1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 57 struct sfp_bus; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* 802.15.4 specific */ 61 struct wpan_dev; 62 struct mpls_dev; 63 /* UDP Tunnel offloads */ 64 struct udp_tunnel_info; 65 struct bpf_prog; 66 struct xdp_buff; 67 68 void netdev_set_default_ethtool_ops(struct net_device *dev, 69 const struct ethtool_ops *ops); 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 /* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously; in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 89 * others are propagated to higher layers. 90 */ 91 92 /* qdisc ->enqueue() return codes. */ 93 #define NET_XMIT_SUCCESS 0x00 94 #define NET_XMIT_DROP 0x01 /* skb dropped */ 95 #define NET_XMIT_CN 0x02 /* congestion notification */ 96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 97 98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 99 * indicates that the device will soon be dropping packets, or already drops 100 * some packets of the same priority; prompting us to send less aggressively. */ 101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 103 104 /* Driver transmit return codes */ 105 #define NETDEV_TX_MASK 0xf0 106 107 enum netdev_tx { 108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 109 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 111 }; 112 typedef enum netdev_tx netdev_tx_t; 113 114 /* 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 117 */ 118 static inline bool dev_xmit_complete(int rc) 119 { 120 /* 121 * Positive cases with an skb consumed by a driver: 122 * - successful transmission (rc == NETDEV_TX_OK) 123 * - error while transmitting (rc < 0) 124 * - error while queueing to a different device (rc & NET_XMIT_MASK) 125 */ 126 if (likely(rc < NET_XMIT_MASK)) 127 return true; 128 129 return false; 130 } 131 132 /* 133 * Compute the worst-case header length according to the protocols 134 * used. 135 */ 136 137 #if defined(CONFIG_HYPERV_NET) 138 # define LL_MAX_HEADER 128 139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 140 # if defined(CONFIG_MAC80211_MESH) 141 # define LL_MAX_HEADER 128 142 # else 143 # define LL_MAX_HEADER 96 144 # endif 145 #else 146 # define LL_MAX_HEADER 32 147 #endif 148 149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 151 #define MAX_HEADER LL_MAX_HEADER 152 #else 153 #define MAX_HEADER (LL_MAX_HEADER + 48) 154 #endif 155 156 /* 157 * Old network device statistics. Fields are native words 158 * (unsigned long) so they can be read and written atomically. 159 */ 160 161 struct net_device_stats { 162 unsigned long rx_packets; 163 unsigned long tx_packets; 164 unsigned long rx_bytes; 165 unsigned long tx_bytes; 166 unsigned long rx_errors; 167 unsigned long tx_errors; 168 unsigned long rx_dropped; 169 unsigned long tx_dropped; 170 unsigned long multicast; 171 unsigned long collisions; 172 unsigned long rx_length_errors; 173 unsigned long rx_over_errors; 174 unsigned long rx_crc_errors; 175 unsigned long rx_frame_errors; 176 unsigned long rx_fifo_errors; 177 unsigned long rx_missed_errors; 178 unsigned long tx_aborted_errors; 179 unsigned long tx_carrier_errors; 180 unsigned long tx_fifo_errors; 181 unsigned long tx_heartbeat_errors; 182 unsigned long tx_window_errors; 183 unsigned long rx_compressed; 184 unsigned long tx_compressed; 185 }; 186 187 188 #include <linux/cache.h> 189 #include <linux/skbuff.h> 190 191 #ifdef CONFIG_RPS 192 #include <linux/static_key.h> 193 extern struct static_key_false rps_needed; 194 extern struct static_key_false rfs_needed; 195 #endif 196 197 struct neighbour; 198 struct neigh_parms; 199 struct sk_buff; 200 201 struct netdev_hw_addr { 202 struct list_head list; 203 unsigned char addr[MAX_ADDR_LEN]; 204 unsigned char type; 205 #define NETDEV_HW_ADDR_T_LAN 1 206 #define NETDEV_HW_ADDR_T_SAN 2 207 #define NETDEV_HW_ADDR_T_SLAVE 3 208 #define NETDEV_HW_ADDR_T_UNICAST 4 209 #define NETDEV_HW_ADDR_T_MULTICAST 5 210 bool global_use; 211 int sync_cnt; 212 int refcount; 213 int synced; 214 struct rcu_head rcu_head; 215 }; 216 217 struct netdev_hw_addr_list { 218 struct list_head list; 219 int count; 220 }; 221 222 #define netdev_hw_addr_list_count(l) ((l)->count) 223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 224 #define netdev_hw_addr_list_for_each(ha, l) \ 225 list_for_each_entry(ha, &(l)->list, list) 226 227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 229 #define netdev_for_each_uc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 231 232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 234 #define netdev_for_each_mc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 236 237 struct hh_cache { 238 unsigned int hh_len; 239 seqlock_t hh_lock; 240 241 /* cached hardware header; allow for machine alignment needs. */ 242 #define HH_DATA_MOD 16 243 #define HH_DATA_OFF(__len) \ 244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 245 #define HH_DATA_ALIGN(__len) \ 246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 248 }; 249 250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 251 * Alternative is: 252 * dev->hard_header_len ? (dev->hard_header_len + 253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 254 * 255 * We could use other alignment values, but we must maintain the 256 * relationship HH alignment <= LL alignment. 257 */ 258 #define LL_RESERVED_SPACE(dev) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 263 struct header_ops { 264 int (*create) (struct sk_buff *skb, struct net_device *dev, 265 unsigned short type, const void *daddr, 266 const void *saddr, unsigned int len); 267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 269 void (*cache_update)(struct hh_cache *hh, 270 const struct net_device *dev, 271 const unsigned char *haddr); 272 bool (*validate)(const char *ll_header, unsigned int len); 273 __be16 (*parse_protocol)(const struct sk_buff *skb); 274 }; 275 276 /* These flag bits are private to the generic network queueing 277 * layer; they may not be explicitly referenced by any other 278 * code. 279 */ 280 281 enum netdev_state_t { 282 __LINK_STATE_START, 283 __LINK_STATE_PRESENT, 284 __LINK_STATE_NOCARRIER, 285 __LINK_STATE_LINKWATCH_PENDING, 286 __LINK_STATE_DORMANT, 287 }; 288 289 290 /* 291 * This structure holds boot-time configured netdevice settings. They 292 * are then used in the device probing. 293 */ 294 struct netdev_boot_setup { 295 char name[IFNAMSIZ]; 296 struct ifmap map; 297 }; 298 #define NETDEV_BOOT_SETUP_MAX 8 299 300 int __init netdev_boot_setup(char *str); 301 302 struct gro_list { 303 struct list_head list; 304 int count; 305 }; 306 307 /* 308 * size of gro hash buckets, must less than bit number of 309 * napi_struct::gro_bitmask 310 */ 311 #define GRO_HASH_BUCKETS 8 312 313 /* 314 * Structure for NAPI scheduling similar to tasklet but with weighting 315 */ 316 struct napi_struct { 317 /* The poll_list must only be managed by the entity which 318 * changes the state of the NAPI_STATE_SCHED bit. This means 319 * whoever atomically sets that bit can add this napi_struct 320 * to the per-CPU poll_list, and whoever clears that bit 321 * can remove from the list right before clearing the bit. 322 */ 323 struct list_head poll_list; 324 325 unsigned long state; 326 int weight; 327 unsigned long gro_bitmask; 328 int (*poll)(struct napi_struct *, int); 329 #ifdef CONFIG_NETPOLL 330 int poll_owner; 331 #endif 332 struct net_device *dev; 333 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 334 struct sk_buff *skb; 335 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 336 int rx_count; /* length of rx_list */ 337 struct hrtimer timer; 338 struct list_head dev_list; 339 struct hlist_node napi_hash_node; 340 unsigned int napi_id; 341 }; 342 343 enum { 344 NAPI_STATE_SCHED, /* Poll is scheduled */ 345 NAPI_STATE_MISSED, /* reschedule a napi */ 346 NAPI_STATE_DISABLE, /* Disable pending */ 347 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 348 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 349 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 350 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 351 }; 352 353 enum { 354 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 355 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 356 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 357 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 358 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 359 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 360 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 361 }; 362 363 enum gro_result { 364 GRO_MERGED, 365 GRO_MERGED_FREE, 366 GRO_HELD, 367 GRO_NORMAL, 368 GRO_DROP, 369 GRO_CONSUMED, 370 }; 371 typedef enum gro_result gro_result_t; 372 373 /* 374 * enum rx_handler_result - Possible return values for rx_handlers. 375 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 376 * further. 377 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 378 * case skb->dev was changed by rx_handler. 379 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 380 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 381 * 382 * rx_handlers are functions called from inside __netif_receive_skb(), to do 383 * special processing of the skb, prior to delivery to protocol handlers. 384 * 385 * Currently, a net_device can only have a single rx_handler registered. Trying 386 * to register a second rx_handler will return -EBUSY. 387 * 388 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 389 * To unregister a rx_handler on a net_device, use 390 * netdev_rx_handler_unregister(). 391 * 392 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 393 * do with the skb. 394 * 395 * If the rx_handler consumed the skb in some way, it should return 396 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 397 * the skb to be delivered in some other way. 398 * 399 * If the rx_handler changed skb->dev, to divert the skb to another 400 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 401 * new device will be called if it exists. 402 * 403 * If the rx_handler decides the skb should be ignored, it should return 404 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 405 * are registered on exact device (ptype->dev == skb->dev). 406 * 407 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 408 * delivered, it should return RX_HANDLER_PASS. 409 * 410 * A device without a registered rx_handler will behave as if rx_handler 411 * returned RX_HANDLER_PASS. 412 */ 413 414 enum rx_handler_result { 415 RX_HANDLER_CONSUMED, 416 RX_HANDLER_ANOTHER, 417 RX_HANDLER_EXACT, 418 RX_HANDLER_PASS, 419 }; 420 typedef enum rx_handler_result rx_handler_result_t; 421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 422 423 void __napi_schedule(struct napi_struct *n); 424 void __napi_schedule_irqoff(struct napi_struct *n); 425 426 static inline bool napi_disable_pending(struct napi_struct *n) 427 { 428 return test_bit(NAPI_STATE_DISABLE, &n->state); 429 } 430 431 bool napi_schedule_prep(struct napi_struct *n); 432 433 /** 434 * napi_schedule - schedule NAPI poll 435 * @n: NAPI context 436 * 437 * Schedule NAPI poll routine to be called if it is not already 438 * running. 439 */ 440 static inline void napi_schedule(struct napi_struct *n) 441 { 442 if (napi_schedule_prep(n)) 443 __napi_schedule(n); 444 } 445 446 /** 447 * napi_schedule_irqoff - schedule NAPI poll 448 * @n: NAPI context 449 * 450 * Variant of napi_schedule(), assuming hard irqs are masked. 451 */ 452 static inline void napi_schedule_irqoff(struct napi_struct *n) 453 { 454 if (napi_schedule_prep(n)) 455 __napi_schedule_irqoff(n); 456 } 457 458 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 459 static inline bool napi_reschedule(struct napi_struct *napi) 460 { 461 if (napi_schedule_prep(napi)) { 462 __napi_schedule(napi); 463 return true; 464 } 465 return false; 466 } 467 468 bool napi_complete_done(struct napi_struct *n, int work_done); 469 /** 470 * napi_complete - NAPI processing complete 471 * @n: NAPI context 472 * 473 * Mark NAPI processing as complete. 474 * Consider using napi_complete_done() instead. 475 * Return false if device should avoid rearming interrupts. 476 */ 477 static inline bool napi_complete(struct napi_struct *n) 478 { 479 return napi_complete_done(n, 0); 480 } 481 482 /** 483 * napi_hash_del - remove a NAPI from global table 484 * @napi: NAPI context 485 * 486 * Warning: caller must observe RCU grace period 487 * before freeing memory containing @napi, if 488 * this function returns true. 489 * Note: core networking stack automatically calls it 490 * from netif_napi_del(). 491 * Drivers might want to call this helper to combine all 492 * the needed RCU grace periods into a single one. 493 */ 494 bool napi_hash_del(struct napi_struct *napi); 495 496 /** 497 * napi_disable - prevent NAPI from scheduling 498 * @n: NAPI context 499 * 500 * Stop NAPI from being scheduled on this context. 501 * Waits till any outstanding processing completes. 502 */ 503 void napi_disable(struct napi_struct *n); 504 505 /** 506 * napi_enable - enable NAPI scheduling 507 * @n: NAPI context 508 * 509 * Resume NAPI from being scheduled on this context. 510 * Must be paired with napi_disable. 511 */ 512 static inline void napi_enable(struct napi_struct *n) 513 { 514 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 515 smp_mb__before_atomic(); 516 clear_bit(NAPI_STATE_SCHED, &n->state); 517 clear_bit(NAPI_STATE_NPSVC, &n->state); 518 } 519 520 /** 521 * napi_synchronize - wait until NAPI is not running 522 * @n: NAPI context 523 * 524 * Wait until NAPI is done being scheduled on this context. 525 * Waits till any outstanding processing completes but 526 * does not disable future activations. 527 */ 528 static inline void napi_synchronize(const struct napi_struct *n) 529 { 530 if (IS_ENABLED(CONFIG_SMP)) 531 while (test_bit(NAPI_STATE_SCHED, &n->state)) 532 msleep(1); 533 else 534 barrier(); 535 } 536 537 /** 538 * napi_if_scheduled_mark_missed - if napi is running, set the 539 * NAPIF_STATE_MISSED 540 * @n: NAPI context 541 * 542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 543 * NAPI is scheduled. 544 **/ 545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 546 { 547 unsigned long val, new; 548 549 do { 550 val = READ_ONCE(n->state); 551 if (val & NAPIF_STATE_DISABLE) 552 return true; 553 554 if (!(val & NAPIF_STATE_SCHED)) 555 return false; 556 557 new = val | NAPIF_STATE_MISSED; 558 } while (cmpxchg(&n->state, val, new) != val); 559 560 return true; 561 } 562 563 enum netdev_queue_state_t { 564 __QUEUE_STATE_DRV_XOFF, 565 __QUEUE_STATE_STACK_XOFF, 566 __QUEUE_STATE_FROZEN, 567 }; 568 569 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 570 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 571 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 572 573 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 575 QUEUE_STATE_FROZEN) 576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 579 /* 580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 581 * netif_tx_* functions below are used to manipulate this flag. The 582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 583 * queue independently. The netif_xmit_*stopped functions below are called 584 * to check if the queue has been stopped by the driver or stack (either 585 * of the XOFF bits are set in the state). Drivers should not need to call 586 * netif_xmit*stopped functions, they should only be using netif_tx_*. 587 */ 588 589 struct netdev_queue { 590 /* 591 * read-mostly part 592 */ 593 struct net_device *dev; 594 struct Qdisc __rcu *qdisc; 595 struct Qdisc *qdisc_sleeping; 596 #ifdef CONFIG_SYSFS 597 struct kobject kobj; 598 #endif 599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 int numa_node; 601 #endif 602 unsigned long tx_maxrate; 603 /* 604 * Number of TX timeouts for this queue 605 * (/sys/class/net/DEV/Q/trans_timeout) 606 */ 607 unsigned long trans_timeout; 608 609 /* Subordinate device that the queue has been assigned to */ 610 struct net_device *sb_dev; 611 #ifdef CONFIG_XDP_SOCKETS 612 struct xdp_umem *umem; 613 #endif 614 /* 615 * write-mostly part 616 */ 617 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 618 int xmit_lock_owner; 619 /* 620 * Time (in jiffies) of last Tx 621 */ 622 unsigned long trans_start; 623 624 unsigned long state; 625 626 #ifdef CONFIG_BQL 627 struct dql dql; 628 #endif 629 } ____cacheline_aligned_in_smp; 630 631 extern int sysctl_fb_tunnels_only_for_init_net; 632 extern int sysctl_devconf_inherit_init_net; 633 634 static inline bool net_has_fallback_tunnels(const struct net *net) 635 { 636 return net == &init_net || 637 !IS_ENABLED(CONFIG_SYSCTL) || 638 !sysctl_fb_tunnels_only_for_init_net; 639 } 640 641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642 { 643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645 #else 646 return NUMA_NO_NODE; 647 #endif 648 } 649 650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651 { 652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654 #endif 655 } 656 657 #ifdef CONFIG_RPS 658 /* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662 struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[0]; 666 }; 667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669 /* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674 struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678 }; 679 #define RPS_NO_FILTER 0xffff 680 681 /* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684 struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[0]; 688 }; 689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692 /* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702 struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[0] ____cacheline_aligned_in_smp; 706 }; 707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709 #define RPS_NO_CPU 0xffff 710 711 extern u32 rps_cpu_mask; 712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716 { 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 #endif /* CONFIG_RPS */ 734 735 /* This structure contains an instance of an RX queue. */ 736 struct netdev_rx_queue { 737 #ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740 #endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_XDP_SOCKETS 745 struct xdp_umem *umem; 746 #endif 747 } ____cacheline_aligned_in_smp; 748 749 /* 750 * RX queue sysfs structures and functions. 