xref: /linux-6.15/include/linux/netdevice.h (revision 9ecd0579)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 #include <net/dropreason.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_md;
80 
81 void synchronize_net(void);
82 void netdev_set_default_ethtool_ops(struct net_device *dev,
83 				    const struct ethtool_ops *ops);
84 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
85 
86 /* Backlog congestion levels */
87 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
88 #define NET_RX_DROP		1	/* packet dropped */
89 
90 #define MAX_NEST_DEV 8
91 
92 /*
93  * Transmit return codes: transmit return codes originate from three different
94  * namespaces:
95  *
96  * - qdisc return codes
97  * - driver transmit return codes
98  * - errno values
99  *
100  * Drivers are allowed to return any one of those in their hard_start_xmit()
101  * function. Real network devices commonly used with qdiscs should only return
102  * the driver transmit return codes though - when qdiscs are used, the actual
103  * transmission happens asynchronously, so the value is not propagated to
104  * higher layers. Virtual network devices transmit synchronously; in this case
105  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
106  * others are propagated to higher layers.
107  */
108 
109 /* qdisc ->enqueue() return codes. */
110 #define NET_XMIT_SUCCESS	0x00
111 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
112 #define NET_XMIT_CN		0x02	/* congestion notification	*/
113 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
114 
115 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
116  * indicates that the device will soon be dropping packets, or already drops
117  * some packets of the same priority; prompting us to send less aggressively. */
118 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
119 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
120 
121 /* Driver transmit return codes */
122 #define NETDEV_TX_MASK		0xf0
123 
124 enum netdev_tx {
125 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
126 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
127 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
128 };
129 typedef enum netdev_tx netdev_tx_t;
130 
131 /*
132  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
133  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
134  */
135 static inline bool dev_xmit_complete(int rc)
136 {
137 	/*
138 	 * Positive cases with an skb consumed by a driver:
139 	 * - successful transmission (rc == NETDEV_TX_OK)
140 	 * - error while transmitting (rc < 0)
141 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
142 	 */
143 	if (likely(rc < NET_XMIT_MASK))
144 		return true;
145 
146 	return false;
147 }
148 
149 /*
150  *	Compute the worst-case header length according to the protocols
151  *	used.
152  */
153 
154 #if defined(CONFIG_HYPERV_NET)
155 # define LL_MAX_HEADER 128
156 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
157 # if defined(CONFIG_MAC80211_MESH)
158 #  define LL_MAX_HEADER 128
159 # else
160 #  define LL_MAX_HEADER 96
161 # endif
162 #else
163 # define LL_MAX_HEADER 32
164 #endif
165 
166 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
167     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
168 #define MAX_HEADER LL_MAX_HEADER
169 #else
170 #define MAX_HEADER (LL_MAX_HEADER + 48)
171 #endif
172 
173 /*
174  *	Old network device statistics. Fields are native words
175  *	(unsigned long) so they can be read and written atomically.
176  */
177 
178 #define NET_DEV_STAT(FIELD)			\
179 	union {					\
180 		unsigned long FIELD;		\
181 		atomic_long_t __##FIELD;	\
182 	}
183 
184 struct net_device_stats {
185 	NET_DEV_STAT(rx_packets);
186 	NET_DEV_STAT(tx_packets);
187 	NET_DEV_STAT(rx_bytes);
188 	NET_DEV_STAT(tx_bytes);
189 	NET_DEV_STAT(rx_errors);
190 	NET_DEV_STAT(tx_errors);
191 	NET_DEV_STAT(rx_dropped);
192 	NET_DEV_STAT(tx_dropped);
193 	NET_DEV_STAT(multicast);
194 	NET_DEV_STAT(collisions);
195 	NET_DEV_STAT(rx_length_errors);
196 	NET_DEV_STAT(rx_over_errors);
197 	NET_DEV_STAT(rx_crc_errors);
198 	NET_DEV_STAT(rx_frame_errors);
199 	NET_DEV_STAT(rx_fifo_errors);
200 	NET_DEV_STAT(rx_missed_errors);
201 	NET_DEV_STAT(tx_aborted_errors);
202 	NET_DEV_STAT(tx_carrier_errors);
203 	NET_DEV_STAT(tx_fifo_errors);
204 	NET_DEV_STAT(tx_heartbeat_errors);
205 	NET_DEV_STAT(tx_window_errors);
206 	NET_DEV_STAT(rx_compressed);
207 	NET_DEV_STAT(tx_compressed);
208 };
209 #undef NET_DEV_STAT
210 
211 /* per-cpu stats, allocated on demand.
212  * Try to fit them in a single cache line, for dev_get_stats() sake.
213  */
214 struct net_device_core_stats {
215 	unsigned long	rx_dropped;
216 	unsigned long	tx_dropped;
217 	unsigned long	rx_nohandler;
218 	unsigned long	rx_otherhost_dropped;
219 } __aligned(4 * sizeof(unsigned long));
220 
221 #include <linux/cache.h>
222 #include <linux/skbuff.h>
223 
224 #ifdef CONFIG_RPS
225 #include <linux/static_key.h>
226 extern struct static_key_false rps_needed;
227 extern struct static_key_false rfs_needed;
228 #endif
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	int			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	int			poll_owner;
364 #endif
365 	struct net_device	*dev;
366 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
367 	struct sk_buff		*skb;
368 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
369 	int			rx_count; /* length of rx_list */
370 	unsigned int		napi_id;
371 	struct hrtimer		timer;
372 	struct task_struct	*thread;
373 	/* control-path-only fields follow */
374 	struct list_head	dev_list;
375 	struct hlist_node	napi_hash_node;
376 };
377 
378 enum {
379 	NAPI_STATE_SCHED,		/* Poll is scheduled */
380 	NAPI_STATE_MISSED,		/* reschedule a napi */
381 	NAPI_STATE_DISABLE,		/* Disable pending */
382 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
383 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
384 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
385 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
386 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
387 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
388 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
389 };
390 
391 enum {
392 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
393 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
394 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
395 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
396 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
397 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
398 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
399 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
400 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
401 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
402 };
403 
404 enum gro_result {
405 	GRO_MERGED,
406 	GRO_MERGED_FREE,
407 	GRO_HELD,
408 	GRO_NORMAL,
409 	GRO_CONSUMED,
410 };
411 typedef enum gro_result gro_result_t;
412 
413 /*
414  * enum rx_handler_result - Possible return values for rx_handlers.
415  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
416  * further.
417  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
418  * case skb->dev was changed by rx_handler.
419  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
420  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
421  *
422  * rx_handlers are functions called from inside __netif_receive_skb(), to do
423  * special processing of the skb, prior to delivery to protocol handlers.
424  *
425  * Currently, a net_device can only have a single rx_handler registered. Trying
426  * to register a second rx_handler will return -EBUSY.
427  *
428  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
429  * To unregister a rx_handler on a net_device, use
430  * netdev_rx_handler_unregister().
431  *
432  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
433  * do with the skb.
434  *
435  * If the rx_handler consumed the skb in some way, it should return
436  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
437  * the skb to be delivered in some other way.
438  *
439  * If the rx_handler changed skb->dev, to divert the skb to another
440  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
441  * new device will be called if it exists.
442  *
443  * If the rx_handler decides the skb should be ignored, it should return
444  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
445  * are registered on exact device (ptype->dev == skb->dev).
446  *
447  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
448  * delivered, it should return RX_HANDLER_PASS.
449  *
450  * A device without a registered rx_handler will behave as if rx_handler
451  * returned RX_HANDLER_PASS.
452  */
453 
454 enum rx_handler_result {
455 	RX_HANDLER_CONSUMED,
456 	RX_HANDLER_ANOTHER,
457 	RX_HANDLER_EXACT,
458 	RX_HANDLER_PASS,
459 };
460 typedef enum rx_handler_result rx_handler_result_t;
461 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
462 
463 void __napi_schedule(struct napi_struct *n);
464 void __napi_schedule_irqoff(struct napi_struct *n);
465 
466 static inline bool napi_disable_pending(struct napi_struct *n)
467 {
468 	return test_bit(NAPI_STATE_DISABLE, &n->state);
469 }
470 
471 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
472 {
473 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
474 }
475 
476 bool napi_schedule_prep(struct napi_struct *n);
477 
478 /**
479  *	napi_schedule - schedule NAPI poll
480  *	@n: NAPI context
481  *
482  * Schedule NAPI poll routine to be called if it is not already
483  * running.
484  */
485 static inline void napi_schedule(struct napi_struct *n)
486 {
487 	if (napi_schedule_prep(n))
488 		__napi_schedule(n);
489 }
490 
491 /**
492  *	napi_schedule_irqoff - schedule NAPI poll
493  *	@n: NAPI context
494  *
495  * Variant of napi_schedule(), assuming hard irqs are masked.
496  */
497 static inline void napi_schedule_irqoff(struct napi_struct *n)
498 {
499 	if (napi_schedule_prep(n))
500 		__napi_schedule_irqoff(n);
501 }
502 
503 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
504 static inline bool napi_reschedule(struct napi_struct *napi)
505 {
506 	if (napi_schedule_prep(napi)) {
507 		__napi_schedule(napi);
508 		return true;
509 	}
510 	return false;
511 }
512 
513 /**
514  * napi_complete_done - NAPI processing complete
515  * @n: NAPI context
516  * @work_done: number of packets processed
517  *
518  * Mark NAPI processing as complete. Should only be called if poll budget
519  * has not been completely consumed.
520  * Prefer over napi_complete().
521  * Return false if device should avoid rearming interrupts.
522  */
523 bool napi_complete_done(struct napi_struct *n, int work_done);
524 
525 static inline bool napi_complete(struct napi_struct *n)
526 {
527 	return napi_complete_done(n, 0);
528 }
529 
530 int dev_set_threaded(struct net_device *dev, bool threaded);
531 
532 /**
533  *	napi_disable - prevent NAPI from scheduling
534  *	@n: NAPI context
535  *
536  * Stop NAPI from being scheduled on this context.
537  * Waits till any outstanding processing completes.
538  */
539 void napi_disable(struct napi_struct *n);
540 
541 void napi_enable(struct napi_struct *n);
542 
543 /**
544  *	napi_synchronize - wait until NAPI is not running
545  *	@n: NAPI context
546  *
547  * Wait until NAPI is done being scheduled on this context.
548  * Waits till any outstanding processing completes but
549  * does not disable future activations.
550  */
551 static inline void napi_synchronize(const struct napi_struct *n)
552 {
553 	if (IS_ENABLED(CONFIG_SMP))
554 		while (test_bit(NAPI_STATE_SCHED, &n->state))
555 			msleep(1);
556 	else
557 		barrier();
558 }
559 
560 /**
561  *	napi_if_scheduled_mark_missed - if napi is running, set the
562  *	NAPIF_STATE_MISSED
563  *	@n: NAPI context
564  *
565  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
566  * NAPI is scheduled.
567  **/
568 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
569 {
570 	unsigned long val, new;
571 
572 	val = READ_ONCE(n->state);
573 	do {
574 		if (val & NAPIF_STATE_DISABLE)
575 			return true;
576 
577 		if (!(val & NAPIF_STATE_SCHED))
578 			return false;
579 
580 		new = val | NAPIF_STATE_MISSED;
581 	} while (!try_cmpxchg(&n->state, &val, new));
582 
583 	return true;
584 }
585 
586 enum netdev_queue_state_t {
587 	__QUEUE_STATE_DRV_XOFF,
588 	__QUEUE_STATE_STACK_XOFF,
589 	__QUEUE_STATE_FROZEN,
590 };
591 
592 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
593 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
594 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
595 
596 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
597 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
598 					QUEUE_STATE_FROZEN)
599 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
600 					QUEUE_STATE_FROZEN)
601 
602 /*
603  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
604  * netif_tx_* functions below are used to manipulate this flag.  The
605  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
606  * queue independently.  The netif_xmit_*stopped functions below are called
607  * to check if the queue has been stopped by the driver or stack (either
608  * of the XOFF bits are set in the state).  Drivers should not need to call
609  * netif_xmit*stopped functions, they should only be using netif_tx_*.
610  */
611 
612 struct netdev_queue {
613 /*
614  * read-mostly part
615  */
616 	struct net_device	*dev;
617 	netdevice_tracker	dev_tracker;
618 
619 	struct Qdisc __rcu	*qdisc;
620 	struct Qdisc		*qdisc_sleeping;
621 #ifdef CONFIG_SYSFS
622 	struct kobject		kobj;
623 #endif
624 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
625 	int			numa_node;
626 #endif
627 	unsigned long		tx_maxrate;
628 	/*
629 	 * Number of TX timeouts for this queue
630 	 * (/sys/class/net/DEV/Q/trans_timeout)
631 	 */
632 	atomic_long_t		trans_timeout;
633 
634 	/* Subordinate device that the queue has been assigned to */
635 	struct net_device	*sb_dev;
636 #ifdef CONFIG_XDP_SOCKETS
637 	struct xsk_buff_pool    *pool;
638 #endif
639 /*
640  * write-mostly part
641  */
642 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
643 	int			xmit_lock_owner;
644 	/*
645 	 * Time (in jiffies) of last Tx
646 	 */
647 	unsigned long		trans_start;
648 
649 	unsigned long		state;
650 
651 #ifdef CONFIG_BQL
652 	struct dql		dql;
653 #endif
654 } ____cacheline_aligned_in_smp;
655 
656 extern int sysctl_fb_tunnels_only_for_init_net;
657 extern int sysctl_devconf_inherit_init_net;
658 
659 /*
660  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
661  *                                     == 1 : For initns only
662  *                                     == 2 : For none.
663  */
664 static inline bool net_has_fallback_tunnels(const struct net *net)
665 {
666 #if IS_ENABLED(CONFIG_SYSCTL)
667 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
668 
669 	return !fb_tunnels_only_for_init_net ||
670 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
671 #else
672 	return true;
673 #endif
674 }
675 
676 static inline int net_inherit_devconf(void)
677 {
678 #if IS_ENABLED(CONFIG_SYSCTL)
679 	return READ_ONCE(sysctl_devconf_inherit_init_net);
680 #else
681 	return 0;
682 #endif
683 }
684 
685 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
686 {
687 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
688 	return q->numa_node;
689 #else
690 	return NUMA_NO_NODE;
691 #endif
692 }
693 
694 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
695 {
696 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
697 	q->numa_node = node;
698 #endif
699 }
700 
701 #ifdef CONFIG_RPS
702 /*
703  * This structure holds an RPS map which can be of variable length.  The
704  * map is an array of CPUs.
705  */
706 struct rps_map {
707 	unsigned int len;
708 	struct rcu_head rcu;
709 	u16 cpus[];
710 };
711 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
712 
713 /*
714  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
715  * tail pointer for that CPU's input queue at the time of last enqueue, and
716  * a hardware filter index.
717  */
718 struct rps_dev_flow {
719 	u16 cpu;
720 	u16 filter;
721 	unsigned int last_qtail;
722 };
723 #define RPS_NO_FILTER 0xffff
724 
725 /*
726  * The rps_dev_flow_table structure contains a table of flow mappings.
727  */
728 struct rps_dev_flow_table {
729 	unsigned int mask;
730 	struct rcu_head rcu;
731 	struct rps_dev_flow flows[];
732 };
733 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
734     ((_num) * sizeof(struct rps_dev_flow)))
735 
736 /*
737  * The rps_sock_flow_table contains mappings of flows to the last CPU
738  * on which they were processed by the application (set in recvmsg).
739  * Each entry is a 32bit value. Upper part is the high-order bits
740  * of flow hash, lower part is CPU number.
741  * rps_cpu_mask is used to partition the space, depending on number of
742  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
743  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
744  * meaning we use 32-6=26 bits for the hash.
745  */
746 struct rps_sock_flow_table {
747 	u32	mask;
748 
749 	u32	ents[] ____cacheline_aligned_in_smp;
750 };
751 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
752 
753 #define RPS_NO_CPU 0xffff
754 
755 extern u32 rps_cpu_mask;
756 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
757 
758 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
759 					u32 hash)
760 {
761 	if (table && hash) {
762 		unsigned int index = hash & table->mask;
763 		u32 val = hash & ~rps_cpu_mask;
764 
765 		/* We only give a hint, preemption can change CPU under us */
766 		val |= raw_smp_processor_id();
767 
768 		if (table->ents[index] != val)
769 			table->ents[index] = val;
770 	}
771 }
772 
773 #ifdef CONFIG_RFS_ACCEL
774 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
775 			 u16 filter_id);
776 #endif
777 #endif /* CONFIG_RPS */
778 
779 /* This structure contains an instance of an RX queue. */
780 struct netdev_rx_queue {
781 	struct xdp_rxq_info		xdp_rxq;
782 #ifdef CONFIG_RPS
783 	struct rps_map __rcu		*rps_map;
784 	struct rps_dev_flow_table __rcu	*rps_flow_table;
785 #endif
786 	struct kobject			kobj;
787 	struct net_device		*dev;
788 	netdevice_tracker		dev_tracker;
789 
790 #ifdef CONFIG_XDP_SOCKETS
791 	struct xsk_buff_pool            *pool;
792 #endif
793 } ____cacheline_aligned_in_smp;
794 
795 /*
796  * RX queue sysfs structures and functions.
797  */
798 struct rx_queue_attribute {
799 	struct attribute attr;
800 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
801 	ssize_t (*store)(struct netdev_rx_queue *queue,
802 			 const char *buf, size_t len);
803 };
804 
805 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
806 enum xps_map_type {
807 	XPS_CPUS = 0,
808 	XPS_RXQS,
809 	XPS_MAPS_MAX,
810 };
811 
812 #ifdef CONFIG_XPS
813 /*
814  * This structure holds an XPS map which can be of variable length.  The
815  * map is an array of queues.
