xref: /linux-6.15/include/linux/netdevice.h (revision a61e365d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_SLAVE		3
216 #define NETDEV_HW_ADDR_T_UNICAST	4
217 #define NETDEV_HW_ADDR_T_MULTICAST	5
218 	bool			global_use;
219 	int			sync_cnt;
220 	int			refcount;
221 	int			synced;
222 	struct rcu_head		rcu_head;
223 };
224 
225 struct netdev_hw_addr_list {
226 	struct list_head	list;
227 	int			count;
228 };
229 
230 #define netdev_hw_addr_list_count(l) ((l)->count)
231 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
232 #define netdev_hw_addr_list_for_each(ha, l) \
233 	list_for_each_entry(ha, &(l)->list, list)
234 
235 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
236 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
237 #define netdev_for_each_uc_addr(ha, dev) \
238 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
239 
240 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
241 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
242 #define netdev_for_each_mc_addr(ha, dev) \
243 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
244 
245 struct hh_cache {
246 	unsigned int	hh_len;
247 	seqlock_t	hh_lock;
248 
249 	/* cached hardware header; allow for machine alignment needs.        */
250 #define HH_DATA_MOD	16
251 #define HH_DATA_OFF(__len) \
252 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
253 #define HH_DATA_ALIGN(__len) \
254 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
255 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
256 };
257 
258 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
259  * Alternative is:
260  *   dev->hard_header_len ? (dev->hard_header_len +
261  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
262  *
263  * We could use other alignment values, but we must maintain the
264  * relationship HH alignment <= LL alignment.
265  */
266 #define LL_RESERVED_SPACE(dev) \
267 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
268 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
269 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
270 
271 struct header_ops {
272 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
273 			   unsigned short type, const void *daddr,
274 			   const void *saddr, unsigned int len);
275 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
276 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
277 	void	(*cache_update)(struct hh_cache *hh,
278 				const struct net_device *dev,
279 				const unsigned char *haddr);
280 	bool	(*validate)(const char *ll_header, unsigned int len);
281 	__be16	(*parse_protocol)(const struct sk_buff *skb);
282 };
283 
284 /* These flag bits are private to the generic network queueing
285  * layer; they may not be explicitly referenced by any other
286  * code.
287  */
288 
289 enum netdev_state_t {
290 	__LINK_STATE_START,
291 	__LINK_STATE_PRESENT,
292 	__LINK_STATE_NOCARRIER,
293 	__LINK_STATE_LINKWATCH_PENDING,
294 	__LINK_STATE_DORMANT,
295 	__LINK_STATE_TESTING,
296 };
297 
298 
299 /*
300  * This structure holds boot-time configured netdevice settings. They
301  * are then used in the device probing.
302  */
303 struct netdev_boot_setup {
304 	char name[IFNAMSIZ];
305 	struct ifmap map;
306 };
307 #define NETDEV_BOOT_SETUP_MAX 8
308 
309 int __init netdev_boot_setup(char *str);
310 
311 struct gro_list {
312 	struct list_head	list;
313 	int			count;
314 };
315 
316 /*
317  * size of gro hash buckets, must less than bit number of
318  * napi_struct::gro_bitmask
319  */
320 #define GRO_HASH_BUCKETS	8
321 
322 /*
323  * Structure for NAPI scheduling similar to tasklet but with weighting
324  */
325 struct napi_struct {
326 	/* The poll_list must only be managed by the entity which
327 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
328 	 * whoever atomically sets that bit can add this napi_struct
329 	 * to the per-CPU poll_list, and whoever clears that bit
330 	 * can remove from the list right before clearing the bit.
331 	 */
332 	struct list_head	poll_list;
333 
334 	unsigned long		state;
335 	int			weight;
336 	int			defer_hard_irqs_count;
337 	unsigned long		gro_bitmask;
338 	int			(*poll)(struct napi_struct *, int);
339 #ifdef CONFIG_NETPOLL
340 	int			poll_owner;
341 #endif
342 	struct net_device	*dev;
343 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
344 	struct sk_buff		*skb;
345 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
346 	int			rx_count; /* length of rx_list */
347 	struct hrtimer		timer;
348 	struct list_head	dev_list;
349 	struct hlist_node	napi_hash_node;
350 	unsigned int		napi_id;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,	/* Poll is scheduled */
355 	NAPI_STATE_MISSED,	/* reschedule a napi */
356 	NAPI_STATE_DISABLE,	/* Disable pending */
357 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
358 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
359 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
360 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
361 };
362 
363 enum {
364 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
365 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
366 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
367 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
368 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
369 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
370 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
371 };
372 
373 enum gro_result {
374 	GRO_MERGED,
375 	GRO_MERGED_FREE,
376 	GRO_HELD,
377 	GRO_NORMAL,
378 	GRO_DROP,
379 	GRO_CONSUMED,
380 };
381 typedef enum gro_result gro_result_t;
382 
383 /*
384  * enum rx_handler_result - Possible return values for rx_handlers.
385  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
386  * further.
387  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
388  * case skb->dev was changed by rx_handler.
389  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
390  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
391  *
392  * rx_handlers are functions called from inside __netif_receive_skb(), to do
393  * special processing of the skb, prior to delivery to protocol handlers.
394  *
395  * Currently, a net_device can only have a single rx_handler registered. Trying
396  * to register a second rx_handler will return -EBUSY.
397  *
398  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
399  * To unregister a rx_handler on a net_device, use
400  * netdev_rx_handler_unregister().
401  *
402  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
403  * do with the skb.
404  *
405  * If the rx_handler consumed the skb in some way, it should return
406  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
407  * the skb to be delivered in some other way.
408  *
409  * If the rx_handler changed skb->dev, to divert the skb to another
410  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
411  * new device will be called if it exists.
412  *
413  * If the rx_handler decides the skb should be ignored, it should return
414  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
415  * are registered on exact device (ptype->dev == skb->dev).
416  *
417  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
418  * delivered, it should return RX_HANDLER_PASS.
419  *
420  * A device without a registered rx_handler will behave as if rx_handler
421  * returned RX_HANDLER_PASS.
422  */
423 
424 enum rx_handler_result {
425 	RX_HANDLER_CONSUMED,
426 	RX_HANDLER_ANOTHER,
427 	RX_HANDLER_EXACT,
428 	RX_HANDLER_PASS,
429 };
430 typedef enum rx_handler_result rx_handler_result_t;
431 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
432 
433 void __napi_schedule(struct napi_struct *n);
434 void __napi_schedule_irqoff(struct napi_struct *n);
435 
436 static inline bool napi_disable_pending(struct napi_struct *n)
437 {
438 	return test_bit(NAPI_STATE_DISABLE, &n->state);
439 }
440 
441 bool napi_schedule_prep(struct napi_struct *n);
442 
443 /**
444  *	napi_schedule - schedule NAPI poll
445  *	@n: NAPI context
446  *
447  * Schedule NAPI poll routine to be called if it is not already
448  * running.
449  */
450 static inline void napi_schedule(struct napi_struct *n)
451 {
452 	if (napi_schedule_prep(n))
453 		__napi_schedule(n);
454 }
455 
456 /**
457  *	napi_schedule_irqoff - schedule NAPI poll
458  *	@n: NAPI context
459  *
460  * Variant of napi_schedule(), assuming hard irqs are masked.
461  */
462 static inline void napi_schedule_irqoff(struct napi_struct *n)
463 {
464 	if (napi_schedule_prep(n))
465 		__napi_schedule_irqoff(n);
466 }
467 
468 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
469 static inline bool napi_reschedule(struct napi_struct *napi)
470 {
471 	if (napi_schedule_prep(napi)) {
472 		__napi_schedule(napi);
473 		return true;
474 	}
475 	return false;
476 }
477 
478 bool napi_complete_done(struct napi_struct *n, int work_done);
479 /**
480  *	napi_complete - NAPI processing complete
481  *	@n: NAPI context
482  *
483  * Mark NAPI processing as complete.
484  * Consider using napi_complete_done() instead.
485  * Return false if device should avoid rearming interrupts.
486  */
487 static inline bool napi_complete(struct napi_struct *n)
488 {
489 	return napi_complete_done(n, 0);
490 }
491 
492 /**
493  *	napi_disable - prevent NAPI from scheduling
494  *	@n: NAPI context
495  *
496  * Stop NAPI from being scheduled on this context.
497  * Waits till any outstanding processing completes.
498  */
499 void napi_disable(struct napi_struct *n);
500 
501 /**
502  *	napi_enable - enable NAPI scheduling
503  *	@n: NAPI context
504  *
505  * Resume NAPI from being scheduled on this context.
506  * Must be paired with napi_disable.
507  */
508 static inline void napi_enable(struct napi_struct *n)
509 {
510 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
511 	smp_mb__before_atomic();
512 	clear_bit(NAPI_STATE_SCHED, &n->state);
513 	clear_bit(NAPI_STATE_NPSVC, &n->state);
514 }
515 
516 /**
517  *	napi_synchronize - wait until NAPI is not running
518  *	@n: NAPI context
519  *
520  * Wait until NAPI is done being scheduled on this context.
521  * Waits till any outstanding processing completes but
522  * does not disable future activations.
523  */
524 static inline void napi_synchronize(const struct napi_struct *n)
525 {
526 	if (IS_ENABLED(CONFIG_SMP))
527 		while (test_bit(NAPI_STATE_SCHED, &n->state))
528 			msleep(1);
529 	else
530 		barrier();
531 }
532 
533 /**
534  *	napi_if_scheduled_mark_missed - if napi is running, set the
535  *	NAPIF_STATE_MISSED
536  *	@n: NAPI context
537  *
538  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
539  * NAPI is scheduled.
540  **/
541 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
542 {
543 	unsigned long val, new;
544 
545 	do {
546 		val = READ_ONCE(n->state);
547 		if (val & NAPIF_STATE_DISABLE)
548 			return true;
549 
550 		if (!(val & NAPIF_STATE_SCHED))
551 			return false;
552 
553 		new = val | NAPIF_STATE_MISSED;
554 	} while (cmpxchg(&n->state, val, new) != val);
555 
556 	return true;
557 }
558 
559 enum netdev_queue_state_t {
560 	__QUEUE_STATE_DRV_XOFF,
561 	__QUEUE_STATE_STACK_XOFF,
562 	__QUEUE_STATE_FROZEN,
563 };
564 
565 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
566 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
567 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
568 
569 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
570 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
571 					QUEUE_STATE_FROZEN)
572 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
573 					QUEUE_STATE_FROZEN)
574 
575 /*
576  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
577  * netif_tx_* functions below are used to manipulate this flag.  The
578  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
579  * queue independently.  The netif_xmit_*stopped functions below are called
580  * to check if the queue has been stopped by the driver or stack (either
581  * of the XOFF bits are set in the state).  Drivers should not need to call
582  * netif_xmit*stopped functions, they should only be using netif_tx_*.
583  */
584 
585 struct netdev_queue {
586 /*
587  * read-mostly part
588  */
589 	struct net_device	*dev;
590 	struct Qdisc __rcu	*qdisc;
591 	struct Qdisc		*qdisc_sleeping;
592 #ifdef CONFIG_SYSFS
593 	struct kobject		kobj;
594 #endif
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 	int			numa_node;
597 #endif
598 	unsigned long		tx_maxrate;
599 	/*
600 	 * Number of TX timeouts for this queue
601 	 * (/sys/class/net/DEV/Q/trans_timeout)
602 	 */
603 	unsigned long		trans_timeout;
604 
605 	/* Subordinate device that the queue has been assigned to */
606 	struct net_device	*sb_dev;
607 #ifdef CONFIG_XDP_SOCKETS
608 	struct xsk_buff_pool    *pool;
609 #endif
610 /*
611  * write-mostly part
612  */
613 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
614 	int			xmit_lock_owner;
615 	/*
616 	 * Time (in jiffies) of last Tx
617 	 */
618 	unsigned long		trans_start;
619 
620 	unsigned long		state;
621 
622 #ifdef CONFIG_BQL
623 	struct dql		dql;
624 #endif
625 } ____cacheline_aligned_in_smp;
626 
627 extern int sysctl_fb_tunnels_only_for_init_net;
628 extern int sysctl_devconf_inherit_init_net;
629 
630 /*
631  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
632  *                                     == 1 : For initns only
633  *                                     == 2 : For none.
634  */
635 static inline bool net_has_fallback_tunnels(const struct net *net)
636 {
637 	return !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net ||
639 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
640 }
641 
642 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
643 {
644 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
645 	return q->numa_node;
646 #else
647 	return NUMA_NO_NODE;
648 #endif
649 }
650 
651 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
652 {
653 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
654 	q->numa_node = node;
655 #endif
656 }
657 
658 #ifdef CONFIG_RPS
659 /*
660  * This structure holds an RPS map which can be of variable length.  The
661  * map is an array of CPUs.
662  */
663 struct rps_map {
664 	unsigned int len;
665 	struct rcu_head rcu;
666 	u16 cpus[];
667 };
668 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
669 
670 /*
671  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
672  * tail pointer for that CPU's input queue at the time of last enqueue, and
673  * a hardware filter index.
674  */
675 struct rps_dev_flow {
676 	u16 cpu;
677 	u16 filter;
678 	unsigned int last_qtail;
679 };
680 #define RPS_NO_FILTER 0xffff
681 
682 /*
683  * The rps_dev_flow_table structure contains a table of flow mappings.
684  */
685 struct rps_dev_flow_table {
686 	unsigned int mask;
687 	struct rcu_head rcu;
688 	struct rps_dev_flow flows[];
689 };
690 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
691     ((_num) * sizeof(struct rps_dev_flow)))
692 
693 /*
694  * The rps_sock_flow_table contains mappings of flows to the last CPU
695  * on which they were processed by the application (set in recvmsg).
696  * Each entry is a 32bit value. Upper part is the high-order bits
697  * of flow hash, lower part is CPU number.
698  * rps_cpu_mask is used to partition the space, depending on number of
699  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
700  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
701  * meaning we use 32-6=26 bits for the hash.
702  */
703 struct rps_sock_flow_table {
704 	u32	mask;
705 
706 	u32	ents[] ____cacheline_aligned_in_smp;
707 };
708 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
709 
710 #define RPS_NO_CPU 0xffff
711 
712 extern u32 rps_cpu_mask;
713 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
714 
715 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
716 					u32 hash)
717 {
718 	if (table && hash) {
719 		unsigned int index = hash & table->mask;
720 		u32 val = hash & ~rps_cpu_mask;
721 
722 		/* We only give a hint, preemption can change CPU under us */
723 		val |= raw_smp_processor_id();
724 
725 		if (table->ents[index] != val)
726 			table->ents[index] = val;
727 	}
728 }
729 
730 #ifdef CONFIG_RFS_ACCEL
731 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
732 			 u16 filter_id);
733 #endif
734 #endif /* CONFIG_RPS */
735 
736 /* This structure contains an instance of an RX queue. */
737 struct netdev_rx_queue {
738 #ifdef CONFIG_RPS
739 	struct rps_map __rcu		*rps_map;
740 	struct rps_dev_flow_table __rcu	*rps_flow_table;
741 #endif
742 	struct kobject			kobj;
743 	struct net_device		*dev;
744 	struct xdp_rxq_info		xdp_rxq;
745 #ifdef CONFIG_XDP_SOCKETS
746 	struct xsk_buff_pool            *pool;
747 #endif
748 } ____cacheline_aligned_in_smp;
749 
750 /*
751  * RX queue sysfs structures and functions.
752  */
753 struct rx_queue_attribute {
754 	struct attribute attr;
755 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
756 	ssize_t (*store)(struct netdev_rx_queue *queue,
757 			 const char *buf, size_t len);
758 };
759 
760 #ifdef CONFIG_XPS
761 /*
762  * This structure holds an XPS map which can be of variable length.  The
763  * map is an array of queues.
764  */
765 struct xps_map {
766 	unsigned int len;
767 	unsigned int alloc_len;
768 	struct rcu_head rcu;
769 	u16 queues[];
770 };
771 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
772 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
773        - sizeof(struct xps_map)) / sizeof(u16))
774 
775 /*
776  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
777  */
778 struct xps_dev_maps {
779 	struct rcu_head rcu;
780 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
781 };
782 
783 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
784 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
785 
786 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
787 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
788 
789 #endif /* CONFIG_XPS */
790 
791 #define TC_MAX_QUEUE	16
792 #define TC_BITMASK	15
793 /* HW offloaded queuing disciplines txq count and offset maps */
794 struct netdev_tc_txq {
795 	u16 count;
796 	u16 offset;
797 };
798 
799 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
800 /*
801  * This structure is to hold information about the device
802  * configured to run FCoE protocol stack.
803  */
804 struct netdev_fcoe_hbainfo {
805 	char	manufacturer[64];
806 	char	serial_number[64];
807 	char	hardware_version[64];
808 	char	driver_version[64];
809 	char	optionrom_version[64];
810 	char	firmware_version[64];
811 	char	model[256];
812 	char	model_description[256];
813 };
814 #endif
815 
816 #define MAX_PHYS_ITEM_ID_LEN 32
817 
818 /* This structure holds a unique identifier to identify some
819  * physical item (port for example) used by a netdevice.
820  */
821 struct netdev_phys_item_id {
822 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
823 	unsigned char id_len;
824 };
825 
826 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
827 					    struct netdev_phys_item_id *b)
828 {
829 	return a->id_len == b->id_len &&
830 	       memcmp(a->id, b->id, a->id_len) == 0;
831 }
832 
833 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
834 				       struct sk_buff *skb,
835 				       struct net_device *sb_dev);
836 
837 enum tc_setup_type {
838 	TC_SETUP_QDISC_MQPRIO,
839 	TC_SETUP_CLSU32,
840 	TC_SETUP_CLSFLOWER,
841 	TC_SETUP_CLSMATCHALL,
842 	TC_SETUP_CLSBPF,
843 	TC_SETUP_BLOCK,
844 	TC_SETUP_QDISC_CBS,
845 	TC_SETUP_QDISC_RED,
846 	TC_SETUP_QDISC_PRIO,
847 	TC_SETUP_QDISC_MQ,
848 	TC_SETUP_QDISC_ETF,
849 	TC_SETUP_ROOT_QDISC,
850 	TC_SETUP_QDISC_GRED,
851 	TC_SETUP_QDISC_TAPRIO,
852 	TC_SETUP_FT,
853 	TC_SETUP_QDISC_ETS,
854 	TC_SETUP_QDISC_TBF,
855 	TC_SETUP_QDISC_FIFO,
856 };
857 
858 /* These structures hold the attributes of bpf state that are being passed
859  * to the netdevice through the bpf op.
860  */
861 enum bpf_netdev_command {
862 	/* Set or clear a bpf program used in the earliest stages of packet
863 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
864 	 * is responsible for calling bpf_prog_put on any old progs that are
865 	 * stored. In case of error, the callee need not release the new prog
866 	 * reference, but on success it takes ownership and must bpf_prog_put
867 	 * when it is no longer used.
