xref: /linux-6.15/include/linux/netdevice.h (revision 9ff75a23)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm_kern;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 struct ethtool_netdev_state;
83 struct phy_link_topology;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for per-NAPI config
347  */
348 struct napi_config {
349 	u64 gro_flush_timeout;
350 	u32 defer_hard_irqs;
351 	unsigned int napi_id;
352 };
353 
354 /*
355  * Structure for NAPI scheduling similar to tasklet but with weighting
356  */
357 struct napi_struct {
358 	/* The poll_list must only be managed by the entity which
359 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
360 	 * whoever atomically sets that bit can add this napi_struct
361 	 * to the per-CPU poll_list, and whoever clears that bit
362 	 * can remove from the list right before clearing the bit.
363 	 */
364 	struct list_head	poll_list;
365 
366 	unsigned long		state;
367 	int			weight;
368 	u32			defer_hard_irqs_count;
369 	unsigned long		gro_bitmask;
370 	int			(*poll)(struct napi_struct *, int);
371 #ifdef CONFIG_NETPOLL
372 	/* CPU actively polling if netpoll is configured */
373 	int			poll_owner;
374 #endif
375 	/* CPU on which NAPI has been scheduled for processing */
376 	int			list_owner;
377 	struct net_device	*dev;
378 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
379 	struct sk_buff		*skb;
380 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
381 	int			rx_count; /* length of rx_list */
382 	unsigned int		napi_id;
383 	struct hrtimer		timer;
384 	struct task_struct	*thread;
385 	unsigned long		gro_flush_timeout;
386 	u32			defer_hard_irqs;
387 	/* control-path-only fields follow */
388 	struct list_head	dev_list;
389 	struct hlist_node	napi_hash_node;
390 	int			irq;
391 	int			index;
392 	struct napi_config	*config;
393 };
394 
395 enum {
396 	NAPI_STATE_SCHED,		/* Poll is scheduled */
397 	NAPI_STATE_MISSED,		/* reschedule a napi */
398 	NAPI_STATE_DISABLE,		/* Disable pending */
399 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
400 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
401 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
402 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
403 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
404 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
405 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
406 };
407 
408 enum {
409 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
410 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
411 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
412 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
413 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
414 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
415 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
416 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
417 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
418 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
419 };
420 
421 enum gro_result {
422 	GRO_MERGED,
423 	GRO_MERGED_FREE,
424 	GRO_HELD,
425 	GRO_NORMAL,
426 	GRO_CONSUMED,
427 };
428 typedef enum gro_result gro_result_t;
429 
430 /*
431  * enum rx_handler_result - Possible return values for rx_handlers.
432  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
433  * further.
434  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
435  * case skb->dev was changed by rx_handler.
436  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
437  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
438  *
439  * rx_handlers are functions called from inside __netif_receive_skb(), to do
440  * special processing of the skb, prior to delivery to protocol handlers.
441  *
442  * Currently, a net_device can only have a single rx_handler registered. Trying
443  * to register a second rx_handler will return -EBUSY.
444  *
445  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
446  * To unregister a rx_handler on a net_device, use
447  * netdev_rx_handler_unregister().
448  *
449  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
450  * do with the skb.
451  *
452  * If the rx_handler consumed the skb in some way, it should return
453  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
454  * the skb to be delivered in some other way.
455  *
456  * If the rx_handler changed skb->dev, to divert the skb to another
457  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
458  * new device will be called if it exists.
459  *
460  * If the rx_handler decides the skb should be ignored, it should return
461  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
462  * are registered on exact device (ptype->dev == skb->dev).
463  *
464  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
465  * delivered, it should return RX_HANDLER_PASS.
466  *
467  * A device without a registered rx_handler will behave as if rx_handler
468  * returned RX_HANDLER_PASS.
469  */
470 
471 enum rx_handler_result {
472 	RX_HANDLER_CONSUMED,
473 	RX_HANDLER_ANOTHER,
474 	RX_HANDLER_EXACT,
475 	RX_HANDLER_PASS,
476 };
477 typedef enum rx_handler_result rx_handler_result_t;
478 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
479 
480 void __napi_schedule(struct napi_struct *n);
481 void __napi_schedule_irqoff(struct napi_struct *n);
482 
483 static inline bool napi_disable_pending(struct napi_struct *n)
484 {
485 	return test_bit(NAPI_STATE_DISABLE, &n->state);
486 }
487 
488 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
489 {
490 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
491 }
492 
493 /**
494  * napi_is_scheduled - test if NAPI is scheduled
495  * @n: NAPI context
496  *
497  * This check is "best-effort". With no locking implemented,
498  * a NAPI can be scheduled or terminate right after this check
499  * and produce not precise results.
500  *
501  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
502  * should not be used normally and napi_schedule should be
503  * used instead.
504  *
505  * Use only if the driver really needs to check if a NAPI
506  * is scheduled for example in the context of delayed timer
507  * that can be skipped if a NAPI is already scheduled.
508  *
509  * Return True if NAPI is scheduled, False otherwise.
510  */
511 static inline bool napi_is_scheduled(struct napi_struct *n)
512 {
513 	return test_bit(NAPI_STATE_SCHED, &n->state);
514 }
515 
516 bool napi_schedule_prep(struct napi_struct *n);
517 
518 /**
519  *	napi_schedule - schedule NAPI poll
520  *	@n: NAPI context
521  *
522  * Schedule NAPI poll routine to be called if it is not already
523  * running.
524  * Return true if we schedule a NAPI or false if not.
525  * Refer to napi_schedule_prep() for additional reason on why
526  * a NAPI might not be scheduled.
527  */
528 static inline bool napi_schedule(struct napi_struct *n)
529 {
530 	if (napi_schedule_prep(n)) {
531 		__napi_schedule(n);
532 		return true;
533 	}
534 
535 	return false;
536 }
537 
538 /**
539  *	napi_schedule_irqoff - schedule NAPI poll
540  *	@n: NAPI context
541  *
542  * Variant of napi_schedule(), assuming hard irqs are masked.
543  */
544 static inline void napi_schedule_irqoff(struct napi_struct *n)
545 {
546 	if (napi_schedule_prep(n))
547 		__napi_schedule_irqoff(n);
548 }
549 
550 /**
551  * napi_complete_done - NAPI processing complete
552  * @n: NAPI context
553  * @work_done: number of packets processed
554  *
555  * Mark NAPI processing as complete. Should only be called if poll budget
556  * has not been completely consumed.
557  * Prefer over napi_complete().
558  * Return false if device should avoid rearming interrupts.
559  */
560 bool napi_complete_done(struct napi_struct *n, int work_done);
561 
562 static inline bool napi_complete(struct napi_struct *n)
563 {
564 	return napi_complete_done(n, 0);
565 }
566 
567 int dev_set_threaded(struct net_device *dev, bool threaded);
568 
569 /**
570  *	napi_disable - prevent NAPI from scheduling
571  *	@n: NAPI context
572  *
573  * Stop NAPI from being scheduled on this context.
574  * Waits till any outstanding processing completes.
575  */
576 void napi_disable(struct napi_struct *n);
577 
578 void napi_enable(struct napi_struct *n);
579 
580 /**
581  *	napi_synchronize - wait until NAPI is not running
582  *	@n: NAPI context
583  *
584  * Wait until NAPI is done being scheduled on this context.
585  * Waits till any outstanding processing completes but
586  * does not disable future activations.
587  */
588 static inline void napi_synchronize(const struct napi_struct *n)
589 {
590 	if (IS_ENABLED(CONFIG_SMP))
591 		while (test_bit(NAPI_STATE_SCHED, &n->state))
592 			msleep(1);
593 	else
594 		barrier();
595 }
596 
597 /**
598  *	napi_if_scheduled_mark_missed - if napi is running, set the
599  *	NAPIF_STATE_MISSED
600  *	@n: NAPI context
601  *
602  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
603  * NAPI is scheduled.
604  **/
605 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
606 {
607 	unsigned long val, new;
608 
609 	val = READ_ONCE(n->state);
610 	do {
611 		if (val & NAPIF_STATE_DISABLE)
612 			return true;
613 
614 		if (!(val & NAPIF_STATE_SCHED))
615 			return false;
616 
617 		new = val | NAPIF_STATE_MISSED;
618 	} while (!try_cmpxchg(&n->state, &val, new));
619 
620 	return true;
621 }
622 
623 enum netdev_queue_state_t {
624 	__QUEUE_STATE_DRV_XOFF,
625 	__QUEUE_STATE_STACK_XOFF,
626 	__QUEUE_STATE_FROZEN,
627 };
628 
629 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
630 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
631 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
632 
633 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
634 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
635 					QUEUE_STATE_FROZEN)
636 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
637 					QUEUE_STATE_FROZEN)
638 
639 /*
640  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
641  * netif_tx_* functions below are used to manipulate this flag.  The
642  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
643  * queue independently.  The netif_xmit_*stopped functions below are called
644  * to check if the queue has been stopped by the driver or stack (either
645  * of the XOFF bits are set in the state).  Drivers should not need to call
646  * netif_xmit*stopped functions, they should only be using netif_tx_*.
647  */
648 
649 struct netdev_queue {
650 /*
651  * read-mostly part
652  */
653 	struct net_device	*dev;
654 	netdevice_tracker	dev_tracker;
655 
656 	struct Qdisc __rcu	*qdisc;
657 	struct Qdisc __rcu	*qdisc_sleeping;
658 #ifdef CONFIG_SYSFS
659 	struct kobject		kobj;
660 #endif
661 	unsigned long		tx_maxrate;
662 	/*
663 	 * Number of TX timeouts for this queue
664 	 * (/sys/class/net/DEV/Q/trans_timeout)
665 	 */
666 	atomic_long_t		trans_timeout;
667 
668 	/* Subordinate device that the queue has been assigned to */
669 	struct net_device	*sb_dev;
670 #ifdef CONFIG_XDP_SOCKETS
671 	struct xsk_buff_pool    *pool;
672 #endif
673 
674 /*
675  * write-mostly part
676  */
677 #ifdef CONFIG_BQL
678 	struct dql		dql;
679 #endif
680 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
681 	int			xmit_lock_owner;
682 	/*
683 	 * Time (in jiffies) of last Tx
684 	 */
685 	unsigned long		trans_start;
686 
687 	unsigned long		state;
688 
689 /*
690  * slow- / control-path part
691  */
692 	/* NAPI instance for the queue
693 	 * Readers and writers must hold RTNL
694 	 */
695 	struct napi_struct	*napi;
696 
697 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
698 	int			numa_node;
699 #endif
700 } ____cacheline_aligned_in_smp;
701 
702 extern int sysctl_fb_tunnels_only_for_init_net;
703 extern int sysctl_devconf_inherit_init_net;
704 
705 /*
706  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
707  *                                     == 1 : For initns only
708  *                                     == 2 : For none.
709  */
710 static inline bool net_has_fallback_tunnels(const struct net *net)
711 {
712 #if IS_ENABLED(CONFIG_SYSCTL)
713 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
714 
715 	return !fb_tunnels_only_for_init_net ||
716 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
717 #else
718 	return true;
719 #endif
720 }
721 
722 static inline int net_inherit_devconf(void)
723 {
724 #if IS_ENABLED(CONFIG_SYSCTL)
725 	return READ_ONCE(sysctl_devconf_inherit_init_net);
726 #else
727 	return 0;
728 #endif
729 }
730 
731 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
732 {
733 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
734 	return q->numa_node;
735 #else
736 	return NUMA_NO_NODE;
737 #endif
738 }
739 
740 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
741 {
742 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
743 	q->numa_node = node;
744 #endif
745 }
746 
747 #ifdef CONFIG_RFS_ACCEL
748 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
749 			 u16 filter_id);
750 #endif
751 
752 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
753 enum xps_map_type {
754 	XPS_CPUS = 0,
755 	XPS_RXQS,
756 	XPS_MAPS_MAX,
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  *
777  * We keep track of the number of cpus/rxqs used when the struct is allocated,
778  * in nr_ids. This will help not accessing out-of-bound memory.
779  *
780  * We keep track of the number of traffic classes used when the struct is
781  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
782  * not crossing its upper bound, as the original dev->num_tc can be updated in
783  * the meantime.
784  */
785 struct xps_dev_maps {
786 	struct rcu_head rcu;
787 	unsigned int nr_ids;
788 	s16 num_tc;
789 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
790 };
791 
792 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
793 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
794 
795 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
796 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
797 
798 #endif /* CONFIG_XPS */
799 
800 #define TC_MAX_QUEUE	16
801 #define TC_BITMASK	15
802 /* HW offloaded queuing disciplines txq count and offset maps */
803 struct netdev_tc_txq {
804 	u16 count;
805 	u16 offset;
806 };
807 
808 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
809 /*
810  * This structure is to hold information about the device
811  * configured to run FCoE protocol stack.
812  */
813 struct netdev_fcoe_hbainfo {
814 	char	manufacturer[64];
815 	char	serial_number[64];
816 	char	hardware_version[64];
817 	char	driver_version[64];
818 	char	optionrom_version[64];
819 	char	firmware_version[64];
820 	char	model[256];
821 	char	model_description[256];
822 };
823 #endif
824 
825 #define MAX_PHYS_ITEM_ID_LEN 32
826 
827 /* This structure holds a unique identifier to identify some
828  * physical item (port for example) used by a netdevice.
829  */
830 struct netdev_phys_item_id {
831 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
832 	unsigned char id_len;
833 };
834 
835 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
836 					    struct netdev_phys_item_id *b)
837 {
838 	return a->id_len == b->id_len &&
839 	       memcmp(a->id, b->id, a->id_len) == 0;
840 }
841 
842 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
843 				       struct sk_buff *skb,
844 				       struct net_device *sb_dev);
845 
846 enum net_device_path_type {
847 	DEV_PATH_ETHERNET = 0,
848 	DEV_PATH_VLAN,
849 	DEV_PATH_BRIDGE,
850 	DEV_PATH_PPPOE,
851 	DEV_PATH_DSA,
852 	DEV_PATH_MTK_WDMA,
853 };
854 
855 struct net_device_path {
856 	enum net_device_path_type	type;
857 	const struct net_device		*dev;
858 	union {
859 		struct {
860 			u16		id;
861 			__be16		proto;
862 			u8		h_dest[ETH_ALEN];
863 		} encap;
864 		struct {
865 			enum {
866 				DEV_PATH_BR_VLAN_KEEP,
867 				DEV_PATH_BR_VLAN_TAG,
868 				DEV_PATH_BR_VLAN_UNTAG,
869 				DEV_PATH_BR_VLAN_UNTAG_HW,
870 			}		vlan_mode;
871 			u16		vlan_id;
872 			__be16		vlan_proto;
873 		} bridge;
874 		struct {
875 			int port;
876 			u16 proto;
877 		} dsa;
878 		struct {
879 			u8 wdma_idx;
880 			u8 queue;
881 			u16 wcid;
882 			u8 bss;
883 			u8 amsdu;
884 		} mtk_wdma;
885 	};
886 };
887 
888 #define NET_DEVICE_PATH_STACK_MAX	5
889 #define NET_DEVICE_PATH_VLAN_MAX	2
890 
891 struct net_device_path_stack {
892 	int			num_paths;
893 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
894 };
895 
896 struct net_device_path_ctx {
897 	const struct net_device *dev;
898 	u8			daddr[ETH_ALEN];
899 
900 	int			num_vlans;
901 	struct {
902 		u16		id;
903 		__be16		proto;
904 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
905 };
906 
907 enum tc_setup_type {
908 	TC_QUERY_CAPS,
909 	TC_SETUP_QDISC_MQPRIO,
910 	TC_SETUP_CLSU32,
911 	TC_SETUP_CLSFLOWER,
912 	TC_SETUP_CLSMATCHALL,
913 	TC_SETUP_CLSBPF,
914 	TC_SETUP_BLOCK,
915 	TC_SETUP_QDISC_CBS,
916 	TC_SETUP_QDISC_RED,
917 	TC_SETUP_QDISC_PRIO,
918 	TC_SETUP_QDISC_MQ,
919 	TC_SETUP_QDISC_ETF,
920 	TC_SETUP_ROOT_QDISC,
921 	TC_SETUP_QDISC_GRED,
922 	TC_SETUP_QDISC_TAPRIO,
923 	TC_SETUP_FT,
924 	TC_SETUP_QDISC_ETS,
925 	TC_SETUP_QDISC_TBF,
926 	TC_SETUP_QDISC_FIFO,
927 	TC_SETUP_QDISC_HTB,
928 	TC_SETUP_ACT,
929 };
930 
931 /* These structures hold the attributes of bpf state that are being passed
932  * to the netdevice through the bpf op.
933  */
934 enum bpf_netdev_command {
935 	/* Set or clear a bpf program used in the earliest stages of packet
936 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
937 	 * is responsible for calling bpf_prog_put on any old progs that are
938 	 * stored. In case of error, the callee need not release the new prog
939 	 * reference, but on success it takes ownership and must bpf_prog_put
940 	 * when it is no longer used.
941 	 */
942 	XDP_SETUP_PROG,
943 	XDP_SETUP_PROG_HW,
944 	/* BPF program for offload callbacks, invoked at program load time. */
945 	BPF_OFFLOAD_MAP_ALLOC,
946 	BPF_OFFLOAD_MAP_FREE,
947 	XDP_SETUP_XSK_POOL,
948 };
949 
950 struct bpf_prog_offload_ops;
951 struct netlink_ext_ack;
952 struct xdp_umem;
953 struct xdp_dev_bulk_queue;
954 struct bpf_xdp_link;
955 
956 enum bpf_xdp_mode {
957 	XDP_MODE_SKB = 0,
958 	XDP_MODE_DRV = 1,
959 	XDP_MODE_HW = 2,
960 	__MAX_XDP_MODE
961 };
962 
963 struct bpf_xdp_entity {
964 	struct bpf_prog *prog;
965 	struct bpf_xdp_link *link;
966 };
967 
968 struct netdev_bpf {
969 	enum bpf_netdev_command command;
970 	union {
971 		/* XDP_SETUP_PROG */
972 		struct {
973 			u32 flags;
974 			struct bpf_prog *prog;
975 			struct netlink_ext_ack *extack;
976 		};
977 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
978 		struct {
979 			struct bpf_offloaded_map *offmap;
980 		};
981 		/* XDP_SETUP_XSK_POOL */
982 		struct {
983 			struct xsk_buff_pool *pool;
984 			u16 queue_id;
985 		} xsk;
986 	};
987 };
988 
989 /* Flags for ndo_xsk_wakeup. */
990 #define XDP_WAKEUP_RX (1 << 0)
991 #define XDP_WAKEUP_TX (1 << 1)
992 
993 #ifdef CONFIG_XFRM_OFFLOAD
994 struct xfrmdev_ops {
995 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
996 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
997 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
998 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
999 				       struct xfrm_state *x);
1000 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1001 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1002 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1003 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1004 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1005 };
1006 #endif
1007 
1008 struct dev_ifalias {
1009 	struct rcu_head rcuhead;
1010 	char ifalias[];
1011 };
1012 
1013 struct devlink;
1014 struct tlsdev_ops;
1015 
1016 struct netdev_net_notifier {
1017 	struct list_head list;
1018 	struct notifier_block *nb;
1019 };
1020 
1021 /*
1022  * This structure defines the management hooks for network devices.
1023  * The following hooks can be defined; unless noted otherwise, they are
1024  * optional and can be filled with a null pointer.
1025  *
1026  * int (*ndo_init)(struct net_device *dev);
1027  *     This function is called once when a network device is registered.
1028  *     The network device can use this for any late stage initialization
1029  *     or semantic validation. It can fail with an error code which will
1030  *     be propagated back to register_netdev.
