #endif
745 }
746 
747 #ifdef CONFIG_RFS_ACCEL
748 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
749 			 u16 filter_id);
750 #endif
751 
752 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
753 enum xps_map_type {
754 	XPS_CPUS = 0,
755 	XPS_RXQS,
756 	XPS_MAPS_MAX,
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  *
777  * We keep track of the number of cpus/rxqs used when the struct is allocated,
778  * in nr_ids. This will help not accessing out-of-bound memory.
779  *
780  * We keep track of the number of traffic classes used when the struct is
781  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
782  * not crossing its upper bound, as the original dev->num_tc can be updated in
783  * the meantime.
784  */
785 struct xps_dev_maps {
786 	struct rcu_head rcu;
787 	unsigned int nr_ids;
788 	s16 num_tc;
789 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
790 };
791 
792 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
793 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
794 
795 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
796 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
797 
798 #endif /* CONFIG_XPS */
799 
800 #define TC_MAX_QUEUE	16
801 #define TC_BITMASK	15
802 /* HW offloaded queuing disciplines txq count and offset maps */
803 struct netdev_tc_txq {
804 	u16 count;
805 	u16 offset;
806 };
807 
808 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
809 /*
810  * This structure is to hold information about the device
811  * configured to run FCoE protocol stack.
812  */
813 struct netdev_fcoe_hbainfo {
814 	char	manufacturer[64];
815 	char	serial_number[64];
816 	char	hardware_version[64];
817 	char	driver_version[64];
818 	char	optionrom_version[64];
819 	char	firmware_version[64];
820 	char	model[256];
821 	char	model_description[256];
822 };
823 #endif
824 
825 #define MAX_PHYS_ITEM_ID_LEN 32
826 
827 /* This structure holds a unique identifier to identify some
828  * physical item (port for example) used by a netdevice.
829  */
830 struct netdev_phys_item_id {
831 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
832 	unsigned char id_len;
833 };
834 
835 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
836 					    struct netdev_phys_item_id *b)
837 {
838 	return a->id_len == b->id_len &&
839 	       memcmp(a->id, b->id, a->id_len) == 0;
840 }
841 
842 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
843 				       struct sk_buff *skb,
844 				       struct net_device *sb_dev);
845 
846 enum net_device_path_type {
847 	DEV_PATH_ETHERNET = 0,
848 	DEV_PATH_VLAN,
849 	DEV_PATH_BRIDGE,
850 	DEV_PATH_PPPOE,
851 	DEV_PATH_DSA,
852 	DEV_PATH_MTK_WDMA,
853 };
854 
855 struct net_device_path {
856 	enum net_device_path_type	type;
857 	const struct net_device		*dev;
858 	union {
859 		struct {
860 			u16		id;
861 			__be16		proto;
862 			u8		h_dest[ETH_ALEN];
863 		} encap;
864 		struct {
865 			enum {
866 				DEV_PATH_BR_VLAN_KEEP,
867 				DEV_PATH_BR_VLAN_TAG,
868 				DEV_PATH_BR_VLAN_UNTAG,
869 				DEV_PATH_BR_VLAN_UNTAG_HW,
870 			}		vlan_mode;
871 			u16		vlan_id;
872 			__be16		vlan_proto;
873 		} bridge;
874 		struct {
875 			int port;
876 			u16 proto;
877 		} dsa;
878 		struct {
879 			u8 wdma_idx;
880 			u8 queue;
881 			u16 wcid;
882 			u8 bss;
883 			u8 amsdu;
884 		} mtk_wdma;
885 	};
886 };
887 
888 #define NET_DEVICE_PATH_STACK_MAX	5
889 #define NET_DEVICE_PATH_VLAN_MAX	2
890 
891 struct net_device_path_stack {
892 	int			num_paths;
893 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
894 };
895 
896 struct net_device_path_ctx {
897 	const struct net_device *dev;
898 	u8			daddr[ETH_ALEN];
899 
900 	int			num_vlans;
901 	struct {
902 		u16		id;
903 		__be16		proto;
904 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
905 };
906 
907 enum tc_setup_type {
908 	TC_QUERY_CAPS,
909 	TC_SETUP_QDISC_MQPRIO,
910 	TC_SETUP_CLSU32,
911 	TC_SETUP_CLSFLOWER,
912 	TC_SETUP_CLSMATCHALL,
913 	TC_SETUP_CLSBPF,
914 	TC_SETUP_BLOCK,
915 	TC_SETUP_QDISC_CBS,
916 	TC_SETUP_QDISC_RED,
917 	TC_SETUP_QDISC_PRIO,
918 	TC_SETUP_QDISC_MQ,
919 	TC_SETUP_QDISC_ETF,
920 	TC_SETUP_ROOT_QDISC,
921 	TC_SETUP_QDISC_GRED,
922 	TC_SETUP_QDISC_TAPRIO,
923 	TC_SETUP_FT,
924 	TC_SETUP_QDISC_ETS,
925 	TC_SETUP_QDISC_TBF,
926 	TC_SETUP_QDISC_FIFO,
927 	TC_SETUP_QDISC_HTB,
928 	TC_SETUP_ACT,
929 };
930 
931 /* These structures hold the attributes of bpf state that are being passed
932  * to the netdevice through the bpf op.
933  */
934 enum bpf_netdev_command {
935 	/* Set or clear a bpf program used in the earliest stages of packet
936 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
937 	 * is responsible for calling bpf_prog_put on any old progs that are
938 	 * stored. In case of error, the callee need not release the new prog
939 	 * reference, but on success it takes ownership and must bpf_prog_put
940 	 * when it is no longer used.
941 	 */
942 	XDP_SETUP_PROG,
943 	XDP_SETUP_PROG_HW,
944 	/* BPF program for offload callbacks, invoked at program load time. */
945 	BPF_OFFLOAD_MAP_ALLOC,
946 	BPF_OFFLOAD_MAP_FREE,
947 	XDP_SETUP_XSK_POOL,
948 };
949 
950 struct bpf_prog_offload_ops;
951 struct netlink_ext_ack;
952 struct xdp_umem;
953 struct xdp_dev_bulk_queue;
954 struct bpf_xdp_link;
955 
956 enum bpf_xdp_mode {
957 	XDP_MODE_SKB = 0,
958 	XDP_MODE_DRV = 1,
959 	XDP_MODE_HW = 2,
960 	__MAX_XDP_MODE
961 };
962 
963 struct bpf_xdp_entity {
964 	struct bpf_prog *prog;
965 	struct bpf_xdp_link *link;
966 };
967 
968 struct netdev_bpf {
969 	enum bpf_netdev_command command;
970 	union {
971 		/* XDP_SETUP_PROG */
972 		struct {
973 			u32 flags;
974 			struct bpf_prog *prog;
975 			struct netlink_ext_ack *extack;
976 		};
977 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
978 		struct {
979 			struct bpf_offloaded_map *offmap;
980 		};
981 		/* XDP_SETUP_XSK_POOL */
982 		struct {
983 			struct xsk_buff_pool *pool;
984 			u16 queue_id;
985 		} xsk;
986 	};
987 };
988 
989 /* Flags for ndo_xsk_wakeup. */
990 #define XDP_WAKEUP_RX (1 << 0)
991 #define XDP_WAKEUP_TX (1 << 1)
992 
993 #ifdef CONFIG_XFRM_OFFLOAD
994 struct xfrmdev_ops {
995 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
996 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
997 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
998 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
999 				       struct xfrm_state *x);
1000 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1001 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1002 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1003 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1004 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1005 };
1006 #endif
1007 
1008 struct dev_ifalias {
1009 	struct rcu_head rcuhead;
1010 	char ifalias[];
1011 };
1012 
1013 struct devlink;
1014 struct tlsdev_ops;
1015 
1016 struct netdev_net_notifier {
1017 	struct list_head list;
1018 	struct notifier_block *nb;
1019 };
1020 
1021 /*
1022  * This structure defines the management hooks for network devices.
1023  * The following hooks can be defined; unless noted otherwise, they are
1024  * optional and can be filled with a null pointer.
1025  *
1026  * int (*ndo_init)(struct net_device *dev);
1027  *     This function is called once when a network device is registered.
1028  *     The network device can use this for any late stage initialization
1029  *     or semantic validation. It can fail with an error code which will
1030  *     be propagated back to register_netdev.
1031  *
1032  * void (*ndo_uninit)(struct net_device *dev);
1033  *     This function is called when device is unregistered or when registration
1034  *     fails. It is not called if init fails.
1035  *
1036  * int (*ndo_open)(struct net_device *dev);
1037  *     This function is called when a network device transitions to the up
1038  *     state.
1039  *
1040  * int (*ndo_stop)(struct net_device *dev);
1041  *     This function is called when a network device transitions to the down
1042  *     state.
1043  *
1044  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1045  *                               struct net_device *dev);
1046  *	Called when a packet needs to be transmitted.
1047  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1048  *	the queue before that can happen; it's for obsolete devices and weird
1049  *	corner cases, but the stack really does a non-trivial amount
1050  *	of useless work if you return NETDEV_TX_BUSY.
1051  *	Required; cannot be NULL.
1052  *
1053  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1054  *					   struct net_device *dev
1055  *					   netdev_features_t features);
1056  *	Called by core transmit path to determine if device is capable of
1057  *	performing offload operations on a given packet. This is to give
1058  *	the device an opportunity to implement any restrictions that cannot
1059  *	be otherwise expressed by feature flags. The check is called with
1060  *	the set of features that the stack has calculated and it returns
1061  *	those the driver believes to be appropriate.
1062  *
1063  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1064  *                         struct net_device *sb_dev);
1065  *	Called to decide which queue to use when device supports multiple
1066  *	transmit queues.
1067  *
1068  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1069  *	This function is called to allow device receiver to make
1070  *	changes to configuration when multicast or promiscuous is enabled.
1071  *
1072  * void (*ndo_set_rx_mode)(struct net_device *dev);
1073  *	This function is called device changes address list filtering.
1074  *	If driver handles unicast address filtering, it should set
1075  *	IFF_UNICAST_FLT in its priv_flags.
1076  *
1077  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1078  *	This function  is called when the Media Access Control address
1079  *	needs to be changed. If this interface is not defined, the
1080  *	MAC address can not be changed.
1081  *
1082  * int (*ndo_validate_addr)(struct net_device *dev);
1083  *	Test if Media Access Control address is valid for the device.
1084  *
1085  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1086  *	Old-style ioctl entry point. This is used internally by the
1087  *	appletalk and ieee802154 subsystems but is no longer called by
1088  *	the device ioctl handler.
1089  *
1090  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1091  *	Used by the bonding driver for its device specific ioctls:
1092  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1093  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1094  *
1095  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1096  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1097  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1098  *
1099  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1100  *	Used to set network devices bus interface parameters. This interface
1101  *	is retained for legacy reasons; new devices should use the bus
1102  *	interface (PCI) for low level management.
1103  *
1104  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1105  *	Called when a user wants to change the Maximum Transfer Unit
1106  *	of a device.
1107  *
1108  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1109  *	Callback used when the transmitter has not made any progress
1110  *	for dev->watchdog ticks.
1111  *
1112  * void (*ndo_get_stats64)(struct net_device *dev,
1113  *                         struct rtnl_link_stats64 *storage);
1114  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1115  *	Called when a user wants to get the network device usage
1116  *	statistics. Drivers must do one of the following:
1117  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1118  *	   rtnl_link_stats64 structure passed by the caller.
1119  *	2. Define @ndo_get_stats to update a net_device_stats structure
1120  *	   (which should normally be dev->stats) and return a pointer to
1121  *	   it. The structure may be changed asynchronously only if each
1122  *	   field is written atomically.
1123  *	3. Update dev->stats asynchronously and atomically, and define
1124  *	   neither operation.
1125  *
1126  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1127  *	Return true if this device supports offload stats of this attr_id.
1128  *
1129  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1130  *	void *attr_data)
1131  *	Get statistics for offload operations by attr_id. Write it into the
1132  *	attr_data pointer.
1133  *
1134  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1135  *	If device supports VLAN filtering this function is called when a
1136  *	VLAN id is registered.
1137  *
1138  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1139  *	If device supports VLAN filtering this function is called when a
1140  *	VLAN id is unregistered.
1141  *
1142  * void (*ndo_poll_controller)(struct net_device *dev);
1143  *
1144  *	SR-IOV management functions.
1145  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1146  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1147  *			  u8 qos, __be16 proto);
1148  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1149  *			  int max_tx_rate);
1150  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1151  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_get_vf_config)(struct net_device *dev,
1153  *			    int vf, struct ifla_vf_info *ivf);
1154  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1155  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1156  *			  struct nlattr *port[]);
1157  *
1158  *      Enable or disable the VF ability to query its RSS Redirection Table and
1159  *      Hash Key. This is needed since on some devices VF share this information
1160  *      with PF and querying it may introduce a theoretical security risk.
1161  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1162  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1163  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1164  *		       void *type_data);
1165  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1166  *	This is always called from the stack with the rtnl lock held and netif
1167  *	tx queues stopped. This allows the netdevice to perform queue
1168  *	management safely.
1169  *
1170  *	Fiber Channel over Ethernet (FCoE) offload functions.
1171  * int (*ndo_fcoe_enable)(struct net_device *dev);
1172  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1173  *	so the underlying device can perform whatever needed configuration or
1174  *	initialization to support acceleration of FCoE traffic.
1175  *
1176  * int (*ndo_fcoe_disable)(struct net_device *dev);
1177  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1178  *	so the underlying device can perform whatever needed clean-ups to
1179  *	stop supporting acceleration of FCoE traffic.
1180  *
1181  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1182  *			     struct scatterlist *sgl, unsigned int sgc);
1183  *	Called when the FCoE Initiator wants to initialize an I/O that
1184  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1185  *	perform necessary setup and returns 1 to indicate the device is set up
1186  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1187  *
1188  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1189  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1190  *	indicated by the FC exchange id 'xid', so the underlying device can
1191  *	clean up and reuse resources for later DDP requests.
1192  *
1193  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1194  *			      struct scatterlist *sgl, unsigned int sgc);
1195  *	Called when the FCoE Target wants to initialize an I/O that
1196  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1197  *	perform necessary setup and returns 1 to indicate the device is set up
1198  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1199  *
1200  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1201  *			       struct netdev_fcoe_hbainfo *hbainfo);
1202  *	Called when the FCoE Protocol stack wants information on the underlying
1203  *	device. This information is utilized by the FCoE protocol stack to
1204  *	register attributes with Fiber Channel management service as per the
1205  *	FC-GS Fabric Device Management Information(FDMI) specification.
1206  *
1207  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1208  *	Called when the underlying device wants to override default World Wide
1209  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1210  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1211  *	protocol stack to use.
1212  *
1213  *	RFS acceleration.
1214  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1215  *			    u16 rxq_index, u32 flow_id);
1216  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1217  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1218  *	Return the filter ID on success, or a negative error code.
1219  *
1220  *	Slave management functions (for bridge, bonding, etc).
1221  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1222  *	Called to make another netdev an underling.
1223  *
1224  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1225  *	Called to release previously enslaved netdev.
1226  *
1227  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1228  *					    struct sk_buff *skb,
1229  *					    bool all_slaves);
1230  *	Get the xmit slave of master device. If all_slaves is true, function
1231  *	assume all the slaves can transmit.
1232  *
1233  *      Feature/offload setting functions.
1234  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1235  *		netdev_features_t features);
1236  *	Adjusts the requested feature flags according to device-specific
1237  *	constraints, and returns the resulting flags. Must not modify
1238  *	the device state.
1239  *
1240  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1241  *	Called to update device configuration to new features. Passed
1242  *	feature set might be less than what was returned by ndo_fix_features()).
1243  *	Must return >0 or -errno if it changed dev->features itself.
1244  *
1245  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1246  *		      struct net_device *dev,
1247  *		      const unsigned char *addr, u16 vid, u16 flags,
1248  *		      struct netlink_ext_ack *extack);
1249  *	Adds an FDB entry to dev for addr.
1250  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1251  *		      struct net_device *dev,
1252  *		      const unsigned char *addr, u16 vid)
1253  *	Deletes the FDB entry from dev corresponding to addr.
1254  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1255  *			   struct netlink_ext_ack *extack);
1256  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1257  *		       struct net_device *dev, struct net_device *filter_dev,
1258  *		       int *idx)
1259  *	Used to add FDB entries to dump requests. Implementers should add
1260  *	entries to skb and update idx with the number of entries.
1261  *
1262  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1263  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1264  *	Adds an MDB entry to dev.
1265  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1266  *		      struct netlink_ext_ack *extack);
1267  *	Deletes the MDB entry from dev.
1268  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1269  *			   struct netlink_ext_ack *extack);
1270  *	Bulk deletes MDB entries from dev.
1271  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1272  *		       struct netlink_callback *cb);
1273  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1274  *	callback is used by core rtnetlink code.
1275  *
1276  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1277  *			     u16 flags, struct netlink_ext_ack *extack)
1278  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1279  *			     struct net_device *dev, u32 filter_mask,
1280  *			     int nlflags)
1281  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1282  *			     u16 flags);
1283  *
1284  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1285  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1286  *	which do not represent real hardware may define this to allow their
1287  *	userspace components to manage their virtual carrier state. Devices
1288  *	that determine carrier state from physical hardware properties (eg
1289  *	network cables) or protocol-dependent mechanisms (eg
1290  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1291  *
1292  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1293  *			       struct netdev_phys_item_id *ppid);
1294  *	Called to get ID of physical port of this device. If driver does
1295  *	not implement this, it is assumed that the hw is not able to have
1296  *	multiple net devices on single physical port.
1297  *
1298  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1299  *				 struct netdev_phys_item_id *ppid)
1300  *	Called to get the parent ID of the physical port of this device.
1301  *
1302  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1303  *				 struct net_device *dev)
1304  *	Called by upper layer devices to accelerate switching or other
1305  *	station functionality into hardware. 'pdev is the lowerdev
1306  *	to use for the offload and 'dev' is the net device that will
1307  *	back the offload. Returns a pointer to the private structure
1308  *	the upper layer will maintain.
1309  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1310  *	Called by upper layer device to delete the station created
1311  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1312  *	the station and priv is the structure returned by the add
1313  *	operation.