868 	 */
869 	XDP_SETUP_PROG,
870 	XDP_SETUP_PROG_HW,
871 	/* BPF program for offload callbacks, invoked at program load time. */
872 	BPF_OFFLOAD_MAP_ALLOC,
873 	BPF_OFFLOAD_MAP_FREE,
874 	XDP_SETUP_XSK_POOL,
875 };
876 
877 struct bpf_prog_offload_ops;
878 struct netlink_ext_ack;
879 struct xdp_umem;
880 struct xdp_dev_bulk_queue;
881 struct bpf_xdp_link;
882 
883 enum bpf_xdp_mode {
884 	XDP_MODE_SKB = 0,
885 	XDP_MODE_DRV = 1,
886 	XDP_MODE_HW = 2,
887 	__MAX_XDP_MODE
888 };
889 
890 struct bpf_xdp_entity {
891 	struct bpf_prog *prog;
892 	struct bpf_xdp_link *link;
893 };
894 
895 struct netdev_bpf {
896 	enum bpf_netdev_command command;
897 	union {
898 		/* XDP_SETUP_PROG */
899 		struct {
900 			u32 flags;
901 			struct bpf_prog *prog;
902 			struct netlink_ext_ack *extack;
903 		};
904 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
905 		struct {
906 			struct bpf_offloaded_map *offmap;
907 		};
908 		/* XDP_SETUP_XSK_POOL */
909 		struct {
910 			struct xsk_buff_pool *pool;
911 			u16 queue_id;
912 		} xsk;
913 	};
914 };
915 
916 /* Flags for ndo_xsk_wakeup. */
917 #define XDP_WAKEUP_RX (1 << 0)
918 #define XDP_WAKEUP_TX (1 << 1)
919 
920 #ifdef CONFIG_XFRM_OFFLOAD
921 struct xfrmdev_ops {
922 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
923 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
924 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
925 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
926 				       struct xfrm_state *x);
927 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
928 };
929 #endif
930 
931 struct dev_ifalias {
932 	struct rcu_head rcuhead;
933 	char ifalias[];
934 };
935 
936 struct devlink;
937 struct tlsdev_ops;
938 
939 struct netdev_name_node {
940 	struct hlist_node hlist;
941 	struct list_head list;
942 	struct net_device *dev;
943 	const char *name;
944 };
945 
946 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
947 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
948 
949 struct netdev_net_notifier {
950 	struct list_head list;
951 	struct notifier_block *nb;
952 };
953 
954 /*
955  * This structure defines the management hooks for network devices.
956  * The following hooks can be defined; unless noted otherwise, they are
957  * optional and can be filled with a null pointer.
958  *
959  * int (*ndo_init)(struct net_device *dev);
960  *     This function is called once when a network device is registered.
961  *     The network device can use this for any late stage initialization
962  *     or semantic validation. It can fail with an error code which will
963  *     be propagated back to register_netdev.
964  *
965  * void (*ndo_uninit)(struct net_device *dev);
966  *     This function is called when device is unregistered or when registration
967  *     fails. It is not called if init fails.
968  *
969  * int (*ndo_open)(struct net_device *dev);
970  *     This function is called when a network device transitions to the up
971  *     state.
972  *
973  * int (*ndo_stop)(struct net_device *dev);
974  *     This function is called when a network device transitions to the down
975  *     state.
976  *
977  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
978  *                               struct net_device *dev);
979  *	Called when a packet needs to be transmitted.
980  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
981  *	the queue before that can happen; it's for obsolete devices and weird
982  *	corner cases, but the stack really does a non-trivial amount
983  *	of useless work if you return NETDEV_TX_BUSY.
984  *	Required; cannot be NULL.
985  *
986  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
987  *					   struct net_device *dev
988  *					   netdev_features_t features);
989  *	Called by core transmit path to determine if device is capable of
990  *	performing offload operations on a given packet. This is to give
991  *	the device an opportunity to implement any restrictions that cannot
992  *	be otherwise expressed by feature flags. The check is called with
993  *	the set of features that the stack has calculated and it returns
994  *	those the driver believes to be appropriate.
995  *
996  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
997  *                         struct net_device *sb_dev);
998  *	Called to decide which queue to use when device supports multiple
999  *	transmit queues.
1000  *
1001  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1002  *	This function is called to allow device receiver to make
1003  *	changes to configuration when multicast or promiscuous is enabled.
1004  *
1005  * void (*ndo_set_rx_mode)(struct net_device *dev);
1006  *	This function is called device changes address list filtering.
1007  *	If driver handles unicast address filtering, it should set
1008  *	IFF_UNICAST_FLT in its priv_flags.
1009  *
1010  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1011  *	This function  is called when the Media Access Control address
1012  *	needs to be changed. If this interface is not defined, the
1013  *	MAC address can not be changed.
1014  *
1015  * int (*ndo_validate_addr)(struct net_device *dev);
1016  *	Test if Media Access Control address is valid for the device.
1017  *
1018  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1019  *	Called when a user requests an ioctl which can't be handled by
1020  *	the generic interface code. If not defined ioctls return
1021  *	not supported error code.
1022  *
1023  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1024  *	Used to set network devices bus interface parameters. This interface
1025  *	is retained for legacy reasons; new devices should use the bus
1026  *	interface (PCI) for low level management.
1027  *
1028  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1029  *	Called when a user wants to change the Maximum Transfer Unit
1030  *	of a device.
1031  *
1032  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1033  *	Callback used when the transmitter has not made any progress
1034  *	for dev->watchdog ticks.
1035  *
1036  * void (*ndo_get_stats64)(struct net_device *dev,
1037  *                         struct rtnl_link_stats64 *storage);
1038  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1039  *	Called when a user wants to get the network device usage
1040  *	statistics. Drivers must do one of the following:
1041  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1042  *	   rtnl_link_stats64 structure passed by the caller.
1043  *	2. Define @ndo_get_stats to update a net_device_stats structure
1044  *	   (which should normally be dev->stats) and return a pointer to
1045  *	   it. The structure may be changed asynchronously only if each
1046  *	   field is written atomically.
1047  *	3. Update dev->stats asynchronously and atomically, and define
1048  *	   neither operation.
1049  *
1050  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1051  *	Return true if this device supports offload stats of this attr_id.
1052  *
1053  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1054  *	void *attr_data)
1055  *	Get statistics for offload operations by attr_id. Write it into the
1056  *	attr_data pointer.
1057  *
1058  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1059  *	If device supports VLAN filtering this function is called when a
1060  *	VLAN id is registered.
1061  *
1062  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1063  *	If device supports VLAN filtering this function is called when a
1064  *	VLAN id is unregistered.
1065  *
1066  * void (*ndo_poll_controller)(struct net_device *dev);
1067  *
1068  *	SR-IOV management functions.
1069  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1070  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1071  *			  u8 qos, __be16 proto);
1072  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1073  *			  int max_tx_rate);
1074  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_get_vf_config)(struct net_device *dev,
1077  *			    int vf, struct ifla_vf_info *ivf);
1078  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1079  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1080  *			  struct nlattr *port[]);
1081  *
1082  *      Enable or disable the VF ability to query its RSS Redirection Table and
1083  *      Hash Key. This is needed since on some devices VF share this information
1084  *      with PF and querying it may introduce a theoretical security risk.
1085  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1086  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1087  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1088  *		       void *type_data);
1089  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1090  *	This is always called from the stack with the rtnl lock held and netif
1091  *	tx queues stopped. This allows the netdevice to perform queue
1092  *	management safely.
1093  *
1094  *	Fiber Channel over Ethernet (FCoE) offload functions.
1095  * int (*ndo_fcoe_enable)(struct net_device *dev);
1096  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1097  *	so the underlying device can perform whatever needed configuration or
1098  *	initialization to support acceleration of FCoE traffic.
1099  *
1100  * int (*ndo_fcoe_disable)(struct net_device *dev);
1101  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1102  *	so the underlying device can perform whatever needed clean-ups to
1103  *	stop supporting acceleration of FCoE traffic.
1104  *
1105  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1106  *			     struct scatterlist *sgl, unsigned int sgc);
1107  *	Called when the FCoE Initiator wants to initialize an I/O that
1108  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1109  *	perform necessary setup and returns 1 to indicate the device is set up
1110  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1111  *
1112  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1113  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1114  *	indicated by the FC exchange id 'xid', so the underlying device can
1115  *	clean up and reuse resources for later DDP requests.
1116  *
1117  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1118  *			      struct scatterlist *sgl, unsigned int sgc);
1119  *	Called when the FCoE Target wants to initialize an I/O that
1120  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1121  *	perform necessary setup and returns 1 to indicate the device is set up
1122  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1123  *
1124  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1125  *			       struct netdev_fcoe_hbainfo *hbainfo);
1126  *	Called when the FCoE Protocol stack wants information on the underlying
1127  *	device. This information is utilized by the FCoE protocol stack to
1128  *	register attributes with Fiber Channel management service as per the
1129  *	FC-GS Fabric Device Management Information(FDMI) specification.
1130  *
1131  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1132  *	Called when the underlying device wants to override default World Wide
1133  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1134  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1135  *	protocol stack to use.
1136  *
1137  *	RFS acceleration.
1138  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1139  *			    u16 rxq_index, u32 flow_id);
1140  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1141  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1142  *	Return the filter ID on success, or a negative error code.
1143  *
1144  *	Slave management functions (for bridge, bonding, etc).
1145  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1146  *	Called to make another netdev an underling.
1147  *
1148  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1149  *	Called to release previously enslaved netdev.
1150  *
1151  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1152  *					    struct sk_buff *skb,
1153  *					    bool all_slaves);
1154  *	Get the xmit slave of master device. If all_slaves is true, function
1155  *	assume all the slaves can transmit.
1156  *
1157  *      Feature/offload setting functions.
1158  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1159  *		netdev_features_t features);
1160  *	Adjusts the requested feature flags according to device-specific
1161  *	constraints, and returns the resulting flags. Must not modify
1162  *	the device state.
1163  *
1164  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1165  *	Called to update device configuration to new features. Passed
1166  *	feature set might be less than what was returned by ndo_fix_features()).
1167  *	Must return >0 or -errno if it changed dev->features itself.
1168  *
1169  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1170  *		      struct net_device *dev,
1171  *		      const unsigned char *addr, u16 vid, u16 flags,
1172  *		      struct netlink_ext_ack *extack);
1173  *	Adds an FDB entry to dev for addr.
1174  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1175  *		      struct net_device *dev,
1176  *		      const unsigned char *addr, u16 vid)
1177  *	Deletes the FDB entry from dev coresponding to addr.
1178  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1179  *		       struct net_device *dev, struct net_device *filter_dev,
1180  *		       int *idx)
1181  *	Used to add FDB entries to dump requests. Implementers should add
1182  *	entries to skb and update idx with the number of entries.
1183  *
1184  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1185  *			     u16 flags, struct netlink_ext_ack *extack)
1186  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1187  *			     struct net_device *dev, u32 filter_mask,
1188  *			     int nlflags)
1189  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1190  *			     u16 flags);
1191  *
1192  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1193  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1194  *	which do not represent real hardware may define this to allow their
1195  *	userspace components to manage their virtual carrier state. Devices
1196  *	that determine carrier state from physical hardware properties (eg
1197  *	network cables) or protocol-dependent mechanisms (eg
1198  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1199  *
1200  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1201  *			       struct netdev_phys_item_id *ppid);
1202  *	Called to get ID of physical port of this device. If driver does
1203  *	not implement this, it is assumed that the hw is not able to have
1204  *	multiple net devices on single physical port.
1205  *
1206  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1207  *				 struct netdev_phys_item_id *ppid)
1208  *	Called to get the parent ID of the physical port of this device.
1209  *
1210  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1211  *			      struct udp_tunnel_info *ti);
1212  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1213  *	address family that a UDP tunnel is listnening to. It is called only
1214  *	when a new port starts listening. The operation is protected by the
1215  *	RTNL.
1216  *
1217  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1218  *			      struct udp_tunnel_info *ti);
1219  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1220  *	address family that the UDP tunnel is not listening to anymore. The
1221  *	operation is protected by the RTNL.
1222  *
1223  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1224  *				 struct net_device *dev)
1225  *	Called by upper layer devices to accelerate switching or other
1226  *	station functionality into hardware. 'pdev is the lowerdev
1227  *	to use for the offload and 'dev' is the net device that will
1228  *	back the offload. Returns a pointer to the private structure
1229  *	the upper layer will maintain.
1230  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1231  *	Called by upper layer device to delete the station created
1232  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1233  *	the station and priv is the structure returned by the add
1234  *	operation.
1235  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1236  *			     int queue_index, u32 maxrate);
1237  *	Called when a user wants to set a max-rate limitation of specific
1238  *	TX queue.
1239  * int (*ndo_get_iflink)(const struct net_device *dev);
1240  *	Called to get the iflink value of this device.
1241  * void (*ndo_change_proto_down)(struct net_device *dev,
1242  *				 bool proto_down);
1243  *	This function is used to pass protocol port error state information
1244  *	to the switch driver. The switch driver can react to the proto_down
1245  *      by doing a phys down on the associated switch port.
1246  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1247  *	This function is used to get egress tunnel information for given skb.
1248  *	This is useful for retrieving outer tunnel header parameters while
1249  *	sampling packet.
1250  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1251  *	This function is used to specify the headroom that the skb must
1252  *	consider when allocation skb during packet reception. Setting
1253  *	appropriate rx headroom value allows avoiding skb head copy on
1254  *	forward. Setting a negative value resets the rx headroom to the
1255  *	default value.
1256  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1257  *	This function is used to set or query state related to XDP on the
1258  *	netdevice and manage BPF offload. See definition of
1259  *	enum bpf_netdev_command for details.
1260  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1261  *			u32 flags);
1262  *	This function is used to submit @n XDP packets for transmit on a
1263  *	netdevice. Returns number of frames successfully transmitted, frames
1264  *	that got dropped are freed/returned via xdp_return_frame().
1265  *	Returns negative number, means general error invoking ndo, meaning
1266  *	no frames were xmit'ed and core-caller will free all frames.
1267  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1268  *      This function is used to wake up the softirq, ksoftirqd or kthread
1269  *	responsible for sending and/or receiving packets on a specific
1270  *	queue id bound to an AF_XDP socket. The flags field specifies if
1271  *	only RX, only Tx, or both should be woken up using the flags
1272  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1273  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1274  *	Get devlink port instance associated with a given netdev.
1275  *	Called with a reference on the netdevice and devlink locks only,
1276  *	rtnl_lock is not held.
1277  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1278  *			 int cmd);
1279  *	Add, change, delete or get information on an IPv4 tunnel.
1280  */
1281 struct net_device_ops {
1282 	int			(*ndo_init)(struct net_device *dev);
1283 	void			(*ndo_uninit)(struct net_device *dev);
1284 	int			(*ndo_open)(struct net_device *dev);
1285 	int			(*ndo_stop)(struct net_device *dev);
1286 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1287 						  struct net_device *dev);
1288 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1289 						      struct net_device *dev,
1290 						      netdev_features_t features);
1291 	u16			(*ndo_select_queue)(struct net_device *dev,
1292 						    struct sk_buff *skb,
1293 						    struct net_device *sb_dev);
1294 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1295 						       int flags);
1296 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1297 	int			(*ndo_set_mac_address)(struct net_device *dev,
1298 						       void *addr);
1299 	int			(*ndo_validate_addr)(struct net_device *dev);
1300 	int			(*ndo_do_ioctl)(struct net_device *dev,
1301 					        struct ifreq *ifr, int cmd);
1302 	int			(*ndo_set_config)(struct net_device *dev,
1303 					          struct ifmap *map);
1304 	int			(*ndo_change_mtu)(struct net_device *dev,
1305 						  int new_mtu);
1306 	int			(*ndo_neigh_setup)(struct net_device *dev,
1307 						   struct neigh_parms *);
1308 	void			(*ndo_tx_timeout) (struct net_device *dev,
1309 						   unsigned int txqueue);
1310 
1311 	void			(*ndo_get_stats64)(struct net_device *dev,
1312 						   struct rtnl_link_stats64 *storage);
1313 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1314 	int			(*ndo_get_offload_stats)(int attr_id,
1315 							 const struct net_device *dev,
1316 							 void *attr_data);
1317 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1318 
1319 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1320 						       __be16 proto, u16 vid);
1321 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1322 						        __be16 proto, u16 vid);
1323 #ifdef CONFIG_NET_POLL_CONTROLLER
1324 	void                    (*ndo_poll_controller)(struct net_device *dev);
1325 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1326 						     struct netpoll_info *info);
1327 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1328 #endif
1329 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1330 						  int queue, u8 *mac);
1331 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1332 						   int queue, u16 vlan,
1333 						   u8 qos, __be16 proto);
1334 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1335 						   int vf, int min_tx_rate,
1336 						   int max_tx_rate);
1337 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1338 						       int vf, bool setting);
1339 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1340 						    int vf, bool setting);
1341 	int			(*ndo_get_vf_config)(struct net_device *dev,
1342 						     int vf,
1343 						     struct ifla_vf_info *ivf);
1344 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1345 							 int vf, int link_state);
1346 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1347 						    int vf,
1348 						    struct ifla_vf_stats
1349 						    *vf_stats);
1350 	int			(*ndo_set_vf_port)(struct net_device *dev,
1351 						   int vf,
1352 						   struct nlattr *port[]);
1353 	int			(*ndo_get_vf_port)(struct net_device *dev,
1354 						   int vf, struct sk_buff *skb);
1355 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1356 						   int vf,
1357 						   struct ifla_vf_guid *node_guid,
1358 						   struct ifla_vf_guid *port_guid);
1359 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1360 						   int vf, u64 guid,
1361 						   int guid_type);
1362 	int			(*ndo_set_vf_rss_query_en)(
1363 						   struct net_device *dev,
1364 						   int vf, bool setting);
1365 	int			(*ndo_setup_tc)(struct net_device *dev,
1366 						enum tc_setup_type type,
1367 						void *type_data);
1368 #if IS_ENABLED(CONFIG_FCOE)
1369 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1370 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1371 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1372 						      u16 xid,
1373 						      struct scatterlist *sgl,
1374 						      unsigned int sgc);
1375 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1376 						     u16 xid);
1377 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1378 						       u16 xid,
1379 						       struct scatterlist *sgl,
1380 						       unsigned int sgc);
1381 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1382 							struct netdev_fcoe_hbainfo *hbainfo);
1383 #endif
1384 
1385 #if IS_ENABLED(CONFIG_LIBFCOE)
1386 #define NETDEV_FCOE_WWNN 0
1387 #define NETDEV_FCOE_WWPN 1
1388 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1389 						    u64 *wwn, int type);
1390 #endif
1391 
1392 #ifdef CONFIG_RFS_ACCEL
1393 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1394 						     const struct sk_buff *skb,
1395 						     u16 rxq_index,
1396 						     u32 flow_id);
1397 #endif
1398 	int			(*ndo_add_slave)(struct net_device *dev,
1399 						 struct net_device *slave_dev,
1400 						 struct netlink_ext_ack *extack);
1401 	int			(*ndo_del_slave)(struct net_device *dev,
1402 						 struct net_device *slave_dev);
1403 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1404 						      struct sk_buff *skb,
1405 						      bool all_slaves);
1406 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1407 						    netdev_features_t features);
1408 	int			(*ndo_set_features)(struct net_device *dev,
1409 						    netdev_features_t features);
1410 	int			(*ndo_neigh_construct)(struct net_device *dev,
1411 						       struct neighbour *n);
1412 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1413 						     struct neighbour *n);
1414 
1415 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1416 					       struct nlattr *tb[],
1417 					       struct net_device *dev,
1418 					       const unsigned char *addr,
1419 					       u16 vid,
1420 					       u16 flags,
1421 					       struct netlink_ext_ack *extack);
1422 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1423 					       struct nlattr *tb[],
1424 					       struct net_device *dev,
1425 					       const unsigned char *addr,
1426 					       u16 vid);
1427 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1428 						struct netlink_callback *cb,
1429 						struct net_device *dev,
1430 						struct net_device *filter_dev,
1431 						int *idx);
1432 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1433 					       struct nlattr *tb[],
1434 					       struct net_device *dev,
1435 					       const unsigned char *addr,
1436 					       u16 vid, u32 portid, u32 seq,
1437 					       struct netlink_ext_ack *extack);
1438 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1439 						      struct nlmsghdr *nlh,
1440 						      u16 flags,
1441 						      struct netlink_ext_ack *extack);
1442 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1443 						      u32 pid, u32 seq,
1444 						      struct net_device *dev,
1445 						      u32 filter_mask,
1446 						      int nlflags);
1447 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1448 						      struct nlmsghdr *nlh,
1449 						      u16 flags);
1450 	int			(*ndo_change_carrier)(struct net_device *dev,
1451 						      bool new_carrier);
1452 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1453 							struct netdev_phys_item_id *ppid);
1454 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1455 							  struct netdev_phys_item_id *ppid);
1456 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1457 							  char *name, size_t len);
1458 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1459 						      struct udp_tunnel_info *ti);
1460 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1461 						      struct udp_tunnel_info *ti);
1462 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1463 							struct net_device *dev);
1464 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1465 							void *priv);
1466 
1467 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1468 						      int queue_index,
1469 						      u32 maxrate);
1470 	int			(*ndo_get_iflink)(const struct net_device *dev);
1471 	int			(*ndo_change_proto_down)(struct net_device *dev,
1472 							 bool proto_down);
1473 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1474 						       struct sk_buff *skb);
1475 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1476 						       int needed_headroom);
1477 	int			(*ndo_bpf)(struct net_device *dev,
1478 					   struct netdev_bpf *bpf);
1479 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1480 						struct xdp_frame **xdp,
1481 						u32 flags);
1482 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1483 						  u32 queue_id, u32 flags);
1484 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1485 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1486 						  struct ip_tunnel_parm *p, int cmd);
1487 };
1488 
1489 /**
1490  * enum net_device_priv_flags - &struct net_device priv_flags
1491  *
1492  * These are the &struct net_device, they are only set internally
1493  * by drivers and used in the kernel. These flags are invisible to
1494  * userspace; this means that the order of these flags can change
1495  * during any kernel release.
