xref: /linux-6.15/include/linux/netdevice.h (revision 9ee0034b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 				    const struct ethtool_ops *ops);
71 
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
74 #define NET_RX_DROP		1	/* packet dropped */
75 
76 /*
77  * Transmit return codes: transmit return codes originate from three different
78  * namespaces:
79  *
80  * - qdisc return codes
81  * - driver transmit return codes
82  * - errno values
83  *
84  * Drivers are allowed to return any one of those in their hard_start_xmit()
85  * function. Real network devices commonly used with qdiscs should only return
86  * the driver transmit return codes though - when qdiscs are used, the actual
87  * transmission happens asynchronously, so the value is not propagated to
88  * higher layers. Virtual network devices transmit synchronously; in this case
89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90  * others are propagated to higher layers.
91  */
92 
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS	0x00
95 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
96 #define NET_XMIT_CN		0x02	/* congestion notification	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114 
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 	/*
122 	 * Positive cases with an skb consumed by a driver:
123 	 * - successful transmission (rc == NETDEV_TX_OK)
124 	 * - error while transmitting (rc < 0)
125 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 	 */
127 	if (likely(rc < NET_XMIT_MASK))
128 		return true;
129 
130 	return false;
131 }
132 
133 /*
134  *	Compute the worst-case header length according to the protocols
135  *	used.
136  */
137 
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149 
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156 
157 /*
158  *	Old network device statistics. Fields are native words
159  *	(unsigned long) so they can be read and written atomically.
160  */
161 
162 struct net_device_stats {
163 	unsigned long	rx_packets;
164 	unsigned long	tx_packets;
165 	unsigned long	rx_bytes;
166 	unsigned long	tx_bytes;
167 	unsigned long	rx_errors;
168 	unsigned long	tx_errors;
169 	unsigned long	rx_dropped;
170 	unsigned long	tx_dropped;
171 	unsigned long	multicast;
172 	unsigned long	collisions;
173 	unsigned long	rx_length_errors;
174 	unsigned long	rx_over_errors;
175 	unsigned long	rx_crc_errors;
176 	unsigned long	rx_frame_errors;
177 	unsigned long	rx_fifo_errors;
178 	unsigned long	rx_missed_errors;
179 	unsigned long	tx_aborted_errors;
180 	unsigned long	tx_carrier_errors;
181 	unsigned long	tx_fifo_errors;
182 	unsigned long	tx_heartbeat_errors;
183 	unsigned long	tx_window_errors;
184 	unsigned long	rx_compressed;
185 	unsigned long	tx_compressed;
186 };
187 
188 
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191 
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	u16		hh_len;
239 	u16		__pad;
240 	seqlock_t	hh_lock;
241 
242 	/* cached hardware header; allow for machine alignment needs.        */
243 #define HH_DATA_MOD	16
244 #define HH_DATA_OFF(__len) \
245 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
246 #define HH_DATA_ALIGN(__len) \
247 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
248 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
249 };
250 
251 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
252  * Alternative is:
253  *   dev->hard_header_len ? (dev->hard_header_len +
254  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
255  *
256  * We could use other alignment values, but we must maintain the
257  * relationship HH alignment <= LL alignment.
258  */
259 #define LL_RESERVED_SPACE(dev) \
260 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
262 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 
264 struct header_ops {
265 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
266 			   unsigned short type, const void *daddr,
267 			   const void *saddr, unsigned int len);
268 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
269 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
270 	void	(*cache_update)(struct hh_cache *hh,
271 				const struct net_device *dev,
272 				const unsigned char *haddr);
273 	bool	(*validate)(const char *ll_header, unsigned int len);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 /*
303  * Structure for NAPI scheduling similar to tasklet but with weighting
304  */
305 struct napi_struct {
306 	/* The poll_list must only be managed by the entity which
307 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
308 	 * whoever atomically sets that bit can add this napi_struct
309 	 * to the per-CPU poll_list, and whoever clears that bit
310 	 * can remove from the list right before clearing the bit.
311 	 */
312 	struct list_head	poll_list;
313 
314 	unsigned long		state;
315 	int			weight;
316 	unsigned int		gro_count;
317 	int			(*poll)(struct napi_struct *, int);
318 #ifdef CONFIG_NETPOLL
319 	spinlock_t		poll_lock;
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_DISABLE,	/* Disable pending */
334 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
335 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
336 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 };
338 
339 enum gro_result {
340 	GRO_MERGED,
341 	GRO_MERGED_FREE,
342 	GRO_HELD,
343 	GRO_NORMAL,
344 	GRO_DROP,
345 };
346 typedef enum gro_result gro_result_t;
347 
348 /*
349  * enum rx_handler_result - Possible return values for rx_handlers.
350  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
351  * further.
352  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
353  * case skb->dev was changed by rx_handler.
354  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
355  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
356  *
357  * rx_handlers are functions called from inside __netif_receive_skb(), to do
358  * special processing of the skb, prior to delivery to protocol handlers.
359  *
360  * Currently, a net_device can only have a single rx_handler registered. Trying
361  * to register a second rx_handler will return -EBUSY.
362  *
363  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
364  * To unregister a rx_handler on a net_device, use
365  * netdev_rx_handler_unregister().
366  *
367  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
368  * do with the skb.
369  *
370  * If the rx_handler consumed the skb in some way, it should return
371  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
372  * the skb to be delivered in some other way.
373  *
374  * If the rx_handler changed skb->dev, to divert the skb to another
375  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
376  * new device will be called if it exists.
377  *
378  * If the rx_handler decides the skb should be ignored, it should return
379  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
380  * are registered on exact device (ptype->dev == skb->dev).
381  *
382  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
383  * delivered, it should return RX_HANDLER_PASS.
384  *
385  * A device without a registered rx_handler will behave as if rx_handler
386  * returned RX_HANDLER_PASS.
387  */
388 
389 enum rx_handler_result {
390 	RX_HANDLER_CONSUMED,
391 	RX_HANDLER_ANOTHER,
392 	RX_HANDLER_EXACT,
393 	RX_HANDLER_PASS,
394 };
395 typedef enum rx_handler_result rx_handler_result_t;
396 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
397 
398 void __napi_schedule(struct napi_struct *n);
399 void __napi_schedule_irqoff(struct napi_struct *n);
400 
401 static inline bool napi_disable_pending(struct napi_struct *n)
402 {
403 	return test_bit(NAPI_STATE_DISABLE, &n->state);
404 }
405 
406 /**
407  *	napi_schedule_prep - check if NAPI can be scheduled
408  *	@n: NAPI context
409  *
410  * Test if NAPI routine is already running, and if not mark
411  * it as running.  This is used as a condition variable to
412  * insure only one NAPI poll instance runs.  We also make
413  * sure there is no pending NAPI disable.
414  */
415 static inline bool napi_schedule_prep(struct napi_struct *n)
416 {
417 	return !napi_disable_pending(n) &&
418 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
419 }
420 
421 /**
422  *	napi_schedule - schedule NAPI poll
423  *	@n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 	if (napi_schedule_prep(n))
431 		__napi_schedule(n);
432 }
433 
434 /**
435  *	napi_schedule_irqoff - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 	if (napi_schedule_prep(napi)) {
450 		__napi_schedule(napi);
451 		return true;
452 	}
453 	return false;
454 }
455 
456 void __napi_complete(struct napi_struct *n);
457 void napi_complete_done(struct napi_struct *n, int work_done);
458 /**
459  *	napi_complete - NAPI processing complete
460  *	@n: NAPI context
461  *
462  * Mark NAPI processing as complete.
463  * Consider using napi_complete_done() instead.
464  */
465 static inline void napi_complete(struct napi_struct *n)
466 {
467 	return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *	napi_hash_add - add a NAPI to global hashtable
472  *	@napi: NAPI context
473  *
474  * Generate a new napi_id and store a @napi under it in napi_hash.
475  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
476  * Note: This is normally automatically done from netif_napi_add(),
477  * so might disappear in a future Linux version.
478  */
479 void napi_hash_add(struct napi_struct *napi);
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: NAPI context
484  *
485  * Warning: caller must observe RCU grace period
486  * before freeing memory containing @napi, if
487  * this function returns true.
488  * Note: core networking stack automatically calls it
489  * from netif_napi_del().
490  * Drivers might want to call this helper to combine all
491  * the needed RCU grace periods into a single one.
492  */
493 bool napi_hash_del(struct napi_struct *napi);
494 
495 /**
496  *	napi_disable - prevent NAPI from scheduling
497  *	@n: NAPI context
498  *
499  * Stop NAPI from being scheduled on this context.
500  * Waits till any outstanding processing completes.
501  */
502 void napi_disable(struct napi_struct *n);
503 
504 /**
505  *	napi_enable - enable NAPI scheduling
506  *	@n: NAPI context
507  *
508  * Resume NAPI from being scheduled on this context.
509  * Must be paired with napi_disable.
510  */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514 	smp_mb__before_atomic();
515 	clear_bit(NAPI_STATE_SCHED, &n->state);
516 	clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518 
519 /**
520  *	napi_synchronize - wait until NAPI is not running
521  *	@n: NAPI context
522  *
523  * Wait until NAPI is done being scheduled on this context.
524  * Waits till any outstanding processing completes but
525  * does not disable future activations.
526  */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 	if (IS_ENABLED(CONFIG_SMP))
530 		while (test_bit(NAPI_STATE_SCHED, &n->state))
531 			msleep(1);
532 	else
533 		barrier();
534 }
535 
536 enum netdev_queue_state_t {
537 	__QUEUE_STATE_DRV_XOFF,
538 	__QUEUE_STATE_STACK_XOFF,
539 	__QUEUE_STATE_FROZEN,
540 };
541 
542 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
545 
546 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548 					QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550 					QUEUE_STATE_FROZEN)
551 
552 /*
553  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
554  * netif_tx_* functions below are used to manipulate this flag.  The
555  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556  * queue independently.  The netif_xmit_*stopped functions below are called
557  * to check if the queue has been stopped by the driver or stack (either
558  * of the XOFF bits are set in the state).  Drivers should not need to call
559  * netif_xmit*stopped functions, they should only be using netif_tx_*.
560  */
561 
562 struct netdev_queue {
563 /*
564  * read-mostly part
565  */
566 	struct net_device	*dev;
567 	struct Qdisc __rcu	*qdisc;
568 	struct Qdisc		*qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570 	struct kobject		kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573 	int			numa_node;
574 #endif
575 	unsigned long		tx_maxrate;
576 	/*
577 	 * Number of TX timeouts for this queue
578 	 * (/sys/class/net/DEV/Q/trans_timeout)
579 	 */
580 	unsigned long		trans_timeout;
581 /*
582  * write-mostly part
583  */
584 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
585 	int			xmit_lock_owner;
586 	/*
587 	 * Time (in jiffies) of last Tx
588 	 */
589 	unsigned long		trans_start;
590 
591 	unsigned long		state;
592 
593 #ifdef CONFIG_BQL
594 	struct dql		dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	return q->numa_node;
602 #else
603 	return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620 	unsigned int len;
621 	struct rcu_head rcu;
622 	u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632 	u16 cpu;
633 	u16 filter;
634 	unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642 	unsigned int mask;
643 	struct rcu_head rcu;
644 	struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660 	u32	mask;
661 
662 	u32	ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 					u32 hash)
673 {
674 	if (table && hash) {
675 		unsigned int index = hash & table->mask;
676 		u32 val = hash & ~rps_cpu_mask;
677 
678 		/* We only give a hint, preemption can change CPU under us */
679 		val |= raw_smp_processor_id();
680 
681 		if (table->ents[index] != val)
682 			table->ents[index] = val;
683 	}
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 			 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 	struct rps_map __rcu		*rps_map;
696 	struct rps_dev_flow_table __rcu	*rps_flow_table;
697 #endif
698 	struct kobject			kobj;
699 	struct net_device		*dev;
700 } ____cacheline_aligned_in_smp;
701 
702 /*
703  * RX queue sysfs structures and functions.
704  */
705 struct rx_queue_attribute {
706 	struct attribute attr;
707 	ssize_t (*show)(struct netdev_rx_queue *queue,
708 	    struct rx_queue_attribute *attr, char *buf);
709 	ssize_t (*store)(struct netdev_rx_queue *queue,
710 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719 	unsigned int len;
720 	unsigned int alloc_len;
721 	struct rcu_head rcu;
722 	u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732 	struct rcu_head rcu;
733 	struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
736     (nr_cpu_ids * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE	16
740 #define TC_BITMASK	15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 	u16 count;
744 	u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753 	char	manufacturer[64];
754 	char	serial_number[64];
755 	char	hardware_version[64];
756 	char	driver_version[64];
757 	char	optionrom_version[64];
758 	char	firmware_version[64];
759 	char	model[256];
760 	char	model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 	unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 					    struct netdev_phys_item_id *b)
776 {
777 	return a->id_len == b->id_len &&
778 	       memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 				       struct sk_buff *skb);
783 
784 /* These structures hold the attributes of qdisc and classifiers
785  * that are being passed to the netdevice through the setup_tc op.
786  */
787 enum {
788 	TC_SETUP_MQPRIO,
789 	TC_SETUP_CLSU32,
790 	TC_SETUP_CLSFLOWER,
791 	TC_SETUP_MATCHALL,
792 };
793 
794 struct tc_cls_u32_offload;
795 
796 struct tc_to_netdev {
797 	unsigned int type;
798 	union {
799 		u8 tc;
800 		struct tc_cls_u32_offload *cls_u32;
801 		struct tc_cls_flower_offload *cls_flower;
802 		struct tc_cls_matchall_offload *cls_mall;
803 	};
804 };
805 
806 /* These structures hold the attributes of xdp state that are being passed
807  * to the netdevice through the xdp op.
808  */
809 enum xdp_netdev_command {
810 	/* Set or clear a bpf program used in the earliest stages of packet
811 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
812 	 * is responsible for calling bpf_prog_put on any old progs that are
813 	 * stored. In case of error, the callee need not release the new prog
814 	 * reference, but on success it takes ownership and must bpf_prog_put
815 	 * when it is no longer used.
816 	 */
817 	XDP_SETUP_PROG,
818 	/* Check if a bpf program is set on the device.  The callee should
819 	 * return true if a program is currently attached and running.
820 	 */
821 	XDP_QUERY_PROG,
822 };
823 
824 struct netdev_xdp {
825 	enum xdp_netdev_command command;
826 	union {
827 		/* XDP_SETUP_PROG */
828 		struct bpf_prog *prog;
829 		/* XDP_QUERY_PROG */
830 		bool prog_attached;
831 	};
832 };
833 
834 /*
835  * This structure defines the management hooks for network devices.
836  * The following hooks can be defined; unless noted otherwise, they are
837  * optional and can be filled with a null pointer.
838  *
839  * int (*ndo_init)(struct net_device *dev);
840  *     This function is called once when a network device is registered.
841  *     The network device can use this for any late stage initialization
842  *     or semantic validation. It can fail with an error code which will
843  *     be propagated back to register_netdev.
844  *
845  * void (*ndo_uninit)(struct net_device *dev);
846  *     This function is called when device is unregistered or when registration
847  *     fails. It is not called if init fails.
848  *
849  * int (*ndo_open)(struct net_device *dev);
850  *     This function is called when a network device transitions to the up
851  *     state.
852  *
853  * int (*ndo_stop)(struct net_device *dev);
854  *     This function is called when a network device transitions to the down
855  *     state.
856  *
857  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
858  *                               struct net_device *dev);
859  *	Called when a packet needs to be transmitted.
860  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
861  *	the queue before that can happen; it's for obsolete devices and weird
862  *	corner cases, but the stack really does a non-trivial amount
863  *	of useless work if you return NETDEV_TX_BUSY.
864  *	Required; cannot be NULL.
865  *
866  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
867  *		netdev_features_t features);
868  *	Adjusts the requested feature flags according to device-specific
869  *	constraints, and returns the resulting flags. Must not modify
870  *	the device state.