1031  *
1032  * void (*ndo_uninit)(struct net_device *dev);
1033  *     This function is called when device is unregistered or when registration
1034  *     fails. It is not called if init fails.
1035  *
1036  * int (*ndo_open)(struct net_device *dev);
1037  *     This function is called when a network device transitions to the up
1038  *     state.
1039  *
1040  * int (*ndo_stop)(struct net_device *dev);
1041  *     This function is called when a network device transitions to the down
1042  *     state.
1043  *
1044  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1045  *                               struct net_device *dev);
1046  *	Called when a packet needs to be transmitted.
1047  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1048  *	the queue before that can happen; it's for obsolete devices and weird
1049  *	corner cases, but the stack really does a non-trivial amount
1050  *	of useless work if you return NETDEV_TX_BUSY.
1051  *	Required; cannot be NULL.
1052  *
1053  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1054  *					   struct net_device *dev
1055  *					   netdev_features_t features);
1056  *	Called by core transmit path to determine if device is capable of
1057  *	performing offload operations on a given packet. This is to give
1058  *	the device an opportunity to implement any restrictions that cannot
1059  *	be otherwise expressed by feature flags. The check is called with
1060  *	the set of features that the stack has calculated and it returns
1061  *	those the driver believes to be appropriate.
1062  *
1063  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1064  *                         struct net_device *sb_dev);
1065  *	Called to decide which queue to use when device supports multiple
1066  *	transmit queues.
1067  *
1068  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1069  *	This function is called to allow device receiver to make
1070  *	changes to configuration when multicast or promiscuous is enabled.
1071  *
1072  * void (*ndo_set_rx_mode)(struct net_device *dev);
1073  *	This function is called device changes address list filtering.
1074  *	If driver handles unicast address filtering, it should set
1075  *	IFF_UNICAST_FLT in its priv_flags.
1076  *
1077  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1078  *	This function  is called when the Media Access Control address
1079  *	needs to be changed. If this interface is not defined, the
1080  *	MAC address can not be changed.
1081  *
1082  * int (*ndo_validate_addr)(struct net_device *dev);
1083  *	Test if Media Access Control address is valid for the device.
1084  *
1085  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1086  *	Old-style ioctl entry point. This is used internally by the
1087  *	appletalk and ieee802154 subsystems but is no longer called by
1088  *	the device ioctl handler.
1089  *
1090  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1091  *	Used by the bonding driver for its device specific ioctls:
1092  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1093  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1094  *
1095  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1096  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1097  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1098  *
1099  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1100  *	Used to set network devices bus interface parameters. This interface
1101  *	is retained for legacy reasons; new devices should use the bus
1102  *	interface (PCI) for low level management.
1103  *
1104  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1105  *	Called when a user wants to change the Maximum Transfer Unit
1106  *	of a device.
1107  *
1108  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1109  *	Callback used when the transmitter has not made any progress
1110  *	for dev->watchdog ticks.
1111  *
1112  * void (*ndo_get_stats64)(struct net_device *dev,
1113  *                         struct rtnl_link_stats64 *storage);
1114  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1115  *	Called when a user wants to get the network device usage
1116  *	statistics. Drivers must do one of the following:
1117  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1118  *	   rtnl_link_stats64 structure passed by the caller.
1119  *	2. Define @ndo_get_stats to update a net_device_stats structure
1120  *	   (which should normally be dev->stats) and return a pointer to
1121  *	   it. The structure may be changed asynchronously only if each
1122  *	   field is written atomically.
1123  *	3. Update dev->stats asynchronously and atomically, and define
1124  *	   neither operation.
1125  *
1126  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1127  *	Return true if this device supports offload stats of this attr_id.
1128  *
1129  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1130  *	void *attr_data)
1131  *	Get statistics for offload operations by attr_id. Write it into the
1132  *	attr_data pointer.
1133  *
1134  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1135  *	If device supports VLAN filtering this function is called when a
1136  *	VLAN id is registered.
1137  *
1138  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1139  *	If device supports VLAN filtering this function is called when a
1140  *	VLAN id is unregistered.
1141  *
1142  * void (*ndo_poll_controller)(struct net_device *dev);
1143  *
1144  *	SR-IOV management functions.
1145  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1146  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1147  *			  u8 qos, __be16 proto);
1148  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1149  *			  int max_tx_rate);
1150  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1151  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_get_vf_config)(struct net_device *dev,
1153  *			    int vf, struct ifla_vf_info *ivf);
1154  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1155  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1156  *			  struct nlattr *port[]);
1157  *
1158  *      Enable or disable the VF ability to query its RSS Redirection Table and
1159  *      Hash Key. This is needed since on some devices VF share this information
1160  *      with PF and querying it may introduce a theoretical security risk.
1161  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1162  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1163  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1164  *		       void *type_data);
1165  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1166  *	This is always called from the stack with the rtnl lock held and netif
1167  *	tx queues stopped. This allows the netdevice to perform queue
1168  *	management safely.
1169  *
1170  *	Fiber Channel over Ethernet (FCoE) offload functions.
1171  * int (*ndo_fcoe_enable)(struct net_device *dev);
1172  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1173  *	so the underlying device can perform whatever needed configuration or
1174  *	initialization to support acceleration of FCoE traffic.
1175  *
1176  * int (*ndo_fcoe_disable)(struct net_device *dev);
1177  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1178  *	so the underlying device can perform whatever needed clean-ups to
1179  *	stop supporting acceleration of FCoE traffic.
1180  *
1181  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1182  *			     struct scatterlist *sgl, unsigned int sgc);
1183  *	Called when the FCoE Initiator wants to initialize an I/O that
1184  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1185  *	perform necessary setup and returns 1 to indicate the device is set up
1186  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1187  *
1188  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1189  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1190  *	indicated by the FC exchange id 'xid', so the underlying device can
1191  *	clean up and reuse resources for later DDP requests.
1192  *
1193  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1194  *			      struct scatterlist *sgl, unsigned int sgc);
1195  *	Called when the FCoE Target wants to initialize an I/O that
1196  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1197  *	perform necessary setup and returns 1 to indicate the device is set up
1198  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1199  *
1200  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1201  *			       struct netdev_fcoe_hbainfo *hbainfo);
1202  *	Called when the FCoE Protocol stack wants information on the underlying
1203  *	device. This information is utilized by the FCoE protocol stack to
1204  *	register attributes with Fiber Channel management service as per the
1205  *	FC-GS Fabric Device Management Information(FDMI) specification.
1206  *
1207  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1208  *	Called when the underlying device wants to override default World Wide
1209  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1210  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1211  *	protocol stack to use.
1212  *
1213  *	RFS acceleration.
1214  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1215  *			    u16 rxq_index, u32 flow_id);
1216  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1217  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1218  *	Return the filter ID on success, or a negative error code.
1219  *
1220  *	Slave management functions (for bridge, bonding, etc).
1221  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1222  *	Called to make another netdev an underling.
1223  *
1224  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1225  *	Called to release previously enslaved netdev.
1226  *
1227  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1228  *					    struct sk_buff *skb,
1229  *					    bool all_slaves);
1230  *	Get the xmit slave of master device. If all_slaves is true, function
1231  *	assume all the slaves can transmit.
1232  *
1233  *      Feature/offload setting functions.
1234  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1235  *		netdev_features_t features);
1236  *	Adjusts the requested feature flags according to device-specific
1237  *	constraints, and returns the resulting flags. Must not modify
1238  *	the device state.
1239  *
1240  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1241  *	Called to update device configuration to new features. Passed
1242  *	feature set might be less than what was returned by ndo_fix_features()).
1243  *	Must return >0 or -errno if it changed dev->features itself.
1244  *
1245  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1246  *		      struct net_device *dev,
1247  *		      const unsigned char *addr, u16 vid, u16 flags,
1248  *		      struct netlink_ext_ack *extack);
1249  *	Adds an FDB entry to dev for addr.
1250  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1251  *		      struct net_device *dev,
1252  *		      const unsigned char *addr, u16 vid)
1253  *	Deletes the FDB entry from dev corresponding to addr.
1254  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1255  *			   struct netlink_ext_ack *extack);
1256  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1257  *		       struct net_device *dev, struct net_device *filter_dev,
1258  *		       int *idx)
1259  *	Used to add FDB entries to dump requests. Implementers should add
1260  *	entries to skb and update idx with the number of entries.
1261  *
1262  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1263  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1264  *	Adds an MDB entry to dev.
1265  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1266  *		      struct netlink_ext_ack *extack);
1267  *	Deletes the MDB entry from dev.
1268  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1269  *			   struct netlink_ext_ack *extack);
1270  *	Bulk deletes MDB entries from dev.
1271  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1272  *		       struct netlink_callback *cb);
1273  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1274  *	callback is used by core rtnetlink code.
1275  *
1276  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1277  *			     u16 flags, struct netlink_ext_ack *extack)
1278  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1279  *			     struct net_device *dev, u32 filter_mask,
1280  *			     int nlflags)
1281  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1282  *			     u16 flags);
1283  *
1284  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1285  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1286  *	which do not represent real hardware may define this to allow their
1287  *	userspace components to manage their virtual carrier state. Devices
1288  *	that determine carrier state from physical hardware properties (eg
1289  *	network cables) or protocol-dependent mechanisms (eg
1290  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1291  *
1292  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1293  *			       struct netdev_phys_item_id *ppid);
1294  *	Called to get ID of physical port of this device. If driver does
1295  *	not implement this, it is assumed that the hw is not able to have
1296  *	multiple net devices on single physical port.
1297  *
1298  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1299  *				 struct netdev_phys_item_id *ppid)
1300  *	Called to get the parent ID of the physical port of this device.
1301  *
1302  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1303  *				 struct net_device *dev)
1304  *	Called by upper layer devices to accelerate switching or other
1305  *	station functionality into hardware. 'pdev is the lowerdev
1306  *	to use for the offload and 'dev' is the net device that will
1307  *	back the offload. Returns a pointer to the private structure
1308  *	the upper layer will maintain.
1309  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1310  *	Called by upper layer device to delete the station created
1311  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1312  *	the station and priv is the structure returned by the add
1313  *	operation.
1314  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1315  *			     int queue_index, u32 maxrate);
1316  *	Called when a user wants to set a max-rate limitation of specific
1317  *	TX queue.
1318  * int (*ndo_get_iflink)(const struct net_device *dev);
1319  *	Called to get the iflink value of this device.
1320  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1321  *	This function is used to get egress tunnel information for given skb.
1322  *	This is useful for retrieving outer tunnel header parameters while
1323  *	sampling packet.
1324  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1325  *	This function is used to specify the headroom that the skb must
1326  *	consider when allocation skb during packet reception. Setting
1327  *	appropriate rx headroom value allows avoiding skb head copy on
1328  *	forward. Setting a negative value resets the rx headroom to the
1329  *	default value.
1330  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1331  *	This function is used to set or query state related to XDP on the
1332  *	netdevice and manage BPF offload. See definition of
1333  *	enum bpf_netdev_command for details.
1334  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1335  *			u32 flags);
1336  *	This function is used to submit @n XDP packets for transmit on a
1337  *	netdevice. Returns number of frames successfully transmitted, frames
1338  *	that got dropped are freed/returned via xdp_return_frame().
1339  *	Returns negative number, means general error invoking ndo, meaning
1340  *	no frames were xmit'ed and core-caller will free all frames.
1341  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1342  *					        struct xdp_buff *xdp);
1343  *      Get the xmit slave of master device based on the xdp_buff.
1344  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1345  *      This function is used to wake up the softirq, ksoftirqd or kthread
1346  *	responsible for sending and/or receiving packets on a specific
1347  *	queue id bound to an AF_XDP socket. The flags field specifies if
1348  *	only RX, only Tx, or both should be woken up using the flags
1349  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1350  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1351  *			 int cmd);
1352  *	Add, change, delete or get information on an IPv4 tunnel.
1353  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1354  *	If a device is paired with a peer device, return the peer instance.
1355  *	The caller must be under RCU read context.
1356  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1357  *     Get the forwarding path to reach the real device from the HW destination address
1358  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1359  *			     const struct skb_shared_hwtstamps *hwtstamps,
1360  *			     bool cycles);
1361  *	Get hardware timestamp based on normal/adjustable time or free running
1362  *	cycle counter. This function is required if physical clock supports a
1363  *	free running cycle counter.
1364  *
1365  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1366  *			   struct kernel_hwtstamp_config *kernel_config);
1367  *	Get the currently configured hardware timestamping parameters for the
1368  *	NIC device.
1369  *
1370  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1371  *			   struct kernel_hwtstamp_config *kernel_config,
1372  *			   struct netlink_ext_ack *extack);
1373  *	Change the hardware timestamping parameters for NIC device.
1374  */
1375 struct net_device_ops {
1376 	int			(*ndo_init)(struct net_device *dev);
1377 	void			(*ndo_uninit)(struct net_device *dev);
1378 	int			(*ndo_open)(struct net_device *dev);
1379 	int			(*ndo_stop)(struct net_device *dev);
1380 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1381 						  struct net_device *dev);
1382 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1383 						      struct net_device *dev,
1384 						      netdev_features_t features);
1385 	u16			(*ndo_select_queue)(struct net_device *dev,
1386 						    struct sk_buff *skb,
1387 						    struct net_device *sb_dev);
1388 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1389 						       int flags);
1390 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1391 	int			(*ndo_set_mac_address)(struct net_device *dev,
1392 						       void *addr);
1393 	int			(*ndo_validate_addr)(struct net_device *dev);
1394 	int			(*ndo_do_ioctl)(struct net_device *dev,
1395 					        struct ifreq *ifr, int cmd);
1396 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1397 						 struct ifreq *ifr, int cmd);
1398 	int			(*ndo_siocbond)(struct net_device *dev,
1399 						struct ifreq *ifr, int cmd);
1400 	int			(*ndo_siocwandev)(struct net_device *dev,
1401 						  struct if_settings *ifs);
1402 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1403 						      struct ifreq *ifr,
1404 						      void __user *data, int cmd);
1405 	int			(*ndo_set_config)(struct net_device *dev,
1406 					          struct ifmap *map);
1407 	int			(*ndo_change_mtu)(struct net_device *dev,
1408 						  int new_mtu);
1409 	int			(*ndo_neigh_setup)(struct net_device *dev,
1410 						   struct neigh_parms *);
1411 	void			(*ndo_tx_timeout) (struct net_device *dev,
1412 						   unsigned int txqueue);
1413 
1414 	void			(*ndo_get_stats64)(struct net_device *dev,
1415 						   struct rtnl_link_stats64 *storage);
1416 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1417 	int			(*ndo_get_offload_stats)(int attr_id,
1418 							 const struct net_device *dev,
1419 							 void *attr_data);
1420 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1421 
1422 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1423 						       __be16 proto, u16 vid);
1424 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1425 						        __be16 proto, u16 vid);
1426 #ifdef CONFIG_NET_POLL_CONTROLLER
1427 	void                    (*ndo_poll_controller)(struct net_device *dev);
1428 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1429 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1430 #endif
1431 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1432 						  int queue, u8 *mac);
1433 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1434 						   int queue, u16 vlan,
1435 						   u8 qos, __be16 proto);
1436 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1437 						   int vf, int min_tx_rate,
1438 						   int max_tx_rate);
1439 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1440 						       int vf, bool setting);
1441 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1442 						    int vf, bool setting);
1443 	int			(*ndo_get_vf_config)(struct net_device *dev,
1444 						     int vf,
1445 						     struct ifla_vf_info *ivf);
1446 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1447 							 int vf, int link_state);
1448 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1449 						    int vf,
1450 						    struct ifla_vf_stats
1451 						    *vf_stats);
1452 	int			(*ndo_set_vf_port)(struct net_device *dev,
1453 						   int vf,
1454 						   struct nlattr *port[]);
1455 	int			(*ndo_get_vf_port)(struct net_device *dev,
1456 						   int vf, struct sk_buff *skb);
1457 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1458 						   int vf,
1459 						   struct ifla_vf_guid *node_guid,
1460 						   struct ifla_vf_guid *port_guid);
1461 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1462 						   int vf, u64 guid,
1463 						   int guid_type);
1464 	int			(*ndo_set_vf_rss_query_en)(
1465 						   struct net_device *dev,
1466 						   int vf, bool setting);
1467 	int			(*ndo_setup_tc)(struct net_device *dev,
1468 						enum tc_setup_type type,
1469 						void *type_data);
1470 #if IS_ENABLED(CONFIG_FCOE)
1471 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1472 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1473 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1474 						      u16 xid,
1475 						      struct scatterlist *sgl,
1476 						      unsigned int sgc);
1477 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1478 						     u16 xid);
1479 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1480 						       u16 xid,
1481 						       struct scatterlist *sgl,
1482 						       unsigned int sgc);
1483 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1484 							struct netdev_fcoe_hbainfo *hbainfo);
1485 #endif
1486 
1487 #if IS_ENABLED(CONFIG_LIBFCOE)
1488 #define NETDEV_FCOE_WWNN 0
1489 #define NETDEV_FCOE_WWPN 1
1490 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1491 						    u64 *wwn, int type);
1492 #endif
1493 
1494 #ifdef CONFIG_RFS_ACCEL
1495 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1496 						     const struct sk_buff *skb,
1497 						     u16 rxq_index,
1498 						     u32 flow_id);
1499 #endif
1500 	int			(*ndo_add_slave)(struct net_device *dev,
1501 						 struct net_device *slave_dev,
1502 						 struct netlink_ext_ack *extack);
1503 	int			(*ndo_del_slave)(struct net_device *dev,
1504 						 struct net_device *slave_dev);
1505 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1506 						      struct sk_buff *skb,
1507 						      bool all_slaves);
1508 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1509 							struct sock *sk);
1510 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1511 						    netdev_features_t features);
1512 	int			(*ndo_set_features)(struct net_device *dev,
1513 						    netdev_features_t features);
1514 	int			(*ndo_neigh_construct)(struct net_device *dev,
1515 						       struct neighbour *n);
1516 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1517 						     struct neighbour *n);
1518 
1519 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1520 					       struct nlattr *tb[],
1521 					       struct net_device *dev,
1522 					       const unsigned char *addr,
1523 					       u16 vid,
1524 					       u16 flags,
1525 					       struct netlink_ext_ack *extack);
1526 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1527 					       struct nlattr *tb[],
1528 					       struct net_device *dev,
1529 					       const unsigned char *addr,
1530 					       u16 vid, struct netlink_ext_ack *extack);
1531 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1532 						    struct net_device *dev,
1533 						    struct netlink_ext_ack *extack);
1534 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1535 						struct netlink_callback *cb,
1536 						struct net_device *dev,
1537 						struct net_device *filter_dev,
1538 						int *idx);
1539 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1540 					       struct nlattr *tb[],
1541 					       struct net_device *dev,
1542 					       const unsigned char *addr,
1543 					       u16 vid, u32 portid, u32 seq,
1544 					       struct netlink_ext_ack *extack);
1545 	int			(*ndo_mdb_add)(struct net_device *dev,
1546 					       struct nlattr *tb[],
1547 					       u16 nlmsg_flags,
1548 					       struct netlink_ext_ack *extack);
1549 	int			(*ndo_mdb_del)(struct net_device *dev,
1550 					       struct nlattr *tb[],
1551 					       struct netlink_ext_ack *extack);
1552 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1553 						    struct nlattr *tb[],
1554 						    struct netlink_ext_ack *extack);
1555 	int			(*ndo_mdb_dump)(struct net_device *dev,
1556 						struct sk_buff *skb,
1557 						struct netlink_callback *cb);
1558 	int			(*ndo_mdb_get)(struct net_device *dev,
1559 					       struct nlattr *tb[], u32 portid,
1560 					       u32 seq,
1561 					       struct netlink_ext_ack *extack);
1562 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1563 						      struct nlmsghdr *nlh,
1564 						      u16 flags,
1565 						      struct netlink_ext_ack *extack);
1566 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1567 						      u32 pid, u32 seq,
1568 						      struct net_device *dev,
1569 						      u32 filter_mask,
1570 						      int nlflags);
1571 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1572 						      struct nlmsghdr *nlh,
1573 						      u16 flags);
1574 	int			(*ndo_change_carrier)(struct net_device *dev,
1575 						      bool new_carrier);
1576 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1577 							struct netdev_phys_item_id *ppid);
1578 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1579 							  struct netdev_phys_item_id *ppid);
1580 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1581 							  char *name, size_t len);
1582 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1583 							struct net_device *dev);
1584 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1585 							void *priv);
1586 
1587 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1588 						      int queue_index,
1589 						      u32 maxrate);
1590 	int			(*ndo_get_iflink)(const struct net_device *dev);
1591 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1592 						       struct sk_buff *skb);
1593 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1594 						       int needed_headroom);
1595 	int			(*ndo_bpf)(struct net_device *dev,
1596 					   struct netdev_bpf *bpf);
1597 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1598 						struct xdp_frame **xdp,
1599 						u32 flags);
1600 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1601 							  struct xdp_buff *xdp);
1602 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1603 						  u32 queue_id, u32 flags);
1604 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1605 						  struct ip_tunnel_parm_kern *p,
1606 						  int cmd);
1607 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1608 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1609                                                          struct net_device_path *path);
1610 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1611 						  const struct skb_shared_hwtstamps *hwtstamps,
1612 						  bool cycles);
1613 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1614 						    struct kernel_hwtstamp_config *kernel_config);
1615 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1616 						    struct kernel_hwtstamp_config *kernel_config,
1617 						    struct netlink_ext_ack *extack);
1618 
1619 #if IS_ENABLED(CONFIG_NET_SHAPER)
1620 	/**
1621 	 * @net_shaper_ops: Device shaping offload operations
1622 	 * see include/net/net_shapers.h
1623 	 */
1624 	const struct net_shaper_ops *net_shaper_ops;
1625 #endif
1626 };
1627 
1628 /**
1629  * enum netdev_priv_flags - &struct net_device priv_flags
1630  *
1631  * These are the &struct net_device, they are only set internally
1632  * by drivers and used in the kernel. These flags are invisible to
1633  * userspace; this means that the order of these flags can change
1634  * during any kernel release.