1496  *
1497  * You should have a pretty good reason to be extending these flags.
1498  *
1499  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1500  * @IFF_EBRIDGE: Ethernet bridging device
1501  * @IFF_BONDING: bonding master or slave
1502  * @IFF_ISATAP: ISATAP interface (RFC4214)
1503  * @IFF_WAN_HDLC: WAN HDLC device
1504  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1505  *	release skb->dst
1506  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1507  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1508  * @IFF_MACVLAN_PORT: device used as macvlan port
1509  * @IFF_BRIDGE_PORT: device used as bridge port
1510  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1511  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1512  * @IFF_UNICAST_FLT: Supports unicast filtering
1513  * @IFF_TEAM_PORT: device used as team port
1514  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1515  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1516  *	change when it's running
1517  * @IFF_MACVLAN: Macvlan device
1518  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1519  *	underlying stacked devices
1520  * @IFF_L3MDEV_MASTER: device is an L3 master device
1521  * @IFF_NO_QUEUE: device can run without qdisc attached
1522  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1523  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1524  * @IFF_TEAM: device is a team device
1525  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1526  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1527  *	entity (i.e. the master device for bridged veth)
1528  * @IFF_MACSEC: device is a MACsec device
1529  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1530  * @IFF_FAILOVER: device is a failover master device
1531  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1532  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1533  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1534  */
1535 enum netdev_priv_flags {
1536 	IFF_802_1Q_VLAN			= 1<<0,
1537 	IFF_EBRIDGE			= 1<<1,
1538 	IFF_BONDING			= 1<<2,
1539 	IFF_ISATAP			= 1<<3,
1540 	IFF_WAN_HDLC			= 1<<4,
1541 	IFF_XMIT_DST_RELEASE		= 1<<5,
1542 	IFF_DONT_BRIDGE			= 1<<6,
1543 	IFF_DISABLE_NETPOLL		= 1<<7,
1544 	IFF_MACVLAN_PORT		= 1<<8,
1545 	IFF_BRIDGE_PORT			= 1<<9,
1546 	IFF_OVS_DATAPATH		= 1<<10,
1547 	IFF_TX_SKB_SHARING		= 1<<11,
1548 	IFF_UNICAST_FLT			= 1<<12,
1549 	IFF_TEAM_PORT			= 1<<13,
1550 	IFF_SUPP_NOFCS			= 1<<14,
1551 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1552 	IFF_MACVLAN			= 1<<16,
1553 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1554 	IFF_L3MDEV_MASTER		= 1<<18,
1555 	IFF_NO_QUEUE			= 1<<19,
1556 	IFF_OPENVSWITCH			= 1<<20,
1557 	IFF_L3MDEV_SLAVE		= 1<<21,
1558 	IFF_TEAM			= 1<<22,
1559 	IFF_RXFH_CONFIGURED		= 1<<23,
1560 	IFF_PHONY_HEADROOM		= 1<<24,
1561 	IFF_MACSEC			= 1<<25,
1562 	IFF_NO_RX_HANDLER		= 1<<26,
1563 	IFF_FAILOVER			= 1<<27,
1564 	IFF_FAILOVER_SLAVE		= 1<<28,
1565 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1566 	IFF_LIVE_RENAME_OK		= 1<<30,
1567 };
1568 
1569 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1570 #define IFF_EBRIDGE			IFF_EBRIDGE
1571 #define IFF_BONDING			IFF_BONDING
1572 #define IFF_ISATAP			IFF_ISATAP
1573 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1574 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1575 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1576 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1577 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1578 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1579 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1580 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1581 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1582 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1583 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1584 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1585 #define IFF_MACVLAN			IFF_MACVLAN
1586 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1587 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1588 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1589 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1590 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1591 #define IFF_TEAM			IFF_TEAM
1592 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1593 #define IFF_MACSEC			IFF_MACSEC
1594 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1595 #define IFF_FAILOVER			IFF_FAILOVER
1596 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1597 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1598 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1599 
1600 /**
1601  *	struct net_device - The DEVICE structure.
1602  *
1603  *	Actually, this whole structure is a big mistake.  It mixes I/O
1604  *	data with strictly "high-level" data, and it has to know about
1605  *	almost every data structure used in the INET module.
1606  *
1607  *	@name:	This is the first field of the "visible" part of this structure
1608  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1609  *		of the interface.
1610  *
1611  *	@name_node:	Name hashlist node
1612  *	@ifalias:	SNMP alias
1613  *	@mem_end:	Shared memory end
1614  *	@mem_start:	Shared memory start
1615  *	@base_addr:	Device I/O address
1616  *	@irq:		Device IRQ number
1617  *
1618  *	@state:		Generic network queuing layer state, see netdev_state_t
1619  *	@dev_list:	The global list of network devices
1620  *	@napi_list:	List entry used for polling NAPI devices
1621  *	@unreg_list:	List entry  when we are unregistering the
1622  *			device; see the function unregister_netdev
1623  *	@close_list:	List entry used when we are closing the device
1624  *	@ptype_all:     Device-specific packet handlers for all protocols
1625  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1626  *
1627  *	@adj_list:	Directly linked devices, like slaves for bonding
1628  *	@features:	Currently active device features
1629  *	@hw_features:	User-changeable features
1630  *
1631  *	@wanted_features:	User-requested features
1632  *	@vlan_features:		Mask of features inheritable by VLAN devices
1633  *
1634  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1635  *				This field indicates what encapsulation
1636  *				offloads the hardware is capable of doing,
1637  *				and drivers will need to set them appropriately.
1638  *
1639  *	@mpls_features:	Mask of features inheritable by MPLS
1640  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1641  *
1642  *	@ifindex:	interface index
1643  *	@group:		The group the device belongs to
1644  *
1645  *	@stats:		Statistics struct, which was left as a legacy, use
1646  *			rtnl_link_stats64 instead
1647  *
1648  *	@rx_dropped:	Dropped packets by core network,
1649  *			do not use this in drivers
1650  *	@tx_dropped:	Dropped packets by core network,
1651  *			do not use this in drivers
1652  *	@rx_nohandler:	nohandler dropped packets by core network on
1653  *			inactive devices, do not use this in drivers
1654  *	@carrier_up_count:	Number of times the carrier has been up
1655  *	@carrier_down_count:	Number of times the carrier has been down
1656  *
1657  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1658  *				instead of ioctl,
1659  *				see <net/iw_handler.h> for details.
1660  *	@wireless_data:	Instance data managed by the core of wireless extensions
1661  *
1662  *	@netdev_ops:	Includes several pointers to callbacks,
1663  *			if one wants to override the ndo_*() functions
1664  *	@ethtool_ops:	Management operations
1665  *	@l3mdev_ops:	Layer 3 master device operations
1666  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1667  *			discovery handling. Necessary for e.g. 6LoWPAN.
1668  *	@xfrmdev_ops:	Transformation offload operations
1669  *	@tlsdev_ops:	Transport Layer Security offload operations
1670  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1671  *			of Layer 2 headers.
1672  *
1673  *	@flags:		Interface flags (a la BSD)
1674  *	@priv_flags:	Like 'flags' but invisible to userspace,
1675  *			see if.h for the definitions
1676  *	@gflags:	Global flags ( kept as legacy )
1677  *	@padded:	How much padding added by alloc_netdev()
1678  *	@operstate:	RFC2863 operstate
1679  *	@link_mode:	Mapping policy to operstate
1680  *	@if_port:	Selectable AUI, TP, ...
1681  *	@dma:		DMA channel
1682  *	@mtu:		Interface MTU value
1683  *	@min_mtu:	Interface Minimum MTU value
1684  *	@max_mtu:	Interface Maximum MTU value
1685  *	@type:		Interface hardware type
1686  *	@hard_header_len: Maximum hardware header length.
1687  *	@min_header_len:  Minimum hardware header length
1688  *
1689  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1690  *			  cases can this be guaranteed
1691  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1692  *			  cases can this be guaranteed. Some cases also use
1693  *			  LL_MAX_HEADER instead to allocate the skb
1694  *
1695  *	interface address info:
1696  *
1697  * 	@perm_addr:		Permanent hw address
1698  * 	@addr_assign_type:	Hw address assignment type
1699  * 	@addr_len:		Hardware address length
1700  *	@upper_level:		Maximum depth level of upper devices.
1701  *	@lower_level:		Maximum depth level of lower devices.
1702  *	@neigh_priv_len:	Used in neigh_alloc()
1703  * 	@dev_id:		Used to differentiate devices that share
1704  * 				the same link layer address
1705  * 	@dev_port:		Used to differentiate devices that share
1706  * 				the same function
1707  *	@addr_list_lock:	XXX: need comments on this one
1708  *	@name_assign_type:	network interface name assignment type
1709  *	@uc_promisc:		Counter that indicates promiscuous mode
1710  *				has been enabled due to the need to listen to
1711  *				additional unicast addresses in a device that
1712  *				does not implement ndo_set_rx_mode()
1713  *	@uc:			unicast mac addresses
1714  *	@mc:			multicast mac addresses
1715  *	@dev_addrs:		list of device hw addresses
1716  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1717  *	@promiscuity:		Number of times the NIC is told to work in
1718  *				promiscuous mode; if it becomes 0 the NIC will
1719  *				exit promiscuous mode
1720  *	@allmulti:		Counter, enables or disables allmulticast mode
1721  *
1722  *	@vlan_info:	VLAN info
1723  *	@dsa_ptr:	dsa specific data
1724  *	@tipc_ptr:	TIPC specific data
1725  *	@atalk_ptr:	AppleTalk link
1726  *	@ip_ptr:	IPv4 specific data
1727  *	@dn_ptr:	DECnet specific data
1728  *	@ip6_ptr:	IPv6 specific data
1729  *	@ax25_ptr:	AX.25 specific data
1730  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1731  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1732  *			 device struct
1733  *	@mpls_ptr:	mpls_dev struct pointer
1734  *
1735  *	@dev_addr:	Hw address (before bcast,
1736  *			because most packets are unicast)
1737  *
1738  *	@_rx:			Array of RX queues
1739  *	@num_rx_queues:		Number of RX queues
1740  *				allocated at register_netdev() time
1741  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1742  *	@xdp_prog:		XDP sockets filter program pointer
1743  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1744  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1745  *				allow to avoid NIC hard IRQ, on busy queues.
1746  *
1747  *	@rx_handler:		handler for received packets
1748  *	@rx_handler_data: 	XXX: need comments on this one
1749  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1750  *				ingress processing
1751  *	@ingress_queue:		XXX: need comments on this one
1752  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1753  *	@broadcast:		hw bcast address
1754  *
1755  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1756  *			indexed by RX queue number. Assigned by driver.
1757  *			This must only be set if the ndo_rx_flow_steer
1758  *			operation is defined
1759  *	@index_hlist:		Device index hash chain
1760  *
1761  *	@_tx:			Array of TX queues
1762  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1763  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1764  *	@qdisc:			Root qdisc from userspace point of view
1765  *	@tx_queue_len:		Max frames per queue allowed
1766  *	@tx_global_lock: 	XXX: need comments on this one
1767  *	@xdp_bulkq:		XDP device bulk queue
1768  *	@xps_cpus_map:		all CPUs map for XPS device
1769  *	@xps_rxqs_map:		all RXQs map for XPS device
1770  *
1771  *	@xps_maps:	XXX: need comments on this one
1772  *	@miniq_egress:		clsact qdisc specific data for
1773  *				egress processing
1774  *	@qdisc_hash:		qdisc hash table
1775  *	@watchdog_timeo:	Represents the timeout that is used by
1776  *				the watchdog (see dev_watchdog())
1777  *	@watchdog_timer:	List of timers
1778  *
1779  *	@proto_down_reason:	reason a netdev interface is held down
1780  *	@pcpu_refcnt:		Number of references to this device
1781  *	@todo_list:		Delayed register/unregister
1782  *	@link_watch_list:	XXX: need comments on this one
1783  *
1784  *	@reg_state:		Register/unregister state machine
1785  *	@dismantle:		Device is going to be freed
1786  *	@rtnl_link_state:	This enum represents the phases of creating
1787  *				a new link
1788  *
1789  *	@needs_free_netdev:	Should unregister perform free_netdev?
1790  *	@priv_destructor:	Called from unregister
1791  *	@npinfo:		XXX: need comments on this one
1792  * 	@nd_net:		Network namespace this network device is inside
1793  *
1794  * 	@ml_priv:	Mid-layer private
1795  * 	@lstats:	Loopback statistics
1796  * 	@tstats:	Tunnel statistics
1797  * 	@dstats:	Dummy statistics
1798  * 	@vstats:	Virtual ethernet statistics
1799  *
1800  *	@garp_port:	GARP
1801  *	@mrp_port:	MRP
1802  *
1803  *	@dev:		Class/net/name entry
1804  *	@sysfs_groups:	Space for optional device, statistics and wireless
1805  *			sysfs groups
1806  *
1807  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1808  *	@rtnl_link_ops:	Rtnl_link_ops
1809  *
1810  *	@gso_max_size:	Maximum size of generic segmentation offload
1811  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1812  *			NIC for GSO
1813  *
1814  *	@dcbnl_ops:	Data Center Bridging netlink ops
1815  *	@num_tc:	Number of traffic classes in the net device
1816  *	@tc_to_txq:	XXX: need comments on this one
1817  *	@prio_tc_map:	XXX: need comments on this one
1818  *
1819  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1820  *
1821  *	@priomap:	XXX: need comments on this one
1822  *	@phydev:	Physical device may attach itself
1823  *			for hardware timestamping
1824  *	@sfp_bus:	attached &struct sfp_bus structure.
1825  *
1826  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1827  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1828  *
1829  *	@proto_down:	protocol port state information can be sent to the
1830  *			switch driver and used to set the phys state of the
1831  *			switch port.
1832  *
1833  *	@wol_enabled:	Wake-on-LAN is enabled
1834  *
1835  *	@net_notifier_list:	List of per-net netdev notifier block
1836  *				that follow this device when it is moved
1837  *				to another network namespace.
1838  *
1839  *	@macsec_ops:    MACsec offloading ops
1840  *
1841  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1842  *				offload capabilities of the device
1843  *	@udp_tunnel_nic:	UDP tunnel offload state
1844  *	@xdp_state:		stores info on attached XDP BPF programs
1845  *
1846  *	FIXME: cleanup struct net_device such that network protocol info
1847  *	moves out.
1848  */
1849 
1850 struct net_device {
1851 	char			name[IFNAMSIZ];
1852 	struct netdev_name_node	*name_node;
1853 	struct dev_ifalias	__rcu *ifalias;
1854 	/*
1855 	 *	I/O specific fields
1856 	 *	FIXME: Merge these and struct ifmap into one
1857 	 */
1858 	unsigned long		mem_end;
1859 	unsigned long		mem_start;
1860 	unsigned long		base_addr;
1861 	int			irq;
1862 
1863 	/*
1864 	 *	Some hardware also needs these fields (state,dev_list,
1865 	 *	napi_list,unreg_list,close_list) but they are not
1866 	 *	part of the usual set specified in Space.c.
1867 	 */
1868 
1869 	unsigned long		state;
1870 
1871 	struct list_head	dev_list;
1872 	struct list_head	napi_list;
1873 	struct list_head	unreg_list;
1874 	struct list_head	close_list;
1875 	struct list_head	ptype_all;
1876 	struct list_head	ptype_specific;
1877 
1878 	struct {
1879 		struct list_head upper;
1880 		struct list_head lower;
1881 	} adj_list;
1882 
1883 	netdev_features_t	features;
1884 	netdev_features_t	hw_features;
1885 	netdev_features_t	wanted_features;
1886 	netdev_features_t	vlan_features;
1887 	netdev_features_t	hw_enc_features;
1888 	netdev_features_t	mpls_features;
1889 	netdev_features_t	gso_partial_features;
1890 
1891 	int			ifindex;
1892 	int			group;
1893 
1894 	struct net_device_stats	stats;
1895 
1896 	atomic_long_t		rx_dropped;
1897 	atomic_long_t		tx_dropped;
1898 	atomic_long_t		rx_nohandler;
1899 
1900 	/* Stats to monitor link on/off, flapping */
1901 	atomic_t		carrier_up_count;
1902 	atomic_t		carrier_down_count;
1903 
1904 #ifdef CONFIG_WIRELESS_EXT
1905 	const struct iw_handler_def *wireless_handlers;
1906 	struct iw_public_data	*wireless_data;
1907 #endif
1908 	const struct net_device_ops *netdev_ops;
1909 	const struct ethtool_ops *ethtool_ops;
1910 #ifdef CONFIG_NET_L3_MASTER_DEV
1911 	const struct l3mdev_ops	*l3mdev_ops;
1912 #endif
1913 #if IS_ENABLED(CONFIG_IPV6)
1914 	const struct ndisc_ops *ndisc_ops;
1915 #endif
1916 
1917 #ifdef CONFIG_XFRM_OFFLOAD
1918 	const struct xfrmdev_ops *xfrmdev_ops;
1919 #endif
1920 
1921 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1922 	const struct tlsdev_ops *tlsdev_ops;
1923 #endif
1924 
1925 	const struct header_ops *header_ops;
1926 
1927 	unsigned int		flags;
1928 	unsigned int		priv_flags;
1929 
1930 	unsigned short		gflags;
1931 	unsigned short		padded;
1932 
1933 	unsigned char		operstate;
1934 	unsigned char		link_mode;
1935 
1936 	unsigned char		if_port;
1937 	unsigned char		dma;
1938 
1939 	/* Note : dev->mtu is often read without holding a lock.