751 */ 752 struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[0]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777 struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 780 }; 781 782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788 #endif /* CONFIG_XPS */ 789 790 #define TC_MAX_QUEUE 16 791 #define TC_BITMASK 15 792 /* HW offloaded queuing disciplines txq count and offset maps */ 793 struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796 }; 797 798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799 /* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803 struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812 }; 813 #endif 814 815 #define MAX_PHYS_ITEM_ID_LEN 32 816 817 /* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820 struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823 }; 824 825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827 { 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830 } 831 832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836 enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 TC_SETUP_ROOT_QDISC, 849 TC_SETUP_QDISC_GRED, 850 TC_SETUP_QDISC_TAPRIO, 851 }; 852 853 /* These structures hold the attributes of bpf state that are being passed 854 * to the netdevice through the bpf op. 855 */ 856 enum bpf_netdev_command { 857 /* Set or clear a bpf program used in the earliest stages of packet 858 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 859 * is responsible for calling bpf_prog_put on any old progs that are 860 * stored. In case of error, the callee need not release the new prog 861 * reference, but on success it takes ownership and must bpf_prog_put 862 * when it is no longer used. 863 */ 864 XDP_SETUP_PROG, 865 XDP_SETUP_PROG_HW, 866 XDP_QUERY_PROG, 867 XDP_QUERY_PROG_HW, 868 /* BPF program for offload callbacks, invoked at program load time. */ 869 BPF_OFFLOAD_MAP_ALLOC, 870 BPF_OFFLOAD_MAP_FREE, 871 XDP_SETUP_XSK_UMEM, 872 }; 873 874 struct bpf_prog_offload_ops; 875 struct netlink_ext_ack; 876 struct xdp_umem; 877 878 struct netdev_bpf { 879 enum bpf_netdev_command command; 880 union { 881 /* XDP_SETUP_PROG */ 882 struct { 883 u32 flags; 884 struct bpf_prog *prog; 885 struct netlink_ext_ack *extack; 886 }; 887 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 888 struct { 889 u32 prog_id; 890 /* flags with which program was installed */ 891 u32 prog_flags; 892 }; 893 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 894 struct { 895 struct bpf_offloaded_map *offmap; 896 }; 897 /* XDP_SETUP_XSK_UMEM */ 898 struct { 899 struct xdp_umem *umem; 900 u16 queue_id; 901 } xsk; 902 }; 903 }; 904 905 /* Flags for ndo_xsk_wakeup. */ 906 #define XDP_WAKEUP_RX (1 << 0) 907 #define XDP_WAKEUP_TX (1 << 1) 908 909 #ifdef CONFIG_XFRM_OFFLOAD 910 struct xfrmdev_ops { 911 int (*xdo_dev_state_add) (struct xfrm_state *x); 912 void (*xdo_dev_state_delete) (struct xfrm_state *x); 913 void (*xdo_dev_state_free) (struct xfrm_state *x); 914 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 915 struct xfrm_state *x); 916 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 917 }; 918 #endif 919 920 struct dev_ifalias { 921 struct rcu_head rcuhead; 922 char ifalias[]; 923 }; 924 925 struct devlink; 926 struct tlsdev_ops; 927 928 struct netdev_name_node { 929 struct hlist_node hlist; 930 struct list_head list; 931 struct net_device *dev; 932 const char *name; 933 }; 934 935 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 936 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 937 938 /* 939 * This structure defines the management hooks for network devices. 940 * The following hooks can be defined; unless noted otherwise, they are 941 * optional and can be filled with a null pointer. 942 * 943 * int (*ndo_init)(struct net_device *dev); 944 * This function is called once when a network device is registered. 945 * The network device can use this for any late stage initialization 946 * or semantic validation. It can fail with an error code which will 947 * be propagated back to register_netdev. 948 * 949 * void (*ndo_uninit)(struct net_device *dev); 950 * This function is called when device is unregistered or when registration 951 * fails. It is not called if init fails. 952 * 953 * int (*ndo_open)(struct net_device *dev); 954 * This function is called when a network device transitions to the up 955 * state. 956 * 957 * int (*ndo_stop)(struct net_device *dev); 958 * This function is called when a network device transitions to the down 959 * state. 960 * 961 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 962 * struct net_device *dev); 963 * Called when a packet needs to be transmitted. 964 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 965 * the queue before that can happen; it's for obsolete devices and weird 966 * corner cases, but the stack really does a non-trivial amount 967 * of useless work if you return NETDEV_TX_BUSY. 968 * Required; cannot be NULL. 969 * 970 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 971 * struct net_device *dev 972 * netdev_features_t features); 973 * Called by core transmit path to determine if device is capable of 974 * performing offload operations on a given packet. This is to give 975 * the device an opportunity to implement any restrictions that cannot 976 * be otherwise expressed by feature flags. The check is called with 977 * the set of features that the stack has calculated and it returns 978 * those the driver believes to be appropriate. 979 * 980 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 981 * struct net_device *sb_dev); 982 * Called to decide which queue to use when device supports multiple 983 * transmit queues. 984 * 985 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 986 * This function is called to allow device receiver to make 987 * changes to configuration when multicast or promiscuous is enabled. 988 * 989 * void (*ndo_set_rx_mode)(struct net_device *dev); 990 * This function is called device changes address list filtering. 991 * If driver handles unicast address filtering, it should set 992 * IFF_UNICAST_FLT in its priv_flags. 993 * 994 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 995 * This function is called when the Media Access Control address 996 * needs to be changed. If this interface is not defined, the 997 * MAC address can not be changed. 998 * 999 * int (*ndo_validate_addr)(struct net_device *dev); 1000 * Test if Media Access Control address is valid for the device. 1001 * 1002 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1003 * Called when a user requests an ioctl which can't be handled by 1004 * the generic interface code. If not defined ioctls return 1005 * not supported error code. 1006 * 1007 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1008 * Used to set network devices bus interface parameters. This interface 1009 * is retained for legacy reasons; new devices should use the bus 1010 * interface (PCI) for low level management. 1011 * 1012 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1013 * Called when a user wants to change the Maximum Transfer Unit 1014 * of a device. 1015 * 1016 * void (*ndo_tx_timeout)(struct net_device *dev); 1017 * Callback used when the transmitter has not made any progress 1018 * for dev->watchdog ticks. 1019 * 1020 * void (*ndo_get_stats64)(struct net_device *dev, 1021 * struct rtnl_link_stats64 *storage); 1022 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1023 * Called when a user wants to get the network device usage 1024 * statistics. Drivers must do one of the following: 1025 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1026 * rtnl_link_stats64 structure passed by the caller. 1027 * 2. Define @ndo_get_stats to update a net_device_stats structure 1028 * (which should normally be dev->stats) and return a pointer to 1029 * it. The structure may be changed asynchronously only if each 1030 * field is written atomically. 1031 * 3. Update dev->stats asynchronously and atomically, and define 1032 * neither operation. 1033 * 1034 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1035 * Return true if this device supports offload stats of this attr_id. 1036 * 1037 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1038 * void *attr_data) 1039 * Get statistics for offload operations by attr_id. Write it into the 1040 * attr_data pointer. 1041 * 1042 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1043 * If device supports VLAN filtering this function is called when a 1044 * VLAN id is registered. 1045 * 1046 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1047 * If device supports VLAN filtering this function is called when a 1048 * VLAN id is unregistered. 1049 * 1050 * void (*ndo_poll_controller)(struct net_device *dev); 1051 * 1052 * SR-IOV management functions. 1053 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1054 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1055 * u8 qos, __be16 proto); 1056 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1057 * int max_tx_rate); 1058 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1059 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1060 * int (*ndo_get_vf_config)(struct net_device *dev, 1061 * int vf, struct ifla_vf_info *ivf); 1062 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1063 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1064 * struct nlattr *port[]); 1065 * 1066 * Enable or disable the VF ability to query its RSS Redirection Table and 1067 * Hash Key. This is needed since on some devices VF share this information 1068 * with PF and querying it may introduce a theoretical security risk. 1069 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1070 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1071 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1072 * void *type_data); 1073 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1074 * This is always called from the stack with the rtnl lock held and netif 1075 * tx queues stopped. This allows the netdevice to perform queue 1076 * management safely. 1077 * 1078 * Fiber Channel over Ethernet (FCoE) offload functions. 1079 * int (*ndo_fcoe_enable)(struct net_device *dev); 1080 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1081 * so the underlying device can perform whatever needed configuration or 1082 * initialization to support acceleration of FCoE traffic. 1083 * 1084 * int (*ndo_fcoe_disable)(struct net_device *dev); 1085 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1086 * so the underlying device can perform whatever needed clean-ups to 1087 * stop supporting acceleration of FCoE traffic. 1088 * 1089 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1090 * struct scatterlist *sgl, unsigned int sgc); 1091 * Called when the FCoE Initiator wants to initialize an I/O that 1092 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1093 * perform necessary setup and returns 1 to indicate the device is set up 1094 * successfully to perform DDP on this I/O, otherwise this returns 0. 1095 * 1096 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1097 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1098 * indicated by the FC exchange id 'xid', so the underlying device can 1099 * clean up and reuse resources for later DDP requests. 1100 * 1101 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1102 * struct scatterlist *sgl, unsigned int sgc); 1103 * Called when the FCoE Target wants to initialize an I/O that 1104 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1105 * perform necessary setup and returns 1 to indicate the device is set up 1106 * successfully to perform DDP on this I/O, otherwise this returns 0. 1107 * 1108 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1109 * struct netdev_fcoe_hbainfo *hbainfo); 1110 * Called when the FCoE Protocol stack wants information on the underlying 1111 * device. This information is utilized by the FCoE protocol stack to 1112 * register attributes with Fiber Channel management service as per the 1113 * FC-GS Fabric Device Management Information(FDMI) specification. 1114 * 1115 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1116 * Called when the underlying device wants to override default World Wide 1117 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1118 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1119 * protocol stack to use. 1120 * 1121 * RFS acceleration. 1122 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1123 * u16 rxq_index, u32 flow_id); 1124 * Set hardware filter for RFS. rxq_index is the target queue index; 1125 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1126 * Return the filter ID on success, or a negative error code. 1127 * 1128 * Slave management functions (for bridge, bonding, etc). 1129 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1130 * Called to make another netdev an underling. 1131 * 1132 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1133 * Called to release previously enslaved netdev. 1134 * 1135 * Feature/offload setting functions. 1136 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1137 * netdev_features_t features); 1138 * Adjusts the requested feature flags according to device-specific 1139 * constraints, and returns the resulting flags. Must not modify 1140 * the device state. 1141 * 1142 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1143 * Called to update device configuration to new features. Passed 1144 * feature set might be less than what was returned by ndo_fix_features()). 1145 * Must return >0 or -errno if it changed dev->features itself. 1146 * 1147 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1148 * struct net_device *dev, 1149 * const unsigned char *addr, u16 vid, u16 flags, 1150 * struct netlink_ext_ack *extack); 1151 * Adds an FDB entry to dev for addr. 1152 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1153 * struct net_device *dev, 1154 * const unsigned char *addr, u16 vid) 1155 * Deletes the FDB entry from dev coresponding to addr. 1156 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1157 * struct net_device *dev, struct net_device *filter_dev, 1158 * int *idx) 1159 * Used to add FDB entries to dump requests. Implementers should add 1160 * entries to skb and update idx with the number of entries. 1161 * 1162 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1163 * u16 flags, struct netlink_ext_ack *extack) 1164 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1165 * struct net_device *dev, u32 filter_mask, 1166 * int nlflags) 1167 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1168 * u16 flags); 1169 * 1170 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1171 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1172 * which do not represent real hardware may define this to allow their 1173 * userspace components to manage their virtual carrier state. Devices 1174 * that determine carrier state from physical hardware properties (eg 1175 * network cables) or protocol-dependent mechanisms (eg 1176 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1177 * 1178 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1179 * struct netdev_phys_item_id *ppid); 1180 * Called to get ID of physical port of this device. If driver does 1181 * not implement this, it is assumed that the hw is not able to have 1182 * multiple net devices on single physical port. 1183 * 1184 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1185 * struct netdev_phys_item_id *ppid) 1186 * Called to get the parent ID of the physical port of this device. 1187 * 1188 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1189 * struct udp_tunnel_info *ti); 1190 * Called by UDP tunnel to notify a driver about the UDP port and socket 1191 * address family that a UDP tunnel is listnening to. It is called only 1192 * when a new port starts listening. The operation is protected by the 1193 * RTNL. 1194 * 1195 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1196 * struct udp_tunnel_info *ti); 1197 * Called by UDP tunnel to notify the driver about a UDP port and socket 1198 * address family that the UDP tunnel is not listening to anymore. The 1199 * operation is protected by the RTNL. 1200 * 1201 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1202 * struct net_device *dev) 1203 * Called by upper layer devices to accelerate switching or other 1204 * station functionality into hardware. 'pdev is the lowerdev 1205 * to use for the offload and 'dev' is the net device that will 1206 * back the offload. Returns a pointer to the private structure 1207 * the upper layer will maintain. 1208 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1209 * Called by upper layer device to delete the station created 1210 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1211 * the station and priv is the structure returned by the add 1212 * operation. 1213 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1214 * int queue_index, u32 maxrate); 1215 * Called when a user wants to set a max-rate limitation of specific 1216 * TX queue. 1217 * int (*ndo_get_iflink)(const struct net_device *dev); 1218 * Called to get the iflink value of this device. 1219 * void (*ndo_change_proto_down)(struct net_device *dev, 1220 * bool proto_down); 1221 * This function is used to pass protocol port error state information 1222 * to the switch driver. The switch driver can react to the proto_down 1223 * by doing a phys down on the associated switch port. 1224 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1225 * This function is used to get egress tunnel information for given skb. 1226 * This is useful for retrieving outer tunnel header parameters while 1227 * sampling packet. 1228 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1229 * This function is used to specify the headroom that the skb must 1230 * consider when allocation skb during packet reception. Setting 1231 * appropriate rx headroom value allows avoiding skb head copy on 1232 * forward. Setting a negative value resets the rx headroom to the 1233 * default value. 1234 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1235 * This function is used to set or query state related to XDP on the 1236 * netdevice and manage BPF offload. See definition of 1237 * enum bpf_netdev_command for details. 1238 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1239 * u32 flags); 1240 * This function is used to submit @n XDP packets for transmit on a 1241 * netdevice. Returns number of frames successfully transmitted, frames 1242 * that got dropped are freed/returned via xdp_return_frame(). 1243 * Returns negative number, means general error invoking ndo, meaning 1244 * no frames were xmit'ed and core-caller will free all frames. 1245 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1246 * This function is used to wake up the softirq, ksoftirqd or kthread 1247 * responsible for sending and/or receiving packets on a specific 1248 * queue id bound to an AF_XDP socket. The flags field specifies if 1249 * only RX, only Tx, or both should be woken up using the flags 1250 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1251 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1252 * Get devlink port instance associated with a given netdev. 