816  */
817 struct xps_map {
818 	unsigned int len;
819 	unsigned int alloc_len;
820 	struct rcu_head rcu;
821 	u16 queues[];
822 };
823 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
824 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
825        - sizeof(struct xps_map)) / sizeof(u16))
826 
827 /*
828  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
829  *
830  * We keep track of the number of cpus/rxqs used when the struct is allocated,
831  * in nr_ids. This will help not accessing out-of-bound memory.
832  *
833  * We keep track of the number of traffic classes used when the struct is
834  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
835  * not crossing its upper bound, as the original dev->num_tc can be updated in
836  * the meantime.
837  */
838 struct xps_dev_maps {
839 	struct rcu_head rcu;
840 	unsigned int nr_ids;
841 	s16 num_tc;
842 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
843 };
844 
845 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
846 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
847 
848 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
849 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
850 
851 #endif /* CONFIG_XPS */
852 
853 #define TC_MAX_QUEUE	16
854 #define TC_BITMASK	15
855 /* HW offloaded queuing disciplines txq count and offset maps */
856 struct netdev_tc_txq {
857 	u16 count;
858 	u16 offset;
859 };
860 
861 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
862 /*
863  * This structure is to hold information about the device
864  * configured to run FCoE protocol stack.
865  */
866 struct netdev_fcoe_hbainfo {
867 	char	manufacturer[64];
868 	char	serial_number[64];
869 	char	hardware_version[64];
870 	char	driver_version[64];
871 	char	optionrom_version[64];
872 	char	firmware_version[64];
873 	char	model[256];
874 	char	model_description[256];
875 };
876 #endif
877 
878 #define MAX_PHYS_ITEM_ID_LEN 32
879 
880 /* This structure holds a unique identifier to identify some
881  * physical item (port for example) used by a netdevice.
882  */
883 struct netdev_phys_item_id {
884 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
885 	unsigned char id_len;
886 };
887 
888 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
889 					    struct netdev_phys_item_id *b)
890 {
891 	return a->id_len == b->id_len &&
892 	       memcmp(a->id, b->id, a->id_len) == 0;
893 }
894 
895 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
896 				       struct sk_buff *skb,
897 				       struct net_device *sb_dev);
898 
899 enum net_device_path_type {
900 	DEV_PATH_ETHERNET = 0,
901 	DEV_PATH_VLAN,
902 	DEV_PATH_BRIDGE,
903 	DEV_PATH_PPPOE,
904 	DEV_PATH_DSA,
905 	DEV_PATH_MTK_WDMA,
906 };
907 
908 struct net_device_path {
909 	enum net_device_path_type	type;
910 	const struct net_device		*dev;
911 	union {
912 		struct {
913 			u16		id;
914 			__be16		proto;
915 			u8		h_dest[ETH_ALEN];
916 		} encap;
917 		struct {
918 			enum {
919 				DEV_PATH_BR_VLAN_KEEP,
920 				DEV_PATH_BR_VLAN_TAG,
921 				DEV_PATH_BR_VLAN_UNTAG,
922 				DEV_PATH_BR_VLAN_UNTAG_HW,
923 			}		vlan_mode;
924 			u16		vlan_id;
925 			__be16		vlan_proto;
926 		} bridge;
927 		struct {
928 			int port;
929 			u16 proto;
930 		} dsa;
931 		struct {
932 			u8 wdma_idx;
933 			u8 queue;
934 			u16 wcid;
935 			u8 bss;
936 		} mtk_wdma;
937 	};
938 };
939 
940 #define NET_DEVICE_PATH_STACK_MAX	5
941 #define NET_DEVICE_PATH_VLAN_MAX	2
942 
943 struct net_device_path_stack {
944 	int			num_paths;
945 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
946 };
947 
948 struct net_device_path_ctx {
949 	const struct net_device *dev;
950 	u8			daddr[ETH_ALEN];
951 
952 	int			num_vlans;
953 	struct {
954 		u16		id;
955 		__be16		proto;
956 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
957 };
958 
959 enum tc_setup_type {
960 	TC_QUERY_CAPS,
961 	TC_SETUP_QDISC_MQPRIO,
962 	TC_SETUP_CLSU32,
963 	TC_SETUP_CLSFLOWER,
964 	TC_SETUP_CLSMATCHALL,
965 	TC_SETUP_CLSBPF,
966 	TC_SETUP_BLOCK,
967 	TC_SETUP_QDISC_CBS,
968 	TC_SETUP_QDISC_RED,
969 	TC_SETUP_QDISC_PRIO,
970 	TC_SETUP_QDISC_MQ,
971 	TC_SETUP_QDISC_ETF,
972 	TC_SETUP_ROOT_QDISC,
973 	TC_SETUP_QDISC_GRED,
974 	TC_SETUP_QDISC_TAPRIO,
975 	TC_SETUP_FT,
976 	TC_SETUP_QDISC_ETS,
977 	TC_SETUP_QDISC_TBF,
978 	TC_SETUP_QDISC_FIFO,
979 	TC_SETUP_QDISC_HTB,
980 	TC_SETUP_ACT,
981 };
982 
983 /* These structures hold the attributes of bpf state that are being passed
984  * to the netdevice through the bpf op.
985  */
986 enum bpf_netdev_command {
987 	/* Set or clear a bpf program used in the earliest stages of packet
988 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
989 	 * is responsible for calling bpf_prog_put on any old progs that are
990 	 * stored. In case of error, the callee need not release the new prog
991 	 * reference, but on success it takes ownership and must bpf_prog_put
992 	 * when it is no longer used.
993 	 */
994 	XDP_SETUP_PROG,
995 	XDP_SETUP_PROG_HW,
996 	/* BPF program for offload callbacks, invoked at program load time. */
997 	BPF_OFFLOAD_MAP_ALLOC,
998 	BPF_OFFLOAD_MAP_FREE,
999 	XDP_SETUP_XSK_POOL,
1000 };
1001 
1002 struct bpf_prog_offload_ops;
1003 struct netlink_ext_ack;
1004 struct xdp_umem;
1005 struct xdp_dev_bulk_queue;
1006 struct bpf_xdp_link;
1007 
1008 enum bpf_xdp_mode {
1009 	XDP_MODE_SKB = 0,
1010 	XDP_MODE_DRV = 1,
1011 	XDP_MODE_HW = 2,
1012 	__MAX_XDP_MODE
1013 };
1014 
1015 struct bpf_xdp_entity {
1016 	struct bpf_prog *prog;
1017 	struct bpf_xdp_link *link;
1018 };
1019 
1020 struct netdev_bpf {
1021 	enum bpf_netdev_command command;
1022 	union {
1023 		/* XDP_SETUP_PROG */
1024 		struct {
1025 			u32 flags;
1026 			struct bpf_prog *prog;
1027 			struct netlink_ext_ack *extack;
1028 		};
1029 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1030 		struct {
1031 			struct bpf_offloaded_map *offmap;
1032 		};
1033 		/* XDP_SETUP_XSK_POOL */
1034 		struct {
1035 			struct xsk_buff_pool *pool;
1036 			u16 queue_id;
1037 		} xsk;
1038 	};
1039 };
1040 
1041 /* Flags for ndo_xsk_wakeup. */
1042 #define XDP_WAKEUP_RX (1 << 0)
1043 #define XDP_WAKEUP_TX (1 << 1)
1044 
1045 #ifdef CONFIG_XFRM_OFFLOAD
1046 struct xfrmdev_ops {
1047 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1048 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1049 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1050 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1051 				       struct xfrm_state *x);
1052 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1053 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1054 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1055 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1056 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1057 };
1058 #endif
1059 
1060 struct dev_ifalias {
1061 	struct rcu_head rcuhead;
1062 	char ifalias[];
1063 };
1064 
1065 struct devlink;
1066 struct tlsdev_ops;
1067 
1068 struct netdev_net_notifier {
1069 	struct list_head list;
1070 	struct notifier_block *nb;
1071 };
1072 
1073 /*
1074  * This structure defines the management hooks for network devices.
1075  * The following hooks can be defined; unless noted otherwise, they are
1076  * optional and can be filled with a null pointer.
1077  *
1078  * int (*ndo_init)(struct net_device *dev);
1079  *     This function is called once when a network device is registered.
1080  *     The network device can use this for any late stage initialization
1081  *     or semantic validation. It can fail with an error code which will
1082  *     be propagated back to register_netdev.
1083  *
1084  * void (*ndo_uninit)(struct net_device *dev);
1085  *     This function is called when device is unregistered or when registration
1086  *     fails. It is not called if init fails.
1087  *
1088  * int (*ndo_open)(struct net_device *dev);
1089  *     This function is called when a network device transitions to the up
1090  *     state.
1091  *
1092  * int (*ndo_stop)(struct net_device *dev);
1093  *     This function is called when a network device transitions to the down
1094  *     state.
1095  *
1096  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1097  *                               struct net_device *dev);
1098  *	Called when a packet needs to be transmitted.
1099  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1100  *	the queue before that can happen; it's for obsolete devices and weird
1101  *	corner cases, but the stack really does a non-trivial amount
1102  *	of useless work if you return NETDEV_TX_BUSY.
1103  *	Required; cannot be NULL.
1104  *
1105  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1106  *					   struct net_device *dev
1107  *					   netdev_features_t features);
1108  *	Called by core transmit path to determine if device is capable of
1109  *	performing offload operations on a given packet. This is to give
1110  *	the device an opportunity to implement any restrictions that cannot
1111  *	be otherwise expressed by feature flags. The check is called with
1112  *	the set of features that the stack has calculated and it returns
1113  *	those the driver believes to be appropriate.
1114  *
1115  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1116  *                         struct net_device *sb_dev);
1117  *	Called to decide which queue to use when device supports multiple
1118  *	transmit queues.
1119  *
1120  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1121  *	This function is called to allow device receiver to make
1122  *	changes to configuration when multicast or promiscuous is enabled.
1123  *
1124  * void (*ndo_set_rx_mode)(struct net_device *dev);
1125  *	This function is called device changes address list filtering.
1126  *	If driver handles unicast address filtering, it should set
1127  *	IFF_UNICAST_FLT in its priv_flags.
1128  *
1129  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1130  *	This function  is called when the Media Access Control address
1131  *	needs to be changed. If this interface is not defined, the
1132  *	MAC address can not be changed.
1133  *
1134  * int (*ndo_validate_addr)(struct net_device *dev);
1135  *	Test if Media Access Control address is valid for the device.
1136  *
1137  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1138  *	Old-style ioctl entry point. This is used internally by the
1139  *	appletalk and ieee802154 subsystems but is no longer called by
1140  *	the device ioctl handler.
1141  *
1142  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1143  *	Used by the bonding driver for its device specific ioctls:
1144  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1145  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1146  *
1147  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1148  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1149  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1150  *
1151  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1152  *	Used to set network devices bus interface parameters. This interface
1153  *	is retained for legacy reasons; new devices should use the bus
1154  *	interface (PCI) for low level management.
1155  *
1156  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1157  *	Called when a user wants to change the Maximum Transfer Unit
1158  *	of a device.
1159  *
1160  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1161  *	Callback used when the transmitter has not made any progress
1162  *	for dev->watchdog ticks.
1163  *
1164  * void (*ndo_get_stats64)(struct net_device *dev,
1165  *                         struct rtnl_link_stats64 *storage);
1166  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1167  *	Called when a user wants to get the network device usage
1168  *	statistics. Drivers must do one of the following:
1169  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1170  *	   rtnl_link_stats64 structure passed by the caller.
1171  *	2. Define @ndo_get_stats to update a net_device_stats structure
1172  *	   (which should normally be dev->stats) and return a pointer to
1173  *	   it. The structure may be changed asynchronously only if each
1174  *	   field is written atomically.
1175  *	3. Update dev->stats asynchronously and atomically, and define
1176  *	   neither operation.
1177  *
1178  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1179  *	Return true if this device supports offload stats of this attr_id.
1180  *
1181  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1182  *	void *attr_data)
1183  *	Get statistics for offload operations by attr_id. Write it into the
1184  *	attr_data pointer.
1185  *
1186  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1187  *	If device supports VLAN filtering this function is called when a
1188  *	VLAN id is registered.
1189  *
1190  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1191  *	If device supports VLAN filtering this function is called when a
1192  *	VLAN id is unregistered.
1193  *
1194  * void (*ndo_poll_controller)(struct net_device *dev);
1195  *
1196  *	SR-IOV management functions.
1197  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1198  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1199  *			  u8 qos, __be16 proto);
1200  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1201  *			  int max_tx_rate);
1202  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1203  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1204  * int (*ndo_get_vf_config)(struct net_device *dev,
1205  *			    int vf, struct ifla_vf_info *ivf);
1206  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1207  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1208  *			  struct nlattr *port[]);
1209  *
1210  *      Enable or disable the VF ability to query its RSS Redirection Table and
1211  *      Hash Key. This is needed since on some devices VF share this information
1212  *      with PF and querying it may introduce a theoretical security risk.
1213  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1214  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1215  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1216  *		       void *type_data);
1217  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1218  *	This is always called from the stack with the rtnl lock held and netif
1219  *	tx queues stopped. This allows the netdevice to perform queue
1220  *	management safely.
1221  *
1222  *	Fiber Channel over Ethernet (FCoE) offload functions.
1223  * int (*ndo_fcoe_enable)(struct net_device *dev);
1224  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1225  *	so the underlying device can perform whatever needed configuration or
1226  *	initialization to support acceleration of FCoE traffic.
1227  *
1228  * int (*ndo_fcoe_disable)(struct net_device *dev);
1229  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1230  *	so the underlying device can perform whatever needed clean-ups to
1231  *	stop supporting acceleration of FCoE traffic.
1232  *
1233  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1234  *			     struct scatterlist *sgl, unsigned int sgc);
1235  *	Called when the FCoE Initiator wants to initialize an I/O that
1236  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1237  *	perform necessary setup and returns 1 to indicate the device is set up
1238  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1239  *
1240  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1241  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1242  *	indicated by the FC exchange id 'xid', so the underlying device can
1243  *	clean up and reuse resources for later DDP requests.
1244  *
1245  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1246  *			      struct scatterlist *sgl, unsigned int sgc);
1247  *	Called when the FCoE Target wants to initialize an I/O that
1248  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1249  *	perform necessary setup and returns 1 to indicate the device is set up
1250  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1251  *
1252  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1253  *			       struct netdev_fcoe_hbainfo *hbainfo);
1254  *	Called when the FCoE Protocol stack wants information on the underlying
1255  *	device. This information is utilized by the FCoE protocol stack to
1256  *	register attributes with Fiber Channel management service as per the
1257  *	FC-GS Fabric Device Management Information(FDMI) specification.
1258  *
1259  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1260  *	Called when the underlying device wants to override default World Wide
1261  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1262  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1263  *	protocol stack to use.
1264  *
1265  *	RFS acceleration.
1266  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1267  *			    u16 rxq_index, u32 flow_id);
1268  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1269  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1270  *	Return the filter ID on success, or a negative error code.
1271  *
1272  *	Slave management functions (for bridge, bonding, etc).
1273  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1274  *	Called to make another netdev an underling.
1275  *
1276  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1277  *	Called to release previously enslaved netdev.
1278  *
1279  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1280  *					    struct sk_buff *skb,
1281  *					    bool all_slaves);
1282  *	Get the xmit slave of master device. If all_slaves is true, function
1283  *	assume all the slaves can transmit.
1284  *
1285  *      Feature/offload setting functions.
1286  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1287  *		netdev_features_t features);
1288  *	Adjusts the requested feature flags according to device-specific
1289  *	constraints, and returns the resulting flags. Must not modify
1290  *	the device state.
1291  *
1292  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1293  *	Called to update device configuration to new features. Passed
1294  *	feature set might be less than what was returned by ndo_fix_features()).
1295  *	Must return >0 or -errno if it changed dev->features itself.
1296  *
1297  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1298  *		      struct net_device *dev,
1299  *		      const unsigned char *addr, u16 vid, u16 flags,
1300  *		      struct netlink_ext_ack *extack);
1301  *	Adds an FDB entry to dev for addr.
1302  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1303  *		      struct net_device *dev,
1304  *		      const unsigned char *addr, u16 vid)
1305  *	Deletes the FDB entry from dev coresponding to addr.
1306  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1307  *			   struct net_device *dev,
1308  *			   u16 vid,
1309  *			   struct netlink_ext_ack *extack);
1310  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1311  *		       struct net_device *dev, struct net_device *filter_dev,
1312  *		       int *idx)
1313  *	Used to add FDB entries to dump requests. Implementers should add
1314  *	entries to skb and update idx with the number of entries.
1315  *
1316  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1317  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1318  *	Adds an MDB entry to dev.
1319  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1320  *		      struct netlink_ext_ack *extack);
1321  *	Deletes the MDB entry from dev.
1322  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1323  *		       struct netlink_callback *cb);
1324  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1325  *	callback is used by core rtnetlink code.
1326  *
1327  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1328  *			     u16 flags, struct netlink_ext_ack *extack)
1329  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1330  *			     struct net_device *dev, u32 filter_mask,
1331  *			     int nlflags)
1332  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1333  *			     u16 flags);
1334  *
1335  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1336  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1337  *	which do not represent real hardware may define this to allow their
1338  *	userspace components to manage their virtual carrier state. Devices
1339  *	that determine carrier state from physical hardware properties (eg
1340  *	network cables) or protocol-dependent mechanisms (eg
1341  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1342  *
1343  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1344  *			       struct netdev_phys_item_id *ppid);
1345  *	Called to get ID of physical port of this device. If driver does
1346  *	not implement this, it is assumed that the hw is not able to have
1347  *	multiple net devices on single physical port.