1314  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1315  *			     int queue_index, u32 maxrate);
1316  *	Called when a user wants to set a max-rate limitation of specific
1317  *	TX queue.
1318  * int (*ndo_get_iflink)(const struct net_device *dev);
1319  *	Called to get the iflink value of this device.
1320  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1321  *	This function is used to get egress tunnel information for given skb.
1322  *	This is useful for retrieving outer tunnel header parameters while
1323  *	sampling packet.
1324  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1325  *	This function is used to specify the headroom that the skb must
1326  *	consider when allocation skb during packet reception. Setting
1327  *	appropriate rx headroom value allows avoiding skb head copy on
1328  *	forward. Setting a negative value resets the rx headroom to the
1329  *	default value.
1330  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1331  *	This function is used to set or query state related to XDP on the
1332  *	netdevice and manage BPF offload. See definition of
1333  *	enum bpf_netdev_command for details.
1334  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1335  *			u32 flags);
1336  *	This function is used to submit @n XDP packets for transmit on a
1337  *	netdevice. Returns number of frames successfully transmitted, frames
1338  *	that got dropped are freed/returned via xdp_return_frame().
1339  *	Returns negative number, means general error invoking ndo, meaning
1340  *	no frames were xmit'ed and core-caller will free all frames.
1341  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1342  *					        struct xdp_buff *xdp);
1343  *      Get the xmit slave of master device based on the xdp_buff.
1344  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1345  *      This function is used to wake up the softirq, ksoftirqd or kthread
1346  *	responsible for sending and/or receiving packets on a specific
1347  *	queue id bound to an AF_XDP socket. The flags field specifies if
1348  *	only RX, only Tx, or both should be woken up using the flags
1349  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1350  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1351  *			 int cmd);
1352  *	Add, change, delete or get information on an IPv4 tunnel.
1353  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1354  *	If a device is paired with a peer device, return the peer instance.
1355  *	The caller must be under RCU read context.
1356  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1357  *     Get the forwarding path to reach the real device from the HW destination address
1358  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1359  *			     const struct skb_shared_hwtstamps *hwtstamps,
1360  *			     bool cycles);
1361  *	Get hardware timestamp based on normal/adjustable time or free running
1362  *	cycle counter. This function is required if physical clock supports a
1363  *	free running cycle counter.
1364  *
1365  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1366  *			   struct kernel_hwtstamp_config *kernel_config);
1367  *	Get the currently configured hardware timestamping parameters for the
1368  *	NIC device.
1369  *
1370  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1371  *			   struct kernel_hwtstamp_config *kernel_config,
1372  *			   struct netlink_ext_ack *extack);
1373  *	Change the hardware timestamping parameters for NIC device.
1374  */
1375 struct net_device_ops {
1376 	int			(*ndo_init)(struct net_device *dev);
1377 	void			(*ndo_uninit)(struct net_device *dev);
1378 	int			(*ndo_open)(struct net_device *dev);
1379 	int			(*ndo_stop)(struct net_device *dev);
1380 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1381 						  struct net_device *dev);
1382 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1383 						      struct net_device *dev,
1384 						      netdev_features_t features);
1385 	u16			(*ndo_select_queue)(struct net_device *dev,
1386 						    struct sk_buff *skb,
1387 						    struct net_device *sb_dev);
1388 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1389 						       int flags);
1390 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1391 	int			(*ndo_set_mac_address)(struct net_device *dev,
1392 						       void *addr);
1393 	int			(*ndo_validate_addr)(struct net_device *dev);
1394 	int			(*ndo_do_ioctl)(struct net_device *dev,
1395 					        struct ifreq *ifr, int cmd);
1396 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1397 						 struct ifreq *ifr, int cmd);
1398 	int			(*ndo_siocbond)(struct net_device *dev,
1399 						struct ifreq *ifr, int cmd);
1400 	int			(*ndo_siocwandev)(struct net_device *dev,
1401 						  struct if_settings *ifs);
1402 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1403 						      struct ifreq *ifr,
1404 						      void __user *data, int cmd);
1405 	int			(*ndo_set_config)(struct net_device *dev,
1406 					          struct ifmap *map);
1407 	int			(*ndo_change_mtu)(struct net_device *dev,
1408 						  int new_mtu);
1409 	int			(*ndo_neigh_setup)(struct net_device *dev,
1410 						   struct neigh_parms *);
1411 	void			(*ndo_tx_timeout) (struct net_device *dev,
1412 						   unsigned int txqueue);
1413 
1414 	void			(*ndo_get_stats64)(struct net_device *dev,
1415 						   struct rtnl_link_stats64 *storage);
1416 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1417 	int			(*ndo_get_offload_stats)(int attr_id,
1418 							 const struct net_device *dev,
1419 							 void *attr_data);
1420 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1421 
1422 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1423 						       __be16 proto, u16 vid);
1424 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1425 						        __be16 proto, u16 vid);
1426 #ifdef CONFIG_NET_POLL_CONTROLLER
1427 	void                    (*ndo_poll_controller)(struct net_device *dev);
1428 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1429 						     struct netpoll_info *info);
1430 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1431 #endif
1432 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1433 						  int queue, u8 *mac);
1434 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1435 						   int queue, u16 vlan,
1436 						   u8 qos, __be16 proto);
1437 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1438 						   int vf, int min_tx_rate,
1439 						   int max_tx_rate);
1440 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1441 						       int vf, bool setting);
1442 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1443 						    int vf, bool setting);
1444 	int			(*ndo_get_vf_config)(struct net_device *dev,
1445 						     int vf,
1446 						     struct ifla_vf_info *ivf);
1447 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1448 							 int vf, int link_state);
1449 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1450 						    int vf,
1451 						    struct ifla_vf_stats
1452 						    *vf_stats);
1453 	int			(*ndo_set_vf_port)(struct net_device *dev,
1454 						   int vf,
1455 						   struct nlattr *port[]);
1456 	int			(*ndo_get_vf_port)(struct net_device *dev,
1457 						   int vf, struct sk_buff *skb);
1458 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1459 						   int vf,
1460 						   struct ifla_vf_guid *node_guid,
1461 						   struct ifla_vf_guid *port_guid);
1462 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1463 						   int vf, u64 guid,
1464 						   int guid_type);
1465 	int			(*ndo_set_vf_rss_query_en)(
1466 						   struct net_device *dev,
1467 						   int vf, bool setting);
1468 	int			(*ndo_setup_tc)(struct net_device *dev,
1469 						enum tc_setup_type type,
1470 						void *type_data);
1471 #if IS_ENABLED(CONFIG_FCOE)
1472 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1473 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1474 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1475 						      u16 xid,
1476 						      struct scatterlist *sgl,
1477 						      unsigned int sgc);
1478 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1479 						     u16 xid);
1480 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1481 						       u16 xid,
1482 						       struct scatterlist *sgl,
1483 						       unsigned int sgc);
1484 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1485 							struct netdev_fcoe_hbainfo *hbainfo);
1486 #endif
1487 
1488 #if IS_ENABLED(CONFIG_LIBFCOE)
1489 #define NETDEV_FCOE_WWNN 0
1490 #define NETDEV_FCOE_WWPN 1
1491 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1492 						    u64 *wwn, int type);
1493 #endif
1494 
1495 #ifdef CONFIG_RFS_ACCEL
1496 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1497 						     const struct sk_buff *skb,
1498 						     u16 rxq_index,
1499 						     u32 flow_id);
1500 #endif
1501 	int			(*ndo_add_slave)(struct net_device *dev,
1502 						 struct net_device *slave_dev,
1503 						 struct netlink_ext_ack *extack);
1504 	int			(*ndo_del_slave)(struct net_device *dev,
1505 						 struct net_device *slave_dev);
1506 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1507 						      struct sk_buff *skb,
1508 						      bool all_slaves);
1509 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1510 							struct sock *sk);
1511 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1512 						    netdev_features_t features);
1513 	int			(*ndo_set_features)(struct net_device *dev,
1514 						    netdev_features_t features);
1515 	int			(*ndo_neigh_construct)(struct net_device *dev,
1516 						       struct neighbour *n);
1517 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1518 						     struct neighbour *n);
1519 
1520 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1521 					       struct nlattr *tb[],
1522 					       struct net_device *dev,
1523 					       const unsigned char *addr,
1524 					       u16 vid,
1525 					       u16 flags,
1526 					       struct netlink_ext_ack *extack);
1527 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1528 					       struct nlattr *tb[],
1529 					       struct net_device *dev,
1530 					       const unsigned char *addr,
1531 					       u16 vid, struct netlink_ext_ack *extack);
1532 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1533 						    struct net_device *dev,
1534 						    struct netlink_ext_ack *extack);
1535 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1536 						struct netlink_callback *cb,
1537 						struct net_device *dev,
1538 						struct net_device *filter_dev,
1539 						int *idx);
1540 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1541 					       struct nlattr *tb[],
1542 					       struct net_device *dev,
1543 					       const unsigned char *addr,
1544 					       u16 vid, u32 portid, u32 seq,
1545 					       struct netlink_ext_ack *extack);
1546 	int			(*ndo_mdb_add)(struct net_device *dev,
1547 					       struct nlattr *tb[],
1548 					       u16 nlmsg_flags,
1549 					       struct netlink_ext_ack *extack);
1550 	int			(*ndo_mdb_del)(struct net_device *dev,
1551 					       struct nlattr *tb[],
1552 					       struct netlink_ext_ack *extack);
1553 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1554 						    struct nlattr *tb[],
1555 						    struct netlink_ext_ack *extack);
1556 	int			(*ndo_mdb_dump)(struct net_device *dev,
1557 						struct sk_buff *skb,
1558 						struct netlink_callback *cb);
1559 	int			(*ndo_mdb_get)(struct net_device *dev,
1560 					       struct nlattr *tb[], u32 portid,
1561 					       u32 seq,
1562 					       struct netlink_ext_ack *extack);
1563 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1564 						      struct nlmsghdr *nlh,
1565 						      u16 flags,
1566 						      struct netlink_ext_ack *extack);
1567 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1568 						      u32 pid, u32 seq,
1569 						      struct net_device *dev,
1570 						      u32 filter_mask,
1571 						      int nlflags);
1572 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1573 						      struct nlmsghdr *nlh,
1574 						      u16 flags);
1575 	int			(*ndo_change_carrier)(struct net_device *dev,
1576 						      bool new_carrier);
1577 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1578 							struct netdev_phys_item_id *ppid);
1579 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1580 							  struct netdev_phys_item_id *ppid);
1581 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1582 							  char *name, size_t len);
1583 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1584 							struct net_device *dev);
1585 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1586 							void *priv);
1587 
1588 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1589 						      int queue_index,
1590 						      u32 maxrate);
1591 	int			(*ndo_get_iflink)(const struct net_device *dev);
1592 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1593 						       struct sk_buff *skb);
1594 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1595 						       int needed_headroom);
1596 	int			(*ndo_bpf)(struct net_device *dev,
1597 					   struct netdev_bpf *bpf);
1598 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1599 						struct xdp_frame **xdp,
1600 						u32 flags);
1601 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1602 							  struct xdp_buff *xdp);
1603 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1604 						  u32 queue_id, u32 flags);
1605 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1606 						  struct ip_tunnel_parm_kern *p,
1607 						  int cmd);
1608 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1609 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1610                                                          struct net_device_path *path);
1611 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1612 						  const struct skb_shared_hwtstamps *hwtstamps,
1613 						  bool cycles);
1614 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1615 						    struct kernel_hwtstamp_config *kernel_config);
1616 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1617 						    struct kernel_hwtstamp_config *kernel_config,
1618 						    struct netlink_ext_ack *extack);
1619 
1620 #if IS_ENABLED(CONFIG_NET_SHAPER)
1621 	/**
1622 	 * @net_shaper_ops: Device shaping offload operations
1623 	 * see include/net/net_shapers.h
1624 	 */
1625 	const struct net_shaper_ops *net_shaper_ops;
1626 #endif
1627 };
1628 
1629 /**
1630  * enum netdev_priv_flags - &struct net_device priv_flags
1631  *
1632  * These are the &struct net_device, they are only set internally
1633  * by drivers and used in the kernel. These flags are invisible to
1634  * userspace; this means that the order of these flags can change
1635  * during any kernel release.
1636  *
1637  * You should add bitfield booleans after either net_device::priv_flags
1638  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1639  *
1640  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1641  * @IFF_EBRIDGE: Ethernet bridging device
1642  * @IFF_BONDING: bonding master or slave
1643  * @IFF_ISATAP: ISATAP interface (RFC4214)
1644  * @IFF_WAN_HDLC: WAN HDLC device
1645  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1646  *	release skb->dst
1647  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1648  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1649  * @IFF_MACVLAN_PORT: device used as macvlan port
1650  * @IFF_BRIDGE_PORT: device used as bridge port
1651  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1652  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1653  * @IFF_UNICAST_FLT: Supports unicast filtering
1654  * @IFF_TEAM_PORT: device used as team port
1655  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1656  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1657  *	change when it's running
1658  * @IFF_MACVLAN: Macvlan device
1659  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1660  *	underlying stacked devices
1661  * @IFF_L3MDEV_MASTER: device is an L3 master device
1662  * @IFF_NO_QUEUE: device can run without qdisc attached
1663  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1664  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1665  * @IFF_TEAM: device is a team device
1666  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1667  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1668  *	entity (i.e. the master device for bridged veth)
1669  * @IFF_MACSEC: device is a MACsec device
1670  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1671  * @IFF_FAILOVER: device is a failover master device
1672  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1673  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1674  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1675  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1676  *	skb_headlen(skb) == 0 (data starts from frag0)
1677  */
1678 enum netdev_priv_flags {
1679 	IFF_802_1Q_VLAN			= 1<<0,
1680 	IFF_EBRIDGE			= 1<<1,
1681 	IFF_BONDING			= 1<<2,
1682 	IFF_ISATAP			= 1<<3,
1683 	IFF_WAN_HDLC			= 1<<4,
1684 	IFF_XMIT_DST_RELEASE		= 1<<5,
1685 	IFF_DONT_BRIDGE			= 1<<6,
1686 	IFF_DISABLE_NETPOLL		= 1<<7,
1687 	IFF_MACVLAN_PORT		= 1<<8,
1688 	IFF_BRIDGE_PORT			= 1<<9,
1689 	IFF_OVS_DATAPATH		= 1<<10,
1690 	IFF_TX_SKB_SHARING		= 1<<11,
1691 	IFF_UNICAST_FLT			= 1<<12,
1692 	IFF_TEAM_PORT			= 1<<13,
1693 	IFF_SUPP_NOFCS			= 1<<14,
1694 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1695 	IFF_MACVLAN			= 1<<16,
1696 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1697 	IFF_L3MDEV_MASTER		= 1<<18,
1698 	IFF_NO_QUEUE			= 1<<19,
1699 	IFF_OPENVSWITCH			= 1<<20,
1700 	IFF_L3MDEV_SLAVE		= 1<<21,
1701 	IFF_TEAM			= 1<<22,
1702 	IFF_RXFH_CONFIGURED		= 1<<23,
1703 	IFF_PHONY_HEADROOM		= 1<<24,
1704 	IFF_MACSEC			= 1<<25,
1705 	IFF_NO_RX_HANDLER		= 1<<26,
1706 	IFF_FAILOVER			= 1<<27,
1707 	IFF_FAILOVER_SLAVE		= 1<<28,
1708 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1709 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1710 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1711 };
1712 
1713 /* Specifies the type of the struct net_device::ml_priv pointer */
1714 enum netdev_ml_priv_type {
1715 	ML_PRIV_NONE,
1716 	ML_PRIV_CAN,
1717 };
1718 
1719 enum netdev_stat_type {
1720 	NETDEV_PCPU_STAT_NONE,
1721 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1722 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1723 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1724 };
1725 
1726 enum netdev_reg_state {
1727 	NETREG_UNINITIALIZED = 0,
1728 	NETREG_REGISTERED,	/* completed register_netdevice */
1729 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1730 	NETREG_UNREGISTERED,	/* completed unregister todo */
1731 	NETREG_RELEASED,	/* called free_netdev */
1732 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1733 };
1734 
1735 /**
1736  *	struct net_device - The DEVICE structure.
1737  *
1738  *	Actually, this whole structure is a big mistake.  It mixes I/O
1739  *	data with strictly "high-level" data, and it has to know about
1740  *	almost every data structure used in the INET module.
1741  *
1742  *	@priv_flags:	flags invisible to userspace defined as bits, see
1743  *			enum netdev_priv_flags for the definitions
1744  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1745  *			drivers. Mainly used by logical interfaces, such as
1746  *			bonding and tunnels
1747  *
1748  *	@name:	This is the first field of the "visible" part of this structure
1749  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1750  *		of the interface.
1751  *
1752  *	@name_node:	Name hashlist node
1753  *	@ifalias:	SNMP alias
1754  *	@mem_end:	Shared memory end
1755  *	@mem_start:	Shared memory start
1756  *	@base_addr:	Device I/O address
1757  *	@irq:		Device IRQ number
1758  *
1759  *	@state:		Generic network queuing layer state, see netdev_state_t
1760  *	@dev_list:	The global list of network devices
1761  *	@napi_list:	List entry used for polling NAPI devices
1762  *	@unreg_list:	List entry  when we are unregistering the
1763  *			device; see the function unregister_netdev
1764  *	@close_list:	List entry used when we are closing the device
1765  *	@ptype_all:     Device-specific packet handlers for all protocols
1766  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1767  *
1768  *	@adj_list:	Directly linked devices, like slaves for bonding
1769  *	@features:	Currently active device features
1770  *	@hw_features:	User-changeable features
1771  *
1772  *	@wanted_features:	User-requested features
1773  *	@vlan_features:		Mask of features inheritable by VLAN devices
1774  *
1775  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1776  *				This field indicates what encapsulation
1777  *				offloads the hardware is capable of doing,
1778  *				and drivers will need to set them appropriately.