1635  *
1636  * You should add bitfield booleans after either net_device::priv_flags
1637  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1638  *
1639  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1640  * @IFF_EBRIDGE: Ethernet bridging device
1641  * @IFF_BONDING: bonding master or slave
1642  * @IFF_ISATAP: ISATAP interface (RFC4214)
1643  * @IFF_WAN_HDLC: WAN HDLC device
1644  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1645  *	release skb->dst
1646  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1647  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1648  * @IFF_MACVLAN_PORT: device used as macvlan port
1649  * @IFF_BRIDGE_PORT: device used as bridge port
1650  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1651  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1652  * @IFF_UNICAST_FLT: Supports unicast filtering
1653  * @IFF_TEAM_PORT: device used as team port
1654  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1655  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1656  *	change when it's running
1657  * @IFF_MACVLAN: Macvlan device
1658  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1659  *	underlying stacked devices
1660  * @IFF_L3MDEV_MASTER: device is an L3 master device
1661  * @IFF_NO_QUEUE: device can run without qdisc attached
1662  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1663  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1664  * @IFF_TEAM: device is a team device
1665  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1666  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1667  *	entity (i.e. the master device for bridged veth)
1668  * @IFF_MACSEC: device is a MACsec device
1669  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1670  * @IFF_FAILOVER: device is a failover master device
1671  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1672  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1673  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1674  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1675  *	skb_headlen(skb) == 0 (data starts from frag0)
1676  */
1677 enum netdev_priv_flags {
1678 	IFF_802_1Q_VLAN			= 1<<0,
1679 	IFF_EBRIDGE			= 1<<1,
1680 	IFF_BONDING			= 1<<2,
1681 	IFF_ISATAP			= 1<<3,
1682 	IFF_WAN_HDLC			= 1<<4,
1683 	IFF_XMIT_DST_RELEASE		= 1<<5,
1684 	IFF_DONT_BRIDGE			= 1<<6,
1685 	IFF_DISABLE_NETPOLL		= 1<<7,
1686 	IFF_MACVLAN_PORT		= 1<<8,
1687 	IFF_BRIDGE_PORT			= 1<<9,
1688 	IFF_OVS_DATAPATH		= 1<<10,
1689 	IFF_TX_SKB_SHARING		= 1<<11,
1690 	IFF_UNICAST_FLT			= 1<<12,
1691 	IFF_TEAM_PORT			= 1<<13,
1692 	IFF_SUPP_NOFCS			= 1<<14,
1693 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1694 	IFF_MACVLAN			= 1<<16,
1695 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1696 	IFF_L3MDEV_MASTER		= 1<<18,
1697 	IFF_NO_QUEUE			= 1<<19,
1698 	IFF_OPENVSWITCH			= 1<<20,
1699 	IFF_L3MDEV_SLAVE		= 1<<21,
1700 	IFF_TEAM			= 1<<22,
1701 	IFF_RXFH_CONFIGURED		= 1<<23,
1702 	IFF_PHONY_HEADROOM		= 1<<24,
1703 	IFF_MACSEC			= 1<<25,
1704 	IFF_NO_RX_HANDLER		= 1<<26,
1705 	IFF_FAILOVER			= 1<<27,
1706 	IFF_FAILOVER_SLAVE		= 1<<28,
1707 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1708 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1709 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1710 };
1711 
1712 /* Specifies the type of the struct net_device::ml_priv pointer */
1713 enum netdev_ml_priv_type {
1714 	ML_PRIV_NONE,
1715 	ML_PRIV_CAN,
1716 };
1717 
1718 enum netdev_stat_type {
1719 	NETDEV_PCPU_STAT_NONE,
1720 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1721 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1722 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1723 };
1724 
1725 enum netdev_reg_state {
1726 	NETREG_UNINITIALIZED = 0,
1727 	NETREG_REGISTERED,	/* completed register_netdevice */
1728 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1729 	NETREG_UNREGISTERED,	/* completed unregister todo */
1730 	NETREG_RELEASED,	/* called free_netdev */
1731 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1732 };
1733 
1734 /**
1735  *	struct net_device - The DEVICE structure.
1736  *
1737  *	Actually, this whole structure is a big mistake.  It mixes I/O
1738  *	data with strictly "high-level" data, and it has to know about
1739  *	almost every data structure used in the INET module.
1740  *
1741  *	@priv_flags:	flags invisible to userspace defined as bits, see
1742  *			enum netdev_priv_flags for the definitions
1743  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1744  *			drivers. Mainly used by logical interfaces, such as
1745  *			bonding and tunnels
1746  *
1747  *	@name:	This is the first field of the "visible" part of this structure
1748  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1749  *		of the interface.
1750  *
1751  *	@name_node:	Name hashlist node
1752  *	@ifalias:	SNMP alias
1753  *	@mem_end:	Shared memory end
1754  *	@mem_start:	Shared memory start
1755  *	@base_addr:	Device I/O address
1756  *	@irq:		Device IRQ number
1757  *
1758  *	@state:		Generic network queuing layer state, see netdev_state_t
1759  *	@dev_list:	The global list of network devices
1760  *	@napi_list:	List entry used for polling NAPI devices
1761  *	@unreg_list:	List entry  when we are unregistering the
1762  *			device; see the function unregister_netdev
1763  *	@close_list:	List entry used when we are closing the device
1764  *	@ptype_all:     Device-specific packet handlers for all protocols
1765  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1766  *
1767  *	@adj_list:	Directly linked devices, like slaves for bonding
1768  *	@features:	Currently active device features
1769  *	@hw_features:	User-changeable features
1770  *
1771  *	@wanted_features:	User-requested features
1772  *	@vlan_features:		Mask of features inheritable by VLAN devices
1773  *
1774  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1775  *				This field indicates what encapsulation
1776  *				offloads the hardware is capable of doing,
1777  *				and drivers will need to set them appropriately.
1778  *
1779  *	@mpls_features:	Mask of features inheritable by MPLS
1780  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1781  *
1782  *	@ifindex:	interface index
1783  *	@group:		The group the device belongs to
1784  *
1785  *	@stats:		Statistics struct, which was left as a legacy, use
1786  *			rtnl_link_stats64 instead
1787  *
1788  *	@core_stats:	core networking counters,
1789  *			do not use this in drivers
1790  *	@carrier_up_count:	Number of times the carrier has been up
1791  *	@carrier_down_count:	Number of times the carrier has been down
1792  *
1793  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1794  *				instead of ioctl,
1795  *				see <net/iw_handler.h> for details.
1796  *
1797  *	@netdev_ops:	Includes several pointers to callbacks,
1798  *			if one wants to override the ndo_*() functions
1799  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1800  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1801  *	@ethtool_ops:	Management operations
1802  *	@l3mdev_ops:	Layer 3 master device operations
1803  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1804  *			discovery handling. Necessary for e.g. 6LoWPAN.
1805  *	@xfrmdev_ops:	Transformation offload operations
1806  *	@tlsdev_ops:	Transport Layer Security offload operations
1807  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1808  *			of Layer 2 headers.
1809  *
1810  *	@flags:		Interface flags (a la BSD)
1811  *	@xdp_features:	XDP capability supported by the device
1812  *	@gflags:	Global flags ( kept as legacy )
1813  *	@priv_len:	Size of the ->priv flexible array
1814  *	@priv:		Flexible array containing private data
1815  *	@operstate:	RFC2863 operstate
1816  *	@link_mode:	Mapping policy to operstate
1817  *	@if_port:	Selectable AUI, TP, ...
1818  *	@dma:		DMA channel
1819  *	@mtu:		Interface MTU value
1820  *	@min_mtu:	Interface Minimum MTU value
1821  *	@max_mtu:	Interface Maximum MTU value
1822  *	@type:		Interface hardware type
1823  *	@hard_header_len: Maximum hardware header length.
1824  *	@min_header_len:  Minimum hardware header length
1825  *
1826  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1827  *			  cases can this be guaranteed
1828  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1829  *			  cases can this be guaranteed. Some cases also use
1830  *			  LL_MAX_HEADER instead to allocate the skb
1831  *
1832  *	interface address info:
1833  *
1834  * 	@perm_addr:		Permanent hw address
1835  * 	@addr_assign_type:	Hw address assignment type
1836  * 	@addr_len:		Hardware address length
1837  *	@upper_level:		Maximum depth level of upper devices.
1838  *	@lower_level:		Maximum depth level of lower devices.
1839  *	@neigh_priv_len:	Used in neigh_alloc()
1840  * 	@dev_id:		Used to differentiate devices that share
1841  * 				the same link layer address
1842  * 	@dev_port:		Used to differentiate devices that share
1843  * 				the same function
1844  *	@addr_list_lock:	XXX: need comments on this one
1845  *	@name_assign_type:	network interface name assignment type
1846  *	@uc_promisc:		Counter that indicates promiscuous mode
1847  *				has been enabled due to the need to listen to
1848  *				additional unicast addresses in a device that
1849  *				does not implement ndo_set_rx_mode()
1850  *	@uc:			unicast mac addresses
1851  *	@mc:			multicast mac addresses
1852  *	@dev_addrs:		list of device hw addresses
1853  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1854  *	@promiscuity:		Number of times the NIC is told to work in
1855  *				promiscuous mode; if it becomes 0 the NIC will
1856  *				exit promiscuous mode
1857  *	@allmulti:		Counter, enables or disables allmulticast mode
1858  *
1859  *	@vlan_info:	VLAN info
1860  *	@dsa_ptr:	dsa specific data
1861  *	@tipc_ptr:	TIPC specific data
1862  *	@atalk_ptr:	AppleTalk link
1863  *	@ip_ptr:	IPv4 specific data
1864  *	@ip6_ptr:	IPv6 specific data
1865  *	@ax25_ptr:	AX.25 specific data
1866  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1867  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1868  *			 device struct
1869  *	@mpls_ptr:	mpls_dev struct pointer
1870  *	@mctp_ptr:	MCTP specific data
1871  *
1872  *	@dev_addr:	Hw address (before bcast,
1873  *			because most packets are unicast)
1874  *
1875  *	@_rx:			Array of RX queues
1876  *	@num_rx_queues:		Number of RX queues
1877  *				allocated at register_netdev() time
1878  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1879  *	@xdp_prog:		XDP sockets filter program pointer
1880  *
1881  *	@rx_handler:		handler for received packets
1882  *	@rx_handler_data: 	XXX: need comments on this one
1883  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1884  *	@ingress_queue:		XXX: need comments on this one
1885  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1886  *	@broadcast:		hw bcast address
1887  *
1888  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1889  *			indexed by RX queue number. Assigned by driver.
1890  *			This must only be set if the ndo_rx_flow_steer
1891  *			operation is defined
1892  *	@index_hlist:		Device index hash chain
1893  *
1894  *	@_tx:			Array of TX queues
1895  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1896  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1897  *	@qdisc:			Root qdisc from userspace point of view
1898  *	@tx_queue_len:		Max frames per queue allowed
1899  *	@tx_global_lock: 	XXX: need comments on this one
1900  *	@xdp_bulkq:		XDP device bulk queue
1901  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1902  *
1903  *	@xps_maps:	XXX: need comments on this one
1904  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1905  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1906  *	@qdisc_hash:		qdisc hash table
1907  *	@watchdog_timeo:	Represents the timeout that is used by
1908  *				the watchdog (see dev_watchdog())
1909  *	@watchdog_timer:	List of timers
1910  *
1911  *	@proto_down_reason:	reason a netdev interface is held down
1912  *	@pcpu_refcnt:		Number of references to this device
1913  *	@dev_refcnt:		Number of references to this device
1914  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1915  *	@todo_list:		Delayed register/unregister
1916  *	@link_watch_list:	XXX: need comments on this one
1917  *
1918  *	@reg_state:		Register/unregister state machine
1919  *	@dismantle:		Device is going to be freed
1920  *	@rtnl_link_state:	This enum represents the phases of creating
1921  *				a new link
1922  *
1923  *	@needs_free_netdev:	Should unregister perform free_netdev?
1924  *	@priv_destructor:	Called from unregister
1925  *	@npinfo:		XXX: need comments on this one
1926  * 	@nd_net:		Network namespace this network device is inside
1927  *
1928  * 	@ml_priv:	Mid-layer private
1929  *	@ml_priv_type:  Mid-layer private type
1930  *
1931  *	@pcpu_stat_type:	Type of device statistics which the core should
1932  *				allocate/free: none, lstats, tstats, dstats. none
1933  *				means the driver is handling statistics allocation/
1934  *				freeing internally.
1935  *	@lstats:		Loopback statistics: packets, bytes
1936  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1937  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1938  *
1939  *	@garp_port:	GARP
1940  *	@mrp_port:	MRP
1941  *
1942  *	@dm_private:	Drop monitor private
1943  *
1944  *	@dev:		Class/net/name entry
1945  *	@sysfs_groups:	Space for optional device, statistics and wireless
1946  *			sysfs groups
1947  *
1948  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1949  *	@rtnl_link_ops:	Rtnl_link_ops
1950  *	@stat_ops:	Optional ops for queue-aware statistics
1951  *	@queue_mgmt_ops:	Optional ops for queue management
1952  *
1953  *	@gso_max_size:	Maximum size of generic segmentation offload
1954  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1955  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1956  *			NIC for GSO
1957  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1958  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1959  * 				for IPv4.
1960  *
1961  *	@dcbnl_ops:	Data Center Bridging netlink ops
1962  *	@num_tc:	Number of traffic classes in the net device
1963  *	@tc_to_txq:	XXX: need comments on this one
1964  *	@prio_tc_map:	XXX: need comments on this one
1965  *
1966  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1967  *
1968  *	@priomap:	XXX: need comments on this one
1969  *	@link_topo:	Physical link topology tracking attached PHYs
1970  *	@phydev:	Physical device may attach itself
1971  *			for hardware timestamping
1972  *	@sfp_bus:	attached &struct sfp_bus structure.
1973  *
1974  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1975  *
1976  *	@proto_down:	protocol port state information can be sent to the
1977  *			switch driver and used to set the phys state of the
1978  *			switch port.
1979  *
1980  *	@threaded:	napi threaded mode is enabled
1981  *
1982  *	@see_all_hwtstamp_requests: device wants to see calls to
1983  *			ndo_hwtstamp_set() for all timestamp requests
1984  *			regardless of source, even if those aren't
1985  *			HWTSTAMP_SOURCE_NETDEV
1986  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1987  *	@netns_local: interface can't change network namespaces
1988  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
1989  *
1990  *	@net_notifier_list:	List of per-net netdev notifier block
1991  *				that follow this device when it is moved
1992  *				to another network namespace.
1993  *
1994  *	@macsec_ops:    MACsec offloading ops
1995  *
1996  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1997  *				offload capabilities of the device
1998  *	@udp_tunnel_nic:	UDP tunnel offload state
1999  *	@ethtool:	ethtool related state
2000  *	@xdp_state:		stores info on attached XDP BPF programs
2001  *
2002  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2003  *			dev->addr_list_lock.
2004  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2005  *			keep a list of interfaces to be deleted.
2006  *	@gro_max_size:	Maximum size of aggregated packet in generic
2007  *			receive offload (GRO)
2008  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2009  * 				receive offload (GRO), for IPv4.
2010  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2011  *				zero copy driver
2012  *
2013  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2014  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2015  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2016  *	@dev_registered_tracker:	tracker for reference held while
2017  *					registered
2018  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2019  *
2020  *	@devlink_port:	Pointer to related devlink port structure.
2021  *			Assigned by a driver before netdev registration using
2022  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2023  *			during the time netdevice is registered.
2024  *
2025  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2026  *		   where the clock is recovered.
2027  *
2028  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2029  *	@napi_config: An array of napi_config structures containing per-NAPI
2030  *		      settings.
2031  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2032  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2033  *				allow to avoid NIC hard IRQ, on busy queues.
2034  *
2035  *	FIXME: cleanup struct net_device such that network protocol info
2036  *	moves out.
2037  */
2038 
2039 struct net_device {
2040 	/* Cacheline organization can be found documented in
2041 	 * Documentation/networking/net_cachelines/net_device.rst.
2042 	 * Please update the document when adding new fields.
2043 	 */
2044 
2045 	/* TX read-mostly hotpath */
2046 	__cacheline_group_begin(net_device_read_tx);
2047 	struct_group(priv_flags_fast,
2048 		unsigned long		priv_flags:32;
2049 		unsigned long		lltx:1;
2050 	);
2051 	const struct net_device_ops *netdev_ops;
2052 	const struct header_ops *header_ops;
2053 	struct netdev_queue	*_tx;
2054 	netdev_features_t	gso_partial_features;
2055 	unsigned int		real_num_tx_queues;
2056 	unsigned int		gso_max_size;
2057 	unsigned int		gso_ipv4_max_size;
2058 	u16			gso_max_segs;
2059 	s16			num_tc;
2060 	/* Note : dev->mtu is often read without holding a lock.
2061 	 * Writers usually hold RTNL.
2062 	 * It is recommended to use READ_ONCE() to annotate the reads,
2063 	 * and to use WRITE_ONCE() to annotate the writes.