1348  *
1349  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1350  *				 struct netdev_phys_item_id *ppid)
1351  *	Called to get the parent ID of the physical port of this device.
1352  *
1353  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1354  *				 struct net_device *dev)
1355  *	Called by upper layer devices to accelerate switching or other
1356  *	station functionality into hardware. 'pdev is the lowerdev
1357  *	to use for the offload and 'dev' is the net device that will
1358  *	back the offload. Returns a pointer to the private structure
1359  *	the upper layer will maintain.
1360  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1361  *	Called by upper layer device to delete the station created
1362  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1363  *	the station and priv is the structure returned by the add
1364  *	operation.
1365  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1366  *			     int queue_index, u32 maxrate);
1367  *	Called when a user wants to set a max-rate limitation of specific
1368  *	TX queue.
1369  * int (*ndo_get_iflink)(const struct net_device *dev);
1370  *	Called to get the iflink value of this device.
1371  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1372  *	This function is used to get egress tunnel information for given skb.
1373  *	This is useful for retrieving outer tunnel header parameters while
1374  *	sampling packet.
1375  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1376  *	This function is used to specify the headroom that the skb must
1377  *	consider when allocation skb during packet reception. Setting
1378  *	appropriate rx headroom value allows avoiding skb head copy on
1379  *	forward. Setting a negative value resets the rx headroom to the
1380  *	default value.
1381  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1382  *	This function is used to set or query state related to XDP on the
1383  *	netdevice and manage BPF offload. See definition of
1384  *	enum bpf_netdev_command for details.
1385  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1386  *			u32 flags);
1387  *	This function is used to submit @n XDP packets for transmit on a
1388  *	netdevice. Returns number of frames successfully transmitted, frames
1389  *	that got dropped are freed/returned via xdp_return_frame().
1390  *	Returns negative number, means general error invoking ndo, meaning
1391  *	no frames were xmit'ed and core-caller will free all frames.
1392  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1393  *					        struct xdp_buff *xdp);
1394  *      Get the xmit slave of master device based on the xdp_buff.
1395  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1396  *      This function is used to wake up the softirq, ksoftirqd or kthread
1397  *	responsible for sending and/or receiving packets on a specific
1398  *	queue id bound to an AF_XDP socket. The flags field specifies if
1399  *	only RX, only Tx, or both should be woken up using the flags
1400  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1401  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1402  *			 int cmd);
1403  *	Add, change, delete or get information on an IPv4 tunnel.
1404  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1405  *	If a device is paired with a peer device, return the peer instance.
1406  *	The caller must be under RCU read context.
1407  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1408  *     Get the forwarding path to reach the real device from the HW destination address
1409  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1410  *			     const struct skb_shared_hwtstamps *hwtstamps,
1411  *			     bool cycles);
1412  *	Get hardware timestamp based on normal/adjustable time or free running
1413  *	cycle counter. This function is required if physical clock supports a
1414  *	free running cycle counter.
1415  */
1416 struct net_device_ops {
1417 	int			(*ndo_init)(struct net_device *dev);
1418 	void			(*ndo_uninit)(struct net_device *dev);
1419 	int			(*ndo_open)(struct net_device *dev);
1420 	int			(*ndo_stop)(struct net_device *dev);
1421 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1422 						  struct net_device *dev);
1423 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1424 						      struct net_device *dev,
1425 						      netdev_features_t features);
1426 	u16			(*ndo_select_queue)(struct net_device *dev,
1427 						    struct sk_buff *skb,
1428 						    struct net_device *sb_dev);
1429 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1430 						       int flags);
1431 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1432 	int			(*ndo_set_mac_address)(struct net_device *dev,
1433 						       void *addr);
1434 	int			(*ndo_validate_addr)(struct net_device *dev);
1435 	int			(*ndo_do_ioctl)(struct net_device *dev,
1436 					        struct ifreq *ifr, int cmd);
1437 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1438 						 struct ifreq *ifr, int cmd);
1439 	int			(*ndo_siocbond)(struct net_device *dev,
1440 						struct ifreq *ifr, int cmd);
1441 	int			(*ndo_siocwandev)(struct net_device *dev,
1442 						  struct if_settings *ifs);
1443 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1444 						      struct ifreq *ifr,
1445 						      void __user *data, int cmd);
1446 	int			(*ndo_set_config)(struct net_device *dev,
1447 					          struct ifmap *map);
1448 	int			(*ndo_change_mtu)(struct net_device *dev,
1449 						  int new_mtu);
1450 	int			(*ndo_neigh_setup)(struct net_device *dev,
1451 						   struct neigh_parms *);
1452 	void			(*ndo_tx_timeout) (struct net_device *dev,
1453 						   unsigned int txqueue);
1454 
1455 	void			(*ndo_get_stats64)(struct net_device *dev,
1456 						   struct rtnl_link_stats64 *storage);
1457 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1458 	int			(*ndo_get_offload_stats)(int attr_id,
1459 							 const struct net_device *dev,
1460 							 void *attr_data);
1461 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1462 
1463 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1464 						       __be16 proto, u16 vid);
1465 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1466 						        __be16 proto, u16 vid);
1467 #ifdef CONFIG_NET_POLL_CONTROLLER
1468 	void                    (*ndo_poll_controller)(struct net_device *dev);
1469 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1470 						     struct netpoll_info *info);
1471 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1472 #endif
1473 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1474 						  int queue, u8 *mac);
1475 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1476 						   int queue, u16 vlan,
1477 						   u8 qos, __be16 proto);
1478 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1479 						   int vf, int min_tx_rate,
1480 						   int max_tx_rate);
1481 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1482 						       int vf, bool setting);
1483 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1484 						    int vf, bool setting);
1485 	int			(*ndo_get_vf_config)(struct net_device *dev,
1486 						     int vf,
1487 						     struct ifla_vf_info *ivf);
1488 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1489 							 int vf, int link_state);
1490 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1491 						    int vf,
1492 						    struct ifla_vf_stats
1493 						    *vf_stats);
1494 	int			(*ndo_set_vf_port)(struct net_device *dev,
1495 						   int vf,
1496 						   struct nlattr *port[]);
1497 	int			(*ndo_get_vf_port)(struct net_device *dev,
1498 						   int vf, struct sk_buff *skb);
1499 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1500 						   int vf,
1501 						   struct ifla_vf_guid *node_guid,
1502 						   struct ifla_vf_guid *port_guid);
1503 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1504 						   int vf, u64 guid,
1505 						   int guid_type);
1506 	int			(*ndo_set_vf_rss_query_en)(
1507 						   struct net_device *dev,
1508 						   int vf, bool setting);
1509 	int			(*ndo_setup_tc)(struct net_device *dev,
1510 						enum tc_setup_type type,
1511 						void *type_data);
1512 #if IS_ENABLED(CONFIG_FCOE)
1513 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1514 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1515 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1516 						      u16 xid,
1517 						      struct scatterlist *sgl,
1518 						      unsigned int sgc);
1519 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1520 						     u16 xid);
1521 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1522 						       u16 xid,
1523 						       struct scatterlist *sgl,
1524 						       unsigned int sgc);
1525 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1526 							struct netdev_fcoe_hbainfo *hbainfo);
1527 #endif
1528 
1529 #if IS_ENABLED(CONFIG_LIBFCOE)
1530 #define NETDEV_FCOE_WWNN 0
1531 #define NETDEV_FCOE_WWPN 1
1532 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1533 						    u64 *wwn, int type);
1534 #endif
1535 
1536 #ifdef CONFIG_RFS_ACCEL
1537 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1538 						     const struct sk_buff *skb,
1539 						     u16 rxq_index,
1540 						     u32 flow_id);
1541 #endif
1542 	int			(*ndo_add_slave)(struct net_device *dev,
1543 						 struct net_device *slave_dev,
1544 						 struct netlink_ext_ack *extack);
1545 	int			(*ndo_del_slave)(struct net_device *dev,
1546 						 struct net_device *slave_dev);
1547 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1548 						      struct sk_buff *skb,
1549 						      bool all_slaves);
1550 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1551 							struct sock *sk);
1552 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1553 						    netdev_features_t features);
1554 	int			(*ndo_set_features)(struct net_device *dev,
1555 						    netdev_features_t features);
1556 	int			(*ndo_neigh_construct)(struct net_device *dev,
1557 						       struct neighbour *n);
1558 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1559 						     struct neighbour *n);
1560 
1561 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1562 					       struct nlattr *tb[],
1563 					       struct net_device *dev,
1564 					       const unsigned char *addr,
1565 					       u16 vid,
1566 					       u16 flags,
1567 					       struct netlink_ext_ack *extack);
1568 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1569 					       struct nlattr *tb[],
1570 					       struct net_device *dev,
1571 					       const unsigned char *addr,
1572 					       u16 vid, struct netlink_ext_ack *extack);
1573 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1574 						    struct nlattr *tb[],
1575 						    struct net_device *dev,
1576 						    u16 vid,
1577 						    struct netlink_ext_ack *extack);
1578 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1579 						struct netlink_callback *cb,
1580 						struct net_device *dev,
1581 						struct net_device *filter_dev,
1582 						int *idx);
1583 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1584 					       struct nlattr *tb[],
1585 					       struct net_device *dev,
1586 					       const unsigned char *addr,
1587 					       u16 vid, u32 portid, u32 seq,
1588 					       struct netlink_ext_ack *extack);
1589 	int			(*ndo_mdb_add)(struct net_device *dev,
1590 					       struct nlattr *tb[],
1591 					       u16 nlmsg_flags,
1592 					       struct netlink_ext_ack *extack);
1593 	int			(*ndo_mdb_del)(struct net_device *dev,
1594 					       struct nlattr *tb[],
1595 					       struct netlink_ext_ack *extack);
1596 	int			(*ndo_mdb_dump)(struct net_device *dev,
1597 						struct sk_buff *skb,
1598 						struct netlink_callback *cb);
1599 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1600 						      struct nlmsghdr *nlh,
1601 						      u16 flags,
1602 						      struct netlink_ext_ack *extack);
1603 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1604 						      u32 pid, u32 seq,
1605 						      struct net_device *dev,
1606 						      u32 filter_mask,
1607 						      int nlflags);
1608 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1609 						      struct nlmsghdr *nlh,
1610 						      u16 flags);
1611 	int			(*ndo_change_carrier)(struct net_device *dev,
1612 						      bool new_carrier);
1613 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1614 							struct netdev_phys_item_id *ppid);
1615 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1616 							  struct netdev_phys_item_id *ppid);
1617 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1618 							  char *name, size_t len);
1619 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1620 							struct net_device *dev);
1621 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1622 							void *priv);
1623 
1624 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1625 						      int queue_index,
1626 						      u32 maxrate);
1627 	int			(*ndo_get_iflink)(const struct net_device *dev);
1628 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1629 						       struct sk_buff *skb);
1630 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1631 						       int needed_headroom);
1632 	int			(*ndo_bpf)(struct net_device *dev,
1633 					   struct netdev_bpf *bpf);
1634 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1635 						struct xdp_frame **xdp,
1636 						u32 flags);
1637 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1638 							  struct xdp_buff *xdp);
1639 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1640 						  u32 queue_id, u32 flags);
1641 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1642 						  struct ip_tunnel_parm *p, int cmd);
1643 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1644 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1645                                                          struct net_device_path *path);
1646 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1647 						  const struct skb_shared_hwtstamps *hwtstamps,
1648 						  bool cycles);
1649 };
1650 
1651 struct xdp_metadata_ops {
1652 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1653 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash,
1654 			       enum xdp_rss_hash_type *rss_type);
1655 };
1656 
1657 /**
1658  * enum netdev_priv_flags - &struct net_device priv_flags
1659  *
1660  * These are the &struct net_device, they are only set internally
1661  * by drivers and used in the kernel. These flags are invisible to
1662  * userspace; this means that the order of these flags can change
1663  * during any kernel release.
1664  *
1665  * You should have a pretty good reason to be extending these flags.
1666  *
1667  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1668  * @IFF_EBRIDGE: Ethernet bridging device
1669  * @IFF_BONDING: bonding master or slave
1670  * @IFF_ISATAP: ISATAP interface (RFC4214)
1671  * @IFF_WAN_HDLC: WAN HDLC device
1672  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1673  *	release skb->dst
1674  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1675  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1676  * @IFF_MACVLAN_PORT: device used as macvlan port
1677  * @IFF_BRIDGE_PORT: device used as bridge port
1678  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1679  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1680  * @IFF_UNICAST_FLT: Supports unicast filtering
1681  * @IFF_TEAM_PORT: device used as team port
1682  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1683  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1684  *	change when it's running
1685  * @IFF_MACVLAN: Macvlan device
1686  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1687  *	underlying stacked devices
1688  * @IFF_L3MDEV_MASTER: device is an L3 master device
1689  * @IFF_NO_QUEUE: device can run without qdisc attached
1690  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1691  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1692  * @IFF_TEAM: device is a team device
1693  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1694  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1695  *	entity (i.e. the master device for bridged veth)
1696  * @IFF_MACSEC: device is a MACsec device
1697  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1698  * @IFF_FAILOVER: device is a failover master device
1699  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1700  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1701  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1702  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1703  *	skb_headlen(skb) == 0 (data starts from frag0)
1704  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1705  */
1706 enum netdev_priv_flags {
1707 	IFF_802_1Q_VLAN			= 1<<0,
1708 	IFF_EBRIDGE			= 1<<1,
1709 	IFF_BONDING			= 1<<2,
1710 	IFF_ISATAP			= 1<<3,
1711 	IFF_WAN_HDLC			= 1<<4,
1712 	IFF_XMIT_DST_RELEASE		= 1<<5,
1713 	IFF_DONT_BRIDGE			= 1<<6,
1714 	IFF_DISABLE_NETPOLL		= 1<<7,
1715 	IFF_MACVLAN_PORT		= 1<<8,
1716 	IFF_BRIDGE_PORT			= 1<<9,
1717 	IFF_OVS_DATAPATH		= 1<<10,
1718 	IFF_TX_SKB_SHARING		= 1<<11,
1719 	IFF_UNICAST_FLT			= 1<<12,
1720 	IFF_TEAM_PORT			= 1<<13,
1721 	IFF_SUPP_NOFCS			= 1<<14,
1722 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1723 	IFF_MACVLAN			= 1<<16,
1724 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1725 	IFF_L3MDEV_MASTER		= 1<<18,
1726 	IFF_NO_QUEUE			= 1<<19,
1727 	IFF_OPENVSWITCH			= 1<<20,
1728 	IFF_L3MDEV_SLAVE		= 1<<21,
1729 	IFF_TEAM			= 1<<22,
1730 	IFF_RXFH_CONFIGURED		= 1<<23,
1731 	IFF_PHONY_HEADROOM		= 1<<24,
1732 	IFF_MACSEC			= 1<<25,
1733 	IFF_NO_RX_HANDLER		= 1<<26,
1734 	IFF_FAILOVER			= 1<<27,
1735 	IFF_FAILOVER_SLAVE		= 1<<28,
1736 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1737 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1738 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1739 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1740 };
1741 
1742 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1743 #define IFF_EBRIDGE			IFF_EBRIDGE
1744 #define IFF_BONDING			IFF_BONDING
1745 #define IFF_ISATAP			IFF_ISATAP
1746 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1747 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1748 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1749 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1750 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1751 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1752 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1753 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1754 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1755 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1756 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1757 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1758 #define IFF_MACVLAN			IFF_MACVLAN
1759 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1760 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1761 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1762 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1763 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1764 #define IFF_TEAM			IFF_TEAM
1765 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1766 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1767 #define IFF_MACSEC			IFF_MACSEC
1768 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1769 #define IFF_FAILOVER			IFF_FAILOVER
1770 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1771 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1772 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1773 
1774 /* Specifies the type of the struct net_device::ml_priv pointer */
1775 enum netdev_ml_priv_type {
1776 	ML_PRIV_NONE,
1777 	ML_PRIV_CAN,
1778 };
1779 
1780 /**
1781  *	struct net_device - The DEVICE structure.
1782  *
1783  *	Actually, this whole structure is a big mistake.  It mixes I/O
1784  *	data with strictly "high-level" data, and it has to know about
1785  *	almost every data structure used in the INET module.
1786  *
1787  *	@name:	This is the first field of the "visible" part of this structure
1788  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1789  *		of the interface.
1790  *
1791  *	@name_node:	Name hashlist node
1792  *	@ifalias:	SNMP alias
1793  *	@mem_end:	Shared memory end
1794  *	@mem_start:	Shared memory start
1795  *	@base_addr:	Device I/O address
1796  *	@irq:		Device IRQ number
1797  *
1798  *	@state:		Generic network queuing layer state, see netdev_state_t
1799  *	@dev_list:	The global list of network devices
1800  *	@napi_list:	List entry used for polling NAPI devices
1801  *	@unreg_list:	List entry  when we are unregistering the
1802  *			device; see the function unregister_netdev
1803  *	@close_list:	List entry used when we are closing the device
1804  *	@ptype_all:     Device-specific packet handlers for all protocols
1805  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1806  *
1807  *	@adj_list:	Directly linked devices, like slaves for bonding
1808  *	@features:	Currently active device features
1809  *	@hw_features:	User-changeable features
1810  *
1811  *	@wanted_features:	User-requested features
1812  *	@vlan_features:		Mask of features inheritable by VLAN devices
1813  *
1814  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1815  *				This field indicates what encapsulation
1816  *				offloads the hardware is capable of doing,
1817  *				and drivers will need to set them appropriately.