871  *
872  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
873  *                         void *accel_priv, select_queue_fallback_t fallback);
874  *	Called to decide which queue to use when device supports multiple
875  *	transmit queues.
876  *
877  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
878  *	This function is called to allow device receiver to make
879  *	changes to configuration when multicast or promiscuous is enabled.
880  *
881  * void (*ndo_set_rx_mode)(struct net_device *dev);
882  *	This function is called device changes address list filtering.
883  *	If driver handles unicast address filtering, it should set
884  *	IFF_UNICAST_FLT in its priv_flags.
885  *
886  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
887  *	This function  is called when the Media Access Control address
888  *	needs to be changed. If this interface is not defined, the
889  *	MAC address can not be changed.
890  *
891  * int (*ndo_validate_addr)(struct net_device *dev);
892  *	Test if Media Access Control address is valid for the device.
893  *
894  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
895  *	Called when a user requests an ioctl which can't be handled by
896  *	the generic interface code. If not defined ioctls return
897  *	not supported error code.
898  *
899  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
900  *	Used to set network devices bus interface parameters. This interface
901  *	is retained for legacy reasons; new devices should use the bus
902  *	interface (PCI) for low level management.
903  *
904  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
905  *	Called when a user wants to change the Maximum Transfer Unit
906  *	of a device. If not defined, any request to change MTU will
907  *	will return an error.
908  *
909  * void (*ndo_tx_timeout)(struct net_device *dev);
910  *	Callback used when the transmitter has not made any progress
911  *	for dev->watchdog ticks.
912  *
913  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
914  *                      struct rtnl_link_stats64 *storage);
915  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
916  *	Called when a user wants to get the network device usage
917  *	statistics. Drivers must do one of the following:
918  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
919  *	   rtnl_link_stats64 structure passed by the caller.
920  *	2. Define @ndo_get_stats to update a net_device_stats structure
921  *	   (which should normally be dev->stats) and return a pointer to
922  *	   it. The structure may be changed asynchronously only if each
923  *	   field is written atomically.
924  *	3. Update dev->stats asynchronously and atomically, and define
925  *	   neither operation.
926  *
927  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
928  *	If device supports VLAN filtering this function is called when a
929  *	VLAN id is registered.
930  *
931  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
932  *	If device supports VLAN filtering this function is called when a
933  *	VLAN id is unregistered.
934  *
935  * void (*ndo_poll_controller)(struct net_device *dev);
936  *
937  *	SR-IOV management functions.
938  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
939  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
940  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
941  *			  int max_tx_rate);
942  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
943  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
944  * int (*ndo_get_vf_config)(struct net_device *dev,
945  *			    int vf, struct ifla_vf_info *ivf);
946  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
947  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
948  *			  struct nlattr *port[]);
949  *
950  *      Enable or disable the VF ability to query its RSS Redirection Table and
951  *      Hash Key. This is needed since on some devices VF share this information
952  *      with PF and querying it may introduce a theoretical security risk.
953  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
954  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
955  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
956  * 	Called to setup 'tc' number of traffic classes in the net device. This
957  * 	is always called from the stack with the rtnl lock held and netif tx
958  * 	queues stopped. This allows the netdevice to perform queue management
959  * 	safely.
960  *
961  *	Fiber Channel over Ethernet (FCoE) offload functions.
962  * int (*ndo_fcoe_enable)(struct net_device *dev);
963  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
964  *	so the underlying device can perform whatever needed configuration or
965  *	initialization to support acceleration of FCoE traffic.
966  *
967  * int (*ndo_fcoe_disable)(struct net_device *dev);
968  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
969  *	so the underlying device can perform whatever needed clean-ups to
970  *	stop supporting acceleration of FCoE traffic.
971  *
972  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
973  *			     struct scatterlist *sgl, unsigned int sgc);
974  *	Called when the FCoE Initiator wants to initialize an I/O that
975  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
976  *	perform necessary setup and returns 1 to indicate the device is set up
977  *	successfully to perform DDP on this I/O, otherwise this returns 0.
978  *
979  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
980  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
981  *	indicated by the FC exchange id 'xid', so the underlying device can
982  *	clean up and reuse resources for later DDP requests.
983  *
984  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
985  *			      struct scatterlist *sgl, unsigned int sgc);
986  *	Called when the FCoE Target wants to initialize an I/O that
987  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
988  *	perform necessary setup and returns 1 to indicate the device is set up
989  *	successfully to perform DDP on this I/O, otherwise this returns 0.
990  *
991  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
992  *			       struct netdev_fcoe_hbainfo *hbainfo);
993  *	Called when the FCoE Protocol stack wants information on the underlying
994  *	device. This information is utilized by the FCoE protocol stack to
995  *	register attributes with Fiber Channel management service as per the
996  *	FC-GS Fabric Device Management Information(FDMI) specification.
997  *
998  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
999  *	Called when the underlying device wants to override default World Wide
1000  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1001  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1002  *	protocol stack to use.
1003  *
1004  *	RFS acceleration.
1005  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1006  *			    u16 rxq_index, u32 flow_id);
1007  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1008  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1009  *	Return the filter ID on success, or a negative error code.
1010  *
1011  *	Slave management functions (for bridge, bonding, etc).
1012  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1013  *	Called to make another netdev an underling.
1014  *
1015  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1016  *	Called to release previously enslaved netdev.
1017  *
1018  *      Feature/offload setting functions.
1019  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1020  *	Called to update device configuration to new features. Passed
1021  *	feature set might be less than what was returned by ndo_fix_features()).
1022  *	Must return >0 or -errno if it changed dev->features itself.
1023  *
1024  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1025  *		      struct net_device *dev,
1026  *		      const unsigned char *addr, u16 vid, u16 flags)
1027  *	Adds an FDB entry to dev for addr.
1028  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1029  *		      struct net_device *dev,
1030  *		      const unsigned char *addr, u16 vid)
1031  *	Deletes the FDB entry from dev coresponding to addr.
1032  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1033  *		       struct net_device *dev, struct net_device *filter_dev,
1034  *		       int *idx)
1035  *	Used to add FDB entries to dump requests. Implementers should add
1036  *	entries to skb and update idx with the number of entries.
1037  *
1038  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1039  *			     u16 flags)
1040  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1041  *			     struct net_device *dev, u32 filter_mask,
1042  *			     int nlflags)
1043  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1044  *			     u16 flags);
1045  *
1046  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1047  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1048  *	which do not represent real hardware may define this to allow their
1049  *	userspace components to manage their virtual carrier state. Devices
1050  *	that determine carrier state from physical hardware properties (eg
1051  *	network cables) or protocol-dependent mechanisms (eg
1052  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1053  *
1054  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1055  *			       struct netdev_phys_item_id *ppid);
1056  *	Called to get ID of physical port of this device. If driver does
1057  *	not implement this, it is assumed that the hw is not able to have
1058  *	multiple net devices on single physical port.
1059  *
1060  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1061  *			      struct udp_tunnel_info *ti);
1062  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1063  *	address family that a UDP tunnel is listnening to. It is called only
1064  *	when a new port starts listening. The operation is protected by the
1065  *	RTNL.
1066  *
1067  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1068  *			      struct udp_tunnel_info *ti);
1069  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1070  *	address family that the UDP tunnel is not listening to anymore. The
1071  *	operation is protected by the RTNL.
1072  *
1073  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1074  *				 struct net_device *dev)
1075  *	Called by upper layer devices to accelerate switching or other
1076  *	station functionality into hardware. 'pdev is the lowerdev
1077  *	to use for the offload and 'dev' is the net device that will
1078  *	back the offload. Returns a pointer to the private structure
1079  *	the upper layer will maintain.
1080  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1081  *	Called by upper layer device to delete the station created
1082  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1083  *	the station and priv is the structure returned by the add
1084  *	operation.
1085  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1086  *				      struct net_device *dev,
1087  *				      void *priv);
1088  *	Callback to use for xmit over the accelerated station. This
1089  *	is used in place of ndo_start_xmit on accelerated net
1090  *	devices.
1091  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1092  *					   struct net_device *dev
1093  *					   netdev_features_t features);
1094  *	Called by core transmit path to determine if device is capable of
1095  *	performing offload operations on a given packet. This is to give
1096  *	the device an opportunity to implement any restrictions that cannot
1097  *	be otherwise expressed by feature flags. The check is called with
1098  *	the set of features that the stack has calculated and it returns
1099  *	those the driver believes to be appropriate.
1100  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1101  *			     int queue_index, u32 maxrate);
1102  *	Called when a user wants to set a max-rate limitation of specific
1103  *	TX queue.
1104  * int (*ndo_get_iflink)(const struct net_device *dev);
1105  *	Called to get the iflink value of this device.
1106  * void (*ndo_change_proto_down)(struct net_device *dev,
1107  *				 bool proto_down);
1108  *	This function is used to pass protocol port error state information
1109  *	to the switch driver. The switch driver can react to the proto_down
1110  *      by doing a phys down on the associated switch port.
1111  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1112  *	This function is used to get egress tunnel information for given skb.
1113  *	This is useful for retrieving outer tunnel header parameters while
1114  *	sampling packet.
1115  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1116  *	This function is used to specify the headroom that the skb must
1117  *	consider when allocation skb during packet reception. Setting
1118  *	appropriate rx headroom value allows avoiding skb head copy on
1119  *	forward. Setting a negative value resets the rx headroom to the
1120  *	default value.
1121  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1122  *	This function is used to set or query state related to XDP on the
1123  *	netdevice. See definition of enum xdp_netdev_command for details.
1124  *
1125  */
1126 struct net_device_ops {
1127 	int			(*ndo_init)(struct net_device *dev);
1128 	void			(*ndo_uninit)(struct net_device *dev);
1129 	int			(*ndo_open)(struct net_device *dev);
1130 	int			(*ndo_stop)(struct net_device *dev);
1131 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1132 						  struct net_device *dev);
1133 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1134 						      struct net_device *dev,
1135 						      netdev_features_t features);
1136 	u16			(*ndo_select_queue)(struct net_device *dev,
1137 						    struct sk_buff *skb,
1138 						    void *accel_priv,
1139 						    select_queue_fallback_t fallback);
1140 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1141 						       int flags);
1142 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1143 	int			(*ndo_set_mac_address)(struct net_device *dev,
1144 						       void *addr);
1145 	int			(*ndo_validate_addr)(struct net_device *dev);
1146 	int			(*ndo_do_ioctl)(struct net_device *dev,
1147 					        struct ifreq *ifr, int cmd);
1148 	int			(*ndo_set_config)(struct net_device *dev,
1149 					          struct ifmap *map);
1150 	int			(*ndo_change_mtu)(struct net_device *dev,
1151 						  int new_mtu);
1152 	int			(*ndo_neigh_setup)(struct net_device *dev,
1153 						   struct neigh_parms *);
1154 	void			(*ndo_tx_timeout) (struct net_device *dev);
1155 
1156 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1157 						     struct rtnl_link_stats64 *storage);
1158 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1159 
1160 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1161 						       __be16 proto, u16 vid);
1162 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1163 						        __be16 proto, u16 vid);
1164 #ifdef CONFIG_NET_POLL_CONTROLLER
1165 	void                    (*ndo_poll_controller)(struct net_device *dev);
1166 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1167 						     struct netpoll_info *info);
1168 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1169 #endif
1170 #ifdef CONFIG_NET_RX_BUSY_POLL
1171 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1172 #endif
1173 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1174 						  int queue, u8 *mac);
1175 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1176 						   int queue, u16 vlan, u8 qos);
1177 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1178 						   int vf, int min_tx_rate,
1179 						   int max_tx_rate);
1180 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1181 						       int vf, bool setting);
1182 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1183 						    int vf, bool setting);
1184 	int			(*ndo_get_vf_config)(struct net_device *dev,
1185 						     int vf,
1186 						     struct ifla_vf_info *ivf);
1187 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1188 							 int vf, int link_state);
1189 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1190 						    int vf,
1191 						    struct ifla_vf_stats
1192 						    *vf_stats);
1193 	int			(*ndo_set_vf_port)(struct net_device *dev,
1194 						   int vf,
1195 						   struct nlattr *port[]);
1196 	int			(*ndo_get_vf_port)(struct net_device *dev,
1197 						   int vf, struct sk_buff *skb);
1198 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1199 						   int vf, u64 guid,
1200 						   int guid_type);
1201 	int			(*ndo_set_vf_rss_query_en)(
1202 						   struct net_device *dev,
1203 						   int vf, bool setting);
1204 	int			(*ndo_setup_tc)(struct net_device *dev,
1205 						u32 handle,
1206 						__be16 protocol,
1207 						struct tc_to_netdev *tc);
1208 #if IS_ENABLED(CONFIG_FCOE)
1209 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1210 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1211 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1212 						      u16 xid,
1213 						      struct scatterlist *sgl,
1214 						      unsigned int sgc);
1215 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1216 						     u16 xid);
1217 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1218 						       u16 xid,
1219 						       struct scatterlist *sgl,
1220 						       unsigned int sgc);
1221 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1222 							struct netdev_fcoe_hbainfo *hbainfo);
1223 #endif
1224 
1225 #if IS_ENABLED(CONFIG_LIBFCOE)
1226 #define NETDEV_FCOE_WWNN 0
1227 #define NETDEV_FCOE_WWPN 1
1228 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1229 						    u64 *wwn, int type);
1230 #endif
1231 
1232 #ifdef CONFIG_RFS_ACCEL
1233 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1234 						     const struct sk_buff *skb,
1235 						     u16 rxq_index,
1236 						     u32 flow_id);
1237 #endif
1238 	int			(*ndo_add_slave)(struct net_device *dev,
1239 						 struct net_device *slave_dev);
1240 	int			(*ndo_del_slave)(struct net_device *dev,
1241 						 struct net_device *slave_dev);
1242 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1243 						    netdev_features_t features);
1244 	int			(*ndo_set_features)(struct net_device *dev,
1245 						    netdev_features_t features);
1246 	int			(*ndo_neigh_construct)(struct net_device *dev,
1247 						       struct neighbour *n);
1248 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1249 						     struct neighbour *n);
1250 
1251 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1252 					       struct nlattr *tb[],
1253 					       struct net_device *dev,
1254 					       const unsigned char *addr,
1255 					       u16 vid,
1256 					       u16 flags);
1257 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1258 					       struct nlattr *tb[],
1259 					       struct net_device *dev,
1260 					       const unsigned char *addr,
1261 					       u16 vid);
1262 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1263 						struct netlink_callback *cb,
1264 						struct net_device *dev,
1265 						struct net_device *filter_dev,
1266 						int *idx);
1267 
1268 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1269 						      struct nlmsghdr *nlh,
1270 						      u16 flags);
1271 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1272 						      u32 pid, u32 seq,
1273 						      struct net_device *dev,
1274 						      u32 filter_mask,
1275 						      int nlflags);
1276 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1277 						      struct nlmsghdr *nlh,
1278 						      u16 flags);
1279 	int			(*ndo_change_carrier)(struct net_device *dev,
1280 						      bool new_carrier);
1281 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1282 							struct netdev_phys_item_id *ppid);
1283 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1284 							  char *name, size_t len);
1285 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1286 						      struct udp_tunnel_info *ti);
1287 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1288 						      struct udp_tunnel_info *ti);
1289 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1290 							struct net_device *dev);
1291 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1292 							void *priv);
1293 
1294 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1295 							struct net_device *dev,
1296 							void *priv);
1297 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1298 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1299 						      int queue_index,
1300 						      u32 maxrate);
1301 	int			(*ndo_get_iflink)(const struct net_device *dev);
1302 	int			(*ndo_change_proto_down)(struct net_device *dev,
1303 							 bool proto_down);
1304 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1305 						       struct sk_buff *skb);
1306 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1307 						       int needed_headroom);
1308 	int			(*ndo_xdp)(struct net_device *dev,
1309 					   struct netdev_xdp *xdp);
1310 };
1311 
1312 /**
1313  * enum net_device_priv_flags - &struct net_device priv_flags
1314  *
1315  * These are the &struct net_device, they are only set internally
1316  * by drivers and used in the kernel. These flags are invisible to
1317  * userspace; this means that the order of these flags can change
1318  * during any kernel release.