1940 	 * Writers usually hold RTNL.
1941 	 * It is recommended to use READ_ONCE() to annotate the reads,
1942 	 * and to use WRITE_ONCE() to annotate the writes.
1943 	 */
1944 	unsigned int		mtu;
1945 	unsigned int		min_mtu;
1946 	unsigned int		max_mtu;
1947 	unsigned short		type;
1948 	unsigned short		hard_header_len;
1949 	unsigned char		min_header_len;
1950 
1951 	unsigned short		needed_headroom;
1952 	unsigned short		needed_tailroom;
1953 
1954 	/* Interface address info. */
1955 	unsigned char		perm_addr[MAX_ADDR_LEN];
1956 	unsigned char		addr_assign_type;
1957 	unsigned char		addr_len;
1958 	unsigned char		upper_level;
1959 	unsigned char		lower_level;
1960 	unsigned short		neigh_priv_len;
1961 	unsigned short          dev_id;
1962 	unsigned short          dev_port;
1963 	spinlock_t		addr_list_lock;
1964 	unsigned char		name_assign_type;
1965 	bool			uc_promisc;
1966 	struct netdev_hw_addr_list	uc;
1967 	struct netdev_hw_addr_list	mc;
1968 	struct netdev_hw_addr_list	dev_addrs;
1969 
1970 #ifdef CONFIG_SYSFS
1971 	struct kset		*queues_kset;
1972 #endif
1973 	unsigned int		promiscuity;
1974 	unsigned int		allmulti;
1975 
1976 
1977 	/* Protocol-specific pointers */
1978 
1979 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1980 	struct vlan_info __rcu	*vlan_info;
1981 #endif
1982 #if IS_ENABLED(CONFIG_NET_DSA)
1983 	struct dsa_port		*dsa_ptr;
1984 #endif
1985 #if IS_ENABLED(CONFIG_TIPC)
1986 	struct tipc_bearer __rcu *tipc_ptr;
1987 #endif
1988 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1989 	void 			*atalk_ptr;
1990 #endif
1991 	struct in_device __rcu	*ip_ptr;
1992 #if IS_ENABLED(CONFIG_DECNET)
1993 	struct dn_dev __rcu     *dn_ptr;
1994 #endif
1995 	struct inet6_dev __rcu	*ip6_ptr;
1996 #if IS_ENABLED(CONFIG_AX25)
1997 	void			*ax25_ptr;
1998 #endif
1999 	struct wireless_dev	*ieee80211_ptr;
2000 	struct wpan_dev		*ieee802154_ptr;
2001 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2002 	struct mpls_dev __rcu	*mpls_ptr;
2003 #endif
2004 
2005 /*
2006  * Cache lines mostly used on receive path (including eth_type_trans())
2007  */
2008 	/* Interface address info used in eth_type_trans() */
2009 	unsigned char		*dev_addr;
2010 
2011 	struct netdev_rx_queue	*_rx;
2012 	unsigned int		num_rx_queues;
2013 	unsigned int		real_num_rx_queues;
2014 
2015 	struct bpf_prog __rcu	*xdp_prog;
2016 	unsigned long		gro_flush_timeout;
2017 	int			napi_defer_hard_irqs;
2018 	rx_handler_func_t __rcu	*rx_handler;
2019 	void __rcu		*rx_handler_data;
2020 
2021 #ifdef CONFIG_NET_CLS_ACT
2022 	struct mini_Qdisc __rcu	*miniq_ingress;
2023 #endif
2024 	struct netdev_queue __rcu *ingress_queue;
2025 #ifdef CONFIG_NETFILTER_INGRESS
2026 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2027 #endif
2028 
2029 	unsigned char		broadcast[MAX_ADDR_LEN];
2030 #ifdef CONFIG_RFS_ACCEL
2031 	struct cpu_rmap		*rx_cpu_rmap;
2032 #endif
2033 	struct hlist_node	index_hlist;
2034 
2035 /*
2036  * Cache lines mostly used on transmit path
2037  */
2038 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2039 	unsigned int		num_tx_queues;
2040 	unsigned int		real_num_tx_queues;
2041 	struct Qdisc		*qdisc;
2042 	unsigned int		tx_queue_len;
2043 	spinlock_t		tx_global_lock;
2044 
2045 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2046 
2047 #ifdef CONFIG_XPS
2048 	struct xps_dev_maps __rcu *xps_cpus_map;
2049 	struct xps_dev_maps __rcu *xps_rxqs_map;
2050 #endif
2051 #ifdef CONFIG_NET_CLS_ACT
2052 	struct mini_Qdisc __rcu	*miniq_egress;
2053 #endif
2054 
2055 #ifdef CONFIG_NET_SCHED
2056 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2057 #endif
2058 	/* These may be needed for future network-power-down code. */
2059 	struct timer_list	watchdog_timer;
2060 	int			watchdog_timeo;
2061 
2062 	u32                     proto_down_reason;
2063 
2064 	struct list_head	todo_list;
2065 	int __percpu		*pcpu_refcnt;
2066 
2067 	struct list_head	link_watch_list;
2068 
2069 	enum { NETREG_UNINITIALIZED=0,
2070 	       NETREG_REGISTERED,	/* completed register_netdevice */
2071 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2072 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2073 	       NETREG_RELEASED,		/* called free_netdev */
2074 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2075 	} reg_state:8;
2076 
2077 	bool dismantle;
2078 
2079 	enum {
2080 		RTNL_LINK_INITIALIZED,
2081 		RTNL_LINK_INITIALIZING,
2082 	} rtnl_link_state:16;
2083 
2084 	bool needs_free_netdev;
2085 	void (*priv_destructor)(struct net_device *dev);
2086 
2087 #ifdef CONFIG_NETPOLL
2088 	struct netpoll_info __rcu	*npinfo;
2089 #endif
2090 
2091 	possible_net_t			nd_net;
2092 
2093 	/* mid-layer private */
2094 	union {
2095 		void					*ml_priv;
2096 		struct pcpu_lstats __percpu		*lstats;
2097 		struct pcpu_sw_netstats __percpu	*tstats;
2098 		struct pcpu_dstats __percpu		*dstats;
2099 	};
2100 
2101 #if IS_ENABLED(CONFIG_GARP)
2102 	struct garp_port __rcu	*garp_port;
2103 #endif
2104 #if IS_ENABLED(CONFIG_MRP)
2105 	struct mrp_port __rcu	*mrp_port;
2106 #endif
2107 
2108 	struct device		dev;
2109 	const struct attribute_group *sysfs_groups[4];
2110 	const struct attribute_group *sysfs_rx_queue_group;
2111 
2112 	const struct rtnl_link_ops *rtnl_link_ops;
2113 
2114 	/* for setting kernel sock attribute on TCP connection setup */
2115 #define GSO_MAX_SIZE		65536
2116 	unsigned int		gso_max_size;
2117 #define GSO_MAX_SEGS		65535
2118 	u16			gso_max_segs;
2119 
2120 #ifdef CONFIG_DCB
2121 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2122 #endif
2123 	s16			num_tc;
2124 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2125 	u8			prio_tc_map[TC_BITMASK + 1];
2126 
2127 #if IS_ENABLED(CONFIG_FCOE)
2128 	unsigned int		fcoe_ddp_xid;
2129 #endif
2130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2131 	struct netprio_map __rcu *priomap;
2132 #endif
2133 	struct phy_device	*phydev;
2134 	struct sfp_bus		*sfp_bus;
2135 	struct lock_class_key	*qdisc_tx_busylock;
2136 	struct lock_class_key	*qdisc_running_key;
2137 	bool			proto_down;
2138 	unsigned		wol_enabled:1;
2139 
2140 	struct list_head	net_notifier_list;
2141 
2142 #if IS_ENABLED(CONFIG_MACSEC)
2143 	/* MACsec management functions */
2144 	const struct macsec_ops *macsec_ops;
2145 #endif
2146 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2147 	struct udp_tunnel_nic	*udp_tunnel_nic;
2148 
2149 	/* protected by rtnl_lock */
2150 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2151 };
2152 #define to_net_dev(d) container_of(d, struct net_device, dev)
2153 
2154 static inline bool netif_elide_gro(const struct net_device *dev)
2155 {
2156 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2157 		return true;
2158 	return false;
2159 }
2160 
2161 #define	NETDEV_ALIGN		32
2162 
2163 static inline
2164 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2165 {
2166 	return dev->prio_tc_map[prio & TC_BITMASK];
2167 }
2168 
2169 static inline
2170 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2171 {
2172 	if (tc >= dev->num_tc)
2173 		return -EINVAL;
2174 
2175 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2176 	return 0;
2177 }
2178 
2179 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2180 void netdev_reset_tc(struct net_device *dev);
2181 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2182 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2183 
2184 static inline
2185 int netdev_get_num_tc(struct net_device *dev)
2186 {
2187 	return dev->num_tc;
2188 }
2189 
2190 static inline void net_prefetch(void *p)
2191 {
2192 	prefetch(p);
2193 #if L1_CACHE_BYTES < 128
2194 	prefetch((u8 *)p + L1_CACHE_BYTES);
2195 #endif
2196 }
2197 
2198 static inline void net_prefetchw(void *p)
2199 {
2200 	prefetchw(p);
2201 #if L1_CACHE_BYTES < 128
2202 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2203 #endif
2204 }
2205 
2206 void netdev_unbind_sb_channel(struct net_device *dev,
2207 			      struct net_device *sb_dev);
2208 int netdev_bind_sb_channel_queue(struct net_device *dev,
2209 				 struct net_device *sb_dev,
2210 				 u8 tc, u16 count, u16 offset);
2211 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2212 static inline int netdev_get_sb_channel(struct net_device *dev)
2213 {
2214 	return max_t(int, -dev->num_tc, 0);
2215 }
2216 
2217 static inline
2218 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2219 					 unsigned int index)
2220 {
2221 	return &dev->_tx[index];
2222 }
2223 
2224 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2225 						    const struct sk_buff *skb)
2226 {
2227 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2228 }
2229 
2230 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2231 					    void (*f)(struct net_device *,
2232 						      struct netdev_queue *,
2233 						      void *),
2234 					    void *arg)
2235 {
2236 	unsigned int i;
2237 
2238 	for (i = 0; i < dev->num_tx_queues; i++)
2239 		f(dev, &dev->_tx[i], arg);
2240 }
2241 
2242 #define netdev_lockdep_set_classes(dev)				\
2243 {								\
2244 	static struct lock_class_key qdisc_tx_busylock_key;	\
2245 	static struct lock_class_key qdisc_running_key;		\
2246 	static struct lock_class_key qdisc_xmit_lock_key;	\
2247 	static struct lock_class_key dev_addr_list_lock_key;	\
2248 	unsigned int i;						\
2249 								\
2250 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2251 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2252 	lockdep_set_class(&(dev)->addr_list_lock,		\
2253 			  &dev_addr_list_lock_key);		\
2254 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2255 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2256 				  &qdisc_xmit_lock_key);	\
2257 }
2258 
2259 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2260 		     struct net_device *sb_dev);
2261 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2262 					 struct sk_buff *skb,
2263 					 struct net_device *sb_dev);
2264 
2265 /* returns the headroom that the master device needs to take in account
2266  * when forwarding to this dev
2267  */
2268 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2269 {
2270 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2271 }
2272 
2273 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2274 {
2275 	if (dev->netdev_ops->ndo_set_rx_headroom)
2276 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2277 }
2278 
2279 /* set the device rx headroom to the dev's default */
2280 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2281 {
2282 	netdev_set_rx_headroom(dev, -1);
2283 }
2284 
2285 /*
2286  * Net namespace inlines
2287  */
2288 static inline
2289 struct net *dev_net(const struct net_device *dev)
2290 {
2291 	return read_pnet(&dev->nd_net);
2292 }
2293 
2294 static inline
2295 void dev_net_set(struct net_device *dev, struct net *net)
2296 {
2297 	write_pnet(&dev->nd_net, net);
2298 }
2299 
2300 /**
2301  *	netdev_priv - access network device private data
2302  *	@dev: network device
2303  *
2304  * Get network device private data
2305  */
2306 static inline void *netdev_priv(const struct net_device *dev)
2307 {
2308 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2309 }
2310 
2311 /* Set the sysfs physical device reference for the network logical device
2312  * if set prior to registration will cause a symlink during initialization.
2313  */
2314 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2315 
2316 /* Set the sysfs device type for the network logical device to allow
2317  * fine-grained identification of different network device types. For
2318  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2319  */
2320 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2321 
2322 /* Default NAPI poll() weight
2323  * Device drivers are strongly advised to not use bigger value
2324  */
2325 #define NAPI_POLL_WEIGHT 64
2326 
2327 /**
2328  *	netif_napi_add - initialize a NAPI context
2329  *	@dev:  network device
2330  *	@napi: NAPI context
2331  *	@poll: polling function
2332  *	@weight: default weight
2333  *
2334  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2335  * *any* of the other NAPI-related functions.
2336  */
2337 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2338 		    int (*poll)(struct napi_struct *, int), int weight);
2339 
2340 /**
2341  *	netif_tx_napi_add - initialize a NAPI context
2342  *	@dev:  network device
2343  *	@napi: NAPI context
2344  *	@poll: polling function
2345  *	@weight: default weight
2346  *
2347  * This variant of netif_napi_add() should be used from drivers using NAPI
2348  * to exclusively poll a TX queue.
2349  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2350  */
2351 static inline void netif_tx_napi_add(struct net_device *dev,
2352 				     struct napi_struct *napi,
2353 				     int (*poll)(struct napi_struct *, int),
2354 				     int weight)
2355 {
2356 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2357 	netif_napi_add(dev, napi, poll, weight);
2358 }
2359 
2360 /**
2361  *  __netif_napi_del - remove a NAPI context
2362  *  @napi: NAPI context
2363  *
2364  * Warning: caller must observe RCU grace period before freeing memory
2365  * containing @napi. Drivers might want to call this helper to combine
2366  * all the needed RCU grace periods into a single one.
2367  */
2368 void __netif_napi_del(struct napi_struct *napi);
2369 
2370 /**
2371  *  netif_napi_del - remove a NAPI context
2372  *  @napi: NAPI context
2373  *
2374  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2375  */
2376 static inline void netif_napi_del(struct napi_struct *napi)
2377 {
2378 	__netif_napi_del(napi);
2379 	synchronize_net();
2380 }
2381 
2382 struct napi_gro_cb {
2383 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2384 	void	*frag0;
2385 
2386 	/* Length of frag0. */
2387 	unsigned int frag0_len;
2388 
2389 	/* This indicates where we are processing relative to skb->data. */
2390 	int	data_offset;
2391 
2392 	/* This is non-zero if the packet cannot be merged with the new skb. */
2393 	u16	flush;
2394 
2395 	/* Save the IP ID here and check when we get to the transport layer */
2396 	u16	flush_id;
2397 
2398 	/* Number of segments aggregated. */
2399 	u16	count;
2400 
2401 	/* Start offset for remote checksum offload */
2402 	u16	gro_remcsum_start;
2403 
2404 	/* jiffies when first packet was created/queued */
2405 	unsigned long age;
2406 
2407 	/* Used in ipv6_gro_receive() and foo-over-udp */
2408 	u16	proto;
2409 
2410 	/* This is non-zero if the packet may be of the same flow. */
2411 	u8	same_flow:1;
2412 
2413 	/* Used in tunnel GRO receive */
2414 	u8	encap_mark:1;
2415 
2416 	/* GRO checksum is valid */
2417 	u8	csum_valid:1;
2418 
2419 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2420 	u8	csum_cnt:3;
2421 
2422 	/* Free the skb? */
2423 	u8	free:2;
2424 #define NAPI_GRO_FREE		  1
2425 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2426 
2427 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2428 	u8	is_ipv6:1;
2429 
2430 	/* Used in GRE, set in fou/gue_gro_receive */
2431 	u8	is_fou:1;
2432 
2433 	/* Used to determine if flush_id can be ignored */
2434 	u8	is_atomic:1;
2435 
2436 	/* Number of gro_receive callbacks this packet already went through */
2437 	u8 recursion_counter:4;
2438 
2439 	/* GRO is done by frag_list pointer chaining. */
2440 	u8	is_flist:1;
2441 
2442 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2443 	__wsum	csum;
2444 
2445 	/* used in skb_gro_receive() slow path */
2446 	struct sk_buff *last;
2447 };
2448 
2449 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2450 
2451 #define GRO_RECURSION_LIMIT 15
2452 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2453 {
2454 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2455 }
2456 
2457 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2458 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2459 					       struct list_head *head,
2460 					       struct sk_buff *skb)
2461 {
2462 	if (unlikely(gro_recursion_inc_test(skb))) {
2463 		NAPI_GRO_CB(skb)->flush |= 1;
2464 		return NULL;
2465 	}
2466 
2467 	return cb(head, skb);
2468 }
2469 
2470 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2471 					    struct sk_buff *);
2472 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2473 						  struct sock *sk,
2474 						  struct list_head *head,
2475 						  struct sk_buff *skb)
2476 {
2477 	if (unlikely(gro_recursion_inc_test(skb))) {
2478 		NAPI_GRO_CB(skb)->flush |= 1;
2479 		return NULL;
2480 	}
2481 
2482 	return cb(sk, head, skb);
2483 }
2484 
2485 struct packet_type {
2486 	__be16			type;	/* This is really htons(ether_type). */
2487 	bool			ignore_outgoing;
2488 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2489 	int			(*func) (struct sk_buff *,
2490 					 struct net_device *,
2491 					 struct packet_type *,
2492 					 struct net_device *);
2493 	void			(*list_func) (struct list_head *,
2494 					      struct packet_type *,
2495 					      struct net_device *);
2496 	bool			(*id_match)(struct packet_type *ptype,
2497 					    struct sock *sk);
2498 	void			*af_packet_priv;
2499 	struct list_head	list;
2500 };
2501 
2502 struct offload_callbacks {
2503 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2504 						netdev_features_t features);
2505 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2506 						struct sk_buff *skb);
2507 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2508 };
2509 
2510 struct packet_offload {
2511 	__be16			 type;	/* This is really htons(ether_type). */
2512 	u16			 priority;
2513 	struct offload_callbacks callbacks;
2514 	struct list_head	 list;
2515 };
2516 
2517 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2518 struct pcpu_sw_netstats {
2519 	u64     rx_packets;
2520 	u64     rx_bytes;
2521 	u64     tx_packets;
2522 	u64     tx_bytes;
2523 	struct u64_stats_sync   syncp;
2524 } __aligned(4 * sizeof(u64));
2525 
2526 struct pcpu_lstats {
2527 	u64_stats_t packets;
2528 	u64_stats_t bytes;
2529 	struct u64_stats_sync syncp;
2530 } __aligned(2 * sizeof(u64));
2531 
2532 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2533 
2534 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2535 {
2536 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2537 
2538 	u64_stats_update_begin(&lstats->syncp);
2539 	u64_stats_add(&lstats->bytes, len);
2540 	u64_stats_inc(&lstats->packets);
2541 	u64_stats_update_end(&lstats->syncp);
2542 }
2543 
2544 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2545 ({									\
2546 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2547 	if (pcpu_stats)	{						\
2548 		int __cpu;						\
2549 		for_each_possible_cpu(__cpu) {				\
2550 			typeof(type) *stat;				\
2551 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2552 			u64_stats_init(&stat->syncp);			\
2553 		}							\
2554 	}								\
2555 	pcpu_stats;							\
2556 })
2557 
2558 #define netdev_alloc_pcpu_stats(type)					\
2559 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2560 
2561 enum netdev_lag_tx_type {
2562 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2563 	NETDEV_LAG_TX_TYPE_RANDOM,
2564 	NETDEV_LAG_TX_TYPE_BROADCAST,
2565 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2566 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2567 	NETDEV_LAG_TX_TYPE_HASH,
2568 };
2569 
2570 enum netdev_lag_hash {
2571 	NETDEV_LAG_HASH_NONE,
2572 	NETDEV_LAG_HASH_L2,
2573 	NETDEV_LAG_HASH_L34,
2574 	NETDEV_LAG_HASH_L23,
2575 	NETDEV_LAG_HASH_E23,
2576 	NETDEV_LAG_HASH_E34,
2577 	NETDEV_LAG_HASH_UNKNOWN,
2578 };
2579 
2580 struct netdev_lag_upper_info {
2581 	enum netdev_lag_tx_type tx_type;
2582 	enum netdev_lag_hash hash_type;
2583 };
2584 
2585 struct netdev_lag_lower_state_info {
2586 	u8 link_up : 1,
2587 	   tx_enabled : 1;
2588 };
2589 
2590 #include <linux/notifier.h>
2591 
2592 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2593  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2594  * adding new types.