1253 * Called with a reference on the netdevice and devlink locks only, 1254 * rtnl_lock is not held. 1255 */ 1256 struct net_device_ops { 1257 int (*ndo_init)(struct net_device *dev); 1258 void (*ndo_uninit)(struct net_device *dev); 1259 int (*ndo_open)(struct net_device *dev); 1260 int (*ndo_stop)(struct net_device *dev); 1261 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1262 struct net_device *dev); 1263 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1264 struct net_device *dev, 1265 netdev_features_t features); 1266 u16 (*ndo_select_queue)(struct net_device *dev, 1267 struct sk_buff *skb, 1268 struct net_device *sb_dev); 1269 void (*ndo_change_rx_flags)(struct net_device *dev, 1270 int flags); 1271 void (*ndo_set_rx_mode)(struct net_device *dev); 1272 int (*ndo_set_mac_address)(struct net_device *dev, 1273 void *addr); 1274 int (*ndo_validate_addr)(struct net_device *dev); 1275 int (*ndo_do_ioctl)(struct net_device *dev, 1276 struct ifreq *ifr, int cmd); 1277 int (*ndo_set_config)(struct net_device *dev, 1278 struct ifmap *map); 1279 int (*ndo_change_mtu)(struct net_device *dev, 1280 int new_mtu); 1281 int (*ndo_neigh_setup)(struct net_device *dev, 1282 struct neigh_parms *); 1283 void (*ndo_tx_timeout) (struct net_device *dev); 1284 1285 void (*ndo_get_stats64)(struct net_device *dev, 1286 struct rtnl_link_stats64 *storage); 1287 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1288 int (*ndo_get_offload_stats)(int attr_id, 1289 const struct net_device *dev, 1290 void *attr_data); 1291 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1292 1293 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1294 __be16 proto, u16 vid); 1295 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1296 __be16 proto, u16 vid); 1297 #ifdef CONFIG_NET_POLL_CONTROLLER 1298 void (*ndo_poll_controller)(struct net_device *dev); 1299 int (*ndo_netpoll_setup)(struct net_device *dev, 1300 struct netpoll_info *info); 1301 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1302 #endif 1303 int (*ndo_set_vf_mac)(struct net_device *dev, 1304 int queue, u8 *mac); 1305 int (*ndo_set_vf_vlan)(struct net_device *dev, 1306 int queue, u16 vlan, 1307 u8 qos, __be16 proto); 1308 int (*ndo_set_vf_rate)(struct net_device *dev, 1309 int vf, int min_tx_rate, 1310 int max_tx_rate); 1311 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1312 int vf, bool setting); 1313 int (*ndo_set_vf_trust)(struct net_device *dev, 1314 int vf, bool setting); 1315 int (*ndo_get_vf_config)(struct net_device *dev, 1316 int vf, 1317 struct ifla_vf_info *ivf); 1318 int (*ndo_set_vf_link_state)(struct net_device *dev, 1319 int vf, int link_state); 1320 int (*ndo_get_vf_stats)(struct net_device *dev, 1321 int vf, 1322 struct ifla_vf_stats 1323 *vf_stats); 1324 int (*ndo_set_vf_port)(struct net_device *dev, 1325 int vf, 1326 struct nlattr *port[]); 1327 int (*ndo_get_vf_port)(struct net_device *dev, 1328 int vf, struct sk_buff *skb); 1329 int (*ndo_set_vf_guid)(struct net_device *dev, 1330 int vf, u64 guid, 1331 int guid_type); 1332 int (*ndo_set_vf_rss_query_en)( 1333 struct net_device *dev, 1334 int vf, bool setting); 1335 int (*ndo_setup_tc)(struct net_device *dev, 1336 enum tc_setup_type type, 1337 void *type_data); 1338 #if IS_ENABLED(CONFIG_FCOE) 1339 int (*ndo_fcoe_enable)(struct net_device *dev); 1340 int (*ndo_fcoe_disable)(struct net_device *dev); 1341 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1342 u16 xid, 1343 struct scatterlist *sgl, 1344 unsigned int sgc); 1345 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1346 u16 xid); 1347 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1348 u16 xid, 1349 struct scatterlist *sgl, 1350 unsigned int sgc); 1351 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1352 struct netdev_fcoe_hbainfo *hbainfo); 1353 #endif 1354 1355 #if IS_ENABLED(CONFIG_LIBFCOE) 1356 #define NETDEV_FCOE_WWNN 0 1357 #define NETDEV_FCOE_WWPN 1 1358 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1359 u64 *wwn, int type); 1360 #endif 1361 1362 #ifdef CONFIG_RFS_ACCEL 1363 int (*ndo_rx_flow_steer)(struct net_device *dev, 1364 const struct sk_buff *skb, 1365 u16 rxq_index, 1366 u32 flow_id); 1367 #endif 1368 int (*ndo_add_slave)(struct net_device *dev, 1369 struct net_device *slave_dev, 1370 struct netlink_ext_ack *extack); 1371 int (*ndo_del_slave)(struct net_device *dev, 1372 struct net_device *slave_dev); 1373 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1374 netdev_features_t features); 1375 int (*ndo_set_features)(struct net_device *dev, 1376 netdev_features_t features); 1377 int (*ndo_neigh_construct)(struct net_device *dev, 1378 struct neighbour *n); 1379 void (*ndo_neigh_destroy)(struct net_device *dev, 1380 struct neighbour *n); 1381 1382 int (*ndo_fdb_add)(struct ndmsg *ndm, 1383 struct nlattr *tb[], 1384 struct net_device *dev, 1385 const unsigned char *addr, 1386 u16 vid, 1387 u16 flags, 1388 struct netlink_ext_ack *extack); 1389 int (*ndo_fdb_del)(struct ndmsg *ndm, 1390 struct nlattr *tb[], 1391 struct net_device *dev, 1392 const unsigned char *addr, 1393 u16 vid); 1394 int (*ndo_fdb_dump)(struct sk_buff *skb, 1395 struct netlink_callback *cb, 1396 struct net_device *dev, 1397 struct net_device *filter_dev, 1398 int *idx); 1399 int (*ndo_fdb_get)(struct sk_buff *skb, 1400 struct nlattr *tb[], 1401 struct net_device *dev, 1402 const unsigned char *addr, 1403 u16 vid, u32 portid, u32 seq, 1404 struct netlink_ext_ack *extack); 1405 int (*ndo_bridge_setlink)(struct net_device *dev, 1406 struct nlmsghdr *nlh, 1407 u16 flags, 1408 struct netlink_ext_ack *extack); 1409 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1410 u32 pid, u32 seq, 1411 struct net_device *dev, 1412 u32 filter_mask, 1413 int nlflags); 1414 int (*ndo_bridge_dellink)(struct net_device *dev, 1415 struct nlmsghdr *nlh, 1416 u16 flags); 1417 int (*ndo_change_carrier)(struct net_device *dev, 1418 bool new_carrier); 1419 int (*ndo_get_phys_port_id)(struct net_device *dev, 1420 struct netdev_phys_item_id *ppid); 1421 int (*ndo_get_port_parent_id)(struct net_device *dev, 1422 struct netdev_phys_item_id *ppid); 1423 int (*ndo_get_phys_port_name)(struct net_device *dev, 1424 char *name, size_t len); 1425 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1426 struct udp_tunnel_info *ti); 1427 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1428 struct udp_tunnel_info *ti); 1429 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1430 struct net_device *dev); 1431 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1432 void *priv); 1433 1434 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1435 int queue_index, 1436 u32 maxrate); 1437 int (*ndo_get_iflink)(const struct net_device *dev); 1438 int (*ndo_change_proto_down)(struct net_device *dev, 1439 bool proto_down); 1440 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1441 struct sk_buff *skb); 1442 void (*ndo_set_rx_headroom)(struct net_device *dev, 1443 int needed_headroom); 1444 int (*ndo_bpf)(struct net_device *dev, 1445 struct netdev_bpf *bpf); 1446 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1447 struct xdp_frame **xdp, 1448 u32 flags); 1449 int (*ndo_xsk_wakeup)(struct net_device *dev, 1450 u32 queue_id, u32 flags); 1451 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1452 }; 1453 1454 /** 1455 * enum net_device_priv_flags - &struct net_device priv_flags 1456 * 1457 * These are the &struct net_device, they are only set internally 1458 * by drivers and used in the kernel. These flags are invisible to 1459 * userspace; this means that the order of these flags can change 1460 * during any kernel release. 1461 * 1462 * You should have a pretty good reason to be extending these flags. 1463 * 1464 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1465 * @IFF_EBRIDGE: Ethernet bridging device 1466 * @IFF_BONDING: bonding master or slave 1467 * @IFF_ISATAP: ISATAP interface (RFC4214) 1468 * @IFF_WAN_HDLC: WAN HDLC device 1469 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1470 * release skb->dst 1471 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1472 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1473 * @IFF_MACVLAN_PORT: device used as macvlan port 1474 * @IFF_BRIDGE_PORT: device used as bridge port 1475 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1476 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1477 * @IFF_UNICAST_FLT: Supports unicast filtering 1478 * @IFF_TEAM_PORT: device used as team port 1479 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1480 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1481 * change when it's running 1482 * @IFF_MACVLAN: Macvlan device 1483 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1484 * underlying stacked devices 1485 * @IFF_L3MDEV_MASTER: device is an L3 master device 1486 * @IFF_NO_QUEUE: device can run without qdisc attached 1487 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1488 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1489 * @IFF_TEAM: device is a team device 1490 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1491 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1492 * entity (i.e. the master device for bridged veth) 1493 * @IFF_MACSEC: device is a MACsec device 1494 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1495 * @IFF_FAILOVER: device is a failover master device 1496 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1497 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1498 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1499 */ 1500 enum netdev_priv_flags { 1501 IFF_802_1Q_VLAN = 1<<0, 1502 IFF_EBRIDGE = 1<<1, 1503 IFF_BONDING = 1<<2, 1504 IFF_ISATAP = 1<<3, 1505 IFF_WAN_HDLC = 1<<4, 1506 IFF_XMIT_DST_RELEASE = 1<<5, 1507 IFF_DONT_BRIDGE = 1<<6, 1508 IFF_DISABLE_NETPOLL = 1<<7, 1509 IFF_MACVLAN_PORT = 1<<8, 1510 IFF_BRIDGE_PORT = 1<<9, 1511 IFF_OVS_DATAPATH = 1<<10, 1512 IFF_TX_SKB_SHARING = 1<<11, 1513 IFF_UNICAST_FLT = 1<<12, 1514 IFF_TEAM_PORT = 1<<13, 1515 IFF_SUPP_NOFCS = 1<<14, 1516 IFF_LIVE_ADDR_CHANGE = 1<<15, 1517 IFF_MACVLAN = 1<<16, 1518 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1519 IFF_L3MDEV_MASTER = 1<<18, 1520 IFF_NO_QUEUE = 1<<19, 1521 IFF_OPENVSWITCH = 1<<20, 1522 IFF_L3MDEV_SLAVE = 1<<21, 1523 IFF_TEAM = 1<<22, 1524 IFF_RXFH_CONFIGURED = 1<<23, 1525 IFF_PHONY_HEADROOM = 1<<24, 1526 IFF_MACSEC = 1<<25, 1527 IFF_NO_RX_HANDLER = 1<<26, 1528 IFF_FAILOVER = 1<<27, 1529 IFF_FAILOVER_SLAVE = 1<<28, 1530 IFF_L3MDEV_RX_HANDLER = 1<<29, 1531 IFF_LIVE_RENAME_OK = 1<<30, 1532 }; 1533 1534 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1535 #define IFF_EBRIDGE IFF_EBRIDGE 1536 #define IFF_BONDING IFF_BONDING 1537 #define IFF_ISATAP IFF_ISATAP 1538 #define IFF_WAN_HDLC IFF_WAN_HDLC 1539 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1540 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1541 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1542 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1543 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1544 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1545 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1546 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1547 #define IFF_TEAM_PORT IFF_TEAM_PORT 1548 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1549 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1550 #define IFF_MACVLAN IFF_MACVLAN 1551 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1552 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1553 #define IFF_NO_QUEUE IFF_NO_QUEUE 1554 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1555 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1556 #define IFF_TEAM IFF_TEAM 1557 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1558 #define IFF_MACSEC IFF_MACSEC 1559 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1560 #define IFF_FAILOVER IFF_FAILOVER 1561 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1562 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1563 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1564 1565 /** 1566 * struct net_device - The DEVICE structure. 1567 * 1568 * Actually, this whole structure is a big mistake. It mixes I/O 1569 * data with strictly "high-level" data, and it has to know about 1570 * almost every data structure used in the INET module. 1571 * 1572 * @name: This is the first field of the "visible" part of this structure 1573 * (i.e. as seen by users in the "Space.c" file). It is the name 1574 * of the interface. 1575 * 1576 * @name_node: Name hashlist node 1577 * @ifalias: SNMP alias 1578 * @mem_end: Shared memory end 1579 * @mem_start: Shared memory start 1580 * @base_addr: Device I/O address 1581 * @irq: Device IRQ number 1582 * 1583 * @state: Generic network queuing layer state, see netdev_state_t 1584 * @dev_list: The global list of network devices 1585 * @napi_list: List entry used for polling NAPI devices 1586 * @unreg_list: List entry when we are unregistering the 1587 * device; see the function unregister_netdev 1588 * @close_list: List entry used when we are closing the device 1589 * @ptype_all: Device-specific packet handlers for all protocols 1590 * @ptype_specific: Device-specific, protocol-specific packet handlers 1591 * 1592 * @adj_list: Directly linked devices, like slaves for bonding 1593 * @features: Currently active device features 1594 * @hw_features: User-changeable features 1595 * 1596 * @wanted_features: User-requested features 1597 * @vlan_features: Mask of features inheritable by VLAN devices 1598 * 1599 * @hw_enc_features: Mask of features inherited by encapsulating devices 1600 * This field indicates what encapsulation 1601 * offloads the hardware is capable of doing, 1602 * and drivers will need to set them appropriately. 1603 * 1604 * @mpls_features: Mask of features inheritable by MPLS 1605 * 1606 * @ifindex: interface index 1607 * @group: The group the device belongs to 1608 * 1609 * @stats: Statistics struct, which was left as a legacy, use 1610 * rtnl_link_stats64 instead 1611 * 1612 * @rx_dropped: Dropped packets by core network, 1613 * do not use this in drivers 1614 * @tx_dropped: Dropped packets by core network, 1615 * do not use this in drivers 1616 * @rx_nohandler: nohandler dropped packets by core network on 1617 * inactive devices, do not use this in drivers 1618 * @carrier_up_count: Number of times the carrier has been up 1619 * @carrier_down_count: Number of times the carrier has been down 1620 * 1621 * @wireless_handlers: List of functions to handle Wireless Extensions, 1622 * instead of ioctl, 1623 * see <net/iw_handler.h> for details. 1624 * @wireless_data: Instance data managed by the core of wireless extensions 1625 * 1626 * @netdev_ops: Includes several pointers to callbacks, 1627 * if one wants to override the ndo_*() functions 1628 * @ethtool_ops: Management operations 1629 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1630 * discovery handling. Necessary for e.g. 6LoWPAN. 1631 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1632 * of Layer 2 headers. 1633 * 1634 * @flags: Interface flags (a la BSD) 1635 * @priv_flags: Like 'flags' but invisible to userspace, 1636 * see if.h for the definitions 1637 * @gflags: Global flags ( kept as legacy ) 1638 * @padded: How much padding added by alloc_netdev() 1639 * @operstate: RFC2863 operstate 1640 * @link_mode: Mapping policy to operstate 1641 * @if_port: Selectable AUI, TP, ... 1642 * @dma: DMA channel 1643 * @mtu: Interface MTU value 1644 * @min_mtu: Interface Minimum MTU value 1645 * @max_mtu: Interface Maximum MTU value 1646 * @type: Interface hardware type 1647 * @hard_header_len: Maximum hardware header length. 1648 * @min_header_len: Minimum hardware header length 1649 * 1650 * @needed_headroom: Extra headroom the hardware may need, but not in all 1651 * cases can this be guaranteed 1652 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1653 * cases can this be guaranteed. Some cases also use 1654 * LL_MAX_HEADER instead to allocate the skb 1655 * 1656 * interface address info: 1657 * 1658 * @perm_addr: Permanent hw address 1659 * @addr_assign_type: Hw address assignment type 1660 * @addr_len: Hardware address length 1661 * @upper_level: Maximum depth level of upper devices. 1662 * @lower_level: Maximum depth level of lower devices. 1663 * @neigh_priv_len: Used in neigh_alloc() 1664 * @dev_id: Used to differentiate devices that share 1665 * the same link layer address 1666 * @dev_port: Used to differentiate devices that share 1667 * the same function 1668 * @addr_list_lock: XXX: need comments on this one 1669 * @uc_promisc: Counter that indicates promiscuous mode 1670 * has been enabled due to the need to listen to 1671 * additional unicast addresses in a device that 1672 * does not implement ndo_set_rx_mode() 1673 * @uc: unicast mac addresses 1674 * @mc: multicast mac addresses 1675 * @dev_addrs: list of device hw addresses 1676 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1677 * @promiscuity: Number of times the NIC is told to work in 1678 * promiscuous mode; if it becomes 0 the NIC will 1679 * exit promiscuous mode 1680 * @allmulti: Counter, enables or disables allmulticast mode 1681 * 1682 * @vlan_info: VLAN info 1683 * @dsa_ptr: dsa specific data 1684 * @tipc_ptr: TIPC specific data 1685 * @atalk_ptr: AppleTalk link 1686 * @ip_ptr: IPv4 specific data 1687 * @dn_ptr: DECnet specific data 1688 * @ip6_ptr: IPv6 specific data 1689 * @ax25_ptr: AX.25 specific data 1690 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1691 * 1692 * @dev_addr: Hw address (before bcast, 1693 * because most packets are unicast) 1694 * 1695 * @_rx: Array of RX queues 1696 * @num_rx_queues: Number of RX queues 1697 * allocated at register_netdev() time 1698 * @real_num_rx_queues: Number of RX queues currently active in device 1699 * 1700 * @rx_handler: handler for received packets 1701 * @rx_handler_data: XXX: need comments on this one 1702 * @miniq_ingress: ingress/clsact qdisc specific data for 1703 * ingress processing 1704 * @ingress_queue: XXX: need comments on this one 1705 * @broadcast: hw bcast address 1706 * 1707 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1708 * indexed by RX queue number. Assigned by driver. 1709 * This must only be set if the ndo_rx_flow_steer 1710 * operation is defined 1711 * @index_hlist: Device index hash chain 1712 * 1713 * @_tx: Array of TX queues 1714 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1715 * @real_num_tx_queues: Number of TX queues currently active in device 1716 * @qdisc: Root qdisc from userspace point of view 1717 * @tx_queue_len: Max frames per queue allowed 1718 * @tx_global_lock: XXX: need comments on this one 1719 * 1720 * @xps_maps: XXX: need comments on this one 1721 * @miniq_egress: clsact qdisc specific data for 1722 * egress processing 1723 * @watchdog_timeo: Represents the timeout that is used by 1724 * the watchdog (see dev_watchdog()) 1725 * @watchdog_timer: List of timers 1726 * 1727 * @pcpu_refcnt: Number of references to this device 1728 * @todo_list: Delayed register/unregister 1729 * @link_watch_list: XXX: need comments on this one 1730 * 1731 * @reg_state: Register/unregister state machine 1732 * @dismantle: Device is going to be freed 1733 * @rtnl_link_state: This enum represents the phases of creating 1734 * a new link 1735 * 1736 * @needs_free_netdev: Should unregister perform free_netdev? 1737 * @priv_destructor: Called from unregister 1738 * @npinfo: XXX: need comments on this one 1739 * @nd_net: Network namespace this network device is inside 1740 * 1741 * @ml_priv: Mid-layer private 1742 * @lstats: Loopback statistics 1743 * @tstats: Tunnel statistics 1744 * @dstats: Dummy statistics 1745 * @vstats: Virtual ethernet statistics 1746 * 1747 * @garp_port: GARP 1748 * @mrp_port: MRP 1749 * 1750 * @dev: Class/net/name entry 1751 * @sysfs_groups: Space for optional device, statistics and wireless 1752 * sysfs groups 1753 * 1754 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1755 * @rtnl_link_ops: Rtnl_link_ops 1756 * 1757 * @gso_max_size: Maximum size of generic segmentation offload 1758 * @gso_max_segs: Maximum number of segments that can be passed to the 1759 * NIC for GSO 1760 * 1761 * @dcbnl_ops: Data Center Bridging netlink ops 1762 * @num_tc: Number of traffic classes in the net device 1763 * @tc_to_txq: XXX: need comments on this one 1764 * @prio_tc_map: XXX: need comments on this one 1765 * 1766 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1767 * 1768 * @priomap: XXX: need comments on this one 1769 * @phydev: Physical device may attach itself 1770 * for hardware timestamping 1771 * @sfp_bus: attached &struct sfp_bus structure. 