1319  *
1320  * You should have a pretty good reason to be extending these flags.
1321  *
1322  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1323  * @IFF_EBRIDGE: Ethernet bridging device
1324  * @IFF_BONDING: bonding master or slave
1325  * @IFF_ISATAP: ISATAP interface (RFC4214)
1326  * @IFF_WAN_HDLC: WAN HDLC device
1327  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1328  *	release skb->dst
1329  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1330  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1331  * @IFF_MACVLAN_PORT: device used as macvlan port
1332  * @IFF_BRIDGE_PORT: device used as bridge port
1333  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1334  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1335  * @IFF_UNICAST_FLT: Supports unicast filtering
1336  * @IFF_TEAM_PORT: device used as team port
1337  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1338  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1339  *	change when it's running
1340  * @IFF_MACVLAN: Macvlan device
1341  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1342  *	underlying stacked devices
1343  * @IFF_IPVLAN_MASTER: IPvlan master device
1344  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1345  * @IFF_L3MDEV_MASTER: device is an L3 master device
1346  * @IFF_NO_QUEUE: device can run without qdisc attached
1347  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1348  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1349  * @IFF_TEAM: device is a team device
1350  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1351  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1352  *	entity (i.e. the master device for bridged veth)
1353  * @IFF_MACSEC: device is a MACsec device
1354  */
1355 enum netdev_priv_flags {
1356 	IFF_802_1Q_VLAN			= 1<<0,
1357 	IFF_EBRIDGE			= 1<<1,
1358 	IFF_BONDING			= 1<<2,
1359 	IFF_ISATAP			= 1<<3,
1360 	IFF_WAN_HDLC			= 1<<4,
1361 	IFF_XMIT_DST_RELEASE		= 1<<5,
1362 	IFF_DONT_BRIDGE			= 1<<6,
1363 	IFF_DISABLE_NETPOLL		= 1<<7,
1364 	IFF_MACVLAN_PORT		= 1<<8,
1365 	IFF_BRIDGE_PORT			= 1<<9,
1366 	IFF_OVS_DATAPATH		= 1<<10,
1367 	IFF_TX_SKB_SHARING		= 1<<11,
1368 	IFF_UNICAST_FLT			= 1<<12,
1369 	IFF_TEAM_PORT			= 1<<13,
1370 	IFF_SUPP_NOFCS			= 1<<14,
1371 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1372 	IFF_MACVLAN			= 1<<16,
1373 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1374 	IFF_IPVLAN_MASTER		= 1<<18,
1375 	IFF_IPVLAN_SLAVE		= 1<<19,
1376 	IFF_L3MDEV_MASTER		= 1<<20,
1377 	IFF_NO_QUEUE			= 1<<21,
1378 	IFF_OPENVSWITCH			= 1<<22,
1379 	IFF_L3MDEV_SLAVE		= 1<<23,
1380 	IFF_TEAM			= 1<<24,
1381 	IFF_RXFH_CONFIGURED		= 1<<25,
1382 	IFF_PHONY_HEADROOM		= 1<<26,
1383 	IFF_MACSEC			= 1<<27,
1384 };
1385 
1386 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1387 #define IFF_EBRIDGE			IFF_EBRIDGE
1388 #define IFF_BONDING			IFF_BONDING
1389 #define IFF_ISATAP			IFF_ISATAP
1390 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1391 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1392 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1393 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1394 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1395 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1396 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1397 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1398 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1399 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1400 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1401 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1402 #define IFF_MACVLAN			IFF_MACVLAN
1403 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1404 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1405 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1406 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1407 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1408 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1409 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1410 #define IFF_TEAM			IFF_TEAM
1411 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1412 #define IFF_MACSEC			IFF_MACSEC
1413 
1414 /**
1415  *	struct net_device - The DEVICE structure.
1416  *		Actually, this whole structure is a big mistake.  It mixes I/O
1417  *		data with strictly "high-level" data, and it has to know about
1418  *		almost every data structure used in the INET module.
1419  *
1420  *	@name:	This is the first field of the "visible" part of this structure
1421  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1422  *	 	of the interface.
1423  *
1424  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1425  *	@ifalias:	SNMP alias
1426  *	@mem_end:	Shared memory end
1427  *	@mem_start:	Shared memory start
1428  *	@base_addr:	Device I/O address
1429  *	@irq:		Device IRQ number
1430  *
1431  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1432  *
1433  *	@state:		Generic network queuing layer state, see netdev_state_t
1434  *	@dev_list:	The global list of network devices
1435  *	@napi_list:	List entry used for polling NAPI devices
1436  *	@unreg_list:	List entry  when we are unregistering the
1437  *			device; see the function unregister_netdev
1438  *	@close_list:	List entry used when we are closing the device
1439  *	@ptype_all:     Device-specific packet handlers for all protocols
1440  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1441  *
1442  *	@adj_list:	Directly linked devices, like slaves for bonding
1443  *	@all_adj_list:	All linked devices, *including* neighbours
1444  *	@features:	Currently active device features
1445  *	@hw_features:	User-changeable features
1446  *
1447  *	@wanted_features:	User-requested features
1448  *	@vlan_features:		Mask of features inheritable by VLAN devices
1449  *
1450  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1451  *				This field indicates what encapsulation
1452  *				offloads the hardware is capable of doing,
1453  *				and drivers will need to set them appropriately.
1454  *
1455  *	@mpls_features:	Mask of features inheritable by MPLS
1456  *
1457  *	@ifindex:	interface index
1458  *	@group:		The group the device belongs to
1459  *
1460  *	@stats:		Statistics struct, which was left as a legacy, use
1461  *			rtnl_link_stats64 instead
1462  *
1463  *	@rx_dropped:	Dropped packets by core network,
1464  *			do not use this in drivers
1465  *	@tx_dropped:	Dropped packets by core network,
1466  *			do not use this in drivers
1467  *	@rx_nohandler:	nohandler dropped packets by core network on
1468  *			inactive devices, do not use this in drivers
1469  *
1470  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1471  *				instead of ioctl,
1472  *				see <net/iw_handler.h> for details.
1473  *	@wireless_data:	Instance data managed by the core of wireless extensions
1474  *
1475  *	@netdev_ops:	Includes several pointers to callbacks,
1476  *			if one wants to override the ndo_*() functions
1477  *	@ethtool_ops:	Management operations
1478  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1479  *			discovery handling. Necessary for e.g. 6LoWPAN.
1480  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1481  *			of Layer 2 headers.
1482  *
1483  *	@flags:		Interface flags (a la BSD)
1484  *	@priv_flags:	Like 'flags' but invisible to userspace,
1485  *			see if.h for the definitions
1486  *	@gflags:	Global flags ( kept as legacy )
1487  *	@padded:	How much padding added by alloc_netdev()
1488  *	@operstate:	RFC2863 operstate
1489  *	@link_mode:	Mapping policy to operstate
1490  *	@if_port:	Selectable AUI, TP, ...
1491  *	@dma:		DMA channel
1492  *	@mtu:		Interface MTU value
1493  *	@type:		Interface hardware type
1494  *	@hard_header_len: Maximum hardware header length.
1495  *
1496  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1497  *			  cases can this be guaranteed
1498  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1499  *			  cases can this be guaranteed. Some cases also use
1500  *			  LL_MAX_HEADER instead to allocate the skb
1501  *
1502  *	interface address info:
1503  *
1504  * 	@perm_addr:		Permanent hw address
1505  * 	@addr_assign_type:	Hw address assignment type
1506  * 	@addr_len:		Hardware address length
1507  *	@neigh_priv_len:	Used in neigh_alloc()
1508  * 	@dev_id:		Used to differentiate devices that share
1509  * 				the same link layer address
1510  * 	@dev_port:		Used to differentiate devices that share
1511  * 				the same function
1512  *	@addr_list_lock:	XXX: need comments on this one
1513  *	@uc_promisc:		Counter that indicates promiscuous mode
1514  *				has been enabled due to the need to listen to
1515  *				additional unicast addresses in a device that
1516  *				does not implement ndo_set_rx_mode()
1517  *	@uc:			unicast mac addresses
1518  *	@mc:			multicast mac addresses
1519  *	@dev_addrs:		list of device hw addresses
1520  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1521  *	@promiscuity:		Number of times the NIC is told to work in
1522  *				promiscuous mode; if it becomes 0 the NIC will
1523  *				exit promiscuous mode
1524  *	@allmulti:		Counter, enables or disables allmulticast mode
1525  *
1526  *	@vlan_info:	VLAN info
1527  *	@dsa_ptr:	dsa specific data
1528  *	@tipc_ptr:	TIPC specific data
1529  *	@atalk_ptr:	AppleTalk link
1530  *	@ip_ptr:	IPv4 specific data
1531  *	@dn_ptr:	DECnet specific data
1532  *	@ip6_ptr:	IPv6 specific data
1533  *	@ax25_ptr:	AX.25 specific data
1534  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1535  *
1536  *	@last_rx:	Time of last Rx
1537  *	@dev_addr:	Hw address (before bcast,
1538  *			because most packets are unicast)
1539  *
1540  *	@_rx:			Array of RX queues
1541  *	@num_rx_queues:		Number of RX queues
1542  *				allocated at register_netdev() time
1543  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1544  *
1545  *	@rx_handler:		handler for received packets
1546  *	@rx_handler_data: 	XXX: need comments on this one
1547  *	@ingress_queue:		XXX: need comments on this one
1548  *	@broadcast:		hw bcast address
1549  *
1550  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1551  *			indexed by RX queue number. Assigned by driver.
1552  *			This must only be set if the ndo_rx_flow_steer
1553  *			operation is defined
1554  *	@index_hlist:		Device index hash chain
1555  *
1556  *	@_tx:			Array of TX queues
1557  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1558  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1559  *	@qdisc:			Root qdisc from userspace point of view
1560  *	@tx_queue_len:		Max frames per queue allowed
1561  *	@tx_global_lock: 	XXX: need comments on this one
1562  *
1563  *	@xps_maps:	XXX: need comments on this one
1564  *
1565  *	@watchdog_timeo:	Represents the timeout that is used by
1566  *				the watchdog (see dev_watchdog())
1567  *	@watchdog_timer:	List of timers
1568  *
1569  *	@pcpu_refcnt:		Number of references to this device
1570  *	@todo_list:		Delayed register/unregister
1571  *	@link_watch_list:	XXX: need comments on this one
1572  *
1573  *	@reg_state:		Register/unregister state machine
1574  *	@dismantle:		Device is going to be freed
1575  *	@rtnl_link_state:	This enum represents the phases of creating
1576  *				a new link
1577  *
1578  *	@destructor:		Called from unregister,
1579  *				can be used to call free_netdev
1580  *	@npinfo:		XXX: need comments on this one
1581  * 	@nd_net:		Network namespace this network device is inside
1582  *
1583  * 	@ml_priv:	Mid-layer private
1584  * 	@lstats:	Loopback statistics
1585  * 	@tstats:	Tunnel statistics
1586  * 	@dstats:	Dummy statistics
1587  * 	@vstats:	Virtual ethernet statistics
1588  *
1589  *	@garp_port:	GARP
1590  *	@mrp_port:	MRP
1591  *
1592  *	@dev:		Class/net/name entry
1593  *	@sysfs_groups:	Space for optional device, statistics and wireless
1594  *			sysfs groups
1595  *
1596  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1597  *	@rtnl_link_ops:	Rtnl_link_ops
1598  *
1599  *	@gso_max_size:	Maximum size of generic segmentation offload
1600  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1601  *			NIC for GSO
1602  *
1603  *	@dcbnl_ops:	Data Center Bridging netlink ops
1604  *	@num_tc:	Number of traffic classes in the net device
1605  *	@tc_to_txq:	XXX: need comments on this one
1606  *	@prio_tc_map	XXX: need comments on this one
1607  *
1608  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1609  *
1610  *	@priomap:	XXX: need comments on this one
1611  *	@phydev:	Physical device may attach itself
1612  *			for hardware timestamping
1613  *
1614  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1615  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1616  *
1617  *	@proto_down:	protocol port state information can be sent to the
1618  *			switch driver and used to set the phys state of the
1619  *			switch port.
1620  *
1621  *	FIXME: cleanup struct net_device such that network protocol info
1622  *	moves out.
1623  */
1624 
1625 struct net_device {
1626 	char			name[IFNAMSIZ];
1627 	struct hlist_node	name_hlist;
1628 	char 			*ifalias;
1629 	/*
1630 	 *	I/O specific fields
1631 	 *	FIXME: Merge these and struct ifmap into one
1632 	 */
1633 	unsigned long		mem_end;
1634 	unsigned long		mem_start;
1635 	unsigned long		base_addr;
1636 	int			irq;
1637 
1638 	atomic_t		carrier_changes;
1639 
1640 	/*
1641 	 *	Some hardware also needs these fields (state,dev_list,
1642 	 *	napi_list,unreg_list,close_list) but they are not
1643 	 *	part of the usual set specified in Space.c.