1818  *
1819  *	@mpls_features:	Mask of features inheritable by MPLS
1820  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1821  *
1822  *	@ifindex:	interface index
1823  *	@group:		The group the device belongs to
1824  *
1825  *	@stats:		Statistics struct, which was left as a legacy, use
1826  *			rtnl_link_stats64 instead
1827  *
1828  *	@core_stats:	core networking counters,
1829  *			do not use this in drivers
1830  *	@carrier_up_count:	Number of times the carrier has been up
1831  *	@carrier_down_count:	Number of times the carrier has been down
1832  *
1833  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1834  *				instead of ioctl,
1835  *				see <net/iw_handler.h> for details.
1836  *	@wireless_data:	Instance data managed by the core of wireless extensions
1837  *
1838  *	@netdev_ops:	Includes several pointers to callbacks,
1839  *			if one wants to override the ndo_*() functions
1840  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1841  *	@ethtool_ops:	Management operations
1842  *	@l3mdev_ops:	Layer 3 master device operations
1843  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1844  *			discovery handling. Necessary for e.g. 6LoWPAN.
1845  *	@xfrmdev_ops:	Transformation offload operations
1846  *	@tlsdev_ops:	Transport Layer Security offload operations
1847  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1848  *			of Layer 2 headers.
1849  *
1850  *	@flags:		Interface flags (a la BSD)
1851  *	@xdp_features:	XDP capability supported by the device
1852  *	@priv_flags:	Like 'flags' but invisible to userspace,
1853  *			see if.h for the definitions
1854  *	@gflags:	Global flags ( kept as legacy )
1855  *	@padded:	How much padding added by alloc_netdev()
1856  *	@operstate:	RFC2863 operstate
1857  *	@link_mode:	Mapping policy to operstate
1858  *	@if_port:	Selectable AUI, TP, ...
1859  *	@dma:		DMA channel
1860  *	@mtu:		Interface MTU value
1861  *	@min_mtu:	Interface Minimum MTU value
1862  *	@max_mtu:	Interface Maximum MTU value
1863  *	@type:		Interface hardware type
1864  *	@hard_header_len: Maximum hardware header length.
1865  *	@min_header_len:  Minimum hardware header length
1866  *
1867  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1868  *			  cases can this be guaranteed
1869  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1870  *			  cases can this be guaranteed. Some cases also use
1871  *			  LL_MAX_HEADER instead to allocate the skb
1872  *
1873  *	interface address info:
1874  *
1875  * 	@perm_addr:		Permanent hw address
1876  * 	@addr_assign_type:	Hw address assignment type
1877  * 	@addr_len:		Hardware address length
1878  *	@upper_level:		Maximum depth level of upper devices.
1879  *	@lower_level:		Maximum depth level of lower devices.
1880  *	@neigh_priv_len:	Used in neigh_alloc()
1881  * 	@dev_id:		Used to differentiate devices that share
1882  * 				the same link layer address
1883  * 	@dev_port:		Used to differentiate devices that share
1884  * 				the same function
1885  *	@addr_list_lock:	XXX: need comments on this one
1886  *	@name_assign_type:	network interface name assignment type
1887  *	@uc_promisc:		Counter that indicates promiscuous mode
1888  *				has been enabled due to the need to listen to
1889  *				additional unicast addresses in a device that
1890  *				does not implement ndo_set_rx_mode()
1891  *	@uc:			unicast mac addresses
1892  *	@mc:			multicast mac addresses
1893  *	@dev_addrs:		list of device hw addresses
1894  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1895  *	@promiscuity:		Number of times the NIC is told to work in
1896  *				promiscuous mode; if it becomes 0 the NIC will
1897  *				exit promiscuous mode
1898  *	@allmulti:		Counter, enables or disables allmulticast mode
1899  *
1900  *	@vlan_info:	VLAN info
1901  *	@dsa_ptr:	dsa specific data
1902  *	@tipc_ptr:	TIPC specific data
1903  *	@atalk_ptr:	AppleTalk link
1904  *	@ip_ptr:	IPv4 specific data
1905  *	@ip6_ptr:	IPv6 specific data
1906  *	@ax25_ptr:	AX.25 specific data
1907  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1908  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1909  *			 device struct
1910  *	@mpls_ptr:	mpls_dev struct pointer
1911  *	@mctp_ptr:	MCTP specific data
1912  *
1913  *	@dev_addr:	Hw address (before bcast,
1914  *			because most packets are unicast)
1915  *
1916  *	@_rx:			Array of RX queues
1917  *	@num_rx_queues:		Number of RX queues
1918  *				allocated at register_netdev() time
1919  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1920  *	@xdp_prog:		XDP sockets filter program pointer
1921  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1922  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1923  *				allow to avoid NIC hard IRQ, on busy queues.
1924  *
1925  *	@rx_handler:		handler for received packets
1926  *	@rx_handler_data: 	XXX: need comments on this one
1927  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1928  *				ingress processing
1929  *	@ingress_queue:		XXX: need comments on this one
1930  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1931  *	@broadcast:		hw bcast address
1932  *
1933  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1934  *			indexed by RX queue number. Assigned by driver.
1935  *			This must only be set if the ndo_rx_flow_steer
1936  *			operation is defined
1937  *	@index_hlist:		Device index hash chain
1938  *
1939  *	@_tx:			Array of TX queues
1940  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1941  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1942  *	@qdisc:			Root qdisc from userspace point of view
1943  *	@tx_queue_len:		Max frames per queue allowed
1944  *	@tx_global_lock: 	XXX: need comments on this one
1945  *	@xdp_bulkq:		XDP device bulk queue
1946  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1947  *
1948  *	@xps_maps:	XXX: need comments on this one
1949  *	@miniq_egress:		clsact qdisc specific data for
1950  *				egress processing
1951  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1952  *	@qdisc_hash:		qdisc hash table
1953  *	@watchdog_timeo:	Represents the timeout that is used by
1954  *				the watchdog (see dev_watchdog())
1955  *	@watchdog_timer:	List of timers
1956  *
1957  *	@proto_down_reason:	reason a netdev interface is held down
1958  *	@pcpu_refcnt:		Number of references to this device
1959  *	@dev_refcnt:		Number of references to this device
1960  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1961  *	@todo_list:		Delayed register/unregister
1962  *	@link_watch_list:	XXX: need comments on this one
1963  *
1964  *	@reg_state:		Register/unregister state machine
1965  *	@dismantle:		Device is going to be freed
1966  *	@rtnl_link_state:	This enum represents the phases of creating
1967  *				a new link
1968  *
1969  *	@needs_free_netdev:	Should unregister perform free_netdev?
1970  *	@priv_destructor:	Called from unregister
1971  *	@npinfo:		XXX: need comments on this one
1972  * 	@nd_net:		Network namespace this network device is inside
1973  *
1974  * 	@ml_priv:	Mid-layer private
1975  *	@ml_priv_type:  Mid-layer private type
1976  * 	@lstats:	Loopback statistics
1977  * 	@tstats:	Tunnel statistics
1978  * 	@dstats:	Dummy statistics
1979  * 	@vstats:	Virtual ethernet statistics
1980  *
1981  *	@garp_port:	GARP
1982  *	@mrp_port:	MRP
1983  *
1984  *	@dm_private:	Drop monitor private
1985  *
1986  *	@dev:		Class/net/name entry
1987  *	@sysfs_groups:	Space for optional device, statistics and wireless
1988  *			sysfs groups
1989  *
1990  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1991  *	@rtnl_link_ops:	Rtnl_link_ops
1992  *
1993  *	@gso_max_size:	Maximum size of generic segmentation offload
1994  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1995  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1996  *			NIC for GSO
1997  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1998  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1999  * 				for IPv4.
2000  *
2001  *	@dcbnl_ops:	Data Center Bridging netlink ops
2002  *	@num_tc:	Number of traffic classes in the net device
2003  *	@tc_to_txq:	XXX: need comments on this one
2004  *	@prio_tc_map:	XXX: need comments on this one
2005  *
2006  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2007  *
2008  *	@priomap:	XXX: need comments on this one
2009  *	@phydev:	Physical device may attach itself
2010  *			for hardware timestamping
2011  *	@sfp_bus:	attached &struct sfp_bus structure.
2012  *
2013  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2014  *
2015  *	@proto_down:	protocol port state information can be sent to the
2016  *			switch driver and used to set the phys state of the
2017  *			switch port.
2018  *
2019  *	@wol_enabled:	Wake-on-LAN is enabled
2020  *
2021  *	@threaded:	napi threaded mode is enabled
2022  *
2023  *	@net_notifier_list:	List of per-net netdev notifier block
2024  *				that follow this device when it is moved
2025  *				to another network namespace.
2026  *
2027  *	@macsec_ops:    MACsec offloading ops
2028  *
2029  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2030  *				offload capabilities of the device
2031  *	@udp_tunnel_nic:	UDP tunnel offload state
2032  *	@xdp_state:		stores info on attached XDP BPF programs
2033  *
2034  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2035  *			dev->addr_list_lock.
2036  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2037  *			keep a list of interfaces to be deleted.
2038  *	@gro_max_size:	Maximum size of aggregated packet in generic
2039  *			receive offload (GRO)
2040  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2041  * 				receive offload (GRO), for IPv4.
2042  *
2043  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2044  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2045  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2046  *	@dev_registered_tracker:	tracker for reference held while
2047  *					registered
2048  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2049  *
2050  *	@devlink_port:	Pointer to related devlink port structure.
2051  *			Assigned by a driver before netdev registration using
2052  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2053  *			during the time netdevice is registered.
2054  *
2055  *	FIXME: cleanup struct net_device such that network protocol info
2056  *	moves out.
2057  */
2058 
2059 struct net_device {
2060 	char			name[IFNAMSIZ];
2061 	struct netdev_name_node	*name_node;
2062 	struct dev_ifalias	__rcu *ifalias;
2063 	/*
2064 	 *	I/O specific fields
2065 	 *	FIXME: Merge these and struct ifmap into one
2066 	 */
2067 	unsigned long		mem_end;
2068 	unsigned long		mem_start;
2069 	unsigned long		base_addr;
2070 
2071 	/*
2072 	 *	Some hardware also needs these fields (state,dev_list,
2073 	 *	napi_list,unreg_list,close_list) but they are not
2074 	 *	part of the usual set specified in Space.c.
2075 	 */
2076 
2077 	unsigned long		state;
2078 
2079 	struct list_head	dev_list;
2080 	struct list_head	napi_list;
2081 	struct list_head	unreg_list;
2082 	struct list_head	close_list;
2083 	struct list_head	ptype_all;
2084 	struct list_head	ptype_specific;
2085 
2086 	struct {
2087 		struct list_head upper;
2088 		struct list_head lower;
2089 	} adj_list;
2090 
2091 	/* Read-mostly cache-line for fast-path access */
2092 	unsigned int		flags;
2093 	xdp_features_t		xdp_features;
2094 	unsigned long long	priv_flags;
2095 	const struct net_device_ops *netdev_ops;
2096 	const struct xdp_metadata_ops *xdp_metadata_ops;
2097 	int			ifindex;
2098 	unsigned short		gflags;
2099 	unsigned short		hard_header_len;
2100 
2101 	/* Note : dev->mtu is often read without holding a lock.
2102 	 * Writers usually hold RTNL.
2103 	 * It is recommended to use READ_ONCE() to annotate the reads,
2104 	 * and to use WRITE_ONCE() to annotate the writes.
2105 	 */
2106 	unsigned int		mtu;
2107 	unsigned short		needed_headroom;
2108 	unsigned short		needed_tailroom;
2109 
2110 	netdev_features_t	features;
2111 	netdev_features_t	hw_features;
2112 	netdev_features_t	wanted_features;
2113 	netdev_features_t	vlan_features;
2114 	netdev_features_t	hw_enc_features;
2115 	netdev_features_t	mpls_features;
2116 	netdev_features_t	gso_partial_features;
2117 
2118 	unsigned int		min_mtu;
2119 	unsigned int		max_mtu;
2120 	unsigned short		type;
2121 	unsigned char		min_header_len;
2122 	unsigned char		name_assign_type;
2123 
2124 	int			group;
2125 
2126 	struct net_device_stats	stats; /* not used by modern drivers */
2127 
2128 	struct net_device_core_stats __percpu *core_stats;
2129 
2130 	/* Stats to monitor link on/off, flapping */
2131 	atomic_t		carrier_up_count;
2132 	atomic_t		carrier_down_count;
2133 
2134 #ifdef CONFIG_WIRELESS_EXT
2135 	const struct iw_handler_def *wireless_handlers;
2136 	struct iw_public_data	*wireless_data;
2137 #endif
2138 	const struct ethtool_ops *ethtool_ops;
2139 #ifdef CONFIG_NET_L3_MASTER_DEV
2140 	const struct l3mdev_ops	*l3mdev_ops;
2141 #endif
2142 #if IS_ENABLED(CONFIG_IPV6)
2143 	const struct ndisc_ops *ndisc_ops;
2144 #endif
2145 
2146 #ifdef CONFIG_XFRM_OFFLOAD
2147 	const struct xfrmdev_ops *xfrmdev_ops;
2148 #endif
2149 
2150 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2151 	const struct tlsdev_ops *tlsdev_ops;
2152 #endif
2153 
2154 	const struct header_ops *header_ops;
2155 
2156 	unsigned char		operstate;
2157 	unsigned char		link_mode;
2158 
2159 	unsigned char		if_port;
2160 	unsigned char		dma;
2161 
2162 	/* Interface address info. */
2163 	unsigned char		perm_addr[MAX_ADDR_LEN];
2164 	unsigned char		addr_assign_type;
2165 	unsigned char		addr_len;
2166 	unsigned char		upper_level;
2167 	unsigned char		lower_level;
2168 
2169 	unsigned short		neigh_priv_len;
2170 	unsigned short          dev_id;
2171 	unsigned short          dev_port;
2172 	unsigned short		padded;
2173 
2174 	spinlock_t		addr_list_lock;
2175 	int			irq;
2176 
2177 	struct netdev_hw_addr_list	uc;
2178 	struct netdev_hw_addr_list	mc;
2179 	struct netdev_hw_addr_list	dev_addrs;
2180 
2181 #ifdef CONFIG_SYSFS
2182 	struct kset		*queues_kset;
2183 #endif
2184 #ifdef CONFIG_LOCKDEP
2185 	struct list_head	unlink_list;
2186 #endif
2187 	unsigned int		promiscuity;
2188 	unsigned int		allmulti;
2189 	bool			uc_promisc;
2190 #ifdef CONFIG_LOCKDEP
2191 	unsigned char		nested_level;
2192 #endif
2193 
2194 
2195 	/* Protocol-specific pointers */
2196 
2197 	struct in_device __rcu	*ip_ptr;
2198 	struct inet6_dev __rcu	*ip6_ptr;
2199 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2200 	struct vlan_info __rcu	*vlan_info;
2201 #endif
2202 #if IS_ENABLED(CONFIG_NET_DSA)
2203 	struct dsa_port		*dsa_ptr;
2204 #endif
2205 #if IS_ENABLED(CONFIG_TIPC)
2206 	struct tipc_bearer __rcu *tipc_ptr;
2207 #endif
2208 #if IS_ENABLED(CONFIG_ATALK)
2209 	void 			*atalk_ptr;
2210 #endif
2211 #if IS_ENABLED(CONFIG_AX25)
2212 	void			*ax25_ptr;
2213 #endif
2214 #if IS_ENABLED(CONFIG_CFG80211)
2215 	struct wireless_dev	*ieee80211_ptr;
2216 #endif
2217 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2218 	struct wpan_dev		*ieee802154_ptr;
2219 #endif
2220 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2221 	struct mpls_dev __rcu	*mpls_ptr;
2222 #endif
2223 #if IS_ENABLED(CONFIG_MCTP)
2224 	struct mctp_dev __rcu	*mctp_ptr;
2225 #endif
2226 
2227 /*
2228  * Cache lines mostly used on receive path (including eth_type_trans())
2229  */
2230 	/* Interface address info used in eth_type_trans() */
2231 	const unsigned char	*dev_addr;
2232 
2233 	struct netdev_rx_queue	*_rx;
2234 	unsigned int		num_rx_queues;
2235 	unsigned int		real_num_rx_queues;
2236 
2237 	struct bpf_prog __rcu	*xdp_prog;
2238 	unsigned long		gro_flush_timeout;
2239 	int			napi_defer_hard_irqs;
2240 #define GRO_LEGACY_MAX_SIZE	65536u
2241 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2242  * and shinfo->gso_segs is a 16bit field.