1772 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock 1773 spinlock 1774 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1775 * @qdisc_xmit_lock_key: lockdep class annotating 1776 * netdev_queue->_xmit_lock spinlock 1777 * @addr_list_lock_key: lockdep class annotating 1778 * net_device->addr_list_lock spinlock 1779 * 1780 * @proto_down: protocol port state information can be sent to the 1781 * switch driver and used to set the phys state of the 1782 * switch port. 1783 * 1784 * @wol_enabled: Wake-on-LAN is enabled 1785 * 1786 * FIXME: cleanup struct net_device such that network protocol info 1787 * moves out. 1788 */ 1789 1790 struct net_device { 1791 char name[IFNAMSIZ]; 1792 struct netdev_name_node *name_node; 1793 struct dev_ifalias __rcu *ifalias; 1794 /* 1795 * I/O specific fields 1796 * FIXME: Merge these and struct ifmap into one 1797 */ 1798 unsigned long mem_end; 1799 unsigned long mem_start; 1800 unsigned long base_addr; 1801 int irq; 1802 1803 /* 1804 * Some hardware also needs these fields (state,dev_list, 1805 * napi_list,unreg_list,close_list) but they are not 1806 * part of the usual set specified in Space.c. 1807 */ 1808 1809 unsigned long state; 1810 1811 struct list_head dev_list; 1812 struct list_head napi_list; 1813 struct list_head unreg_list; 1814 struct list_head close_list; 1815 struct list_head ptype_all; 1816 struct list_head ptype_specific; 1817 1818 struct { 1819 struct list_head upper; 1820 struct list_head lower; 1821 } adj_list; 1822 1823 netdev_features_t features; 1824 netdev_features_t hw_features; 1825 netdev_features_t wanted_features; 1826 netdev_features_t vlan_features; 1827 netdev_features_t hw_enc_features; 1828 netdev_features_t mpls_features; 1829 netdev_features_t gso_partial_features; 1830 1831 int ifindex; 1832 int group; 1833 1834 struct net_device_stats stats; 1835 1836 atomic_long_t rx_dropped; 1837 atomic_long_t tx_dropped; 1838 atomic_long_t rx_nohandler; 1839 1840 /* Stats to monitor link on/off, flapping */ 1841 atomic_t carrier_up_count; 1842 atomic_t carrier_down_count; 1843 1844 #ifdef CONFIG_WIRELESS_EXT 1845 const struct iw_handler_def *wireless_handlers; 1846 struct iw_public_data *wireless_data; 1847 #endif 1848 const struct net_device_ops *netdev_ops; 1849 const struct ethtool_ops *ethtool_ops; 1850 #ifdef CONFIG_NET_L3_MASTER_DEV 1851 const struct l3mdev_ops *l3mdev_ops; 1852 #endif 1853 #if IS_ENABLED(CONFIG_IPV6) 1854 const struct ndisc_ops *ndisc_ops; 1855 #endif 1856 1857 #ifdef CONFIG_XFRM_OFFLOAD 1858 const struct xfrmdev_ops *xfrmdev_ops; 1859 #endif 1860 1861 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1862 const struct tlsdev_ops *tlsdev_ops; 1863 #endif 1864 1865 const struct header_ops *header_ops; 1866 1867 unsigned int flags; 1868 unsigned int priv_flags; 1869 1870 unsigned short gflags; 1871 unsigned short padded; 1872 1873 unsigned char operstate; 1874 unsigned char link_mode; 1875 1876 unsigned char if_port; 1877 unsigned char dma; 1878 1879 unsigned int mtu; 1880 unsigned int min_mtu; 1881 unsigned int max_mtu; 1882 unsigned short type; 1883 unsigned short hard_header_len; 1884 unsigned char min_header_len; 1885 1886 unsigned short needed_headroom; 1887 unsigned short needed_tailroom; 1888 1889 /* Interface address info. */ 1890 unsigned char perm_addr[MAX_ADDR_LEN]; 1891 unsigned char addr_assign_type; 1892 unsigned char addr_len; 1893 unsigned char upper_level; 1894 unsigned char lower_level; 1895 unsigned short neigh_priv_len; 1896 unsigned short dev_id; 1897 unsigned short dev_port; 1898 spinlock_t addr_list_lock; 1899 unsigned char name_assign_type; 1900 bool uc_promisc; 1901 struct netdev_hw_addr_list uc; 1902 struct netdev_hw_addr_list mc; 1903 struct netdev_hw_addr_list dev_addrs; 1904 1905 #ifdef CONFIG_SYSFS 1906 struct kset *queues_kset; 1907 #endif 1908 unsigned int promiscuity; 1909 unsigned int allmulti; 1910 1911 1912 /* Protocol-specific pointers */ 1913 1914 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1915 struct vlan_info __rcu *vlan_info; 1916 #endif 1917 #if IS_ENABLED(CONFIG_NET_DSA) 1918 struct dsa_port *dsa_ptr; 1919 #endif 1920 #if IS_ENABLED(CONFIG_TIPC) 1921 struct tipc_bearer __rcu *tipc_ptr; 1922 #endif 1923 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1924 void *atalk_ptr; 1925 #endif 1926 struct in_device __rcu *ip_ptr; 1927 #if IS_ENABLED(CONFIG_DECNET) 1928 struct dn_dev __rcu *dn_ptr; 1929 #endif 1930 struct inet6_dev __rcu *ip6_ptr; 1931 #if IS_ENABLED(CONFIG_AX25) 1932 void *ax25_ptr; 1933 #endif 1934 struct wireless_dev *ieee80211_ptr; 1935 struct wpan_dev *ieee802154_ptr; 1936 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1937 struct mpls_dev __rcu *mpls_ptr; 1938 #endif 1939 1940 /* 1941 * Cache lines mostly used on receive path (including eth_type_trans()) 1942 */ 1943 /* Interface address info used in eth_type_trans() */ 1944 unsigned char *dev_addr; 1945 1946 struct netdev_rx_queue *_rx; 1947 unsigned int num_rx_queues; 1948 unsigned int real_num_rx_queues; 1949 1950 struct bpf_prog __rcu *xdp_prog; 1951 unsigned long gro_flush_timeout; 1952 rx_handler_func_t __rcu *rx_handler; 1953 void __rcu *rx_handler_data; 1954 1955 #ifdef CONFIG_NET_CLS_ACT 1956 struct mini_Qdisc __rcu *miniq_ingress; 1957 #endif 1958 struct netdev_queue __rcu *ingress_queue; 1959 #ifdef CONFIG_NETFILTER_INGRESS 1960 struct nf_hook_entries __rcu *nf_hooks_ingress; 1961 #endif 1962 1963 unsigned char broadcast[MAX_ADDR_LEN]; 1964 #ifdef CONFIG_RFS_ACCEL 1965 struct cpu_rmap *rx_cpu_rmap; 1966 #endif 1967 struct hlist_node index_hlist; 1968 1969 /* 1970 * Cache lines mostly used on transmit path 1971 */ 1972 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1973 unsigned int num_tx_queues; 1974 unsigned int real_num_tx_queues; 1975 struct Qdisc *qdisc; 1976 #ifdef CONFIG_NET_SCHED 1977 DECLARE_HASHTABLE (qdisc_hash, 4); 1978 #endif 1979 unsigned int tx_queue_len; 1980 spinlock_t tx_global_lock; 1981 int watchdog_timeo; 1982 1983 #ifdef CONFIG_XPS 1984 struct xps_dev_maps __rcu *xps_cpus_map; 1985 struct xps_dev_maps __rcu *xps_rxqs_map; 1986 #endif 1987 #ifdef CONFIG_NET_CLS_ACT 1988 struct mini_Qdisc __rcu *miniq_egress; 1989 #endif 1990 1991 /* These may be needed for future network-power-down code. */ 1992 struct timer_list watchdog_timer; 1993 1994 int __percpu *pcpu_refcnt; 1995 struct list_head todo_list; 1996 1997 struct list_head link_watch_list; 1998 1999 enum { NETREG_UNINITIALIZED=0, 2000 NETREG_REGISTERED, /* completed register_netdevice */ 2001 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2002 NETREG_UNREGISTERED, /* completed unregister todo */ 2003 NETREG_RELEASED, /* called free_netdev */ 2004 NETREG_DUMMY, /* dummy device for NAPI poll */ 2005 } reg_state:8; 2006 2007 bool dismantle; 2008 2009 enum { 2010 RTNL_LINK_INITIALIZED, 2011 RTNL_LINK_INITIALIZING, 2012 } rtnl_link_state:16; 2013 2014 bool needs_free_netdev; 2015 void (*priv_destructor)(struct net_device *dev); 2016 2017 #ifdef CONFIG_NETPOLL 2018 struct netpoll_info __rcu *npinfo; 2019 #endif 2020 2021 possible_net_t nd_net; 2022 2023 /* mid-layer private */ 2024 union { 2025 void *ml_priv; 2026 struct pcpu_lstats __percpu *lstats; 2027 struct pcpu_sw_netstats __percpu *tstats; 2028 struct pcpu_dstats __percpu *dstats; 2029 }; 2030 2031 #if IS_ENABLED(CONFIG_GARP) 2032 struct garp_port __rcu *garp_port; 2033 #endif 2034 #if IS_ENABLED(CONFIG_MRP) 2035 struct mrp_port __rcu *mrp_port; 2036 #endif 2037 2038 struct device dev; 2039 const struct attribute_group *sysfs_groups[4]; 2040 const struct attribute_group *sysfs_rx_queue_group; 2041 2042 const struct rtnl_link_ops *rtnl_link_ops; 2043 2044 /* for setting kernel sock attribute on TCP connection setup */ 2045 #define GSO_MAX_SIZE 65536 2046 unsigned int gso_max_size; 2047 #define GSO_MAX_SEGS 65535 2048 u16 gso_max_segs; 2049 2050 #ifdef CONFIG_DCB 2051 const struct dcbnl_rtnl_ops *dcbnl_ops; 2052 #endif 2053 s16 num_tc; 2054 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2055 u8 prio_tc_map[TC_BITMASK + 1]; 2056 2057 #if IS_ENABLED(CONFIG_FCOE) 2058 unsigned int fcoe_ddp_xid; 2059 #endif 2060 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2061 struct netprio_map __rcu *priomap; 2062 #endif 2063 struct phy_device *phydev; 2064 struct sfp_bus *sfp_bus; 2065 struct lock_class_key qdisc_tx_busylock_key; 2066 struct lock_class_key qdisc_running_key; 2067 struct lock_class_key qdisc_xmit_lock_key; 2068 struct lock_class_key addr_list_lock_key; 2069 bool proto_down; 2070 unsigned wol_enabled:1; 2071 }; 2072 #define to_net_dev(d) container_of(d, struct net_device, dev) 2073 2074 static inline bool netif_elide_gro(const struct net_device *dev) 2075 { 2076 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2077 return true; 2078 return false; 2079 } 2080 2081 #define NETDEV_ALIGN 32 2082 2083 static inline 2084 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2085 { 2086 return dev->prio_tc_map[prio & TC_BITMASK]; 2087 } 2088 2089 static inline 2090 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2091 { 2092 if (tc >= dev->num_tc) 2093 return -EINVAL; 2094 2095 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2096 return 0; 2097 } 2098 2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2100 void netdev_reset_tc(struct net_device *dev); 2101 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2102 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2103 2104 static inline 2105 int netdev_get_num_tc(struct net_device *dev) 2106 { 2107 return dev->num_tc; 2108 } 2109 2110 void netdev_unbind_sb_channel(struct net_device *dev, 2111 struct net_device *sb_dev); 2112 int netdev_bind_sb_channel_queue(struct net_device *dev, 2113 struct net_device *sb_dev, 2114 u8 tc, u16 count, u16 offset); 2115 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2116 static inline int netdev_get_sb_channel(struct net_device *dev) 2117 { 2118 return max_t(int, -dev->num_tc, 0); 2119 } 2120 2121 static inline 2122 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2123 unsigned int index) 2124 { 2125 return &dev->_tx[index]; 2126 } 2127 2128 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2129 const struct sk_buff *skb) 2130 { 2131 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2132 } 2133 2134 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2135 void (*f)(struct net_device *, 2136 struct netdev_queue *, 2137 void *), 2138 void *arg) 2139 { 2140 unsigned int i; 2141 2142 for (i = 0; i < dev->num_tx_queues; i++) 2143 f(dev, &dev->_tx[i], arg); 2144 } 2145 2146 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2147 struct net_device *sb_dev); 2148 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2149 struct sk_buff *skb, 2150 struct net_device *sb_dev); 2151 2152 /* returns the headroom that the master device needs to take in account 2153 * when forwarding to this dev 2154 */ 2155 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2156 { 2157 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2158 } 2159 2160 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2161 { 2162 if (dev->netdev_ops->ndo_set_rx_headroom) 2163 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2164 } 2165 2166 /* set the device rx headroom to the dev's default */ 2167 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2168 { 2169 netdev_set_rx_headroom(dev, -1); 2170 } 2171 2172 /* 2173 * Net namespace inlines 2174 */ 2175 static inline 2176 struct net *dev_net(const struct net_device *dev) 2177 { 2178 return read_pnet(&dev->nd_net); 2179 } 2180 2181 static inline 2182 void dev_net_set(struct net_device *dev, struct net *net) 2183 { 2184 write_pnet(&dev->nd_net, net); 2185 } 2186 2187 /** 2188 * netdev_priv - access network device private data 2189 * @dev: network device 2190 * 2191 * Get network device private data 2192 */ 2193 static inline void *netdev_priv(const struct net_device *dev) 2194 { 2195 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2196 } 2197 2198 /* Set the sysfs physical device reference for the network logical device 2199 * if set prior to registration will cause a symlink during initialization. 2200 */ 2201 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2202 2203 /* Set the sysfs device type for the network logical device to allow 2204 * fine-grained identification of different network device types. For 2205 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2206 */ 2207 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2208 2209 /* Default NAPI poll() weight 2210 * Device drivers are strongly advised to not use bigger value 2211 */ 2212 #define NAPI_POLL_WEIGHT 64 2213 2214 /** 2215 * netif_napi_add - initialize a NAPI context 2216 * @dev: network device 2217 * @napi: NAPI context 2218 * @poll: polling function 2219 * @weight: default weight 2220 * 2221 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2222 * *any* of the other NAPI-related functions. 2223 */ 2224 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2225 int (*poll)(struct napi_struct *, int), int weight); 2226 2227 /** 2228 * netif_tx_napi_add - initialize a NAPI context 2229 * @dev: network device 2230 * @napi: NAPI context 2231 * @poll: polling function 2232 * @weight: default weight 2233 * 2234 * This variant of netif_napi_add() should be used from drivers using NAPI 2235 * to exclusively poll a TX queue. 2236 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2237 */ 2238 static inline void netif_tx_napi_add(struct net_device *dev, 2239 struct napi_struct *napi, 2240 int (*poll)(struct napi_struct *, int), 2241 int weight) 2242 { 2243 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2244 netif_napi_add(dev, napi, poll, weight); 2245 } 2246 2247 /** 2248 * netif_napi_del - remove a NAPI context 2249 * @napi: NAPI context 2250 * 2251 * netif_napi_del() removes a NAPI context from the network device NAPI list 2252 */ 2253 void netif_napi_del(struct napi_struct *napi); 2254 2255 struct napi_gro_cb { 2256 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2257 void *frag0; 2258 2259 /* Length of frag0. */ 2260 unsigned int frag0_len; 2261 2262 /* This indicates where we are processing relative to skb->data. */ 2263 int data_offset; 2264 2265 /* This is non-zero if the packet cannot be merged with the new skb. */ 2266 u16 flush; 2267 2268 /* Save the IP ID here and check when we get to the transport layer */ 2269 u16 flush_id; 2270 2271 /* Number of segments aggregated. */ 2272 u16 count; 2273 2274 /* Start offset for remote checksum offload */ 2275 u16 gro_remcsum_start; 2276 2277 /* jiffies when first packet was created/queued */ 2278 unsigned long age; 2279 2280 /* Used in ipv6_gro_receive() and foo-over-udp */ 2281 u16 proto; 2282 2283 /* This is non-zero if the packet may be of the same flow. */ 2284 u8 same_flow:1; 2285 2286 /* Used in tunnel GRO receive */ 2287 u8 encap_mark:1; 2288 2289 /* GRO checksum is valid */ 2290 u8 csum_valid:1; 2291 2292 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2293 u8 csum_cnt:3; 2294 2295 /* Free the skb? */ 2296 u8 free:2; 2297 #define NAPI_GRO_FREE 1 2298 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2299 2300 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2301 u8 is_ipv6:1; 2302 2303 /* Used in GRE, set in fou/gue_gro_receive */ 2304 u8 is_fou:1; 2305 2306 /* Used to determine if flush_id can be ignored */ 2307 u8 is_atomic:1; 2308 2309 /* Number of gro_receive callbacks this packet already went through */ 2310 u8 recursion_counter:4; 2311 2312 /* 1 bit hole */ 2313 2314 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2315 __wsum csum; 2316 2317 /* used in skb_gro_receive() slow path */ 2318 struct sk_buff *last; 2319 }; 2320 2321 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2322 2323 #define GRO_RECURSION_LIMIT 15 2324 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2325 { 2326 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2327 } 2328 2329 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2330 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2331 struct list_head *head, 2332 struct sk_buff *skb) 2333 { 2334 if (unlikely(gro_recursion_inc_test(skb))) { 2335 NAPI_GRO_CB(skb)->flush |= 1; 2336 return NULL; 2337 } 2338 2339 return cb(head, skb); 2340 } 2341 2342 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2343 struct sk_buff *); 2344 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2345 struct sock *sk, 2346 struct list_head *head, 2347 struct sk_buff *skb) 2348 { 2349 if (unlikely(gro_recursion_inc_test(skb))) { 2350 NAPI_GRO_CB(skb)->flush |= 1; 2351 return NULL; 2352 } 2353 2354 return cb(sk, head, skb); 2355 } 2356 2357 struct packet_type { 2358 __be16 type; /* This is really htons(ether_type). */ 2359 bool ignore_outgoing; 2360 struct net_device *dev; /* NULL is wildcarded here */ 2361 int (*func) (struct sk_buff *, 2362 struct net_device *, 2363 struct packet_type *, 2364 struct net_device *); 2365 void (*list_func) (struct list_head *, 2366 struct packet_type *, 2367 struct net_device *); 2368 bool (*id_match)(struct packet_type *ptype, 2369 struct sock *sk); 2370 void *af_packet_priv; 2371 struct list_head list; 2372 }; 2373 2374 struct offload_callbacks { 2375 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2376 netdev_features_t features); 2377 struct sk_buff *(*gro_receive)(struct list_head *head, 2378 struct sk_buff *skb); 2379 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2380 }; 2381 2382 struct packet_offload { 2383 __be16 type; /* This is really htons(ether_type). */ 2384 u16 priority; 2385 struct offload_callbacks callbacks; 2386 struct list_head list; 2387 }; 2388 2389 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2390 struct pcpu_sw_netstats { 2391 u64 rx_packets; 2392 u64 rx_bytes; 2393 u64 tx_packets; 2394 u64 tx_bytes; 2395 struct u64_stats_sync syncp; 2396 } __aligned(4 * sizeof(u64)); 2397 2398 struct pcpu_lstats { 2399 u64 packets; 2400 u64 bytes; 2401 struct u64_stats_sync syncp; 2402 } __aligned(2 * sizeof(u64)); 2403 2404 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2405 ({ \ 2406 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2407 if (pcpu_stats) { \ 2408 int __cpu; \ 2409 for_each_possible_cpu(__cpu) { \ 2410 typeof(type) *stat; \ 2411 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2412 u64_stats_init(&stat->syncp); \ 2413 } \ 2414 } \ 2415 pcpu_stats; \ 2416 }) 2417 2418 #define netdev_alloc_pcpu_stats(type) \ 2419 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2420 2421 enum netdev_lag_tx_type { 2422 NETDEV_LAG_TX_TYPE_UNKNOWN, 2423 NETDEV_LAG_TX_TYPE_RANDOM, 2424 NETDEV_LAG_TX_TYPE_BROADCAST, 2425 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2426 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2427 NETDEV_LAG_TX_TYPE_HASH, 2428 }; 2429 2430 enum netdev_lag_hash { 2431 NETDEV_LAG_HASH_NONE, 2432 NETDEV_LAG_HASH_L2, 2433 NETDEV_LAG_HASH_L34, 2434 NETDEV_LAG_HASH_L23, 2435 NETDEV_LAG_HASH_E23, 2436 NETDEV_LAG_HASH_E34, 2437 NETDEV_LAG_HASH_UNKNOWN, 2438 }; 2439 2440 struct netdev_lag_upper_info { 2441 enum netdev_lag_tx_type tx_type; 2442 enum netdev_lag_hash hash_type; 2443 }; 2444 2445 struct netdev_lag_lower_state_info { 2446 u8 link_up : 1, 2447 tx_enabled : 1; 2448 }; 2449 2450 #include <linux/notifier.h> 2451 2452 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2453 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2454 * adding new types. 