1779  *
1780  *	@mpls_features:	Mask of features inheritable by MPLS
1781  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1782  *
1783  *	@ifindex:	interface index
1784  *	@group:		The group the device belongs to
1785  *
1786  *	@stats:		Statistics struct, which was left as a legacy, use
1787  *			rtnl_link_stats64 instead
1788  *
1789  *	@core_stats:	core networking counters,
1790  *			do not use this in drivers
1791  *	@carrier_up_count:	Number of times the carrier has been up
1792  *	@carrier_down_count:	Number of times the carrier has been down
1793  *
1794  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1795  *				instead of ioctl,
1796  *				see <net/iw_handler.h> for details.
1797  *	@wireless_data:	Instance data managed by the core of wireless extensions
1798  *
1799  *	@netdev_ops:	Includes several pointers to callbacks,
1800  *			if one wants to override the ndo_*() functions
1801  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1802  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1803  *	@ethtool_ops:	Management operations
1804  *	@l3mdev_ops:	Layer 3 master device operations
1805  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1806  *			discovery handling. Necessary for e.g. 6LoWPAN.
1807  *	@xfrmdev_ops:	Transformation offload operations
1808  *	@tlsdev_ops:	Transport Layer Security offload operations
1809  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1810  *			of Layer 2 headers.
1811  *
1812  *	@flags:		Interface flags (a la BSD)
1813  *	@xdp_features:	XDP capability supported by the device
1814  *	@gflags:	Global flags ( kept as legacy )
1815  *	@priv_len:	Size of the ->priv flexible array
1816  *	@priv:		Flexible array containing private data
1817  *	@operstate:	RFC2863 operstate
1818  *	@link_mode:	Mapping policy to operstate
1819  *	@if_port:	Selectable AUI, TP, ...
1820  *	@dma:		DMA channel
1821  *	@mtu:		Interface MTU value
1822  *	@min_mtu:	Interface Minimum MTU value
1823  *	@max_mtu:	Interface Maximum MTU value
1824  *	@type:		Interface hardware type
1825  *	@hard_header_len: Maximum hardware header length.
1826  *	@min_header_len:  Minimum hardware header length
1827  *
1828  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1829  *			  cases can this be guaranteed
1830  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1831  *			  cases can this be guaranteed. Some cases also use
1832  *			  LL_MAX_HEADER instead to allocate the skb
1833  *
1834  *	interface address info:
1835  *
1836  * 	@perm_addr:		Permanent hw address
1837  * 	@addr_assign_type:	Hw address assignment type
1838  * 	@addr_len:		Hardware address length
1839  *	@upper_level:		Maximum depth level of upper devices.
1840  *	@lower_level:		Maximum depth level of lower devices.
1841  *	@neigh_priv_len:	Used in neigh_alloc()
1842  * 	@dev_id:		Used to differentiate devices that share
1843  * 				the same link layer address
1844  * 	@dev_port:		Used to differentiate devices that share
1845  * 				the same function
1846  *	@addr_list_lock:	XXX: need comments on this one
1847  *	@name_assign_type:	network interface name assignment type
1848  *	@uc_promisc:		Counter that indicates promiscuous mode
1849  *				has been enabled due to the need to listen to
1850  *				additional unicast addresses in a device that
1851  *				does not implement ndo_set_rx_mode()
1852  *	@uc:			unicast mac addresses
1853  *	@mc:			multicast mac addresses
1854  *	@dev_addrs:		list of device hw addresses
1855  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1856  *	@promiscuity:		Number of times the NIC is told to work in
1857  *				promiscuous mode; if it becomes 0 the NIC will
1858  *				exit promiscuous mode
1859  *	@allmulti:		Counter, enables or disables allmulticast mode
1860  *
1861  *	@vlan_info:	VLAN info
1862  *	@dsa_ptr:	dsa specific data
1863  *	@tipc_ptr:	TIPC specific data
1864  *	@atalk_ptr:	AppleTalk link
1865  *	@ip_ptr:	IPv4 specific data
1866  *	@ip6_ptr:	IPv6 specific data
1867  *	@ax25_ptr:	AX.25 specific data
1868  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1869  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1870  *			 device struct
1871  *	@mpls_ptr:	mpls_dev struct pointer
1872  *	@mctp_ptr:	MCTP specific data
1873  *
1874  *	@dev_addr:	Hw address (before bcast,
1875  *			because most packets are unicast)
1876  *
1877  *	@_rx:			Array of RX queues
1878  *	@num_rx_queues:		Number of RX queues
1879  *				allocated at register_netdev() time
1880  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1881  *	@xdp_prog:		XDP sockets filter program pointer
1882  *
1883  *	@rx_handler:		handler for received packets
1884  *	@rx_handler_data: 	XXX: need comments on this one
1885  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1886  *	@ingress_queue:		XXX: need comments on this one
1887  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1888  *	@broadcast:		hw bcast address
1889  *
1890  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1891  *			indexed by RX queue number. Assigned by driver.
1892  *			This must only be set if the ndo_rx_flow_steer
1893  *			operation is defined
1894  *	@index_hlist:		Device index hash chain
1895  *
1896  *	@_tx:			Array of TX queues
1897  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1898  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1899  *	@qdisc:			Root qdisc from userspace point of view
1900  *	@tx_queue_len:		Max frames per queue allowed
1901  *	@tx_global_lock: 	XXX: need comments on this one
1902  *	@xdp_bulkq:		XDP device bulk queue
1903  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1904  *
1905  *	@xps_maps:	XXX: need comments on this one
1906  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1907  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1908  *	@qdisc_hash:		qdisc hash table
1909  *	@watchdog_timeo:	Represents the timeout that is used by
1910  *				the watchdog (see dev_watchdog())
1911  *	@watchdog_timer:	List of timers
1912  *
1913  *	@proto_down_reason:	reason a netdev interface is held down
1914  *	@pcpu_refcnt:		Number of references to this device
1915  *	@dev_refcnt:		Number of references to this device
1916  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1917  *	@todo_list:		Delayed register/unregister
1918  *	@link_watch_list:	XXX: need comments on this one
1919  *
1920  *	@reg_state:		Register/unregister state machine
1921  *	@dismantle:		Device is going to be freed
1922  *	@rtnl_link_state:	This enum represents the phases of creating
1923  *				a new link
1924  *
1925  *	@needs_free_netdev:	Should unregister perform free_netdev?
1926  *	@priv_destructor:	Called from unregister
1927  *	@npinfo:		XXX: need comments on this one
1928  * 	@nd_net:		Network namespace this network device is inside
1929  *
1930  * 	@ml_priv:	Mid-layer private
1931  *	@ml_priv_type:  Mid-layer private type
1932  *
1933  *	@pcpu_stat_type:	Type of device statistics which the core should
1934  *				allocate/free: none, lstats, tstats, dstats. none
1935  *				means the driver is handling statistics allocation/
1936  *				freeing internally.
1937  *	@lstats:		Loopback statistics: packets, bytes
1938  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1939  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1940  *
1941  *	@garp_port:	GARP
1942  *	@mrp_port:	MRP
1943  *
1944  *	@dm_private:	Drop monitor private
1945  *
1946  *	@dev:		Class/net/name entry
1947  *	@sysfs_groups:	Space for optional device, statistics and wireless
1948  *			sysfs groups
1949  *
1950  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1951  *	@rtnl_link_ops:	Rtnl_link_ops
1952  *	@stat_ops:	Optional ops for queue-aware statistics
1953  *	@queue_mgmt_ops:	Optional ops for queue management
1954  *
1955  *	@gso_max_size:	Maximum size of generic segmentation offload
1956  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1957  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1958  *			NIC for GSO
1959  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1960  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1961  * 				for IPv4.
1962  *
1963  *	@dcbnl_ops:	Data Center Bridging netlink ops
1964  *	@num_tc:	Number of traffic classes in the net device
1965  *	@tc_to_txq:	XXX: need comments on this one
1966  *	@prio_tc_map:	XXX: need comments on this one
1967  *
1968  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1969  *
1970  *	@priomap:	XXX: need comments on this one
1971  *	@link_topo:	Physical link topology tracking attached PHYs
1972  *	@phydev:	Physical device may attach itself
1973  *			for hardware timestamping
1974  *	@sfp_bus:	attached &struct sfp_bus structure.
1975  *
1976  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1977  *
1978  *	@proto_down:	protocol port state information can be sent to the
1979  *			switch driver and used to set the phys state of the
1980  *			switch port.
1981  *
1982  *	@threaded:	napi threaded mode is enabled
1983  *
1984  *	@see_all_hwtstamp_requests: device wants to see calls to
1985  *			ndo_hwtstamp_set() for all timestamp requests
1986  *			regardless of source, even if those aren't
1987  *			HWTSTAMP_SOURCE_NETDEV
1988  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1989  *	@netns_local: interface can't change network namespaces
1990  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
1991  *
1992  *	@net_notifier_list:	List of per-net netdev notifier block
1993  *				that follow this device when it is moved
1994  *				to another network namespace.
1995  *
1996  *	@macsec_ops:    MACsec offloading ops
1997  *
1998  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1999  *				offload capabilities of the device
2000  *	@udp_tunnel_nic:	UDP tunnel offload state
2001  *	@ethtool:	ethtool related state
2002  *	@xdp_state:		stores info on attached XDP BPF programs
2003  *
2004  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2005  *			dev->addr_list_lock.
2006  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2007  *			keep a list of interfaces to be deleted.
2008  *	@gro_max_size:	Maximum size of aggregated packet in generic
2009  *			receive offload (GRO)
2010  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2011  * 				receive offload (GRO), for IPv4.
2012  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2013  *				zero copy driver
2014  *
2015  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2016  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2017  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2018  *	@dev_registered_tracker:	tracker for reference held while
2019  *					registered
2020  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2021  *
2022  *	@devlink_port:	Pointer to related devlink port structure.
2023  *			Assigned by a driver before netdev registration using
2024  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2025  *			during the time netdevice is registered.
2026  *
2027  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2028  *		   where the clock is recovered.
2029  *
2030  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2031  *	@napi_config: An array of napi_config structures containing per-NAPI
2032  *		      settings.
2033  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2034  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2035  *				allow to avoid NIC hard IRQ, on busy queues.
2036  *
2037  *	FIXME: cleanup struct net_device such that network protocol info
2038  *	moves out.
2039  */
2040 
2041 struct net_device {
2042 	/* Cacheline organization can be found documented in
2043 	 * Documentation/networking/net_cachelines/net_device.rst.
2044 	 * Please update the document when adding new fields.
2045 	 */
2046 
2047 	/* TX read-mostly hotpath */
2048 	__cacheline_group_begin(net_device_read_tx);
2049 	struct_group(priv_flags_fast,
2050 		unsigned long		priv_flags:32;
2051 		unsigned long		lltx:1;
2052 	);
2053 	const struct net_device_ops *netdev_ops;
2054 	const struct header_ops *header_ops;
2055 	struct netdev_queue	*_tx;
2056 	netdev_features_t	gso_partial_features;
2057 	unsigned int		real_num_tx_queues;
2058 	unsigned int		gso_max_size;
2059 	unsigned int		gso_ipv4_max_size;
2060 	u16			gso_max_segs;
2061 	s16			num_tc;
2062 	/* Note : dev->mtu is often read without holding a lock.
2063 	 * Writers usually hold RTNL.
2064 	 * It is recommended to use READ_ONCE() to annotate the reads,
2065 	 * and to use WRITE_ONCE() to annotate the writes.
2066 	 */
2067 	unsigned int		mtu;
2068 	unsigned short		needed_headroom;
2069 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2070 #ifdef CONFIG_XPS
2071 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2072 #endif
2073 #ifdef CONFIG_NETFILTER_EGRESS
2074 	struct nf_hook_entries __rcu *nf_hooks_egress;
2075 #endif
2076 #ifdef CONFIG_NET_XGRESS
2077 	struct bpf_mprog_entry __rcu *tcx_egress;
2078 #endif
2079 	__cacheline_group_end(net_device_read_tx);
2080 
2081 	/* TXRX read-mostly hotpath */
2082 	__cacheline_group_begin(net_device_read_txrx);
2083 	union {
2084 		struct pcpu_lstats __percpu		*lstats;
2085 		struct pcpu_sw_netstats __percpu	*tstats;
2086 		struct pcpu_dstats __percpu		*dstats;
2087 	};
2088 	unsigned long		state;
2089 	unsigned int		flags;
2090 	unsigned short		hard_header_len;
2091 	netdev_features_t	features;
2092 	struct inet6_dev __rcu	*ip6_ptr;
2093 	__cacheline_group_end(net_device_read_txrx);
2094 
2095 	/* RX read-mostly hotpath */
2096 	__cacheline_group_begin(net_device_read_rx);
2097 	struct bpf_prog __rcu	*xdp_prog;
2098 	struct list_head	ptype_specific;
2099 	int			ifindex;
2100 	unsigned int		real_num_rx_queues;
2101 	struct netdev_rx_queue	*_rx;
2102 	unsigned int		gro_max_size;
2103 	unsigned int		gro_ipv4_max_size;
2104 	rx_handler_func_t __rcu	*rx_handler;
2105 	void __rcu		*rx_handler_data;
2106 	possible_net_t			nd_net;
2107 #ifdef CONFIG_NETPOLL
2108 	struct netpoll_info __rcu	*npinfo;
2109 #endif
2110 #ifdef CONFIG_NET_XGRESS
2111 	struct bpf_mprog_entry __rcu *tcx_ingress;
2112 #endif
2113 	__cacheline_group_end(net_device_read_rx);
2114 
2115 	char			name[IFNAMSIZ];
2116 	struct netdev_name_node	*name_node;
2117 	struct dev_ifalias	__rcu *ifalias;
2118 	/*
2119 	 *	I/O specific fields
2120 	 *	FIXME: Merge these and struct ifmap into one
2121 	 */
2122 	unsigned long		mem_end;
2123 	unsigned long		mem_start;
2124 	unsigned long		base_addr;
2125 
2126 	/*
2127 	 *	Some hardware also needs these fields (state,dev_list,
2128 	 *	napi_list,unreg_list,close_list) but they are not
2129 	 *	part of the usual set specified in Space.c.
2130 	 */
2131 
2132 
2133 	struct list_head	dev_list;
2134 	struct list_head	napi_list;
2135 	struct list_head	unreg_list;
2136 	struct list_head	close_list;
2137 	struct list_head	ptype_all;
2138 
2139 	struct {
2140 		struct list_head upper;
2141 		struct list_head lower;
2142 	} adj_list;
2143 
2144 	/* Read-mostly cache-line for fast-path access */
2145 	xdp_features_t		xdp_features;
2146 	const struct xdp_metadata_ops *xdp_metadata_ops;
2147 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2148 	unsigned short		gflags;
2149 
2150 	unsigned short		needed_tailroom;
2151 
2152 	netdev_features_t	hw_features;
2153 	netdev_features_t	wanted_features;
2154 	netdev_features_t	vlan_features;
2155 	netdev_features_t	hw_enc_features;
2156 	netdev_features_t	mpls_features;
2157 
2158 	unsigned int		min_mtu;
2159 	unsigned int		max_mtu;
2160 	unsigned short		type;
2161 	unsigned char		min_header_len;
2162 	unsigned char		name_assign_type;
2163 
2164 	int			group;
2165 
2166 	struct net_device_stats	stats; /* not used by modern drivers */
2167 
2168 	struct net_device_core_stats __percpu *core_stats;
2169 
2170 	/* Stats to monitor link on/off, flapping */
2171 	atomic_t		carrier_up_count;
2172 	atomic_t		carrier_down_count;
2173 
2174 #ifdef CONFIG_WIRELESS_EXT
2175 	const struct iw_handler_def *wireless_handlers;
2176 	struct iw_public_data	*wireless_data;
2177 #endif
2178 	const struct ethtool_ops *ethtool_ops;
2179 #ifdef CONFIG_NET_L3_MASTER_DEV
2180 	const struct l3mdev_ops	*l3mdev_ops;
2181 #endif
2182 #if IS_ENABLED(CONFIG_IPV6)
2183 	const struct ndisc_ops *ndisc_ops;
2184 #endif
2185 
2186 #ifdef CONFIG_XFRM_OFFLOAD
2187 	const struct xfrmdev_ops *xfrmdev_ops;
2188 #endif
2189 
2190 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2191 	const struct tlsdev_ops *tlsdev_ops;
2192 #endif
2193 
2194 	unsigned int		operstate;
2195 	unsigned char		link_mode;
2196 
2197 	unsigned char		if_port;
2198 	unsigned char		dma;
2199 
2200 	/* Interface address info. */
2201 	unsigned char		perm_addr[MAX_ADDR_LEN];
2202 	unsigned char		addr_assign_type;
2203 	unsigned char		addr_len;
2204 	unsigned char		upper_level;
2205 	unsigned char		lower_level;
2206 
2207 	unsigned short		neigh_priv_len;
2208 	unsigned short          dev_id;
2209 	unsigned short          dev_port;
2210 	int			irq;
2211 	u32			priv_len;
2212 
2213 	spinlock_t		addr_list_lock;
2214 
2215 	struct netdev_hw_addr_list	uc;
2216 	struct netdev_hw_addr_list	mc;
2217 	struct netdev_hw_addr_list	dev_addrs;
2218 
2219 #ifdef CONFIG_SYSFS
2220 	struct kset		*queues_kset;
2221 #endif
2222 #ifdef CONFIG_LOCKDEP
2223 	struct list_head	unlink_list;
2224 #endif
2225 	unsigned int		promiscuity;
2226 	unsigned int		allmulti;
2227 	bool			uc_promisc;
2228 #ifdef CONFIG_LOCKDEP
2229 	unsigned char		nested_level;
2230 #endif
2231 
2232 
2233 	/* Protocol-specific pointers */
2234 	struct in_device __rcu	*ip_ptr;
2235 	/** @fib_nh_head: nexthops associated with this netdev */
2236 	struct hlist_head	fib_nh_head;
2237 
2238 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2239 	struct vlan_info __rcu	*vlan_info;
2240 #endif
2241 #if IS_ENABLED(CONFIG_NET_DSA)
2242 	struct dsa_port		*dsa_ptr;
2243 #endif
2244 #if IS_ENABLED(CONFIG_TIPC)
2245 	struct tipc_bearer __rcu *tipc_ptr;
2246 #endif
2247 #if IS_ENABLED(CONFIG_ATALK)
2248 	void 			*atalk_ptr;
2249 #endif
2250 #if IS_ENABLED(CONFIG_AX25)
2251 	void			*ax25_ptr;
2252 #endif
2253 #if IS_ENABLED(CONFIG_CFG80211)
2254 	struct wireless_dev	*ieee80211_ptr;
2255 #endif
2256 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2257 	struct wpan_dev		*ieee802154_ptr;
2258 #endif
2259 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2260 	struct mpls_dev __rcu	*mpls_ptr;
2261 #endif
2262 #if IS_ENABLED(CONFIG_MCTP)
2263 	struct mctp_dev __rcu	*mctp_ptr;
2264 #endif
2265 
2266 /*
2267  * Cache lines mostly used on receive path (including eth_type_trans())
2268  */
2269 	/* Interface address info used in eth_type_trans() */
2270 	const unsigned char	*dev_addr;
2271 
2272 	unsigned int		num_rx_queues;
2273 #define GRO_LEGACY_MAX_SIZE	65536u
2274 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2275  * and shinfo->gso_segs is a 16bit field.