2595  */
2596 enum netdev_cmd {
2597 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2598 	NETDEV_DOWN,
2599 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2600 				   detected a hardware crash and restarted
2601 				   - we can use this eg to kick tcp sessions
2602 				   once done */
2603 	NETDEV_CHANGE,		/* Notify device state change */
2604 	NETDEV_REGISTER,
2605 	NETDEV_UNREGISTER,
2606 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2607 	NETDEV_CHANGEADDR,	/* notify after the address change */
2608 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2609 	NETDEV_GOING_DOWN,
2610 	NETDEV_CHANGENAME,
2611 	NETDEV_FEAT_CHANGE,
2612 	NETDEV_BONDING_FAILOVER,
2613 	NETDEV_PRE_UP,
2614 	NETDEV_PRE_TYPE_CHANGE,
2615 	NETDEV_POST_TYPE_CHANGE,
2616 	NETDEV_POST_INIT,
2617 	NETDEV_RELEASE,
2618 	NETDEV_NOTIFY_PEERS,
2619 	NETDEV_JOIN,
2620 	NETDEV_CHANGEUPPER,
2621 	NETDEV_RESEND_IGMP,
2622 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2623 	NETDEV_CHANGEINFODATA,
2624 	NETDEV_BONDING_INFO,
2625 	NETDEV_PRECHANGEUPPER,
2626 	NETDEV_CHANGELOWERSTATE,
2627 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2628 	NETDEV_UDP_TUNNEL_DROP_INFO,
2629 	NETDEV_CHANGE_TX_QUEUE_LEN,
2630 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2631 	NETDEV_CVLAN_FILTER_DROP_INFO,
2632 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2633 	NETDEV_SVLAN_FILTER_DROP_INFO,
2634 };
2635 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2636 
2637 int register_netdevice_notifier(struct notifier_block *nb);
2638 int unregister_netdevice_notifier(struct notifier_block *nb);
2639 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2640 int unregister_netdevice_notifier_net(struct net *net,
2641 				      struct notifier_block *nb);
2642 int register_netdevice_notifier_dev_net(struct net_device *dev,
2643 					struct notifier_block *nb,
2644 					struct netdev_net_notifier *nn);
2645 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2646 					  struct notifier_block *nb,
2647 					  struct netdev_net_notifier *nn);
2648 
2649 struct netdev_notifier_info {
2650 	struct net_device	*dev;
2651 	struct netlink_ext_ack	*extack;
2652 };
2653 
2654 struct netdev_notifier_info_ext {
2655 	struct netdev_notifier_info info; /* must be first */
2656 	union {
2657 		u32 mtu;
2658 	} ext;
2659 };
2660 
2661 struct netdev_notifier_change_info {
2662 	struct netdev_notifier_info info; /* must be first */
2663 	unsigned int flags_changed;
2664 };
2665 
2666 struct netdev_notifier_changeupper_info {
2667 	struct netdev_notifier_info info; /* must be first */
2668 	struct net_device *upper_dev; /* new upper dev */
2669 	bool master; /* is upper dev master */
2670 	bool linking; /* is the notification for link or unlink */
2671 	void *upper_info; /* upper dev info */
2672 };
2673 
2674 struct netdev_notifier_changelowerstate_info {
2675 	struct netdev_notifier_info info; /* must be first */
2676 	void *lower_state_info; /* is lower dev state */
2677 };
2678 
2679 struct netdev_notifier_pre_changeaddr_info {
2680 	struct netdev_notifier_info info; /* must be first */
2681 	const unsigned char *dev_addr;
2682 };
2683 
2684 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2685 					     struct net_device *dev)
2686 {
2687 	info->dev = dev;
2688 	info->extack = NULL;
2689 }
2690 
2691 static inline struct net_device *
2692 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2693 {
2694 	return info->dev;
2695 }
2696 
2697 static inline struct netlink_ext_ack *
2698 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2699 {
2700 	return info->extack;
2701 }
2702 
2703 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2704 
2705 
2706 extern rwlock_t				dev_base_lock;		/* Device list lock */
2707 
2708 #define for_each_netdev(net, d)		\
2709 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2710 #define for_each_netdev_reverse(net, d)	\
2711 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2712 #define for_each_netdev_rcu(net, d)		\
2713 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2714 #define for_each_netdev_safe(net, d, n)	\
2715 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2716 #define for_each_netdev_continue(net, d)		\
2717 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2718 #define for_each_netdev_continue_reverse(net, d)		\
2719 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2720 						     dev_list)
2721 #define for_each_netdev_continue_rcu(net, d)		\
2722 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2723 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2724 		for_each_netdev_rcu(&init_net, slave)	\
2725 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2726 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2727 
2728 static inline struct net_device *next_net_device(struct net_device *dev)
2729 {
2730 	struct list_head *lh;
2731 	struct net *net;
2732 
2733 	net = dev_net(dev);
2734 	lh = dev->dev_list.next;
2735 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2736 }
2737 
2738 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2739 {
2740 	struct list_head *lh;
2741 	struct net *net;
2742 
2743 	net = dev_net(dev);
2744 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2745 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2746 }
2747 
2748 static inline struct net_device *first_net_device(struct net *net)
2749 {
2750 	return list_empty(&net->dev_base_head) ? NULL :
2751 		net_device_entry(net->dev_base_head.next);
2752 }
2753 
2754 static inline struct net_device *first_net_device_rcu(struct net *net)
2755 {
2756 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2757 
2758 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2759 }
2760 
2761 int netdev_boot_setup_check(struct net_device *dev);
2762 unsigned long netdev_boot_base(const char *prefix, int unit);
2763 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2764 				       const char *hwaddr);
2765 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2766 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2767 void dev_add_pack(struct packet_type *pt);
2768 void dev_remove_pack(struct packet_type *pt);
2769 void __dev_remove_pack(struct packet_type *pt);
2770 void dev_add_offload(struct packet_offload *po);
2771 void dev_remove_offload(struct packet_offload *po);
2772 
2773 int dev_get_iflink(const struct net_device *dev);
2774 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2775 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2776 				      unsigned short mask);
2777 struct net_device *dev_get_by_name(struct net *net, const char *name);
2778 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2779 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2780 int dev_alloc_name(struct net_device *dev, const char *name);
2781 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2782 void dev_close(struct net_device *dev);
2783 void dev_close_many(struct list_head *head, bool unlink);
2784 void dev_disable_lro(struct net_device *dev);
2785 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2786 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2787 		     struct net_device *sb_dev);
2788 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2789 		       struct net_device *sb_dev);
2790 int dev_queue_xmit(struct sk_buff *skb);
2791 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2792 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2793 int register_netdevice(struct net_device *dev);
2794 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2795 void unregister_netdevice_many(struct list_head *head);
2796 static inline void unregister_netdevice(struct net_device *dev)
2797 {
2798 	unregister_netdevice_queue(dev, NULL);
2799 }
2800 
2801 int netdev_refcnt_read(const struct net_device *dev);
2802 void free_netdev(struct net_device *dev);
2803 void netdev_freemem(struct net_device *dev);
2804 int init_dummy_netdev(struct net_device *dev);
2805 
2806 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2807 					 struct sk_buff *skb,
2808 					 bool all_slaves);
2809 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2810 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2811 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2812 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2813 int netdev_get_name(struct net *net, char *name, int ifindex);
2814 int dev_restart(struct net_device *dev);
2815 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2816 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2817 
2818 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2819 {
2820 	return NAPI_GRO_CB(skb)->data_offset;
2821 }
2822 
2823 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2824 {
2825 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2826 }
2827 
2828 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2829 {
2830 	NAPI_GRO_CB(skb)->data_offset += len;
2831 }
2832 
2833 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2834 					unsigned int offset)
2835 {
2836 	return NAPI_GRO_CB(skb)->frag0 + offset;
2837 }
2838 
2839 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2840 {
2841 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2842 }
2843 
2844 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2845 {
2846 	NAPI_GRO_CB(skb)->frag0 = NULL;
2847 	NAPI_GRO_CB(skb)->frag0_len = 0;
2848 }
2849 
2850 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2851 					unsigned int offset)
2852 {
2853 	if (!pskb_may_pull(skb, hlen))
2854 		return NULL;
2855 
2856 	skb_gro_frag0_invalidate(skb);
2857 	return skb->data + offset;
2858 }
2859 
2860 static inline void *skb_gro_network_header(struct sk_buff *skb)
2861 {
2862 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2863 	       skb_network_offset(skb);
2864 }
2865 
2866 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2867 					const void *start, unsigned int len)
2868 {
2869 	if (NAPI_GRO_CB(skb)->csum_valid)
2870 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2871 						  csum_partial(start, len, 0));
2872 }
2873 
2874 /* GRO checksum functions. These are logical equivalents of the normal
2875  * checksum functions (in skbuff.h) except that they operate on the GRO
2876  * offsets and fields in sk_buff.
2877  */
2878 
2879 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2880 
2881 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2882 {
2883 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2884 }
2885 
2886 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2887 						      bool zero_okay,
2888 						      __sum16 check)
2889 {
2890 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2891 		skb_checksum_start_offset(skb) <
2892 		 skb_gro_offset(skb)) &&
2893 		!skb_at_gro_remcsum_start(skb) &&
2894 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2895 		(!zero_okay || check));
2896 }
2897 
2898 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2899 							   __wsum psum)
2900 {
2901 	if (NAPI_GRO_CB(skb)->csum_valid &&
2902 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2903 		return 0;
2904 
2905 	NAPI_GRO_CB(skb)->csum = psum;
2906 
2907 	return __skb_gro_checksum_complete(skb);
2908 }
2909 
2910 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2911 {
2912 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2913 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2914 		NAPI_GRO_CB(skb)->csum_cnt--;
2915 	} else {
2916 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2917 		 * verified a new top level checksum or an encapsulated one
2918 		 * during GRO. This saves work if we fallback to normal path.
2919 		 */
2920 		__skb_incr_checksum_unnecessary(skb);
2921 	}
2922 }
2923 
2924 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2925 				    compute_pseudo)			\
2926 ({									\
2927 	__sum16 __ret = 0;						\
2928 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2929 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2930 				compute_pseudo(skb, proto));		\
2931 	if (!__ret)							\
2932 		skb_gro_incr_csum_unnecessary(skb);			\
2933 	__ret;								\
2934 })
2935 
2936 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2937 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2938 
2939 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2940 					     compute_pseudo)		\
2941 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2942 
2943 #define skb_gro_checksum_simple_validate(skb)				\
2944 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2945 
2946 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2947 {
2948 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2949 		!NAPI_GRO_CB(skb)->csum_valid);
2950 }
2951 
2952 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2953 					      __wsum pseudo)
2954 {
2955 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2956 	NAPI_GRO_CB(skb)->csum_valid = 1;
2957 }
2958 
2959 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2960 do {									\
2961 	if (__skb_gro_checksum_convert_check(skb))			\
2962 		__skb_gro_checksum_convert(skb, 			\
2963 					   compute_pseudo(skb, proto));	\
2964 } while (0)
2965 
2966 struct gro_remcsum {
2967 	int offset;
2968 	__wsum delta;
2969 };
2970 
2971 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2972 {
2973 	grc->offset = 0;
2974 	grc->delta = 0;
2975 }
2976 
2977 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2978 					    unsigned int off, size_t hdrlen,
2979 					    int start, int offset,
2980 					    struct gro_remcsum *grc,
2981 					    bool nopartial)
2982 {
2983 	__wsum delta;
2984 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2985 
2986 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2987 
2988 	if (!nopartial) {
2989 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2990 		return ptr;
2991 	}
2992 
2993 	ptr = skb_gro_header_fast(skb, off);
2994 	if (skb_gro_header_hard(skb, off + plen)) {
2995 		ptr = skb_gro_header_slow(skb, off + plen, off);
2996 		if (!ptr)
2997 			return NULL;
2998 	}
2999 
3000 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3001 			       start, offset);
3002 
3003 	/* Adjust skb->csum since we changed the packet */
3004 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3005 
3006 	grc->offset = off + hdrlen + offset;
3007 	grc->delta = delta;
3008 
3009 	return ptr;
3010 }
3011 
3012 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3013 					   struct gro_remcsum *grc)
3014 {
3015 	void *ptr;
3016 	size_t plen = grc->offset + sizeof(u16);
3017 
3018 	if (!grc->delta)
3019 		return;
3020 
3021 	ptr = skb_gro_header_fast(skb, grc->offset);
3022 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3023 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3024 		if (!ptr)
3025 			return;
3026 	}
3027 
3028 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3029 }
3030 
3031 #ifdef CONFIG_XFRM_OFFLOAD
3032 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3033 {
3034 	if (PTR_ERR(pp) != -EINPROGRESS)
3035 		NAPI_GRO_CB(skb)->flush |= flush;
3036 }
3037 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3038 					       struct sk_buff *pp,
3039 					       int flush,
3040 					       struct gro_remcsum *grc)
3041 {
3042 	if (PTR_ERR(pp) != -EINPROGRESS) {
3043 		NAPI_GRO_CB(skb)->flush |= flush;
3044 		skb_gro_remcsum_cleanup(skb, grc);
3045 		skb->remcsum_offload = 0;
3046 	}
3047 }
3048 #else
3049 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3050 {
3051 	NAPI_GRO_CB(skb)->flush |= flush;
3052 }
3053 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3054 					       struct sk_buff *pp,
3055 					       int flush,
3056 					       struct gro_remcsum *grc)
3057 {
3058 	NAPI_GRO_CB(skb)->flush |= flush;
3059 	skb_gro_remcsum_cleanup(skb, grc);
3060 	skb->remcsum_offload = 0;
3061 }
3062 #endif
3063 
3064 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3065 				  unsigned short type,
3066 				  const void *daddr, const void *saddr,
3067 				  unsigned int len)
3068 {
3069 	if (!dev->header_ops || !dev->header_ops->create)
3070 		return 0;
3071 
3072 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3073 }
3074 
3075 static inline int dev_parse_header(const struct sk_buff *skb,
3076 				   unsigned char *haddr)
3077 {
3078 	const struct net_device *dev = skb->dev;
3079 
3080 	if (!dev->header_ops || !dev->header_ops->parse)
3081 		return 0;
3082 	return dev->header_ops->parse(skb, haddr);
3083 }
3084 
3085 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3086 {
3087 	const struct net_device *dev = skb->dev;
3088 
3089 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3090 		return 0;
3091 	return dev->header_ops->parse_protocol(skb);
3092 }
3093 
3094 /* ll_header must have at least hard_header_len allocated */
3095 static inline bool dev_validate_header(const struct net_device *dev,
3096 				       char *ll_header, int len)
3097 {
3098 	if (likely(len >= dev->hard_header_len))
3099 		return true;
3100 	if (len < dev->min_header_len)
3101 		return false;
3102 
3103 	if (capable(CAP_SYS_RAWIO)) {
3104 		memset(ll_header + len, 0, dev->hard_header_len - len);
3105 		return true;
3106 	}
3107 
3108 	if (dev->header_ops && dev->header_ops->validate)
3109 		return dev->header_ops->validate(ll_header, len);
3110 
3111 	return false;
3112 }
3113 
3114 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3115 			   int len, int size);
3116 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3117 static inline int unregister_gifconf(unsigned int family)
3118 {
3119 	return register_gifconf(family, NULL);
3120 }
3121 
3122 #ifdef CONFIG_NET_FLOW_LIMIT
3123 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3124 struct sd_flow_limit {
3125 	u64			count;
3126 	unsigned int		num_buckets;
3127 	unsigned int		history_head;
3128 	u16			history[FLOW_LIMIT_HISTORY];
3129 	u8			buckets[];
3130 };
3131 
3132 extern int netdev_flow_limit_table_len;
3133 #endif /* CONFIG_NET_FLOW_LIMIT */
3134 
3135 /*
3136  * Incoming packets are placed on per-CPU queues
3137  */
3138 struct softnet_data {
3139 	struct list_head	poll_list;
3140 	struct sk_buff_head	process_queue;
3141 
3142 	/* stats */
3143 	unsigned int		processed;
3144 	unsigned int		time_squeeze;
3145 	unsigned int		received_rps;
3146 #ifdef CONFIG_RPS
3147 	struct softnet_data	*rps_ipi_list;
3148 #endif
3149 #ifdef CONFIG_NET_FLOW_LIMIT
3150 	struct sd_flow_limit __rcu *flow_limit;
3151 #endif
3152 	struct Qdisc		*output_queue;
3153 	struct Qdisc		**output_queue_tailp;
3154 	struct sk_buff		*completion_queue;
3155 #ifdef CONFIG_XFRM_OFFLOAD
3156 	struct sk_buff_head	xfrm_backlog;
3157 #endif
3158 	/* written and read only by owning cpu: */
3159 	struct {
3160 		u16 recursion;
3161 		u8  more;
3162 	} xmit;
3163 #ifdef CONFIG_RPS
3164 	/* input_queue_head should be written by cpu owning this struct,
3165 	 * and only read by other cpus. Worth using a cache line.