2064 	 */
2065 	unsigned int		mtu;
2066 	unsigned short		needed_headroom;
2067 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2068 #ifdef CONFIG_XPS
2069 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2070 #endif
2071 #ifdef CONFIG_NETFILTER_EGRESS
2072 	struct nf_hook_entries __rcu *nf_hooks_egress;
2073 #endif
2074 #ifdef CONFIG_NET_XGRESS
2075 	struct bpf_mprog_entry __rcu *tcx_egress;
2076 #endif
2077 	__cacheline_group_end(net_device_read_tx);
2078 
2079 	/* TXRX read-mostly hotpath */
2080 	__cacheline_group_begin(net_device_read_txrx);
2081 	union {
2082 		struct pcpu_lstats __percpu		*lstats;
2083 		struct pcpu_sw_netstats __percpu	*tstats;
2084 		struct pcpu_dstats __percpu		*dstats;
2085 	};
2086 	unsigned long		state;
2087 	unsigned int		flags;
2088 	unsigned short		hard_header_len;
2089 	netdev_features_t	features;
2090 	struct inet6_dev __rcu	*ip6_ptr;
2091 	__cacheline_group_end(net_device_read_txrx);
2092 
2093 	/* RX read-mostly hotpath */
2094 	__cacheline_group_begin(net_device_read_rx);
2095 	struct bpf_prog __rcu	*xdp_prog;
2096 	struct list_head	ptype_specific;
2097 	int			ifindex;
2098 	unsigned int		real_num_rx_queues;
2099 	struct netdev_rx_queue	*_rx;
2100 	unsigned int		gro_max_size;
2101 	unsigned int		gro_ipv4_max_size;
2102 	rx_handler_func_t __rcu	*rx_handler;
2103 	void __rcu		*rx_handler_data;
2104 	possible_net_t			nd_net;
2105 #ifdef CONFIG_NETPOLL
2106 	struct netpoll_info __rcu	*npinfo;
2107 #endif
2108 #ifdef CONFIG_NET_XGRESS
2109 	struct bpf_mprog_entry __rcu *tcx_ingress;
2110 #endif
2111 	__cacheline_group_end(net_device_read_rx);
2112 
2113 	char			name[IFNAMSIZ];
2114 	struct netdev_name_node	*name_node;
2115 	struct dev_ifalias	__rcu *ifalias;
2116 	/*
2117 	 *	I/O specific fields
2118 	 *	FIXME: Merge these and struct ifmap into one
2119 	 */
2120 	unsigned long		mem_end;
2121 	unsigned long		mem_start;
2122 	unsigned long		base_addr;
2123 
2124 	/*
2125 	 *	Some hardware also needs these fields (state,dev_list,
2126 	 *	napi_list,unreg_list,close_list) but they are not
2127 	 *	part of the usual set specified in Space.c.
2128 	 */
2129 
2130 
2131 	struct list_head	dev_list;
2132 	struct list_head	napi_list;
2133 	struct list_head	unreg_list;
2134 	struct list_head	close_list;
2135 	struct list_head	ptype_all;
2136 
2137 	struct {
2138 		struct list_head upper;
2139 		struct list_head lower;
2140 	} adj_list;
2141 
2142 	/* Read-mostly cache-line for fast-path access */
2143 	xdp_features_t		xdp_features;
2144 	const struct xdp_metadata_ops *xdp_metadata_ops;
2145 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2146 	unsigned short		gflags;
2147 
2148 	unsigned short		needed_tailroom;
2149 
2150 	netdev_features_t	hw_features;
2151 	netdev_features_t	wanted_features;
2152 	netdev_features_t	vlan_features;
2153 	netdev_features_t	hw_enc_features;
2154 	netdev_features_t	mpls_features;
2155 
2156 	unsigned int		min_mtu;
2157 	unsigned int		max_mtu;
2158 	unsigned short		type;
2159 	unsigned char		min_header_len;
2160 	unsigned char		name_assign_type;
2161 
2162 	int			group;
2163 
2164 	struct net_device_stats	stats; /* not used by modern drivers */
2165 
2166 	struct net_device_core_stats __percpu *core_stats;
2167 
2168 	/* Stats to monitor link on/off, flapping */
2169 	atomic_t		carrier_up_count;
2170 	atomic_t		carrier_down_count;
2171 
2172 #ifdef CONFIG_WIRELESS_EXT
2173 	const struct iw_handler_def *wireless_handlers;
2174 #endif
2175 	const struct ethtool_ops *ethtool_ops;
2176 #ifdef CONFIG_NET_L3_MASTER_DEV
2177 	const struct l3mdev_ops	*l3mdev_ops;
2178 #endif
2179 #if IS_ENABLED(CONFIG_IPV6)
2180 	const struct ndisc_ops *ndisc_ops;
2181 #endif
2182 
2183 #ifdef CONFIG_XFRM_OFFLOAD
2184 	const struct xfrmdev_ops *xfrmdev_ops;
2185 #endif
2186 
2187 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2188 	const struct tlsdev_ops *tlsdev_ops;
2189 #endif
2190 
2191 	unsigned int		operstate;
2192 	unsigned char		link_mode;
2193 
2194 	unsigned char		if_port;
2195 	unsigned char		dma;
2196 
2197 	/* Interface address info. */
2198 	unsigned char		perm_addr[MAX_ADDR_LEN];
2199 	unsigned char		addr_assign_type;
2200 	unsigned char		addr_len;
2201 	unsigned char		upper_level;
2202 	unsigned char		lower_level;
2203 
2204 	unsigned short		neigh_priv_len;
2205 	unsigned short          dev_id;
2206 	unsigned short          dev_port;
2207 	int			irq;
2208 	u32			priv_len;
2209 
2210 	spinlock_t		addr_list_lock;
2211 
2212 	struct netdev_hw_addr_list	uc;
2213 	struct netdev_hw_addr_list	mc;
2214 	struct netdev_hw_addr_list	dev_addrs;
2215 
2216 #ifdef CONFIG_SYSFS
2217 	struct kset		*queues_kset;
2218 #endif
2219 #ifdef CONFIG_LOCKDEP
2220 	struct list_head	unlink_list;
2221 #endif
2222 	unsigned int		promiscuity;
2223 	unsigned int		allmulti;
2224 	bool			uc_promisc;
2225 #ifdef CONFIG_LOCKDEP
2226 	unsigned char		nested_level;
2227 #endif
2228 
2229 
2230 	/* Protocol-specific pointers */
2231 	struct in_device __rcu	*ip_ptr;
2232 	/** @fib_nh_head: nexthops associated with this netdev */
2233 	struct hlist_head	fib_nh_head;
2234 
2235 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2236 	struct vlan_info __rcu	*vlan_info;
2237 #endif
2238 #if IS_ENABLED(CONFIG_NET_DSA)
2239 	struct dsa_port		*dsa_ptr;
2240 #endif
2241 #if IS_ENABLED(CONFIG_TIPC)
2242 	struct tipc_bearer __rcu *tipc_ptr;
2243 #endif
2244 #if IS_ENABLED(CONFIG_ATALK)
2245 	void 			*atalk_ptr;
2246 #endif
2247 #if IS_ENABLED(CONFIG_AX25)
2248 	void			*ax25_ptr;
2249 #endif
2250 #if IS_ENABLED(CONFIG_CFG80211)
2251 	struct wireless_dev	*ieee80211_ptr;
2252 #endif
2253 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2254 	struct wpan_dev		*ieee802154_ptr;
2255 #endif
2256 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2257 	struct mpls_dev __rcu	*mpls_ptr;
2258 #endif
2259 #if IS_ENABLED(CONFIG_MCTP)
2260 	struct mctp_dev __rcu	*mctp_ptr;
2261 #endif
2262 
2263 /*
2264  * Cache lines mostly used on receive path (including eth_type_trans())
2265  */
2266 	/* Interface address info used in eth_type_trans() */
2267 	const unsigned char	*dev_addr;
2268 
2269 	unsigned int		num_rx_queues;
2270 #define GRO_LEGACY_MAX_SIZE	65536u
2271 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2272  * and shinfo->gso_segs is a 16bit field.
2273  */
2274 #define GRO_MAX_SIZE		(8 * 65535u)
2275 	unsigned int		xdp_zc_max_segs;
2276 	struct netdev_queue __rcu *ingress_queue;
2277 #ifdef CONFIG_NETFILTER_INGRESS
2278 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2279 #endif
2280 
2281 	unsigned char		broadcast[MAX_ADDR_LEN];
2282 #ifdef CONFIG_RFS_ACCEL
2283 	struct cpu_rmap		*rx_cpu_rmap;
2284 #endif
2285 	struct hlist_node	index_hlist;
2286 
2287 /*
2288  * Cache lines mostly used on transmit path
2289  */
2290 	unsigned int		num_tx_queues;
2291 	struct Qdisc __rcu	*qdisc;
2292 	unsigned int		tx_queue_len;
2293 	spinlock_t		tx_global_lock;
2294 
2295 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2296 
2297 #ifdef CONFIG_NET_SCHED
2298 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2299 #endif
2300 	/* These may be needed for future network-power-down code. */
2301 	struct timer_list	watchdog_timer;
2302 	int			watchdog_timeo;
2303 
2304 	u32                     proto_down_reason;
2305 
2306 	struct list_head	todo_list;
2307 
2308 #ifdef CONFIG_PCPU_DEV_REFCNT
2309 	int __percpu		*pcpu_refcnt;
2310 #else
2311 	refcount_t		dev_refcnt;
2312 #endif
2313 	struct ref_tracker_dir	refcnt_tracker;
2314 
2315 	struct list_head	link_watch_list;
2316 
2317 	u8 reg_state;
2318 
2319 	bool dismantle;
2320 
2321 	enum {
2322 		RTNL_LINK_INITIALIZED,
2323 		RTNL_LINK_INITIALIZING,
2324 	} rtnl_link_state:16;
2325 
2326 	bool needs_free_netdev;
2327 	void (*priv_destructor)(struct net_device *dev);
2328 
2329 	/* mid-layer private */
2330 	void				*ml_priv;
2331 	enum netdev_ml_priv_type	ml_priv_type;
2332 
2333 	enum netdev_stat_type		pcpu_stat_type:8;
2334 
2335 #if IS_ENABLED(CONFIG_GARP)
2336 	struct garp_port __rcu	*garp_port;
2337 #endif
2338 #if IS_ENABLED(CONFIG_MRP)
2339 	struct mrp_port __rcu	*mrp_port;
2340 #endif
2341 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2342 	struct dm_hw_stat_delta __rcu *dm_private;
2343 #endif
2344 	struct device		dev;
2345 	const struct attribute_group *sysfs_groups[4];
2346 	const struct attribute_group *sysfs_rx_queue_group;
2347 
2348 	const struct rtnl_link_ops *rtnl_link_ops;
2349 
2350 	const struct netdev_stat_ops *stat_ops;
2351 
2352 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2353 
2354 	/* for setting kernel sock attribute on TCP connection setup */
2355 #define GSO_MAX_SEGS		65535u
2356 #define GSO_LEGACY_MAX_SIZE	65536u
2357 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2358  * and shinfo->gso_segs is a 16bit field.
2359  */
2360 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2361 
2362 #define TSO_LEGACY_MAX_SIZE	65536
2363 #define TSO_MAX_SIZE		UINT_MAX
2364 	unsigned int		tso_max_size;
2365 #define TSO_MAX_SEGS		U16_MAX
2366 	u16			tso_max_segs;
2367 
2368 #ifdef CONFIG_DCB
2369 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2370 #endif
2371 	u8			prio_tc_map[TC_BITMASK + 1];
2372 
2373 #if IS_ENABLED(CONFIG_FCOE)
2374 	unsigned int		fcoe_ddp_xid;
2375 #endif
2376 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2377 	struct netprio_map __rcu *priomap;
2378 #endif
2379 	struct phy_link_topology	*link_topo;
2380 	struct phy_device	*phydev;
2381 	struct sfp_bus		*sfp_bus;
2382 	struct lock_class_key	*qdisc_tx_busylock;
2383 	bool			proto_down;
2384 	bool			threaded;
2385 
2386 	/* priv_flags_slow, ungrouped to save space */
2387 	unsigned long		see_all_hwtstamp_requests:1;
2388 	unsigned long		change_proto_down:1;
2389 	unsigned long		netns_local:1;
2390 	unsigned long		fcoe_mtu:1;
2391 
2392 	struct list_head	net_notifier_list;
2393 
2394 #if IS_ENABLED(CONFIG_MACSEC)
2395 	/* MACsec management functions */
2396 	const struct macsec_ops *macsec_ops;
2397 #endif
2398 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2399 	struct udp_tunnel_nic	*udp_tunnel_nic;
2400 
2401 	struct ethtool_netdev_state *ethtool;
2402 
2403 	/* protected by rtnl_lock */
2404 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2405 
2406 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2407 	netdevice_tracker	linkwatch_dev_tracker;
2408 	netdevice_tracker	watchdog_dev_tracker;
2409 	netdevice_tracker	dev_registered_tracker;
2410 	struct rtnl_hw_stats64	*offload_xstats_l3;
2411 
2412 	struct devlink_port	*devlink_port;
2413 
2414 #if IS_ENABLED(CONFIG_DPLL)
2415 	struct dpll_pin	__rcu	*dpll_pin;
2416 #endif
2417 #if IS_ENABLED(CONFIG_PAGE_POOL)
2418 	/** @page_pools: page pools created for this netdevice */
2419 	struct hlist_head	page_pools;
2420 #endif
2421 
2422 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2423 	struct dim_irq_moder	*irq_moder;
2424 
2425 	u64			max_pacing_offload_horizon;
2426 	struct napi_config	*napi_config;
2427 	unsigned long		gro_flush_timeout;
2428 	u32			napi_defer_hard_irqs;
2429 
2430 	/**
2431 	 * @lock: protects @net_shaper_hierarchy, feel free to use for other
2432 	 * netdev-scope protection. Ordering: take after rtnl_lock.
2433 	 */
2434 	struct mutex		lock;
2435 
2436 #if IS_ENABLED(CONFIG_NET_SHAPER)
2437 	/**
2438 	 * @net_shaper_hierarchy: data tracking the current shaper status
2439 	 *  see include/net/net_shapers.h
2440 	 */
2441 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2442 #endif
2443 	u8			priv[] ____cacheline_aligned
2444 				       __counted_by(priv_len);
2445 } ____cacheline_aligned;
2446 #define to_net_dev(d) container_of(d, struct net_device, dev)
2447 
2448 /*
2449  * Driver should use this to assign devlink port instance to a netdevice
2450  * before it registers the netdevice. Therefore devlink_port is static
2451  * during the netdev lifetime after it is registered.
2452  */
2453 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2454 ({								\
2455 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2456 	((dev)->devlink_port = (port));				\
2457 })
2458 
2459 static inline bool netif_elide_gro(const struct net_device *dev)
2460 {
2461 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2462 		return true;
2463 	return false;
2464 }
2465 
2466 #define	NETDEV_ALIGN		32
2467 
2468 static inline
2469 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2470 {
2471 	return dev->prio_tc_map[prio & TC_BITMASK];
2472 }
2473 
2474 static inline
2475 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2476 {
2477 	if (tc >= dev->num_tc)
2478 		return -EINVAL;
2479 
2480 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2481 	return 0;
2482 }
2483 
2484 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2485 void netdev_reset_tc(struct net_device *dev);
2486 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2487 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2488 
2489 static inline
2490 int netdev_get_num_tc(struct net_device *dev)
2491 {
2492 	return dev->num_tc;
2493 }
2494 
2495 static inline void net_prefetch(void *p)
2496 {
2497 	prefetch(p);
2498 #if L1_CACHE_BYTES < 128
2499 	prefetch((u8 *)p + L1_CACHE_BYTES);
2500 #endif
2501 }
2502 
2503 static inline void net_prefetchw(void *p)
2504 {
2505 	prefetchw(p);
2506 #if L1_CACHE_BYTES < 128
2507 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2508 #endif
2509 }
2510 
2511 void netdev_unbind_sb_channel(struct net_device *dev,
2512 			      struct net_device *sb_dev);
2513 int netdev_bind_sb_channel_queue(struct net_device *dev,
2514 				 struct net_device *sb_dev,
2515 				 u8 tc, u16 count, u16 offset);
2516 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2517 static inline int netdev_get_sb_channel(struct net_device *dev)
2518 {
2519 	return max_t(int, -dev->num_tc, 0);
2520 }
2521 
2522 static inline
2523 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2524 					 unsigned int index)
2525 {
2526 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2527 	return &dev->_tx[index];
2528 }
2529 
2530 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2531 						    const struct sk_buff *skb)
2532 {
2533 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2534 }
2535 
2536 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2537 					    void (*f)(struct net_device *,
2538 						      struct netdev_queue *,
2539 						      void *),
2540 					    void *arg)
2541 {
2542 	unsigned int i;
2543 
2544 	for (i = 0; i < dev->num_tx_queues; i++)
2545 		f(dev, &dev->_tx[i], arg);
2546 }
2547 
2548 #define netdev_lockdep_set_classes(dev)				\
2549 {								\
2550 	static struct lock_class_key qdisc_tx_busylock_key;	\
2551 	static struct lock_class_key qdisc_xmit_lock_key;	\
2552 	static struct lock_class_key dev_addr_list_lock_key;	\
2553 	unsigned int i;						\
2554 								\
2555 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2556 	lockdep_set_class(&(dev)->addr_list_lock,		\
2557 			  &dev_addr_list_lock_key);		\
2558 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2559 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2560 				  &qdisc_xmit_lock_key);	\
2561 }
2562 
2563 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2564 		     struct net_device *sb_dev);
2565 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2566 					 struct sk_buff *skb,
2567 					 struct net_device *sb_dev);
2568 
2569 /* returns the headroom that the master device needs to take in account
2570  * when forwarding to this dev
2571  */
2572 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2573 {
2574 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2575 }
2576 
2577 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2578 {
2579 	if (dev->netdev_ops->ndo_set_rx_headroom)
2580 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2581 }
2582 
2583 /* set the device rx headroom to the dev's default */
2584 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2585 {
2586 	netdev_set_rx_headroom(dev, -1);
2587 }
2588 
2589 static inline void *netdev_get_ml_priv(struct net_device *dev,
2590 				       enum netdev_ml_priv_type type)
2591 {
2592 	if (dev->ml_priv_type != type)
2593 		return NULL;
2594 
2595 	return dev->ml_priv;
2596 }
2597 
2598 static inline void netdev_set_ml_priv(struct net_device *dev,
2599 				      void *ml_priv,
2600 				      enum netdev_ml_priv_type type)
2601 {
2602 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2603 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2604 	     dev->ml_priv_type, type);
2605 	WARN(!dev->ml_priv_type && dev->ml_priv,
2606 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2607 
2608 	dev->ml_priv = ml_priv;
2609 	dev->ml_priv_type = type;
2610 }
2611 
2612 /*
2613  * Net namespace inlines
2614  */
2615 static inline
2616 struct net *dev_net(const struct net_device *dev)
2617 {
2618 	return read_pnet(&dev->nd_net);
2619 }
2620 
2621 static inline
2622 void dev_net_set(struct net_device *dev, struct net *net)
2623 {
2624 	write_pnet(&dev->nd_net, net);
2625 }
2626 
2627 /**
2628  *	netdev_priv - access network device private data
2629  *	@dev: network device
2630  *
2631  * Get network device private data
2632  */
2633 static inline void *netdev_priv(const struct net_device *dev)
2634 {
2635 	return (void *)dev->priv;
2636 }
2637 
2638 /* Set the sysfs physical device reference for the network logical device
2639  * if set prior to registration will cause a symlink during initialization.