1644 	 */
1645 
1646 	unsigned long		state;
1647 
1648 	struct list_head	dev_list;
1649 	struct list_head	napi_list;
1650 	struct list_head	unreg_list;
1651 	struct list_head	close_list;
1652 	struct list_head	ptype_all;
1653 	struct list_head	ptype_specific;
1654 
1655 	struct {
1656 		struct list_head upper;
1657 		struct list_head lower;
1658 	} adj_list;
1659 
1660 	struct {
1661 		struct list_head upper;
1662 		struct list_head lower;
1663 	} all_adj_list;
1664 
1665 	netdev_features_t	features;
1666 	netdev_features_t	hw_features;
1667 	netdev_features_t	wanted_features;
1668 	netdev_features_t	vlan_features;
1669 	netdev_features_t	hw_enc_features;
1670 	netdev_features_t	mpls_features;
1671 	netdev_features_t	gso_partial_features;
1672 
1673 	int			ifindex;
1674 	int			group;
1675 
1676 	struct net_device_stats	stats;
1677 
1678 	atomic_long_t		rx_dropped;
1679 	atomic_long_t		tx_dropped;
1680 	atomic_long_t		rx_nohandler;
1681 
1682 #ifdef CONFIG_WIRELESS_EXT
1683 	const struct iw_handler_def *wireless_handlers;
1684 	struct iw_public_data	*wireless_data;
1685 #endif
1686 	const struct net_device_ops *netdev_ops;
1687 	const struct ethtool_ops *ethtool_ops;
1688 #ifdef CONFIG_NET_SWITCHDEV
1689 	const struct switchdev_ops *switchdev_ops;
1690 #endif
1691 #ifdef CONFIG_NET_L3_MASTER_DEV
1692 	const struct l3mdev_ops	*l3mdev_ops;
1693 #endif
1694 #if IS_ENABLED(CONFIG_IPV6)
1695 	const struct ndisc_ops *ndisc_ops;
1696 #endif
1697 
1698 	const struct header_ops *header_ops;
1699 
1700 	unsigned int		flags;
1701 	unsigned int		priv_flags;
1702 
1703 	unsigned short		gflags;
1704 	unsigned short		padded;
1705 
1706 	unsigned char		operstate;
1707 	unsigned char		link_mode;
1708 
1709 	unsigned char		if_port;
1710 	unsigned char		dma;
1711 
1712 	unsigned int		mtu;
1713 	unsigned short		type;
1714 	unsigned short		hard_header_len;
1715 
1716 	unsigned short		needed_headroom;
1717 	unsigned short		needed_tailroom;
1718 
1719 	/* Interface address info. */
1720 	unsigned char		perm_addr[MAX_ADDR_LEN];
1721 	unsigned char		addr_assign_type;
1722 	unsigned char		addr_len;
1723 	unsigned short		neigh_priv_len;
1724 	unsigned short          dev_id;
1725 	unsigned short          dev_port;
1726 	spinlock_t		addr_list_lock;
1727 	unsigned char		name_assign_type;
1728 	bool			uc_promisc;
1729 	struct netdev_hw_addr_list	uc;
1730 	struct netdev_hw_addr_list	mc;
1731 	struct netdev_hw_addr_list	dev_addrs;
1732 
1733 #ifdef CONFIG_SYSFS
1734 	struct kset		*queues_kset;
1735 #endif
1736 	unsigned int		promiscuity;
1737 	unsigned int		allmulti;
1738 
1739 
1740 	/* Protocol-specific pointers */
1741 
1742 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1743 	struct vlan_info __rcu	*vlan_info;
1744 #endif
1745 #if IS_ENABLED(CONFIG_NET_DSA)
1746 	struct dsa_switch_tree	*dsa_ptr;
1747 #endif
1748 #if IS_ENABLED(CONFIG_TIPC)
1749 	struct tipc_bearer __rcu *tipc_ptr;
1750 #endif
1751 	void 			*atalk_ptr;
1752 	struct in_device __rcu	*ip_ptr;
1753 	struct dn_dev __rcu     *dn_ptr;
1754 	struct inet6_dev __rcu	*ip6_ptr;
1755 	void			*ax25_ptr;
1756 	struct wireless_dev	*ieee80211_ptr;
1757 	struct wpan_dev		*ieee802154_ptr;
1758 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1759 	struct mpls_dev __rcu	*mpls_ptr;
1760 #endif
1761 
1762 /*
1763  * Cache lines mostly used on receive path (including eth_type_trans())
1764  */
1765 	unsigned long		last_rx;
1766 
1767 	/* Interface address info used in eth_type_trans() */
1768 	unsigned char		*dev_addr;
1769 
1770 #ifdef CONFIG_SYSFS
1771 	struct netdev_rx_queue	*_rx;
1772 
1773 	unsigned int		num_rx_queues;
1774 	unsigned int		real_num_rx_queues;
1775 #endif
1776 
1777 	unsigned long		gro_flush_timeout;
1778 	rx_handler_func_t __rcu	*rx_handler;
1779 	void __rcu		*rx_handler_data;
1780 
1781 #ifdef CONFIG_NET_CLS_ACT
1782 	struct tcf_proto __rcu  *ingress_cl_list;
1783 #endif
1784 	struct netdev_queue __rcu *ingress_queue;
1785 #ifdef CONFIG_NETFILTER_INGRESS
1786 	struct list_head	nf_hooks_ingress;
1787 #endif
1788 
1789 	unsigned char		broadcast[MAX_ADDR_LEN];
1790 #ifdef CONFIG_RFS_ACCEL
1791 	struct cpu_rmap		*rx_cpu_rmap;
1792 #endif
1793 	struct hlist_node	index_hlist;
1794 
1795 /*
1796  * Cache lines mostly used on transmit path
1797  */
1798 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1799 	unsigned int		num_tx_queues;
1800 	unsigned int		real_num_tx_queues;
1801 	struct Qdisc		*qdisc;
1802 #ifdef CONFIG_NET_SCHED
1803 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1804 #endif
1805 	unsigned long		tx_queue_len;
1806 	spinlock_t		tx_global_lock;
1807 	int			watchdog_timeo;
1808 
1809 #ifdef CONFIG_XPS
1810 	struct xps_dev_maps __rcu *xps_maps;
1811 #endif
1812 #ifdef CONFIG_NET_CLS_ACT
1813 	struct tcf_proto __rcu  *egress_cl_list;
1814 #endif
1815 
1816 	/* These may be needed for future network-power-down code. */
1817 	struct timer_list	watchdog_timer;
1818 
1819 	int __percpu		*pcpu_refcnt;
1820 	struct list_head	todo_list;
1821 
1822 	struct list_head	link_watch_list;
1823 
1824 	enum { NETREG_UNINITIALIZED=0,
1825 	       NETREG_REGISTERED,	/* completed register_netdevice */
1826 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1827 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1828 	       NETREG_RELEASED,		/* called free_netdev */
1829 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1830 	} reg_state:8;
1831 
1832 	bool dismantle;
1833 
1834 	enum {
1835 		RTNL_LINK_INITIALIZED,
1836 		RTNL_LINK_INITIALIZING,
1837 	} rtnl_link_state:16;
1838 
1839 	void (*destructor)(struct net_device *dev);
1840 
1841 #ifdef CONFIG_NETPOLL
1842 	struct netpoll_info __rcu	*npinfo;
1843 #endif
1844 
1845 	possible_net_t			nd_net;
1846 
1847 	/* mid-layer private */
1848 	union {
1849 		void					*ml_priv;
1850 		struct pcpu_lstats __percpu		*lstats;
1851 		struct pcpu_sw_netstats __percpu	*tstats;
1852 		struct pcpu_dstats __percpu		*dstats;
1853 		struct pcpu_vstats __percpu		*vstats;
1854 	};
1855 
1856 	struct garp_port __rcu	*garp_port;
1857 	struct mrp_port __rcu	*mrp_port;
1858 
1859 	struct device		dev;
1860 	const struct attribute_group *sysfs_groups[4];
1861 	const struct attribute_group *sysfs_rx_queue_group;
1862 
1863 	const struct rtnl_link_ops *rtnl_link_ops;
1864 
1865 	/* for setting kernel sock attribute on TCP connection setup */
1866 #define GSO_MAX_SIZE		65536
1867 	unsigned int		gso_max_size;
1868 #define GSO_MAX_SEGS		65535
1869 	u16			gso_max_segs;
1870 
1871 #ifdef CONFIG_DCB
1872 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1873 #endif
1874 	u8			num_tc;
1875 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1876 	u8			prio_tc_map[TC_BITMASK + 1];
1877 
1878 #if IS_ENABLED(CONFIG_FCOE)
1879 	unsigned int		fcoe_ddp_xid;
1880 #endif
1881 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1882 	struct netprio_map __rcu *priomap;
1883 #endif
1884 	struct phy_device	*phydev;
1885 	struct lock_class_key	*qdisc_tx_busylock;
1886 	struct lock_class_key	*qdisc_running_key;
1887 	bool			proto_down;
1888 };
1889 #define to_net_dev(d) container_of(d, struct net_device, dev)
1890 
1891 #define	NETDEV_ALIGN		32
1892 
1893 static inline
1894 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1895 {
1896 	return dev->prio_tc_map[prio & TC_BITMASK];
1897 }
1898 
1899 static inline
1900 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1901 {
1902 	if (tc >= dev->num_tc)
1903 		return -EINVAL;
1904 
1905 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1906 	return 0;
1907 }
1908 
1909 static inline
1910 void netdev_reset_tc(struct net_device *dev)
1911 {
1912 	dev->num_tc = 0;
1913 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1914 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1915 }
1916 
1917 static inline
1918 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1919 {
1920 	if (tc >= dev->num_tc)
1921 		return -EINVAL;
1922 
1923 	dev->tc_to_txq[tc].count = count;
1924 	dev->tc_to_txq[tc].offset = offset;
1925 	return 0;
1926 }
1927 
1928 static inline
1929 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1930 {
1931 	if (num_tc > TC_MAX_QUEUE)
1932 		return -EINVAL;
1933 
1934 	dev->num_tc = num_tc;
1935 	return 0;
1936 }
1937 
1938 static inline
1939 int netdev_get_num_tc(struct net_device *dev)
1940 {
1941 	return dev->num_tc;
1942 }
1943 
1944 static inline
1945 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1946 					 unsigned int index)
1947 {
1948 	return &dev->_tx[index];
1949 }
1950 
1951 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1952 						    const struct sk_buff *skb)
1953 {
1954 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1955 }
1956 
1957 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1958 					    void (*f)(struct net_device *,
1959 						      struct netdev_queue *,
1960 						      void *),
1961 					    void *arg)
1962 {
1963 	unsigned int i;
1964 
1965 	for (i = 0; i < dev->num_tx_queues; i++)
1966 		f(dev, &dev->_tx[i], arg);
1967 }
1968 
1969 #define netdev_lockdep_set_classes(dev)				\
1970 {								\
1971 	static struct lock_class_key qdisc_tx_busylock_key;	\
1972 	static struct lock_class_key qdisc_running_key;		\
1973 	static struct lock_class_key qdisc_xmit_lock_key;	\
1974 	static struct lock_class_key dev_addr_list_lock_key;	\
1975 	unsigned int i;						\
1976 								\
1977 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1978 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1979 	lockdep_set_class(&(dev)->addr_list_lock,		\
1980 			  &dev_addr_list_lock_key); 		\
1981 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1982 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1983 				  &qdisc_xmit_lock_key);	\
1984 }
1985 
1986 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1987 				    struct sk_buff *skb,
1988 				    void *accel_priv);
1989 
1990 /* returns the headroom that the master device needs to take in account
1991  * when forwarding to this dev
1992  */
1993 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1994 {
1995 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1996 }
1997 
1998 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1999 {
2000 	if (dev->netdev_ops->ndo_set_rx_headroom)
2001 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2002 }
2003 
2004 /* set the device rx headroom to the dev's default */
2005 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2006 {
2007 	netdev_set_rx_headroom(dev, -1);
2008 }
2009 
2010 /*
2011  * Net namespace inlines
2012  */
2013 static inline
2014 struct net *dev_net(const struct net_device *dev)
2015 {
2016 	return read_pnet(&dev->nd_net);
2017 }
2018 
2019 static inline
2020 void dev_net_set(struct net_device *dev, struct net *net)
2021 {
2022 	write_pnet(&dev->nd_net, net);
2023 }
2024 
2025 static inline bool netdev_uses_dsa(struct net_device *dev)
2026 {
2027 #if IS_ENABLED(CONFIG_NET_DSA)
2028 	if (dev->dsa_ptr != NULL)
2029 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2030 #endif
2031 	return false;
2032 }
2033 
2034 /**
2035  *	netdev_priv - access network device private data
2036  *	@dev: network device
2037  *
2038  * Get network device private data
2039  */
2040 static inline void *netdev_priv(const struct net_device *dev)
2041 {
2042 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2043 }
2044 
2045 /* Set the sysfs physical device reference for the network logical device
2046  * if set prior to registration will cause a symlink during initialization.
2047  */
2048 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2049 
2050 /* Set the sysfs device type for the network logical device to allow
2051  * fine-grained identification of different network device types. For
2052  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2053  */
2054 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2055 
2056 /* Default NAPI poll() weight
2057  * Device drivers are strongly advised to not use bigger value
2058  */
2059 #define NAPI_POLL_WEIGHT 64
2060 
2061 /**
2062  *	netif_napi_add - initialize a NAPI context
2063  *	@dev:  network device
2064  *	@napi: NAPI context
2065  *	@poll: polling function
2066  *	@weight: default weight
2067  *
2068  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2069  * *any* of the other NAPI-related functions.
2070  */
2071 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2072 		    int (*poll)(struct napi_struct *, int), int weight);
2073 
2074 /**
2075  *	netif_tx_napi_add - initialize a NAPI context
2076  *	@dev:  network device
2077  *	@napi: NAPI context
2078  *	@poll: polling function
2079  *	@weight: default weight
2080  *
2081  * This variant of netif_napi_add() should be used from drivers using NAPI
2082  * to exclusively poll a TX queue.
2083  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2084  */
2085 static inline void netif_tx_napi_add(struct net_device *dev,
2086 				     struct napi_struct *napi,
2087 				     int (*poll)(struct napi_struct *, int),
2088 				     int weight)
2089 {
2090 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2091 	netif_napi_add(dev, napi, poll, weight);
2092 }
2093 
2094 /**
2095  *  netif_napi_del - remove a NAPI context
2096  *  @napi: NAPI context
2097  *
2098  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2099  */
2100 void netif_napi_del(struct napi_struct *napi);
2101 
2102 struct napi_gro_cb {
2103 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2104 	void	*frag0;
2105 
2106 	/* Length of frag0. */
2107 	unsigned int frag0_len;
2108 
2109 	/* This indicates where we are processing relative to skb->data. */
2110 	int	data_offset;
2111 
2112 	/* This is non-zero if the packet cannot be merged with the new skb. */
2113 	u16	flush;
2114 
2115 	/* Save the IP ID here and check when we get to the transport layer */
2116 	u16	flush_id;
2117 
2118 	/* Number of segments aggregated. */
2119 	u16	count;
2120 
2121 	/* Start offset for remote checksum offload */
2122 	u16	gro_remcsum_start;
2123 
2124 	/* jiffies when first packet was created/queued */
2125 	unsigned long age;
2126 
2127 	/* Used in ipv6_gro_receive() and foo-over-udp */
2128 	u16	proto;
2129 
2130 	/* This is non-zero if the packet may be of the same flow. */
2131 	u8	same_flow:1;
2132 
2133 	/* Used in tunnel GRO receive */
2134 	u8	encap_mark:1;
2135 
2136 	/* GRO checksum is valid */
2137 	u8	csum_valid:1;
2138 
2139 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2140 	u8	csum_cnt:3;
2141 
2142 	/* Free the skb? */
2143 	u8	free:2;
2144 #define NAPI_GRO_FREE		  1
2145 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2146 
2147 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2148 	u8	is_ipv6:1;
2149 
2150 	/* Used in GRE, set in fou/gue_gro_receive */
2151 	u8	is_fou:1;
2152 
2153 	/* Used to determine if flush_id can be ignored */
2154 	u8	is_atomic:1;
2155 
2156 	/* 5 bit hole */
2157 
2158 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2159 	__wsum	csum;
2160 
2161 	/* used in skb_gro_receive() slow path */
2162 	struct sk_buff *last;
2163 };
2164 
2165 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2166 
2167 struct packet_type {
2168 	__be16			type;	/* This is really htons(ether_type). */
2169 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2170 	int			(*func) (struct sk_buff *,
2171 					 struct net_device *,
2172 					 struct packet_type *,
2173 					 struct net_device *);
2174 	bool			(*id_match)(struct packet_type *ptype,
2175 					    struct sock *sk);
2176 	void			*af_packet_priv;
2177 	struct list_head	list;
2178 };
2179 
2180 struct offload_callbacks {
2181 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2182 						netdev_features_t features);
2183 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2184 						 struct sk_buff *skb);
2185 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2186 };
2187 
2188 struct packet_offload {
2189 	__be16			 type;	/* This is really htons(ether_type). */
2190 	u16			 priority;
2191 	struct offload_callbacks callbacks;
2192 	struct list_head	 list;
2193 };
2194 
2195 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2196 struct pcpu_sw_netstats {
2197 	u64     rx_packets;
2198 	u64     rx_bytes;
2199 	u64     tx_packets;
2200 	u64     tx_bytes;
2201 	struct u64_stats_sync   syncp;
2202 };
2203 
2204 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2205 ({									\
2206 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2207 	if (pcpu_stats)	{						\
2208 		int __cpu;						\
2209 		for_each_possible_cpu(__cpu) {				\
2210 			typeof(type) *stat;				\
2211 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2212 			u64_stats_init(&stat->syncp);			\
2213 		}							\
2214 	}								\
2215 	pcpu_stats;							\
2216 })
2217 
2218 #define netdev_alloc_pcpu_stats(type)					\
2219 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2220 
2221 enum netdev_lag_tx_type {
2222 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2223 	NETDEV_LAG_TX_TYPE_RANDOM,
2224 	NETDEV_LAG_TX_TYPE_BROADCAST,
2225 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2226 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2227 	NETDEV_LAG_TX_TYPE_HASH,
2228 };
2229 
2230 struct netdev_lag_upper_info {
2231 	enum netdev_lag_tx_type tx_type;
2232 };
2233 
2234 struct netdev_lag_lower_state_info {
2235 	u8 link_up : 1,
2236 	   tx_enabled : 1;
2237 };
2238 
2239 #include <linux/notifier.h>
2240 
2241 /* netdevice notifier chain. Please remember to update the rtnetlink
2242  * notification exclusion list in rtnetlink_event() when adding new
2243  * types.