2276  */
2277 #define GRO_MAX_SIZE		(8 * 65535u)
2278 	unsigned int		xdp_zc_max_segs;
2279 	struct netdev_queue __rcu *ingress_queue;
2280 #ifdef CONFIG_NETFILTER_INGRESS
2281 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2282 #endif
2283 
2284 	unsigned char		broadcast[MAX_ADDR_LEN];
2285 #ifdef CONFIG_RFS_ACCEL
2286 	struct cpu_rmap		*rx_cpu_rmap;
2287 #endif
2288 	struct hlist_node	index_hlist;
2289 
2290 /*
2291  * Cache lines mostly used on transmit path
2292  */
2293 	unsigned int		num_tx_queues;
2294 	struct Qdisc __rcu	*qdisc;
2295 	unsigned int		tx_queue_len;
2296 	spinlock_t		tx_global_lock;
2297 
2298 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2299 
2300 #ifdef CONFIG_NET_SCHED
2301 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2302 #endif
2303 	/* These may be needed for future network-power-down code. */
2304 	struct timer_list	watchdog_timer;
2305 	int			watchdog_timeo;
2306 
2307 	u32                     proto_down_reason;
2308 
2309 	struct list_head	todo_list;
2310 
2311 #ifdef CONFIG_PCPU_DEV_REFCNT
2312 	int __percpu		*pcpu_refcnt;
2313 #else
2314 	refcount_t		dev_refcnt;
2315 #endif
2316 	struct ref_tracker_dir	refcnt_tracker;
2317 
2318 	struct list_head	link_watch_list;
2319 
2320 	u8 reg_state;
2321 
2322 	bool dismantle;
2323 
2324 	enum {
2325 		RTNL_LINK_INITIALIZED,
2326 		RTNL_LINK_INITIALIZING,
2327 	} rtnl_link_state:16;
2328 
2329 	bool needs_free_netdev;
2330 	void (*priv_destructor)(struct net_device *dev);
2331 
2332 	/* mid-layer private */
2333 	void				*ml_priv;
2334 	enum netdev_ml_priv_type	ml_priv_type;
2335 
2336 	enum netdev_stat_type		pcpu_stat_type:8;
2337 
2338 #if IS_ENABLED(CONFIG_GARP)
2339 	struct garp_port __rcu	*garp_port;
2340 #endif
2341 #if IS_ENABLED(CONFIG_MRP)
2342 	struct mrp_port __rcu	*mrp_port;
2343 #endif
2344 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2345 	struct dm_hw_stat_delta __rcu *dm_private;
2346 #endif
2347 	struct device		dev;
2348 	const struct attribute_group *sysfs_groups[4];
2349 	const struct attribute_group *sysfs_rx_queue_group;
2350 
2351 	const struct rtnl_link_ops *rtnl_link_ops;
2352 
2353 	const struct netdev_stat_ops *stat_ops;
2354 
2355 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2356 
2357 	/* for setting kernel sock attribute on TCP connection setup */
2358 #define GSO_MAX_SEGS		65535u
2359 #define GSO_LEGACY_MAX_SIZE	65536u
2360 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2361  * and shinfo->gso_segs is a 16bit field.
2362  */
2363 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2364 
2365 #define TSO_LEGACY_MAX_SIZE	65536
2366 #define TSO_MAX_SIZE		UINT_MAX
2367 	unsigned int		tso_max_size;
2368 #define TSO_MAX_SEGS		U16_MAX
2369 	u16			tso_max_segs;
2370 
2371 #ifdef CONFIG_DCB
2372 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2373 #endif
2374 	u8			prio_tc_map[TC_BITMASK + 1];
2375 
2376 #if IS_ENABLED(CONFIG_FCOE)
2377 	unsigned int		fcoe_ddp_xid;
2378 #endif
2379 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2380 	struct netprio_map __rcu *priomap;
2381 #endif
2382 	struct phy_link_topology	*link_topo;
2383 	struct phy_device	*phydev;
2384 	struct sfp_bus		*sfp_bus;
2385 	struct lock_class_key	*qdisc_tx_busylock;
2386 	bool			proto_down;
2387 	bool			threaded;
2388 
2389 	/* priv_flags_slow, ungrouped to save space */
2390 	unsigned long		see_all_hwtstamp_requests:1;
2391 	unsigned long		change_proto_down:1;
2392 	unsigned long		netns_local:1;
2393 	unsigned long		fcoe_mtu:1;
2394 
2395 	struct list_head	net_notifier_list;
2396 
2397 #if IS_ENABLED(CONFIG_MACSEC)
2398 	/* MACsec management functions */
2399 	const struct macsec_ops *macsec_ops;
2400 #endif
2401 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2402 	struct udp_tunnel_nic	*udp_tunnel_nic;
2403 
2404 	struct ethtool_netdev_state *ethtool;
2405 
2406 	/* protected by rtnl_lock */
2407 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2408 
2409 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2410 	netdevice_tracker	linkwatch_dev_tracker;
2411 	netdevice_tracker	watchdog_dev_tracker;
2412 	netdevice_tracker	dev_registered_tracker;
2413 	struct rtnl_hw_stats64	*offload_xstats_l3;
2414 
2415 	struct devlink_port	*devlink_port;
2416 
2417 #if IS_ENABLED(CONFIG_DPLL)
2418 	struct dpll_pin	__rcu	*dpll_pin;
2419 #endif
2420 #if IS_ENABLED(CONFIG_PAGE_POOL)
2421 	/** @page_pools: page pools created for this netdevice */
2422 	struct hlist_head	page_pools;
2423 #endif
2424 
2425 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2426 	struct dim_irq_moder	*irq_moder;
2427 
2428 	u64			max_pacing_offload_horizon;
2429 	struct napi_config	*napi_config;
2430 	unsigned long		gro_flush_timeout;
2431 	u32			napi_defer_hard_irqs;
2432 
2433 	/**
2434 	 * @lock: protects @net_shaper_hierarchy, feel free to use for other
2435 	 * netdev-scope protection. Ordering: take after rtnl_lock.
2436 	 */
2437 	struct mutex		lock;
2438 
2439 #if IS_ENABLED(CONFIG_NET_SHAPER)
2440 	/**
2441 	 * @net_shaper_hierarchy: data tracking the current shaper status
2442 	 *  see include/net/net_shapers.h
2443 	 */
2444 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2445 #endif
2446 	u8			priv[] ____cacheline_aligned
2447 				       __counted_by(priv_len);
2448 } ____cacheline_aligned;
2449 #define to_net_dev(d) container_of(d, struct net_device, dev)
2450 
2451 /*
2452  * Driver should use this to assign devlink port instance to a netdevice
2453  * before it registers the netdevice. Therefore devlink_port is static
2454  * during the netdev lifetime after it is registered.
2455  */
2456 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2457 ({								\
2458 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2459 	((dev)->devlink_port = (port));				\
2460 })
2461 
2462 static inline bool netif_elide_gro(const struct net_device *dev)
2463 {
2464 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2465 		return true;
2466 	return false;
2467 }
2468 
2469 #define	NETDEV_ALIGN		32
2470 
2471 static inline
2472 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2473 {
2474 	return dev->prio_tc_map[prio & TC_BITMASK];
2475 }
2476 
2477 static inline
2478 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2479 {
2480 	if (tc >= dev->num_tc)
2481 		return -EINVAL;
2482 
2483 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2484 	return 0;
2485 }
2486 
2487 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2488 void netdev_reset_tc(struct net_device *dev);
2489 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2490 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2491 
2492 static inline
2493 int netdev_get_num_tc(struct net_device *dev)
2494 {
2495 	return dev->num_tc;
2496 }
2497 
2498 static inline void net_prefetch(void *p)
2499 {
2500 	prefetch(p);
2501 #if L1_CACHE_BYTES < 128
2502 	prefetch((u8 *)p + L1_CACHE_BYTES);
2503 #endif
2504 }
2505 
2506 static inline void net_prefetchw(void *p)
2507 {
2508 	prefetchw(p);
2509 #if L1_CACHE_BYTES < 128
2510 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2511 #endif
2512 }
2513 
2514 void netdev_unbind_sb_channel(struct net_device *dev,
2515 			      struct net_device *sb_dev);
2516 int netdev_bind_sb_channel_queue(struct net_device *dev,
2517 				 struct net_device *sb_dev,
2518 				 u8 tc, u16 count, u16 offset);
2519 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2520 static inline int netdev_get_sb_channel(struct net_device *dev)
2521 {
2522 	return max_t(int, -dev->num_tc, 0);
2523 }
2524 
2525 static inline
2526 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2527 					 unsigned int index)
2528 {
2529 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2530 	return &dev->_tx[index];
2531 }
2532 
2533 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2534 						    const struct sk_buff *skb)
2535 {
2536 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2537 }
2538 
2539 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2540 					    void (*f)(struct net_device *,
2541 						      struct netdev_queue *,
2542 						      void *),
2543 					    void *arg)
2544 {
2545 	unsigned int i;
2546 
2547 	for (i = 0; i < dev->num_tx_queues; i++)
2548 		f(dev, &dev->_tx[i], arg);
2549 }
2550 
2551 #define netdev_lockdep_set_classes(dev)				\
2552 {								\
2553 	static struct lock_class_key qdisc_tx_busylock_key;	\
2554 	static struct lock_class_key qdisc_xmit_lock_key;	\
2555 	static struct lock_class_key dev_addr_list_lock_key;	\
2556 	unsigned int i;						\
2557 								\
2558 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2559 	lockdep_set_class(&(dev)->addr_list_lock,		\
2560 			  &dev_addr_list_lock_key);		\
2561 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2562 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2563 				  &qdisc_xmit_lock_key);	\
2564 }
2565 
2566 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2567 		     struct net_device *sb_dev);
2568 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2569 					 struct sk_buff *skb,
2570 					 struct net_device *sb_dev);
2571 
2572 /* returns the headroom that the master device needs to take in account
2573  * when forwarding to this dev
2574  */
2575 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2576 {
2577 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2578 }
2579 
2580 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2581 {
2582 	if (dev->netdev_ops->ndo_set_rx_headroom)
2583 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2584 }
2585 
2586 /* set the device rx headroom to the dev's default */
2587 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2588 {
2589 	netdev_set_rx_headroom(dev, -1);
2590 }
2591 
2592 static inline void *netdev_get_ml_priv(struct net_device *dev,
2593 				       enum netdev_ml_priv_type type)
2594 {
2595 	if (dev->ml_priv_type != type)
2596 		return NULL;
2597 
2598 	return dev->ml_priv;
2599 }
2600 
2601 static inline void netdev_set_ml_priv(struct net_device *dev,
2602 				      void *ml_priv,
2603 				      enum netdev_ml_priv_type type)
2604 {
2605 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2606 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2607 	     dev->ml_priv_type, type);
2608 	WARN(!dev->ml_priv_type && dev->ml_priv,
2609 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2610 
2611 	dev->ml_priv = ml_priv;
2612 	dev->ml_priv_type = type;
2613 }
2614 
2615 /*
2616  * Net namespace inlines
2617  */
2618 static inline
2619 struct net *dev_net(const struct net_device *dev)
2620 {
2621 	return read_pnet(&dev->nd_net);
2622 }
2623 
2624 static inline
2625 void dev_net_set(struct net_device *dev, struct net *net)
2626 {
2627 	write_pnet(&dev->nd_net, net);
2628 }
2629 
2630 /**
2631  *	netdev_priv - access network device private data
2632  *	@dev: network device
2633  *
2634  * Get network device private data
2635  */
2636 static inline void *netdev_priv(const struct net_device *dev)
2637 {
2638 	return (void *)dev->priv;
2639 }
2640 
2641 /* Set the sysfs physical device reference for the network logical device
2642  * if set prior to registration will cause a symlink during initialization.
2643  */
2644 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2645 
2646 /* Set the sysfs device type for the network logical device to allow
2647  * fine-grained identification of different network device types. For
2648  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2649  */
2650 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2651 
2652 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2653 			  enum netdev_queue_type type,
2654 			  struct napi_struct *napi);
2655 
2656 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2657 {
2658 	napi->irq = irq;
2659 }
2660 
2661 /* Default NAPI poll() weight
2662  * Device drivers are strongly advised to not use bigger value
2663  */
2664 #define NAPI_POLL_WEIGHT 64
2665 
2666 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2667 			   int (*poll)(struct napi_struct *, int), int weight);
2668 
2669 /**
2670  * netif_napi_add() - initialize a NAPI context
2671  * @dev:  network device
2672  * @napi: NAPI context
2673  * @poll: polling function
2674  *
2675  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2676  * *any* of the other NAPI-related functions.
2677  */
2678 static inline void
2679 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2680 	       int (*poll)(struct napi_struct *, int))
2681 {
2682 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2683 }
2684 
2685 static inline void
2686 netif_napi_add_tx_weight(struct net_device *dev,
2687 			 struct napi_struct *napi,
2688 			 int (*poll)(struct napi_struct *, int),
2689 			 int weight)
2690 {
2691 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2692 	netif_napi_add_weight(dev, napi, poll, weight);
2693 }
2694 
2695 /**
2696  * netif_napi_add_config - initialize a NAPI context with persistent config
2697  * @dev: network device
2698  * @napi: NAPI context
2699  * @poll: polling function
2700  * @index: the NAPI index
2701  */
2702 static inline void
2703 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2704 		      int (*poll)(struct napi_struct *, int), int index)
2705 {
2706 	napi->index = index;
2707 	napi->config = &dev->napi_config[index];
2708 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2709 }
2710 
2711 /**
2712  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2713  * @dev:  network device
2714  * @napi: NAPI context
2715  * @poll: polling function
2716  *
2717  * This variant of netif_napi_add() should be used from drivers using NAPI
2718  * to exclusively poll a TX queue.
2719  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2720  */
2721 static inline void netif_napi_add_tx(struct net_device *dev,
2722 				     struct napi_struct *napi,
2723 				     int (*poll)(struct napi_struct *, int))
2724 {
2725 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2726 }
2727 
2728 /**
2729  *  __netif_napi_del - remove a NAPI context
2730  *  @napi: NAPI context
2731  *
2732  * Warning: caller must observe RCU grace period before freeing memory
2733  * containing @napi. Drivers might want to call this helper to combine
2734  * all the needed RCU grace periods into a single one.
2735  */
2736 void __netif_napi_del(struct napi_struct *napi);
2737 
2738 /**
2739  *  netif_napi_del - remove a NAPI context
2740  *  @napi: NAPI context
2741  *
2742  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2743  */
2744 static inline void netif_napi_del(struct napi_struct *napi)
2745 {
2746 	__netif_napi_del(napi);
2747 	synchronize_net();
2748 }
2749 
2750 struct packet_type {
2751 	__be16			type;	/* This is really htons(ether_type). */
2752 	bool			ignore_outgoing;
2753 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2754 	netdevice_tracker	dev_tracker;
2755 	int			(*func) (struct sk_buff *,
2756 					 struct net_device *,
2757 					 struct packet_type *,
2758 					 struct net_device *);
2759 	void			(*list_func) (struct list_head *,
2760 					      struct packet_type *,
2761 					      struct net_device *);
2762 	bool			(*id_match)(struct packet_type *ptype,
2763 					    struct sock *sk);
2764 	struct net		*af_packet_net;
2765 	void			*af_packet_priv;
2766 	struct list_head	list;
2767 };
2768 
2769 struct offload_callbacks {
2770 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2771 						netdev_features_t features);
2772 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2773 						struct sk_buff *skb);
2774 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2775 };
2776 
2777 struct packet_offload {
2778 	__be16			 type;	/* This is really htons(ether_type). */
2779 	u16			 priority;
2780 	struct offload_callbacks callbacks;
2781 	struct list_head	 list;
2782 };
2783 
2784 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2785 struct pcpu_sw_netstats {
2786 	u64_stats_t		rx_packets;
2787 	u64_stats_t		rx_bytes;
2788 	u64_stats_t		tx_packets;
2789 	u64_stats_t		tx_bytes;
2790 	struct u64_stats_sync   syncp;
2791 } __aligned(4 * sizeof(u64));
2792 
2793 struct pcpu_dstats {
2794 	u64_stats_t		rx_packets;
2795 	u64_stats_t		rx_bytes;
2796 	u64_stats_t		rx_drops;
2797 	u64_stats_t		tx_packets;
2798 	u64_stats_t		tx_bytes;
2799 	u64_stats_t		tx_drops;
2800 	struct u64_stats_sync	syncp;
2801 } __aligned(8 * sizeof(u64));
2802 
2803 struct pcpu_lstats {
2804 	u64_stats_t packets;
2805 	u64_stats_t bytes;
2806 	struct u64_stats_sync syncp;
2807 } __aligned(2 * sizeof(u64));
2808 
2809 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2810 
2811 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2812 {
2813 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2814 
2815 	u64_stats_update_begin(&tstats->syncp);
2816 	u64_stats_add(&tstats->rx_bytes, len);
2817 	u64_stats_inc(&tstats->rx_packets);
2818 	u64_stats_update_end(&tstats->syncp);
2819 }
2820 
2821 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2822 					  unsigned int packets,
2823 					  unsigned int len)
2824 {
2825 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2826 
2827 	u64_stats_update_begin(&tstats->syncp);
2828 	u64_stats_add(&tstats->tx_bytes, len);
2829 	u64_stats_add(&tstats->tx_packets, packets);
2830 	u64_stats_update_end(&tstats->syncp);
2831 }
2832 
2833 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2834 {
2835 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2836 
2837 	u64_stats_update_begin(&lstats->syncp);
2838 	u64_stats_add(&lstats->bytes, len);
2839 	u64_stats_inc(&lstats->packets);
2840 	u64_stats_update_end(&lstats->syncp);
2841 }
2842 
2843 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2844 ({									\
2845 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2846 	if (pcpu_stats)	{						\
2847 		int __cpu;						\
2848 		for_each_possible_cpu(__cpu) {				\
2849 			typeof(type) *stat;				\
2850 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2851 			u64_stats_init(&stat->syncp);			\
2852 		}							\
2853 	}								\
2854 	pcpu_stats;							\
2855 })
2856 
2857 #define netdev_alloc_pcpu_stats(type)					\
2858 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2859 
2860 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2861 ({									\
2862 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2863 	if (pcpu_stats) {						\
2864 		int __cpu;						\
2865 		for_each_possible_cpu(__cpu) {				\
2866 			typeof(type) *stat;				\
2867 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2868 			u64_stats_init(&stat->syncp);			\
2869 		}							\
2870 	}								\
2871 	pcpu_stats;							\
2872 })
2873 
2874 enum netdev_lag_tx_type {
2875 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2876 	NETDEV_LAG_TX_TYPE_RANDOM,
2877 	NETDEV_LAG_TX_TYPE_BROADCAST,
2878 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2879 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2880 	NETDEV_LAG_TX_TYPE_HASH,
2881 };
2882 
2883 enum netdev_lag_hash {
2884 	NETDEV_LAG_HASH_NONE,
2885 	NETDEV_LAG_HASH_L2,
2886 	NETDEV_LAG_HASH_L34,
2887 	NETDEV_LAG_HASH_L23,
2888 	NETDEV_LAG_HASH_E23,
2889 	NETDEV_LAG_HASH_E34,
2890 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2891 	NETDEV_LAG_HASH_UNKNOWN,
2892 };
2893 
2894 struct netdev_lag_upper_info {
2895 	enum netdev_lag_tx_type tx_type;
2896 	enum netdev_lag_hash hash_type;
2897 };
2898 
2899 struct netdev_lag_lower_state_info {
2900 	u8 link_up : 1,
2901 	   tx_enabled : 1;
2902 };
2903 
2904 #include <linux/notifier.h>
2905 
2906 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2907  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2908  * adding new types.