2640  */
2641 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2642 
2643 /* Set the sysfs device type for the network logical device to allow
2644  * fine-grained identification of different network device types. For
2645  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2646  */
2647 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2648 
2649 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2650 			  enum netdev_queue_type type,
2651 			  struct napi_struct *napi);
2652 
2653 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2654 {
2655 	napi->irq = irq;
2656 }
2657 
2658 /* Default NAPI poll() weight
2659  * Device drivers are strongly advised to not use bigger value
2660  */
2661 #define NAPI_POLL_WEIGHT 64
2662 
2663 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2664 			   int (*poll)(struct napi_struct *, int), int weight);
2665 
2666 /**
2667  * netif_napi_add() - initialize a NAPI context
2668  * @dev:  network device
2669  * @napi: NAPI context
2670  * @poll: polling function
2671  *
2672  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2673  * *any* of the other NAPI-related functions.
2674  */
2675 static inline void
2676 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2677 	       int (*poll)(struct napi_struct *, int))
2678 {
2679 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2680 }
2681 
2682 static inline void
2683 netif_napi_add_tx_weight(struct net_device *dev,
2684 			 struct napi_struct *napi,
2685 			 int (*poll)(struct napi_struct *, int),
2686 			 int weight)
2687 {
2688 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2689 	netif_napi_add_weight(dev, napi, poll, weight);
2690 }
2691 
2692 /**
2693  * netif_napi_add_config - initialize a NAPI context with persistent config
2694  * @dev: network device
2695  * @napi: NAPI context
2696  * @poll: polling function
2697  * @index: the NAPI index
2698  */
2699 static inline void
2700 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2701 		      int (*poll)(struct napi_struct *, int), int index)
2702 {
2703 	napi->index = index;
2704 	napi->config = &dev->napi_config[index];
2705 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2706 }
2707 
2708 /**
2709  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2710  * @dev:  network device
2711  * @napi: NAPI context
2712  * @poll: polling function
2713  *
2714  * This variant of netif_napi_add() should be used from drivers using NAPI
2715  * to exclusively poll a TX queue.
2716  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2717  */
2718 static inline void netif_napi_add_tx(struct net_device *dev,
2719 				     struct napi_struct *napi,
2720 				     int (*poll)(struct napi_struct *, int))
2721 {
2722 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2723 }
2724 
2725 /**
2726  *  __netif_napi_del - remove a NAPI context
2727  *  @napi: NAPI context
2728  *
2729  * Warning: caller must observe RCU grace period before freeing memory
2730  * containing @napi. Drivers might want to call this helper to combine
2731  * all the needed RCU grace periods into a single one.
2732  */
2733 void __netif_napi_del(struct napi_struct *napi);
2734 
2735 /**
2736  *  netif_napi_del - remove a NAPI context
2737  *  @napi: NAPI context
2738  *
2739  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2740  */
2741 static inline void netif_napi_del(struct napi_struct *napi)
2742 {
2743 	__netif_napi_del(napi);
2744 	synchronize_net();
2745 }
2746 
2747 struct packet_type {
2748 	__be16			type;	/* This is really htons(ether_type). */
2749 	bool			ignore_outgoing;
2750 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2751 	netdevice_tracker	dev_tracker;
2752 	int			(*func) (struct sk_buff *,
2753 					 struct net_device *,
2754 					 struct packet_type *,
2755 					 struct net_device *);
2756 	void			(*list_func) (struct list_head *,
2757 					      struct packet_type *,
2758 					      struct net_device *);
2759 	bool			(*id_match)(struct packet_type *ptype,
2760 					    struct sock *sk);
2761 	struct net		*af_packet_net;
2762 	void			*af_packet_priv;
2763 	struct list_head	list;
2764 };
2765 
2766 struct offload_callbacks {
2767 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2768 						netdev_features_t features);
2769 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2770 						struct sk_buff *skb);
2771 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2772 };
2773 
2774 struct packet_offload {
2775 	__be16			 type;	/* This is really htons(ether_type). */
2776 	u16			 priority;
2777 	struct offload_callbacks callbacks;
2778 	struct list_head	 list;
2779 };
2780 
2781 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2782 struct pcpu_sw_netstats {
2783 	u64_stats_t		rx_packets;
2784 	u64_stats_t		rx_bytes;
2785 	u64_stats_t		tx_packets;
2786 	u64_stats_t		tx_bytes;
2787 	struct u64_stats_sync   syncp;
2788 } __aligned(4 * sizeof(u64));
2789 
2790 struct pcpu_dstats {
2791 	u64_stats_t		rx_packets;
2792 	u64_stats_t		rx_bytes;
2793 	u64_stats_t		rx_drops;
2794 	u64_stats_t		tx_packets;
2795 	u64_stats_t		tx_bytes;
2796 	u64_stats_t		tx_drops;
2797 	struct u64_stats_sync	syncp;
2798 } __aligned(8 * sizeof(u64));
2799 
2800 struct pcpu_lstats {
2801 	u64_stats_t packets;
2802 	u64_stats_t bytes;
2803 	struct u64_stats_sync syncp;
2804 } __aligned(2 * sizeof(u64));
2805 
2806 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2807 
2808 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2809 {
2810 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2811 
2812 	u64_stats_update_begin(&tstats->syncp);
2813 	u64_stats_add(&tstats->rx_bytes, len);
2814 	u64_stats_inc(&tstats->rx_packets);
2815 	u64_stats_update_end(&tstats->syncp);
2816 }
2817 
2818 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2819 					  unsigned int packets,
2820 					  unsigned int len)
2821 {
2822 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2823 
2824 	u64_stats_update_begin(&tstats->syncp);
2825 	u64_stats_add(&tstats->tx_bytes, len);
2826 	u64_stats_add(&tstats->tx_packets, packets);
2827 	u64_stats_update_end(&tstats->syncp);
2828 }
2829 
2830 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2831 {
2832 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2833 
2834 	u64_stats_update_begin(&lstats->syncp);
2835 	u64_stats_add(&lstats->bytes, len);
2836 	u64_stats_inc(&lstats->packets);
2837 	u64_stats_update_end(&lstats->syncp);
2838 }
2839 
2840 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2841 ({									\
2842 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2843 	if (pcpu_stats)	{						\
2844 		int __cpu;						\
2845 		for_each_possible_cpu(__cpu) {				\
2846 			typeof(type) *stat;				\
2847 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2848 			u64_stats_init(&stat->syncp);			\
2849 		}							\
2850 	}								\
2851 	pcpu_stats;							\
2852 })
2853 
2854 #define netdev_alloc_pcpu_stats(type)					\
2855 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2856 
2857 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2858 ({									\
2859 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2860 	if (pcpu_stats) {						\
2861 		int __cpu;						\
2862 		for_each_possible_cpu(__cpu) {				\
2863 			typeof(type) *stat;				\
2864 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2865 			u64_stats_init(&stat->syncp);			\
2866 		}							\
2867 	}								\
2868 	pcpu_stats;							\
2869 })
2870 
2871 enum netdev_lag_tx_type {
2872 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2873 	NETDEV_LAG_TX_TYPE_RANDOM,
2874 	NETDEV_LAG_TX_TYPE_BROADCAST,
2875 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2876 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2877 	NETDEV_LAG_TX_TYPE_HASH,
2878 };
2879 
2880 enum netdev_lag_hash {
2881 	NETDEV_LAG_HASH_NONE,
2882 	NETDEV_LAG_HASH_L2,
2883 	NETDEV_LAG_HASH_L34,
2884 	NETDEV_LAG_HASH_L23,
2885 	NETDEV_LAG_HASH_E23,
2886 	NETDEV_LAG_HASH_E34,
2887 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2888 	NETDEV_LAG_HASH_UNKNOWN,
2889 };
2890 
2891 struct netdev_lag_upper_info {
2892 	enum netdev_lag_tx_type tx_type;
2893 	enum netdev_lag_hash hash_type;
2894 };
2895 
2896 struct netdev_lag_lower_state_info {
2897 	u8 link_up : 1,
2898 	   tx_enabled : 1;
2899 };
2900 
2901 #include <linux/notifier.h>
2902 
2903 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2904  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2905  * adding new types.
2906  */
2907 enum netdev_cmd {
2908 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2909 	NETDEV_DOWN,
2910 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2911 				   detected a hardware crash and restarted
2912 				   - we can use this eg to kick tcp sessions
2913 				   once done */
2914 	NETDEV_CHANGE,		/* Notify device state change */
2915 	NETDEV_REGISTER,
2916 	NETDEV_UNREGISTER,
2917 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2918 	NETDEV_CHANGEADDR,	/* notify after the address change */
2919 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2920 	NETDEV_GOING_DOWN,
2921 	NETDEV_CHANGENAME,
2922 	NETDEV_FEAT_CHANGE,
2923 	NETDEV_BONDING_FAILOVER,
2924 	NETDEV_PRE_UP,
2925 	NETDEV_PRE_TYPE_CHANGE,
2926 	NETDEV_POST_TYPE_CHANGE,
2927 	NETDEV_POST_INIT,
2928 	NETDEV_PRE_UNINIT,
2929 	NETDEV_RELEASE,
2930 	NETDEV_NOTIFY_PEERS,
2931 	NETDEV_JOIN,
2932 	NETDEV_CHANGEUPPER,
2933 	NETDEV_RESEND_IGMP,
2934 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2935 	NETDEV_CHANGEINFODATA,
2936 	NETDEV_BONDING_INFO,
2937 	NETDEV_PRECHANGEUPPER,
2938 	NETDEV_CHANGELOWERSTATE,
2939 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2940 	NETDEV_UDP_TUNNEL_DROP_INFO,
2941 	NETDEV_CHANGE_TX_QUEUE_LEN,
2942 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2943 	NETDEV_CVLAN_FILTER_DROP_INFO,
2944 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2945 	NETDEV_SVLAN_FILTER_DROP_INFO,
2946 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2947 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2948 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2949 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2950 	NETDEV_XDP_FEAT_CHANGE,
2951 };
2952 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2953 
2954 int register_netdevice_notifier(struct notifier_block *nb);
2955 int unregister_netdevice_notifier(struct notifier_block *nb);
2956 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2957 int unregister_netdevice_notifier_net(struct net *net,
2958 				      struct notifier_block *nb);
2959 int register_netdevice_notifier_dev_net(struct net_device *dev,
2960 					struct notifier_block *nb,
2961 					struct netdev_net_notifier *nn);
2962 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2963 					  struct notifier_block *nb,
2964 					  struct netdev_net_notifier *nn);
2965 
2966 struct netdev_notifier_info {
2967 	struct net_device	*dev;
2968 	struct netlink_ext_ack	*extack;
2969 };
2970 
2971 struct netdev_notifier_info_ext {
2972 	struct netdev_notifier_info info; /* must be first */
2973 	union {
2974 		u32 mtu;
2975 	} ext;
2976 };
2977 
2978 struct netdev_notifier_change_info {
2979 	struct netdev_notifier_info info; /* must be first */
2980 	unsigned int flags_changed;
2981 };
2982 
2983 struct netdev_notifier_changeupper_info {
2984 	struct netdev_notifier_info info; /* must be first */
2985 	struct net_device *upper_dev; /* new upper dev */
2986 	bool master; /* is upper dev master */
2987 	bool linking; /* is the notification for link or unlink */
2988 	void *upper_info; /* upper dev info */
2989 };
2990 
2991 struct netdev_notifier_changelowerstate_info {
2992 	struct netdev_notifier_info info; /* must be first */
2993 	void *lower_state_info; /* is lower dev state */
2994 };
2995 
2996 struct netdev_notifier_pre_changeaddr_info {
2997 	struct netdev_notifier_info info; /* must be first */
2998 	const unsigned char *dev_addr;
2999 };
3000 
3001 enum netdev_offload_xstats_type {
3002 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3003 };
3004 
3005 struct netdev_notifier_offload_xstats_info {
3006 	struct netdev_notifier_info info; /* must be first */
3007 	enum netdev_offload_xstats_type type;
3008 
3009 	union {
3010 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3011 		struct netdev_notifier_offload_xstats_rd *report_delta;
3012 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3013 		struct netdev_notifier_offload_xstats_ru *report_used;
3014 	};
3015 };
3016 
3017 int netdev_offload_xstats_enable(struct net_device *dev,
3018 				 enum netdev_offload_xstats_type type,
3019 				 struct netlink_ext_ack *extack);
3020 int netdev_offload_xstats_disable(struct net_device *dev,
3021 				  enum netdev_offload_xstats_type type);
3022 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3023 				   enum netdev_offload_xstats_type type);
3024 int netdev_offload_xstats_get(struct net_device *dev,
3025 			      enum netdev_offload_xstats_type type,
3026 			      struct rtnl_hw_stats64 *stats, bool *used,
3027 			      struct netlink_ext_ack *extack);
3028 void
3029 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3030 				   const struct rtnl_hw_stats64 *stats);
3031 void
3032 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3033 void netdev_offload_xstats_push_delta(struct net_device *dev,
3034 				      enum netdev_offload_xstats_type type,
3035 				      const struct rtnl_hw_stats64 *stats);
3036 
3037 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3038 					     struct net_device *dev)
3039 {
3040 	info->dev = dev;
3041 	info->extack = NULL;
3042 }
3043 
3044 static inline struct net_device *
3045 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3046 {
3047 	return info->dev;
3048 }
3049 
3050 static inline struct netlink_ext_ack *
3051 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3052 {
3053 	return info->extack;
3054 }
3055 
3056 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3057 int call_netdevice_notifiers_info(unsigned long val,
3058 				  struct netdev_notifier_info *info);
3059 
3060 #define for_each_netdev(net, d)		\
3061 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3062 #define for_each_netdev_reverse(net, d)	\
3063 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3064 #define for_each_netdev_rcu(net, d)		\
3065 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3066 #define for_each_netdev_safe(net, d, n)	\
3067 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3068 #define for_each_netdev_continue(net, d)		\
3069 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3070 #define for_each_netdev_continue_reverse(net, d)		\
3071 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3072 						     dev_list)
3073 #define for_each_netdev_continue_rcu(net, d)		\
3074 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3075 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3076 		for_each_netdev_rcu(&init_net, slave)	\
3077 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3078 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3079 
3080 #define for_each_netdev_dump(net, d, ifindex)				\
3081 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3082 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3083 
3084 static inline struct net_device *next_net_device(struct net_device *dev)
3085 {
3086 	struct list_head *lh;
3087 	struct net *net;
3088 
3089 	net = dev_net(dev);
3090 	lh = dev->dev_list.next;
3091 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3092 }
3093 
3094 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3095 {
3096 	struct list_head *lh;
3097 	struct net *net;
3098 
3099 	net = dev_net(dev);
3100 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3101 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3102 }
3103 
3104 static inline struct net_device *first_net_device(struct net *net)
3105 {
3106 	return list_empty(&net->dev_base_head) ? NULL :
3107 		net_device_entry(net->dev_base_head.next);
3108 }
3109 
3110 static inline struct net_device *first_net_device_rcu(struct net *net)
3111 {
3112 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3113 
3114 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3115 }
3116 
3117 int netdev_boot_setup_check(struct net_device *dev);
3118 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3119 				       const char *hwaddr);
3120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3121 void dev_add_pack(struct packet_type *pt);
3122 void dev_remove_pack(struct packet_type *pt);
3123 void __dev_remove_pack(struct packet_type *pt);
3124 void dev_add_offload(struct packet_offload *po);
3125 void dev_remove_offload(struct packet_offload *po);
3126 
3127 int dev_get_iflink(const struct net_device *dev);
3128 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3129 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3130 			  struct net_device_path_stack *stack);
3131 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3132 				      unsigned short mask);
3133 struct net_device *dev_get_by_name(struct net *net, const char *name);
3134 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3135 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3136 bool netdev_name_in_use(struct net *net, const char *name);
3137 int dev_alloc_name(struct net_device *dev, const char *name);
3138 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3139 void dev_close(struct net_device *dev);
3140 void dev_close_many(struct list_head *head, bool unlink);
3141 void dev_disable_lro(struct net_device *dev);
3142 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3143 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3144 		     struct net_device *sb_dev);
3145 
3146 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3147 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3148 
3149 static inline int dev_queue_xmit(struct sk_buff *skb)
3150 {
3151 	return __dev_queue_xmit(skb, NULL);
3152 }
3153 
3154 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3155 				       struct net_device *sb_dev)
3156 {
3157 	return __dev_queue_xmit(skb, sb_dev);
3158 }
3159 
3160 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3161 {
3162 	int ret;
3163 
3164 	ret = __dev_direct_xmit(skb, queue_id);
3165 	if (!dev_xmit_complete(ret))
3166 		kfree_skb(skb);
3167 	return ret;
3168 }
3169 
3170 int register_netdevice(struct net_device *dev);
3171 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3172 void unregister_netdevice_many(struct list_head *head);
3173 static inline void unregister_netdevice(struct net_device *dev)
3174 {
3175 	unregister_netdevice_queue(dev, NULL);
3176 }
3177 
3178 int netdev_refcnt_read(const struct net_device *dev);
3179 void free_netdev(struct net_device *dev);
3180 void init_dummy_netdev(struct net_device *dev);
3181 
3182 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3183 					 struct sk_buff *skb,
3184 					 bool all_slaves);
3185 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3186 					    struct sock *sk);
3187 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3188 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3189 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3190 				       netdevice_tracker *tracker, gfp_t gfp);
3191 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3192 				      netdevice_tracker *tracker, gfp_t gfp);
3193 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3194 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3195 void netdev_copy_name(struct net_device *dev, char *name);
3196 
3197 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3198 				  unsigned short type,
3199 				  const void *daddr, const void *saddr,
3200 				  unsigned int len)
3201 {
3202 	if (!dev->header_ops || !dev->header_ops->create)
3203 		return 0;
3204 
3205 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3206 }
3207 
3208 static inline int dev_parse_header(const struct sk_buff *skb,
3209 				   unsigned char *haddr)
3210 {
3211 	const struct net_device *dev = skb->dev;
3212 
3213 	if (!dev->header_ops || !dev->header_ops->parse)
3214 		return 0;
3215 	return dev->header_ops->parse(skb, haddr);
3216 }
3217 
3218 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3219 {
3220 	const struct net_device *dev = skb->dev;
3221 
3222 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3223 		return 0;
3224 	return dev->header_ops->parse_protocol(skb);
3225 }
3226 
3227 /* ll_header must have at least hard_header_len allocated */
3228 static inline bool dev_validate_header(const struct net_device *dev,
3229 				       char *ll_header, int len)
3230 {
3231 	if (likely(len >= dev->hard_header_len))
3232 		return true;
3233 	if (len < dev->min_header_len)
3234 		return false;
3235 
3236 	if (capable(CAP_SYS_RAWIO)) {
3237 		memset(ll_header + len, 0, dev->hard_header_len - len);
3238 		return true;
3239 	}
3240 
3241 	if (dev->header_ops && dev->header_ops->validate)
3242 		return dev->header_ops->validate(ll_header, len);
3243 
3244 	return false;
3245 }
3246 
3247 static inline bool dev_has_header(const struct net_device *dev)
3248 {
3249 	return dev->header_ops && dev->header_ops->create;
3250 }
3251 
3252 /*
3253  * Incoming packets are placed on per-CPU queues
3254  */
3255 struct softnet_data {
3256 	struct list_head	poll_list;
3257 	struct sk_buff_head	process_queue;
3258 	local_lock_t		process_queue_bh_lock;
3259 
3260 	/* stats */
3261 	unsigned int		processed;
3262 	unsigned int		time_squeeze;
3263 #ifdef CONFIG_RPS
3264 	struct softnet_data	*rps_ipi_list;
3265 #endif
3266 
3267 	unsigned int		received_rps;
3268 	bool			in_net_rx_action;
3269 	bool			in_napi_threaded_poll;
3270 
3271 #ifdef CONFIG_NET_FLOW_LIMIT
3272 	struct sd_flow_limit __rcu *flow_limit;
3273 #endif
3274 	struct Qdisc		*output_queue;
3275 	struct Qdisc		**output_queue_tailp;
3276 	struct sk_buff		*completion_queue;
3277 #ifdef CONFIG_XFRM_OFFLOAD
3278 	struct sk_buff_head	xfrm_backlog;
3279 #endif
3280 	/* written and read only by owning cpu: */
3281 	struct netdev_xmit xmit;
3282 #ifdef CONFIG_RPS
3283 	/* input_queue_head should be written by cpu owning this struct,
3284 	 * and only read by other cpus. Worth using a cache line.