3166 	 */
3167 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3168 
3169 	/* Elements below can be accessed between CPUs for RPS/RFS */
3170 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3171 	struct softnet_data	*rps_ipi_next;
3172 	unsigned int		cpu;
3173 	unsigned int		input_queue_tail;
3174 #endif
3175 	unsigned int		dropped;
3176 	struct sk_buff_head	input_pkt_queue;
3177 	struct napi_struct	backlog;
3178 
3179 };
3180 
3181 static inline void input_queue_head_incr(struct softnet_data *sd)
3182 {
3183 #ifdef CONFIG_RPS
3184 	sd->input_queue_head++;
3185 #endif
3186 }
3187 
3188 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3189 					      unsigned int *qtail)
3190 {
3191 #ifdef CONFIG_RPS
3192 	*qtail = ++sd->input_queue_tail;
3193 #endif
3194 }
3195 
3196 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3197 
3198 static inline int dev_recursion_level(void)
3199 {
3200 	return this_cpu_read(softnet_data.xmit.recursion);
3201 }
3202 
3203 #define XMIT_RECURSION_LIMIT	8
3204 static inline bool dev_xmit_recursion(void)
3205 {
3206 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3207 			XMIT_RECURSION_LIMIT);
3208 }
3209 
3210 static inline void dev_xmit_recursion_inc(void)
3211 {
3212 	__this_cpu_inc(softnet_data.xmit.recursion);
3213 }
3214 
3215 static inline void dev_xmit_recursion_dec(void)
3216 {
3217 	__this_cpu_dec(softnet_data.xmit.recursion);
3218 }
3219 
3220 void __netif_schedule(struct Qdisc *q);
3221 void netif_schedule_queue(struct netdev_queue *txq);
3222 
3223 static inline void netif_tx_schedule_all(struct net_device *dev)
3224 {
3225 	unsigned int i;
3226 
3227 	for (i = 0; i < dev->num_tx_queues; i++)
3228 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3229 }
3230 
3231 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3232 {
3233 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3234 }
3235 
3236 /**
3237  *	netif_start_queue - allow transmit
3238  *	@dev: network device
3239  *
3240  *	Allow upper layers to call the device hard_start_xmit routine.
3241  */
3242 static inline void netif_start_queue(struct net_device *dev)
3243 {
3244 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3245 }
3246 
3247 static inline void netif_tx_start_all_queues(struct net_device *dev)
3248 {
3249 	unsigned int i;
3250 
3251 	for (i = 0; i < dev->num_tx_queues; i++) {
3252 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3253 		netif_tx_start_queue(txq);
3254 	}
3255 }
3256 
3257 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3258 
3259 /**
3260  *	netif_wake_queue - restart transmit
3261  *	@dev: network device
3262  *
3263  *	Allow upper layers to call the device hard_start_xmit routine.
3264  *	Used for flow control when transmit resources are available.
3265  */
3266 static inline void netif_wake_queue(struct net_device *dev)
3267 {
3268 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3269 }
3270 
3271 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3272 {
3273 	unsigned int i;
3274 
3275 	for (i = 0; i < dev->num_tx_queues; i++) {
3276 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3277 		netif_tx_wake_queue(txq);
3278 	}
3279 }
3280 
3281 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3282 {
3283 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3284 }
3285 
3286 /**
3287  *	netif_stop_queue - stop transmitted packets
3288  *	@dev: network device
3289  *
3290  *	Stop upper layers calling the device hard_start_xmit routine.
3291  *	Used for flow control when transmit resources are unavailable.
3292  */
3293 static inline void netif_stop_queue(struct net_device *dev)
3294 {
3295 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3296 }
3297 
3298 void netif_tx_stop_all_queues(struct net_device *dev);
3299 
3300 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3301 {
3302 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3303 }
3304 
3305 /**
3306  *	netif_queue_stopped - test if transmit queue is flowblocked
3307  *	@dev: network device
3308  *
3309  *	Test if transmit queue on device is currently unable to send.
3310  */
3311 static inline bool netif_queue_stopped(const struct net_device *dev)
3312 {
3313 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3314 }
3315 
3316 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3317 {
3318 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3319 }
3320 
3321 static inline bool
3322 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3323 {
3324 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3325 }
3326 
3327 static inline bool
3328 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3329 {
3330 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3331 }
3332 
3333 /**
3334  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3335  *	@dev_queue: pointer to transmit queue
3336  *
3337  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3338  * to give appropriate hint to the CPU.
3339  */
3340 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3341 {
3342 #ifdef CONFIG_BQL
3343 	prefetchw(&dev_queue->dql.num_queued);
3344 #endif
3345 }
3346 
3347 /**
3348  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3349  *	@dev_queue: pointer to transmit queue
3350  *
3351  * BQL enabled drivers might use this helper in their TX completion path,
3352  * to give appropriate hint to the CPU.
3353  */
3354 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3355 {
3356 #ifdef CONFIG_BQL
3357 	prefetchw(&dev_queue->dql.limit);
3358 #endif
3359 }
3360 
3361 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3362 					unsigned int bytes)
3363 {
3364 #ifdef CONFIG_BQL
3365 	dql_queued(&dev_queue->dql, bytes);
3366 
3367 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3368 		return;
3369 
3370 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3371 
3372 	/*
3373 	 * The XOFF flag must be set before checking the dql_avail below,
3374 	 * because in netdev_tx_completed_queue we update the dql_completed
3375 	 * before checking the XOFF flag.
3376 	 */
3377 	smp_mb();
3378 
3379 	/* check again in case another CPU has just made room avail */
3380 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3381 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3382 #endif
3383 }
3384 
3385 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3386  * that they should not test BQL status themselves.
3387  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3388  * skb of a batch.
3389  * Returns true if the doorbell must be used to kick the NIC.
3390  */
3391 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3392 					  unsigned int bytes,
3393 					  bool xmit_more)
3394 {
3395 	if (xmit_more) {
3396 #ifdef CONFIG_BQL
3397 		dql_queued(&dev_queue->dql, bytes);
3398 #endif
3399 		return netif_tx_queue_stopped(dev_queue);
3400 	}
3401 	netdev_tx_sent_queue(dev_queue, bytes);
3402 	return true;
3403 }
3404 
3405 /**
3406  * 	netdev_sent_queue - report the number of bytes queued to hardware
3407  * 	@dev: network device
3408  * 	@bytes: number of bytes queued to the hardware device queue
3409  *
3410  * 	Report the number of bytes queued for sending/completion to the network
3411  * 	device hardware queue. @bytes should be a good approximation and should
3412  * 	exactly match netdev_completed_queue() @bytes
3413  */
3414 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3415 {
3416 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3417 }
3418 
3419 static inline bool __netdev_sent_queue(struct net_device *dev,
3420 				       unsigned int bytes,
3421 				       bool xmit_more)
3422 {
3423 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3424 				      xmit_more);
3425 }
3426 
3427 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3428 					     unsigned int pkts, unsigned int bytes)
3429 {
3430 #ifdef CONFIG_BQL
3431 	if (unlikely(!bytes))
3432 		return;
3433 
3434 	dql_completed(&dev_queue->dql, bytes);
3435 
3436 	/*
3437 	 * Without the memory barrier there is a small possiblity that
3438 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3439 	 * be stopped forever
3440 	 */
3441 	smp_mb();
3442 
3443 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3444 		return;
3445 
3446 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3447 		netif_schedule_queue(dev_queue);
3448 #endif
3449 }
3450 
3451 /**
3452  * 	netdev_completed_queue - report bytes and packets completed by device
3453  * 	@dev: network device
3454  * 	@pkts: actual number of packets sent over the medium
3455  * 	@bytes: actual number of bytes sent over the medium
3456  *
3457  * 	Report the number of bytes and packets transmitted by the network device
3458  * 	hardware queue over the physical medium, @bytes must exactly match the
3459  * 	@bytes amount passed to netdev_sent_queue()
3460  */
3461 static inline void netdev_completed_queue(struct net_device *dev,
3462 					  unsigned int pkts, unsigned int bytes)
3463 {
3464 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3465 }
3466 
3467 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3468 {
3469 #ifdef CONFIG_BQL
3470 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3471 	dql_reset(&q->dql);
3472 #endif
3473 }
3474 
3475 /**
3476  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3477  * 	@dev_queue: network device
3478  *
3479  * 	Reset the bytes and packet count of a network device and clear the
3480  * 	software flow control OFF bit for this network device
3481  */
3482 static inline void netdev_reset_queue(struct net_device *dev_queue)
3483 {
3484 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3485 }
3486 
3487 /**
3488  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3489  * 	@dev: network device
3490  * 	@queue_index: given tx queue index
3491  *
3492  * 	Returns 0 if given tx queue index >= number of device tx queues,
3493  * 	otherwise returns the originally passed tx queue index.
3494  */
3495 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3496 {
3497 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3498 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3499 				     dev->name, queue_index,
3500 				     dev->real_num_tx_queues);
3501 		return 0;
3502 	}
3503 
3504 	return queue_index;
3505 }
3506 
3507 /**
3508  *	netif_running - test if up
3509  *	@dev: network device
3510  *
3511  *	Test if the device has been brought up.
3512  */
3513 static inline bool netif_running(const struct net_device *dev)
3514 {
3515 	return test_bit(__LINK_STATE_START, &dev->state);
3516 }
3517 
3518 /*
3519  * Routines to manage the subqueues on a device.  We only need start,
3520  * stop, and a check if it's stopped.  All other device management is
3521  * done at the overall netdevice level.
3522  * Also test the device if we're multiqueue.
3523  */
3524 
3525 /**
3526  *	netif_start_subqueue - allow sending packets on subqueue
3527  *	@dev: network device
3528  *	@queue_index: sub queue index
3529  *
3530  * Start individual transmit queue of a device with multiple transmit queues.
3531  */
3532 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3533 {
3534 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3535 
3536 	netif_tx_start_queue(txq);
3537 }
3538 
3539 /**
3540  *	netif_stop_subqueue - stop sending packets on subqueue
3541  *	@dev: network device
3542  *	@queue_index: sub queue index
3543  *
3544  * Stop individual transmit queue of a device with multiple transmit queues.
3545  */
3546 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3547 {
3548 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3549 	netif_tx_stop_queue(txq);
3550 }
3551 
3552 /**
3553  *	netif_subqueue_stopped - test status of subqueue
3554  *	@dev: network device
3555  *	@queue_index: sub queue index
3556  *
3557  * Check individual transmit queue of a device with multiple transmit queues.
3558  */
3559 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3560 					    u16 queue_index)
3561 {
3562 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3563 
3564 	return netif_tx_queue_stopped(txq);
3565 }
3566 
3567 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3568 					  struct sk_buff *skb)
3569 {
3570 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3571 }
3572 
3573 /**
3574  *	netif_wake_subqueue - allow sending packets on subqueue
3575  *	@dev: network device
3576  *	@queue_index: sub queue index
3577  *
3578  * Resume individual transmit queue of a device with multiple transmit queues.
3579  */
3580 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3581 {
3582 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3583 
3584 	netif_tx_wake_queue(txq);
3585 }
3586 
3587 #ifdef CONFIG_XPS
3588 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3589 			u16 index);
3590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3591 			  u16 index, bool is_rxqs_map);
3592 
3593 /**
3594  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3595  *	@j: CPU/Rx queue index
3596  *	@mask: bitmask of all cpus/rx queues
3597  *	@nr_bits: number of bits in the bitmask
3598  *
3599  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3600  */
3601 static inline bool netif_attr_test_mask(unsigned long j,
3602 					const unsigned long *mask,
3603 					unsigned int nr_bits)
3604 {
3605 	cpu_max_bits_warn(j, nr_bits);
3606 	return test_bit(j, mask);
3607 }
3608 
3609 /**
3610  *	netif_attr_test_online - Test for online CPU/Rx queue
3611  *	@j: CPU/Rx queue index
3612  *	@online_mask: bitmask for CPUs/Rx queues that are online
3613  *	@nr_bits: number of bits in the bitmask
3614  *
3615  * Returns true if a CPU/Rx queue is online.
3616  */
3617 static inline bool netif_attr_test_online(unsigned long j,
3618 					  const unsigned long *online_mask,
3619 					  unsigned int nr_bits)
3620 {
3621 	cpu_max_bits_warn(j, nr_bits);
3622 
3623 	if (online_mask)
3624 		return test_bit(j, online_mask);
3625 
3626 	return (j < nr_bits);
3627 }
3628 
3629 /**
3630  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3631  *	@n: CPU/Rx queue index
3632  *	@srcp: the cpumask/Rx queue mask pointer
3633  *	@nr_bits: number of bits in the bitmask
3634  *
3635  * Returns >= nr_bits if no further CPUs/Rx queues set.
3636  */
3637 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3638 					       unsigned int nr_bits)
3639 {
3640 	/* -1 is a legal arg here. */
3641 	if (n != -1)
3642 		cpu_max_bits_warn(n, nr_bits);
3643 
3644 	if (srcp)
3645 		return find_next_bit(srcp, nr_bits, n + 1);
3646 
3647 	return n + 1;
3648 }
3649 
3650 /**
3651  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3652  *	@n: CPU/Rx queue index
3653  *	@src1p: the first CPUs/Rx queues mask pointer
3654  *	@src2p: the second CPUs/Rx queues mask pointer
3655  *	@nr_bits: number of bits in the bitmask
3656  *
3657  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3658  */
3659 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3660 					  const unsigned long *src2p,
3661 					  unsigned int nr_bits)
3662 {
3663 	/* -1 is a legal arg here. */
3664 	if (n != -1)
3665 		cpu_max_bits_warn(n, nr_bits);
3666 
3667 	if (src1p && src2p)
3668 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3669 	else if (src1p)
3670 		return find_next_bit(src1p, nr_bits, n + 1);
3671 	else if (src2p)
3672 		return find_next_bit(src2p, nr_bits, n + 1);
3673 
3674 	return n + 1;
3675 }
3676 #else
3677 static inline int netif_set_xps_queue(struct net_device *dev,
3678 				      const struct cpumask *mask,
3679 				      u16 index)
3680 {
3681 	return 0;
3682 }
3683 
3684 static inline int __netif_set_xps_queue(struct net_device *dev,
3685 					const unsigned long *mask,
3686 					u16 index, bool is_rxqs_map)
3687 {
3688 	return 0;
3689 }
3690 #endif
3691 
3692 /**
3693  *	netif_is_multiqueue - test if device has multiple transmit queues
3694  *	@dev: network device
3695  *
3696  * Check if device has multiple transmit queues
3697  */
3698 static inline bool netif_is_multiqueue(const struct net_device *dev)
3699 {
3700 	return dev->num_tx_queues > 1;
3701 }
3702 
3703 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3704 
3705 #ifdef CONFIG_SYSFS
3706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3707 #else
3708 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3709 						unsigned int rxqs)
3710 {
3711 	dev->real_num_rx_queues = rxqs;
3712 	return 0;
3713 }
3714 #endif
3715 
3716 static inline struct netdev_rx_queue *
3717 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3718 {
3719 	return dev->_rx + rxq;
3720 }
3721 
3722 #ifdef CONFIG_SYSFS
3723 static inline unsigned int get_netdev_rx_queue_index(
3724 		struct netdev_rx_queue *queue)
3725 {
3726 	struct net_device *dev = queue->dev;
3727 	int index = queue - dev->_rx;
3728 
3729 	BUG_ON(index >= dev->num_rx_queues);
3730 	return index;
3731 }
3732 #endif
3733 
3734 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3735 int netif_get_num_default_rss_queues(void);
3736 
3737 enum skb_free_reason {
3738 	SKB_REASON_CONSUMED,
3739 	SKB_REASON_DROPPED,
3740 };
3741 
3742 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3743 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3744 
3745 /*
3746  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3747  * interrupt context or with hardware interrupts being disabled.
3748  * (in_irq() || irqs_disabled())
3749  *
3750  * We provide four helpers that can be used in following contexts :
3751  *
3752  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3753  *  replacing kfree_skb(skb)
3754  *
3755  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3756  *  Typically used in place of consume_skb(skb) in TX completion path
3757  *
3758  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3759  *  replacing kfree_skb(skb)
3760  *
3761  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3762  *  and consumed a packet. Used in place of consume_skb(skb)
3763  */
3764 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3765 {
3766 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3767 }
3768 
3769 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3770 {
3771 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3772 }
3773 
3774 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3775 {
3776 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3777 }
3778 
3779 static inline void dev_consume_skb_any(struct sk_buff *skb)
3780 {
3781 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3782 }
3783 
3784 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3785 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3786 int netif_rx(struct sk_buff *skb);
3787 int netif_rx_ni(struct sk_buff *skb);
3788 int netif_rx_any_context(struct sk_buff *skb);
3789 int netif_receive_skb(struct sk_buff *skb);
3790 int netif_receive_skb_core(struct sk_buff *skb);
3791 void netif_receive_skb_list(struct list_head *head);
3792 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3793 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3794 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3795 gro_result_t napi_gro_frags(struct napi_struct *napi);
3796 struct packet_offload *gro_find_receive_by_type(__be16 type);
3797 struct packet_offload *gro_find_complete_by_type(__be16 type);
3798 
3799 static inline void napi_free_frags(struct napi_struct *napi)
3800 {
3801 	kfree_skb(napi->skb);
3802 	napi->skb = NULL;
3803 }
3804 
3805 bool netdev_is_rx_handler_busy(struct net_device *dev);
3806 int netdev_rx_handler_register(struct net_device *dev,
3807 			       rx_handler_func_t *rx_handler,
3808 			       void *rx_handler_data);
3809 void netdev_rx_handler_unregister(struct net_device *dev);
3810 
3811 bool dev_valid_name(const char *name);
3812 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3813 		bool *need_copyout);
3814 int dev_ifconf(struct net *net, struct ifconf *, int);
3815 int dev_ethtool(struct net *net, struct ifreq *);
3816 unsigned int dev_get_flags(const struct net_device *);
3817 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3818 		       struct netlink_ext_ack *extack);
3819 int dev_change_flags(struct net_device *dev, unsigned int flags,
3820 		     struct netlink_ext_ack *extack);
3821 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3822 			unsigned int gchanges);
3823 int dev_change_name(struct net_device *, const char *);
3824 int dev_set_alias(struct net_device *, const char *, size_t);
3825 int dev_get_alias(const struct net_device *, char *, size_t);
3826 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3827 int __dev_set_mtu(struct net_device *, int);
3828 int dev_validate_mtu(struct net_device *dev, int mtu,
3829 		     struct netlink_ext_ack *extack);
3830 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3831 		    struct netlink_ext_ack *extack);
3832 int dev_set_mtu(struct net_device *, int);
3833 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3834 void dev_set_group(struct net_device *, int);
3835 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3836 			      struct netlink_ext_ack *extack);
3837 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3838 			struct netlink_ext_ack *extack);
3839 int dev_change_carrier(struct net_device *, bool new_carrier);
3840 int dev_get_phys_port_id(struct net_device *dev,
3841 			 struct netdev_phys_item_id *ppid);
3842 int dev_get_phys_port_name(struct net_device *dev,
3843 			   char *name, size_t len);
3844 int dev_get_port_parent_id(struct net_device *dev,
3845 			   struct netdev_phys_item_id *ppid, bool recurse);
3846 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3847 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3848 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3849 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3850 				  u32 value);
3851 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3852 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3853 				    struct netdev_queue *txq, int *ret);
3854 
3855 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3856 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3857 		      int fd, int expected_fd, u32 flags);
3858 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3859 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3860 
3861 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3862 
3863 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3864 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3865 bool is_skb_forwardable(const struct net_device *dev,
3866 			const struct sk_buff *skb);
3867 
3868 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3869 					       struct sk_buff *skb)
3870 {
3871 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3872 	    unlikely(!is_skb_forwardable(dev, skb))) {
3873 		atomic_long_inc(&dev->rx_dropped);
3874 		kfree_skb(skb);
3875 		return NET_RX_DROP;
3876 	}
3877 
3878 	skb_scrub_packet(skb, true);
3879 	skb->priority = 0;
3880 	return 0;
3881 }
3882 
3883 bool dev_nit_active(struct net_device *dev);
3884 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3885 
3886 extern int		netdev_budget;
3887 extern unsigned int	netdev_budget_usecs;
3888 
3889 /* Called by rtnetlink.c:rtnl_unlock() */
3890 void netdev_run_todo(void);
3891 
3892 /**
3893  *	dev_put - release reference to device
3894  *	@dev: network device
3895  *
3896  * Release reference to device to allow it to be freed.