2909  */
2910 enum netdev_cmd {
2911 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2912 	NETDEV_DOWN,
2913 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2914 				   detected a hardware crash and restarted
2915 				   - we can use this eg to kick tcp sessions
2916 				   once done */
2917 	NETDEV_CHANGE,		/* Notify device state change */
2918 	NETDEV_REGISTER,
2919 	NETDEV_UNREGISTER,
2920 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2921 	NETDEV_CHANGEADDR,	/* notify after the address change */
2922 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2923 	NETDEV_GOING_DOWN,
2924 	NETDEV_CHANGENAME,
2925 	NETDEV_FEAT_CHANGE,
2926 	NETDEV_BONDING_FAILOVER,
2927 	NETDEV_PRE_UP,
2928 	NETDEV_PRE_TYPE_CHANGE,
2929 	NETDEV_POST_TYPE_CHANGE,
2930 	NETDEV_POST_INIT,
2931 	NETDEV_PRE_UNINIT,
2932 	NETDEV_RELEASE,
2933 	NETDEV_NOTIFY_PEERS,
2934 	NETDEV_JOIN,
2935 	NETDEV_CHANGEUPPER,
2936 	NETDEV_RESEND_IGMP,
2937 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2938 	NETDEV_CHANGEINFODATA,
2939 	NETDEV_BONDING_INFO,
2940 	NETDEV_PRECHANGEUPPER,
2941 	NETDEV_CHANGELOWERSTATE,
2942 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2943 	NETDEV_UDP_TUNNEL_DROP_INFO,
2944 	NETDEV_CHANGE_TX_QUEUE_LEN,
2945 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2946 	NETDEV_CVLAN_FILTER_DROP_INFO,
2947 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2948 	NETDEV_SVLAN_FILTER_DROP_INFO,
2949 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2950 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2951 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2952 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2953 	NETDEV_XDP_FEAT_CHANGE,
2954 };
2955 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2956 
2957 int register_netdevice_notifier(struct notifier_block *nb);
2958 int unregister_netdevice_notifier(struct notifier_block *nb);
2959 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2960 int unregister_netdevice_notifier_net(struct net *net,
2961 				      struct notifier_block *nb);
2962 int register_netdevice_notifier_dev_net(struct net_device *dev,
2963 					struct notifier_block *nb,
2964 					struct netdev_net_notifier *nn);
2965 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2966 					  struct notifier_block *nb,
2967 					  struct netdev_net_notifier *nn);
2968 
2969 struct netdev_notifier_info {
2970 	struct net_device	*dev;
2971 	struct netlink_ext_ack	*extack;
2972 };
2973 
2974 struct netdev_notifier_info_ext {
2975 	struct netdev_notifier_info info; /* must be first */
2976 	union {
2977 		u32 mtu;
2978 	} ext;
2979 };
2980 
2981 struct netdev_notifier_change_info {
2982 	struct netdev_notifier_info info; /* must be first */
2983 	unsigned int flags_changed;
2984 };
2985 
2986 struct netdev_notifier_changeupper_info {
2987 	struct netdev_notifier_info info; /* must be first */
2988 	struct net_device *upper_dev; /* new upper dev */
2989 	bool master; /* is upper dev master */
2990 	bool linking; /* is the notification for link or unlink */
2991 	void *upper_info; /* upper dev info */
2992 };
2993 
2994 struct netdev_notifier_changelowerstate_info {
2995 	struct netdev_notifier_info info; /* must be first */
2996 	void *lower_state_info; /* is lower dev state */
2997 };
2998 
2999 struct netdev_notifier_pre_changeaddr_info {
3000 	struct netdev_notifier_info info; /* must be first */
3001 	const unsigned char *dev_addr;
3002 };
3003 
3004 enum netdev_offload_xstats_type {
3005 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3006 };
3007 
3008 struct netdev_notifier_offload_xstats_info {
3009 	struct netdev_notifier_info info; /* must be first */
3010 	enum netdev_offload_xstats_type type;
3011 
3012 	union {
3013 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3014 		struct netdev_notifier_offload_xstats_rd *report_delta;
3015 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3016 		struct netdev_notifier_offload_xstats_ru *report_used;
3017 	};
3018 };
3019 
3020 int netdev_offload_xstats_enable(struct net_device *dev,
3021 				 enum netdev_offload_xstats_type type,
3022 				 struct netlink_ext_ack *extack);
3023 int netdev_offload_xstats_disable(struct net_device *dev,
3024 				  enum netdev_offload_xstats_type type);
3025 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3026 				   enum netdev_offload_xstats_type type);
3027 int netdev_offload_xstats_get(struct net_device *dev,
3028 			      enum netdev_offload_xstats_type type,
3029 			      struct rtnl_hw_stats64 *stats, bool *used,
3030 			      struct netlink_ext_ack *extack);
3031 void
3032 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3033 				   const struct rtnl_hw_stats64 *stats);
3034 void
3035 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3036 void netdev_offload_xstats_push_delta(struct net_device *dev,
3037 				      enum netdev_offload_xstats_type type,
3038 				      const struct rtnl_hw_stats64 *stats);
3039 
3040 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3041 					     struct net_device *dev)
3042 {
3043 	info->dev = dev;
3044 	info->extack = NULL;
3045 }
3046 
3047 static inline struct net_device *
3048 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3049 {
3050 	return info->dev;
3051 }
3052 
3053 static inline struct netlink_ext_ack *
3054 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3055 {
3056 	return info->extack;
3057 }
3058 
3059 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3060 int call_netdevice_notifiers_info(unsigned long val,
3061 				  struct netdev_notifier_info *info);
3062 
3063 #define for_each_netdev(net, d)		\
3064 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3065 #define for_each_netdev_reverse(net, d)	\
3066 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3067 #define for_each_netdev_rcu(net, d)		\
3068 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3069 #define for_each_netdev_safe(net, d, n)	\
3070 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3071 #define for_each_netdev_continue(net, d)		\
3072 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3073 #define for_each_netdev_continue_reverse(net, d)		\
3074 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3075 						     dev_list)
3076 #define for_each_netdev_continue_rcu(net, d)		\
3077 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3078 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3079 		for_each_netdev_rcu(&init_net, slave)	\
3080 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3081 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3082 
3083 #define for_each_netdev_dump(net, d, ifindex)				\
3084 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3085 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3086 
3087 static inline struct net_device *next_net_device(struct net_device *dev)
3088 {
3089 	struct list_head *lh;
3090 	struct net *net;
3091 
3092 	net = dev_net(dev);
3093 	lh = dev->dev_list.next;
3094 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3095 }
3096 
3097 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3098 {
3099 	struct list_head *lh;
3100 	struct net *net;
3101 
3102 	net = dev_net(dev);
3103 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3104 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3105 }
3106 
3107 static inline struct net_device *first_net_device(struct net *net)
3108 {
3109 	return list_empty(&net->dev_base_head) ? NULL :
3110 		net_device_entry(net->dev_base_head.next);
3111 }
3112 
3113 static inline struct net_device *first_net_device_rcu(struct net *net)
3114 {
3115 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3116 
3117 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3118 }
3119 
3120 int netdev_boot_setup_check(struct net_device *dev);
3121 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3122 				       const char *hwaddr);
3123 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3124 void dev_add_pack(struct packet_type *pt);
3125 void dev_remove_pack(struct packet_type *pt);
3126 void __dev_remove_pack(struct packet_type *pt);
3127 void dev_add_offload(struct packet_offload *po);
3128 void dev_remove_offload(struct packet_offload *po);
3129 
3130 int dev_get_iflink(const struct net_device *dev);
3131 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3132 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3133 			  struct net_device_path_stack *stack);
3134 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3135 				      unsigned short mask);
3136 struct net_device *dev_get_by_name(struct net *net, const char *name);
3137 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3138 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3139 bool netdev_name_in_use(struct net *net, const char *name);
3140 int dev_alloc_name(struct net_device *dev, const char *name);
3141 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3142 void dev_close(struct net_device *dev);
3143 void dev_close_many(struct list_head *head, bool unlink);
3144 void dev_disable_lro(struct net_device *dev);
3145 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3146 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3147 		     struct net_device *sb_dev);
3148 
3149 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3150 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3151 
3152 static inline int dev_queue_xmit(struct sk_buff *skb)
3153 {
3154 	return __dev_queue_xmit(skb, NULL);
3155 }
3156 
3157 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3158 				       struct net_device *sb_dev)
3159 {
3160 	return __dev_queue_xmit(skb, sb_dev);
3161 }
3162 
3163 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3164 {
3165 	int ret;
3166 
3167 	ret = __dev_direct_xmit(skb, queue_id);
3168 	if (!dev_xmit_complete(ret))
3169 		kfree_skb(skb);
3170 	return ret;
3171 }
3172 
3173 int register_netdevice(struct net_device *dev);
3174 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3175 void unregister_netdevice_many(struct list_head *head);
3176 static inline void unregister_netdevice(struct net_device *dev)
3177 {
3178 	unregister_netdevice_queue(dev, NULL);
3179 }
3180 
3181 int netdev_refcnt_read(const struct net_device *dev);
3182 void free_netdev(struct net_device *dev);
3183 void init_dummy_netdev(struct net_device *dev);
3184 
3185 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3186 					 struct sk_buff *skb,
3187 					 bool all_slaves);
3188 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3189 					    struct sock *sk);
3190 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3191 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3192 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3193 				       netdevice_tracker *tracker, gfp_t gfp);
3194 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3195 				      netdevice_tracker *tracker, gfp_t gfp);
3196 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3197 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3198 void netdev_copy_name(struct net_device *dev, char *name);
3199 
3200 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3201 				  unsigned short type,
3202 				  const void *daddr, const void *saddr,
3203 				  unsigned int len)
3204 {
3205 	if (!dev->header_ops || !dev->header_ops->create)
3206 		return 0;
3207 
3208 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3209 }
3210 
3211 static inline int dev_parse_header(const struct sk_buff *skb,
3212 				   unsigned char *haddr)
3213 {
3214 	const struct net_device *dev = skb->dev;
3215 
3216 	if (!dev->header_ops || !dev->header_ops->parse)
3217 		return 0;
3218 	return dev->header_ops->parse(skb, haddr);
3219 }
3220 
3221 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3222 {
3223 	const struct net_device *dev = skb->dev;
3224 
3225 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3226 		return 0;
3227 	return dev->header_ops->parse_protocol(skb);
3228 }
3229 
3230 /* ll_header must have at least hard_header_len allocated */
3231 static inline bool dev_validate_header(const struct net_device *dev,
3232 				       char *ll_header, int len)
3233 {
3234 	if (likely(len >= dev->hard_header_len))
3235 		return true;
3236 	if (len < dev->min_header_len)
3237 		return false;
3238 
3239 	if (capable(CAP_SYS_RAWIO)) {
3240 		memset(ll_header + len, 0, dev->hard_header_len - len);
3241 		return true;
3242 	}
3243 
3244 	if (dev->header_ops && dev->header_ops->validate)
3245 		return dev->header_ops->validate(ll_header, len);
3246 
3247 	return false;
3248 }
3249 
3250 static inline bool dev_has_header(const struct net_device *dev)
3251 {
3252 	return dev->header_ops && dev->header_ops->create;
3253 }
3254 
3255 /*
3256  * Incoming packets are placed on per-CPU queues
3257  */
3258 struct softnet_data {
3259 	struct list_head	poll_list;
3260 	struct sk_buff_head	process_queue;
3261 	local_lock_t		process_queue_bh_lock;
3262 
3263 	/* stats */
3264 	unsigned int		processed;
3265 	unsigned int		time_squeeze;
3266 #ifdef CONFIG_RPS
3267 	struct softnet_data	*rps_ipi_list;
3268 #endif
3269 
3270 	unsigned int		received_rps;
3271 	bool			in_net_rx_action;
3272 	bool			in_napi_threaded_poll;
3273 
3274 #ifdef CONFIG_NET_FLOW_LIMIT
3275 	struct sd_flow_limit __rcu *flow_limit;
3276 #endif
3277 	struct Qdisc		*output_queue;
3278 	struct Qdisc		**output_queue_tailp;
3279 	struct sk_buff		*completion_queue;
3280 #ifdef CONFIG_XFRM_OFFLOAD
3281 	struct sk_buff_head	xfrm_backlog;
3282 #endif
3283 	/* written and read only by owning cpu: */
3284 	struct netdev_xmit xmit;
3285 #ifdef CONFIG_RPS
3286 	/* input_queue_head should be written by cpu owning this struct,
3287 	 * and only read by other cpus. Worth using a cache line.
3288 	 */
3289 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3290 
3291 	/* Elements below can be accessed between CPUs for RPS/RFS */
3292 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3293 	struct softnet_data	*rps_ipi_next;
3294 	unsigned int		cpu;
3295 	unsigned int		input_queue_tail;
3296 #endif
3297 	struct sk_buff_head	input_pkt_queue;
3298 	struct napi_struct	backlog;
3299 
3300 	atomic_t		dropped ____cacheline_aligned_in_smp;
3301 
3302 	/* Another possibly contended cache line */
3303 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3304 	int			defer_count;
3305 	int			defer_ipi_scheduled;
3306 	struct sk_buff		*defer_list;
3307 	call_single_data_t	defer_csd;
3308 };
3309 
3310 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3311 
3312 #ifndef CONFIG_PREEMPT_RT
3313 static inline int dev_recursion_level(void)
3314 {
3315 	return this_cpu_read(softnet_data.xmit.recursion);
3316 }
3317 #else
3318 static inline int dev_recursion_level(void)
3319 {
3320 	return current->net_xmit.recursion;
3321 }
3322 
3323 #endif
3324 
3325 void __netif_schedule(struct Qdisc *q);
3326 void netif_schedule_queue(struct netdev_queue *txq);
3327 
3328 static inline void netif_tx_schedule_all(struct net_device *dev)
3329 {
3330 	unsigned int i;
3331 
3332 	for (i = 0; i < dev->num_tx_queues; i++)
3333 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3334 }
3335 
3336 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3337 {
3338 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3339 }
3340 
3341 /**
3342  *	netif_start_queue - allow transmit
3343  *	@dev: network device
3344  *
3345  *	Allow upper layers to call the device hard_start_xmit routine.
3346  */
3347 static inline void netif_start_queue(struct net_device *dev)
3348 {
3349 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3350 }
3351 
3352 static inline void netif_tx_start_all_queues(struct net_device *dev)
3353 {
3354 	unsigned int i;
3355 
3356 	for (i = 0; i < dev->num_tx_queues; i++) {
3357 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3358 		netif_tx_start_queue(txq);
3359 	}
3360 }
3361 
3362 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3363 
3364 /**
3365  *	netif_wake_queue - restart transmit
3366  *	@dev: network device
3367  *
3368  *	Allow upper layers to call the device hard_start_xmit routine.
3369  *	Used for flow control when transmit resources are available.
3370  */
3371 static inline void netif_wake_queue(struct net_device *dev)
3372 {
3373 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3374 }
3375 
3376 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3377 {
3378 	unsigned int i;
3379 
3380 	for (i = 0; i < dev->num_tx_queues; i++) {
3381 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3382 		netif_tx_wake_queue(txq);
3383 	}
3384 }
3385 
3386 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3387 {
3388 	/* Must be an atomic op see netif_txq_try_stop() */
3389 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3390 }
3391 
3392 /**
3393  *	netif_stop_queue - stop transmitted packets
3394  *	@dev: network device
3395  *
3396  *	Stop upper layers calling the device hard_start_xmit routine.
3397  *	Used for flow control when transmit resources are unavailable.
3398  */
3399 static inline void netif_stop_queue(struct net_device *dev)
3400 {
3401 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3402 }
3403 
3404 void netif_tx_stop_all_queues(struct net_device *dev);
3405 
3406 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3407 {
3408 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3409 }
3410 
3411 /**
3412  *	netif_queue_stopped - test if transmit queue is flowblocked
3413  *	@dev: network device
3414  *
3415  *	Test if transmit queue on device is currently unable to send.