3285 	 */
3286 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3287 
3288 	/* Elements below can be accessed between CPUs for RPS/RFS */
3289 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3290 	struct softnet_data	*rps_ipi_next;
3291 	unsigned int		cpu;
3292 	unsigned int		input_queue_tail;
3293 #endif
3294 	struct sk_buff_head	input_pkt_queue;
3295 	struct napi_struct	backlog;
3296 
3297 	atomic_t		dropped ____cacheline_aligned_in_smp;
3298 
3299 	/* Another possibly contended cache line */
3300 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3301 	int			defer_count;
3302 	int			defer_ipi_scheduled;
3303 	struct sk_buff		*defer_list;
3304 	call_single_data_t	defer_csd;
3305 };
3306 
3307 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3308 
3309 #ifndef CONFIG_PREEMPT_RT
3310 static inline int dev_recursion_level(void)
3311 {
3312 	return this_cpu_read(softnet_data.xmit.recursion);
3313 }
3314 #else
3315 static inline int dev_recursion_level(void)
3316 {
3317 	return current->net_xmit.recursion;
3318 }
3319 
3320 #endif
3321 
3322 void __netif_schedule(struct Qdisc *q);
3323 void netif_schedule_queue(struct netdev_queue *txq);
3324 
3325 static inline void netif_tx_schedule_all(struct net_device *dev)
3326 {
3327 	unsigned int i;
3328 
3329 	for (i = 0; i < dev->num_tx_queues; i++)
3330 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3331 }
3332 
3333 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3334 {
3335 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3336 }
3337 
3338 /**
3339  *	netif_start_queue - allow transmit
3340  *	@dev: network device
3341  *
3342  *	Allow upper layers to call the device hard_start_xmit routine.
3343  */
3344 static inline void netif_start_queue(struct net_device *dev)
3345 {
3346 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3347 }
3348 
3349 static inline void netif_tx_start_all_queues(struct net_device *dev)
3350 {
3351 	unsigned int i;
3352 
3353 	for (i = 0; i < dev->num_tx_queues; i++) {
3354 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3355 		netif_tx_start_queue(txq);
3356 	}
3357 }
3358 
3359 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3360 
3361 /**
3362  *	netif_wake_queue - restart transmit
3363  *	@dev: network device
3364  *
3365  *	Allow upper layers to call the device hard_start_xmit routine.
3366  *	Used for flow control when transmit resources are available.
3367  */
3368 static inline void netif_wake_queue(struct net_device *dev)
3369 {
3370 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3371 }
3372 
3373 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3374 {
3375 	unsigned int i;
3376 
3377 	for (i = 0; i < dev->num_tx_queues; i++) {
3378 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3379 		netif_tx_wake_queue(txq);
3380 	}
3381 }
3382 
3383 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3384 {
3385 	/* Paired with READ_ONCE() from dev_watchdog() */
3386 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3387 
3388 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3389 	smp_mb__before_atomic();
3390 
3391 	/* Must be an atomic op see netif_txq_try_stop() */
3392 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3393 }
3394 
3395 /**
3396  *	netif_stop_queue - stop transmitted packets
3397  *	@dev: network device
3398  *
3399  *	Stop upper layers calling the device hard_start_xmit routine.
3400  *	Used for flow control when transmit resources are unavailable.
3401  */
3402 static inline void netif_stop_queue(struct net_device *dev)
3403 {
3404 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3405 }
3406 
3407 void netif_tx_stop_all_queues(struct net_device *dev);
3408 
3409 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3410 {
3411 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3412 }
3413 
3414 /**
3415  *	netif_queue_stopped - test if transmit queue is flowblocked
3416  *	@dev: network device
3417  *
3418  *	Test if transmit queue on device is currently unable to send.
3419  */
3420 static inline bool netif_queue_stopped(const struct net_device *dev)
3421 {
3422 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3423 }
3424 
3425 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3426 {
3427 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3428 }
3429 
3430 static inline bool
3431 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3432 {
3433 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3434 }
3435 
3436 static inline bool
3437 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3438 {
3439 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3440 }
3441 
3442 /**
3443  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3444  *	@dev_queue: pointer to transmit queue
3445  *	@min_limit: dql minimum limit
3446  *
3447  * Forces xmit_more() to return true until the minimum threshold
3448  * defined by @min_limit is reached (or until the tx queue is
3449  * empty). Warning: to be use with care, misuse will impact the
3450  * latency.
3451  */
3452 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3453 						  unsigned int min_limit)
3454 {
3455 #ifdef CONFIG_BQL
3456 	dev_queue->dql.min_limit = min_limit;
3457 #endif
3458 }
3459 
3460 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3461 {
3462 #ifdef CONFIG_BQL
3463 	/* Non-BQL migrated drivers will return 0, too. */
3464 	return dql_avail(&txq->dql);
3465 #else
3466 	return 0;
3467 #endif
3468 }
3469 
3470 /**
3471  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3472  *	@dev_queue: pointer to transmit queue
3473  *
3474  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3475  * to give appropriate hint to the CPU.
3476  */
3477 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3478 {
3479 #ifdef CONFIG_BQL
3480 	prefetchw(&dev_queue->dql.num_queued);
3481 #endif
3482 }
3483 
3484 /**
3485  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3486  *	@dev_queue: pointer to transmit queue
3487  *
3488  * BQL enabled drivers might use this helper in their TX completion path,
3489  * to give appropriate hint to the CPU.
3490  */
3491 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3492 {
3493 #ifdef CONFIG_BQL
3494 	prefetchw(&dev_queue->dql.limit);
3495 #endif
3496 }
3497 
3498 /**
3499  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3500  *	@dev_queue: network device queue
3501  *	@bytes: number of bytes queued to the device queue
3502  *
3503  *	Report the number of bytes queued for sending/completion to the network
3504  *	device hardware queue. @bytes should be a good approximation and should
3505  *	exactly match netdev_completed_queue() @bytes.
3506  *	This is typically called once per packet, from ndo_start_xmit().
3507  */
3508 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3509 					unsigned int bytes)
3510 {
3511 #ifdef CONFIG_BQL
3512 	dql_queued(&dev_queue->dql, bytes);
3513 
3514 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3515 		return;
3516 
3517 	/* Paired with READ_ONCE() from dev_watchdog() */
3518 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3519 
3520 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3521 	smp_mb__before_atomic();
3522 
3523 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3524 
3525 	/*
3526 	 * The XOFF flag must be set before checking the dql_avail below,
3527 	 * because in netdev_tx_completed_queue we update the dql_completed
3528 	 * before checking the XOFF flag.
3529 	 */
3530 	smp_mb__after_atomic();
3531 
3532 	/* check again in case another CPU has just made room avail */
3533 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3534 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3535 #endif
3536 }
3537 
3538 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3539  * that they should not test BQL status themselves.
3540  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3541  * skb of a batch.
3542  * Returns true if the doorbell must be used to kick the NIC.
3543  */
3544 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3545 					  unsigned int bytes,
3546 					  bool xmit_more)
3547 {
3548 	if (xmit_more) {
3549 #ifdef CONFIG_BQL
3550 		dql_queued(&dev_queue->dql, bytes);
3551 #endif
3552 		return netif_tx_queue_stopped(dev_queue);
3553 	}
3554 	netdev_tx_sent_queue(dev_queue, bytes);
3555 	return true;
3556 }
3557 
3558 /**
3559  *	netdev_sent_queue - report the number of bytes queued to hardware
3560  *	@dev: network device
3561  *	@bytes: number of bytes queued to the hardware device queue
3562  *
3563  *	Report the number of bytes queued for sending/completion to the network
3564  *	device hardware queue#0. @bytes should be a good approximation and should
3565  *	exactly match netdev_completed_queue() @bytes.
3566  *	This is typically called once per packet, from ndo_start_xmit().
3567  */
3568 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3569 {
3570 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3571 }
3572 
3573 static inline bool __netdev_sent_queue(struct net_device *dev,
3574 				       unsigned int bytes,
3575 				       bool xmit_more)
3576 {
3577 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3578 				      xmit_more);
3579 }
3580 
3581 /**
3582  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3583  *	@dev_queue: network device queue
3584  *	@pkts: number of packets (currently ignored)
3585  *	@bytes: number of bytes dequeued from the device queue
3586  *
3587  *	Must be called at most once per TX completion round (and not per
3588  *	individual packet), so that BQL can adjust its limits appropriately.
3589  */
3590 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3591 					     unsigned int pkts, unsigned int bytes)
3592 {
3593 #ifdef CONFIG_BQL
3594 	if (unlikely(!bytes))
3595 		return;
3596 
3597 	dql_completed(&dev_queue->dql, bytes);
3598 
3599 	/*
3600 	 * Without the memory barrier there is a small possibility that
3601 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3602 	 * be stopped forever
3603 	 */
3604 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3605 
3606 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3607 		return;
3608 
3609 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3610 		netif_schedule_queue(dev_queue);
3611 #endif
3612 }
3613 
3614 /**
3615  * 	netdev_completed_queue - report bytes and packets completed by device
3616  * 	@dev: network device
3617  * 	@pkts: actual number of packets sent over the medium
3618  * 	@bytes: actual number of bytes sent over the medium
3619  *
3620  * 	Report the number of bytes and packets transmitted by the network device
3621  * 	hardware queue over the physical medium, @bytes must exactly match the
3622  * 	@bytes amount passed to netdev_sent_queue()
3623  */
3624 static inline void netdev_completed_queue(struct net_device *dev,
3625 					  unsigned int pkts, unsigned int bytes)
3626 {
3627 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3628 }
3629 
3630 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3631 {
3632 #ifdef CONFIG_BQL
3633 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3634 	dql_reset(&q->dql);
3635 #endif
3636 }
3637 
3638 /**
3639  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3640  * @dev: network device
3641  * @qid: stack index of the queue to reset
3642  */
3643 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3644 					    u32 qid)
3645 {
3646 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3647 }
3648 
3649 /**
3650  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3651  * 	@dev_queue: network device
3652  *
3653  * 	Reset the bytes and packet count of a network device and clear the
3654  * 	software flow control OFF bit for this network device
3655  */
3656 static inline void netdev_reset_queue(struct net_device *dev_queue)
3657 {
3658 	netdev_tx_reset_subqueue(dev_queue, 0);
3659 }
3660 
3661 /**
3662  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3663  * 	@dev: network device
3664  * 	@queue_index: given tx queue index
3665  *
3666  * 	Returns 0 if given tx queue index >= number of device tx queues,
3667  * 	otherwise returns the originally passed tx queue index.
3668  */
3669 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3670 {
3671 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3672 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3673 				     dev->name, queue_index,
3674 				     dev->real_num_tx_queues);
3675 		return 0;
3676 	}
3677 
3678 	return queue_index;
3679 }
3680 
3681 /**
3682  *	netif_running - test if up
3683  *	@dev: network device
3684  *
3685  *	Test if the device has been brought up.
3686  */
3687 static inline bool netif_running(const struct net_device *dev)
3688 {
3689 	return test_bit(__LINK_STATE_START, &dev->state);
3690 }
3691 
3692 /*
3693  * Routines to manage the subqueues on a device.  We only need start,
3694  * stop, and a check if it's stopped.  All other device management is
3695  * done at the overall netdevice level.
3696  * Also test the device if we're multiqueue.
3697  */
3698 
3699 /**
3700  *	netif_start_subqueue - allow sending packets on subqueue
3701  *	@dev: network device
3702  *	@queue_index: sub queue index
3703  *
3704  * Start individual transmit queue of a device with multiple transmit queues.
3705  */
3706 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3707 {
3708 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3709 
3710 	netif_tx_start_queue(txq);
3711 }
3712 
3713 /**
3714  *	netif_stop_subqueue - stop sending packets on subqueue
3715  *	@dev: network device
3716  *	@queue_index: sub queue index
3717  *
3718  * Stop individual transmit queue of a device with multiple transmit queues.
3719  */
3720 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3721 {
3722 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3723 	netif_tx_stop_queue(txq);
3724 }
3725 
3726 /**
3727  *	__netif_subqueue_stopped - test status of subqueue
3728  *	@dev: network device
3729  *	@queue_index: sub queue index
3730  *
3731  * Check individual transmit queue of a device with multiple transmit queues.
3732  */
3733 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3734 					    u16 queue_index)
3735 {
3736 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3737 
3738 	return netif_tx_queue_stopped(txq);
3739 }
3740 
3741 /**
3742  *	netif_subqueue_stopped - test status of subqueue
3743  *	@dev: network device
3744  *	@skb: sub queue buffer pointer
3745  *
3746  * Check individual transmit queue of a device with multiple transmit queues.
3747  */
3748 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3749 					  struct sk_buff *skb)
3750 {
3751 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3752 }
3753 
3754 /**
3755  *	netif_wake_subqueue - allow sending packets on subqueue
3756  *	@dev: network device
3757  *	@queue_index: sub queue index
3758  *
3759  * Resume individual transmit queue of a device with multiple transmit queues.
3760  */
3761 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3762 {
3763 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3764 
3765 	netif_tx_wake_queue(txq);
3766 }
3767 
3768 #ifdef CONFIG_XPS
3769 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3770 			u16 index);
3771 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3772 			  u16 index, enum xps_map_type type);
3773 
3774 /**
3775  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3776  *	@j: CPU/Rx queue index
3777  *	@mask: bitmask of all cpus/rx queues
3778  *	@nr_bits: number of bits in the bitmask
3779  *
3780  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3781  */
3782 static inline bool netif_attr_test_mask(unsigned long j,
3783 					const unsigned long *mask,
3784 					unsigned int nr_bits)
3785 {
3786 	cpu_max_bits_warn(j, nr_bits);
3787 	return test_bit(j, mask);
3788 }
3789 
3790 /**
3791  *	netif_attr_test_online - Test for online CPU/Rx queue
3792  *	@j: CPU/Rx queue index
3793  *	@online_mask: bitmask for CPUs/Rx queues that are online
3794  *	@nr_bits: number of bits in the bitmask
3795  *
3796  * Returns true if a CPU/Rx queue is online.
3797  */
3798 static inline bool netif_attr_test_online(unsigned long j,
3799 					  const unsigned long *online_mask,
3800 					  unsigned int nr_bits)
3801 {
3802 	cpu_max_bits_warn(j, nr_bits);
3803 
3804 	if (online_mask)
3805 		return test_bit(j, online_mask);
3806 
3807 	return (j < nr_bits);
3808 }
3809 
3810 /**
3811  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3812  *	@n: CPU/Rx queue index
3813  *	@srcp: the cpumask/Rx queue mask pointer
3814  *	@nr_bits: number of bits in the bitmask
3815  *
3816  * Returns >= nr_bits if no further CPUs/Rx queues set.
3817  */
3818 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3819 					       unsigned int nr_bits)
3820 {
3821 	/* -1 is a legal arg here. */
3822 	if (n != -1)
3823 		cpu_max_bits_warn(n, nr_bits);
3824 
3825 	if (srcp)
3826 		return find_next_bit(srcp, nr_bits, n + 1);
3827 
3828 	return n + 1;
3829 }
3830 
3831 /**
3832  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3833  *	@n: CPU/Rx queue index
3834  *	@src1p: the first CPUs/Rx queues mask pointer
3835  *	@src2p: the second CPUs/Rx queues mask pointer
3836  *	@nr_bits: number of bits in the bitmask
3837  *
3838  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3839  */
3840 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3841 					  const unsigned long *src2p,
3842 					  unsigned int nr_bits)
3843 {
3844 	/* -1 is a legal arg here. */
3845 	if (n != -1)
3846 		cpu_max_bits_warn(n, nr_bits);
3847 
3848 	if (src1p && src2p)
3849 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3850 	else if (src1p)
3851 		return find_next_bit(src1p, nr_bits, n + 1);
3852 	else if (src2p)
3853 		return find_next_bit(src2p, nr_bits, n + 1);
3854 
3855 	return n + 1;
3856 }
3857 #else
3858 static inline int netif_set_xps_queue(struct net_device *dev,
3859 				      const struct cpumask *mask,
3860 				      u16 index)
3861 {
3862 	return 0;
3863 }
3864 
3865 static inline int __netif_set_xps_queue(struct net_device *dev,
3866 					const unsigned long *mask,
3867 					u16 index, enum xps_map_type type)
3868 {
3869 	return 0;
3870 }
3871 #endif
3872 
3873 /**
3874  *	netif_is_multiqueue - test if device has multiple transmit queues
3875  *	@dev: network device
3876  *
3877  * Check if device has multiple transmit queues
3878  */
3879 static inline bool netif_is_multiqueue(const struct net_device *dev)
3880 {
3881 	return dev->num_tx_queues > 1;
3882 }
3883 
3884 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3885 
3886 #ifdef CONFIG_SYSFS
3887 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3888 #else
3889 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3890 						unsigned int rxqs)
3891 {
3892 	dev->real_num_rx_queues = rxqs;
3893 	return 0;
3894 }
3895 #endif
3896 int netif_set_real_num_queues(struct net_device *dev,
3897 			      unsigned int txq, unsigned int rxq);
3898 
3899 int netif_get_num_default_rss_queues(void);
3900 
3901 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3902 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3903 
3904 /*
3905  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3906  * interrupt context or with hardware interrupts being disabled.