2243  */
2244 #define GRO_MAX_SIZE		(8 * 65535u)
2245 	unsigned int		gro_max_size;
2246 	unsigned int		gro_ipv4_max_size;
2247 	rx_handler_func_t __rcu	*rx_handler;
2248 	void __rcu		*rx_handler_data;
2249 
2250 #ifdef CONFIG_NET_CLS_ACT
2251 	struct mini_Qdisc __rcu	*miniq_ingress;
2252 #endif
2253 	struct netdev_queue __rcu *ingress_queue;
2254 #ifdef CONFIG_NETFILTER_INGRESS
2255 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2256 #endif
2257 
2258 	unsigned char		broadcast[MAX_ADDR_LEN];
2259 #ifdef CONFIG_RFS_ACCEL
2260 	struct cpu_rmap		*rx_cpu_rmap;
2261 #endif
2262 	struct hlist_node	index_hlist;
2263 
2264 /*
2265  * Cache lines mostly used on transmit path
2266  */
2267 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2268 	unsigned int		num_tx_queues;
2269 	unsigned int		real_num_tx_queues;
2270 	struct Qdisc __rcu	*qdisc;
2271 	unsigned int		tx_queue_len;
2272 	spinlock_t		tx_global_lock;
2273 
2274 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2275 
2276 #ifdef CONFIG_XPS
2277 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2278 #endif
2279 #ifdef CONFIG_NET_CLS_ACT
2280 	struct mini_Qdisc __rcu	*miniq_egress;
2281 #endif
2282 #ifdef CONFIG_NETFILTER_EGRESS
2283 	struct nf_hook_entries __rcu *nf_hooks_egress;
2284 #endif
2285 
2286 #ifdef CONFIG_NET_SCHED
2287 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2288 #endif
2289 	/* These may be needed for future network-power-down code. */
2290 	struct timer_list	watchdog_timer;
2291 	int			watchdog_timeo;
2292 
2293 	u32                     proto_down_reason;
2294 
2295 	struct list_head	todo_list;
2296 
2297 #ifdef CONFIG_PCPU_DEV_REFCNT
2298 	int __percpu		*pcpu_refcnt;
2299 #else
2300 	refcount_t		dev_refcnt;
2301 #endif
2302 	struct ref_tracker_dir	refcnt_tracker;
2303 
2304 	struct list_head	link_watch_list;
2305 
2306 	enum { NETREG_UNINITIALIZED=0,
2307 	       NETREG_REGISTERED,	/* completed register_netdevice */
2308 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2309 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2310 	       NETREG_RELEASED,		/* called free_netdev */
2311 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2312 	} reg_state:8;
2313 
2314 	bool dismantle;
2315 
2316 	enum {
2317 		RTNL_LINK_INITIALIZED,
2318 		RTNL_LINK_INITIALIZING,
2319 	} rtnl_link_state:16;
2320 
2321 	bool needs_free_netdev;
2322 	void (*priv_destructor)(struct net_device *dev);
2323 
2324 #ifdef CONFIG_NETPOLL
2325 	struct netpoll_info __rcu	*npinfo;
2326 #endif
2327 
2328 	possible_net_t			nd_net;
2329 
2330 	/* mid-layer private */
2331 	void				*ml_priv;
2332 	enum netdev_ml_priv_type	ml_priv_type;
2333 
2334 	union {
2335 		struct pcpu_lstats __percpu		*lstats;
2336 		struct pcpu_sw_netstats __percpu	*tstats;
2337 		struct pcpu_dstats __percpu		*dstats;
2338 	};
2339 
2340 #if IS_ENABLED(CONFIG_GARP)
2341 	struct garp_port __rcu	*garp_port;
2342 #endif
2343 #if IS_ENABLED(CONFIG_MRP)
2344 	struct mrp_port __rcu	*mrp_port;
2345 #endif
2346 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2347 	struct dm_hw_stat_delta __rcu *dm_private;
2348 #endif
2349 	struct device		dev;
2350 	const struct attribute_group *sysfs_groups[4];
2351 	const struct attribute_group *sysfs_rx_queue_group;
2352 
2353 	const struct rtnl_link_ops *rtnl_link_ops;
2354 
2355 	/* for setting kernel sock attribute on TCP connection setup */
2356 #define GSO_MAX_SEGS		65535u
2357 #define GSO_LEGACY_MAX_SIZE	65536u
2358 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2359  * and shinfo->gso_segs is a 16bit field.
2360  */
2361 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2362 
2363 	unsigned int		gso_max_size;
2364 #define TSO_LEGACY_MAX_SIZE	65536
2365 #define TSO_MAX_SIZE		UINT_MAX
2366 	unsigned int		tso_max_size;
2367 	u16			gso_max_segs;
2368 #define TSO_MAX_SEGS		U16_MAX
2369 	u16			tso_max_segs;
2370 	unsigned int		gso_ipv4_max_size;
2371 
2372 #ifdef CONFIG_DCB
2373 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2374 #endif
2375 	s16			num_tc;
2376 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2377 	u8			prio_tc_map[TC_BITMASK + 1];
2378 
2379 #if IS_ENABLED(CONFIG_FCOE)
2380 	unsigned int		fcoe_ddp_xid;
2381 #endif
2382 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2383 	struct netprio_map __rcu *priomap;
2384 #endif
2385 	struct phy_device	*phydev;
2386 	struct sfp_bus		*sfp_bus;
2387 	struct lock_class_key	*qdisc_tx_busylock;
2388 	bool			proto_down;
2389 	unsigned		wol_enabled:1;
2390 	unsigned		threaded:1;
2391 
2392 	struct list_head	net_notifier_list;
2393 
2394 #if IS_ENABLED(CONFIG_MACSEC)
2395 	/* MACsec management functions */
2396 	const struct macsec_ops *macsec_ops;
2397 #endif
2398 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2399 	struct udp_tunnel_nic	*udp_tunnel_nic;
2400 
2401 	/* protected by rtnl_lock */
2402 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2403 
2404 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2405 	netdevice_tracker	linkwatch_dev_tracker;
2406 	netdevice_tracker	watchdog_dev_tracker;
2407 	netdevice_tracker	dev_registered_tracker;
2408 	struct rtnl_hw_stats64	*offload_xstats_l3;
2409 
2410 	struct devlink_port	*devlink_port;
2411 };
2412 #define to_net_dev(d) container_of(d, struct net_device, dev)
2413 
2414 /*
2415  * Driver should use this to assign devlink port instance to a netdevice
2416  * before it registers the netdevice. Therefore devlink_port is static
2417  * during the netdev lifetime after it is registered.
2418  */
2419 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2420 ({								\
2421 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2422 	((dev)->devlink_port = (port));				\
2423 })
2424 
2425 static inline bool netif_elide_gro(const struct net_device *dev)
2426 {
2427 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2428 		return true;
2429 	return false;
2430 }
2431 
2432 #define	NETDEV_ALIGN		32
2433 
2434 static inline
2435 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2436 {
2437 	return dev->prio_tc_map[prio & TC_BITMASK];
2438 }
2439 
2440 static inline
2441 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2442 {
2443 	if (tc >= dev->num_tc)
2444 		return -EINVAL;
2445 
2446 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2447 	return 0;
2448 }
2449 
2450 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2451 void netdev_reset_tc(struct net_device *dev);
2452 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2453 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2454 
2455 static inline
2456 int netdev_get_num_tc(struct net_device *dev)
2457 {
2458 	return dev->num_tc;
2459 }
2460 
2461 static inline void net_prefetch(void *p)
2462 {
2463 	prefetch(p);
2464 #if L1_CACHE_BYTES < 128
2465 	prefetch((u8 *)p + L1_CACHE_BYTES);
2466 #endif
2467 }
2468 
2469 static inline void net_prefetchw(void *p)
2470 {
2471 	prefetchw(p);
2472 #if L1_CACHE_BYTES < 128
2473 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2474 #endif
2475 }
2476 
2477 void netdev_unbind_sb_channel(struct net_device *dev,
2478 			      struct net_device *sb_dev);
2479 int netdev_bind_sb_channel_queue(struct net_device *dev,
2480 				 struct net_device *sb_dev,
2481 				 u8 tc, u16 count, u16 offset);
2482 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2483 static inline int netdev_get_sb_channel(struct net_device *dev)
2484 {
2485 	return max_t(int, -dev->num_tc, 0);
2486 }
2487 
2488 static inline
2489 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2490 					 unsigned int index)
2491 {
2492 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2493 	return &dev->_tx[index];
2494 }
2495 
2496 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2497 						    const struct sk_buff *skb)
2498 {
2499 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2500 }
2501 
2502 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2503 					    void (*f)(struct net_device *,
2504 						      struct netdev_queue *,
2505 						      void *),
2506 					    void *arg)
2507 {
2508 	unsigned int i;
2509 
2510 	for (i = 0; i < dev->num_tx_queues; i++)
2511 		f(dev, &dev->_tx[i], arg);
2512 }
2513 
2514 #define netdev_lockdep_set_classes(dev)				\
2515 {								\
2516 	static struct lock_class_key qdisc_tx_busylock_key;	\
2517 	static struct lock_class_key qdisc_xmit_lock_key;	\
2518 	static struct lock_class_key dev_addr_list_lock_key;	\
2519 	unsigned int i;						\
2520 								\
2521 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2522 	lockdep_set_class(&(dev)->addr_list_lock,		\
2523 			  &dev_addr_list_lock_key);		\
2524 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2525 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2526 				  &qdisc_xmit_lock_key);	\
2527 }
2528 
2529 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2530 		     struct net_device *sb_dev);
2531 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2532 					 struct sk_buff *skb,
2533 					 struct net_device *sb_dev);
2534 
2535 /* returns the headroom that the master device needs to take in account
2536  * when forwarding to this dev
2537  */
2538 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2539 {
2540 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2541 }
2542 
2543 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2544 {
2545 	if (dev->netdev_ops->ndo_set_rx_headroom)
2546 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2547 }
2548 
2549 /* set the device rx headroom to the dev's default */
2550 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2551 {
2552 	netdev_set_rx_headroom(dev, -1);
2553 }
2554 
2555 static inline void *netdev_get_ml_priv(struct net_device *dev,
2556 				       enum netdev_ml_priv_type type)
2557 {
2558 	if (dev->ml_priv_type != type)
2559 		return NULL;
2560 
2561 	return dev->ml_priv;
2562 }
2563 
2564 static inline void netdev_set_ml_priv(struct net_device *dev,
2565 				      void *ml_priv,
2566 				      enum netdev_ml_priv_type type)
2567 {
2568 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2569 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2570 	     dev->ml_priv_type, type);
2571 	WARN(!dev->ml_priv_type && dev->ml_priv,
2572 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2573 
2574 	dev->ml_priv = ml_priv;
2575 	dev->ml_priv_type = type;
2576 }
2577 
2578 /*
2579  * Net namespace inlines
2580  */
2581 static inline
2582 struct net *dev_net(const struct net_device *dev)
2583 {
2584 	return read_pnet(&dev->nd_net);
2585 }
2586 
2587 static inline
2588 void dev_net_set(struct net_device *dev, struct net *net)
2589 {
2590 	write_pnet(&dev->nd_net, net);
2591 }
2592 
2593 /**
2594  *	netdev_priv - access network device private data
2595  *	@dev: network device
2596  *
2597  * Get network device private data
2598  */
2599 static inline void *netdev_priv(const struct net_device *dev)
2600 {
2601 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2602 }
2603 
2604 /* Set the sysfs physical device reference for the network logical device
2605  * if set prior to registration will cause a symlink during initialization.
2606  */
2607 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2608 
2609 /* Set the sysfs device type for the network logical device to allow
2610  * fine-grained identification of different network device types. For
2611  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2612  */
2613 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2614 
2615 /* Default NAPI poll() weight
2616  * Device drivers are strongly advised to not use bigger value
2617  */
2618 #define NAPI_POLL_WEIGHT 64
2619 
2620 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2621 			   int (*poll)(struct napi_struct *, int), int weight);
2622 
2623 /**
2624  * netif_napi_add() - initialize a NAPI context
2625  * @dev:  network device
2626  * @napi: NAPI context
2627  * @poll: polling function
2628  *
2629  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2630  * *any* of the other NAPI-related functions.
2631  */
2632 static inline void
2633 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2634 	       int (*poll)(struct napi_struct *, int))
2635 {
2636 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2637 }
2638 
2639 static inline void
2640 netif_napi_add_tx_weight(struct net_device *dev,
2641 			 struct napi_struct *napi,
2642 			 int (*poll)(struct napi_struct *, int),
2643 			 int weight)
2644 {
2645 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2646 	netif_napi_add_weight(dev, napi, poll, weight);
2647 }
2648 
2649 /**
2650  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2651  * @dev:  network device
2652  * @napi: NAPI context
2653  * @poll: polling function
2654  *
2655  * This variant of netif_napi_add() should be used from drivers using NAPI
2656  * to exclusively poll a TX queue.
2657  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2658  */
2659 static inline void netif_napi_add_tx(struct net_device *dev,
2660 				     struct napi_struct *napi,
2661 				     int (*poll)(struct napi_struct *, int))
2662 {
2663 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2664 }
2665 
2666 /**
2667  *  __netif_napi_del - remove a NAPI context
2668  *  @napi: NAPI context
2669  *
2670  * Warning: caller must observe RCU grace period before freeing memory
2671  * containing @napi. Drivers might want to call this helper to combine
2672  * all the needed RCU grace periods into a single one.
2673  */
2674 void __netif_napi_del(struct napi_struct *napi);
2675 
2676 /**
2677  *  netif_napi_del - remove a NAPI context
2678  *  @napi: NAPI context
2679  *
2680  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2681  */
2682 static inline void netif_napi_del(struct napi_struct *napi)
2683 {
2684 	__netif_napi_del(napi);
2685 	synchronize_net();
2686 }
2687 
2688 struct packet_type {
2689 	__be16			type;	/* This is really htons(ether_type). */
2690 	bool			ignore_outgoing;
2691 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2692 	netdevice_tracker	dev_tracker;
2693 	int			(*func) (struct sk_buff *,
2694 					 struct net_device *,
2695 					 struct packet_type *,
2696 					 struct net_device *);
2697 	void			(*list_func) (struct list_head *,
2698 					      struct packet_type *,
2699 					      struct net_device *);
2700 	bool			(*id_match)(struct packet_type *ptype,
2701 					    struct sock *sk);
2702 	struct net		*af_packet_net;
2703 	void			*af_packet_priv;
2704 	struct list_head	list;
2705 };
2706 
2707 struct offload_callbacks {
2708 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2709 						netdev_features_t features);
2710 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2711 						struct sk_buff *skb);
2712 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2713 };
2714 
2715 struct packet_offload {
2716 	__be16			 type;	/* This is really htons(ether_type). */
2717 	u16			 priority;
2718 	struct offload_callbacks callbacks;
2719 	struct list_head	 list;
2720 };
2721 
2722 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2723 struct pcpu_sw_netstats {
2724 	u64_stats_t		rx_packets;
2725 	u64_stats_t		rx_bytes;
2726 	u64_stats_t		tx_packets;
2727 	u64_stats_t		tx_bytes;
2728 	struct u64_stats_sync   syncp;
2729 } __aligned(4 * sizeof(u64));
2730 
2731 struct pcpu_lstats {
2732 	u64_stats_t packets;
2733 	u64_stats_t bytes;
2734 	struct u64_stats_sync syncp;
2735 } __aligned(2 * sizeof(u64));
2736 
2737 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2738 
2739 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2740 {
2741 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2742 
2743 	u64_stats_update_begin(&tstats->syncp);
2744 	u64_stats_add(&tstats->rx_bytes, len);
2745 	u64_stats_inc(&tstats->rx_packets);
2746 	u64_stats_update_end(&tstats->syncp);
2747 }
2748 
2749 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2750 					  unsigned int packets,
2751 					  unsigned int len)
2752 {
2753 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2754 
2755 	u64_stats_update_begin(&tstats->syncp);
2756 	u64_stats_add(&tstats->tx_bytes, len);
2757 	u64_stats_add(&tstats->tx_packets, packets);
2758 	u64_stats_update_end(&tstats->syncp);
2759 }
2760 
2761 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2762 {
2763 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2764 
2765 	u64_stats_update_begin(&lstats->syncp);
2766 	u64_stats_add(&lstats->bytes, len);
2767 	u64_stats_inc(&lstats->packets);
2768 	u64_stats_update_end(&lstats->syncp);
2769 }
2770 
2771 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2772 ({									\
2773 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2774 	if (pcpu_stats)	{						\
2775 		int __cpu;						\
2776 		for_each_possible_cpu(__cpu) {				\
2777 			typeof(type) *stat;				\
2778 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2779 			u64_stats_init(&stat->syncp);			\
2780 		}							\
2781 	}								\
2782 	pcpu_stats;							\
2783 })
2784 
2785 #define netdev_alloc_pcpu_stats(type)					\
2786 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2787 
2788 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2789 ({									\
2790 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2791 	if (pcpu_stats) {						\
2792 		int __cpu;						\
2793 		for_each_possible_cpu(__cpu) {				\
2794 			typeof(type) *stat;				\
2795 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2796 			u64_stats_init(&stat->syncp);			\
2797 		}							\
2798 	}								\
2799 	pcpu_stats;							\
2800 })
2801 
2802 enum netdev_lag_tx_type {
2803 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2804 	NETDEV_LAG_TX_TYPE_RANDOM,
2805 	NETDEV_LAG_TX_TYPE_BROADCAST,
2806 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2807 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2808 	NETDEV_LAG_TX_TYPE_HASH,
2809 };
2810 
2811 enum netdev_lag_hash {
2812 	NETDEV_LAG_HASH_NONE,
2813 	NETDEV_LAG_HASH_L2,
2814 	NETDEV_LAG_HASH_L34,
2815 	NETDEV_LAG_HASH_L23,
2816 	NETDEV_LAG_HASH_E23,
2817 	NETDEV_LAG_HASH_E34,
2818 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2819 	NETDEV_LAG_HASH_UNKNOWN,
2820 };
2821 
2822 struct netdev_lag_upper_info {
2823 	enum netdev_lag_tx_type tx_type;
2824 	enum netdev_lag_hash hash_type;
2825 };
2826 
2827 struct netdev_lag_lower_state_info {
2828 	u8 link_up : 1,
2829 	   tx_enabled : 1;
2830 };
2831 
2832 #include <linux/notifier.h>
2833 
2834 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2835  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2836  * adding new types.