3416  */
3417 static inline bool netif_queue_stopped(const struct net_device *dev)
3418 {
3419 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3420 }
3421 
3422 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3423 {
3424 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3425 }
3426 
3427 static inline bool
3428 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3429 {
3430 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3431 }
3432 
3433 static inline bool
3434 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3435 {
3436 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3437 }
3438 
3439 /**
3440  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3441  *	@dev_queue: pointer to transmit queue
3442  *	@min_limit: dql minimum limit
3443  *
3444  * Forces xmit_more() to return true until the minimum threshold
3445  * defined by @min_limit is reached (or until the tx queue is
3446  * empty). Warning: to be use with care, misuse will impact the
3447  * latency.
3448  */
3449 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3450 						  unsigned int min_limit)
3451 {
3452 #ifdef CONFIG_BQL
3453 	dev_queue->dql.min_limit = min_limit;
3454 #endif
3455 }
3456 
3457 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3458 {
3459 #ifdef CONFIG_BQL
3460 	/* Non-BQL migrated drivers will return 0, too. */
3461 	return dql_avail(&txq->dql);
3462 #else
3463 	return 0;
3464 #endif
3465 }
3466 
3467 /**
3468  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3469  *	@dev_queue: pointer to transmit queue
3470  *
3471  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3472  * to give appropriate hint to the CPU.
3473  */
3474 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3475 {
3476 #ifdef CONFIG_BQL
3477 	prefetchw(&dev_queue->dql.num_queued);
3478 #endif
3479 }
3480 
3481 /**
3482  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3483  *	@dev_queue: pointer to transmit queue
3484  *
3485  * BQL enabled drivers might use this helper in their TX completion path,
3486  * to give appropriate hint to the CPU.
3487  */
3488 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3489 {
3490 #ifdef CONFIG_BQL
3491 	prefetchw(&dev_queue->dql.limit);
3492 #endif
3493 }
3494 
3495 /**
3496  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3497  *	@dev_queue: network device queue
3498  *	@bytes: number of bytes queued to the device queue
3499  *
3500  *	Report the number of bytes queued for sending/completion to the network
3501  *	device hardware queue. @bytes should be a good approximation and should
3502  *	exactly match netdev_completed_queue() @bytes.
3503  *	This is typically called once per packet, from ndo_start_xmit().
3504  */
3505 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3506 					unsigned int bytes)
3507 {
3508 #ifdef CONFIG_BQL
3509 	dql_queued(&dev_queue->dql, bytes);
3510 
3511 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3512 		return;
3513 
3514 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3515 
3516 	/*
3517 	 * The XOFF flag must be set before checking the dql_avail below,
3518 	 * because in netdev_tx_completed_queue we update the dql_completed
3519 	 * before checking the XOFF flag.
3520 	 */
3521 	smp_mb();
3522 
3523 	/* check again in case another CPU has just made room avail */
3524 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3525 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3526 #endif
3527 }
3528 
3529 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3530  * that they should not test BQL status themselves.
3531  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3532  * skb of a batch.
3533  * Returns true if the doorbell must be used to kick the NIC.
3534  */
3535 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3536 					  unsigned int bytes,
3537 					  bool xmit_more)
3538 {
3539 	if (xmit_more) {
3540 #ifdef CONFIG_BQL
3541 		dql_queued(&dev_queue->dql, bytes);
3542 #endif
3543 		return netif_tx_queue_stopped(dev_queue);
3544 	}
3545 	netdev_tx_sent_queue(dev_queue, bytes);
3546 	return true;
3547 }
3548 
3549 /**
3550  *	netdev_sent_queue - report the number of bytes queued to hardware
3551  *	@dev: network device
3552  *	@bytes: number of bytes queued to the hardware device queue
3553  *
3554  *	Report the number of bytes queued for sending/completion to the network
3555  *	device hardware queue#0. @bytes should be a good approximation and should
3556  *	exactly match netdev_completed_queue() @bytes.
3557  *	This is typically called once per packet, from ndo_start_xmit().
3558  */
3559 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3560 {
3561 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3562 }
3563 
3564 static inline bool __netdev_sent_queue(struct net_device *dev,
3565 				       unsigned int bytes,
3566 				       bool xmit_more)
3567 {
3568 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3569 				      xmit_more);
3570 }
3571 
3572 /**
3573  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3574  *	@dev_queue: network device queue
3575  *	@pkts: number of packets (currently ignored)
3576  *	@bytes: number of bytes dequeued from the device queue
3577  *
3578  *	Must be called at most once per TX completion round (and not per
3579  *	individual packet), so that BQL can adjust its limits appropriately.
3580  */
3581 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3582 					     unsigned int pkts, unsigned int bytes)
3583 {
3584 #ifdef CONFIG_BQL
3585 	if (unlikely(!bytes))
3586 		return;
3587 
3588 	dql_completed(&dev_queue->dql, bytes);
3589 
3590 	/*
3591 	 * Without the memory barrier there is a small possibility that
3592 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3593 	 * be stopped forever
3594 	 */
3595 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3596 
3597 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3598 		return;
3599 
3600 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3601 		netif_schedule_queue(dev_queue);
3602 #endif
3603 }
3604 
3605 /**
3606  * 	netdev_completed_queue - report bytes and packets completed by device
3607  * 	@dev: network device
3608  * 	@pkts: actual number of packets sent over the medium
3609  * 	@bytes: actual number of bytes sent over the medium
3610  *
3611  * 	Report the number of bytes and packets transmitted by the network device
3612  * 	hardware queue over the physical medium, @bytes must exactly match the
3613  * 	@bytes amount passed to netdev_sent_queue()
3614  */
3615 static inline void netdev_completed_queue(struct net_device *dev,
3616 					  unsigned int pkts, unsigned int bytes)
3617 {
3618 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3619 }
3620 
3621 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3622 {
3623 #ifdef CONFIG_BQL
3624 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3625 	dql_reset(&q->dql);
3626 #endif
3627 }
3628 
3629 /**
3630  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3631  * @dev: network device
3632  * @qid: stack index of the queue to reset
3633  */
3634 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3635 					    u32 qid)
3636 {
3637 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3638 }
3639 
3640 /**
3641  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3642  * 	@dev_queue: network device
3643  *
3644  * 	Reset the bytes and packet count of a network device and clear the
3645  * 	software flow control OFF bit for this network device
3646  */
3647 static inline void netdev_reset_queue(struct net_device *dev_queue)
3648 {
3649 	netdev_tx_reset_subqueue(dev_queue, 0);
3650 }
3651 
3652 /**
3653  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3654  * 	@dev: network device
3655  * 	@queue_index: given tx queue index
3656  *
3657  * 	Returns 0 if given tx queue index >= number of device tx queues,
3658  * 	otherwise returns the originally passed tx queue index.
3659  */
3660 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3661 {
3662 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3663 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3664 				     dev->name, queue_index,
3665 				     dev->real_num_tx_queues);
3666 		return 0;
3667 	}
3668 
3669 	return queue_index;
3670 }
3671 
3672 /**
3673  *	netif_running - test if up
3674  *	@dev: network device
3675  *
3676  *	Test if the device has been brought up.
3677  */
3678 static inline bool netif_running(const struct net_device *dev)
3679 {
3680 	return test_bit(__LINK_STATE_START, &dev->state);
3681 }
3682 
3683 /*
3684  * Routines to manage the subqueues on a device.  We only need start,
3685  * stop, and a check if it's stopped.  All other device management is
3686  * done at the overall netdevice level.
3687  * Also test the device if we're multiqueue.
3688  */
3689 
3690 /**
3691  *	netif_start_subqueue - allow sending packets on subqueue
3692  *	@dev: network device
3693  *	@queue_index: sub queue index
3694  *
3695  * Start individual transmit queue of a device with multiple transmit queues.
3696  */
3697 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3698 {
3699 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3700 
3701 	netif_tx_start_queue(txq);
3702 }
3703 
3704 /**
3705  *	netif_stop_subqueue - stop sending packets on subqueue
3706  *	@dev: network device
3707  *	@queue_index: sub queue index
3708  *
3709  * Stop individual transmit queue of a device with multiple transmit queues.
3710  */
3711 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3712 {
3713 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3714 	netif_tx_stop_queue(txq);
3715 }
3716 
3717 /**
3718  *	__netif_subqueue_stopped - test status of subqueue
3719  *	@dev: network device
3720  *	@queue_index: sub queue index
3721  *
3722  * Check individual transmit queue of a device with multiple transmit queues.
3723  */
3724 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3725 					    u16 queue_index)
3726 {
3727 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3728 
3729 	return netif_tx_queue_stopped(txq);
3730 }
3731 
3732 /**
3733  *	netif_subqueue_stopped - test status of subqueue
3734  *	@dev: network device
3735  *	@skb: sub queue buffer pointer
3736  *
3737  * Check individual transmit queue of a device with multiple transmit queues.
3738  */
3739 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3740 					  struct sk_buff *skb)
3741 {
3742 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3743 }
3744 
3745 /**
3746  *	netif_wake_subqueue - allow sending packets on subqueue
3747  *	@dev: network device
3748  *	@queue_index: sub queue index
3749  *
3750  * Resume individual transmit queue of a device with multiple transmit queues.
3751  */
3752 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3753 {
3754 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3755 
3756 	netif_tx_wake_queue(txq);
3757 }
3758 
3759 #ifdef CONFIG_XPS
3760 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3761 			u16 index);
3762 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3763 			  u16 index, enum xps_map_type type);
3764 
3765 /**
3766  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3767  *	@j: CPU/Rx queue index
3768  *	@mask: bitmask of all cpus/rx queues
3769  *	@nr_bits: number of bits in the bitmask
3770  *
3771  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3772  */
3773 static inline bool netif_attr_test_mask(unsigned long j,
3774 					const unsigned long *mask,
3775 					unsigned int nr_bits)
3776 {
3777 	cpu_max_bits_warn(j, nr_bits);
3778 	return test_bit(j, mask);
3779 }
3780 
3781 /**
3782  *	netif_attr_test_online - Test for online CPU/Rx queue
3783  *	@j: CPU/Rx queue index
3784  *	@online_mask: bitmask for CPUs/Rx queues that are online
3785  *	@nr_bits: number of bits in the bitmask
3786  *
3787  * Returns true if a CPU/Rx queue is online.
3788  */
3789 static inline bool netif_attr_test_online(unsigned long j,
3790 					  const unsigned long *online_mask,
3791 					  unsigned int nr_bits)
3792 {
3793 	cpu_max_bits_warn(j, nr_bits);
3794 
3795 	if (online_mask)
3796 		return test_bit(j, online_mask);
3797 
3798 	return (j < nr_bits);
3799 }
3800 
3801 /**
3802  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3803  *	@n: CPU/Rx queue index
3804  *	@srcp: the cpumask/Rx queue mask pointer
3805  *	@nr_bits: number of bits in the bitmask
3806  *
3807  * Returns >= nr_bits if no further CPUs/Rx queues set.
3808  */
3809 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3810 					       unsigned int nr_bits)
3811 {
3812 	/* -1 is a legal arg here. */
3813 	if (n != -1)
3814 		cpu_max_bits_warn(n, nr_bits);
3815 
3816 	if (srcp)
3817 		return find_next_bit(srcp, nr_bits, n + 1);
3818 
3819 	return n + 1;
3820 }
3821 
3822 /**
3823  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3824  *	@n: CPU/Rx queue index
3825  *	@src1p: the first CPUs/Rx queues mask pointer
3826  *	@src2p: the second CPUs/Rx queues mask pointer
3827  *	@nr_bits: number of bits in the bitmask
3828  *
3829  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3830  */
3831 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3832 					  const unsigned long *src2p,
3833 					  unsigned int nr_bits)
3834 {
3835 	/* -1 is a legal arg here. */
3836 	if (n != -1)
3837 		cpu_max_bits_warn(n, nr_bits);
3838 
3839 	if (src1p && src2p)
3840 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3841 	else if (src1p)
3842 		return find_next_bit(src1p, nr_bits, n + 1);
3843 	else if (src2p)
3844 		return find_next_bit(src2p, nr_bits, n + 1);
3845 
3846 	return n + 1;
3847 }
3848 #else
3849 static inline int netif_set_xps_queue(struct net_device *dev,
3850 				      const struct cpumask *mask,
3851 				      u16 index)
3852 {
3853 	return 0;
3854 }
3855 
3856 static inline int __netif_set_xps_queue(struct net_device *dev,
3857 					const unsigned long *mask,
3858 					u16 index, enum xps_map_type type)
3859 {
3860 	return 0;
3861 }
3862 #endif
3863 
3864 /**
3865  *	netif_is_multiqueue - test if device has multiple transmit queues
3866  *	@dev: network device
3867  *
3868  * Check if device has multiple transmit queues
3869  */
3870 static inline bool netif_is_multiqueue(const struct net_device *dev)
3871 {
3872 	return dev->num_tx_queues > 1;
3873 }
3874 
3875 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3876 
3877 #ifdef CONFIG_SYSFS
3878 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3879 #else
3880 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3881 						unsigned int rxqs)
3882 {
3883 	dev->real_num_rx_queues = rxqs;
3884 	return 0;
3885 }
3886 #endif
3887 int netif_set_real_num_queues(struct net_device *dev,
3888 			      unsigned int txq, unsigned int rxq);
3889 
3890 int netif_get_num_default_rss_queues(void);
3891 
3892 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3893 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3894 
3895 /*
3896  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3897  * interrupt context or with hardware interrupts being disabled.
3898  * (in_hardirq() || irqs_disabled())
3899  *
3900  * We provide four helpers that can be used in following contexts :
3901  *
3902  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3903  *  replacing kfree_skb(skb)
3904  *
3905  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3906  *  Typically used in place of consume_skb(skb) in TX completion path
3907  *
3908  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3909  *  replacing kfree_skb(skb)
3910  *
3911  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3912  *  and consumed a packet. Used in place of consume_skb(skb)
3913  */
3914 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3915 {
3916 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3917 }
3918 
3919 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3920 {
3921 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3922 }
3923 
3924 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3925 {
3926 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3927 }
3928 
3929 static inline void dev_consume_skb_any(struct sk_buff *skb)
3930 {
3931 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3932 }
3933 
3934 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3935 			     struct bpf_prog *xdp_prog);
3936 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3937 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3938 int netif_rx(struct sk_buff *skb);
3939 int __netif_rx(struct sk_buff *skb);
3940 
3941 int netif_receive_skb(struct sk_buff *skb);
3942 int netif_receive_skb_core(struct sk_buff *skb);
3943 void netif_receive_skb_list_internal(struct list_head *head);
3944 void netif_receive_skb_list(struct list_head *head);
3945 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3946 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3947 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3948 void napi_get_frags_check(struct napi_struct *napi);
3949 gro_result_t napi_gro_frags(struct napi_struct *napi);
3950 
3951 static inline void napi_free_frags(struct napi_struct *napi)
3952 {
3953 	kfree_skb(napi->skb);
3954 	napi->skb = NULL;
3955 }
3956 
3957 bool netdev_is_rx_handler_busy(struct net_device *dev);
3958 int netdev_rx_handler_register(struct net_device *dev,
3959 			       rx_handler_func_t *rx_handler,
3960 			       void *rx_handler_data);
3961 void netdev_rx_handler_unregister(struct net_device *dev);
3962 
3963 bool dev_valid_name(const char *name);
3964 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3965 {
3966 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3967 }
3968 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3969 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3970 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3971 		void __user *data, bool *need_copyout);
3972 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3973 int generic_hwtstamp_get_lower(struct net_device *dev,
3974 			       struct kernel_hwtstamp_config *kernel_cfg);
3975 int generic_hwtstamp_set_lower(struct net_device *dev,
3976 			       struct kernel_hwtstamp_config *kernel_cfg,
3977 			       struct netlink_ext_ack *extack);
3978 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3979 unsigned int dev_get_flags(const struct net_device *);
3980 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3981 		       struct netlink_ext_ack *extack);
3982 int dev_change_flags(struct net_device *dev, unsigned int flags,
3983 		     struct netlink_ext_ack *extack);
3984 int dev_set_alias(struct net_device *, const char *, size_t);
3985 int dev_get_alias(const struct net_device *, char *, size_t);
3986 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3987 			       const char *pat, int new_ifindex);
3988 static inline
3989 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3990 			     const char *pat)
3991 {
3992 	return __dev_change_net_namespace(dev, net, pat, 0);
3993 }
3994 int __dev_set_mtu(struct net_device *, int);
3995 int dev_set_mtu(struct net_device *, int);
3996 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3997 			      struct netlink_ext_ack *extack);
3998 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3999 			struct netlink_ext_ack *extack);
4000 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4001 			     struct netlink_ext_ack *extack);
4002 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4003 int dev_get_port_parent_id(struct net_device *dev,
4004 			   struct netdev_phys_item_id *ppid, bool recurse);
4005 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4006 
4007 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4008 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4009 				    struct netdev_queue *txq, int *ret);
4010 
4011 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4012 u8 dev_xdp_prog_count(struct net_device *dev);
4013 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4014 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4015 
4016 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4017 
4018 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4019 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4020 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4021 bool is_skb_forwardable(const struct net_device *dev,
4022 			const struct sk_buff *skb);
4023 
4024 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4025 						 const struct sk_buff *skb,
4026 						 const bool check_mtu)
4027 {
4028 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4029 	unsigned int len;
4030 
4031 	if (!(dev->flags & IFF_UP))
4032 		return false;
4033 
4034 	if (!check_mtu)
4035 		return true;
4036 
4037 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4038 	if (skb->len <= len)
4039 		return true;
4040 
4041 	/* if TSO is enabled, we don't care about the length as the packet
4042 	 * could be forwarded without being segmented before
4043 	 */
4044 	if (skb_is_gso(skb))
4045 		return true;
4046 
4047 	return false;
4048 }
4049 
4050 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4051 
4052 #define DEV_CORE_STATS_INC(FIELD)						\
4053 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4054 {										\
4055 	netdev_core_stats_inc(dev,						\
4056 			offsetof(struct net_device_core_stats, FIELD));		\
4057 }
4058 DEV_CORE_STATS_INC(rx_dropped)
4059 DEV_CORE_STATS_INC(tx_dropped)
4060 DEV_CORE_STATS_INC(rx_nohandler)
4061 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4062 #undef DEV_CORE_STATS_INC
4063 
4064 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4065 					       struct sk_buff *skb,
4066 					       const bool check_mtu)
4067 {
4068 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4069 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4070 		dev_core_stats_rx_dropped_inc(dev);
4071 		kfree_skb(skb);
4072 		return NET_RX_DROP;
4073 	}
4074 
4075 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4076 	skb->priority = 0;
4077 	return 0;
4078 }
4079 
4080 bool dev_nit_active(struct net_device *dev);
4081 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4082 
4083 static inline void __dev_put(struct net_device *dev)
4084 {
4085 	if (dev) {
4086 #ifdef CONFIG_PCPU_DEV_REFCNT
4087 		this_cpu_dec(*dev->pcpu_refcnt);
4088 #else
4089 		refcount_dec(&dev->dev_refcnt);
4090 #endif
4091 	}
4092 }
4093 
4094 static inline void __dev_hold(struct net_device *dev)
4095 {
4096 	if (dev) {
4097 #ifdef CONFIG_PCPU_DEV_REFCNT
4098 		this_cpu_inc(*dev->pcpu_refcnt);
4099 #else
4100 		refcount_inc(&dev->dev_refcnt);
4101 #endif
4102 	}
4103 }
4104 
4105 static inline void __netdev_tracker_alloc(struct net_device *dev,
4106 					  netdevice_tracker *tracker,
4107 					  gfp_t gfp)
4108 {
4109 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4110 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4111 #endif
4112 }
4113 
4114 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4115  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4116  */
4117 static inline void netdev_tracker_alloc(struct net_device *dev,
4118 					netdevice_tracker *tracker, gfp_t gfp)
4119 {
4120 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4121 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4122 	__netdev_tracker_alloc(dev, tracker, gfp);
4123 #endif
4124 }
4125 
4126 static inline void netdev_tracker_free(struct net_device *dev,
4127 				       netdevice_tracker *tracker)
4128 {
4129 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4130 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4131 #endif
4132 }
4133 
4134 static inline void netdev_hold(struct net_device *dev,
4135 			       netdevice_tracker *tracker, gfp_t gfp)
4136 {
4137 	if (dev) {
4138 		__dev_hold(dev);
4139 		__netdev_tracker_alloc(dev, tracker, gfp);
4140 	}
4141 }
4142 
4143 static inline void netdev_put(struct net_device *dev,
4144 			      netdevice_tracker *tracker)
4145 {
4146 	if (dev) {
4147 		netdev_tracker_free(dev, tracker);
4148 		__dev_put(dev);
4149 	}
4150 }
4151 
4152 /**
4153  *	dev_hold - get reference to device
4154  *	@dev: network device
4155  *
4156  * Hold reference to device to keep it from being freed.