3907  * (in_hardirq() || irqs_disabled())
3908  *
3909  * We provide four helpers that can be used in following contexts :
3910  *
3911  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3912  *  replacing kfree_skb(skb)
3913  *
3914  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3915  *  Typically used in place of consume_skb(skb) in TX completion path
3916  *
3917  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3918  *  replacing kfree_skb(skb)
3919  *
3920  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3921  *  and consumed a packet. Used in place of consume_skb(skb)
3922  */
3923 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3924 {
3925 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3926 }
3927 
3928 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3929 {
3930 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3931 }
3932 
3933 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3934 {
3935 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3936 }
3937 
3938 static inline void dev_consume_skb_any(struct sk_buff *skb)
3939 {
3940 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3941 }
3942 
3943 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3944 			     struct bpf_prog *xdp_prog);
3945 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3946 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3947 int netif_rx(struct sk_buff *skb);
3948 int __netif_rx(struct sk_buff *skb);
3949 
3950 int netif_receive_skb(struct sk_buff *skb);
3951 int netif_receive_skb_core(struct sk_buff *skb);
3952 void netif_receive_skb_list_internal(struct list_head *head);
3953 void netif_receive_skb_list(struct list_head *head);
3954 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3955 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3956 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3957 void napi_get_frags_check(struct napi_struct *napi);
3958 gro_result_t napi_gro_frags(struct napi_struct *napi);
3959 
3960 static inline void napi_free_frags(struct napi_struct *napi)
3961 {
3962 	kfree_skb(napi->skb);
3963 	napi->skb = NULL;
3964 }
3965 
3966 bool netdev_is_rx_handler_busy(struct net_device *dev);
3967 int netdev_rx_handler_register(struct net_device *dev,
3968 			       rx_handler_func_t *rx_handler,
3969 			       void *rx_handler_data);
3970 void netdev_rx_handler_unregister(struct net_device *dev);
3971 
3972 bool dev_valid_name(const char *name);
3973 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3974 {
3975 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3976 }
3977 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3978 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3979 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3980 		void __user *data, bool *need_copyout);
3981 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3982 int generic_hwtstamp_get_lower(struct net_device *dev,
3983 			       struct kernel_hwtstamp_config *kernel_cfg);
3984 int generic_hwtstamp_set_lower(struct net_device *dev,
3985 			       struct kernel_hwtstamp_config *kernel_cfg,
3986 			       struct netlink_ext_ack *extack);
3987 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3988 unsigned int dev_get_flags(const struct net_device *);
3989 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3990 		       struct netlink_ext_ack *extack);
3991 int dev_change_flags(struct net_device *dev, unsigned int flags,
3992 		     struct netlink_ext_ack *extack);
3993 int dev_set_alias(struct net_device *, const char *, size_t);
3994 int dev_get_alias(const struct net_device *, char *, size_t);
3995 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3996 			       const char *pat, int new_ifindex);
3997 static inline
3998 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3999 			     const char *pat)
4000 {
4001 	return __dev_change_net_namespace(dev, net, pat, 0);
4002 }
4003 int __dev_set_mtu(struct net_device *, int);
4004 int dev_set_mtu(struct net_device *, int);
4005 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4006 			      struct netlink_ext_ack *extack);
4007 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4008 			struct netlink_ext_ack *extack);
4009 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4010 			     struct netlink_ext_ack *extack);
4011 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4012 int dev_get_port_parent_id(struct net_device *dev,
4013 			   struct netdev_phys_item_id *ppid, bool recurse);
4014 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4015 
4016 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4017 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4018 				    struct netdev_queue *txq, int *ret);
4019 
4020 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4021 u8 dev_xdp_prog_count(struct net_device *dev);
4022 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4023 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4024 
4025 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4026 
4027 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4028 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4029 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4030 bool is_skb_forwardable(const struct net_device *dev,
4031 			const struct sk_buff *skb);
4032 
4033 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4034 						 const struct sk_buff *skb,
4035 						 const bool check_mtu)
4036 {
4037 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4038 	unsigned int len;
4039 
4040 	if (!(dev->flags & IFF_UP))
4041 		return false;
4042 
4043 	if (!check_mtu)
4044 		return true;
4045 
4046 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4047 	if (skb->len <= len)
4048 		return true;
4049 
4050 	/* if TSO is enabled, we don't care about the length as the packet
4051 	 * could be forwarded without being segmented before
4052 	 */
4053 	if (skb_is_gso(skb))
4054 		return true;
4055 
4056 	return false;
4057 }
4058 
4059 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4060 
4061 #define DEV_CORE_STATS_INC(FIELD)						\
4062 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4063 {										\
4064 	netdev_core_stats_inc(dev,						\
4065 			offsetof(struct net_device_core_stats, FIELD));		\
4066 }
4067 DEV_CORE_STATS_INC(rx_dropped)
4068 DEV_CORE_STATS_INC(tx_dropped)
4069 DEV_CORE_STATS_INC(rx_nohandler)
4070 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4071 #undef DEV_CORE_STATS_INC
4072 
4073 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4074 					       struct sk_buff *skb,
4075 					       const bool check_mtu)
4076 {
4077 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4078 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4079 		dev_core_stats_rx_dropped_inc(dev);
4080 		kfree_skb(skb);
4081 		return NET_RX_DROP;
4082 	}
4083 
4084 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4085 	skb->priority = 0;
4086 	return 0;
4087 }
4088 
4089 bool dev_nit_active(struct net_device *dev);
4090 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4091 
4092 static inline void __dev_put(struct net_device *dev)
4093 {
4094 	if (dev) {
4095 #ifdef CONFIG_PCPU_DEV_REFCNT
4096 		this_cpu_dec(*dev->pcpu_refcnt);
4097 #else
4098 		refcount_dec(&dev->dev_refcnt);
4099 #endif
4100 	}
4101 }
4102 
4103 static inline void __dev_hold(struct net_device *dev)
4104 {
4105 	if (dev) {
4106 #ifdef CONFIG_PCPU_DEV_REFCNT
4107 		this_cpu_inc(*dev->pcpu_refcnt);
4108 #else
4109 		refcount_inc(&dev->dev_refcnt);
4110 #endif
4111 	}
4112 }
4113 
4114 static inline void __netdev_tracker_alloc(struct net_device *dev,
4115 					  netdevice_tracker *tracker,
4116 					  gfp_t gfp)
4117 {
4118 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4119 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4120 #endif
4121 }
4122 
4123 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4124  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4125  */
4126 static inline void netdev_tracker_alloc(struct net_device *dev,
4127 					netdevice_tracker *tracker, gfp_t gfp)
4128 {
4129 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4130 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4131 	__netdev_tracker_alloc(dev, tracker, gfp);
4132 #endif
4133 }
4134 
4135 static inline void netdev_tracker_free(struct net_device *dev,
4136 				       netdevice_tracker *tracker)
4137 {
4138 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4139 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4140 #endif
4141 }
4142 
4143 static inline void netdev_hold(struct net_device *dev,
4144 			       netdevice_tracker *tracker, gfp_t gfp)
4145 {
4146 	if (dev) {
4147 		__dev_hold(dev);
4148 		__netdev_tracker_alloc(dev, tracker, gfp);
4149 	}
4150 }
4151 
4152 static inline void netdev_put(struct net_device *dev,
4153 			      netdevice_tracker *tracker)
4154 {
4155 	if (dev) {
4156 		netdev_tracker_free(dev, tracker);
4157 		__dev_put(dev);
4158 	}
4159 }
4160 
4161 /**
4162  *	dev_hold - get reference to device
4163  *	@dev: network device
4164  *
4165  * Hold reference to device to keep it from being freed.
4166  * Try using netdev_hold() instead.
4167  */
4168 static inline void dev_hold(struct net_device *dev)
4169 {
4170 	netdev_hold(dev, NULL, GFP_ATOMIC);
4171 }
4172 
4173 /**
4174  *	dev_put - release reference to device
4175  *	@dev: network device
4176  *
4177  * Release reference to device to allow it to be freed.
4178  * Try using netdev_put() instead.
4179  */
4180 static inline void dev_put(struct net_device *dev)
4181 {
4182 	netdev_put(dev, NULL);
4183 }
4184 
4185 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4186 
4187 static inline void netdev_ref_replace(struct net_device *odev,
4188 				      struct net_device *ndev,
4189 				      netdevice_tracker *tracker,
4190 				      gfp_t gfp)
4191 {
4192 	if (odev)
4193 		netdev_tracker_free(odev, tracker);
4194 
4195 	__dev_hold(ndev);
4196 	__dev_put(odev);
4197 
4198 	if (ndev)
4199 		__netdev_tracker_alloc(ndev, tracker, gfp);
4200 }
4201 
4202 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4203  * and _off may be called from IRQ context, but it is caller
4204  * who is responsible for serialization of these calls.
4205  *
4206  * The name carrier is inappropriate, these functions should really be
4207  * called netif_lowerlayer_*() because they represent the state of any
4208  * kind of lower layer not just hardware media.
4209  */
4210 void linkwatch_fire_event(struct net_device *dev);
4211 
4212 /**
4213  * linkwatch_sync_dev - sync linkwatch for the given device
4214  * @dev: network device to sync linkwatch for
4215  *
4216  * Sync linkwatch for the given device, removing it from the
4217  * pending work list (if queued).
4218  */
4219 void linkwatch_sync_dev(struct net_device *dev);
4220 
4221 /**
4222  *	netif_carrier_ok - test if carrier present
4223  *	@dev: network device
4224  *
4225  * Check if carrier is present on device
4226  */
4227 static inline bool netif_carrier_ok(const struct net_device *dev)
4228 {
4229 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4230 }
4231 
4232 unsigned long dev_trans_start(struct net_device *dev);
4233 
4234 void __netdev_watchdog_up(struct net_device *dev);
4235 
4236 void netif_carrier_on(struct net_device *dev);
4237 void netif_carrier_off(struct net_device *dev);
4238 void netif_carrier_event(struct net_device *dev);
4239 
4240 /**
4241  *	netif_dormant_on - mark device as dormant.
4242  *	@dev: network device
4243  *
4244  * Mark device as dormant (as per RFC2863).
4245  *
4246  * The dormant state indicates that the relevant interface is not
4247  * actually in a condition to pass packets (i.e., it is not 'up') but is
4248  * in a "pending" state, waiting for some external event.  For "on-
4249  * demand" interfaces, this new state identifies the situation where the
4250  * interface is waiting for events to place it in the up state.
4251  */
4252 static inline void netif_dormant_on(struct net_device *dev)
4253 {
4254 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4255 		linkwatch_fire_event(dev);
4256 }
4257 
4258 /**
4259  *	netif_dormant_off - set device as not dormant.
4260  *	@dev: network device
4261  *
4262  * Device is not in dormant state.
4263  */
4264 static inline void netif_dormant_off(struct net_device *dev)
4265 {
4266 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4267 		linkwatch_fire_event(dev);
4268 }
4269 
4270 /**
4271  *	netif_dormant - test if device is dormant
4272  *	@dev: network device
4273  *
4274  * Check if device is dormant.
4275  */
4276 static inline bool netif_dormant(const struct net_device *dev)
4277 {
4278 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4279 }
4280 
4281 
4282 /**
4283  *	netif_testing_on - mark device as under test.
4284  *	@dev: network device
4285  *
4286  * Mark device as under test (as per RFC2863).
4287  *
4288  * The testing state indicates that some test(s) must be performed on
4289  * the interface. After completion, of the test, the interface state
4290  * will change to up, dormant, or down, as appropriate.
4291  */
4292 static inline void netif_testing_on(struct net_device *dev)
4293 {
4294 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4295 		linkwatch_fire_event(dev);
4296 }
4297 
4298 /**
4299  *	netif_testing_off - set device as not under test.
4300  *	@dev: network device
4301  *
4302  * Device is not in testing state.
4303  */
4304 static inline void netif_testing_off(struct net_device *dev)
4305 {
4306 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4307 		linkwatch_fire_event(dev);
4308 }
4309 
4310 /**
4311  *	netif_testing - test if device is under test
4312  *	@dev: network device
4313  *
4314  * Check if device is under test
4315  */
4316 static inline bool netif_testing(const struct net_device *dev)
4317 {
4318 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4319 }
4320 
4321 
4322 /**
4323  *	netif_oper_up - test if device is operational
4324  *	@dev: network device
4325  *
4326  * Check if carrier is operational
4327  */
4328 static inline bool netif_oper_up(const struct net_device *dev)
4329 {
4330 	unsigned int operstate = READ_ONCE(dev->operstate);
4331 
4332 	return	operstate == IF_OPER_UP ||
4333 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4334 }
4335 
4336 /**
4337  *	netif_device_present - is device available or removed
4338  *	@dev: network device
4339  *
4340  * Check if device has not been removed from system.
4341  */
4342 static inline bool netif_device_present(const struct net_device *dev)
4343 {
4344 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4345 }
4346 
4347 void netif_device_detach(struct net_device *dev);
4348 
4349 void netif_device_attach(struct net_device *dev);
4350 
4351 /*
4352  * Network interface message level settings
4353  */
4354 
4355 enum {
4356 	NETIF_MSG_DRV_BIT,
4357 	NETIF_MSG_PROBE_BIT,
4358 	NETIF_MSG_LINK_BIT,
4359 	NETIF_MSG_TIMER_BIT,
4360 	NETIF_MSG_IFDOWN_BIT,
4361 	NETIF_MSG_IFUP_BIT,
4362 	NETIF_MSG_RX_ERR_BIT,
4363 	NETIF_MSG_TX_ERR_BIT,
4364 	NETIF_MSG_TX_QUEUED_BIT,
4365 	NETIF_MSG_INTR_BIT,
4366 	NETIF_MSG_TX_DONE_BIT,
4367 	NETIF_MSG_RX_STATUS_BIT,
4368 	NETIF_MSG_PKTDATA_BIT,
4369 	NETIF_MSG_HW_BIT,
4370 	NETIF_MSG_WOL_BIT,
4371 
4372 	/* When you add a new bit above, update netif_msg_class_names array
4373 	 * in net/ethtool/common.c
4374 	 */
4375 	NETIF_MSG_CLASS_COUNT,
4376 };
4377 /* Both ethtool_ops interface and internal driver implementation use u32 */
4378 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4379 
4380 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4381 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4382 
4383 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4384 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4385 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4386 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4387 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4388 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4389 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4390 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4391 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4392 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4393 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4394 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4395 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4396 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4397 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4398 
4399 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4400 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4401 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4402 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4403 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4404 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4405 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4406 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4407 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4408 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4409 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4410 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4411 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4412 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4413 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4414 
4415 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4416 {
4417 	/* use default */
4418 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4419 		return default_msg_enable_bits;
4420 	if (debug_value == 0)	/* no output */
4421 		return 0;
4422 	/* set low N bits */
4423 	return (1U << debug_value) - 1;
4424 }
4425 
4426 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4427 {
4428 	spin_lock(&txq->_xmit_lock);
4429 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4430 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4431 }
4432 
4433 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4434 {
4435 	__acquire(&txq->_xmit_lock);
4436 	return true;
4437 }
4438 
4439 static inline void __netif_tx_release(struct netdev_queue *txq)
4440 {
4441 	__release(&txq->_xmit_lock);
4442 }
4443 
4444 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4445 {
4446 	spin_lock_bh(&txq->_xmit_lock);
4447 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4448 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4449 }
4450 
4451 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4452 {
4453 	bool ok = spin_trylock(&txq->_xmit_lock);
4454 
4455 	if (likely(ok)) {
4456 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4457 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4458 	}
4459 	return ok;
4460 }
4461 
4462 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4463 {
4464 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4465 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4466 	spin_unlock(&txq->_xmit_lock);
4467 }
4468 
4469 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4470 {
4471 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4472 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4473 	spin_unlock_bh(&txq->_xmit_lock);
4474 }
4475 
4476 /*
4477  * txq->trans_start can be read locklessly from dev_watchdog()
4478  */
4479 static inline void txq_trans_update(struct netdev_queue *txq)
4480 {
4481 	if (txq->xmit_lock_owner != -1)
4482 		WRITE_ONCE(txq->trans_start, jiffies);
4483 }
4484 
4485 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4486 {
4487 	unsigned long now = jiffies;
4488 
4489 	if (READ_ONCE(txq->trans_start) != now)
4490 		WRITE_ONCE(txq->trans_start, now);
4491 }
4492 
4493 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4494 static inline void netif_trans_update(struct net_device *dev)
4495 {
4496 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4497 
4498 	txq_trans_cond_update(txq);
4499 }
4500 
4501 /**
4502  *	netif_tx_lock - grab network device transmit lock
4503  *	@dev: network device
4504  *
4505  * Get network device transmit lock
4506  */
4507 void netif_tx_lock(struct net_device *dev);
4508 
4509 static inline void netif_tx_lock_bh(struct net_device *dev)
4510 {
4511 	local_bh_disable();
4512 	netif_tx_lock(dev);
4513 }
4514 
4515 void netif_tx_unlock(struct net_device *dev);
4516 
4517 static inline void netif_tx_unlock_bh(struct net_device *dev)
4518 {
4519 	netif_tx_unlock(dev);
4520 	local_bh_enable();
4521 }
4522 
4523 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4524 	if (!(dev)->lltx) {				\
4525 		__netif_tx_lock(txq, cpu);		\
4526 	} else {					\
4527 		__netif_tx_acquire(txq);		\
4528 	}						\
4529 }
4530 
4531 #define HARD_TX_TRYLOCK(dev, txq)			\
4532 	(!(dev)->lltx ?					\
4533 		__netif_tx_trylock(txq) :		\
4534 		__netif_tx_acquire(txq))
4535 
4536 #define HARD_TX_UNLOCK(dev, txq) {			\
4537 	if (!(dev)->lltx) {				\
4538 		__netif_tx_unlock(txq);			\
4539 	} else {					\
4540 		__netif_tx_release(txq);		\
4541 	}						\
4542 }
4543 
4544 static inline void netif_tx_disable(struct net_device *dev)
4545 {
4546 	unsigned int i;
4547 	int cpu;
4548 
4549 	local_bh_disable();
4550 	cpu = smp_processor_id();
4551 	spin_lock(&dev->tx_global_lock);
4552 	for (i = 0; i < dev->num_tx_queues; i++) {
4553 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4554 
4555 		__netif_tx_lock(txq, cpu);
4556 		netif_tx_stop_queue(txq);
4557 		__netif_tx_unlock(txq);
4558 	}
4559 	spin_unlock(&dev->tx_global_lock);
4560 	local_bh_enable();
4561 }
4562 
4563 static inline void netif_addr_lock(struct net_device *dev)
4564 {
4565 	unsigned char nest_level = 0;
4566 
4567 #ifdef CONFIG_LOCKDEP
4568 	nest_level = dev->nested_level;
4569 #endif
4570 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4571 }
4572 
4573 static inline void netif_addr_lock_bh(struct net_device *dev)
4574 {
4575 	unsigned char nest_level = 0;
4576 
4577 #ifdef CONFIG_LOCKDEP
4578 	nest_level = dev->nested_level;
4579 #endif
4580 	local_bh_disable();
4581 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4582 }
4583 
4584 static inline void netif_addr_unlock(struct net_device *dev)
4585 {
4586 	spin_unlock(&dev->addr_list_lock);
4587 }
4588 
4589 static inline void netif_addr_unlock_bh(struct net_device *dev)
4590 {
4591 	spin_unlock_bh(&dev->addr_list_lock);
4592 }
4593 
4594 /*
4595  * dev_addrs walker. Should be used only for read access. Call with
4596  * rcu_read_lock held.
4597  */
4598 #define for_each_dev_addr(dev, ha) \
4599 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4600 
4601 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4602 
4603 void ether_setup(struct net_device *dev);
4604 
4605 /* Allocate dummy net_device */
4606 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4607 
4608 /* Support for loadable net-drivers */
4609 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4610 				    unsigned char name_assign_type,
4611 				    void (*setup)(struct net_device *),
4612 				    unsigned int txqs, unsigned int rxqs);
4613 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4614 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4615 
4616 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4617 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4618 			 count)
4619 
4620 int register_netdev(struct net_device *dev);
4621 void unregister_netdev(struct net_device *dev);
4622 
4623 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4624 
4625 /* General hardware address lists handling functions */
4626 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4627 		   struct netdev_hw_addr_list *from_list, int addr_len);
4628 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4629 		      struct netdev_hw_addr_list *from_list, int addr_len);
4630 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4631 		       struct net_device *dev,
4632 		       int (*sync)(struct net_device *, const unsigned char *),
4633 		       int (*unsync)(struct net_device *,
4634 				     const unsigned char *));
4635 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4636 			   struct net_device *dev,
4637 			   int (*sync)(struct net_device *,
4638 				       const unsigned char *, int),
4639 			   int (*unsync)(struct net_device *,
4640 					 const unsigned char *, int));
4641 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4642 			      struct net_device *dev,
4643 			      int (*unsync)(struct net_device *,
4644 					    const unsigned char *, int));
4645 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4646 			  struct net_device *dev,
4647 			  int (*unsync)(struct net_device *,
4648 					const unsigned char *));
4649 void __hw_addr_init(struct netdev_hw_addr_list *list);
4650 
4651 /* Functions used for device addresses handling */
4652 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4653 		  const void *addr, size_t len);
4654 
4655 static inline void
4656 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4657 {
4658 	dev_addr_mod(dev, 0, addr, len);
4659 }
4660 
4661 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4662 {
4663 	__dev_addr_set(dev, addr, dev->addr_len);
4664 }
4665 
4666 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4667 		 unsigned char addr_type);
4668 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4669 		 unsigned char addr_type);
4670 
4671 /* Functions used for unicast addresses handling */
4672 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4673 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4674 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4675 int dev_uc_sync(struct net_device *to, struct net_device *from);
4676 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4677 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4678 void dev_uc_flush(struct net_device *dev);
4679 void dev_uc_init(struct net_device *dev);
4680 
4681 /**
4682  *  __dev_uc_sync - Synchronize device's unicast list
4683  *  @dev:  device to sync
4684  *  @sync: function to call if address should be added
4685  *  @unsync: function to call if address should be removed
4686  *
4687  *  Add newly added addresses to the interface, and release
4688  *  addresses that have been deleted.