2244  */
2245 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2246 #define NETDEV_DOWN	0x0002
2247 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2248 				   detected a hardware crash and restarted
2249 				   - we can use this eg to kick tcp sessions
2250 				   once done */
2251 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2252 #define NETDEV_REGISTER 0x0005
2253 #define NETDEV_UNREGISTER	0x0006
2254 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2255 #define NETDEV_CHANGEADDR	0x0008
2256 #define NETDEV_GOING_DOWN	0x0009
2257 #define NETDEV_CHANGENAME	0x000A
2258 #define NETDEV_FEAT_CHANGE	0x000B
2259 #define NETDEV_BONDING_FAILOVER 0x000C
2260 #define NETDEV_PRE_UP		0x000D
2261 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2262 #define NETDEV_POST_TYPE_CHANGE	0x000F
2263 #define NETDEV_POST_INIT	0x0010
2264 #define NETDEV_UNREGISTER_FINAL 0x0011
2265 #define NETDEV_RELEASE		0x0012
2266 #define NETDEV_NOTIFY_PEERS	0x0013
2267 #define NETDEV_JOIN		0x0014
2268 #define NETDEV_CHANGEUPPER	0x0015
2269 #define NETDEV_RESEND_IGMP	0x0016
2270 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2271 #define NETDEV_CHANGEINFODATA	0x0018
2272 #define NETDEV_BONDING_INFO	0x0019
2273 #define NETDEV_PRECHANGEUPPER	0x001A
2274 #define NETDEV_CHANGELOWERSTATE	0x001B
2275 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2276 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2277 
2278 int register_netdevice_notifier(struct notifier_block *nb);
2279 int unregister_netdevice_notifier(struct notifier_block *nb);
2280 
2281 struct netdev_notifier_info {
2282 	struct net_device *dev;
2283 };
2284 
2285 struct netdev_notifier_change_info {
2286 	struct netdev_notifier_info info; /* must be first */
2287 	unsigned int flags_changed;
2288 };
2289 
2290 struct netdev_notifier_changeupper_info {
2291 	struct netdev_notifier_info info; /* must be first */
2292 	struct net_device *upper_dev; /* new upper dev */
2293 	bool master; /* is upper dev master */
2294 	bool linking; /* is the notification for link or unlink */
2295 	void *upper_info; /* upper dev info */
2296 };
2297 
2298 struct netdev_notifier_changelowerstate_info {
2299 	struct netdev_notifier_info info; /* must be first */
2300 	void *lower_state_info; /* is lower dev state */
2301 };
2302 
2303 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2304 					     struct net_device *dev)
2305 {
2306 	info->dev = dev;
2307 }
2308 
2309 static inline struct net_device *
2310 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2311 {
2312 	return info->dev;
2313 }
2314 
2315 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2316 
2317 
2318 extern rwlock_t				dev_base_lock;		/* Device list lock */
2319 
2320 #define for_each_netdev(net, d)		\
2321 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2322 #define for_each_netdev_reverse(net, d)	\
2323 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2324 #define for_each_netdev_rcu(net, d)		\
2325 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2326 #define for_each_netdev_safe(net, d, n)	\
2327 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2328 #define for_each_netdev_continue(net, d)		\
2329 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2330 #define for_each_netdev_continue_rcu(net, d)		\
2331 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2332 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2333 		for_each_netdev_rcu(&init_net, slave)	\
2334 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2335 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2336 
2337 static inline struct net_device *next_net_device(struct net_device *dev)
2338 {
2339 	struct list_head *lh;
2340 	struct net *net;
2341 
2342 	net = dev_net(dev);
2343 	lh = dev->dev_list.next;
2344 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2345 }
2346 
2347 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2348 {
2349 	struct list_head *lh;
2350 	struct net *net;
2351 
2352 	net = dev_net(dev);
2353 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2354 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2355 }
2356 
2357 static inline struct net_device *first_net_device(struct net *net)
2358 {
2359 	return list_empty(&net->dev_base_head) ? NULL :
2360 		net_device_entry(net->dev_base_head.next);
2361 }
2362 
2363 static inline struct net_device *first_net_device_rcu(struct net *net)
2364 {
2365 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2366 
2367 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2368 }
2369 
2370 int netdev_boot_setup_check(struct net_device *dev);
2371 unsigned long netdev_boot_base(const char *prefix, int unit);
2372 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2373 				       const char *hwaddr);
2374 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2375 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2376 void dev_add_pack(struct packet_type *pt);
2377 void dev_remove_pack(struct packet_type *pt);
2378 void __dev_remove_pack(struct packet_type *pt);
2379 void dev_add_offload(struct packet_offload *po);
2380 void dev_remove_offload(struct packet_offload *po);
2381 
2382 int dev_get_iflink(const struct net_device *dev);
2383 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2384 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2385 				      unsigned short mask);
2386 struct net_device *dev_get_by_name(struct net *net, const char *name);
2387 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2388 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2389 int dev_alloc_name(struct net_device *dev, const char *name);
2390 int dev_open(struct net_device *dev);
2391 int dev_close(struct net_device *dev);
2392 int dev_close_many(struct list_head *head, bool unlink);
2393 void dev_disable_lro(struct net_device *dev);
2394 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2395 int dev_queue_xmit(struct sk_buff *skb);
2396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2397 int register_netdevice(struct net_device *dev);
2398 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2399 void unregister_netdevice_many(struct list_head *head);
2400 static inline void unregister_netdevice(struct net_device *dev)
2401 {
2402 	unregister_netdevice_queue(dev, NULL);
2403 }
2404 
2405 int netdev_refcnt_read(const struct net_device *dev);
2406 void free_netdev(struct net_device *dev);
2407 void netdev_freemem(struct net_device *dev);
2408 void synchronize_net(void);
2409 int init_dummy_netdev(struct net_device *dev);
2410 
2411 DECLARE_PER_CPU(int, xmit_recursion);
2412 #define XMIT_RECURSION_LIMIT	10
2413 
2414 static inline int dev_recursion_level(void)
2415 {
2416 	return this_cpu_read(xmit_recursion);
2417 }
2418 
2419 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2420 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2421 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2422 int netdev_get_name(struct net *net, char *name, int ifindex);
2423 int dev_restart(struct net_device *dev);
2424 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2425 
2426 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2427 {
2428 	return NAPI_GRO_CB(skb)->data_offset;
2429 }
2430 
2431 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2432 {
2433 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2434 }
2435 
2436 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2437 {
2438 	NAPI_GRO_CB(skb)->data_offset += len;
2439 }
2440 
2441 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2442 					unsigned int offset)
2443 {
2444 	return NAPI_GRO_CB(skb)->frag0 + offset;
2445 }
2446 
2447 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2448 {
2449 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2450 }
2451 
2452 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2453 					unsigned int offset)
2454 {
2455 	if (!pskb_may_pull(skb, hlen))
2456 		return NULL;
2457 
2458 	NAPI_GRO_CB(skb)->frag0 = NULL;
2459 	NAPI_GRO_CB(skb)->frag0_len = 0;
2460 	return skb->data + offset;
2461 }
2462 
2463 static inline void *skb_gro_network_header(struct sk_buff *skb)
2464 {
2465 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2466 	       skb_network_offset(skb);
2467 }
2468 
2469 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2470 					const void *start, unsigned int len)
2471 {
2472 	if (NAPI_GRO_CB(skb)->csum_valid)
2473 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2474 						  csum_partial(start, len, 0));
2475 }
2476 
2477 /* GRO checksum functions. These are logical equivalents of the normal
2478  * checksum functions (in skbuff.h) except that they operate on the GRO
2479  * offsets and fields in sk_buff.
2480  */
2481 
2482 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2483 
2484 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2485 {
2486 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2487 }
2488 
2489 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2490 						      bool zero_okay,
2491 						      __sum16 check)
2492 {
2493 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2494 		skb_checksum_start_offset(skb) <
2495 		 skb_gro_offset(skb)) &&
2496 		!skb_at_gro_remcsum_start(skb) &&
2497 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2498 		(!zero_okay || check));
2499 }
2500 
2501 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2502 							   __wsum psum)
2503 {
2504 	if (NAPI_GRO_CB(skb)->csum_valid &&
2505 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2506 		return 0;
2507 
2508 	NAPI_GRO_CB(skb)->csum = psum;
2509 
2510 	return __skb_gro_checksum_complete(skb);
2511 }
2512 
2513 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2514 {
2515 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2516 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2517 		NAPI_GRO_CB(skb)->csum_cnt--;
2518 	} else {
2519 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2520 		 * verified a new top level checksum or an encapsulated one
2521 		 * during GRO. This saves work if we fallback to normal path.
2522 		 */
2523 		__skb_incr_checksum_unnecessary(skb);
2524 	}
2525 }
2526 
2527 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2528 				    compute_pseudo)			\
2529 ({									\
2530 	__sum16 __ret = 0;						\
2531 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2532 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2533 				compute_pseudo(skb, proto));		\
2534 	if (__ret)							\
2535 		__skb_mark_checksum_bad(skb);				\
2536 	else								\
2537 		skb_gro_incr_csum_unnecessary(skb);			\
2538 	__ret;								\
2539 })
2540 
2541 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2542 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2543 
2544 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2545 					     compute_pseudo)		\
2546 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2547 
2548 #define skb_gro_checksum_simple_validate(skb)				\
2549 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2550 
2551 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2552 {
2553 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2554 		!NAPI_GRO_CB(skb)->csum_valid);
2555 }
2556 
2557 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2558 					      __sum16 check, __wsum pseudo)
2559 {
2560 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2561 	NAPI_GRO_CB(skb)->csum_valid = 1;
2562 }
2563 
2564 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2565 do {									\
2566 	if (__skb_gro_checksum_convert_check(skb))			\
2567 		__skb_gro_checksum_convert(skb, check,			\
2568 					   compute_pseudo(skb, proto));	\
2569 } while (0)
2570 
2571 struct gro_remcsum {
2572 	int offset;
2573 	__wsum delta;
2574 };
2575 
2576 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2577 {
2578 	grc->offset = 0;
2579 	grc->delta = 0;
2580 }
2581 
2582 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2583 					    unsigned int off, size_t hdrlen,
2584 					    int start, int offset,
2585 					    struct gro_remcsum *grc,
2586 					    bool nopartial)
2587 {
2588 	__wsum delta;
2589 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2590 
2591 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2592 
2593 	if (!nopartial) {
2594 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2595 		return ptr;
2596 	}
2597 
2598 	ptr = skb_gro_header_fast(skb, off);
2599 	if (skb_gro_header_hard(skb, off + plen)) {
2600 		ptr = skb_gro_header_slow(skb, off + plen, off);
2601 		if (!ptr)
2602 			return NULL;
2603 	}
2604 
2605 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2606 			       start, offset);
2607 
2608 	/* Adjust skb->csum since we changed the packet */
2609 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2610 
2611 	grc->offset = off + hdrlen + offset;
2612 	grc->delta = delta;
2613 
2614 	return ptr;
2615 }
2616 
2617 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2618 					   struct gro_remcsum *grc)
2619 {
2620 	void *ptr;
2621 	size_t plen = grc->offset + sizeof(u16);
2622 
2623 	if (!grc->delta)
2624 		return;
2625 
2626 	ptr = skb_gro_header_fast(skb, grc->offset);
2627 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2628 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2629 		if (!ptr)
2630 			return;
2631 	}
2632 
2633 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2634 }
2635 
2636 struct skb_csum_offl_spec {
2637 	__u16		ipv4_okay:1,
2638 			ipv6_okay:1,
2639 			encap_okay:1,
2640 			ip_options_okay:1,
2641 			ext_hdrs_okay:1,
2642 			tcp_okay:1,
2643 			udp_okay:1,
2644 			sctp_okay:1,
2645 			vlan_okay:1,
2646 			no_encapped_ipv6:1,
2647 			no_not_encapped:1;
2648 };
2649 
2650 bool __skb_csum_offload_chk(struct sk_buff *skb,
2651 			    const struct skb_csum_offl_spec *spec,
2652 			    bool *csum_encapped,
2653 			    bool csum_help);
2654 
2655 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2656 					const struct skb_csum_offl_spec *spec,
2657 					bool *csum_encapped,
2658 					bool csum_help)
2659 {
2660 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2661 		return false;
2662 
2663 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2664 }
2665 
2666 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2667 					     const struct skb_csum_offl_spec *spec)
2668 {
2669 	bool csum_encapped;
2670 
2671 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2672 }
2673 
2674 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2675 {
2676 	static const struct skb_csum_offl_spec csum_offl_spec = {
2677 		.ipv4_okay = 1,
2678 		.ip_options_okay = 1,
2679 		.ipv6_okay = 1,
2680 		.vlan_okay = 1,
2681 		.tcp_okay = 1,
2682 		.udp_okay = 1,
2683 	};
2684 
2685 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2686 }
2687 
2688 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2689 {
2690 	static const struct skb_csum_offl_spec csum_offl_spec = {
2691 		.ipv4_okay = 1,
2692 		.ip_options_okay = 1,
2693 		.tcp_okay = 1,
2694 		.udp_okay = 1,
2695 		.vlan_okay = 1,
2696 	};
2697 
2698 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2699 }
2700 
2701 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2702 				  unsigned short type,
2703 				  const void *daddr, const void *saddr,
2704 				  unsigned int len)
2705 {
2706 	if (!dev->header_ops || !dev->header_ops->create)
2707 		return 0;
2708 
2709 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2710 }
2711 
2712 static inline int dev_parse_header(const struct sk_buff *skb,
2713 				   unsigned char *haddr)
2714 {
2715 	const struct net_device *dev = skb->dev;
2716 
2717 	if (!dev->header_ops || !dev->header_ops->parse)
2718 		return 0;
2719 	return dev->header_ops->parse(skb, haddr);
2720 }
2721 
2722 /* ll_header must have at least hard_header_len allocated */
2723 static inline bool dev_validate_header(const struct net_device *dev,
2724 				       char *ll_header, int len)
2725 {
2726 	if (likely(len >= dev->hard_header_len))
2727 		return true;
2728 
2729 	if (capable(CAP_SYS_RAWIO)) {
2730 		memset(ll_header + len, 0, dev->hard_header_len - len);
2731 		return true;
2732 	}
2733 
2734 	if (dev->header_ops && dev->header_ops->validate)
2735 		return dev->header_ops->validate(ll_header, len);
2736 
2737 	return false;
2738 }
2739 
2740 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2741 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2742 static inline int unregister_gifconf(unsigned int family)
2743 {
2744 	return register_gifconf(family, NULL);
2745 }
2746 
2747 #ifdef CONFIG_NET_FLOW_LIMIT
2748 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2749 struct sd_flow_limit {
2750 	u64			count;
2751 	unsigned int		num_buckets;
2752 	unsigned int		history_head;
2753 	u16			history[FLOW_LIMIT_HISTORY];
2754 	u8			buckets[];
2755 };
2756 
2757 extern int netdev_flow_limit_table_len;
2758 #endif /* CONFIG_NET_FLOW_LIMIT */
2759 
2760 /*
2761  * Incoming packets are placed on per-CPU queues
2762  */
2763 struct softnet_data {
2764 	struct list_head	poll_list;
2765 	struct sk_buff_head	process_queue;
2766 
2767 	/* stats */
2768 	unsigned int		processed;
2769 	unsigned int		time_squeeze;
2770 	unsigned int		received_rps;
2771 #ifdef CONFIG_RPS
2772 	struct softnet_data	*rps_ipi_list;
2773 #endif
2774 #ifdef CONFIG_NET_FLOW_LIMIT
2775 	struct sd_flow_limit __rcu *flow_limit;
2776 #endif
2777 	struct Qdisc		*output_queue;
2778 	struct Qdisc		**output_queue_tailp;
2779 	struct sk_buff		*completion_queue;
2780 
2781 #ifdef CONFIG_RPS
2782 	/* input_queue_head should be written by cpu owning this struct,
2783 	 * and only read by other cpus. Worth using a cache line.