4157  * Try using netdev_hold() instead.
4158  */
4159 static inline void dev_hold(struct net_device *dev)
4160 {
4161 	netdev_hold(dev, NULL, GFP_ATOMIC);
4162 }
4163 
4164 /**
4165  *	dev_put - release reference to device
4166  *	@dev: network device
4167  *
4168  * Release reference to device to allow it to be freed.
4169  * Try using netdev_put() instead.
4170  */
4171 static inline void dev_put(struct net_device *dev)
4172 {
4173 	netdev_put(dev, NULL);
4174 }
4175 
4176 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4177 
4178 static inline void netdev_ref_replace(struct net_device *odev,
4179 				      struct net_device *ndev,
4180 				      netdevice_tracker *tracker,
4181 				      gfp_t gfp)
4182 {
4183 	if (odev)
4184 		netdev_tracker_free(odev, tracker);
4185 
4186 	__dev_hold(ndev);
4187 	__dev_put(odev);
4188 
4189 	if (ndev)
4190 		__netdev_tracker_alloc(ndev, tracker, gfp);
4191 }
4192 
4193 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4194  * and _off may be called from IRQ context, but it is caller
4195  * who is responsible for serialization of these calls.
4196  *
4197  * The name carrier is inappropriate, these functions should really be
4198  * called netif_lowerlayer_*() because they represent the state of any
4199  * kind of lower layer not just hardware media.
4200  */
4201 void linkwatch_fire_event(struct net_device *dev);
4202 
4203 /**
4204  * linkwatch_sync_dev - sync linkwatch for the given device
4205  * @dev: network device to sync linkwatch for
4206  *
4207  * Sync linkwatch for the given device, removing it from the
4208  * pending work list (if queued).
4209  */
4210 void linkwatch_sync_dev(struct net_device *dev);
4211 
4212 /**
4213  *	netif_carrier_ok - test if carrier present
4214  *	@dev: network device
4215  *
4216  * Check if carrier is present on device
4217  */
4218 static inline bool netif_carrier_ok(const struct net_device *dev)
4219 {
4220 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4221 }
4222 
4223 unsigned long dev_trans_start(struct net_device *dev);
4224 
4225 void __netdev_watchdog_up(struct net_device *dev);
4226 
4227 void netif_carrier_on(struct net_device *dev);
4228 void netif_carrier_off(struct net_device *dev);
4229 void netif_carrier_event(struct net_device *dev);
4230 
4231 /**
4232  *	netif_dormant_on - mark device as dormant.
4233  *	@dev: network device
4234  *
4235  * Mark device as dormant (as per RFC2863).
4236  *
4237  * The dormant state indicates that the relevant interface is not
4238  * actually in a condition to pass packets (i.e., it is not 'up') but is
4239  * in a "pending" state, waiting for some external event.  For "on-
4240  * demand" interfaces, this new state identifies the situation where the
4241  * interface is waiting for events to place it in the up state.
4242  */
4243 static inline void netif_dormant_on(struct net_device *dev)
4244 {
4245 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4246 		linkwatch_fire_event(dev);
4247 }
4248 
4249 /**
4250  *	netif_dormant_off - set device as not dormant.
4251  *	@dev: network device
4252  *
4253  * Device is not in dormant state.
4254  */
4255 static inline void netif_dormant_off(struct net_device *dev)
4256 {
4257 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4258 		linkwatch_fire_event(dev);
4259 }
4260 
4261 /**
4262  *	netif_dormant - test if device is dormant
4263  *	@dev: network device
4264  *
4265  * Check if device is dormant.
4266  */
4267 static inline bool netif_dormant(const struct net_device *dev)
4268 {
4269 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4270 }
4271 
4272 
4273 /**
4274  *	netif_testing_on - mark device as under test.
4275  *	@dev: network device
4276  *
4277  * Mark device as under test (as per RFC2863).
4278  *
4279  * The testing state indicates that some test(s) must be performed on
4280  * the interface. After completion, of the test, the interface state
4281  * will change to up, dormant, or down, as appropriate.
4282  */
4283 static inline void netif_testing_on(struct net_device *dev)
4284 {
4285 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4286 		linkwatch_fire_event(dev);
4287 }
4288 
4289 /**
4290  *	netif_testing_off - set device as not under test.
4291  *	@dev: network device
4292  *
4293  * Device is not in testing state.
4294  */
4295 static inline void netif_testing_off(struct net_device *dev)
4296 {
4297 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4298 		linkwatch_fire_event(dev);
4299 }
4300 
4301 /**
4302  *	netif_testing - test if device is under test
4303  *	@dev: network device
4304  *
4305  * Check if device is under test
4306  */
4307 static inline bool netif_testing(const struct net_device *dev)
4308 {
4309 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4310 }
4311 
4312 
4313 /**
4314  *	netif_oper_up - test if device is operational
4315  *	@dev: network device
4316  *
4317  * Check if carrier is operational
4318  */
4319 static inline bool netif_oper_up(const struct net_device *dev)
4320 {
4321 	unsigned int operstate = READ_ONCE(dev->operstate);
4322 
4323 	return	operstate == IF_OPER_UP ||
4324 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4325 }
4326 
4327 /**
4328  *	netif_device_present - is device available or removed
4329  *	@dev: network device
4330  *
4331  * Check if device has not been removed from system.
4332  */
4333 static inline bool netif_device_present(const struct net_device *dev)
4334 {
4335 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4336 }
4337 
4338 void netif_device_detach(struct net_device *dev);
4339 
4340 void netif_device_attach(struct net_device *dev);
4341 
4342 /*
4343  * Network interface message level settings
4344  */
4345 
4346 enum {
4347 	NETIF_MSG_DRV_BIT,
4348 	NETIF_MSG_PROBE_BIT,
4349 	NETIF_MSG_LINK_BIT,
4350 	NETIF_MSG_TIMER_BIT,
4351 	NETIF_MSG_IFDOWN_BIT,
4352 	NETIF_MSG_IFUP_BIT,
4353 	NETIF_MSG_RX_ERR_BIT,
4354 	NETIF_MSG_TX_ERR_BIT,
4355 	NETIF_MSG_TX_QUEUED_BIT,
4356 	NETIF_MSG_INTR_BIT,
4357 	NETIF_MSG_TX_DONE_BIT,
4358 	NETIF_MSG_RX_STATUS_BIT,
4359 	NETIF_MSG_PKTDATA_BIT,
4360 	NETIF_MSG_HW_BIT,
4361 	NETIF_MSG_WOL_BIT,
4362 
4363 	/* When you add a new bit above, update netif_msg_class_names array
4364 	 * in net/ethtool/common.c
4365 	 */
4366 	NETIF_MSG_CLASS_COUNT,
4367 };
4368 /* Both ethtool_ops interface and internal driver implementation use u32 */
4369 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4370 
4371 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4372 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4373 
4374 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4375 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4376 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4377 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4378 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4379 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4380 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4381 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4382 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4383 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4384 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4385 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4386 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4387 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4388 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4389 
4390 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4391 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4392 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4393 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4394 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4395 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4396 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4397 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4398 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4399 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4400 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4401 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4402 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4403 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4404 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4405 
4406 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4407 {
4408 	/* use default */
4409 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4410 		return default_msg_enable_bits;
4411 	if (debug_value == 0)	/* no output */
4412 		return 0;
4413 	/* set low N bits */
4414 	return (1U << debug_value) - 1;
4415 }
4416 
4417 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4418 {
4419 	spin_lock(&txq->_xmit_lock);
4420 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4421 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4422 }
4423 
4424 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4425 {
4426 	__acquire(&txq->_xmit_lock);
4427 	return true;
4428 }
4429 
4430 static inline void __netif_tx_release(struct netdev_queue *txq)
4431 {
4432 	__release(&txq->_xmit_lock);
4433 }
4434 
4435 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4436 {
4437 	spin_lock_bh(&txq->_xmit_lock);
4438 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4439 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4440 }
4441 
4442 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4443 {
4444 	bool ok = spin_trylock(&txq->_xmit_lock);
4445 
4446 	if (likely(ok)) {
4447 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4448 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4449 	}
4450 	return ok;
4451 }
4452 
4453 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4454 {
4455 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4456 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4457 	spin_unlock(&txq->_xmit_lock);
4458 }
4459 
4460 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4461 {
4462 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4463 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4464 	spin_unlock_bh(&txq->_xmit_lock);
4465 }
4466 
4467 /*
4468  * txq->trans_start can be read locklessly from dev_watchdog()
4469  */
4470 static inline void txq_trans_update(struct netdev_queue *txq)
4471 {
4472 	if (txq->xmit_lock_owner != -1)
4473 		WRITE_ONCE(txq->trans_start, jiffies);
4474 }
4475 
4476 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4477 {
4478 	unsigned long now = jiffies;
4479 
4480 	if (READ_ONCE(txq->trans_start) != now)
4481 		WRITE_ONCE(txq->trans_start, now);
4482 }
4483 
4484 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4485 static inline void netif_trans_update(struct net_device *dev)
4486 {
4487 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4488 
4489 	txq_trans_cond_update(txq);
4490 }
4491 
4492 /**
4493  *	netif_tx_lock - grab network device transmit lock
4494  *	@dev: network device
4495  *
4496  * Get network device transmit lock
4497  */
4498 void netif_tx_lock(struct net_device *dev);
4499 
4500 static inline void netif_tx_lock_bh(struct net_device *dev)
4501 {
4502 	local_bh_disable();
4503 	netif_tx_lock(dev);
4504 }
4505 
4506 void netif_tx_unlock(struct net_device *dev);
4507 
4508 static inline void netif_tx_unlock_bh(struct net_device *dev)
4509 {
4510 	netif_tx_unlock(dev);
4511 	local_bh_enable();
4512 }
4513 
4514 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4515 	if (!(dev)->lltx) {				\
4516 		__netif_tx_lock(txq, cpu);		\
4517 	} else {					\
4518 		__netif_tx_acquire(txq);		\
4519 	}						\
4520 }
4521 
4522 #define HARD_TX_TRYLOCK(dev, txq)			\
4523 	(!(dev)->lltx ?					\
4524 		__netif_tx_trylock(txq) :		\
4525 		__netif_tx_acquire(txq))
4526 
4527 #define HARD_TX_UNLOCK(dev, txq) {			\
4528 	if (!(dev)->lltx) {				\
4529 		__netif_tx_unlock(txq);			\
4530 	} else {					\
4531 		__netif_tx_release(txq);		\
4532 	}						\
4533 }
4534 
4535 static inline void netif_tx_disable(struct net_device *dev)
4536 {
4537 	unsigned int i;
4538 	int cpu;
4539 
4540 	local_bh_disable();
4541 	cpu = smp_processor_id();
4542 	spin_lock(&dev->tx_global_lock);
4543 	for (i = 0; i < dev->num_tx_queues; i++) {
4544 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4545 
4546 		__netif_tx_lock(txq, cpu);
4547 		netif_tx_stop_queue(txq);
4548 		__netif_tx_unlock(txq);
4549 	}
4550 	spin_unlock(&dev->tx_global_lock);
4551 	local_bh_enable();
4552 }
4553 
4554 static inline void netif_addr_lock(struct net_device *dev)
4555 {
4556 	unsigned char nest_level = 0;
4557 
4558 #ifdef CONFIG_LOCKDEP
4559 	nest_level = dev->nested_level;
4560 #endif
4561 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4562 }
4563 
4564 static inline void netif_addr_lock_bh(struct net_device *dev)
4565 {
4566 	unsigned char nest_level = 0;
4567 
4568 #ifdef CONFIG_LOCKDEP
4569 	nest_level = dev->nested_level;
4570 #endif
4571 	local_bh_disable();
4572 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4573 }
4574 
4575 static inline void netif_addr_unlock(struct net_device *dev)
4576 {
4577 	spin_unlock(&dev->addr_list_lock);
4578 }
4579 
4580 static inline void netif_addr_unlock_bh(struct net_device *dev)
4581 {
4582 	spin_unlock_bh(&dev->addr_list_lock);
4583 }
4584 
4585 /*
4586  * dev_addrs walker. Should be used only for read access. Call with
4587  * rcu_read_lock held.
4588  */
4589 #define for_each_dev_addr(dev, ha) \
4590 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4591 
4592 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4593 
4594 void ether_setup(struct net_device *dev);
4595 
4596 /* Allocate dummy net_device */
4597 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4598 
4599 /* Support for loadable net-drivers */
4600 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4601 				    unsigned char name_assign_type,
4602 				    void (*setup)(struct net_device *),
4603 				    unsigned int txqs, unsigned int rxqs);
4604 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4605 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4606 
4607 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4608 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4609 			 count)
4610 
4611 int register_netdev(struct net_device *dev);
4612 void unregister_netdev(struct net_device *dev);
4613 
4614 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4615 
4616 /* General hardware address lists handling functions */
4617 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4618 		   struct netdev_hw_addr_list *from_list, int addr_len);
4619 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4620 		      struct netdev_hw_addr_list *from_list, int addr_len);
4621 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4622 		       struct net_device *dev,
4623 		       int (*sync)(struct net_device *, const unsigned char *),
4624 		       int (*unsync)(struct net_device *,
4625 				     const unsigned char *));
4626 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4627 			   struct net_device *dev,
4628 			   int (*sync)(struct net_device *,
4629 				       const unsigned char *, int),
4630 			   int (*unsync)(struct net_device *,
4631 					 const unsigned char *, int));
4632 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4633 			      struct net_device *dev,
4634 			      int (*unsync)(struct net_device *,
4635 					    const unsigned char *, int));
4636 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4637 			  struct net_device *dev,
4638 			  int (*unsync)(struct net_device *,
4639 					const unsigned char *));
4640 void __hw_addr_init(struct netdev_hw_addr_list *list);
4641 
4642 /* Functions used for device addresses handling */
4643 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4644 		  const void *addr, size_t len);
4645 
4646 static inline void
4647 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4648 {
4649 	dev_addr_mod(dev, 0, addr, len);
4650 }
4651 
4652 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4653 {
4654 	__dev_addr_set(dev, addr, dev->addr_len);
4655 }
4656 
4657 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4658 		 unsigned char addr_type);
4659 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4660 		 unsigned char addr_type);
4661 
4662 /* Functions used for unicast addresses handling */
4663 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4664 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4665 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4666 int dev_uc_sync(struct net_device *to, struct net_device *from);
4667 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4668 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4669 void dev_uc_flush(struct net_device *dev);
4670 void dev_uc_init(struct net_device *dev);
4671 
4672 /**
4673  *  __dev_uc_sync - Synchronize device's unicast list
4674  *  @dev:  device to sync
4675  *  @sync: function to call if address should be added
4676  *  @unsync: function to call if address should be removed
4677  *
4678  *  Add newly added addresses to the interface, and release
4679  *  addresses that have been deleted.
4680  */
4681 static inline int __dev_uc_sync(struct net_device *dev,
4682 				int (*sync)(struct net_device *,
4683 					    const unsigned char *),
4684 				int (*unsync)(struct net_device *,
4685 					      const unsigned char *))
4686 {
4687 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4688 }
4689 
4690 /**
4691  *  __dev_uc_unsync - Remove synchronized addresses from device
4692  *  @dev:  device to sync
4693  *  @unsync: function to call if address should be removed
4694  *
4695  *  Remove all addresses that were added to the device by dev_uc_sync().