2455 */ 2456 enum netdev_cmd { 2457 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2458 NETDEV_DOWN, 2459 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2460 detected a hardware crash and restarted 2461 - we can use this eg to kick tcp sessions 2462 once done */ 2463 NETDEV_CHANGE, /* Notify device state change */ 2464 NETDEV_REGISTER, 2465 NETDEV_UNREGISTER, 2466 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2467 NETDEV_CHANGEADDR, /* notify after the address change */ 2468 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2469 NETDEV_GOING_DOWN, 2470 NETDEV_CHANGENAME, 2471 NETDEV_FEAT_CHANGE, 2472 NETDEV_BONDING_FAILOVER, 2473 NETDEV_PRE_UP, 2474 NETDEV_PRE_TYPE_CHANGE, 2475 NETDEV_POST_TYPE_CHANGE, 2476 NETDEV_POST_INIT, 2477 NETDEV_RELEASE, 2478 NETDEV_NOTIFY_PEERS, 2479 NETDEV_JOIN, 2480 NETDEV_CHANGEUPPER, 2481 NETDEV_RESEND_IGMP, 2482 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2483 NETDEV_CHANGEINFODATA, 2484 NETDEV_BONDING_INFO, 2485 NETDEV_PRECHANGEUPPER, 2486 NETDEV_CHANGELOWERSTATE, 2487 NETDEV_UDP_TUNNEL_PUSH_INFO, 2488 NETDEV_UDP_TUNNEL_DROP_INFO, 2489 NETDEV_CHANGE_TX_QUEUE_LEN, 2490 NETDEV_CVLAN_FILTER_PUSH_INFO, 2491 NETDEV_CVLAN_FILTER_DROP_INFO, 2492 NETDEV_SVLAN_FILTER_PUSH_INFO, 2493 NETDEV_SVLAN_FILTER_DROP_INFO, 2494 }; 2495 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2496 2497 int register_netdevice_notifier(struct notifier_block *nb); 2498 int unregister_netdevice_notifier(struct notifier_block *nb); 2499 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2500 int unregister_netdevice_notifier_net(struct net *net, 2501 struct notifier_block *nb); 2502 2503 struct netdev_notifier_info { 2504 struct net_device *dev; 2505 struct netlink_ext_ack *extack; 2506 }; 2507 2508 struct netdev_notifier_info_ext { 2509 struct netdev_notifier_info info; /* must be first */ 2510 union { 2511 u32 mtu; 2512 } ext; 2513 }; 2514 2515 struct netdev_notifier_change_info { 2516 struct netdev_notifier_info info; /* must be first */ 2517 unsigned int flags_changed; 2518 }; 2519 2520 struct netdev_notifier_changeupper_info { 2521 struct netdev_notifier_info info; /* must be first */ 2522 struct net_device *upper_dev; /* new upper dev */ 2523 bool master; /* is upper dev master */ 2524 bool linking; /* is the notification for link or unlink */ 2525 void *upper_info; /* upper dev info */ 2526 }; 2527 2528 struct netdev_notifier_changelowerstate_info { 2529 struct netdev_notifier_info info; /* must be first */ 2530 void *lower_state_info; /* is lower dev state */ 2531 }; 2532 2533 struct netdev_notifier_pre_changeaddr_info { 2534 struct netdev_notifier_info info; /* must be first */ 2535 const unsigned char *dev_addr; 2536 }; 2537 2538 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2539 struct net_device *dev) 2540 { 2541 info->dev = dev; 2542 info->extack = NULL; 2543 } 2544 2545 static inline struct net_device * 2546 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2547 { 2548 return info->dev; 2549 } 2550 2551 static inline struct netlink_ext_ack * 2552 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2553 { 2554 return info->extack; 2555 } 2556 2557 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2558 2559 2560 extern rwlock_t dev_base_lock; /* Device list lock */ 2561 2562 #define for_each_netdev(net, d) \ 2563 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2564 #define for_each_netdev_reverse(net, d) \ 2565 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2566 #define for_each_netdev_rcu(net, d) \ 2567 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2568 #define for_each_netdev_safe(net, d, n) \ 2569 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2570 #define for_each_netdev_continue(net, d) \ 2571 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2572 #define for_each_netdev_continue_reverse(net, d) \ 2573 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2574 dev_list) 2575 #define for_each_netdev_continue_rcu(net, d) \ 2576 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2577 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2578 for_each_netdev_rcu(&init_net, slave) \ 2579 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2580 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2581 2582 static inline struct net_device *next_net_device(struct net_device *dev) 2583 { 2584 struct list_head *lh; 2585 struct net *net; 2586 2587 net = dev_net(dev); 2588 lh = dev->dev_list.next; 2589 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2590 } 2591 2592 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2593 { 2594 struct list_head *lh; 2595 struct net *net; 2596 2597 net = dev_net(dev); 2598 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2599 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2600 } 2601 2602 static inline struct net_device *first_net_device(struct net *net) 2603 { 2604 return list_empty(&net->dev_base_head) ? NULL : 2605 net_device_entry(net->dev_base_head.next); 2606 } 2607 2608 static inline struct net_device *first_net_device_rcu(struct net *net) 2609 { 2610 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2611 2612 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2613 } 2614 2615 int netdev_boot_setup_check(struct net_device *dev); 2616 unsigned long netdev_boot_base(const char *prefix, int unit); 2617 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2618 const char *hwaddr); 2619 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2620 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2621 void dev_add_pack(struct packet_type *pt); 2622 void dev_remove_pack(struct packet_type *pt); 2623 void __dev_remove_pack(struct packet_type *pt); 2624 void dev_add_offload(struct packet_offload *po); 2625 void dev_remove_offload(struct packet_offload *po); 2626 2627 int dev_get_iflink(const struct net_device *dev); 2628 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2629 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2630 unsigned short mask); 2631 struct net_device *dev_get_by_name(struct net *net, const char *name); 2632 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2633 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2634 int dev_alloc_name(struct net_device *dev, const char *name); 2635 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2636 void dev_close(struct net_device *dev); 2637 void dev_close_many(struct list_head *head, bool unlink); 2638 void dev_disable_lro(struct net_device *dev); 2639 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2640 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2641 struct net_device *sb_dev); 2642 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2643 struct net_device *sb_dev); 2644 int dev_queue_xmit(struct sk_buff *skb); 2645 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2646 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2647 int register_netdevice(struct net_device *dev); 2648 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2649 void unregister_netdevice_many(struct list_head *head); 2650 static inline void unregister_netdevice(struct net_device *dev) 2651 { 2652 unregister_netdevice_queue(dev, NULL); 2653 } 2654 2655 int netdev_refcnt_read(const struct net_device *dev); 2656 void free_netdev(struct net_device *dev); 2657 void netdev_freemem(struct net_device *dev); 2658 void synchronize_net(void); 2659 int init_dummy_netdev(struct net_device *dev); 2660 2661 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2662 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2663 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2664 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2665 int netdev_get_name(struct net *net, char *name, int ifindex); 2666 int dev_restart(struct net_device *dev); 2667 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2668 2669 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2670 { 2671 return NAPI_GRO_CB(skb)->data_offset; 2672 } 2673 2674 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2675 { 2676 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2677 } 2678 2679 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2680 { 2681 NAPI_GRO_CB(skb)->data_offset += len; 2682 } 2683 2684 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2685 unsigned int offset) 2686 { 2687 return NAPI_GRO_CB(skb)->frag0 + offset; 2688 } 2689 2690 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2691 { 2692 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2693 } 2694 2695 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2696 { 2697 NAPI_GRO_CB(skb)->frag0 = NULL; 2698 NAPI_GRO_CB(skb)->frag0_len = 0; 2699 } 2700 2701 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2702 unsigned int offset) 2703 { 2704 if (!pskb_may_pull(skb, hlen)) 2705 return NULL; 2706 2707 skb_gro_frag0_invalidate(skb); 2708 return skb->data + offset; 2709 } 2710 2711 static inline void *skb_gro_network_header(struct sk_buff *skb) 2712 { 2713 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2714 skb_network_offset(skb); 2715 } 2716 2717 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2718 const void *start, unsigned int len) 2719 { 2720 if (NAPI_GRO_CB(skb)->csum_valid) 2721 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2722 csum_partial(start, len, 0)); 2723 } 2724 2725 /* GRO checksum functions. These are logical equivalents of the normal 2726 * checksum functions (in skbuff.h) except that they operate on the GRO 2727 * offsets and fields in sk_buff. 2728 */ 2729 2730 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2731 2732 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2733 { 2734 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2735 } 2736 2737 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2738 bool zero_okay, 2739 __sum16 check) 2740 { 2741 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2742 skb_checksum_start_offset(skb) < 2743 skb_gro_offset(skb)) && 2744 !skb_at_gro_remcsum_start(skb) && 2745 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2746 (!zero_okay || check)); 2747 } 2748 2749 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2750 __wsum psum) 2751 { 2752 if (NAPI_GRO_CB(skb)->csum_valid && 2753 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2754 return 0; 2755 2756 NAPI_GRO_CB(skb)->csum = psum; 2757 2758 return __skb_gro_checksum_complete(skb); 2759 } 2760 2761 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2762 { 2763 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2764 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2765 NAPI_GRO_CB(skb)->csum_cnt--; 2766 } else { 2767 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2768 * verified a new top level checksum or an encapsulated one 2769 * during GRO. This saves work if we fallback to normal path. 2770 */ 2771 __skb_incr_checksum_unnecessary(skb); 2772 } 2773 } 2774 2775 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2776 compute_pseudo) \ 2777 ({ \ 2778 __sum16 __ret = 0; \ 2779 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2780 __ret = __skb_gro_checksum_validate_complete(skb, \ 2781 compute_pseudo(skb, proto)); \ 2782 if (!__ret) \ 2783 skb_gro_incr_csum_unnecessary(skb); \ 2784 __ret; \ 2785 }) 2786 2787 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2788 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2789 2790 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2791 compute_pseudo) \ 2792 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2793 2794 #define skb_gro_checksum_simple_validate(skb) \ 2795 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2796 2797 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2798 { 2799 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2800 !NAPI_GRO_CB(skb)->csum_valid); 2801 } 2802 2803 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2804 __sum16 check, __wsum pseudo) 2805 { 2806 NAPI_GRO_CB(skb)->csum = ~pseudo; 2807 NAPI_GRO_CB(skb)->csum_valid = 1; 2808 } 2809 2810 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2811 do { \ 2812 if (__skb_gro_checksum_convert_check(skb)) \ 2813 __skb_gro_checksum_convert(skb, check, \ 2814 compute_pseudo(skb, proto)); \ 2815 } while (0) 2816 2817 struct gro_remcsum { 2818 int offset; 2819 __wsum delta; 2820 }; 2821 2822 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2823 { 2824 grc->offset = 0; 2825 grc->delta = 0; 2826 } 2827 2828 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2829 unsigned int off, size_t hdrlen, 2830 int start, int offset, 2831 struct gro_remcsum *grc, 2832 bool nopartial) 2833 { 2834 __wsum delta; 2835 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2836 2837 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2838 2839 if (!nopartial) { 2840 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2841 return ptr; 2842 } 2843 2844 ptr = skb_gro_header_fast(skb, off); 2845 if (skb_gro_header_hard(skb, off + plen)) { 2846 ptr = skb_gro_header_slow(skb, off + plen, off); 2847 if (!ptr) 2848 return NULL; 2849 } 2850 2851 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2852 start, offset); 2853 2854 /* Adjust skb->csum since we changed the packet */ 2855 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2856 2857 grc->offset = off + hdrlen + offset; 2858 grc->delta = delta; 2859 2860 return ptr; 2861 } 2862 2863 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2864 struct gro_remcsum *grc) 2865 { 2866 void *ptr; 2867 size_t plen = grc->offset + sizeof(u16); 2868 2869 if (!grc->delta) 2870 return; 2871 2872 ptr = skb_gro_header_fast(skb, grc->offset); 2873 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2874 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2875 if (!ptr) 2876 return; 2877 } 2878 2879 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2880 } 2881 2882 #ifdef CONFIG_XFRM_OFFLOAD 2883 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2884 { 2885 if (PTR_ERR(pp) != -EINPROGRESS) 2886 NAPI_GRO_CB(skb)->flush |= flush; 2887 } 2888 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2889 struct sk_buff *pp, 2890 int flush, 2891 struct gro_remcsum *grc) 2892 { 2893 if (PTR_ERR(pp) != -EINPROGRESS) { 2894 NAPI_GRO_CB(skb)->flush |= flush; 2895 skb_gro_remcsum_cleanup(skb, grc); 2896 skb->remcsum_offload = 0; 2897 } 2898 } 2899 #else 2900 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2901 { 2902 NAPI_GRO_CB(skb)->flush |= flush; 2903 } 2904 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2905 struct sk_buff *pp, 2906 int flush, 2907 struct gro_remcsum *grc) 2908 { 2909 NAPI_GRO_CB(skb)->flush |= flush; 2910 skb_gro_remcsum_cleanup(skb, grc); 2911 skb->remcsum_offload = 0; 2912 } 2913 #endif 2914 2915 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2916 unsigned short type, 2917 const void *daddr, const void *saddr, 2918 unsigned int len) 2919 { 2920 if (!dev->header_ops || !dev->header_ops->create) 2921 return 0; 2922 2923 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2924 } 2925 2926 static inline int dev_parse_header(const struct sk_buff *skb, 2927 unsigned char *haddr) 2928 { 2929 const struct net_device *dev = skb->dev; 2930 2931 if (!dev->header_ops || !dev->header_ops->parse) 2932 return 0; 2933 return dev->header_ops->parse(skb, haddr); 2934 } 2935 2936 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2937 { 2938 const struct net_device *dev = skb->dev; 2939 2940 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2941 return 0; 2942 return dev->header_ops->parse_protocol(skb); 2943 } 2944 2945 /* ll_header must have at least hard_header_len allocated */ 2946 static inline bool dev_validate_header(const struct net_device *dev, 2947 char *ll_header, int len) 2948 { 2949 if (likely(len >= dev->hard_header_len)) 2950 return true; 2951 if (len < dev->min_header_len) 2952 return false; 2953 2954 if (capable(CAP_SYS_RAWIO)) { 2955 memset(ll_header + len, 0, dev->hard_header_len - len); 2956 return true; 2957 } 2958 2959 if (dev->header_ops && dev->header_ops->validate) 2960 return dev->header_ops->validate(ll_header, len); 2961 2962 return false; 2963 } 2964 2965 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2966 int len, int size); 2967 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2968 static inline int unregister_gifconf(unsigned int family) 2969 { 2970 return register_gifconf(family, NULL); 2971 } 2972 2973 #ifdef CONFIG_NET_FLOW_LIMIT 2974 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2975 struct sd_flow_limit { 2976 u64 count; 2977 unsigned int num_buckets; 2978 unsigned int history_head; 2979 u16 history[FLOW_LIMIT_HISTORY]; 2980 u8 buckets[]; 2981 }; 2982 2983 extern int netdev_flow_limit_table_len; 2984 #endif /* CONFIG_NET_FLOW_LIMIT */ 2985 2986 /* 2987 * Incoming packets are placed on per-CPU queues 2988 */ 2989 struct softnet_data { 2990 struct list_head poll_list; 2991 struct sk_buff_head process_queue; 2992 2993 /* stats */ 2994 unsigned int processed; 2995 unsigned int time_squeeze; 2996 unsigned int received_rps; 2997 #ifdef CONFIG_RPS 2998 struct softnet_data *rps_ipi_list; 2999 #endif 3000 #ifdef CONFIG_NET_FLOW_LIMIT 3001 struct sd_flow_limit __rcu *flow_limit; 3002 #endif 3003 struct Qdisc *output_queue; 3004 struct Qdisc **output_queue_tailp; 3005 struct sk_buff *completion_queue; 3006 #ifdef CONFIG_XFRM_OFFLOAD 3007 struct sk_buff_head xfrm_backlog; 3008 #endif 3009 /* written and read only by owning cpu: */ 3010 struct { 3011 u16 recursion; 3012 u8 more; 3013 } xmit; 3014 #ifdef CONFIG_RPS 3015 /* input_queue_head should be written by cpu owning this struct, 3016 * and only read by other cpus. Worth using a cache line. 3017 */ 3018 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3019 3020 /* Elements below can be accessed between CPUs for RPS/RFS */ 3021 call_single_data_t csd ____cacheline_aligned_in_smp; 3022 struct softnet_data *rps_ipi_next; 3023 unsigned int cpu; 3024 unsigned int input_queue_tail; 3025 #endif 3026 unsigned int dropped; 3027 struct sk_buff_head input_pkt_queue; 3028 struct napi_struct backlog; 3029 3030 }; 3031 3032 static inline void input_queue_head_incr(struct softnet_data *sd) 3033 { 3034 #ifdef CONFIG_RPS 3035 sd->input_queue_head++; 3036 #endif 3037 } 3038 3039 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3040 unsigned int *qtail) 3041 { 3042 #ifdef CONFIG_RPS 3043 *qtail = ++sd->input_queue_tail; 3044 #endif 3045 } 3046 3047 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3048 3049 static inline int dev_recursion_level(void) 3050 { 3051 return this_cpu_read(softnet_data.xmit.recursion); 3052 } 3053 3054 #define XMIT_RECURSION_LIMIT 10 3055 static inline bool dev_xmit_recursion(void) 3056 { 3057 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3058 XMIT_RECURSION_LIMIT); 3059 } 3060 3061 static inline void dev_xmit_recursion_inc(void) 3062 { 3063 __this_cpu_inc(softnet_data.xmit.recursion); 3064 } 3065 3066 static inline void dev_xmit_recursion_dec(void) 3067 { 3068 __this_cpu_dec(softnet_data.xmit.recursion); 3069 } 3070 3071 void __netif_schedule(struct Qdisc *q); 3072 void netif_schedule_queue(struct netdev_queue *txq); 3073 3074 static inline void netif_tx_schedule_all(struct net_device *dev) 3075 { 3076 unsigned int i; 3077 3078 for (i = 0; i < dev->num_tx_queues; i++) 3079 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3080 } 3081 3082 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3083 { 3084 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3085 } 3086 3087 /** 3088 * netif_start_queue - allow transmit 3089 * @dev: network device 3090 * 3091 * Allow upper layers to call the device hard_start_xmit routine. 