2837  */
2838 enum netdev_cmd {
2839 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2840 	NETDEV_DOWN,
2841 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2842 				   detected a hardware crash and restarted
2843 				   - we can use this eg to kick tcp sessions
2844 				   once done */
2845 	NETDEV_CHANGE,		/* Notify device state change */
2846 	NETDEV_REGISTER,
2847 	NETDEV_UNREGISTER,
2848 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2849 	NETDEV_CHANGEADDR,	/* notify after the address change */
2850 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2851 	NETDEV_GOING_DOWN,
2852 	NETDEV_CHANGENAME,
2853 	NETDEV_FEAT_CHANGE,
2854 	NETDEV_BONDING_FAILOVER,
2855 	NETDEV_PRE_UP,
2856 	NETDEV_PRE_TYPE_CHANGE,
2857 	NETDEV_POST_TYPE_CHANGE,
2858 	NETDEV_POST_INIT,
2859 	NETDEV_PRE_UNINIT,
2860 	NETDEV_RELEASE,
2861 	NETDEV_NOTIFY_PEERS,
2862 	NETDEV_JOIN,
2863 	NETDEV_CHANGEUPPER,
2864 	NETDEV_RESEND_IGMP,
2865 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2866 	NETDEV_CHANGEINFODATA,
2867 	NETDEV_BONDING_INFO,
2868 	NETDEV_PRECHANGEUPPER,
2869 	NETDEV_CHANGELOWERSTATE,
2870 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2871 	NETDEV_UDP_TUNNEL_DROP_INFO,
2872 	NETDEV_CHANGE_TX_QUEUE_LEN,
2873 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2874 	NETDEV_CVLAN_FILTER_DROP_INFO,
2875 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2876 	NETDEV_SVLAN_FILTER_DROP_INFO,
2877 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2878 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2879 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2880 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2881 	NETDEV_XDP_FEAT_CHANGE,
2882 };
2883 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2884 
2885 int register_netdevice_notifier(struct notifier_block *nb);
2886 int unregister_netdevice_notifier(struct notifier_block *nb);
2887 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2888 int unregister_netdevice_notifier_net(struct net *net,
2889 				      struct notifier_block *nb);
2890 int register_netdevice_notifier_dev_net(struct net_device *dev,
2891 					struct notifier_block *nb,
2892 					struct netdev_net_notifier *nn);
2893 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2894 					  struct notifier_block *nb,
2895 					  struct netdev_net_notifier *nn);
2896 
2897 struct netdev_notifier_info {
2898 	struct net_device	*dev;
2899 	struct netlink_ext_ack	*extack;
2900 };
2901 
2902 struct netdev_notifier_info_ext {
2903 	struct netdev_notifier_info info; /* must be first */
2904 	union {
2905 		u32 mtu;
2906 	} ext;
2907 };
2908 
2909 struct netdev_notifier_change_info {
2910 	struct netdev_notifier_info info; /* must be first */
2911 	unsigned int flags_changed;
2912 };
2913 
2914 struct netdev_notifier_changeupper_info {
2915 	struct netdev_notifier_info info; /* must be first */
2916 	struct net_device *upper_dev; /* new upper dev */
2917 	bool master; /* is upper dev master */
2918 	bool linking; /* is the notification for link or unlink */
2919 	void *upper_info; /* upper dev info */
2920 };
2921 
2922 struct netdev_notifier_changelowerstate_info {
2923 	struct netdev_notifier_info info; /* must be first */
2924 	void *lower_state_info; /* is lower dev state */
2925 };
2926 
2927 struct netdev_notifier_pre_changeaddr_info {
2928 	struct netdev_notifier_info info; /* must be first */
2929 	const unsigned char *dev_addr;
2930 };
2931 
2932 enum netdev_offload_xstats_type {
2933 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2934 };
2935 
2936 struct netdev_notifier_offload_xstats_info {
2937 	struct netdev_notifier_info info; /* must be first */
2938 	enum netdev_offload_xstats_type type;
2939 
2940 	union {
2941 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2942 		struct netdev_notifier_offload_xstats_rd *report_delta;
2943 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2944 		struct netdev_notifier_offload_xstats_ru *report_used;
2945 	};
2946 };
2947 
2948 int netdev_offload_xstats_enable(struct net_device *dev,
2949 				 enum netdev_offload_xstats_type type,
2950 				 struct netlink_ext_ack *extack);
2951 int netdev_offload_xstats_disable(struct net_device *dev,
2952 				  enum netdev_offload_xstats_type type);
2953 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2954 				   enum netdev_offload_xstats_type type);
2955 int netdev_offload_xstats_get(struct net_device *dev,
2956 			      enum netdev_offload_xstats_type type,
2957 			      struct rtnl_hw_stats64 *stats, bool *used,
2958 			      struct netlink_ext_ack *extack);
2959 void
2960 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2961 				   const struct rtnl_hw_stats64 *stats);
2962 void
2963 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2964 void netdev_offload_xstats_push_delta(struct net_device *dev,
2965 				      enum netdev_offload_xstats_type type,
2966 				      const struct rtnl_hw_stats64 *stats);
2967 
2968 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2969 					     struct net_device *dev)
2970 {
2971 	info->dev = dev;
2972 	info->extack = NULL;
2973 }
2974 
2975 static inline struct net_device *
2976 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2977 {
2978 	return info->dev;
2979 }
2980 
2981 static inline struct netlink_ext_ack *
2982 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2983 {
2984 	return info->extack;
2985 }
2986 
2987 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2988 int call_netdevice_notifiers_info(unsigned long val,
2989 				  struct netdev_notifier_info *info);
2990 
2991 extern rwlock_t				dev_base_lock;		/* Device list lock */
2992 
2993 #define for_each_netdev(net, d)		\
2994 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2995 #define for_each_netdev_reverse(net, d)	\
2996 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2997 #define for_each_netdev_rcu(net, d)		\
2998 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2999 #define for_each_netdev_safe(net, d, n)	\
3000 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3001 #define for_each_netdev_continue(net, d)		\
3002 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3003 #define for_each_netdev_continue_reverse(net, d)		\
3004 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3005 						     dev_list)
3006 #define for_each_netdev_continue_rcu(net, d)		\
3007 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3008 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3009 		for_each_netdev_rcu(&init_net, slave)	\
3010 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3011 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3012 
3013 static inline struct net_device *next_net_device(struct net_device *dev)
3014 {
3015 	struct list_head *lh;
3016 	struct net *net;
3017 
3018 	net = dev_net(dev);
3019 	lh = dev->dev_list.next;
3020 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3021 }
3022 
3023 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3024 {
3025 	struct list_head *lh;
3026 	struct net *net;
3027 
3028 	net = dev_net(dev);
3029 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3030 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3031 }
3032 
3033 static inline struct net_device *first_net_device(struct net *net)
3034 {
3035 	return list_empty(&net->dev_base_head) ? NULL :
3036 		net_device_entry(net->dev_base_head.next);
3037 }
3038 
3039 static inline struct net_device *first_net_device_rcu(struct net *net)
3040 {
3041 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3042 
3043 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3044 }
3045 
3046 int netdev_boot_setup_check(struct net_device *dev);
3047 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3048 				       const char *hwaddr);
3049 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3050 void dev_add_pack(struct packet_type *pt);
3051 void dev_remove_pack(struct packet_type *pt);
3052 void __dev_remove_pack(struct packet_type *pt);
3053 void dev_add_offload(struct packet_offload *po);
3054 void dev_remove_offload(struct packet_offload *po);
3055 
3056 int dev_get_iflink(const struct net_device *dev);
3057 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3058 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3059 			  struct net_device_path_stack *stack);
3060 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3061 				      unsigned short mask);
3062 struct net_device *dev_get_by_name(struct net *net, const char *name);
3063 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3064 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3065 bool netdev_name_in_use(struct net *net, const char *name);
3066 int dev_alloc_name(struct net_device *dev, const char *name);
3067 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3068 void dev_close(struct net_device *dev);
3069 void dev_close_many(struct list_head *head, bool unlink);
3070 void dev_disable_lro(struct net_device *dev);
3071 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3073 		     struct net_device *sb_dev);
3074 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3075 		       struct net_device *sb_dev);
3076 
3077 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3078 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3079 
3080 static inline int dev_queue_xmit(struct sk_buff *skb)
3081 {
3082 	return __dev_queue_xmit(skb, NULL);
3083 }
3084 
3085 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3086 				       struct net_device *sb_dev)
3087 {
3088 	return __dev_queue_xmit(skb, sb_dev);
3089 }
3090 
3091 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3092 {
3093 	int ret;
3094 
3095 	ret = __dev_direct_xmit(skb, queue_id);
3096 	if (!dev_xmit_complete(ret))
3097 		kfree_skb(skb);
3098 	return ret;
3099 }
3100 
3101 int register_netdevice(struct net_device *dev);
3102 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3103 void unregister_netdevice_many(struct list_head *head);
3104 static inline void unregister_netdevice(struct net_device *dev)
3105 {
3106 	unregister_netdevice_queue(dev, NULL);
3107 }
3108 
3109 int netdev_refcnt_read(const struct net_device *dev);
3110 void free_netdev(struct net_device *dev);
3111 void netdev_freemem(struct net_device *dev);
3112 int init_dummy_netdev(struct net_device *dev);
3113 
3114 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3115 					 struct sk_buff *skb,
3116 					 bool all_slaves);
3117 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3118 					    struct sock *sk);
3119 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3120 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3121 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3122 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3123 int dev_restart(struct net_device *dev);
3124 
3125 
3126 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3127 				  unsigned short type,
3128 				  const void *daddr, const void *saddr,
3129 				  unsigned int len)
3130 {
3131 	if (!dev->header_ops || !dev->header_ops->create)
3132 		return 0;
3133 
3134 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3135 }
3136 
3137 static inline int dev_parse_header(const struct sk_buff *skb,
3138 				   unsigned char *haddr)
3139 {
3140 	const struct net_device *dev = skb->dev;
3141 
3142 	if (!dev->header_ops || !dev->header_ops->parse)
3143 		return 0;
3144 	return dev->header_ops->parse(skb, haddr);
3145 }
3146 
3147 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3148 {
3149 	const struct net_device *dev = skb->dev;
3150 
3151 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3152 		return 0;
3153 	return dev->header_ops->parse_protocol(skb);
3154 }
3155 
3156 /* ll_header must have at least hard_header_len allocated */
3157 static inline bool dev_validate_header(const struct net_device *dev,
3158 				       char *ll_header, int len)
3159 {
3160 	if (likely(len >= dev->hard_header_len))
3161 		return true;
3162 	if (len < dev->min_header_len)
3163 		return false;
3164 
3165 	if (capable(CAP_SYS_RAWIO)) {
3166 		memset(ll_header + len, 0, dev->hard_header_len - len);
3167 		return true;
3168 	}
3169 
3170 	if (dev->header_ops && dev->header_ops->validate)
3171 		return dev->header_ops->validate(ll_header, len);
3172 
3173 	return false;
3174 }
3175 
3176 static inline bool dev_has_header(const struct net_device *dev)
3177 {
3178 	return dev->header_ops && dev->header_ops->create;
3179 }
3180 
3181 /*
3182  * Incoming packets are placed on per-CPU queues
3183  */
3184 struct softnet_data {
3185 	struct list_head	poll_list;
3186 	struct sk_buff_head	process_queue;
3187 
3188 	/* stats */
3189 	unsigned int		processed;
3190 	unsigned int		time_squeeze;
3191 #ifdef CONFIG_RPS
3192 	struct softnet_data	*rps_ipi_list;
3193 #endif
3194 	bool			in_net_rx_action;
3195 #ifdef CONFIG_NET_FLOW_LIMIT
3196 	struct sd_flow_limit __rcu *flow_limit;
3197 #endif
3198 	struct Qdisc		*output_queue;
3199 	struct Qdisc		**output_queue_tailp;
3200 	struct sk_buff		*completion_queue;
3201 #ifdef CONFIG_XFRM_OFFLOAD
3202 	struct sk_buff_head	xfrm_backlog;
3203 #endif
3204 	/* written and read only by owning cpu: */
3205 	struct {
3206 		u16 recursion;
3207 		u8  more;
3208 #ifdef CONFIG_NET_EGRESS
3209 		u8  skip_txqueue;
3210 #endif
3211 	} xmit;
3212 #ifdef CONFIG_RPS
3213 	/* input_queue_head should be written by cpu owning this struct,
3214 	 * and only read by other cpus. Worth using a cache line.
3215 	 */
3216 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3217 
3218 	/* Elements below can be accessed between CPUs for RPS/RFS */
3219 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3220 	struct softnet_data	*rps_ipi_next;
3221 	unsigned int		cpu;
3222 	unsigned int		input_queue_tail;
3223 #endif
3224 	unsigned int		received_rps;
3225 	unsigned int		dropped;
3226 	struct sk_buff_head	input_pkt_queue;
3227 	struct napi_struct	backlog;
3228 
3229 	/* Another possibly contended cache line */
3230 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3231 	int			defer_count;
3232 	int			defer_ipi_scheduled;
3233 	struct sk_buff		*defer_list;
3234 	call_single_data_t	defer_csd;
3235 };
3236 
3237 static inline void input_queue_head_incr(struct softnet_data *sd)
3238 {
3239 #ifdef CONFIG_RPS
3240 	sd->input_queue_head++;
3241 #endif
3242 }
3243 
3244 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3245 					      unsigned int *qtail)
3246 {
3247 #ifdef CONFIG_RPS
3248 	*qtail = ++sd->input_queue_tail;
3249 #endif
3250 }
3251 
3252 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3253 
3254 static inline int dev_recursion_level(void)
3255 {
3256 	return this_cpu_read(softnet_data.xmit.recursion);
3257 }
3258 
3259 #define XMIT_RECURSION_LIMIT	8
3260 static inline bool dev_xmit_recursion(void)
3261 {
3262 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3263 			XMIT_RECURSION_LIMIT);
3264 }
3265 
3266 static inline void dev_xmit_recursion_inc(void)
3267 {
3268 	__this_cpu_inc(softnet_data.xmit.recursion);
3269 }
3270 
3271 static inline void dev_xmit_recursion_dec(void)
3272 {
3273 	__this_cpu_dec(softnet_data.xmit.recursion);
3274 }
3275 
3276 void __netif_schedule(struct Qdisc *q);
3277 void netif_schedule_queue(struct netdev_queue *txq);
3278 
3279 static inline void netif_tx_schedule_all(struct net_device *dev)
3280 {
3281 	unsigned int i;
3282 
3283 	for (i = 0; i < dev->num_tx_queues; i++)
3284 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3285 }
3286 
3287 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3288 {
3289 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3290 }
3291 
3292 /**
3293  *	netif_start_queue - allow transmit
3294  *	@dev: network device
3295  *
3296  *	Allow upper layers to call the device hard_start_xmit routine.
3297  */
3298 static inline void netif_start_queue(struct net_device *dev)
3299 {
3300 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3301 }
3302 
3303 static inline void netif_tx_start_all_queues(struct net_device *dev)
3304 {
3305 	unsigned int i;
3306 
3307 	for (i = 0; i < dev->num_tx_queues; i++) {
3308 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3309 		netif_tx_start_queue(txq);
3310 	}
3311 }
3312 
3313 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3314 
3315 /**
3316  *	netif_wake_queue - restart transmit
3317  *	@dev: network device
3318  *
3319  *	Allow upper layers to call the device hard_start_xmit routine.
3320  *	Used for flow control when transmit resources are available.
3321  */
3322 static inline void netif_wake_queue(struct net_device *dev)
3323 {
3324 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3325 }
3326 
3327 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3328 {
3329 	unsigned int i;
3330 
3331 	for (i = 0; i < dev->num_tx_queues; i++) {
3332 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3333 		netif_tx_wake_queue(txq);
3334 	}
3335 }
3336 
3337 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3338 {
3339 	/* Must be an atomic op see netif_txq_try_stop() */
3340 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3341 }
3342 
3343 /**
3344  *	netif_stop_queue - stop transmitted packets
3345  *	@dev: network device
3346  *
3347  *	Stop upper layers calling the device hard_start_xmit routine.
3348  *	Used for flow control when transmit resources are unavailable.
3349  */
3350 static inline void netif_stop_queue(struct net_device *dev)
3351 {
3352 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3353 }
3354 
3355 void netif_tx_stop_all_queues(struct net_device *dev);
3356 
3357 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3358 {
3359 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3360 }
3361 
3362 /**
3363  *	netif_queue_stopped - test if transmit queue is flowblocked
3364  *	@dev: network device
3365  *
3366  *	Test if transmit queue on device is currently unable to send.
3367  */
3368 static inline bool netif_queue_stopped(const struct net_device *dev)
3369 {
3370 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3371 }
3372 
3373 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3374 {
3375 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3376 }
3377 
3378 static inline bool
3379 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3380 {
3381 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3382 }
3383 
3384 static inline bool
3385 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3386 {
3387 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3388 }
3389 
3390 /**
3391  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3392  *	@dev_queue: pointer to transmit queue
3393  *	@min_limit: dql minimum limit
3394  *
3395  * Forces xmit_more() to return true until the minimum threshold
3396  * defined by @min_limit is reached (or until the tx queue is
3397  * empty). Warning: to be use with care, misuse will impact the
3398  * latency.