2784 	 */
2785 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2786 
2787 	/* Elements below can be accessed between CPUs for RPS/RFS */
2788 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2789 	struct softnet_data	*rps_ipi_next;
2790 	unsigned int		cpu;
2791 	unsigned int		input_queue_tail;
2792 #endif
2793 	unsigned int		dropped;
2794 	struct sk_buff_head	input_pkt_queue;
2795 	struct napi_struct	backlog;
2796 
2797 };
2798 
2799 static inline void input_queue_head_incr(struct softnet_data *sd)
2800 {
2801 #ifdef CONFIG_RPS
2802 	sd->input_queue_head++;
2803 #endif
2804 }
2805 
2806 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2807 					      unsigned int *qtail)
2808 {
2809 #ifdef CONFIG_RPS
2810 	*qtail = ++sd->input_queue_tail;
2811 #endif
2812 }
2813 
2814 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2815 
2816 void __netif_schedule(struct Qdisc *q);
2817 void netif_schedule_queue(struct netdev_queue *txq);
2818 
2819 static inline void netif_tx_schedule_all(struct net_device *dev)
2820 {
2821 	unsigned int i;
2822 
2823 	for (i = 0; i < dev->num_tx_queues; i++)
2824 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2825 }
2826 
2827 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2828 {
2829 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2830 }
2831 
2832 /**
2833  *	netif_start_queue - allow transmit
2834  *	@dev: network device
2835  *
2836  *	Allow upper layers to call the device hard_start_xmit routine.
2837  */
2838 static inline void netif_start_queue(struct net_device *dev)
2839 {
2840 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2841 }
2842 
2843 static inline void netif_tx_start_all_queues(struct net_device *dev)
2844 {
2845 	unsigned int i;
2846 
2847 	for (i = 0; i < dev->num_tx_queues; i++) {
2848 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2849 		netif_tx_start_queue(txq);
2850 	}
2851 }
2852 
2853 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2854 
2855 /**
2856  *	netif_wake_queue - restart transmit
2857  *	@dev: network device
2858  *
2859  *	Allow upper layers to call the device hard_start_xmit routine.
2860  *	Used for flow control when transmit resources are available.
2861  */
2862 static inline void netif_wake_queue(struct net_device *dev)
2863 {
2864 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2865 }
2866 
2867 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2868 {
2869 	unsigned int i;
2870 
2871 	for (i = 0; i < dev->num_tx_queues; i++) {
2872 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2873 		netif_tx_wake_queue(txq);
2874 	}
2875 }
2876 
2877 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2878 {
2879 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2880 }
2881 
2882 /**
2883  *	netif_stop_queue - stop transmitted packets
2884  *	@dev: network device
2885  *
2886  *	Stop upper layers calling the device hard_start_xmit routine.
2887  *	Used for flow control when transmit resources are unavailable.
2888  */
2889 static inline void netif_stop_queue(struct net_device *dev)
2890 {
2891 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2892 }
2893 
2894 void netif_tx_stop_all_queues(struct net_device *dev);
2895 
2896 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2897 {
2898 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2899 }
2900 
2901 /**
2902  *	netif_queue_stopped - test if transmit queue is flowblocked
2903  *	@dev: network device
2904  *
2905  *	Test if transmit queue on device is currently unable to send.
2906  */
2907 static inline bool netif_queue_stopped(const struct net_device *dev)
2908 {
2909 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2910 }
2911 
2912 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2913 {
2914 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2915 }
2916 
2917 static inline bool
2918 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2919 {
2920 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2921 }
2922 
2923 static inline bool
2924 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2925 {
2926 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2927 }
2928 
2929 /**
2930  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2931  *	@dev_queue: pointer to transmit queue
2932  *
2933  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2934  * to give appropriate hint to the CPU.
2935  */
2936 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2937 {
2938 #ifdef CONFIG_BQL
2939 	prefetchw(&dev_queue->dql.num_queued);
2940 #endif
2941 }
2942 
2943 /**
2944  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2945  *	@dev_queue: pointer to transmit queue
2946  *
2947  * BQL enabled drivers might use this helper in their TX completion path,
2948  * to give appropriate hint to the CPU.
2949  */
2950 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2951 {
2952 #ifdef CONFIG_BQL
2953 	prefetchw(&dev_queue->dql.limit);
2954 #endif
2955 }
2956 
2957 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2958 					unsigned int bytes)
2959 {
2960 #ifdef CONFIG_BQL
2961 	dql_queued(&dev_queue->dql, bytes);
2962 
2963 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2964 		return;
2965 
2966 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2967 
2968 	/*
2969 	 * The XOFF flag must be set before checking the dql_avail below,
2970 	 * because in netdev_tx_completed_queue we update the dql_completed
2971 	 * before checking the XOFF flag.
2972 	 */
2973 	smp_mb();
2974 
2975 	/* check again in case another CPU has just made room avail */
2976 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2977 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2978 #endif
2979 }
2980 
2981 /**
2982  * 	netdev_sent_queue - report the number of bytes queued to hardware
2983  * 	@dev: network device
2984  * 	@bytes: number of bytes queued to the hardware device queue
2985  *
2986  * 	Report the number of bytes queued for sending/completion to the network
2987  * 	device hardware queue. @bytes should be a good approximation and should
2988  * 	exactly match netdev_completed_queue() @bytes
2989  */
2990 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2991 {
2992 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2993 }
2994 
2995 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2996 					     unsigned int pkts, unsigned int bytes)
2997 {
2998 #ifdef CONFIG_BQL
2999 	if (unlikely(!bytes))
3000 		return;
3001 
3002 	dql_completed(&dev_queue->dql, bytes);
3003 
3004 	/*
3005 	 * Without the memory barrier there is a small possiblity that
3006 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3007 	 * be stopped forever
3008 	 */
3009 	smp_mb();
3010 
3011 	if (dql_avail(&dev_queue->dql) < 0)
3012 		return;
3013 
3014 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3015 		netif_schedule_queue(dev_queue);
3016 #endif
3017 }
3018 
3019 /**
3020  * 	netdev_completed_queue - report bytes and packets completed by device
3021  * 	@dev: network device
3022  * 	@pkts: actual number of packets sent over the medium
3023  * 	@bytes: actual number of bytes sent over the medium
3024  *
3025  * 	Report the number of bytes and packets transmitted by the network device
3026  * 	hardware queue over the physical medium, @bytes must exactly match the
3027  * 	@bytes amount passed to netdev_sent_queue()
3028  */
3029 static inline void netdev_completed_queue(struct net_device *dev,
3030 					  unsigned int pkts, unsigned int bytes)
3031 {
3032 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3033 }
3034 
3035 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3036 {
3037 #ifdef CONFIG_BQL
3038 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3039 	dql_reset(&q->dql);
3040 #endif
3041 }
3042 
3043 /**
3044  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3045  * 	@dev_queue: network device
3046  *
3047  * 	Reset the bytes and packet count of a network device and clear the
3048  * 	software flow control OFF bit for this network device
3049  */
3050 static inline void netdev_reset_queue(struct net_device *dev_queue)
3051 {
3052 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3053 }
3054 
3055 /**
3056  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3057  * 	@dev: network device
3058  * 	@queue_index: given tx queue index
3059  *
3060  * 	Returns 0 if given tx queue index >= number of device tx queues,
3061  * 	otherwise returns the originally passed tx queue index.
3062  */
3063 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3064 {
3065 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3066 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3067 				     dev->name, queue_index,
3068 				     dev->real_num_tx_queues);
3069 		return 0;
3070 	}
3071 
3072 	return queue_index;
3073 }
3074 
3075 /**
3076  *	netif_running - test if up
3077  *	@dev: network device
3078  *
3079  *	Test if the device has been brought up.
3080  */
3081 static inline bool netif_running(const struct net_device *dev)
3082 {
3083 	return test_bit(__LINK_STATE_START, &dev->state);
3084 }
3085 
3086 /*
3087  * Routines to manage the subqueues on a device.  We only need start,
3088  * stop, and a check if it's stopped.  All other device management is
3089  * done at the overall netdevice level.
3090  * Also test the device if we're multiqueue.
3091  */
3092 
3093 /**
3094  *	netif_start_subqueue - allow sending packets on subqueue
3095  *	@dev: network device
3096  *	@queue_index: sub queue index
3097  *
3098  * Start individual transmit queue of a device with multiple transmit queues.
3099  */
3100 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3101 {
3102 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3103 
3104 	netif_tx_start_queue(txq);
3105 }
3106 
3107 /**
3108  *	netif_stop_subqueue - stop sending packets on subqueue
3109  *	@dev: network device
3110  *	@queue_index: sub queue index
3111  *
3112  * Stop individual transmit queue of a device with multiple transmit queues.
3113  */
3114 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3115 {
3116 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3117 	netif_tx_stop_queue(txq);
3118 }
3119 
3120 /**
3121  *	netif_subqueue_stopped - test status of subqueue
3122  *	@dev: network device
3123  *	@queue_index: sub queue index
3124  *
3125  * Check individual transmit queue of a device with multiple transmit queues.
3126  */
3127 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3128 					    u16 queue_index)
3129 {
3130 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3131 
3132 	return netif_tx_queue_stopped(txq);
3133 }
3134 
3135 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3136 					  struct sk_buff *skb)
3137 {
3138 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3139 }
3140 
3141 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3142 
3143 #ifdef CONFIG_XPS
3144 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3145 			u16 index);
3146 #else
3147 static inline int netif_set_xps_queue(struct net_device *dev,
3148 				      const struct cpumask *mask,
3149 				      u16 index)
3150 {
3151 	return 0;
3152 }
3153 #endif
3154 
3155 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3156 		  unsigned int num_tx_queues);
3157 
3158 /*
3159  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3160  * as a distribution range limit for the returned value.
3161  */
3162 static inline u16 skb_tx_hash(const struct net_device *dev,
3163 			      struct sk_buff *skb)
3164 {
3165 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3166 }
3167 
3168 /**
3169  *	netif_is_multiqueue - test if device has multiple transmit queues
3170  *	@dev: network device
3171  *
3172  * Check if device has multiple transmit queues
3173  */
3174 static inline bool netif_is_multiqueue(const struct net_device *dev)
3175 {
3176 	return dev->num_tx_queues > 1;
3177 }
3178 
3179 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3180 
3181 #ifdef CONFIG_SYSFS
3182 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3183 #else
3184 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3185 						unsigned int rxq)
3186 {
3187 	return 0;
3188 }
3189 #endif
3190 
3191 #ifdef CONFIG_SYSFS
3192 static inline unsigned int get_netdev_rx_queue_index(
3193 		struct netdev_rx_queue *queue)
3194 {
3195 	struct net_device *dev = queue->dev;
3196 	int index = queue - dev->_rx;
3197 
3198 	BUG_ON(index >= dev->num_rx_queues);
3199 	return index;
3200 }
3201 #endif
3202 
3203 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3204 int netif_get_num_default_rss_queues(void);
3205 
3206 enum skb_free_reason {
3207 	SKB_REASON_CONSUMED,
3208 	SKB_REASON_DROPPED,
3209 };
3210 
3211 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3212 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3213 
3214 /*
3215  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3216  * interrupt context or with hardware interrupts being disabled.
3217  * (in_irq() || irqs_disabled())
3218  *
3219  * We provide four helpers that can be used in following contexts :
3220  *
3221  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3222  *  replacing kfree_skb(skb)
3223  *
3224  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3225  *  Typically used in place of consume_skb(skb) in TX completion path
3226  *
3227  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3228  *  replacing kfree_skb(skb)
3229  *
3230  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3231  *  and consumed a packet. Used in place of consume_skb(skb)
3232  */
3233 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3234 {
3235 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3236 }
3237 
3238 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3239 {
3240 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3241 }
3242 
3243 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3244 {
3245 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3246 }
3247 
3248 static inline void dev_consume_skb_any(struct sk_buff *skb)
3249 {
3250 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3251 }
3252 
3253 int netif_rx(struct sk_buff *skb);
3254 int netif_rx_ni(struct sk_buff *skb);
3255 int netif_receive_skb(struct sk_buff *skb);
3256 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3257 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3258 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3259 gro_result_t napi_gro_frags(struct napi_struct *napi);
3260 struct packet_offload *gro_find_receive_by_type(__be16 type);
3261 struct packet_offload *gro_find_complete_by_type(__be16 type);
3262 
3263 static inline void napi_free_frags(struct napi_struct *napi)
3264 {
3265 	kfree_skb(napi->skb);
3266 	napi->skb = NULL;
3267 }
3268 
3269 int netdev_rx_handler_register(struct net_device *dev,
3270 			       rx_handler_func_t *rx_handler,
3271 			       void *rx_handler_data);
3272 void netdev_rx_handler_unregister(struct net_device *dev);
3273 
3274 bool dev_valid_name(const char *name);
3275 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3276 int dev_ethtool(struct net *net, struct ifreq *);
3277 unsigned int dev_get_flags(const struct net_device *);
3278 int __dev_change_flags(struct net_device *, unsigned int flags);
3279 int dev_change_flags(struct net_device *, unsigned int);
3280 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3281 			unsigned int gchanges);
3282 int dev_change_name(struct net_device *, const char *);
3283 int dev_set_alias(struct net_device *, const char *, size_t);
3284 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3285 int dev_set_mtu(struct net_device *, int);
3286 void dev_set_group(struct net_device *, int);
3287 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3288 int dev_change_carrier(struct net_device *, bool new_carrier);
3289 int dev_get_phys_port_id(struct net_device *dev,
3290 			 struct netdev_phys_item_id *ppid);
3291 int dev_get_phys_port_name(struct net_device *dev,
3292 			   char *name, size_t len);
3293 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3294 int dev_change_xdp_fd(struct net_device *dev, int fd);
3295 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3296 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3297 				    struct netdev_queue *txq, int *ret);
3298 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3299 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3300 bool is_skb_forwardable(const struct net_device *dev,
3301 			const struct sk_buff *skb);
3302 
3303 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3304 
3305 extern int		netdev_budget;
3306 
3307 /* Called by rtnetlink.c:rtnl_unlock() */
3308 void netdev_run_todo(void);
3309 
3310 /**
3311  *	dev_put - release reference to device
3312  *	@dev: network device
3313  *
3314  * Release reference to device to allow it to be freed.
3315  */
3316 static inline void dev_put(struct net_device *dev)
3317 {
3318 	this_cpu_dec(*dev->pcpu_refcnt);
3319 }
3320 
3321 /**
3322  *	dev_hold - get reference to device
3323  *	@dev: network device
3324  *
3325  * Hold reference to device to keep it from being freed.
3326  */
3327 static inline void dev_hold(struct net_device *dev)
3328 {
3329 	this_cpu_inc(*dev->pcpu_refcnt);
3330 }
3331 
3332 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3333  * and _off may be called from IRQ context, but it is caller
3334  * who is responsible for serialization of these calls.
3335  *
3336  * The name carrier is inappropriate, these functions should really be
3337  * called netif_lowerlayer_*() because they represent the state of any
3338  * kind of lower layer not just hardware media.
3339  */
3340 
3341 void linkwatch_init_dev(struct net_device *dev);
3342 void linkwatch_fire_event(struct net_device *dev);
3343 void linkwatch_forget_dev(struct net_device *dev);
3344 
3345 /**
3346  *	netif_carrier_ok - test if carrier present
3347  *	@dev: network device
3348  *
3349  * Check if carrier is present on device
3350  */
3351 static inline bool netif_carrier_ok(const struct net_device *dev)
3352 {
3353 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3354 }
3355 
3356 unsigned long dev_trans_start(struct net_device *dev);
3357 
3358 void __netdev_watchdog_up(struct net_device *dev);
3359 
3360 void netif_carrier_on(struct net_device *dev);
3361 
3362 void netif_carrier_off(struct net_device *dev);
3363 
3364 /**
3365  *	netif_dormant_on - mark device as dormant.