3897  */
3898 static inline void dev_put(struct net_device *dev)
3899 {
3900 	this_cpu_dec(*dev->pcpu_refcnt);
3901 }
3902 
3903 /**
3904  *	dev_hold - get reference to device
3905  *	@dev: network device
3906  *
3907  * Hold reference to device to keep it from being freed.
3908  */
3909 static inline void dev_hold(struct net_device *dev)
3910 {
3911 	this_cpu_inc(*dev->pcpu_refcnt);
3912 }
3913 
3914 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3915  * and _off may be called from IRQ context, but it is caller
3916  * who is responsible for serialization of these calls.
3917  *
3918  * The name carrier is inappropriate, these functions should really be
3919  * called netif_lowerlayer_*() because they represent the state of any
3920  * kind of lower layer not just hardware media.
3921  */
3922 
3923 void linkwatch_init_dev(struct net_device *dev);
3924 void linkwatch_fire_event(struct net_device *dev);
3925 void linkwatch_forget_dev(struct net_device *dev);
3926 
3927 /**
3928  *	netif_carrier_ok - test if carrier present
3929  *	@dev: network device
3930  *
3931  * Check if carrier is present on device
3932  */
3933 static inline bool netif_carrier_ok(const struct net_device *dev)
3934 {
3935 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3936 }
3937 
3938 unsigned long dev_trans_start(struct net_device *dev);
3939 
3940 void __netdev_watchdog_up(struct net_device *dev);
3941 
3942 void netif_carrier_on(struct net_device *dev);
3943 
3944 void netif_carrier_off(struct net_device *dev);
3945 
3946 /**
3947  *	netif_dormant_on - mark device as dormant.
3948  *	@dev: network device
3949  *
3950  * Mark device as dormant (as per RFC2863).
3951  *
3952  * The dormant state indicates that the relevant interface is not
3953  * actually in a condition to pass packets (i.e., it is not 'up') but is
3954  * in a "pending" state, waiting for some external event.  For "on-
3955  * demand" interfaces, this new state identifies the situation where the
3956  * interface is waiting for events to place it in the up state.
3957  */
3958 static inline void netif_dormant_on(struct net_device *dev)
3959 {
3960 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3961 		linkwatch_fire_event(dev);
3962 }
3963 
3964 /**
3965  *	netif_dormant_off - set device as not dormant.
3966  *	@dev: network device
3967  *
3968  * Device is not in dormant state.
3969  */
3970 static inline void netif_dormant_off(struct net_device *dev)
3971 {
3972 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3973 		linkwatch_fire_event(dev);
3974 }
3975 
3976 /**
3977  *	netif_dormant - test if device is dormant
3978  *	@dev: network device
3979  *
3980  * Check if device is dormant.
3981  */
3982 static inline bool netif_dormant(const struct net_device *dev)
3983 {
3984 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3985 }
3986 
3987 
3988 /**
3989  *	netif_testing_on - mark device as under test.
3990  *	@dev: network device
3991  *
3992  * Mark device as under test (as per RFC2863).
3993  *
3994  * The testing state indicates that some test(s) must be performed on
3995  * the interface. After completion, of the test, the interface state
3996  * will change to up, dormant, or down, as appropriate.
3997  */
3998 static inline void netif_testing_on(struct net_device *dev)
3999 {
4000 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4001 		linkwatch_fire_event(dev);
4002 }
4003 
4004 /**
4005  *	netif_testing_off - set device as not under test.
4006  *	@dev: network device
4007  *
4008  * Device is not in testing state.
4009  */
4010 static inline void netif_testing_off(struct net_device *dev)
4011 {
4012 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4013 		linkwatch_fire_event(dev);
4014 }
4015 
4016 /**
4017  *	netif_testing - test if device is under test
4018  *	@dev: network device
4019  *
4020  * Check if device is under test
4021  */
4022 static inline bool netif_testing(const struct net_device *dev)
4023 {
4024 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4025 }
4026 
4027 
4028 /**
4029  *	netif_oper_up - test if device is operational
4030  *	@dev: network device
4031  *
4032  * Check if carrier is operational
4033  */
4034 static inline bool netif_oper_up(const struct net_device *dev)
4035 {
4036 	return (dev->operstate == IF_OPER_UP ||
4037 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4038 }
4039 
4040 /**
4041  *	netif_device_present - is device available or removed
4042  *	@dev: network device
4043  *
4044  * Check if device has not been removed from system.
4045  */
4046 static inline bool netif_device_present(struct net_device *dev)
4047 {
4048 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4049 }
4050 
4051 void netif_device_detach(struct net_device *dev);
4052 
4053 void netif_device_attach(struct net_device *dev);
4054 
4055 /*
4056  * Network interface message level settings
4057  */
4058 
4059 enum {
4060 	NETIF_MSG_DRV_BIT,
4061 	NETIF_MSG_PROBE_BIT,
4062 	NETIF_MSG_LINK_BIT,
4063 	NETIF_MSG_TIMER_BIT,
4064 	NETIF_MSG_IFDOWN_BIT,
4065 	NETIF_MSG_IFUP_BIT,
4066 	NETIF_MSG_RX_ERR_BIT,
4067 	NETIF_MSG_TX_ERR_BIT,
4068 	NETIF_MSG_TX_QUEUED_BIT,
4069 	NETIF_MSG_INTR_BIT,
4070 	NETIF_MSG_TX_DONE_BIT,
4071 	NETIF_MSG_RX_STATUS_BIT,
4072 	NETIF_MSG_PKTDATA_BIT,
4073 	NETIF_MSG_HW_BIT,
4074 	NETIF_MSG_WOL_BIT,
4075 
4076 	/* When you add a new bit above, update netif_msg_class_names array
4077 	 * in net/ethtool/common.c
4078 	 */
4079 	NETIF_MSG_CLASS_COUNT,
4080 };
4081 /* Both ethtool_ops interface and internal driver implementation use u32 */
4082 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4083 
4084 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4085 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4086 
4087 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4088 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4089 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4090 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4091 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4092 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4093 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4094 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4095 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4096 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4097 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4098 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4099 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4100 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4101 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4102 
4103 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4104 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4105 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4106 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4107 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4108 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4109 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4110 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4111 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4112 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4113 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4114 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4115 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4116 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4117 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4118 
4119 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4120 {
4121 	/* use default */
4122 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4123 		return default_msg_enable_bits;
4124 	if (debug_value == 0)	/* no output */
4125 		return 0;
4126 	/* set low N bits */
4127 	return (1U << debug_value) - 1;
4128 }
4129 
4130 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4131 {
4132 	spin_lock(&txq->_xmit_lock);
4133 	txq->xmit_lock_owner = cpu;
4134 }
4135 
4136 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4137 {
4138 	__acquire(&txq->_xmit_lock);
4139 	return true;
4140 }
4141 
4142 static inline void __netif_tx_release(struct netdev_queue *txq)
4143 {
4144 	__release(&txq->_xmit_lock);
4145 }
4146 
4147 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4148 {
4149 	spin_lock_bh(&txq->_xmit_lock);
4150 	txq->xmit_lock_owner = smp_processor_id();
4151 }
4152 
4153 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4154 {
4155 	bool ok = spin_trylock(&txq->_xmit_lock);
4156 	if (likely(ok))
4157 		txq->xmit_lock_owner = smp_processor_id();
4158 	return ok;
4159 }
4160 
4161 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4162 {
4163 	txq->xmit_lock_owner = -1;
4164 	spin_unlock(&txq->_xmit_lock);
4165 }
4166 
4167 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4168 {
4169 	txq->xmit_lock_owner = -1;
4170 	spin_unlock_bh(&txq->_xmit_lock);
4171 }
4172 
4173 static inline void txq_trans_update(struct netdev_queue *txq)
4174 {
4175 	if (txq->xmit_lock_owner != -1)
4176 		txq->trans_start = jiffies;
4177 }
4178 
4179 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4180 static inline void netif_trans_update(struct net_device *dev)
4181 {
4182 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4183 
4184 	if (txq->trans_start != jiffies)
4185 		txq->trans_start = jiffies;
4186 }
4187 
4188 /**
4189  *	netif_tx_lock - grab network device transmit lock
4190  *	@dev: network device
4191  *
4192  * Get network device transmit lock
4193  */
4194 static inline void netif_tx_lock(struct net_device *dev)
4195 {
4196 	unsigned int i;
4197 	int cpu;
4198 
4199 	spin_lock(&dev->tx_global_lock);
4200 	cpu = smp_processor_id();
4201 	for (i = 0; i < dev->num_tx_queues; i++) {
4202 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4203 
4204 		/* We are the only thread of execution doing a
4205 		 * freeze, but we have to grab the _xmit_lock in
4206 		 * order to synchronize with threads which are in
4207 		 * the ->hard_start_xmit() handler and already
4208 		 * checked the frozen bit.
4209 		 */
4210 		__netif_tx_lock(txq, cpu);
4211 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4212 		__netif_tx_unlock(txq);
4213 	}
4214 }
4215 
4216 static inline void netif_tx_lock_bh(struct net_device *dev)
4217 {
4218 	local_bh_disable();
4219 	netif_tx_lock(dev);
4220 }
4221 
4222 static inline void netif_tx_unlock(struct net_device *dev)
4223 {
4224 	unsigned int i;
4225 
4226 	for (i = 0; i < dev->num_tx_queues; i++) {
4227 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4228 
4229 		/* No need to grab the _xmit_lock here.  If the
4230 		 * queue is not stopped for another reason, we
4231 		 * force a schedule.
4232 		 */
4233 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4234 		netif_schedule_queue(txq);
4235 	}
4236 	spin_unlock(&dev->tx_global_lock);
4237 }
4238 
4239 static inline void netif_tx_unlock_bh(struct net_device *dev)
4240 {
4241 	netif_tx_unlock(dev);
4242 	local_bh_enable();
4243 }
4244 
4245 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4246 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4247 		__netif_tx_lock(txq, cpu);		\
4248 	} else {					\
4249 		__netif_tx_acquire(txq);		\
4250 	}						\
4251 }
4252 
4253 #define HARD_TX_TRYLOCK(dev, txq)			\
4254 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4255 		__netif_tx_trylock(txq) :		\
4256 		__netif_tx_acquire(txq))
4257 
4258 #define HARD_TX_UNLOCK(dev, txq) {			\
4259 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4260 		__netif_tx_unlock(txq);			\
4261 	} else {					\
4262 		__netif_tx_release(txq);		\
4263 	}						\
4264 }
4265 
4266 static inline void netif_tx_disable(struct net_device *dev)
4267 {
4268 	unsigned int i;
4269 	int cpu;
4270 
4271 	local_bh_disable();
4272 	cpu = smp_processor_id();
4273 	for (i = 0; i < dev->num_tx_queues; i++) {
4274 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4275 
4276 		__netif_tx_lock(txq, cpu);
4277 		netif_tx_stop_queue(txq);
4278 		__netif_tx_unlock(txq);
4279 	}
4280 	local_bh_enable();
4281 }
4282 
4283 static inline void netif_addr_lock(struct net_device *dev)
4284 {
4285 	spin_lock(&dev->addr_list_lock);
4286 }
4287 
4288 static inline void netif_addr_lock_nested(struct net_device *dev)
4289 {
4290 	spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4291 }
4292 
4293 static inline void netif_addr_lock_bh(struct net_device *dev)
4294 {
4295 	spin_lock_bh(&dev->addr_list_lock);
4296 }
4297 
4298 static inline void netif_addr_unlock(struct net_device *dev)
4299 {
4300 	spin_unlock(&dev->addr_list_lock);
4301 }
4302 
4303 static inline void netif_addr_unlock_bh(struct net_device *dev)
4304 {
4305 	spin_unlock_bh(&dev->addr_list_lock);
4306 }
4307 
4308 /*
4309  * dev_addrs walker. Should be used only for read access. Call with
4310  * rcu_read_lock held.
4311  */
4312 #define for_each_dev_addr(dev, ha) \
4313 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4314 
4315 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4316 
4317 void ether_setup(struct net_device *dev);
4318 
4319 /* Support for loadable net-drivers */
4320 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4321 				    unsigned char name_assign_type,
4322 				    void (*setup)(struct net_device *),
4323 				    unsigned int txqs, unsigned int rxqs);
4324 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4325 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4326 
4327 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4328 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4329 			 count)
4330 
4331 int register_netdev(struct net_device *dev);
4332 void unregister_netdev(struct net_device *dev);
4333 
4334 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4335 
4336 /* General hardware address lists handling functions */
4337 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4338 		   struct netdev_hw_addr_list *from_list, int addr_len);
4339 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4340 		      struct netdev_hw_addr_list *from_list, int addr_len);
4341 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4342 		       struct net_device *dev,
4343 		       int (*sync)(struct net_device *, const unsigned char *),
4344 		       int (*unsync)(struct net_device *,
4345 				     const unsigned char *));
4346 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4347 			   struct net_device *dev,
4348 			   int (*sync)(struct net_device *,
4349 				       const unsigned char *, int),
4350 			   int (*unsync)(struct net_device *,
4351 					 const unsigned char *, int));
4352 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4353 			      struct net_device *dev,
4354 			      int (*unsync)(struct net_device *,
4355 					    const unsigned char *, int));
4356 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4357 			  struct net_device *dev,
4358 			  int (*unsync)(struct net_device *,
4359 					const unsigned char *));
4360 void __hw_addr_init(struct netdev_hw_addr_list *list);
4361 
4362 /* Functions used for device addresses handling */
4363 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4364 		 unsigned char addr_type);
4365 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4366 		 unsigned char addr_type);
4367 void dev_addr_flush(struct net_device *dev);
4368 int dev_addr_init(struct net_device *dev);
4369 
4370 /* Functions used for unicast addresses handling */
4371 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4372 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4373 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4374 int dev_uc_sync(struct net_device *to, struct net_device *from);
4375 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4376 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4377 void dev_uc_flush(struct net_device *dev);
4378 void dev_uc_init(struct net_device *dev);
4379 
4380 /**
4381  *  __dev_uc_sync - Synchonize device's unicast list
4382  *  @dev:  device to sync
4383  *  @sync: function to call if address should be added
4384  *  @unsync: function to call if address should be removed
4385  *
4386  *  Add newly added addresses to the interface, and release
4387  *  addresses that have been deleted.
4388  */
4389 static inline int __dev_uc_sync(struct net_device *dev,
4390 				int (*sync)(struct net_device *,
4391 					    const unsigned char *),
4392 				int (*unsync)(struct net_device *,
4393 					      const unsigned char *))
4394 {
4395 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4396 }
4397 
4398 /**
4399  *  __dev_uc_unsync - Remove synchronized addresses from device
4400  *  @dev:  device to sync
4401  *  @unsync: function to call if address should be removed
4402  *
4403  *  Remove all addresses that were added to the device by dev_uc_sync().
4404  */
4405 static inline void __dev_uc_unsync(struct net_device *dev,
4406 				   int (*unsync)(struct net_device *,
4407 						 const unsigned char *))
4408 {
4409 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4410 }
4411 
4412 /* Functions used for multicast addresses handling */
4413 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4414 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4415 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4416 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4417 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4418 int dev_mc_sync(struct net_device *to, struct net_device *from);
4419 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4420 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4421 void dev_mc_flush(struct net_device *dev);
4422 void dev_mc_init(struct net_device *dev);
4423 
4424 /**
4425  *  __dev_mc_sync - Synchonize device's multicast list
4426  *  @dev:  device to sync
4427  *  @sync: function to call if address should be added
4428  *  @unsync: function to call if address should be removed
4429  *
4430  *  Add newly added addresses to the interface, and release
4431  *  addresses that have been deleted.
4432  */
4433 static inline int __dev_mc_sync(struct net_device *dev,
4434 				int (*sync)(struct net_device *,
4435 					    const unsigned char *),
4436 				int (*unsync)(struct net_device *,
4437 					      const unsigned char *))
4438 {
4439 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4440 }
4441 
4442 /**
4443  *  __dev_mc_unsync - Remove synchronized addresses from device
4444  *  @dev:  device to sync
4445  *  @unsync: function to call if address should be removed
4446  *
4447  *  Remove all addresses that were added to the device by dev_mc_sync().