3092 */ 3093 static inline void netif_start_queue(struct net_device *dev) 3094 { 3095 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3096 } 3097 3098 static inline void netif_tx_start_all_queues(struct net_device *dev) 3099 { 3100 unsigned int i; 3101 3102 for (i = 0; i < dev->num_tx_queues; i++) { 3103 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3104 netif_tx_start_queue(txq); 3105 } 3106 } 3107 3108 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3109 3110 /** 3111 * netif_wake_queue - restart transmit 3112 * @dev: network device 3113 * 3114 * Allow upper layers to call the device hard_start_xmit routine. 3115 * Used for flow control when transmit resources are available. 3116 */ 3117 static inline void netif_wake_queue(struct net_device *dev) 3118 { 3119 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3120 } 3121 3122 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3123 { 3124 unsigned int i; 3125 3126 for (i = 0; i < dev->num_tx_queues; i++) { 3127 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3128 netif_tx_wake_queue(txq); 3129 } 3130 } 3131 3132 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3133 { 3134 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3135 } 3136 3137 /** 3138 * netif_stop_queue - stop transmitted packets 3139 * @dev: network device 3140 * 3141 * Stop upper layers calling the device hard_start_xmit routine. 3142 * Used for flow control when transmit resources are unavailable. 3143 */ 3144 static inline void netif_stop_queue(struct net_device *dev) 3145 { 3146 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3147 } 3148 3149 void netif_tx_stop_all_queues(struct net_device *dev); 3150 void netdev_update_lockdep_key(struct net_device *dev); 3151 3152 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3153 { 3154 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3155 } 3156 3157 /** 3158 * netif_queue_stopped - test if transmit queue is flowblocked 3159 * @dev: network device 3160 * 3161 * Test if transmit queue on device is currently unable to send. 3162 */ 3163 static inline bool netif_queue_stopped(const struct net_device *dev) 3164 { 3165 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3166 } 3167 3168 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3169 { 3170 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3171 } 3172 3173 static inline bool 3174 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3175 { 3176 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3177 } 3178 3179 static inline bool 3180 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3181 { 3182 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3183 } 3184 3185 /** 3186 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3187 * @dev_queue: pointer to transmit queue 3188 * 3189 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3190 * to give appropriate hint to the CPU. 3191 */ 3192 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3193 { 3194 #ifdef CONFIG_BQL 3195 prefetchw(&dev_queue->dql.num_queued); 3196 #endif 3197 } 3198 3199 /** 3200 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3201 * @dev_queue: pointer to transmit queue 3202 * 3203 * BQL enabled drivers might use this helper in their TX completion path, 3204 * to give appropriate hint to the CPU. 3205 */ 3206 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3207 { 3208 #ifdef CONFIG_BQL 3209 prefetchw(&dev_queue->dql.limit); 3210 #endif 3211 } 3212 3213 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3214 unsigned int bytes) 3215 { 3216 #ifdef CONFIG_BQL 3217 dql_queued(&dev_queue->dql, bytes); 3218 3219 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3220 return; 3221 3222 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3223 3224 /* 3225 * The XOFF flag must be set before checking the dql_avail below, 3226 * because in netdev_tx_completed_queue we update the dql_completed 3227 * before checking the XOFF flag. 3228 */ 3229 smp_mb(); 3230 3231 /* check again in case another CPU has just made room avail */ 3232 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3233 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3234 #endif 3235 } 3236 3237 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3238 * that they should not test BQL status themselves. 3239 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3240 * skb of a batch. 3241 * Returns true if the doorbell must be used to kick the NIC. 3242 */ 3243 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3244 unsigned int bytes, 3245 bool xmit_more) 3246 { 3247 if (xmit_more) { 3248 #ifdef CONFIG_BQL 3249 dql_queued(&dev_queue->dql, bytes); 3250 #endif 3251 return netif_tx_queue_stopped(dev_queue); 3252 } 3253 netdev_tx_sent_queue(dev_queue, bytes); 3254 return true; 3255 } 3256 3257 /** 3258 * netdev_sent_queue - report the number of bytes queued to hardware 3259 * @dev: network device 3260 * @bytes: number of bytes queued to the hardware device queue 3261 * 3262 * Report the number of bytes queued for sending/completion to the network 3263 * device hardware queue. @bytes should be a good approximation and should 3264 * exactly match netdev_completed_queue() @bytes 3265 */ 3266 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3267 { 3268 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3269 } 3270 3271 static inline bool __netdev_sent_queue(struct net_device *dev, 3272 unsigned int bytes, 3273 bool xmit_more) 3274 { 3275 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3276 xmit_more); 3277 } 3278 3279 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3280 unsigned int pkts, unsigned int bytes) 3281 { 3282 #ifdef CONFIG_BQL 3283 if (unlikely(!bytes)) 3284 return; 3285 3286 dql_completed(&dev_queue->dql, bytes); 3287 3288 /* 3289 * Without the memory barrier there is a small possiblity that 3290 * netdev_tx_sent_queue will miss the update and cause the queue to 3291 * be stopped forever 3292 */ 3293 smp_mb(); 3294 3295 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3296 return; 3297 3298 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3299 netif_schedule_queue(dev_queue); 3300 #endif 3301 } 3302 3303 /** 3304 * netdev_completed_queue - report bytes and packets completed by device 3305 * @dev: network device 3306 * @pkts: actual number of packets sent over the medium 3307 * @bytes: actual number of bytes sent over the medium 3308 * 3309 * Report the number of bytes and packets transmitted by the network device 3310 * hardware queue over the physical medium, @bytes must exactly match the 3311 * @bytes amount passed to netdev_sent_queue() 3312 */ 3313 static inline void netdev_completed_queue(struct net_device *dev, 3314 unsigned int pkts, unsigned int bytes) 3315 { 3316 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3317 } 3318 3319 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3320 { 3321 #ifdef CONFIG_BQL 3322 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3323 dql_reset(&q->dql); 3324 #endif 3325 } 3326 3327 /** 3328 * netdev_reset_queue - reset the packets and bytes count of a network device 3329 * @dev_queue: network device 3330 * 3331 * Reset the bytes and packet count of a network device and clear the 3332 * software flow control OFF bit for this network device 3333 */ 3334 static inline void netdev_reset_queue(struct net_device *dev_queue) 3335 { 3336 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3337 } 3338 3339 /** 3340 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3341 * @dev: network device 3342 * @queue_index: given tx queue index 3343 * 3344 * Returns 0 if given tx queue index >= number of device tx queues, 3345 * otherwise returns the originally passed tx queue index. 3346 */ 3347 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3348 { 3349 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3350 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3351 dev->name, queue_index, 3352 dev->real_num_tx_queues); 3353 return 0; 3354 } 3355 3356 return queue_index; 3357 } 3358 3359 /** 3360 * netif_running - test if up 3361 * @dev: network device 3362 * 3363 * Test if the device has been brought up. 3364 */ 3365 static inline bool netif_running(const struct net_device *dev) 3366 { 3367 return test_bit(__LINK_STATE_START, &dev->state); 3368 } 3369 3370 /* 3371 * Routines to manage the subqueues on a device. We only need start, 3372 * stop, and a check if it's stopped. All other device management is 3373 * done at the overall netdevice level. 3374 * Also test the device if we're multiqueue. 3375 */ 3376 3377 /** 3378 * netif_start_subqueue - allow sending packets on subqueue 3379 * @dev: network device 3380 * @queue_index: sub queue index 3381 * 3382 * Start individual transmit queue of a device with multiple transmit queues. 3383 */ 3384 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3385 { 3386 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3387 3388 netif_tx_start_queue(txq); 3389 } 3390 3391 /** 3392 * netif_stop_subqueue - stop sending packets on subqueue 3393 * @dev: network device 3394 * @queue_index: sub queue index 3395 * 3396 * Stop individual transmit queue of a device with multiple transmit queues. 3397 */ 3398 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3399 { 3400 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3401 netif_tx_stop_queue(txq); 3402 } 3403 3404 /** 3405 * netif_subqueue_stopped - test status of subqueue 3406 * @dev: network device 3407 * @queue_index: sub queue index 3408 * 3409 * Check individual transmit queue of a device with multiple transmit queues. 3410 */ 3411 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3412 u16 queue_index) 3413 { 3414 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3415 3416 return netif_tx_queue_stopped(txq); 3417 } 3418 3419 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3420 struct sk_buff *skb) 3421 { 3422 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3423 } 3424 3425 /** 3426 * netif_wake_subqueue - allow sending packets on subqueue 3427 * @dev: network device 3428 * @queue_index: sub queue index 3429 * 3430 * Resume individual transmit queue of a device with multiple transmit queues. 3431 */ 3432 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3433 { 3434 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3435 3436 netif_tx_wake_queue(txq); 3437 } 3438 3439 #ifdef CONFIG_XPS 3440 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3441 u16 index); 3442 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3443 u16 index, bool is_rxqs_map); 3444 3445 /** 3446 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3447 * @j: CPU/Rx queue index 3448 * @mask: bitmask of all cpus/rx queues 3449 * @nr_bits: number of bits in the bitmask 3450 * 3451 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3452 */ 3453 static inline bool netif_attr_test_mask(unsigned long j, 3454 const unsigned long *mask, 3455 unsigned int nr_bits) 3456 { 3457 cpu_max_bits_warn(j, nr_bits); 3458 return test_bit(j, mask); 3459 } 3460 3461 /** 3462 * netif_attr_test_online - Test for online CPU/Rx queue 3463 * @j: CPU/Rx queue index 3464 * @online_mask: bitmask for CPUs/Rx queues that are online 3465 * @nr_bits: number of bits in the bitmask 3466 * 3467 * Returns true if a CPU/Rx queue is online. 3468 */ 3469 static inline bool netif_attr_test_online(unsigned long j, 3470 const unsigned long *online_mask, 3471 unsigned int nr_bits) 3472 { 3473 cpu_max_bits_warn(j, nr_bits); 3474 3475 if (online_mask) 3476 return test_bit(j, online_mask); 3477 3478 return (j < nr_bits); 3479 } 3480 3481 /** 3482 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3483 * @n: CPU/Rx queue index 3484 * @srcp: the cpumask/Rx queue mask pointer 3485 * @nr_bits: number of bits in the bitmask 3486 * 3487 * Returns >= nr_bits if no further CPUs/Rx queues set. 3488 */ 3489 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3490 unsigned int nr_bits) 3491 { 3492 /* -1 is a legal arg here. */ 3493 if (n != -1) 3494 cpu_max_bits_warn(n, nr_bits); 3495 3496 if (srcp) 3497 return find_next_bit(srcp, nr_bits, n + 1); 3498 3499 return n + 1; 3500 } 3501 3502 /** 3503 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3504 * @n: CPU/Rx queue index 3505 * @src1p: the first CPUs/Rx queues mask pointer 3506 * @src2p: the second CPUs/Rx queues mask pointer 3507 * @nr_bits: number of bits in the bitmask 3508 * 3509 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3510 */ 3511 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3512 const unsigned long *src2p, 3513 unsigned int nr_bits) 3514 { 3515 /* -1 is a legal arg here. */ 3516 if (n != -1) 3517 cpu_max_bits_warn(n, nr_bits); 3518 3519 if (src1p && src2p) 3520 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3521 else if (src1p) 3522 return find_next_bit(src1p, nr_bits, n + 1); 3523 else if (src2p) 3524 return find_next_bit(src2p, nr_bits, n + 1); 3525 3526 return n + 1; 3527 } 3528 #else 3529 static inline int netif_set_xps_queue(struct net_device *dev, 3530 const struct cpumask *mask, 3531 u16 index) 3532 { 3533 return 0; 3534 } 3535 3536 static inline int __netif_set_xps_queue(struct net_device *dev, 3537 const unsigned long *mask, 3538 u16 index, bool is_rxqs_map) 3539 { 3540 return 0; 3541 } 3542 #endif 3543 3544 /** 3545 * netif_is_multiqueue - test if device has multiple transmit queues 3546 * @dev: network device 3547 * 3548 * Check if device has multiple transmit queues 3549 */ 3550 static inline bool netif_is_multiqueue(const struct net_device *dev) 3551 { 3552 return dev->num_tx_queues > 1; 3553 } 3554 3555 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3556 3557 #ifdef CONFIG_SYSFS 3558 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3559 #else 3560 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3561 unsigned int rxqs) 3562 { 3563 dev->real_num_rx_queues = rxqs; 3564 return 0; 3565 } 3566 #endif 3567 3568 static inline struct netdev_rx_queue * 3569 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3570 { 3571 return dev->_rx + rxq; 3572 } 3573 3574 #ifdef CONFIG_SYSFS 3575 static inline unsigned int get_netdev_rx_queue_index( 3576 struct netdev_rx_queue *queue) 3577 { 3578 struct net_device *dev = queue->dev; 3579 int index = queue - dev->_rx; 3580 3581 BUG_ON(index >= dev->num_rx_queues); 3582 return index; 3583 } 3584 #endif 3585 3586 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3587 int netif_get_num_default_rss_queues(void); 3588 3589 enum skb_free_reason { 3590 SKB_REASON_CONSUMED, 3591 SKB_REASON_DROPPED, 3592 }; 3593 3594 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3595 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3596 3597 /* 3598 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3599 * interrupt context or with hardware interrupts being disabled. 3600 * (in_irq() || irqs_disabled()) 3601 * 3602 * We provide four helpers that can be used in following contexts : 3603 * 3604 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3605 * replacing kfree_skb(skb) 3606 * 3607 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3608 * Typically used in place of consume_skb(skb) in TX completion path 3609 * 3610 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3611 * replacing kfree_skb(skb) 3612 * 3613 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3614 * and consumed a packet. Used in place of consume_skb(skb) 3615 */ 3616 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3617 { 3618 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3619 } 3620 3621 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3622 { 3623 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3624 } 3625 3626 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3627 { 3628 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3629 } 3630 3631 static inline void dev_consume_skb_any(struct sk_buff *skb) 3632 { 3633 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3634 } 3635 3636 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3637 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3638 int netif_rx(struct sk_buff *skb); 3639 int netif_rx_ni(struct sk_buff *skb); 3640 int netif_receive_skb(struct sk_buff *skb); 3641 int netif_receive_skb_core(struct sk_buff *skb); 3642 void netif_receive_skb_list(struct list_head *head); 3643 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3644 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3645 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3646 gro_result_t napi_gro_frags(struct napi_struct *napi); 3647 struct packet_offload *gro_find_receive_by_type(__be16 type); 3648 struct packet_offload *gro_find_complete_by_type(__be16 type); 3649 3650 static inline void napi_free_frags(struct napi_struct *napi) 3651 { 3652 kfree_skb(napi->skb); 3653 napi->skb = NULL; 3654 } 3655 3656 bool netdev_is_rx_handler_busy(struct net_device *dev); 3657 int netdev_rx_handler_register(struct net_device *dev, 3658 rx_handler_func_t *rx_handler, 3659 void *rx_handler_data); 3660 void netdev_rx_handler_unregister(struct net_device *dev); 3661 3662 bool dev_valid_name(const char *name); 3663 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3664 bool *need_copyout); 3665 int dev_ifconf(struct net *net, struct ifconf *, int); 3666 int dev_ethtool(struct net *net, struct ifreq *); 3667 unsigned int dev_get_flags(const struct net_device *); 3668 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3669 struct netlink_ext_ack *extack); 3670 int dev_change_flags(struct net_device *dev, unsigned int flags, 3671 struct netlink_ext_ack *extack); 3672 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3673 unsigned int gchanges); 3674 int dev_change_name(struct net_device *, const char *); 3675 int dev_set_alias(struct net_device *, const char *, size_t); 3676 int dev_get_alias(const struct net_device *, char *, size_t); 3677 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3678 int __dev_set_mtu(struct net_device *, int); 3679 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3680 struct netlink_ext_ack *extack); 3681 int dev_set_mtu(struct net_device *, int); 3682 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3683 void dev_set_group(struct net_device *, int); 3684 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3685 struct netlink_ext_ack *extack); 3686 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3687 struct netlink_ext_ack *extack); 3688 int dev_change_carrier(struct net_device *, bool new_carrier); 3689 int dev_get_phys_port_id(struct net_device *dev, 3690 struct netdev_phys_item_id *ppid); 3691 int dev_get_phys_port_name(struct net_device *dev, 3692 char *name, size_t len); 3693 int dev_get_port_parent_id(struct net_device *dev, 3694 struct netdev_phys_item_id *ppid, bool recurse); 3695 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3696 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3697 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3698 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3699 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3700 struct netdev_queue *txq, int *ret); 3701 3702 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3703 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3704 int fd, u32 flags); 3705 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3706 enum bpf_netdev_command cmd); 3707 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3708 3709 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3710 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3711 bool is_skb_forwardable(const struct net_device *dev, 3712 const struct sk_buff *skb); 3713 3714 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3715 struct sk_buff *skb) 3716 { 3717 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3718 unlikely(!is_skb_forwardable(dev, skb))) { 3719 atomic_long_inc(&dev->rx_dropped); 3720 kfree_skb(skb); 3721 return NET_RX_DROP; 3722 } 3723 3724 skb_scrub_packet(skb, true); 3725 skb->priority = 0; 3726 return 0; 3727 } 3728 3729 bool dev_nit_active(struct net_device *dev); 3730 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3731 3732 extern int netdev_budget; 3733 extern unsigned int netdev_budget_usecs; 3734 3735 /* Called by rtnetlink.c:rtnl_unlock() */ 3736 void netdev_run_todo(void); 3737 3738 /** 3739 * dev_put - release reference to device 3740 * @dev: network device 3741 * 3742 * Release reference to device to allow it to be freed. 