3366  *	@dev: network device
3367  *
3368  * Mark device as dormant (as per RFC2863).
3369  *
3370  * The dormant state indicates that the relevant interface is not
3371  * actually in a condition to pass packets (i.e., it is not 'up') but is
3372  * in a "pending" state, waiting for some external event.  For "on-
3373  * demand" interfaces, this new state identifies the situation where the
3374  * interface is waiting for events to place it in the up state.
3375  */
3376 static inline void netif_dormant_on(struct net_device *dev)
3377 {
3378 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3379 		linkwatch_fire_event(dev);
3380 }
3381 
3382 /**
3383  *	netif_dormant_off - set device as not dormant.
3384  *	@dev: network device
3385  *
3386  * Device is not in dormant state.
3387  */
3388 static inline void netif_dormant_off(struct net_device *dev)
3389 {
3390 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3391 		linkwatch_fire_event(dev);
3392 }
3393 
3394 /**
3395  *	netif_dormant - test if carrier present
3396  *	@dev: network device
3397  *
3398  * Check if carrier is present on device
3399  */
3400 static inline bool netif_dormant(const struct net_device *dev)
3401 {
3402 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3403 }
3404 
3405 
3406 /**
3407  *	netif_oper_up - test if device is operational
3408  *	@dev: network device
3409  *
3410  * Check if carrier is operational
3411  */
3412 static inline bool netif_oper_up(const struct net_device *dev)
3413 {
3414 	return (dev->operstate == IF_OPER_UP ||
3415 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3416 }
3417 
3418 /**
3419  *	netif_device_present - is device available or removed
3420  *	@dev: network device
3421  *
3422  * Check if device has not been removed from system.
3423  */
3424 static inline bool netif_device_present(struct net_device *dev)
3425 {
3426 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3427 }
3428 
3429 void netif_device_detach(struct net_device *dev);
3430 
3431 void netif_device_attach(struct net_device *dev);
3432 
3433 /*
3434  * Network interface message level settings
3435  */
3436 
3437 enum {
3438 	NETIF_MSG_DRV		= 0x0001,
3439 	NETIF_MSG_PROBE		= 0x0002,
3440 	NETIF_MSG_LINK		= 0x0004,
3441 	NETIF_MSG_TIMER		= 0x0008,
3442 	NETIF_MSG_IFDOWN	= 0x0010,
3443 	NETIF_MSG_IFUP		= 0x0020,
3444 	NETIF_MSG_RX_ERR	= 0x0040,
3445 	NETIF_MSG_TX_ERR	= 0x0080,
3446 	NETIF_MSG_TX_QUEUED	= 0x0100,
3447 	NETIF_MSG_INTR		= 0x0200,
3448 	NETIF_MSG_TX_DONE	= 0x0400,
3449 	NETIF_MSG_RX_STATUS	= 0x0800,
3450 	NETIF_MSG_PKTDATA	= 0x1000,
3451 	NETIF_MSG_HW		= 0x2000,
3452 	NETIF_MSG_WOL		= 0x4000,
3453 };
3454 
3455 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3456 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3457 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3458 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3459 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3460 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3461 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3462 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3463 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3464 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3465 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3466 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3467 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3468 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3469 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3470 
3471 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3472 {
3473 	/* use default */
3474 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3475 		return default_msg_enable_bits;
3476 	if (debug_value == 0)	/* no output */
3477 		return 0;
3478 	/* set low N bits */
3479 	return (1 << debug_value) - 1;
3480 }
3481 
3482 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3483 {
3484 	spin_lock(&txq->_xmit_lock);
3485 	txq->xmit_lock_owner = cpu;
3486 }
3487 
3488 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3489 {
3490 	spin_lock_bh(&txq->_xmit_lock);
3491 	txq->xmit_lock_owner = smp_processor_id();
3492 }
3493 
3494 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3495 {
3496 	bool ok = spin_trylock(&txq->_xmit_lock);
3497 	if (likely(ok))
3498 		txq->xmit_lock_owner = smp_processor_id();
3499 	return ok;
3500 }
3501 
3502 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3503 {
3504 	txq->xmit_lock_owner = -1;
3505 	spin_unlock(&txq->_xmit_lock);
3506 }
3507 
3508 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3509 {
3510 	txq->xmit_lock_owner = -1;
3511 	spin_unlock_bh(&txq->_xmit_lock);
3512 }
3513 
3514 static inline void txq_trans_update(struct netdev_queue *txq)
3515 {
3516 	if (txq->xmit_lock_owner != -1)
3517 		txq->trans_start = jiffies;
3518 }
3519 
3520 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3521 static inline void netif_trans_update(struct net_device *dev)
3522 {
3523 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3524 
3525 	if (txq->trans_start != jiffies)
3526 		txq->trans_start = jiffies;
3527 }
3528 
3529 /**
3530  *	netif_tx_lock - grab network device transmit lock
3531  *	@dev: network device
3532  *
3533  * Get network device transmit lock
3534  */
3535 static inline void netif_tx_lock(struct net_device *dev)
3536 {
3537 	unsigned int i;
3538 	int cpu;
3539 
3540 	spin_lock(&dev->tx_global_lock);
3541 	cpu = smp_processor_id();
3542 	for (i = 0; i < dev->num_tx_queues; i++) {
3543 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3544 
3545 		/* We are the only thread of execution doing a
3546 		 * freeze, but we have to grab the _xmit_lock in
3547 		 * order to synchronize with threads which are in
3548 		 * the ->hard_start_xmit() handler and already
3549 		 * checked the frozen bit.
3550 		 */
3551 		__netif_tx_lock(txq, cpu);
3552 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3553 		__netif_tx_unlock(txq);
3554 	}
3555 }
3556 
3557 static inline void netif_tx_lock_bh(struct net_device *dev)
3558 {
3559 	local_bh_disable();
3560 	netif_tx_lock(dev);
3561 }
3562 
3563 static inline void netif_tx_unlock(struct net_device *dev)
3564 {
3565 	unsigned int i;
3566 
3567 	for (i = 0; i < dev->num_tx_queues; i++) {
3568 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3569 
3570 		/* No need to grab the _xmit_lock here.  If the
3571 		 * queue is not stopped for another reason, we
3572 		 * force a schedule.
3573 		 */
3574 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3575 		netif_schedule_queue(txq);
3576 	}
3577 	spin_unlock(&dev->tx_global_lock);
3578 }
3579 
3580 static inline void netif_tx_unlock_bh(struct net_device *dev)
3581 {
3582 	netif_tx_unlock(dev);
3583 	local_bh_enable();
3584 }
3585 
3586 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3587 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3588 		__netif_tx_lock(txq, cpu);		\
3589 	}						\
3590 }
3591 
3592 #define HARD_TX_TRYLOCK(dev, txq)			\
3593 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3594 		__netif_tx_trylock(txq) :		\
3595 		true )
3596 
3597 #define HARD_TX_UNLOCK(dev, txq) {			\
3598 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3599 		__netif_tx_unlock(txq);			\
3600 	}						\
3601 }
3602 
3603 static inline void netif_tx_disable(struct net_device *dev)
3604 {
3605 	unsigned int i;
3606 	int cpu;
3607 
3608 	local_bh_disable();
3609 	cpu = smp_processor_id();
3610 	for (i = 0; i < dev->num_tx_queues; i++) {
3611 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3612 
3613 		__netif_tx_lock(txq, cpu);
3614 		netif_tx_stop_queue(txq);
3615 		__netif_tx_unlock(txq);
3616 	}
3617 	local_bh_enable();
3618 }
3619 
3620 static inline void netif_addr_lock(struct net_device *dev)
3621 {
3622 	spin_lock(&dev->addr_list_lock);
3623 }
3624 
3625 static inline void netif_addr_lock_nested(struct net_device *dev)
3626 {
3627 	int subclass = SINGLE_DEPTH_NESTING;
3628 
3629 	if (dev->netdev_ops->ndo_get_lock_subclass)
3630 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3631 
3632 	spin_lock_nested(&dev->addr_list_lock, subclass);
3633 }
3634 
3635 static inline void netif_addr_lock_bh(struct net_device *dev)
3636 {
3637 	spin_lock_bh(&dev->addr_list_lock);
3638 }
3639 
3640 static inline void netif_addr_unlock(struct net_device *dev)
3641 {
3642 	spin_unlock(&dev->addr_list_lock);
3643 }
3644 
3645 static inline void netif_addr_unlock_bh(struct net_device *dev)
3646 {
3647 	spin_unlock_bh(&dev->addr_list_lock);
3648 }
3649 
3650 /*
3651  * dev_addrs walker. Should be used only for read access. Call with
3652  * rcu_read_lock held.
3653  */
3654 #define for_each_dev_addr(dev, ha) \
3655 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3656 
3657 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3658 
3659 void ether_setup(struct net_device *dev);
3660 
3661 /* Support for loadable net-drivers */
3662 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3663 				    unsigned char name_assign_type,
3664 				    void (*setup)(struct net_device *),
3665 				    unsigned int txqs, unsigned int rxqs);
3666 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3667 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3668 
3669 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3670 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3671 			 count)
3672 
3673 int register_netdev(struct net_device *dev);
3674 void unregister_netdev(struct net_device *dev);
3675 
3676 /* General hardware address lists handling functions */
3677 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3678 		   struct netdev_hw_addr_list *from_list, int addr_len);
3679 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3680 		      struct netdev_hw_addr_list *from_list, int addr_len);
3681 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3682 		       struct net_device *dev,
3683 		       int (*sync)(struct net_device *, const unsigned char *),
3684 		       int (*unsync)(struct net_device *,
3685 				     const unsigned char *));
3686 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3687 			  struct net_device *dev,
3688 			  int (*unsync)(struct net_device *,
3689 					const unsigned char *));
3690 void __hw_addr_init(struct netdev_hw_addr_list *list);
3691 
3692 /* Functions used for device addresses handling */
3693 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3694 		 unsigned char addr_type);
3695 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3696 		 unsigned char addr_type);
3697 void dev_addr_flush(struct net_device *dev);
3698 int dev_addr_init(struct net_device *dev);
3699 
3700 /* Functions used for unicast addresses handling */
3701 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3702 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3703 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3704 int dev_uc_sync(struct net_device *to, struct net_device *from);
3705 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3706 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3707 void dev_uc_flush(struct net_device *dev);
3708 void dev_uc_init(struct net_device *dev);
3709 
3710 /**
3711  *  __dev_uc_sync - Synchonize device's unicast list
3712  *  @dev:  device to sync
3713  *  @sync: function to call if address should be added
3714  *  @unsync: function to call if address should be removed
3715  *
3716  *  Add newly added addresses to the interface, and release
3717  *  addresses that have been deleted.
3718  */
3719 static inline int __dev_uc_sync(struct net_device *dev,
3720 				int (*sync)(struct net_device *,
3721 					    const unsigned char *),
3722 				int (*unsync)(struct net_device *,
3723 					      const unsigned char *))
3724 {
3725 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3726 }
3727 
3728 /**
3729  *  __dev_uc_unsync - Remove synchronized addresses from device
3730  *  @dev:  device to sync
3731  *  @unsync: function to call if address should be removed
3732  *
3733  *  Remove all addresses that were added to the device by dev_uc_sync().
3734  */
3735 static inline void __dev_uc_unsync(struct net_device *dev,
3736 				   int (*unsync)(struct net_device *,
3737 						 const unsigned char *))
3738 {
3739 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3740 }
3741 
3742 /* Functions used for multicast addresses handling */
3743 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3744 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3745 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3746 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3747 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3748 int dev_mc_sync(struct net_device *to, struct net_device *from);
3749 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3750 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3751 void dev_mc_flush(struct net_device *dev);
3752 void dev_mc_init(struct net_device *dev);
3753 
3754 /**
3755  *  __dev_mc_sync - Synchonize device's multicast list
3756  *  @dev:  device to sync
3757  *  @sync: function to call if address should be added
3758  *  @unsync: function to call if address should be removed
3759  *
3760  *  Add newly added addresses to the interface, and release
3761  *  addresses that have been deleted.
3762  */
3763 static inline int __dev_mc_sync(struct net_device *dev,
3764 				int (*sync)(struct net_device *,
3765 					    const unsigned char *),
3766 				int (*unsync)(struct net_device *,
3767 					      const unsigned char *))
3768 {
3769 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3770 }
3771 
3772 /**
3773  *  __dev_mc_unsync - Remove synchronized addresses from device
3774  *  @dev:  device to sync
3775  *  @unsync: function to call if address should be removed
3776  *
3777  *  Remove all addresses that were added to the device by dev_mc_sync().