3399  */
3400 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3401 						  unsigned int min_limit)
3402 {
3403 #ifdef CONFIG_BQL
3404 	dev_queue->dql.min_limit = min_limit;
3405 #endif
3406 }
3407 
3408 /**
3409  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3410  *	@dev_queue: pointer to transmit queue
3411  *
3412  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3413  * to give appropriate hint to the CPU.
3414  */
3415 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3416 {
3417 #ifdef CONFIG_BQL
3418 	prefetchw(&dev_queue->dql.num_queued);
3419 #endif
3420 }
3421 
3422 /**
3423  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3424  *	@dev_queue: pointer to transmit queue
3425  *
3426  * BQL enabled drivers might use this helper in their TX completion path,
3427  * to give appropriate hint to the CPU.
3428  */
3429 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3430 {
3431 #ifdef CONFIG_BQL
3432 	prefetchw(&dev_queue->dql.limit);
3433 #endif
3434 }
3435 
3436 /**
3437  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3438  *	@dev_queue: network device queue
3439  *	@bytes: number of bytes queued to the device queue
3440  *
3441  *	Report the number of bytes queued for sending/completion to the network
3442  *	device hardware queue. @bytes should be a good approximation and should
3443  *	exactly match netdev_completed_queue() @bytes.
3444  *	This is typically called once per packet, from ndo_start_xmit().
3445  */
3446 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3447 					unsigned int bytes)
3448 {
3449 #ifdef CONFIG_BQL
3450 	dql_queued(&dev_queue->dql, bytes);
3451 
3452 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3453 		return;
3454 
3455 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3456 
3457 	/*
3458 	 * The XOFF flag must be set before checking the dql_avail below,
3459 	 * because in netdev_tx_completed_queue we update the dql_completed
3460 	 * before checking the XOFF flag.
3461 	 */
3462 	smp_mb();
3463 
3464 	/* check again in case another CPU has just made room avail */
3465 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3466 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3467 #endif
3468 }
3469 
3470 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3471  * that they should not test BQL status themselves.
3472  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3473  * skb of a batch.
3474  * Returns true if the doorbell must be used to kick the NIC.
3475  */
3476 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3477 					  unsigned int bytes,
3478 					  bool xmit_more)
3479 {
3480 	if (xmit_more) {
3481 #ifdef CONFIG_BQL
3482 		dql_queued(&dev_queue->dql, bytes);
3483 #endif
3484 		return netif_tx_queue_stopped(dev_queue);
3485 	}
3486 	netdev_tx_sent_queue(dev_queue, bytes);
3487 	return true;
3488 }
3489 
3490 /**
3491  *	netdev_sent_queue - report the number of bytes queued to hardware
3492  *	@dev: network device
3493  *	@bytes: number of bytes queued to the hardware device queue
3494  *
3495  *	Report the number of bytes queued for sending/completion to the network
3496  *	device hardware queue#0. @bytes should be a good approximation and should
3497  *	exactly match netdev_completed_queue() @bytes.
3498  *	This is typically called once per packet, from ndo_start_xmit().
3499  */
3500 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3501 {
3502 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3503 }
3504 
3505 static inline bool __netdev_sent_queue(struct net_device *dev,
3506 				       unsigned int bytes,
3507 				       bool xmit_more)
3508 {
3509 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3510 				      xmit_more);
3511 }
3512 
3513 /**
3514  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3515  *	@dev_queue: network device queue
3516  *	@pkts: number of packets (currently ignored)
3517  *	@bytes: number of bytes dequeued from the device queue
3518  *
3519  *	Must be called at most once per TX completion round (and not per
3520  *	individual packet), so that BQL can adjust its limits appropriately.
3521  */
3522 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3523 					     unsigned int pkts, unsigned int bytes)
3524 {
3525 #ifdef CONFIG_BQL
3526 	if (unlikely(!bytes))
3527 		return;
3528 
3529 	dql_completed(&dev_queue->dql, bytes);
3530 
3531 	/*
3532 	 * Without the memory barrier there is a small possiblity that
3533 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3534 	 * be stopped forever
3535 	 */
3536 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3537 
3538 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3539 		return;
3540 
3541 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3542 		netif_schedule_queue(dev_queue);
3543 #endif
3544 }
3545 
3546 /**
3547  * 	netdev_completed_queue - report bytes and packets completed by device
3548  * 	@dev: network device
3549  * 	@pkts: actual number of packets sent over the medium
3550  * 	@bytes: actual number of bytes sent over the medium
3551  *
3552  * 	Report the number of bytes and packets transmitted by the network device
3553  * 	hardware queue over the physical medium, @bytes must exactly match the
3554  * 	@bytes amount passed to netdev_sent_queue()
3555  */
3556 static inline void netdev_completed_queue(struct net_device *dev,
3557 					  unsigned int pkts, unsigned int bytes)
3558 {
3559 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3560 }
3561 
3562 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3563 {
3564 #ifdef CONFIG_BQL
3565 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3566 	dql_reset(&q->dql);
3567 #endif
3568 }
3569 
3570 /**
3571  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3572  * 	@dev_queue: network device
3573  *
3574  * 	Reset the bytes and packet count of a network device and clear the
3575  * 	software flow control OFF bit for this network device
3576  */
3577 static inline void netdev_reset_queue(struct net_device *dev_queue)
3578 {
3579 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3580 }
3581 
3582 /**
3583  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3584  * 	@dev: network device
3585  * 	@queue_index: given tx queue index
3586  *
3587  * 	Returns 0 if given tx queue index >= number of device tx queues,
3588  * 	otherwise returns the originally passed tx queue index.
3589  */
3590 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3591 {
3592 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3593 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3594 				     dev->name, queue_index,
3595 				     dev->real_num_tx_queues);
3596 		return 0;
3597 	}
3598 
3599 	return queue_index;
3600 }
3601 
3602 /**
3603  *	netif_running - test if up
3604  *	@dev: network device
3605  *
3606  *	Test if the device has been brought up.
3607  */
3608 static inline bool netif_running(const struct net_device *dev)
3609 {
3610 	return test_bit(__LINK_STATE_START, &dev->state);
3611 }
3612 
3613 /*
3614  * Routines to manage the subqueues on a device.  We only need start,
3615  * stop, and a check if it's stopped.  All other device management is
3616  * done at the overall netdevice level.
3617  * Also test the device if we're multiqueue.
3618  */
3619 
3620 /**
3621  *	netif_start_subqueue - allow sending packets on subqueue
3622  *	@dev: network device
3623  *	@queue_index: sub queue index
3624  *
3625  * Start individual transmit queue of a device with multiple transmit queues.
3626  */
3627 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3628 {
3629 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3630 
3631 	netif_tx_start_queue(txq);
3632 }
3633 
3634 /**
3635  *	netif_stop_subqueue - stop sending packets on subqueue
3636  *	@dev: network device
3637  *	@queue_index: sub queue index
3638  *
3639  * Stop individual transmit queue of a device with multiple transmit queues.
3640  */
3641 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3642 {
3643 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3644 	netif_tx_stop_queue(txq);
3645 }
3646 
3647 /**
3648  *	__netif_subqueue_stopped - test status of subqueue
3649  *	@dev: network device
3650  *	@queue_index: sub queue index
3651  *
3652  * Check individual transmit queue of a device with multiple transmit queues.
3653  */
3654 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3655 					    u16 queue_index)
3656 {
3657 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3658 
3659 	return netif_tx_queue_stopped(txq);
3660 }
3661 
3662 /**
3663  *	netif_subqueue_stopped - test status of subqueue
3664  *	@dev: network device
3665  *	@skb: sub queue buffer pointer
3666  *
3667  * Check individual transmit queue of a device with multiple transmit queues.
3668  */
3669 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3670 					  struct sk_buff *skb)
3671 {
3672 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3673 }
3674 
3675 /**
3676  *	netif_wake_subqueue - allow sending packets on subqueue
3677  *	@dev: network device
3678  *	@queue_index: sub queue index
3679  *
3680  * Resume individual transmit queue of a device with multiple transmit queues.
3681  */
3682 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3683 {
3684 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3685 
3686 	netif_tx_wake_queue(txq);
3687 }
3688 
3689 #ifdef CONFIG_XPS
3690 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3691 			u16 index);
3692 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3693 			  u16 index, enum xps_map_type type);
3694 
3695 /**
3696  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3697  *	@j: CPU/Rx queue index
3698  *	@mask: bitmask of all cpus/rx queues
3699  *	@nr_bits: number of bits in the bitmask
3700  *
3701  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3702  */
3703 static inline bool netif_attr_test_mask(unsigned long j,
3704 					const unsigned long *mask,
3705 					unsigned int nr_bits)
3706 {
3707 	cpu_max_bits_warn(j, nr_bits);
3708 	return test_bit(j, mask);
3709 }
3710 
3711 /**
3712  *	netif_attr_test_online - Test for online CPU/Rx queue
3713  *	@j: CPU/Rx queue index
3714  *	@online_mask: bitmask for CPUs/Rx queues that are online
3715  *	@nr_bits: number of bits in the bitmask
3716  *
3717  * Returns true if a CPU/Rx queue is online.
3718  */
3719 static inline bool netif_attr_test_online(unsigned long j,
3720 					  const unsigned long *online_mask,
3721 					  unsigned int nr_bits)
3722 {
3723 	cpu_max_bits_warn(j, nr_bits);
3724 
3725 	if (online_mask)
3726 		return test_bit(j, online_mask);
3727 
3728 	return (j < nr_bits);
3729 }
3730 
3731 /**
3732  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3733  *	@n: CPU/Rx queue index
3734  *	@srcp: the cpumask/Rx queue mask pointer
3735  *	@nr_bits: number of bits in the bitmask
3736  *
3737  * Returns >= nr_bits if no further CPUs/Rx queues set.
3738  */
3739 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3740 					       unsigned int nr_bits)
3741 {
3742 	/* -1 is a legal arg here. */
3743 	if (n != -1)
3744 		cpu_max_bits_warn(n, nr_bits);
3745 
3746 	if (srcp)
3747 		return find_next_bit(srcp, nr_bits, n + 1);
3748 
3749 	return n + 1;
3750 }
3751 
3752 /**
3753  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3754  *	@n: CPU/Rx queue index
3755  *	@src1p: the first CPUs/Rx queues mask pointer
3756  *	@src2p: the second CPUs/Rx queues mask pointer
3757  *	@nr_bits: number of bits in the bitmask
3758  *
3759  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3760  */
3761 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3762 					  const unsigned long *src2p,
3763 					  unsigned int nr_bits)
3764 {
3765 	/* -1 is a legal arg here. */
3766 	if (n != -1)
3767 		cpu_max_bits_warn(n, nr_bits);
3768 
3769 	if (src1p && src2p)
3770 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3771 	else if (src1p)
3772 		return find_next_bit(src1p, nr_bits, n + 1);
3773 	else if (src2p)
3774 		return find_next_bit(src2p, nr_bits, n + 1);
3775 
3776 	return n + 1;
3777 }
3778 #else
3779 static inline int netif_set_xps_queue(struct net_device *dev,
3780 				      const struct cpumask *mask,
3781 				      u16 index)
3782 {
3783 	return 0;
3784 }
3785 
3786 static inline int __netif_set_xps_queue(struct net_device *dev,
3787 					const unsigned long *mask,
3788 					u16 index, enum xps_map_type type)
3789 {
3790 	return 0;
3791 }
3792 #endif
3793 
3794 /**
3795  *	netif_is_multiqueue - test if device has multiple transmit queues
3796  *	@dev: network device
3797  *
3798  * Check if device has multiple transmit queues
3799  */
3800 static inline bool netif_is_multiqueue(const struct net_device *dev)
3801 {
3802 	return dev->num_tx_queues > 1;
3803 }
3804 
3805 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3806 
3807 #ifdef CONFIG_SYSFS
3808 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3809 #else
3810 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3811 						unsigned int rxqs)
3812 {
3813 	dev->real_num_rx_queues = rxqs;
3814 	return 0;
3815 }
3816 #endif
3817 int netif_set_real_num_queues(struct net_device *dev,
3818 			      unsigned int txq, unsigned int rxq);
3819 
3820 static inline struct netdev_rx_queue *
3821 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3822 {
3823 	return dev->_rx + rxq;
3824 }
3825 
3826 #ifdef CONFIG_SYSFS
3827 static inline unsigned int get_netdev_rx_queue_index(
3828 		struct netdev_rx_queue *queue)
3829 {
3830 	struct net_device *dev = queue->dev;
3831 	int index = queue - dev->_rx;
3832 
3833 	BUG_ON(index >= dev->num_rx_queues);
3834 	return index;
3835 }
3836 #endif
3837 
3838 int netif_get_num_default_rss_queues(void);
3839 
3840 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3841 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3842 
3843 /*
3844  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3845  * interrupt context or with hardware interrupts being disabled.
3846  * (in_hardirq() || irqs_disabled())
3847  *
3848  * We provide four helpers that can be used in following contexts :
3849  *
3850  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3851  *  replacing kfree_skb(skb)
3852  *
3853  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3854  *  Typically used in place of consume_skb(skb) in TX completion path
3855  *
3856  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3857  *  replacing kfree_skb(skb)
3858  *
3859  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3860  *  and consumed a packet. Used in place of consume_skb(skb)
3861  */
3862 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3863 {
3864 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3865 }
3866 
3867 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3868 {
3869 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3870 }
3871 
3872 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3873 {
3874 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3875 }
3876 
3877 static inline void dev_consume_skb_any(struct sk_buff *skb)
3878 {
3879 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3880 }
3881 
3882 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3883 			     struct bpf_prog *xdp_prog);
3884 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3885 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3886 int netif_rx(struct sk_buff *skb);
3887 int __netif_rx(struct sk_buff *skb);
3888 
3889 int netif_receive_skb(struct sk_buff *skb);
3890 int netif_receive_skb_core(struct sk_buff *skb);
3891 void netif_receive_skb_list_internal(struct list_head *head);
3892 void netif_receive_skb_list(struct list_head *head);
3893 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3894 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3895 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3896 void napi_get_frags_check(struct napi_struct *napi);
3897 gro_result_t napi_gro_frags(struct napi_struct *napi);
3898 struct packet_offload *gro_find_receive_by_type(__be16 type);
3899 struct packet_offload *gro_find_complete_by_type(__be16 type);
3900 
3901 static inline void napi_free_frags(struct napi_struct *napi)
3902 {
3903 	kfree_skb(napi->skb);
3904 	napi->skb = NULL;
3905 }
3906 
3907 bool netdev_is_rx_handler_busy(struct net_device *dev);
3908 int netdev_rx_handler_register(struct net_device *dev,
3909 			       rx_handler_func_t *rx_handler,
3910 			       void *rx_handler_data);
3911 void netdev_rx_handler_unregister(struct net_device *dev);
3912 
3913 bool dev_valid_name(const char *name);
3914 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3915 {
3916 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3917 }
3918 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3919 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3920 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3921 		void __user *data, bool *need_copyout);
3922 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3923 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3924 unsigned int dev_get_flags(const struct net_device *);
3925 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3926 		       struct netlink_ext_ack *extack);
3927 int dev_change_flags(struct net_device *dev, unsigned int flags,
3928 		     struct netlink_ext_ack *extack);
3929 int dev_set_alias(struct net_device *, const char *, size_t);
3930 int dev_get_alias(const struct net_device *, char *, size_t);
3931 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3932 			       const char *pat, int new_ifindex);
3933 static inline
3934 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3935 			     const char *pat)
3936 {
3937 	return __dev_change_net_namespace(dev, net, pat, 0);
3938 }
3939 int __dev_set_mtu(struct net_device *, int);
3940 int dev_set_mtu(struct net_device *, int);
3941 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3942 			      struct netlink_ext_ack *extack);
3943 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3944 			struct netlink_ext_ack *extack);
3945 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3946 			     struct netlink_ext_ack *extack);
3947 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3948 int dev_get_port_parent_id(struct net_device *dev,
3949 			   struct netdev_phys_item_id *ppid, bool recurse);
3950 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3951 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3952 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3953 				    struct netdev_queue *txq, int *ret);
3954 
3955 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3956 u8 dev_xdp_prog_count(struct net_device *dev);
3957 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3958 
3959 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3960 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3961 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3962 bool is_skb_forwardable(const struct net_device *dev,
3963 			const struct sk_buff *skb);
3964 
3965 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3966 						 const struct sk_buff *skb,
3967 						 const bool check_mtu)
3968 {
3969 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3970 	unsigned int len;
3971 
3972 	if (!(dev->flags & IFF_UP))
3973 		return false;
3974 
3975 	if (!check_mtu)
3976 		return true;
3977 
3978 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3979 	if (skb->len <= len)
3980 		return true;
3981 
3982 	/* if TSO is enabled, we don't care about the length as the packet
3983 	 * could be forwarded without being segmented before
3984 	 */
3985 	if (skb_is_gso(skb))
3986 		return true;
3987 
3988 	return false;
3989 }
3990 
3991 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3992 
3993 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3994 {
3995 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3996 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3997 
3998 	if (likely(p))
3999 		return p;
4000 
4001 	return netdev_core_stats_alloc(dev);
4002 }
4003 
4004 #define DEV_CORE_STATS_INC(FIELD)						\
4005 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4006 {										\
4007 	struct net_device_core_stats __percpu *p;				\
4008 										\
4009 	p = dev_core_stats(dev);						\
4010 	if (p)									\
4011 		this_cpu_inc(p->FIELD);						\
4012 }
4013 DEV_CORE_STATS_INC(rx_dropped)
4014 DEV_CORE_STATS_INC(tx_dropped)
4015 DEV_CORE_STATS_INC(rx_nohandler)
4016 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4017 
4018 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4019 					       struct sk_buff *skb,
4020 					       const bool check_mtu)
4021 {
4022 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4023 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4024 		dev_core_stats_rx_dropped_inc(dev);
4025 		kfree_skb(skb);
4026 		return NET_RX_DROP;
4027 	}
4028 
4029 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4030 	skb->priority = 0;
4031 	return 0;
4032 }
4033 
4034 bool dev_nit_active(struct net_device *dev);
4035 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4036 
4037 static inline void __dev_put(struct net_device *dev)
4038 {
4039 	if (dev) {
4040 #ifdef CONFIG_PCPU_DEV_REFCNT
4041 		this_cpu_dec(*dev->pcpu_refcnt);
4042 #else
4043 		refcount_dec(&dev->dev_refcnt);
4044 #endif
4045 	}
4046 }
4047 
4048 static inline void __dev_hold(struct net_device *dev)
4049 {
4050 	if (dev) {
4051 #ifdef CONFIG_PCPU_DEV_REFCNT
4052 		this_cpu_inc(*dev->pcpu_refcnt);
4053 #else
4054 		refcount_inc(&dev->dev_refcnt);
4055 #endif
4056 	}
4057 }
4058 
4059 static inline void __netdev_tracker_alloc(struct net_device *dev,
4060 					  netdevice_tracker *tracker,
4061 					  gfp_t gfp)
4062 {
4063 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4064 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4065 #endif
4066 }
4067 
4068 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4069  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4070  */
4071 static inline void netdev_tracker_alloc(struct net_device *dev,
4072 					netdevice_tracker *tracker, gfp_t gfp)
4073 {
4074 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4075 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4076 	__netdev_tracker_alloc(dev, tracker, gfp);
4077 #endif
4078 }
4079 
4080 static inline void netdev_tracker_free(struct net_device *dev,
4081 				       netdevice_tracker *tracker)
4082 {
4083 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4084 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4085 #endif
4086 }
4087 
4088 static inline void netdev_hold(struct net_device *dev,
4089 			       netdevice_tracker *tracker, gfp_t gfp)
4090 {
4091 	if (dev) {
4092 		__dev_hold(dev);
4093 		__netdev_tracker_alloc(dev, tracker, gfp);
4094 	}
4095 }
4096 
4097 static inline void netdev_put(struct net_device *dev,
4098 			      netdevice_tracker *tracker)
4099 {
4100 	if (dev) {
4101 		netdev_tracker_free(dev, tracker);
4102 		__dev_put(dev);
4103 	}
4104 }
4105 
4106 /**
4107  *	dev_hold - get reference to device
4108  *	@dev: network device
4109  *
4110  * Hold reference to device to keep it from being freed.