4448  */
4449 static inline void __dev_mc_unsync(struct net_device *dev,
4450 				   int (*unsync)(struct net_device *,
4451 						 const unsigned char *))
4452 {
4453 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4454 }
4455 
4456 /* Functions used for secondary unicast and multicast support */
4457 void dev_set_rx_mode(struct net_device *dev);
4458 void __dev_set_rx_mode(struct net_device *dev);
4459 int dev_set_promiscuity(struct net_device *dev, int inc);
4460 int dev_set_allmulti(struct net_device *dev, int inc);
4461 void netdev_state_change(struct net_device *dev);
4462 void netdev_notify_peers(struct net_device *dev);
4463 void netdev_features_change(struct net_device *dev);
4464 /* Load a device via the kmod */
4465 void dev_load(struct net *net, const char *name);
4466 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4467 					struct rtnl_link_stats64 *storage);
4468 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4469 			     const struct net_device_stats *netdev_stats);
4470 
4471 extern int		netdev_max_backlog;
4472 extern int		netdev_tstamp_prequeue;
4473 extern int		weight_p;
4474 extern int		dev_weight_rx_bias;
4475 extern int		dev_weight_tx_bias;
4476 extern int		dev_rx_weight;
4477 extern int		dev_tx_weight;
4478 extern int		gro_normal_batch;
4479 
4480 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4481 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4482 						     struct list_head **iter);
4483 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4484 						     struct list_head **iter);
4485 
4486 /* iterate through upper list, must be called under RCU read lock */
4487 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4488 	for (iter = &(dev)->adj_list.upper, \
4489 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4490 	     updev; \
4491 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4492 
4493 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4494 				  int (*fn)(struct net_device *upper_dev,
4495 					    void *data),
4496 				  void *data);
4497 
4498 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4499 				  struct net_device *upper_dev);
4500 
4501 bool netdev_has_any_upper_dev(struct net_device *dev);
4502 
4503 void *netdev_lower_get_next_private(struct net_device *dev,
4504 				    struct list_head **iter);
4505 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4506 					struct list_head **iter);
4507 
4508 #define netdev_for_each_lower_private(dev, priv, iter) \
4509 	for (iter = (dev)->adj_list.lower.next, \
4510 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4511 	     priv; \
4512 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4513 
4514 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4515 	for (iter = &(dev)->adj_list.lower, \
4516 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4517 	     priv; \
4518 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4519 
4520 void *netdev_lower_get_next(struct net_device *dev,
4521 				struct list_head **iter);
4522 
4523 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4524 	for (iter = (dev)->adj_list.lower.next, \
4525 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4526 	     ldev; \
4527 	     ldev = netdev_lower_get_next(dev, &(iter)))
4528 
4529 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4530 					     struct list_head **iter);
4531 int netdev_walk_all_lower_dev(struct net_device *dev,
4532 			      int (*fn)(struct net_device *lower_dev,
4533 					void *data),
4534 			      void *data);
4535 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4536 				  int (*fn)(struct net_device *lower_dev,
4537 					    void *data),
4538 				  void *data);
4539 
4540 void *netdev_adjacent_get_private(struct list_head *adj_list);
4541 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4542 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4543 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4544 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4545 			  struct netlink_ext_ack *extack);
4546 int netdev_master_upper_dev_link(struct net_device *dev,
4547 				 struct net_device *upper_dev,
4548 				 void *upper_priv, void *upper_info,
4549 				 struct netlink_ext_ack *extack);
4550 void netdev_upper_dev_unlink(struct net_device *dev,
4551 			     struct net_device *upper_dev);
4552 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4553 				   struct net_device *new_dev,
4554 				   struct net_device *dev,
4555 				   struct netlink_ext_ack *extack);
4556 void netdev_adjacent_change_commit(struct net_device *old_dev,
4557 				   struct net_device *new_dev,
4558 				   struct net_device *dev);
4559 void netdev_adjacent_change_abort(struct net_device *old_dev,
4560 				  struct net_device *new_dev,
4561 				  struct net_device *dev);
4562 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4563 void *netdev_lower_dev_get_private(struct net_device *dev,
4564 				   struct net_device *lower_dev);
4565 void netdev_lower_state_changed(struct net_device *lower_dev,
4566 				void *lower_state_info);
4567 
4568 /* RSS keys are 40 or 52 bytes long */
4569 #define NETDEV_RSS_KEY_LEN 52
4570 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4571 void netdev_rss_key_fill(void *buffer, size_t len);
4572 
4573 int skb_checksum_help(struct sk_buff *skb);
4574 int skb_crc32c_csum_help(struct sk_buff *skb);
4575 int skb_csum_hwoffload_help(struct sk_buff *skb,
4576 			    const netdev_features_t features);
4577 
4578 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4579 				  netdev_features_t features, bool tx_path);
4580 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4581 				    netdev_features_t features);
4582 
4583 struct netdev_bonding_info {
4584 	ifslave	slave;
4585 	ifbond	master;
4586 };
4587 
4588 struct netdev_notifier_bonding_info {
4589 	struct netdev_notifier_info info; /* must be first */
4590 	struct netdev_bonding_info  bonding_info;
4591 };
4592 
4593 void netdev_bonding_info_change(struct net_device *dev,
4594 				struct netdev_bonding_info *bonding_info);
4595 
4596 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4597 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4598 #else
4599 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4600 				  const void *data)
4601 {
4602 }
4603 #endif
4604 
4605 static inline
4606 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4607 {
4608 	return __skb_gso_segment(skb, features, true);
4609 }
4610 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4611 
4612 static inline bool can_checksum_protocol(netdev_features_t features,
4613 					 __be16 protocol)
4614 {
4615 	if (protocol == htons(ETH_P_FCOE))
4616 		return !!(features & NETIF_F_FCOE_CRC);
4617 
4618 	/* Assume this is an IP checksum (not SCTP CRC) */
4619 
4620 	if (features & NETIF_F_HW_CSUM) {
4621 		/* Can checksum everything */
4622 		return true;
4623 	}
4624 
4625 	switch (protocol) {
4626 	case htons(ETH_P_IP):
4627 		return !!(features & NETIF_F_IP_CSUM);
4628 	case htons(ETH_P_IPV6):
4629 		return !!(features & NETIF_F_IPV6_CSUM);
4630 	default:
4631 		return false;
4632 	}
4633 }
4634 
4635 #ifdef CONFIG_BUG
4636 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4637 #else
4638 static inline void netdev_rx_csum_fault(struct net_device *dev,
4639 					struct sk_buff *skb)
4640 {
4641 }
4642 #endif
4643 /* rx skb timestamps */
4644 void net_enable_timestamp(void);
4645 void net_disable_timestamp(void);
4646 
4647 #ifdef CONFIG_PROC_FS
4648 int __init dev_proc_init(void);
4649 #else
4650 #define dev_proc_init() 0
4651 #endif
4652 
4653 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4654 					      struct sk_buff *skb, struct net_device *dev,
4655 					      bool more)
4656 {
4657 	__this_cpu_write(softnet_data.xmit.more, more);
4658 	return ops->ndo_start_xmit(skb, dev);
4659 }
4660 
4661 static inline bool netdev_xmit_more(void)
4662 {
4663 	return __this_cpu_read(softnet_data.xmit.more);
4664 }
4665 
4666 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4667 					    struct netdev_queue *txq, bool more)
4668 {
4669 	const struct net_device_ops *ops = dev->netdev_ops;
4670 	netdev_tx_t rc;
4671 
4672 	rc = __netdev_start_xmit(ops, skb, dev, more);
4673 	if (rc == NETDEV_TX_OK)
4674 		txq_trans_update(txq);
4675 
4676 	return rc;
4677 }
4678 
4679 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4680 				const void *ns);
4681 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4682 				 const void *ns);
4683 
4684 extern const struct kobj_ns_type_operations net_ns_type_operations;
4685 
4686 const char *netdev_drivername(const struct net_device *dev);
4687 
4688 void linkwatch_run_queue(void);
4689 
4690 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4691 							  netdev_features_t f2)
4692 {
4693 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4694 		if (f1 & NETIF_F_HW_CSUM)
4695 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4696 		else
4697 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4698 	}
4699 
4700 	return f1 & f2;
4701 }
4702 
4703 static inline netdev_features_t netdev_get_wanted_features(
4704 	struct net_device *dev)
4705 {
4706 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4707 }
4708 netdev_features_t netdev_increment_features(netdev_features_t all,
4709 	netdev_features_t one, netdev_features_t mask);
4710 
4711 /* Allow TSO being used on stacked device :
4712  * Performing the GSO segmentation before last device
4713  * is a performance improvement.
4714  */
4715 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4716 							netdev_features_t mask)
4717 {
4718 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4719 }
4720 
4721 int __netdev_update_features(struct net_device *dev);
4722 void netdev_update_features(struct net_device *dev);
4723 void netdev_change_features(struct net_device *dev);
4724 
4725 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4726 					struct net_device *dev);
4727 
4728 netdev_features_t passthru_features_check(struct sk_buff *skb,
4729 					  struct net_device *dev,
4730 					  netdev_features_t features);
4731 netdev_features_t netif_skb_features(struct sk_buff *skb);
4732 
4733 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4734 {
4735 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4736 
4737 	/* check flags correspondence */
4738 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4739 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4740 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4741 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4742 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4743 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4744 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4745 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4746 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4747 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4748 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4749 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4750 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4751 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4752 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4753 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4754 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4755 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4756 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4757 
4758 	return (features & feature) == feature;
4759 }
4760 
4761 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4762 {
4763 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4764 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4765 }
4766 
4767 static inline bool netif_needs_gso(struct sk_buff *skb,
4768 				   netdev_features_t features)
4769 {
4770 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4771 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4772 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4773 }
4774 
4775 static inline void netif_set_gso_max_size(struct net_device *dev,
4776 					  unsigned int size)
4777 {
4778 	dev->gso_max_size = size;
4779 }
4780 
4781 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4782 					int pulled_hlen, u16 mac_offset,
4783 					int mac_len)
4784 {
4785 	skb->protocol = protocol;
4786 	skb->encapsulation = 1;
4787 	skb_push(skb, pulled_hlen);
4788 	skb_reset_transport_header(skb);
4789 	skb->mac_header = mac_offset;
4790 	skb->network_header = skb->mac_header + mac_len;
4791 	skb->mac_len = mac_len;
4792 }
4793 
4794 static inline bool netif_is_macsec(const struct net_device *dev)
4795 {
4796 	return dev->priv_flags & IFF_MACSEC;
4797 }
4798 
4799 static inline bool netif_is_macvlan(const struct net_device *dev)
4800 {
4801 	return dev->priv_flags & IFF_MACVLAN;
4802 }
4803 
4804 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4805 {
4806 	return dev->priv_flags & IFF_MACVLAN_PORT;
4807 }
4808 
4809 static inline bool netif_is_bond_master(const struct net_device *dev)
4810 {
4811 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4812 }
4813 
4814 static inline bool netif_is_bond_slave(const struct net_device *dev)
4815 {
4816 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4817 }
4818 
4819 static inline bool netif_supports_nofcs(struct net_device *dev)
4820 {
4821 	return dev->priv_flags & IFF_SUPP_NOFCS;
4822 }
4823 
4824 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4825 {
4826 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4827 }
4828 
4829 static inline bool netif_is_l3_master(const struct net_device *dev)
4830 {
4831 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4832 }
4833 
4834 static inline bool netif_is_l3_slave(const struct net_device *dev)
4835 {
4836 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4837 }
4838 
4839 static inline bool netif_is_bridge_master(const struct net_device *dev)
4840 {
4841 	return dev->priv_flags & IFF_EBRIDGE;
4842 }
4843 
4844 static inline bool netif_is_bridge_port(const struct net_device *dev)
4845 {
4846 	return dev->priv_flags & IFF_BRIDGE_PORT;
4847 }
4848 
4849 static inline bool netif_is_ovs_master(const struct net_device *dev)
4850 {
4851 	return dev->priv_flags & IFF_OPENVSWITCH;
4852 }
4853 
4854 static inline bool netif_is_ovs_port(const struct net_device *dev)
4855 {
4856 	return dev->priv_flags & IFF_OVS_DATAPATH;
4857 }
4858 
4859 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4860 {
4861 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4862 }
4863 
4864 static inline bool netif_is_team_master(const struct net_device *dev)
4865 {
4866 	return dev->priv_flags & IFF_TEAM;
4867 }
4868 
4869 static inline bool netif_is_team_port(const struct net_device *dev)
4870 {
4871 	return dev->priv_flags & IFF_TEAM_PORT;
4872 }
4873 
4874 static inline bool netif_is_lag_master(const struct net_device *dev)
4875 {
4876 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4877 }
4878 
4879 static inline bool netif_is_lag_port(const struct net_device *dev)
4880 {
4881 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4882 }
4883 
4884 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4885 {
4886 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4887 }
4888 
4889 static inline bool netif_is_failover(const struct net_device *dev)
4890 {
4891 	return dev->priv_flags & IFF_FAILOVER;
4892 }
4893 
4894 static inline bool netif_is_failover_slave(const struct net_device *dev)
4895 {
4896 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4897 }
4898 
4899 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4900 static inline void netif_keep_dst(struct net_device *dev)
4901 {
4902 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4903 }
4904 
4905 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4906 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4907 {
4908 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4909 	return dev->priv_flags & IFF_MACSEC;
4910 }
4911 
4912 extern struct pernet_operations __net_initdata loopback_net_ops;
4913 
4914 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4915 
4916 /* netdev_printk helpers, similar to dev_printk */
4917 
4918 static inline const char *netdev_name(const struct net_device *dev)
4919 {
4920 	if (!dev->name[0] || strchr(dev->name, '%'))
4921 		return "(unnamed net_device)";
4922 	return dev->name;
4923 }
4924 
4925 static inline bool netdev_unregistering(const struct net_device *dev)
4926 {
4927 	return dev->reg_state == NETREG_UNREGISTERING;
4928 }
4929 
4930 static inline const char *netdev_reg_state(const struct net_device *dev)
4931 {
4932 	switch (dev->reg_state) {
4933 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4934 	case NETREG_REGISTERED: return "";
4935 	case NETREG_UNREGISTERING: return " (unregistering)";
4936 	case NETREG_UNREGISTERED: return " (unregistered)";
4937 	case NETREG_RELEASED: return " (released)";
4938 	case NETREG_DUMMY: return " (dummy)";
4939 	}
4940 
4941 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4942 	return " (unknown)";
4943 }
4944 
4945 __printf(3, 4) __cold
4946 void netdev_printk(const char *level, const struct net_device *dev,
4947 		   const char *format, ...);
4948 __printf(2, 3) __cold
4949 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4950 __printf(2, 3) __cold
4951 void netdev_alert(const struct net_device *dev, const char *format, ...);
4952 __printf(2, 3) __cold
4953 void netdev_crit(const struct net_device *dev, const char *format, ...);
4954 __printf(2, 3) __cold
4955 void netdev_err(const struct net_device *dev, const char *format, ...);
4956 __printf(2, 3) __cold
4957 void netdev_warn(const struct net_device *dev, const char *format, ...);
4958 __printf(2, 3) __cold
4959 void netdev_notice(const struct net_device *dev, const char *format, ...);
4960 __printf(2, 3) __cold
4961 void netdev_info(const struct net_device *dev, const char *format, ...);
4962 
4963 #define netdev_level_once(level, dev, fmt, ...)			\
4964 do {								\
4965 	static bool __print_once __read_mostly;			\
4966 								\
4967 	if (!__print_once) {					\
4968 		__print_once = true;				\
4969 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4970 	}							\
4971 } while (0)
4972 
4973 #define netdev_emerg_once(dev, fmt, ...) \
4974 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4975 #define netdev_alert_once(dev, fmt, ...) \
4976 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4977 #define netdev_crit_once(dev, fmt, ...) \
4978 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4979 #define netdev_err_once(dev, fmt, ...) \
4980 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4981 #define netdev_warn_once(dev, fmt, ...) \
4982 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4983 #define netdev_notice_once(dev, fmt, ...) \
4984 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4985 #define netdev_info_once(dev, fmt, ...) \
4986 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4987 
4988 #define MODULE_ALIAS_NETDEV(device) \
4989 	MODULE_ALIAS("netdev-" device)
4990 
4991 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4992 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4993 #define netdev_dbg(__dev, format, args...)			\
4994 do {								\
4995 	dynamic_netdev_dbg(__dev, format, ##args);		\
4996 } while (0)
4997 #elif defined(DEBUG)
4998 #define netdev_dbg(__dev, format, args...)			\
4999 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5000 #else
5001 #define netdev_dbg(__dev, format, args...)			\
5002 ({								\
5003 	if (0)							\
5004 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5005 })
5006 #endif
5007 
5008 #if defined(VERBOSE_DEBUG)
5009 #define netdev_vdbg	netdev_dbg
5010 #else
5011 
5012 #define netdev_vdbg(dev, format, args...)			\
5013 ({								\
5014 	if (0)							\
5015 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5016 	0;							\
5017 })
5018 #endif
5019 
5020 /*
5021  * netdev_WARN() acts like dev_printk(), but with the key difference
5022  * of using a WARN/WARN_ON to get the message out, including the
5023  * file/line information and a backtrace.
5024  */
5025 #define netdev_WARN(dev, format, args...)			\
5026 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5027 	     netdev_reg_state(dev), ##args)
5028 
5029 #define netdev_WARN_ONCE(dev, format, args...)				\
5030 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5031 		  netdev_reg_state(dev), ##args)
5032 
5033 /* netif printk helpers, similar to netdev_printk */
5034 
5035 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5036 do {					  			\
5037 	if (netif_msg_##type(priv))				\
5038 		netdev_printk(level, (dev), fmt, ##args);	\
5039 } while (0)
5040 
5041 #define netif_level(level, priv, type, dev, fmt, args...)	\
5042 do {								\
5043 	if (netif_msg_##type(priv))				\
5044 		netdev_##level(dev, fmt, ##args);		\
5045 } while (0)
5046 
5047 #define netif_emerg(priv, type, dev, fmt, args...)		\
5048 	netif_level(emerg, priv, type, dev, fmt, ##args)
5049 #define netif_alert(priv, type, dev, fmt, args...)		\
5050 	netif_level(alert, priv, type, dev, fmt, ##args)
5051 #define netif_crit(priv, type, dev, fmt, args...)		\
5052 	netif_level(crit, priv, type, dev, fmt, ##args)
5053 #define netif_err(priv, type, dev, fmt, args...)		\
5054 	netif_level(err, priv, type, dev, fmt, ##args)
5055 #define netif_warn(priv, type, dev, fmt, args...)		\
5056 	netif_level(warn, priv, type, dev, fmt, ##args)
5057 #define netif_notice(priv, type, dev, fmt, args...)		\
5058 	netif_level(notice, priv, type, dev, fmt, ##args)
5059 #define netif_info(priv, type, dev, fmt, args...)		\
5060 	netif_level(info, priv, type, dev, fmt, ##args)
5061 
5062 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5063 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5064 #define netif_dbg(priv, type, netdev, format, args...)		\
5065 do {								\
5066 	if (netif_msg_##type(priv))				\
5067 		dynamic_netdev_dbg(netdev, format, ##args);	\
5068 } while (0)
5069 #elif defined(DEBUG)
5070 #define netif_dbg(priv, type, dev, format, args...)		\
5071 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5072 #else
5073 #define netif_dbg(priv, type, dev, format, args...)			\
5074 ({									\
5075 	if (0)								\
5076 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5077 	0;								\
5078 })
5079 #endif
5080 
5081 /* if @cond then downgrade to debug, else print at @level */
5082 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5083 	do {                                                              \
5084 		if (cond)                                                 \
5085 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5086 		else                                                      \
5087 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5088 	} while (0)
5089 
5090 #if defined(VERBOSE_DEBUG)
5091 #define netif_vdbg	netif_dbg
5092 #else
5093 #define netif_vdbg(priv, type, dev, format, args...)		\
5094 ({								\
5095 	if (0)							\
5096 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5097 	0;							\
5098 })
5099 #endif
5100 
5101 /*
5102  *	The list of packet types we will receive (as opposed to discard)
5103  *	and the routines to invoke.
5104  *
5105  *	Why 16. Because with 16 the only overlap we get on a hash of the
5106  *	low nibble of the protocol value is RARP/SNAP/X.25.
5107  *
5108  *		0800	IP
5109  *		0001	802.3
5110  *		0002	AX.25
5111  *		0004	802.2
5112  *		8035	RARP
5113  *		0005	SNAP
5114  *		0805	X.25
5115  *		0806	ARP
5116  *		8137	IPX
5117  *		0009	Localtalk
5118  *		86DD	IPv6
5119  */
5120 #define PTYPE_HASH_SIZE	(16)
5121 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5122 
5123 extern struct net_device *blackhole_netdev;
5124 
5125 #endif	/* _LINUX_NETDEVICE_H */
5126