4696  */
4697 static inline void __dev_uc_unsync(struct net_device *dev,
4698 				   int (*unsync)(struct net_device *,
4699 						 const unsigned char *))
4700 {
4701 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4702 }
4703 
4704 /* Functions used for multicast addresses handling */
4705 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4706 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4707 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4708 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4709 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4710 int dev_mc_sync(struct net_device *to, struct net_device *from);
4711 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4712 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4713 void dev_mc_flush(struct net_device *dev);
4714 void dev_mc_init(struct net_device *dev);
4715 
4716 /**
4717  *  __dev_mc_sync - Synchronize device's multicast list
4718  *  @dev:  device to sync
4719  *  @sync: function to call if address should be added
4720  *  @unsync: function to call if address should be removed
4721  *
4722  *  Add newly added addresses to the interface, and release
4723  *  addresses that have been deleted.
4724  */
4725 static inline int __dev_mc_sync(struct net_device *dev,
4726 				int (*sync)(struct net_device *,
4727 					    const unsigned char *),
4728 				int (*unsync)(struct net_device *,
4729 					      const unsigned char *))
4730 {
4731 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4732 }
4733 
4734 /**
4735  *  __dev_mc_unsync - Remove synchronized addresses from device
4736  *  @dev:  device to sync
4737  *  @unsync: function to call if address should be removed
4738  *
4739  *  Remove all addresses that were added to the device by dev_mc_sync().
4740  */
4741 static inline void __dev_mc_unsync(struct net_device *dev,
4742 				   int (*unsync)(struct net_device *,
4743 						 const unsigned char *))
4744 {
4745 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4746 }
4747 
4748 /* Functions used for secondary unicast and multicast support */
4749 void dev_set_rx_mode(struct net_device *dev);
4750 int dev_set_promiscuity(struct net_device *dev, int inc);
4751 int dev_set_allmulti(struct net_device *dev, int inc);
4752 void netdev_state_change(struct net_device *dev);
4753 void __netdev_notify_peers(struct net_device *dev);
4754 void netdev_notify_peers(struct net_device *dev);
4755 void netdev_features_change(struct net_device *dev);
4756 /* Load a device via the kmod */
4757 void dev_load(struct net *net, const char *name);
4758 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4759 					struct rtnl_link_stats64 *storage);
4760 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4761 			     const struct net_device_stats *netdev_stats);
4762 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4763 			   const struct pcpu_sw_netstats __percpu *netstats);
4764 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4765 
4766 enum {
4767 	NESTED_SYNC_IMM_BIT,
4768 	NESTED_SYNC_TODO_BIT,
4769 };
4770 
4771 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4772 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4773 
4774 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4775 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4776 
4777 struct netdev_nested_priv {
4778 	unsigned char flags;
4779 	void *data;
4780 };
4781 
4782 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4783 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4784 						     struct list_head **iter);
4785 
4786 /* iterate through upper list, must be called under RCU read lock */
4787 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4788 	for (iter = &(dev)->adj_list.upper, \
4789 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4790 	     updev; \
4791 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4792 
4793 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4794 				  int (*fn)(struct net_device *upper_dev,
4795 					    struct netdev_nested_priv *priv),
4796 				  struct netdev_nested_priv *priv);
4797 
4798 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4799 				  struct net_device *upper_dev);
4800 
4801 bool netdev_has_any_upper_dev(struct net_device *dev);
4802 
4803 void *netdev_lower_get_next_private(struct net_device *dev,
4804 				    struct list_head **iter);
4805 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4806 					struct list_head **iter);
4807 
4808 #define netdev_for_each_lower_private(dev, priv, iter) \
4809 	for (iter = (dev)->adj_list.lower.next, \
4810 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4811 	     priv; \
4812 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4813 
4814 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4815 	for (iter = &(dev)->adj_list.lower, \
4816 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4817 	     priv; \
4818 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4819 
4820 void *netdev_lower_get_next(struct net_device *dev,
4821 				struct list_head **iter);
4822 
4823 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4824 	for (iter = (dev)->adj_list.lower.next, \
4825 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4826 	     ldev; \
4827 	     ldev = netdev_lower_get_next(dev, &(iter)))
4828 
4829 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4830 					     struct list_head **iter);
4831 int netdev_walk_all_lower_dev(struct net_device *dev,
4832 			      int (*fn)(struct net_device *lower_dev,
4833 					struct netdev_nested_priv *priv),
4834 			      struct netdev_nested_priv *priv);
4835 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4836 				  int (*fn)(struct net_device *lower_dev,
4837 					    struct netdev_nested_priv *priv),
4838 				  struct netdev_nested_priv *priv);
4839 
4840 void *netdev_adjacent_get_private(struct list_head *adj_list);
4841 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4842 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4843 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4844 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4845 			  struct netlink_ext_ack *extack);
4846 int netdev_master_upper_dev_link(struct net_device *dev,
4847 				 struct net_device *upper_dev,
4848 				 void *upper_priv, void *upper_info,
4849 				 struct netlink_ext_ack *extack);
4850 void netdev_upper_dev_unlink(struct net_device *dev,
4851 			     struct net_device *upper_dev);
4852 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4853 				   struct net_device *new_dev,
4854 				   struct net_device *dev,
4855 				   struct netlink_ext_ack *extack);
4856 void netdev_adjacent_change_commit(struct net_device *old_dev,
4857 				   struct net_device *new_dev,
4858 				   struct net_device *dev);
4859 void netdev_adjacent_change_abort(struct net_device *old_dev,
4860 				  struct net_device *new_dev,
4861 				  struct net_device *dev);
4862 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4863 void *netdev_lower_dev_get_private(struct net_device *dev,
4864 				   struct net_device *lower_dev);
4865 void netdev_lower_state_changed(struct net_device *lower_dev,
4866 				void *lower_state_info);
4867 
4868 /* RSS keys are 40 or 52 bytes long */
4869 #define NETDEV_RSS_KEY_LEN 52
4870 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4871 void netdev_rss_key_fill(void *buffer, size_t len);
4872 
4873 int skb_checksum_help(struct sk_buff *skb);
4874 int skb_crc32c_csum_help(struct sk_buff *skb);
4875 int skb_csum_hwoffload_help(struct sk_buff *skb,
4876 			    const netdev_features_t features);
4877 
4878 struct netdev_bonding_info {
4879 	ifslave	slave;
4880 	ifbond	master;
4881 };
4882 
4883 struct netdev_notifier_bonding_info {
4884 	struct netdev_notifier_info info; /* must be first */
4885 	struct netdev_bonding_info  bonding_info;
4886 };
4887 
4888 void netdev_bonding_info_change(struct net_device *dev,
4889 				struct netdev_bonding_info *bonding_info);
4890 
4891 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4892 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4893 #else
4894 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4895 				  const void *data)
4896 {
4897 }
4898 #endif
4899 
4900 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4901 
4902 static inline bool can_checksum_protocol(netdev_features_t features,
4903 					 __be16 protocol)
4904 {
4905 	if (protocol == htons(ETH_P_FCOE))
4906 		return !!(features & NETIF_F_FCOE_CRC);
4907 
4908 	/* Assume this is an IP checksum (not SCTP CRC) */
4909 
4910 	if (features & NETIF_F_HW_CSUM) {
4911 		/* Can checksum everything */
4912 		return true;
4913 	}
4914 
4915 	switch (protocol) {
4916 	case htons(ETH_P_IP):
4917 		return !!(features & NETIF_F_IP_CSUM);
4918 	case htons(ETH_P_IPV6):
4919 		return !!(features & NETIF_F_IPV6_CSUM);
4920 	default:
4921 		return false;
4922 	}
4923 }
4924 
4925 #ifdef CONFIG_BUG
4926 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4927 #else
4928 static inline void netdev_rx_csum_fault(struct net_device *dev,
4929 					struct sk_buff *skb)
4930 {
4931 }
4932 #endif
4933 /* rx skb timestamps */
4934 void net_enable_timestamp(void);
4935 void net_disable_timestamp(void);
4936 
4937 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4938 					const struct skb_shared_hwtstamps *hwtstamps,
4939 					bool cycles)
4940 {
4941 	const struct net_device_ops *ops = dev->netdev_ops;
4942 
4943 	if (ops->ndo_get_tstamp)
4944 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4945 
4946 	return hwtstamps->hwtstamp;
4947 }
4948 
4949 #ifndef CONFIG_PREEMPT_RT
4950 static inline void netdev_xmit_set_more(bool more)
4951 {
4952 	__this_cpu_write(softnet_data.xmit.more, more);
4953 }
4954 
4955 static inline bool netdev_xmit_more(void)
4956 {
4957 	return __this_cpu_read(softnet_data.xmit.more);
4958 }
4959 #else
4960 static inline void netdev_xmit_set_more(bool more)
4961 {
4962 	current->net_xmit.more = more;
4963 }
4964 
4965 static inline bool netdev_xmit_more(void)
4966 {
4967 	return current->net_xmit.more;
4968 }
4969 #endif
4970 
4971 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4972 					      struct sk_buff *skb, struct net_device *dev,
4973 					      bool more)
4974 {
4975 	netdev_xmit_set_more(more);
4976 	return ops->ndo_start_xmit(skb, dev);
4977 }
4978 
4979 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4980 					    struct netdev_queue *txq, bool more)
4981 {
4982 	const struct net_device_ops *ops = dev->netdev_ops;
4983 	netdev_tx_t rc;
4984 
4985 	rc = __netdev_start_xmit(ops, skb, dev, more);
4986 	if (rc == NETDEV_TX_OK)
4987 		txq_trans_update(txq);
4988 
4989 	return rc;
4990 }
4991 
4992 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4993 				const void *ns);
4994 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4995 				 const void *ns);
4996 
4997 extern const struct kobj_ns_type_operations net_ns_type_operations;
4998 
4999 const char *netdev_drivername(const struct net_device *dev);
5000 
5001 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5002 							  netdev_features_t f2)
5003 {
5004 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5005 		if (f1 & NETIF_F_HW_CSUM)
5006 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5007 		else
5008 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5009 	}
5010 
5011 	return f1 & f2;
5012 }
5013 
5014 static inline netdev_features_t netdev_get_wanted_features(
5015 	struct net_device *dev)
5016 {
5017 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5018 }
5019 netdev_features_t netdev_increment_features(netdev_features_t all,
5020 	netdev_features_t one, netdev_features_t mask);
5021 
5022 /* Allow TSO being used on stacked device :
5023  * Performing the GSO segmentation before last device
5024  * is a performance improvement.
5025  */
5026 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5027 							netdev_features_t mask)
5028 {
5029 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5030 }
5031 
5032 int __netdev_update_features(struct net_device *dev);
5033 void netdev_update_features(struct net_device *dev);
5034 void netdev_change_features(struct net_device *dev);
5035 
5036 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5037 					struct net_device *dev);
5038 
5039 netdev_features_t passthru_features_check(struct sk_buff *skb,
5040 					  struct net_device *dev,
5041 					  netdev_features_t features);
5042 netdev_features_t netif_skb_features(struct sk_buff *skb);
5043 void skb_warn_bad_offload(const struct sk_buff *skb);
5044 
5045 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5046 {
5047 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5048 
5049 	/* check flags correspondence */
5050 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5051 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5052 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5053 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5054 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5055 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5056 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5057 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5058 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5059 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5060 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5061 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5062 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5063 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5064 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5065 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5066 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5067 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5068 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5069 
5070 	return (features & feature) == feature;
5071 }
5072 
5073 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5074 {
5075 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5076 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5077 }
5078 
5079 static inline bool netif_needs_gso(struct sk_buff *skb,
5080 				   netdev_features_t features)
5081 {
5082 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5083 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5084 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5085 }
5086 
5087 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5088 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5089 void netif_inherit_tso_max(struct net_device *to,
5090 			   const struct net_device *from);
5091 
5092 static inline unsigned int
5093 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5094 {
5095 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5096 	return skb->protocol == htons(ETH_P_IPV6) ?
5097 	       READ_ONCE(dev->gro_max_size) :
5098 	       READ_ONCE(dev->gro_ipv4_max_size);
5099 }
5100 
5101 static inline unsigned int
5102 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5103 {
5104 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5105 	return skb->protocol == htons(ETH_P_IPV6) ?
5106 	       READ_ONCE(dev->gso_max_size) :
5107 	       READ_ONCE(dev->gso_ipv4_max_size);
5108 }
5109 
5110 static inline bool netif_is_macsec(const struct net_device *dev)
5111 {
5112 	return dev->priv_flags & IFF_MACSEC;
5113 }
5114 
5115 static inline bool netif_is_macvlan(const struct net_device *dev)
5116 {
5117 	return dev->priv_flags & IFF_MACVLAN;
5118 }
5119 
5120 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5121 {
5122 	return dev->priv_flags & IFF_MACVLAN_PORT;
5123 }
5124 
5125 static inline bool netif_is_bond_master(const struct net_device *dev)
5126 {
5127 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5128 }
5129 
5130 static inline bool netif_is_bond_slave(const struct net_device *dev)
5131 {
5132 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5133 }
5134 
5135 static inline bool netif_supports_nofcs(struct net_device *dev)
5136 {
5137 	return dev->priv_flags & IFF_SUPP_NOFCS;
5138 }
5139 
5140 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5141 {
5142 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5143 }
5144 
5145 static inline bool netif_is_l3_master(const struct net_device *dev)
5146 {
5147 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5148 }
5149 
5150 static inline bool netif_is_l3_slave(const struct net_device *dev)
5151 {
5152 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5153 }
5154 
5155 static inline int dev_sdif(const struct net_device *dev)
5156 {
5157 #ifdef CONFIG_NET_L3_MASTER_DEV
5158 	if (netif_is_l3_slave(dev))
5159 		return dev->ifindex;
5160 #endif
5161 	return 0;
5162 }
5163 
5164 static inline bool netif_is_bridge_master(const struct net_device *dev)
5165 {
5166 	return dev->priv_flags & IFF_EBRIDGE;
5167 }
5168 
5169 static inline bool netif_is_bridge_port(const struct net_device *dev)
5170 {
5171 	return dev->priv_flags & IFF_BRIDGE_PORT;
5172 }
5173 
5174 static inline bool netif_is_ovs_master(const struct net_device *dev)
5175 {
5176 	return dev->priv_flags & IFF_OPENVSWITCH;
5177 }
5178 
5179 static inline bool netif_is_ovs_port(const struct net_device *dev)
5180 {
5181 	return dev->priv_flags & IFF_OVS_DATAPATH;
5182 }
5183 
5184 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5185 {
5186 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5187 }
5188 
5189 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5190 {
5191 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5192 }
5193 
5194 static inline bool netif_is_team_master(const struct net_device *dev)
5195 {
5196 	return dev->priv_flags & IFF_TEAM;
5197 }
5198 
5199 static inline bool netif_is_team_port(const struct net_device *dev)
5200 {
5201 	return dev->priv_flags & IFF_TEAM_PORT;
5202 }
5203 
5204 static inline bool netif_is_lag_master(const struct net_device *dev)
5205 {
5206 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5207 }
5208 
5209 static inline bool netif_is_lag_port(const struct net_device *dev)
5210 {
5211 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5212 }
5213 
5214 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5215 {
5216 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5217 }
5218 
5219 static inline bool netif_is_failover(const struct net_device *dev)
5220 {
5221 	return dev->priv_flags & IFF_FAILOVER;
5222 }
5223 
5224 static inline bool netif_is_failover_slave(const struct net_device *dev)
5225 {
5226 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5227 }
5228 
5229 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5230 static inline void netif_keep_dst(struct net_device *dev)
5231 {
5232 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5233 }
5234 
5235 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5236 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5237 {
5238 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5239 	return netif_is_macsec(dev);
5240 }
5241 
5242 extern struct pernet_operations __net_initdata loopback_net_ops;
5243 
5244 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5245 
5246 /* netdev_printk helpers, similar to dev_printk */
5247 
5248 static inline const char *netdev_name(const struct net_device *dev)
5249 {
5250 	if (!dev->name[0] || strchr(dev->name, '%'))
5251 		return "(unnamed net_device)";
5252 	return dev->name;
5253 }
5254 
5255 static inline const char *netdev_reg_state(const struct net_device *dev)
5256 {
5257 	u8 reg_state = READ_ONCE(dev->reg_state);
5258 
5259 	switch (reg_state) {
5260 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5261 	case NETREG_REGISTERED: return "";
5262 	case NETREG_UNREGISTERING: return " (unregistering)";
5263 	case NETREG_UNREGISTERED: return " (unregistered)";
5264 	case NETREG_RELEASED: return " (released)";
5265 	case NETREG_DUMMY: return " (dummy)";
5266 	}
5267 
5268 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5269 	return " (unknown)";
5270 }
5271 
5272 #define MODULE_ALIAS_NETDEV(device) \
5273 	MODULE_ALIAS("netdev-" device)
5274 
5275 /*
5276  * netdev_WARN() acts like dev_printk(), but with the key difference
5277  * of using a WARN/WARN_ON to get the message out, including the
5278  * file/line information and a backtrace.
5279  */
5280 #define netdev_WARN(dev, format, args...)			\
5281 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5282 	     netdev_reg_state(dev), ##args)
5283 
5284 #define netdev_WARN_ONCE(dev, format, args...)				\
5285 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5286 		  netdev_reg_state(dev), ##args)
5287 
5288 /*
5289  *	The list of packet types we will receive (as opposed to discard)
5290  *	and the routines to invoke.
5291  *
5292  *	Why 16. Because with 16 the only overlap we get on a hash of the
5293  *	low nibble of the protocol value is RARP/SNAP/X.25.
5294  *
5295  *		0800	IP
5296  *		0001	802.3
5297  *		0002	AX.25
5298  *		0004	802.2
5299  *		8035	RARP
5300  *		0005	SNAP
5301  *		0805	X.25
5302  *		0806	ARP
5303  *		8137	IPX
5304  *		0009	Localtalk
5305  *		86DD	IPv6
5306  */
5307 #define PTYPE_HASH_SIZE	(16)
5308 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5309 
5310 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5311 
5312 extern struct net_device *blackhole_netdev;
5313 
5314 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5315 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5316 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5317 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5318 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5319 
5320 #endif	/* _LINUX_NETDEVICE_H */
5321