3778  */
3779 static inline void __dev_mc_unsync(struct net_device *dev,
3780 				   int (*unsync)(struct net_device *,
3781 						 const unsigned char *))
3782 {
3783 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3784 }
3785 
3786 /* Functions used for secondary unicast and multicast support */
3787 void dev_set_rx_mode(struct net_device *dev);
3788 void __dev_set_rx_mode(struct net_device *dev);
3789 int dev_set_promiscuity(struct net_device *dev, int inc);
3790 int dev_set_allmulti(struct net_device *dev, int inc);
3791 void netdev_state_change(struct net_device *dev);
3792 void netdev_notify_peers(struct net_device *dev);
3793 void netdev_features_change(struct net_device *dev);
3794 /* Load a device via the kmod */
3795 void dev_load(struct net *net, const char *name);
3796 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3797 					struct rtnl_link_stats64 *storage);
3798 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3799 			     const struct net_device_stats *netdev_stats);
3800 
3801 extern int		netdev_max_backlog;
3802 extern int		netdev_tstamp_prequeue;
3803 extern int		weight_p;
3804 
3805 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3806 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3807 						     struct list_head **iter);
3808 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3809 						     struct list_head **iter);
3810 
3811 /* iterate through upper list, must be called under RCU read lock */
3812 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3813 	for (iter = &(dev)->adj_list.upper, \
3814 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3815 	     updev; \
3816 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3817 
3818 /* iterate through upper list, must be called under RCU read lock */
3819 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3820 	for (iter = &(dev)->all_adj_list.upper, \
3821 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3822 	     updev; \
3823 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3824 
3825 void *netdev_lower_get_next_private(struct net_device *dev,
3826 				    struct list_head **iter);
3827 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3828 					struct list_head **iter);
3829 
3830 #define netdev_for_each_lower_private(dev, priv, iter) \
3831 	for (iter = (dev)->adj_list.lower.next, \
3832 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3833 	     priv; \
3834 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3835 
3836 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3837 	for (iter = &(dev)->adj_list.lower, \
3838 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3839 	     priv; \
3840 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3841 
3842 void *netdev_lower_get_next(struct net_device *dev,
3843 				struct list_head **iter);
3844 
3845 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3846 	for (iter = (dev)->adj_list.lower.next, \
3847 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3848 	     ldev; \
3849 	     ldev = netdev_lower_get_next(dev, &(iter)))
3850 
3851 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3852 					     struct list_head **iter);
3853 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3854 						 struct list_head **iter);
3855 
3856 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3857 	for (iter = (dev)->all_adj_list.lower.next, \
3858 	     ldev = netdev_all_lower_get_next(dev, &(iter)); \
3859 	     ldev; \
3860 	     ldev = netdev_all_lower_get_next(dev, &(iter)))
3861 
3862 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3863 	for (iter = (dev)->all_adj_list.lower.next, \
3864 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3865 	     ldev; \
3866 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3867 
3868 void *netdev_adjacent_get_private(struct list_head *adj_list);
3869 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3870 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3871 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3872 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3873 int netdev_master_upper_dev_link(struct net_device *dev,
3874 				 struct net_device *upper_dev,
3875 				 void *upper_priv, void *upper_info);
3876 void netdev_upper_dev_unlink(struct net_device *dev,
3877 			     struct net_device *upper_dev);
3878 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3879 void *netdev_lower_dev_get_private(struct net_device *dev,
3880 				   struct net_device *lower_dev);
3881 void netdev_lower_state_changed(struct net_device *lower_dev,
3882 				void *lower_state_info);
3883 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3884 					   struct neighbour *n);
3885 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3886 					  struct neighbour *n);
3887 
3888 /* RSS keys are 40 or 52 bytes long */
3889 #define NETDEV_RSS_KEY_LEN 52
3890 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3891 void netdev_rss_key_fill(void *buffer, size_t len);
3892 
3893 int dev_get_nest_level(struct net_device *dev);
3894 int skb_checksum_help(struct sk_buff *skb);
3895 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3896 				  netdev_features_t features, bool tx_path);
3897 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3898 				    netdev_features_t features);
3899 
3900 struct netdev_bonding_info {
3901 	ifslave	slave;
3902 	ifbond	master;
3903 };
3904 
3905 struct netdev_notifier_bonding_info {
3906 	struct netdev_notifier_info info; /* must be first */
3907 	struct netdev_bonding_info  bonding_info;
3908 };
3909 
3910 void netdev_bonding_info_change(struct net_device *dev,
3911 				struct netdev_bonding_info *bonding_info);
3912 
3913 static inline
3914 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3915 {
3916 	return __skb_gso_segment(skb, features, true);
3917 }
3918 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3919 
3920 static inline bool can_checksum_protocol(netdev_features_t features,
3921 					 __be16 protocol)
3922 {
3923 	if (protocol == htons(ETH_P_FCOE))
3924 		return !!(features & NETIF_F_FCOE_CRC);
3925 
3926 	/* Assume this is an IP checksum (not SCTP CRC) */
3927 
3928 	if (features & NETIF_F_HW_CSUM) {
3929 		/* Can checksum everything */
3930 		return true;
3931 	}
3932 
3933 	switch (protocol) {
3934 	case htons(ETH_P_IP):
3935 		return !!(features & NETIF_F_IP_CSUM);
3936 	case htons(ETH_P_IPV6):
3937 		return !!(features & NETIF_F_IPV6_CSUM);
3938 	default:
3939 		return false;
3940 	}
3941 }
3942 
3943 /* Map an ethertype into IP protocol if possible */
3944 static inline int eproto_to_ipproto(int eproto)
3945 {
3946 	switch (eproto) {
3947 	case htons(ETH_P_IP):
3948 		return IPPROTO_IP;
3949 	case htons(ETH_P_IPV6):
3950 		return IPPROTO_IPV6;
3951 	default:
3952 		return -1;
3953 	}
3954 }
3955 
3956 #ifdef CONFIG_BUG
3957 void netdev_rx_csum_fault(struct net_device *dev);
3958 #else
3959 static inline void netdev_rx_csum_fault(struct net_device *dev)
3960 {
3961 }
3962 #endif
3963 /* rx skb timestamps */
3964 void net_enable_timestamp(void);
3965 void net_disable_timestamp(void);
3966 
3967 #ifdef CONFIG_PROC_FS
3968 int __init dev_proc_init(void);
3969 #else
3970 #define dev_proc_init() 0
3971 #endif
3972 
3973 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3974 					      struct sk_buff *skb, struct net_device *dev,
3975 					      bool more)
3976 {
3977 	skb->xmit_more = more ? 1 : 0;
3978 	return ops->ndo_start_xmit(skb, dev);
3979 }
3980 
3981 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3982 					    struct netdev_queue *txq, bool more)
3983 {
3984 	const struct net_device_ops *ops = dev->netdev_ops;
3985 	int rc;
3986 
3987 	rc = __netdev_start_xmit(ops, skb, dev, more);
3988 	if (rc == NETDEV_TX_OK)
3989 		txq_trans_update(txq);
3990 
3991 	return rc;
3992 }
3993 
3994 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3995 				const void *ns);
3996 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3997 				 const void *ns);
3998 
3999 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4000 {
4001 	return netdev_class_create_file_ns(class_attr, NULL);
4002 }
4003 
4004 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4005 {
4006 	netdev_class_remove_file_ns(class_attr, NULL);
4007 }
4008 
4009 extern struct kobj_ns_type_operations net_ns_type_operations;
4010 
4011 const char *netdev_drivername(const struct net_device *dev);
4012 
4013 void linkwatch_run_queue(void);
4014 
4015 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4016 							  netdev_features_t f2)
4017 {
4018 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4019 		if (f1 & NETIF_F_HW_CSUM)
4020 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4021 		else
4022 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4023 	}
4024 
4025 	return f1 & f2;
4026 }
4027 
4028 static inline netdev_features_t netdev_get_wanted_features(
4029 	struct net_device *dev)
4030 {
4031 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4032 }
4033 netdev_features_t netdev_increment_features(netdev_features_t all,
4034 	netdev_features_t one, netdev_features_t mask);
4035 
4036 /* Allow TSO being used on stacked device :
4037  * Performing the GSO segmentation before last device
4038  * is a performance improvement.
4039  */
4040 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4041 							netdev_features_t mask)
4042 {
4043 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4044 }
4045 
4046 int __netdev_update_features(struct net_device *dev);
4047 void netdev_update_features(struct net_device *dev);
4048 void netdev_change_features(struct net_device *dev);
4049 
4050 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4051 					struct net_device *dev);
4052 
4053 netdev_features_t passthru_features_check(struct sk_buff *skb,
4054 					  struct net_device *dev,
4055 					  netdev_features_t features);
4056 netdev_features_t netif_skb_features(struct sk_buff *skb);
4057 
4058 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4059 {
4060 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4061 
4062 	/* check flags correspondence */
4063 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4064 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4065 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4066 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4067 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4068 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4069 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4070 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4071 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4072 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4073 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4074 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4075 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4076 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4077 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4078 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4079 
4080 	return (features & feature) == feature;
4081 }
4082 
4083 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4084 {
4085 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4086 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4087 }
4088 
4089 static inline bool netif_needs_gso(struct sk_buff *skb,
4090 				   netdev_features_t features)
4091 {
4092 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4093 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4094 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4095 }
4096 
4097 static inline void netif_set_gso_max_size(struct net_device *dev,
4098 					  unsigned int size)
4099 {
4100 	dev->gso_max_size = size;
4101 }
4102 
4103 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4104 					int pulled_hlen, u16 mac_offset,
4105 					int mac_len)
4106 {
4107 	skb->protocol = protocol;
4108 	skb->encapsulation = 1;
4109 	skb_push(skb, pulled_hlen);
4110 	skb_reset_transport_header(skb);
4111 	skb->mac_header = mac_offset;
4112 	skb->network_header = skb->mac_header + mac_len;
4113 	skb->mac_len = mac_len;
4114 }
4115 
4116 static inline bool netif_is_macsec(const struct net_device *dev)
4117 {
4118 	return dev->priv_flags & IFF_MACSEC;
4119 }
4120 
4121 static inline bool netif_is_macvlan(const struct net_device *dev)
4122 {
4123 	return dev->priv_flags & IFF_MACVLAN;
4124 }
4125 
4126 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4127 {
4128 	return dev->priv_flags & IFF_MACVLAN_PORT;
4129 }
4130 
4131 static inline bool netif_is_ipvlan(const struct net_device *dev)
4132 {
4133 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4134 }
4135 
4136 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4137 {
4138 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4139 }
4140 
4141 static inline bool netif_is_bond_master(const struct net_device *dev)
4142 {
4143 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4144 }
4145 
4146 static inline bool netif_is_bond_slave(const struct net_device *dev)
4147 {
4148 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4149 }
4150 
4151 static inline bool netif_supports_nofcs(struct net_device *dev)
4152 {
4153 	return dev->priv_flags & IFF_SUPP_NOFCS;
4154 }
4155 
4156 static inline bool netif_is_l3_master(const struct net_device *dev)
4157 {
4158 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4159 }
4160 
4161 static inline bool netif_is_l3_slave(const struct net_device *dev)
4162 {
4163 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4164 }
4165 
4166 static inline bool netif_is_bridge_master(const struct net_device *dev)
4167 {
4168 	return dev->priv_flags & IFF_EBRIDGE;
4169 }
4170 
4171 static inline bool netif_is_bridge_port(const struct net_device *dev)
4172 {
4173 	return dev->priv_flags & IFF_BRIDGE_PORT;
4174 }
4175 
4176 static inline bool netif_is_ovs_master(const struct net_device *dev)
4177 {
4178 	return dev->priv_flags & IFF_OPENVSWITCH;
4179 }
4180 
4181 static inline bool netif_is_team_master(const struct net_device *dev)
4182 {
4183 	return dev->priv_flags & IFF_TEAM;
4184 }
4185 
4186 static inline bool netif_is_team_port(const struct net_device *dev)
4187 {
4188 	return dev->priv_flags & IFF_TEAM_PORT;
4189 }
4190 
4191 static inline bool netif_is_lag_master(const struct net_device *dev)
4192 {
4193 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4194 }
4195 
4196 static inline bool netif_is_lag_port(const struct net_device *dev)
4197 {
4198 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4199 }
4200 
4201 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4202 {
4203 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4204 }
4205 
4206 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4207 static inline void netif_keep_dst(struct net_device *dev)
4208 {
4209 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4210 }
4211 
4212 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4213 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4214 {
4215 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4216 	return dev->priv_flags & IFF_MACSEC;
4217 }
4218 
4219 extern struct pernet_operations __net_initdata loopback_net_ops;
4220 
4221 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4222 
4223 /* netdev_printk helpers, similar to dev_printk */
4224 
4225 static inline const char *netdev_name(const struct net_device *dev)
4226 {
4227 	if (!dev->name[0] || strchr(dev->name, '%'))
4228 		return "(unnamed net_device)";
4229 	return dev->name;
4230 }
4231 
4232 static inline const char *netdev_reg_state(const struct net_device *dev)
4233 {
4234 	switch (dev->reg_state) {
4235 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4236 	case NETREG_REGISTERED: return "";
4237 	case NETREG_UNREGISTERING: return " (unregistering)";
4238 	case NETREG_UNREGISTERED: return " (unregistered)";
4239 	case NETREG_RELEASED: return " (released)";
4240 	case NETREG_DUMMY: return " (dummy)";
4241 	}
4242 
4243 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4244 	return " (unknown)";
4245 }
4246 
4247 __printf(3, 4)
4248 void netdev_printk(const char *level, const struct net_device *dev,
4249 		   const char *format, ...);
4250 __printf(2, 3)
4251 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4252 __printf(2, 3)
4253 void netdev_alert(const struct net_device *dev, const char *format, ...);
4254 __printf(2, 3)
4255 void netdev_crit(const struct net_device *dev, const char *format, ...);
4256 __printf(2, 3)
4257 void netdev_err(const struct net_device *dev, const char *format, ...);
4258 __printf(2, 3)
4259 void netdev_warn(const struct net_device *dev, const char *format, ...);
4260 __printf(2, 3)
4261 void netdev_notice(const struct net_device *dev, const char *format, ...);
4262 __printf(2, 3)
4263 void netdev_info(const struct net_device *dev, const char *format, ...);
4264 
4265 #define MODULE_ALIAS_NETDEV(device) \
4266 	MODULE_ALIAS("netdev-" device)
4267 
4268 #if defined(CONFIG_DYNAMIC_DEBUG)
4269 #define netdev_dbg(__dev, format, args...)			\
4270 do {								\
4271 	dynamic_netdev_dbg(__dev, format, ##args);		\
4272 } while (0)
4273 #elif defined(DEBUG)
4274 #define netdev_dbg(__dev, format, args...)			\
4275 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4276 #else
4277 #define netdev_dbg(__dev, format, args...)			\
4278 ({								\
4279 	if (0)							\
4280 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4281 })
4282 #endif
4283 
4284 #if defined(VERBOSE_DEBUG)
4285 #define netdev_vdbg	netdev_dbg
4286 #else
4287 
4288 #define netdev_vdbg(dev, format, args...)			\
4289 ({								\
4290 	if (0)							\
4291 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4292 	0;							\
4293 })
4294 #endif
4295 
4296 /*
4297  * netdev_WARN() acts like dev_printk(), but with the key difference
4298  * of using a WARN/WARN_ON to get the message out, including the
4299  * file/line information and a backtrace.
4300  */
4301 #define netdev_WARN(dev, format, args...)			\
4302 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4303 	     netdev_reg_state(dev), ##args)
4304 
4305 /* netif printk helpers, similar to netdev_printk */
4306 
4307 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4308 do {					  			\
4309 	if (netif_msg_##type(priv))				\
4310 		netdev_printk(level, (dev), fmt, ##args);	\
4311 } while (0)
4312 
4313 #define netif_level(level, priv, type, dev, fmt, args...)	\
4314 do {								\
4315 	if (netif_msg_##type(priv))				\
4316 		netdev_##level(dev, fmt, ##args);		\
4317 } while (0)
4318 
4319 #define netif_emerg(priv, type, dev, fmt, args...)		\
4320 	netif_level(emerg, priv, type, dev, fmt, ##args)
4321 #define netif_alert(priv, type, dev, fmt, args...)		\
4322 	netif_level(alert, priv, type, dev, fmt, ##args)
4323 #define netif_crit(priv, type, dev, fmt, args...)		\
4324 	netif_level(crit, priv, type, dev, fmt, ##args)
4325 #define netif_err(priv, type, dev, fmt, args...)		\
4326 	netif_level(err, priv, type, dev, fmt, ##args)
4327 #define netif_warn(priv, type, dev, fmt, args...)		\
4328 	netif_level(warn, priv, type, dev, fmt, ##args)
4329 #define netif_notice(priv, type, dev, fmt, args...)		\
4330 	netif_level(notice, priv, type, dev, fmt, ##args)
4331 #define netif_info(priv, type, dev, fmt, args...)		\
4332 	netif_level(info, priv, type, dev, fmt, ##args)
4333 
4334 #if defined(CONFIG_DYNAMIC_DEBUG)
4335 #define netif_dbg(priv, type, netdev, format, args...)		\
4336 do {								\
4337 	if (netif_msg_##type(priv))				\
4338 		dynamic_netdev_dbg(netdev, format, ##args);	\
4339 } while (0)
4340 #elif defined(DEBUG)
4341 #define netif_dbg(priv, type, dev, format, args...)		\
4342 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4343 #else
4344 #define netif_dbg(priv, type, dev, format, args...)			\
4345 ({									\
4346 	if (0)								\
4347 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4348 	0;								\
4349 })
4350 #endif
4351 
4352 #if defined(VERBOSE_DEBUG)
4353 #define netif_vdbg	netif_dbg
4354 #else
4355 #define netif_vdbg(priv, type, dev, format, args...)		\
4356 ({								\
4357 	if (0)							\
4358 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4359 	0;							\
4360 })
4361 #endif
4362 
4363 /*
4364  *	The list of packet types we will receive (as opposed to discard)
4365  *	and the routines to invoke.
4366  *
4367  *	Why 16. Because with 16 the only overlap we get on a hash of the
4368  *	low nibble of the protocol value is RARP/SNAP/X.25.
4369  *
4370  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4371  *             sure which should go first, but I bet it won't make much
4372  *             difference if we are running VLANs.  The good news is that
4373  *             this protocol won't be in the list unless compiled in, so
4374  *             the average user (w/out VLANs) will not be adversely affected.
4375  *             --BLG
4376  *
4377  *		0800	IP
4378  *		8100    802.1Q VLAN
4379  *		0001	802.3
4380  *		0002	AX.25
4381  *		0004	802.2
4382  *		8035	RARP
4383  *		0005	SNAP
4384  *		0805	X.25
4385  *		0806	ARP
4386  *		8137	IPX
4387  *		0009	Localtalk
4388  *		86DD	IPv6
4389  */
4390 #define PTYPE_HASH_SIZE	(16)
4391 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4392 
4393 #endif	/* _LINUX_NETDEVICE_H */
4394