3743 */ 3744 static inline void dev_put(struct net_device *dev) 3745 { 3746 this_cpu_dec(*dev->pcpu_refcnt); 3747 } 3748 3749 /** 3750 * dev_hold - get reference to device 3751 * @dev: network device 3752 * 3753 * Hold reference to device to keep it from being freed. 3754 */ 3755 static inline void dev_hold(struct net_device *dev) 3756 { 3757 this_cpu_inc(*dev->pcpu_refcnt); 3758 } 3759 3760 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3761 * and _off may be called from IRQ context, but it is caller 3762 * who is responsible for serialization of these calls. 3763 * 3764 * The name carrier is inappropriate, these functions should really be 3765 * called netif_lowerlayer_*() because they represent the state of any 3766 * kind of lower layer not just hardware media. 3767 */ 3768 3769 void linkwatch_init_dev(struct net_device *dev); 3770 void linkwatch_fire_event(struct net_device *dev); 3771 void linkwatch_forget_dev(struct net_device *dev); 3772 3773 /** 3774 * netif_carrier_ok - test if carrier present 3775 * @dev: network device 3776 * 3777 * Check if carrier is present on device 3778 */ 3779 static inline bool netif_carrier_ok(const struct net_device *dev) 3780 { 3781 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3782 } 3783 3784 unsigned long dev_trans_start(struct net_device *dev); 3785 3786 void __netdev_watchdog_up(struct net_device *dev); 3787 3788 void netif_carrier_on(struct net_device *dev); 3789 3790 void netif_carrier_off(struct net_device *dev); 3791 3792 /** 3793 * netif_dormant_on - mark device as dormant. 3794 * @dev: network device 3795 * 3796 * Mark device as dormant (as per RFC2863). 3797 * 3798 * The dormant state indicates that the relevant interface is not 3799 * actually in a condition to pass packets (i.e., it is not 'up') but is 3800 * in a "pending" state, waiting for some external event. For "on- 3801 * demand" interfaces, this new state identifies the situation where the 3802 * interface is waiting for events to place it in the up state. 3803 */ 3804 static inline void netif_dormant_on(struct net_device *dev) 3805 { 3806 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3807 linkwatch_fire_event(dev); 3808 } 3809 3810 /** 3811 * netif_dormant_off - set device as not dormant. 3812 * @dev: network device 3813 * 3814 * Device is not in dormant state. 3815 */ 3816 static inline void netif_dormant_off(struct net_device *dev) 3817 { 3818 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3819 linkwatch_fire_event(dev); 3820 } 3821 3822 /** 3823 * netif_dormant - test if device is dormant 3824 * @dev: network device 3825 * 3826 * Check if device is dormant. 3827 */ 3828 static inline bool netif_dormant(const struct net_device *dev) 3829 { 3830 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3831 } 3832 3833 3834 /** 3835 * netif_oper_up - test if device is operational 3836 * @dev: network device 3837 * 3838 * Check if carrier is operational 3839 */ 3840 static inline bool netif_oper_up(const struct net_device *dev) 3841 { 3842 return (dev->operstate == IF_OPER_UP || 3843 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3844 } 3845 3846 /** 3847 * netif_device_present - is device available or removed 3848 * @dev: network device 3849 * 3850 * Check if device has not been removed from system. 3851 */ 3852 static inline bool netif_device_present(struct net_device *dev) 3853 { 3854 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3855 } 3856 3857 void netif_device_detach(struct net_device *dev); 3858 3859 void netif_device_attach(struct net_device *dev); 3860 3861 /* 3862 * Network interface message level settings 3863 */ 3864 3865 enum { 3866 NETIF_MSG_DRV = 0x0001, 3867 NETIF_MSG_PROBE = 0x0002, 3868 NETIF_MSG_LINK = 0x0004, 3869 NETIF_MSG_TIMER = 0x0008, 3870 NETIF_MSG_IFDOWN = 0x0010, 3871 NETIF_MSG_IFUP = 0x0020, 3872 NETIF_MSG_RX_ERR = 0x0040, 3873 NETIF_MSG_TX_ERR = 0x0080, 3874 NETIF_MSG_TX_QUEUED = 0x0100, 3875 NETIF_MSG_INTR = 0x0200, 3876 NETIF_MSG_TX_DONE = 0x0400, 3877 NETIF_MSG_RX_STATUS = 0x0800, 3878 NETIF_MSG_PKTDATA = 0x1000, 3879 NETIF_MSG_HW = 0x2000, 3880 NETIF_MSG_WOL = 0x4000, 3881 }; 3882 3883 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3884 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3885 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3886 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3887 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3888 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3889 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3890 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3891 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3892 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3893 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3894 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3895 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3896 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3897 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3898 3899 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3900 { 3901 /* use default */ 3902 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3903 return default_msg_enable_bits; 3904 if (debug_value == 0) /* no output */ 3905 return 0; 3906 /* set low N bits */ 3907 return (1U << debug_value) - 1; 3908 } 3909 3910 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3911 { 3912 spin_lock(&txq->_xmit_lock); 3913 txq->xmit_lock_owner = cpu; 3914 } 3915 3916 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3917 { 3918 __acquire(&txq->_xmit_lock); 3919 return true; 3920 } 3921 3922 static inline void __netif_tx_release(struct netdev_queue *txq) 3923 { 3924 __release(&txq->_xmit_lock); 3925 } 3926 3927 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3928 { 3929 spin_lock_bh(&txq->_xmit_lock); 3930 txq->xmit_lock_owner = smp_processor_id(); 3931 } 3932 3933 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3934 { 3935 bool ok = spin_trylock(&txq->_xmit_lock); 3936 if (likely(ok)) 3937 txq->xmit_lock_owner = smp_processor_id(); 3938 return ok; 3939 } 3940 3941 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3942 { 3943 txq->xmit_lock_owner = -1; 3944 spin_unlock(&txq->_xmit_lock); 3945 } 3946 3947 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3948 { 3949 txq->xmit_lock_owner = -1; 3950 spin_unlock_bh(&txq->_xmit_lock); 3951 } 3952 3953 static inline void txq_trans_update(struct netdev_queue *txq) 3954 { 3955 if (txq->xmit_lock_owner != -1) 3956 txq->trans_start = jiffies; 3957 } 3958 3959 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3960 static inline void netif_trans_update(struct net_device *dev) 3961 { 3962 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3963 3964 if (txq->trans_start != jiffies) 3965 txq->trans_start = jiffies; 3966 } 3967 3968 /** 3969 * netif_tx_lock - grab network device transmit lock 3970 * @dev: network device 3971 * 3972 * Get network device transmit lock 3973 */ 3974 static inline void netif_tx_lock(struct net_device *dev) 3975 { 3976 unsigned int i; 3977 int cpu; 3978 3979 spin_lock(&dev->tx_global_lock); 3980 cpu = smp_processor_id(); 3981 for (i = 0; i < dev->num_tx_queues; i++) { 3982 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3983 3984 /* We are the only thread of execution doing a 3985 * freeze, but we have to grab the _xmit_lock in 3986 * order to synchronize with threads which are in 3987 * the ->hard_start_xmit() handler and already 3988 * checked the frozen bit. 3989 */ 3990 __netif_tx_lock(txq, cpu); 3991 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3992 __netif_tx_unlock(txq); 3993 } 3994 } 3995 3996 static inline void netif_tx_lock_bh(struct net_device *dev) 3997 { 3998 local_bh_disable(); 3999 netif_tx_lock(dev); 4000 } 4001 4002 static inline void netif_tx_unlock(struct net_device *dev) 4003 { 4004 unsigned int i; 4005 4006 for (i = 0; i < dev->num_tx_queues; i++) { 4007 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4008 4009 /* No need to grab the _xmit_lock here. If the 4010 * queue is not stopped for another reason, we 4011 * force a schedule. 4012 */ 4013 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4014 netif_schedule_queue(txq); 4015 } 4016 spin_unlock(&dev->tx_global_lock); 4017 } 4018 4019 static inline void netif_tx_unlock_bh(struct net_device *dev) 4020 { 4021 netif_tx_unlock(dev); 4022 local_bh_enable(); 4023 } 4024 4025 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4026 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4027 __netif_tx_lock(txq, cpu); \ 4028 } else { \ 4029 __netif_tx_acquire(txq); \ 4030 } \ 4031 } 4032 4033 #define HARD_TX_TRYLOCK(dev, txq) \ 4034 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4035 __netif_tx_trylock(txq) : \ 4036 __netif_tx_acquire(txq)) 4037 4038 #define HARD_TX_UNLOCK(dev, txq) { \ 4039 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4040 __netif_tx_unlock(txq); \ 4041 } else { \ 4042 __netif_tx_release(txq); \ 4043 } \ 4044 } 4045 4046 static inline void netif_tx_disable(struct net_device *dev) 4047 { 4048 unsigned int i; 4049 int cpu; 4050 4051 local_bh_disable(); 4052 cpu = smp_processor_id(); 4053 for (i = 0; i < dev->num_tx_queues; i++) { 4054 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4055 4056 __netif_tx_lock(txq, cpu); 4057 netif_tx_stop_queue(txq); 4058 __netif_tx_unlock(txq); 4059 } 4060 local_bh_enable(); 4061 } 4062 4063 static inline void netif_addr_lock(struct net_device *dev) 4064 { 4065 spin_lock(&dev->addr_list_lock); 4066 } 4067 4068 static inline void netif_addr_lock_bh(struct net_device *dev) 4069 { 4070 spin_lock_bh(&dev->addr_list_lock); 4071 } 4072 4073 static inline void netif_addr_unlock(struct net_device *dev) 4074 { 4075 spin_unlock(&dev->addr_list_lock); 4076 } 4077 4078 static inline void netif_addr_unlock_bh(struct net_device *dev) 4079 { 4080 spin_unlock_bh(&dev->addr_list_lock); 4081 } 4082 4083 /* 4084 * dev_addrs walker. Should be used only for read access. Call with 4085 * rcu_read_lock held. 4086 */ 4087 #define for_each_dev_addr(dev, ha) \ 4088 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4089 4090 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4091 4092 void ether_setup(struct net_device *dev); 4093 4094 /* Support for loadable net-drivers */ 4095 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4096 unsigned char name_assign_type, 4097 void (*setup)(struct net_device *), 4098 unsigned int txqs, unsigned int rxqs); 4099 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4100 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4101 4102 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4103 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4104 count) 4105 4106 int register_netdev(struct net_device *dev); 4107 void unregister_netdev(struct net_device *dev); 4108 4109 /* General hardware address lists handling functions */ 4110 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4111 struct netdev_hw_addr_list *from_list, int addr_len); 4112 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4113 struct netdev_hw_addr_list *from_list, int addr_len); 4114 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4115 struct net_device *dev, 4116 int (*sync)(struct net_device *, const unsigned char *), 4117 int (*unsync)(struct net_device *, 4118 const unsigned char *)); 4119 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4120 struct net_device *dev, 4121 int (*sync)(struct net_device *, 4122 const unsigned char *, int), 4123 int (*unsync)(struct net_device *, 4124 const unsigned char *, int)); 4125 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4126 struct net_device *dev, 4127 int (*unsync)(struct net_device *, 4128 const unsigned char *, int)); 4129 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4130 struct net_device *dev, 4131 int (*unsync)(struct net_device *, 4132 const unsigned char *)); 4133 void __hw_addr_init(struct netdev_hw_addr_list *list); 4134 4135 /* Functions used for device addresses handling */ 4136 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4137 unsigned char addr_type); 4138 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4139 unsigned char addr_type); 4140 void dev_addr_flush(struct net_device *dev); 4141 int dev_addr_init(struct net_device *dev); 4142 4143 /* Functions used for unicast addresses handling */ 4144 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4145 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4146 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4147 int dev_uc_sync(struct net_device *to, struct net_device *from); 4148 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4149 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4150 void dev_uc_flush(struct net_device *dev); 4151 void dev_uc_init(struct net_device *dev); 4152 4153 /** 4154 * __dev_uc_sync - Synchonize device's unicast list 4155 * @dev: device to sync 4156 * @sync: function to call if address should be added 4157 * @unsync: function to call if address should be removed 4158 * 4159 * Add newly added addresses to the interface, and release 4160 * addresses that have been deleted. 4161 */ 4162 static inline int __dev_uc_sync(struct net_device *dev, 4163 int (*sync)(struct net_device *, 4164 const unsigned char *), 4165 int (*unsync)(struct net_device *, 4166 const unsigned char *)) 4167 { 4168 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4169 } 4170 4171 /** 4172 * __dev_uc_unsync - Remove synchronized addresses from device 4173 * @dev: device to sync 4174 * @unsync: function to call if address should be removed 4175 * 4176 * Remove all addresses that were added to the device by dev_uc_sync(). 4177 */ 4178 static inline void __dev_uc_unsync(struct net_device *dev, 4179 int (*unsync)(struct net_device *, 4180 const unsigned char *)) 4181 { 4182 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4183 } 4184 4185 /* Functions used for multicast addresses handling */ 4186 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4187 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4188 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4189 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4190 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4191 int dev_mc_sync(struct net_device *to, struct net_device *from); 4192 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4193 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4194 void dev_mc_flush(struct net_device *dev); 4195 void dev_mc_init(struct net_device *dev); 4196 4197 /** 4198 * __dev_mc_sync - Synchonize device's multicast list 4199 * @dev: device to sync 4200 * @sync: function to call if address should be added 4201 * @unsync: function to call if address should be removed 4202 * 4203 * Add newly added addresses to the interface, and release 4204 * addresses that have been deleted. 4205 */ 4206 static inline int __dev_mc_sync(struct net_device *dev, 4207 int (*sync)(struct net_device *, 4208 const unsigned char *), 4209 int (*unsync)(struct net_device *, 4210 const unsigned char *)) 4211 { 4212 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4213 } 4214 4215 /** 4216 * __dev_mc_unsync - Remove synchronized addresses from device 4217 * @dev: device to sync 4218 * @unsync: function to call if address should be removed 4219 * 4220 * Remove all addresses that were added to the device by dev_mc_sync(). 4221 */ 4222 static inline void __dev_mc_unsync(struct net_device *dev, 4223 int (*unsync)(struct net_device *, 4224 const unsigned char *)) 4225 { 4226 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4227 } 4228 4229 /* Functions used for secondary unicast and multicast support */ 4230 void dev_set_rx_mode(struct net_device *dev); 4231 void __dev_set_rx_mode(struct net_device *dev); 4232 int dev_set_promiscuity(struct net_device *dev, int inc); 4233 int dev_set_allmulti(struct net_device *dev, int inc); 4234 void netdev_state_change(struct net_device *dev); 4235 void netdev_notify_peers(struct net_device *dev); 4236 void netdev_features_change(struct net_device *dev); 4237 /* Load a device via the kmod */ 4238 void dev_load(struct net *net, const char *name); 4239 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4240 struct rtnl_link_stats64 *storage); 4241 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4242 const struct net_device_stats *netdev_stats); 4243 4244 extern int netdev_max_backlog; 4245 extern int netdev_tstamp_prequeue; 4246 extern int weight_p; 4247 extern int dev_weight_rx_bias; 4248 extern int dev_weight_tx_bias; 4249 extern int dev_rx_weight; 4250 extern int dev_tx_weight; 4251 extern int gro_normal_batch; 4252 4253 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4254 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4255 struct list_head **iter); 4256 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4257 struct list_head **iter); 4258 4259 /* iterate through upper list, must be called under RCU read lock */ 4260 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4261 for (iter = &(dev)->adj_list.upper, \ 4262 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4263 updev; \ 4264 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4265 4266 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4267 int (*fn)(struct net_device *upper_dev, 4268 void *data), 4269 void *data); 4270 4271 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4272 struct net_device *upper_dev); 4273 4274 bool netdev_has_any_upper_dev(struct net_device *dev); 4275 4276 void *netdev_lower_get_next_private(struct net_device *dev, 4277 struct list_head **iter); 4278 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4279 struct list_head **iter); 4280 4281 #define netdev_for_each_lower_private(dev, priv, iter) \ 4282 for (iter = (dev)->adj_list.lower.next, \ 4283 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4284 priv; \ 4285 priv = netdev_lower_get_next_private(dev, &(iter))) 4286 4287 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4288 for (iter = &(dev)->adj_list.lower, \ 4289 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4290 priv; \ 4291 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4292 4293 void *netdev_lower_get_next(struct net_device *dev, 4294 struct list_head **iter); 4295 4296 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4297 for (iter = (dev)->adj_list.lower.next, \ 4298 ldev = netdev_lower_get_next(dev, &(iter)); \ 4299 ldev; \ 4300 ldev = netdev_lower_get_next(dev, &(iter))) 4301 4302 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4303 struct list_head **iter); 4304 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4305 struct list_head **iter); 4306 4307 int netdev_walk_all_lower_dev(struct net_device *dev, 4308 int (*fn)(struct net_device *lower_dev, 4309 void *data), 4310 void *data); 4311 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4312 int (*fn)(struct net_device *lower_dev, 4313 void *data), 4314 void *data); 4315 4316 void *netdev_adjacent_get_private(struct list_head *adj_list); 4317 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4318 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4319 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4320 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4321 struct netlink_ext_ack *extack); 4322 int netdev_master_upper_dev_link(struct net_device *dev, 4323 struct net_device *upper_dev, 4324 void *upper_priv, void *upper_info, 4325 struct netlink_ext_ack *extack); 4326 void netdev_upper_dev_unlink(struct net_device *dev, 4327 struct net_device *upper_dev); 4328 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4329 struct net_device *new_dev, 4330 struct net_device *dev, 4331 struct netlink_ext_ack *extack); 4332 void netdev_adjacent_change_commit(struct net_device *old_dev, 4333 struct net_device *new_dev, 4334 struct net_device *dev); 4335 void netdev_adjacent_change_abort(struct net_device *old_dev, 4336 struct net_device *new_dev, 4337 struct net_device *dev); 4338 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4339 void *netdev_lower_dev_get_private(struct net_device *dev, 4340 struct net_device *lower_dev); 4341 void netdev_lower_state_changed(struct net_device *lower_dev, 4342 void *lower_state_info); 4343 4344 /* RSS keys are 40 or 52 bytes long */ 4345 #define NETDEV_RSS_KEY_LEN 52 4346 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4347 void netdev_rss_key_fill(void *buffer, size_t len); 4348 4349 int skb_checksum_help(struct sk_buff *skb); 4350 int skb_crc32c_csum_help(struct sk_buff *skb); 4351 int skb_csum_hwoffload_help(struct sk_buff *skb, 4352 const netdev_features_t features); 4353 4354 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4355 netdev_features_t features, bool tx_path); 4356 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4357 netdev_features_t features); 4358 4359 struct netdev_bonding_info { 4360 ifslave slave; 4361 ifbond master; 4362 }; 4363 4364 struct netdev_notifier_bonding_info { 4365 struct netdev_notifier_info info; /* must be first */ 4366 struct netdev_bonding_info bonding_info; 4367 }; 4368 4369 void netdev_bonding_info_change(struct net_device *dev, 4370 struct netdev_bonding_info *bonding_info); 4371 4372 static inline 4373 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4374 { 4375 return __skb_gso_segment(skb, features, true); 4376 } 4377 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4378 4379 static inline bool can_checksum_protocol(netdev_features_t features, 4380 __be16 protocol) 4381 { 4382 if (protocol == htons(ETH_P_FCOE)) 4383 return !!(features & NETIF_F_FCOE_CRC); 4384 4385 /* Assume this is an IP checksum (not SCTP CRC) */ 4386 4387 if (features & NETIF_F_HW_CSUM) { 4388 /* Can checksum everything */ 4389 return true; 4390 } 4391 4392 switch (protocol) { 4393 case htons(ETH_P_IP): 4394 return !!(features & NETIF_F_IP_CSUM); 4395 case htons(ETH_P_IPV6): 4396 return !!(features & NETIF_F_IPV6_CSUM); 4397 default: 4398 return false; 4399 } 4400 } 4401 4402 #ifdef CONFIG_BUG 4403 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4404 #else 4405 static inline void netdev_rx_csum_fault(struct net_device *dev, 4406 struct sk_buff *skb) 4407 { 4408 } 4409 #endif 4410 /* rx skb timestamps */ 4411 void net_enable_timestamp(void); 4412 void net_disable_timestamp(void); 4413 4414 #ifdef CONFIG_PROC_FS 4415 int __init dev_proc_init(void); 4416 #else 4417 #define dev_proc_init() 0 4418 #endif 4419 4420 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4421 struct sk_buff *skb, struct net_device *dev, 4422 bool more) 4423 { 4424 __this_cpu_write(softnet_data.xmit.more, more); 4425 return ops->ndo_start_xmit(skb, dev); 4426 } 4427 4428 static inline bool netdev_xmit_more(void) 4429 { 4430 return __this_cpu_read(softnet_data.xmit.more); 4431 } 4432 4433 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4434 struct netdev_queue *txq, bool more) 4435 { 4436 const struct net_device_ops *ops = dev->netdev_ops; 4437 netdev_tx_t rc; 4438 4439 rc = __netdev_start_xmit(ops, skb, dev, more); 4440 if (rc == NETDEV_TX_OK) 4441 txq_trans_update(txq); 4442 4443 return rc; 4444 } 4445 4446 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4447 const void *ns); 4448 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4449 const void *ns); 4450 4451 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4452 { 4453 return netdev_class_create_file_ns(class_attr, NULL); 4454 } 4455 4456 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4457 { 4458 netdev_class_remove_file_ns(class_attr, NULL); 4459 } 4460 4461 extern const struct kobj_ns_type_operations net_ns_type_operations; 4462 4463 const char *netdev_drivername(const struct net_device *dev); 4464 4465 void linkwatch_run_queue(void); 4466 4467 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4468 netdev_features_t f2) 4469 { 4470 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4471 if (f1 & NETIF_F_HW_CSUM) 4472 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4473 else 4474 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4475 } 4476 4477 return f1 & f2; 4478 } 4479 4480 static inline netdev_features_t netdev_get_wanted_features( 4481 struct net_device *dev) 4482 { 4483 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4484 } 4485 netdev_features_t netdev_increment_features(netdev_features_t all, 4486 netdev_features_t one, netdev_features_t mask); 4487 4488 /* Allow TSO being used on stacked device : 4489 * Performing the GSO segmentation before last device 4490 * is a performance improvement. 4491 */ 4492 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4493 netdev_features_t mask) 4494 { 4495 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4496 } 4497 4498 int __netdev_update_features(struct net_device *dev); 4499 void netdev_update_features(struct net_device *dev); 4500 void netdev_change_features(struct net_device *dev); 4501 4502 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4503 struct net_device *dev); 4504 4505 netdev_features_t passthru_features_check(struct sk_buff *skb, 4506 struct net_device *dev, 4507 netdev_features_t features); 4508 netdev_features_t netif_skb_features(struct sk_buff *skb); 4509 4510 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4511 { 4512 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4513 4514 /* check flags correspondence */ 4515 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4516 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4517 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4518 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4519 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4520 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4521 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4522 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4523 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4524 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4525 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4526 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4527 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4528 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4529 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4530 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4531 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4532 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4533 4534 return (features & feature) == feature; 4535 } 4536 4537 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4538 { 4539 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4540 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4541 } 4542 4543 static inline bool netif_needs_gso(struct sk_buff *skb, 4544 netdev_features_t features) 4545 { 4546 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4547 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4548 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4549 } 4550 4551 static inline void netif_set_gso_max_size(struct net_device *dev, 4552 unsigned int size) 4553 { 4554 dev->gso_max_size = size; 4555 } 4556 4557 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4558 int pulled_hlen, u16 mac_offset, 4559 int mac_len) 4560 { 4561 skb->protocol = protocol; 4562 skb->encapsulation = 1; 4563 skb_push(skb, pulled_hlen); 4564 skb_reset_transport_header(skb); 4565 skb->mac_header = mac_offset; 4566 skb->network_header = skb->mac_header + mac_len; 4567 skb->mac_len = mac_len; 4568 } 4569 4570 static inline bool netif_is_macsec(const struct net_device *dev) 4571 { 4572 return dev->priv_flags & IFF_MACSEC; 4573 } 4574 4575 static inline bool netif_is_macvlan(const struct net_device *dev) 4576 { 4577 return dev->priv_flags & IFF_MACVLAN; 4578 } 4579 4580 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4581 { 4582 return dev->priv_flags & IFF_MACVLAN_PORT; 4583 } 4584 4585 static inline bool netif_is_bond_master(const struct net_device *dev) 4586 { 4587 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4588 } 4589 4590 static inline bool netif_is_bond_slave(const struct net_device *dev) 4591 { 4592 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4593 } 4594 4595 static inline bool netif_supports_nofcs(struct net_device *dev) 4596 { 4597 return dev->priv_flags & IFF_SUPP_NOFCS; 4598 } 4599 4600 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4601 { 4602 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4603 } 4604 4605 static inline bool netif_is_l3_master(const struct net_device *dev) 4606 { 4607 return dev->priv_flags & IFF_L3MDEV_MASTER; 4608 } 4609 4610 static inline bool netif_is_l3_slave(const struct net_device *dev) 4611 { 4612 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4613 } 4614 4615 static inline bool netif_is_bridge_master(const struct net_device *dev) 4616 { 4617 return dev->priv_flags & IFF_EBRIDGE; 4618 } 4619 4620 static inline bool netif_is_bridge_port(const struct net_device *dev) 4621 { 4622 return dev->priv_flags & IFF_BRIDGE_PORT; 4623 } 4624 4625 static inline bool netif_is_ovs_master(const struct net_device *dev) 4626 { 4627 return dev->priv_flags & IFF_OPENVSWITCH; 4628 } 4629 4630 static inline bool netif_is_ovs_port(const struct net_device *dev) 4631 { 4632 return dev->priv_flags & IFF_OVS_DATAPATH; 4633 } 4634 4635 static inline bool netif_is_team_master(const struct net_device *dev) 4636 { 4637 return dev->priv_flags & IFF_TEAM; 4638 } 4639 4640 static inline bool netif_is_team_port(const struct net_device *dev) 4641 { 4642 return dev->priv_flags & IFF_TEAM_PORT; 4643 } 4644 4645 static inline bool netif_is_lag_master(const struct net_device *dev) 4646 { 4647 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4648 } 4649 4650 static inline bool netif_is_lag_port(const struct net_device *dev) 4651 { 4652 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4653 } 4654 4655 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4656 { 4657 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4658 } 4659 4660 static inline bool netif_is_failover(const struct net_device *dev) 4661 { 4662 return dev->priv_flags & IFF_FAILOVER; 4663 } 4664 4665 static inline bool netif_is_failover_slave(const struct net_device *dev) 4666 { 4667 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4668 } 4669 4670 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4671 static inline void netif_keep_dst(struct net_device *dev) 4672 { 4673 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4674 } 4675 4676 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4677 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4678 { 4679 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4680 return dev->priv_flags & IFF_MACSEC; 4681 } 4682 4683 extern struct pernet_operations __net_initdata loopback_net_ops; 4684 4685 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4686 4687 /* netdev_printk helpers, similar to dev_printk */ 4688 4689 static inline const char *netdev_name(const struct net_device *dev) 4690 { 4691 if (!dev->name[0] || strchr(dev->name, '%')) 4692 return "(unnamed net_device)"; 4693 return dev->name; 4694 } 4695 4696 static inline bool netdev_unregistering(const struct net_device *dev) 4697 { 4698 return dev->reg_state == NETREG_UNREGISTERING; 4699 } 4700 4701 static inline const char *netdev_reg_state(const struct net_device *dev) 4702 { 4703 switch (dev->reg_state) { 4704 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4705 case NETREG_REGISTERED: return ""; 4706 case NETREG_UNREGISTERING: return " (unregistering)"; 4707 case NETREG_UNREGISTERED: return " (unregistered)"; 4708 case NETREG_RELEASED: return " (released)"; 4709 case NETREG_DUMMY: return " (dummy)"; 4710 } 4711 4712 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4713 return " (unknown)"; 4714 } 4715 4716 __printf(3, 4) __cold 4717 void netdev_printk(const char *level, const struct net_device *dev, 4718 const char *format, ...); 4719 __printf(2, 3) __cold 4720 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4721 __printf(2, 3) __cold 4722 void netdev_alert(const struct net_device *dev, const char *format, ...); 4723 __printf(2, 3) __cold 4724 void netdev_crit(const struct net_device *dev, const char *format, ...); 4725 __printf(2, 3) __cold 4726 void netdev_err(const struct net_device *dev, const char *format, ...); 4727 __printf(2, 3) __cold 4728 void netdev_warn(const struct net_device *dev, const char *format, ...); 4729 __printf(2, 3) __cold 4730 void netdev_notice(const struct net_device *dev, const char *format, ...); 4731 __printf(2, 3) __cold 4732 void netdev_info(const struct net_device *dev, const char *format, ...); 4733 4734 #define netdev_level_once(level, dev, fmt, ...) \ 4735 do { \ 4736 static bool __print_once __read_mostly; \ 4737 \ 4738 if (!__print_once) { \ 4739 __print_once = true; \ 4740 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4741 } \ 4742 } while (0) 4743 4744 #define netdev_emerg_once(dev, fmt, ...) \ 4745 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4746 #define netdev_alert_once(dev, fmt, ...) \ 4747 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4748 #define netdev_crit_once(dev, fmt, ...) \ 4749 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4750 #define netdev_err_once(dev, fmt, ...) \ 4751 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4752 #define netdev_warn_once(dev, fmt, ...) \ 4753 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4754 #define netdev_notice_once(dev, fmt, ...) \ 4755 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4756 #define netdev_info_once(dev, fmt, ...) \ 4757 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4758 4759 #define MODULE_ALIAS_NETDEV(device) \ 4760 MODULE_ALIAS("netdev-" device) 4761 4762 #if defined(CONFIG_DYNAMIC_DEBUG) 4763 #define netdev_dbg(__dev, format, args...) \ 4764 do { \ 4765 dynamic_netdev_dbg(__dev, format, ##args); \ 4766 } while (0) 4767 #elif defined(DEBUG) 4768 #define netdev_dbg(__dev, format, args...) \ 4769 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4770 #else 4771 #define netdev_dbg(__dev, format, args...) \ 4772 ({ \ 4773 if (0) \ 4774 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4775 }) 4776 #endif 4777 4778 #if defined(VERBOSE_DEBUG) 4779 #define netdev_vdbg netdev_dbg 4780 #else 4781 4782 #define netdev_vdbg(dev, format, args...) \ 4783 ({ \ 4784 if (0) \ 4785 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4786 0; \ 4787 }) 4788 #endif 4789 4790 /* 4791 * netdev_WARN() acts like dev_printk(), but with the key difference 4792 * of using a WARN/WARN_ON to get the message out, including the 4793 * file/line information and a backtrace. 4794 */ 4795 #define netdev_WARN(dev, format, args...) \ 4796 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4797 netdev_reg_state(dev), ##args) 4798 4799 #define netdev_WARN_ONCE(dev, format, args...) \ 4800 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4801 netdev_reg_state(dev), ##args) 4802 4803 /* netif printk helpers, similar to netdev_printk */ 4804 4805 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4806 do { \ 4807 if (netif_msg_##type(priv)) \ 4808 netdev_printk(level, (dev), fmt, ##args); \ 4809 } while (0) 4810 4811 #define netif_level(level, priv, type, dev, fmt, args...) \ 4812 do { \ 4813 if (netif_msg_##type(priv)) \ 4814 netdev_##level(dev, fmt, ##args); \ 4815 } while (0) 4816 4817 #define netif_emerg(priv, type, dev, fmt, args...) \ 4818 netif_level(emerg, priv, type, dev, fmt, ##args) 4819 #define netif_alert(priv, type, dev, fmt, args...) \ 4820 netif_level(alert, priv, type, dev, fmt, ##args) 4821 #define netif_crit(priv, type, dev, fmt, args...) \ 4822 netif_level(crit, priv, type, dev, fmt, ##args) 4823 #define netif_err(priv, type, dev, fmt, args...) \ 4824 netif_level(err, priv, type, dev, fmt, ##args) 4825 #define netif_warn(priv, type, dev, fmt, args...) \ 4826 netif_level(warn, priv, type, dev, fmt, ##args) 4827 #define netif_notice(priv, type, dev, fmt, args...) \ 4828 netif_level(notice, priv, type, dev, fmt, ##args) 4829 #define netif_info(priv, type, dev, fmt, args...) \ 4830 netif_level(info, priv, type, dev, fmt, ##args) 4831 4832 #if defined(CONFIG_DYNAMIC_DEBUG) 4833 #define netif_dbg(priv, type, netdev, format, args...) \ 4834 do { \ 4835 if (netif_msg_##type(priv)) \ 4836 dynamic_netdev_dbg(netdev, format, ##args); \ 4837 } while (0) 4838 #elif defined(DEBUG) 4839 #define netif_dbg(priv, type, dev, format, args...) \ 4840 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4841 #else 4842 #define netif_dbg(priv, type, dev, format, args...) \ 4843 ({ \ 4844 if (0) \ 4845 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4846 0; \ 4847 }) 4848 #endif 4849 4850 /* if @cond then downgrade to debug, else print at @level */ 4851 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4852 do { \ 4853 if (cond) \ 4854 netif_dbg(priv, type, netdev, fmt, ##args); \ 4855 else \ 4856 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4857 } while (0) 4858 4859 #if defined(VERBOSE_DEBUG) 4860 #define netif_vdbg netif_dbg 4861 #else 4862 #define netif_vdbg(priv, type, dev, format, args...) \ 4863 ({ \ 4864 if (0) \ 4865 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4866 0; \ 4867 }) 4868 #endif 4869 4870 /* 4871 * The list of packet types we will receive (as opposed to discard) 4872 * and the routines to invoke. 4873 * 4874 * Why 16. Because with 16 the only overlap we get on a hash of the 4875 * low nibble of the protocol value is RARP/SNAP/X.25. 4876 * 4877 * 0800 IP 4878 * 0001 802.3 4879 * 0002 AX.25 4880 * 0004 802.2 4881 * 8035 RARP 4882 * 0005 SNAP 4883 * 0805 X.25 4884 * 0806 ARP 4885 * 8137 IPX 4886 * 0009 Localtalk 4887 * 86DD IPv6 4888 */ 4889 #define PTYPE_HASH_SIZE (16) 4890 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4891 4892 extern struct net_device *blackhole_netdev; 4893 4894 #endif /* _LINUX_NETDEVICE_H */ 4895