4689  */
4690 static inline int __dev_uc_sync(struct net_device *dev,
4691 				int (*sync)(struct net_device *,
4692 					    const unsigned char *),
4693 				int (*unsync)(struct net_device *,
4694 					      const unsigned char *))
4695 {
4696 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4697 }
4698 
4699 /**
4700  *  __dev_uc_unsync - Remove synchronized addresses from device
4701  *  @dev:  device to sync
4702  *  @unsync: function to call if address should be removed
4703  *
4704  *  Remove all addresses that were added to the device by dev_uc_sync().
4705  */
4706 static inline void __dev_uc_unsync(struct net_device *dev,
4707 				   int (*unsync)(struct net_device *,
4708 						 const unsigned char *))
4709 {
4710 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4711 }
4712 
4713 /* Functions used for multicast addresses handling */
4714 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4715 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4716 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4717 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4718 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4719 int dev_mc_sync(struct net_device *to, struct net_device *from);
4720 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4721 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4722 void dev_mc_flush(struct net_device *dev);
4723 void dev_mc_init(struct net_device *dev);
4724 
4725 /**
4726  *  __dev_mc_sync - Synchronize device's multicast list
4727  *  @dev:  device to sync
4728  *  @sync: function to call if address should be added
4729  *  @unsync: function to call if address should be removed
4730  *
4731  *  Add newly added addresses to the interface, and release
4732  *  addresses that have been deleted.
4733  */
4734 static inline int __dev_mc_sync(struct net_device *dev,
4735 				int (*sync)(struct net_device *,
4736 					    const unsigned char *),
4737 				int (*unsync)(struct net_device *,
4738 					      const unsigned char *))
4739 {
4740 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4741 }
4742 
4743 /**
4744  *  __dev_mc_unsync - Remove synchronized addresses from device
4745  *  @dev:  device to sync
4746  *  @unsync: function to call if address should be removed
4747  *
4748  *  Remove all addresses that were added to the device by dev_mc_sync().
4749  */
4750 static inline void __dev_mc_unsync(struct net_device *dev,
4751 				   int (*unsync)(struct net_device *,
4752 						 const unsigned char *))
4753 {
4754 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4755 }
4756 
4757 /* Functions used for secondary unicast and multicast support */
4758 void dev_set_rx_mode(struct net_device *dev);
4759 int dev_set_promiscuity(struct net_device *dev, int inc);
4760 int dev_set_allmulti(struct net_device *dev, int inc);
4761 void netdev_state_change(struct net_device *dev);
4762 void __netdev_notify_peers(struct net_device *dev);
4763 void netdev_notify_peers(struct net_device *dev);
4764 void netdev_features_change(struct net_device *dev);
4765 /* Load a device via the kmod */
4766 void dev_load(struct net *net, const char *name);
4767 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4768 					struct rtnl_link_stats64 *storage);
4769 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4770 			     const struct net_device_stats *netdev_stats);
4771 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4772 			   const struct pcpu_sw_netstats __percpu *netstats);
4773 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4774 
4775 enum {
4776 	NESTED_SYNC_IMM_BIT,
4777 	NESTED_SYNC_TODO_BIT,
4778 };
4779 
4780 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4781 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4782 
4783 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4784 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4785 
4786 struct netdev_nested_priv {
4787 	unsigned char flags;
4788 	void *data;
4789 };
4790 
4791 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4792 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4793 						     struct list_head **iter);
4794 
4795 /* iterate through upper list, must be called under RCU read lock */
4796 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4797 	for (iter = &(dev)->adj_list.upper, \
4798 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4799 	     updev; \
4800 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4801 
4802 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4803 				  int (*fn)(struct net_device *upper_dev,
4804 					    struct netdev_nested_priv *priv),
4805 				  struct netdev_nested_priv *priv);
4806 
4807 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4808 				  struct net_device *upper_dev);
4809 
4810 bool netdev_has_any_upper_dev(struct net_device *dev);
4811 
4812 void *netdev_lower_get_next_private(struct net_device *dev,
4813 				    struct list_head **iter);
4814 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4815 					struct list_head **iter);
4816 
4817 #define netdev_for_each_lower_private(dev, priv, iter) \
4818 	for (iter = (dev)->adj_list.lower.next, \
4819 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4820 	     priv; \
4821 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4822 
4823 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4824 	for (iter = &(dev)->adj_list.lower, \
4825 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4826 	     priv; \
4827 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4828 
4829 void *netdev_lower_get_next(struct net_device *dev,
4830 				struct list_head **iter);
4831 
4832 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4833 	for (iter = (dev)->adj_list.lower.next, \
4834 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4835 	     ldev; \
4836 	     ldev = netdev_lower_get_next(dev, &(iter)))
4837 
4838 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4839 					     struct list_head **iter);
4840 int netdev_walk_all_lower_dev(struct net_device *dev,
4841 			      int (*fn)(struct net_device *lower_dev,
4842 					struct netdev_nested_priv *priv),
4843 			      struct netdev_nested_priv *priv);
4844 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4845 				  int (*fn)(struct net_device *lower_dev,
4846 					    struct netdev_nested_priv *priv),
4847 				  struct netdev_nested_priv *priv);
4848 
4849 void *netdev_adjacent_get_private(struct list_head *adj_list);
4850 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4851 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4852 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4853 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4854 			  struct netlink_ext_ack *extack);
4855 int netdev_master_upper_dev_link(struct net_device *dev,
4856 				 struct net_device *upper_dev,
4857 				 void *upper_priv, void *upper_info,
4858 				 struct netlink_ext_ack *extack);
4859 void netdev_upper_dev_unlink(struct net_device *dev,
4860 			     struct net_device *upper_dev);
4861 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4862 				   struct net_device *new_dev,
4863 				   struct net_device *dev,
4864 				   struct netlink_ext_ack *extack);
4865 void netdev_adjacent_change_commit(struct net_device *old_dev,
4866 				   struct net_device *new_dev,
4867 				   struct net_device *dev);
4868 void netdev_adjacent_change_abort(struct net_device *old_dev,
4869 				  struct net_device *new_dev,
4870 				  struct net_device *dev);
4871 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4872 void *netdev_lower_dev_get_private(struct net_device *dev,
4873 				   struct net_device *lower_dev);
4874 void netdev_lower_state_changed(struct net_device *lower_dev,
4875 				void *lower_state_info);
4876 
4877 /* RSS keys are 40 or 52 bytes long */
4878 #define NETDEV_RSS_KEY_LEN 52
4879 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4880 void netdev_rss_key_fill(void *buffer, size_t len);
4881 
4882 int skb_checksum_help(struct sk_buff *skb);
4883 int skb_crc32c_csum_help(struct sk_buff *skb);
4884 int skb_csum_hwoffload_help(struct sk_buff *skb,
4885 			    const netdev_features_t features);
4886 
4887 struct netdev_bonding_info {
4888 	ifslave	slave;
4889 	ifbond	master;
4890 };
4891 
4892 struct netdev_notifier_bonding_info {
4893 	struct netdev_notifier_info info; /* must be first */
4894 	struct netdev_bonding_info  bonding_info;
4895 };
4896 
4897 void netdev_bonding_info_change(struct net_device *dev,
4898 				struct netdev_bonding_info *bonding_info);
4899 
4900 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4901 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4902 #else
4903 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4904 				  const void *data)
4905 {
4906 }
4907 #endif
4908 
4909 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4910 
4911 static inline bool can_checksum_protocol(netdev_features_t features,
4912 					 __be16 protocol)
4913 {
4914 	if (protocol == htons(ETH_P_FCOE))
4915 		return !!(features & NETIF_F_FCOE_CRC);
4916 
4917 	/* Assume this is an IP checksum (not SCTP CRC) */
4918 
4919 	if (features & NETIF_F_HW_CSUM) {
4920 		/* Can checksum everything */
4921 		return true;
4922 	}
4923 
4924 	switch (protocol) {
4925 	case htons(ETH_P_IP):
4926 		return !!(features & NETIF_F_IP_CSUM);
4927 	case htons(ETH_P_IPV6):
4928 		return !!(features & NETIF_F_IPV6_CSUM);
4929 	default:
4930 		return false;
4931 	}
4932 }
4933 
4934 #ifdef CONFIG_BUG
4935 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4936 #else
4937 static inline void netdev_rx_csum_fault(struct net_device *dev,
4938 					struct sk_buff *skb)
4939 {
4940 }
4941 #endif
4942 /* rx skb timestamps */
4943 void net_enable_timestamp(void);
4944 void net_disable_timestamp(void);
4945 
4946 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4947 					const struct skb_shared_hwtstamps *hwtstamps,
4948 					bool cycles)
4949 {
4950 	const struct net_device_ops *ops = dev->netdev_ops;
4951 
4952 	if (ops->ndo_get_tstamp)
4953 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4954 
4955 	return hwtstamps->hwtstamp;
4956 }
4957 
4958 #ifndef CONFIG_PREEMPT_RT
4959 static inline void netdev_xmit_set_more(bool more)
4960 {
4961 	__this_cpu_write(softnet_data.xmit.more, more);
4962 }
4963 
4964 static inline bool netdev_xmit_more(void)
4965 {
4966 	return __this_cpu_read(softnet_data.xmit.more);
4967 }
4968 #else
4969 static inline void netdev_xmit_set_more(bool more)
4970 {
4971 	current->net_xmit.more = more;
4972 }
4973 
4974 static inline bool netdev_xmit_more(void)
4975 {
4976 	return current->net_xmit.more;
4977 }
4978 #endif
4979 
4980 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4981 					      struct sk_buff *skb, struct net_device *dev,
4982 					      bool more)
4983 {
4984 	netdev_xmit_set_more(more);
4985 	return ops->ndo_start_xmit(skb, dev);
4986 }
4987 
4988 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4989 					    struct netdev_queue *txq, bool more)
4990 {
4991 	const struct net_device_ops *ops = dev->netdev_ops;
4992 	netdev_tx_t rc;
4993 
4994 	rc = __netdev_start_xmit(ops, skb, dev, more);
4995 	if (rc == NETDEV_TX_OK)
4996 		txq_trans_update(txq);
4997 
4998 	return rc;
4999 }
5000 
5001 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5002 				const void *ns);
5003 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5004 				 const void *ns);
5005 
5006 extern const struct kobj_ns_type_operations net_ns_type_operations;
5007 
5008 const char *netdev_drivername(const struct net_device *dev);
5009 
5010 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5011 							  netdev_features_t f2)
5012 {
5013 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5014 		if (f1 & NETIF_F_HW_CSUM)
5015 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5016 		else
5017 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5018 	}
5019 
5020 	return f1 & f2;
5021 }
5022 
5023 static inline netdev_features_t netdev_get_wanted_features(
5024 	struct net_device *dev)
5025 {
5026 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5027 }
5028 netdev_features_t netdev_increment_features(netdev_features_t all,
5029 	netdev_features_t one, netdev_features_t mask);
5030 
5031 /* Allow TSO being used on stacked device :
5032  * Performing the GSO segmentation before last device
5033  * is a performance improvement.
5034  */
5035 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5036 							netdev_features_t mask)
5037 {
5038 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5039 }
5040 
5041 int __netdev_update_features(struct net_device *dev);
5042 void netdev_update_features(struct net_device *dev);
5043 void netdev_change_features(struct net_device *dev);
5044 
5045 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5046 					struct net_device *dev);
5047 
5048 netdev_features_t passthru_features_check(struct sk_buff *skb,
5049 					  struct net_device *dev,
5050 					  netdev_features_t features);
5051 netdev_features_t netif_skb_features(struct sk_buff *skb);
5052 void skb_warn_bad_offload(const struct sk_buff *skb);
5053 
5054 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5055 {
5056 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5057 
5058 	/* check flags correspondence */
5059 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5060 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5061 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5062 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5063 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5064 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5065 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5066 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5067 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5068 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5069 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5070 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5071 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5072 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5073 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5074 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5075 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5076 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5077 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5078 
5079 	return (features & feature) == feature;
5080 }
5081 
5082 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5083 {
5084 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5085 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5086 }
5087 
5088 static inline bool netif_needs_gso(struct sk_buff *skb,
5089 				   netdev_features_t features)
5090 {
5091 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5092 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5093 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5094 }
5095 
5096 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5097 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5098 void netif_inherit_tso_max(struct net_device *to,
5099 			   const struct net_device *from);
5100 
5101 static inline unsigned int
5102 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5103 {
5104 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5105 	return skb->protocol == htons(ETH_P_IPV6) ?
5106 	       READ_ONCE(dev->gro_max_size) :
5107 	       READ_ONCE(dev->gro_ipv4_max_size);
5108 }
5109 
5110 static inline unsigned int
5111 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5112 {
5113 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5114 	return skb->protocol == htons(ETH_P_IPV6) ?
5115 	       READ_ONCE(dev->gso_max_size) :
5116 	       READ_ONCE(dev->gso_ipv4_max_size);
5117 }
5118 
5119 static inline bool netif_is_macsec(const struct net_device *dev)
5120 {
5121 	return dev->priv_flags & IFF_MACSEC;
5122 }
5123 
5124 static inline bool netif_is_macvlan(const struct net_device *dev)
5125 {
5126 	return dev->priv_flags & IFF_MACVLAN;
5127 }
5128 
5129 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5130 {
5131 	return dev->priv_flags & IFF_MACVLAN_PORT;
5132 }
5133 
5134 static inline bool netif_is_bond_master(const struct net_device *dev)
5135 {
5136 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5137 }
5138 
5139 static inline bool netif_is_bond_slave(const struct net_device *dev)
5140 {
5141 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5142 }
5143 
5144 static inline bool netif_supports_nofcs(struct net_device *dev)
5145 {
5146 	return dev->priv_flags & IFF_SUPP_NOFCS;
5147 }
5148 
5149 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5150 {
5151 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5152 }
5153 
5154 static inline bool netif_is_l3_master(const struct net_device *dev)
5155 {
5156 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5157 }
5158 
5159 static inline bool netif_is_l3_slave(const struct net_device *dev)
5160 {
5161 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5162 }
5163 
5164 static inline int dev_sdif(const struct net_device *dev)
5165 {
5166 #ifdef CONFIG_NET_L3_MASTER_DEV
5167 	if (netif_is_l3_slave(dev))
5168 		return dev->ifindex;
5169 #endif
5170 	return 0;
5171 }
5172 
5173 static inline bool netif_is_bridge_master(const struct net_device *dev)
5174 {
5175 	return dev->priv_flags & IFF_EBRIDGE;
5176 }
5177 
5178 static inline bool netif_is_bridge_port(const struct net_device *dev)
5179 {
5180 	return dev->priv_flags & IFF_BRIDGE_PORT;
5181 }
5182 
5183 static inline bool netif_is_ovs_master(const struct net_device *dev)
5184 {
5185 	return dev->priv_flags & IFF_OPENVSWITCH;
5186 }
5187 
5188 static inline bool netif_is_ovs_port(const struct net_device *dev)
5189 {
5190 	return dev->priv_flags & IFF_OVS_DATAPATH;
5191 }
5192 
5193 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5194 {
5195 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5196 }
5197 
5198 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5199 {
5200 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5201 }
5202 
5203 static inline bool netif_is_team_master(const struct net_device *dev)
5204 {
5205 	return dev->priv_flags & IFF_TEAM;
5206 }
5207 
5208 static inline bool netif_is_team_port(const struct net_device *dev)
5209 {
5210 	return dev->priv_flags & IFF_TEAM_PORT;
5211 }
5212 
5213 static inline bool netif_is_lag_master(const struct net_device *dev)
5214 {
5215 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5216 }
5217 
5218 static inline bool netif_is_lag_port(const struct net_device *dev)
5219 {
5220 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5221 }
5222 
5223 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5224 {
5225 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5226 }
5227 
5228 static inline bool netif_is_failover(const struct net_device *dev)
5229 {
5230 	return dev->priv_flags & IFF_FAILOVER;
5231 }
5232 
5233 static inline bool netif_is_failover_slave(const struct net_device *dev)
5234 {
5235 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5236 }
5237 
5238 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5239 static inline void netif_keep_dst(struct net_device *dev)
5240 {
5241 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5242 }
5243 
5244 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5245 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5246 {
5247 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5248 	return netif_is_macsec(dev);
5249 }
5250 
5251 extern struct pernet_operations __net_initdata loopback_net_ops;
5252 
5253 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5254 
5255 /* netdev_printk helpers, similar to dev_printk */
5256 
5257 static inline const char *netdev_name(const struct net_device *dev)
5258 {
5259 	if (!dev->name[0] || strchr(dev->name, '%'))
5260 		return "(unnamed net_device)";
5261 	return dev->name;
5262 }
5263 
5264 static inline const char *netdev_reg_state(const struct net_device *dev)
5265 {
5266 	u8 reg_state = READ_ONCE(dev->reg_state);
5267 
5268 	switch (reg_state) {
5269 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5270 	case NETREG_REGISTERED: return "";
5271 	case NETREG_UNREGISTERING: return " (unregistering)";
5272 	case NETREG_UNREGISTERED: return " (unregistered)";
5273 	case NETREG_RELEASED: return " (released)";
5274 	case NETREG_DUMMY: return " (dummy)";
5275 	}
5276 
5277 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5278 	return " (unknown)";
5279 }
5280 
5281 #define MODULE_ALIAS_NETDEV(device) \
5282 	MODULE_ALIAS("netdev-" device)
5283 
5284 /*
5285  * netdev_WARN() acts like dev_printk(), but with the key difference
5286  * of using a WARN/WARN_ON to get the message out, including the
5287  * file/line information and a backtrace.
5288  */
5289 #define netdev_WARN(dev, format, args...)			\
5290 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5291 	     netdev_reg_state(dev), ##args)
5292 
5293 #define netdev_WARN_ONCE(dev, format, args...)				\
5294 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5295 		  netdev_reg_state(dev), ##args)
5296 
5297 /*
5298  *	The list of packet types we will receive (as opposed to discard)
5299  *	and the routines to invoke.
5300  *
5301  *	Why 16. Because with 16 the only overlap we get on a hash of the
5302  *	low nibble of the protocol value is RARP/SNAP/X.25.
5303  *
5304  *		0800	IP
5305  *		0001	802.3
5306  *		0002	AX.25
5307  *		0004	802.2
5308  *		8035	RARP
5309  *		0005	SNAP
5310  *		0805	X.25
5311  *		0806	ARP
5312  *		8137	IPX
5313  *		0009	Localtalk
5314  *		86DD	IPv6
5315  */
5316 #define PTYPE_HASH_SIZE	(16)
5317 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5318 
5319 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5320 
5321 extern struct net_device *blackhole_netdev;
5322 
5323 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5324 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5325 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5326 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5327 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5328 
5329 #endif	/* _LINUX_NETDEVICE_H */
5330