4111  * Try using netdev_hold() instead.
4112  */
4113 static inline void dev_hold(struct net_device *dev)
4114 {
4115 	netdev_hold(dev, NULL, GFP_ATOMIC);
4116 }
4117 
4118 /**
4119  *	dev_put - release reference to device
4120  *	@dev: network device
4121  *
4122  * Release reference to device to allow it to be freed.
4123  * Try using netdev_put() instead.
4124  */
4125 static inline void dev_put(struct net_device *dev)
4126 {
4127 	netdev_put(dev, NULL);
4128 }
4129 
4130 static inline void netdev_ref_replace(struct net_device *odev,
4131 				      struct net_device *ndev,
4132 				      netdevice_tracker *tracker,
4133 				      gfp_t gfp)
4134 {
4135 	if (odev)
4136 		netdev_tracker_free(odev, tracker);
4137 
4138 	__dev_hold(ndev);
4139 	__dev_put(odev);
4140 
4141 	if (ndev)
4142 		__netdev_tracker_alloc(ndev, tracker, gfp);
4143 }
4144 
4145 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4146  * and _off may be called from IRQ context, but it is caller
4147  * who is responsible for serialization of these calls.
4148  *
4149  * The name carrier is inappropriate, these functions should really be
4150  * called netif_lowerlayer_*() because they represent the state of any
4151  * kind of lower layer not just hardware media.
4152  */
4153 void linkwatch_fire_event(struct net_device *dev);
4154 
4155 /**
4156  *	netif_carrier_ok - test if carrier present
4157  *	@dev: network device
4158  *
4159  * Check if carrier is present on device
4160  */
4161 static inline bool netif_carrier_ok(const struct net_device *dev)
4162 {
4163 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4164 }
4165 
4166 unsigned long dev_trans_start(struct net_device *dev);
4167 
4168 void __netdev_watchdog_up(struct net_device *dev);
4169 
4170 void netif_carrier_on(struct net_device *dev);
4171 void netif_carrier_off(struct net_device *dev);
4172 void netif_carrier_event(struct net_device *dev);
4173 
4174 /**
4175  *	netif_dormant_on - mark device as dormant.
4176  *	@dev: network device
4177  *
4178  * Mark device as dormant (as per RFC2863).
4179  *
4180  * The dormant state indicates that the relevant interface is not
4181  * actually in a condition to pass packets (i.e., it is not 'up') but is
4182  * in a "pending" state, waiting for some external event.  For "on-
4183  * demand" interfaces, this new state identifies the situation where the
4184  * interface is waiting for events to place it in the up state.
4185  */
4186 static inline void netif_dormant_on(struct net_device *dev)
4187 {
4188 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4189 		linkwatch_fire_event(dev);
4190 }
4191 
4192 /**
4193  *	netif_dormant_off - set device as not dormant.
4194  *	@dev: network device
4195  *
4196  * Device is not in dormant state.
4197  */
4198 static inline void netif_dormant_off(struct net_device *dev)
4199 {
4200 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4201 		linkwatch_fire_event(dev);
4202 }
4203 
4204 /**
4205  *	netif_dormant - test if device is dormant
4206  *	@dev: network device
4207  *
4208  * Check if device is dormant.
4209  */
4210 static inline bool netif_dormant(const struct net_device *dev)
4211 {
4212 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4213 }
4214 
4215 
4216 /**
4217  *	netif_testing_on - mark device as under test.
4218  *	@dev: network device
4219  *
4220  * Mark device as under test (as per RFC2863).
4221  *
4222  * The testing state indicates that some test(s) must be performed on
4223  * the interface. After completion, of the test, the interface state
4224  * will change to up, dormant, or down, as appropriate.
4225  */
4226 static inline void netif_testing_on(struct net_device *dev)
4227 {
4228 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4229 		linkwatch_fire_event(dev);
4230 }
4231 
4232 /**
4233  *	netif_testing_off - set device as not under test.
4234  *	@dev: network device
4235  *
4236  * Device is not in testing state.
4237  */
4238 static inline void netif_testing_off(struct net_device *dev)
4239 {
4240 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4241 		linkwatch_fire_event(dev);
4242 }
4243 
4244 /**
4245  *	netif_testing - test if device is under test
4246  *	@dev: network device
4247  *
4248  * Check if device is under test
4249  */
4250 static inline bool netif_testing(const struct net_device *dev)
4251 {
4252 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4253 }
4254 
4255 
4256 /**
4257  *	netif_oper_up - test if device is operational
4258  *	@dev: network device
4259  *
4260  * Check if carrier is operational
4261  */
4262 static inline bool netif_oper_up(const struct net_device *dev)
4263 {
4264 	return (dev->operstate == IF_OPER_UP ||
4265 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4266 }
4267 
4268 /**
4269  *	netif_device_present - is device available or removed
4270  *	@dev: network device
4271  *
4272  * Check if device has not been removed from system.
4273  */
4274 static inline bool netif_device_present(const struct net_device *dev)
4275 {
4276 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4277 }
4278 
4279 void netif_device_detach(struct net_device *dev);
4280 
4281 void netif_device_attach(struct net_device *dev);
4282 
4283 /*
4284  * Network interface message level settings
4285  */
4286 
4287 enum {
4288 	NETIF_MSG_DRV_BIT,
4289 	NETIF_MSG_PROBE_BIT,
4290 	NETIF_MSG_LINK_BIT,
4291 	NETIF_MSG_TIMER_BIT,
4292 	NETIF_MSG_IFDOWN_BIT,
4293 	NETIF_MSG_IFUP_BIT,
4294 	NETIF_MSG_RX_ERR_BIT,
4295 	NETIF_MSG_TX_ERR_BIT,
4296 	NETIF_MSG_TX_QUEUED_BIT,
4297 	NETIF_MSG_INTR_BIT,
4298 	NETIF_MSG_TX_DONE_BIT,
4299 	NETIF_MSG_RX_STATUS_BIT,
4300 	NETIF_MSG_PKTDATA_BIT,
4301 	NETIF_MSG_HW_BIT,
4302 	NETIF_MSG_WOL_BIT,
4303 
4304 	/* When you add a new bit above, update netif_msg_class_names array
4305 	 * in net/ethtool/common.c
4306 	 */
4307 	NETIF_MSG_CLASS_COUNT,
4308 };
4309 /* Both ethtool_ops interface and internal driver implementation use u32 */
4310 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4311 
4312 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4313 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4314 
4315 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4316 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4317 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4318 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4319 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4320 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4321 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4322 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4323 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4324 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4325 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4326 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4327 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4328 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4329 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4330 
4331 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4332 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4333 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4334 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4335 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4336 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4337 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4338 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4339 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4340 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4341 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4342 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4343 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4344 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4345 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4346 
4347 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4348 {
4349 	/* use default */
4350 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4351 		return default_msg_enable_bits;
4352 	if (debug_value == 0)	/* no output */
4353 		return 0;
4354 	/* set low N bits */
4355 	return (1U << debug_value) - 1;
4356 }
4357 
4358 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4359 {
4360 	spin_lock(&txq->_xmit_lock);
4361 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4362 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4363 }
4364 
4365 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4366 {
4367 	__acquire(&txq->_xmit_lock);
4368 	return true;
4369 }
4370 
4371 static inline void __netif_tx_release(struct netdev_queue *txq)
4372 {
4373 	__release(&txq->_xmit_lock);
4374 }
4375 
4376 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4377 {
4378 	spin_lock_bh(&txq->_xmit_lock);
4379 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4380 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4381 }
4382 
4383 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4384 {
4385 	bool ok = spin_trylock(&txq->_xmit_lock);
4386 
4387 	if (likely(ok)) {
4388 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4389 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4390 	}
4391 	return ok;
4392 }
4393 
4394 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4395 {
4396 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4397 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4398 	spin_unlock(&txq->_xmit_lock);
4399 }
4400 
4401 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4402 {
4403 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4404 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4405 	spin_unlock_bh(&txq->_xmit_lock);
4406 }
4407 
4408 /*
4409  * txq->trans_start can be read locklessly from dev_watchdog()
4410  */
4411 static inline void txq_trans_update(struct netdev_queue *txq)
4412 {
4413 	if (txq->xmit_lock_owner != -1)
4414 		WRITE_ONCE(txq->trans_start, jiffies);
4415 }
4416 
4417 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4418 {
4419 	unsigned long now = jiffies;
4420 
4421 	if (READ_ONCE(txq->trans_start) != now)
4422 		WRITE_ONCE(txq->trans_start, now);
4423 }
4424 
4425 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4426 static inline void netif_trans_update(struct net_device *dev)
4427 {
4428 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4429 
4430 	txq_trans_cond_update(txq);
4431 }
4432 
4433 /**
4434  *	netif_tx_lock - grab network device transmit lock
4435  *	@dev: network device
4436  *
4437  * Get network device transmit lock
4438  */
4439 void netif_tx_lock(struct net_device *dev);
4440 
4441 static inline void netif_tx_lock_bh(struct net_device *dev)
4442 {
4443 	local_bh_disable();
4444 	netif_tx_lock(dev);
4445 }
4446 
4447 void netif_tx_unlock(struct net_device *dev);
4448 
4449 static inline void netif_tx_unlock_bh(struct net_device *dev)
4450 {
4451 	netif_tx_unlock(dev);
4452 	local_bh_enable();
4453 }
4454 
4455 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4456 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4457 		__netif_tx_lock(txq, cpu);		\
4458 	} else {					\
4459 		__netif_tx_acquire(txq);		\
4460 	}						\
4461 }
4462 
4463 #define HARD_TX_TRYLOCK(dev, txq)			\
4464 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4465 		__netif_tx_trylock(txq) :		\
4466 		__netif_tx_acquire(txq))
4467 
4468 #define HARD_TX_UNLOCK(dev, txq) {			\
4469 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4470 		__netif_tx_unlock(txq);			\
4471 	} else {					\
4472 		__netif_tx_release(txq);		\
4473 	}						\
4474 }
4475 
4476 static inline void netif_tx_disable(struct net_device *dev)
4477 {
4478 	unsigned int i;
4479 	int cpu;
4480 
4481 	local_bh_disable();
4482 	cpu = smp_processor_id();
4483 	spin_lock(&dev->tx_global_lock);
4484 	for (i = 0; i < dev->num_tx_queues; i++) {
4485 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4486 
4487 		__netif_tx_lock(txq, cpu);
4488 		netif_tx_stop_queue(txq);
4489 		__netif_tx_unlock(txq);
4490 	}
4491 	spin_unlock(&dev->tx_global_lock);
4492 	local_bh_enable();
4493 }
4494 
4495 static inline void netif_addr_lock(struct net_device *dev)
4496 {
4497 	unsigned char nest_level = 0;
4498 
4499 #ifdef CONFIG_LOCKDEP
4500 	nest_level = dev->nested_level;
4501 #endif
4502 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4503 }
4504 
4505 static inline void netif_addr_lock_bh(struct net_device *dev)
4506 {
4507 	unsigned char nest_level = 0;
4508 
4509 #ifdef CONFIG_LOCKDEP
4510 	nest_level = dev->nested_level;
4511 #endif
4512 	local_bh_disable();
4513 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4514 }
4515 
4516 static inline void netif_addr_unlock(struct net_device *dev)
4517 {
4518 	spin_unlock(&dev->addr_list_lock);
4519 }
4520 
4521 static inline void netif_addr_unlock_bh(struct net_device *dev)
4522 {
4523 	spin_unlock_bh(&dev->addr_list_lock);
4524 }
4525 
4526 /*
4527  * dev_addrs walker. Should be used only for read access. Call with
4528  * rcu_read_lock held.
4529  */
4530 #define for_each_dev_addr(dev, ha) \
4531 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4532 
4533 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4534 
4535 void ether_setup(struct net_device *dev);
4536 
4537 /* Support for loadable net-drivers */
4538 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4539 				    unsigned char name_assign_type,
4540 				    void (*setup)(struct net_device *),
4541 				    unsigned int txqs, unsigned int rxqs);
4542 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4543 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4544 
4545 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4546 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4547 			 count)
4548 
4549 int register_netdev(struct net_device *dev);
4550 void unregister_netdev(struct net_device *dev);
4551 
4552 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4553 
4554 /* General hardware address lists handling functions */
4555 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4556 		   struct netdev_hw_addr_list *from_list, int addr_len);
4557 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4558 		      struct netdev_hw_addr_list *from_list, int addr_len);
4559 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4560 		       struct net_device *dev,
4561 		       int (*sync)(struct net_device *, const unsigned char *),
4562 		       int (*unsync)(struct net_device *,
4563 				     const unsigned char *));
4564 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4565 			   struct net_device *dev,
4566 			   int (*sync)(struct net_device *,
4567 				       const unsigned char *, int),
4568 			   int (*unsync)(struct net_device *,
4569 					 const unsigned char *, int));
4570 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4571 			      struct net_device *dev,
4572 			      int (*unsync)(struct net_device *,
4573 					    const unsigned char *, int));
4574 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4575 			  struct net_device *dev,
4576 			  int (*unsync)(struct net_device *,
4577 					const unsigned char *));
4578 void __hw_addr_init(struct netdev_hw_addr_list *list);
4579 
4580 /* Functions used for device addresses handling */
4581 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4582 		  const void *addr, size_t len);
4583 
4584 static inline void
4585 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4586 {
4587 	dev_addr_mod(dev, 0, addr, len);
4588 }
4589 
4590 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4591 {
4592 	__dev_addr_set(dev, addr, dev->addr_len);
4593 }
4594 
4595 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4596 		 unsigned char addr_type);
4597 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4598 		 unsigned char addr_type);
4599 
4600 /* Functions used for unicast addresses handling */
4601 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4602 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4603 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4604 int dev_uc_sync(struct net_device *to, struct net_device *from);
4605 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4606 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4607 void dev_uc_flush(struct net_device *dev);
4608 void dev_uc_init(struct net_device *dev);
4609 
4610 /**
4611  *  __dev_uc_sync - Synchonize device's unicast list
4612  *  @dev:  device to sync
4613  *  @sync: function to call if address should be added
4614  *  @unsync: function to call if address should be removed
4615  *
4616  *  Add newly added addresses to the interface, and release
4617  *  addresses that have been deleted.
4618  */
4619 static inline int __dev_uc_sync(struct net_device *dev,
4620 				int (*sync)(struct net_device *,
4621 					    const unsigned char *),
4622 				int (*unsync)(struct net_device *,
4623 					      const unsigned char *))
4624 {
4625 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4626 }
4627 
4628 /**
4629  *  __dev_uc_unsync - Remove synchronized addresses from device
4630  *  @dev:  device to sync
4631  *  @unsync: function to call if address should be removed
4632  *
4633  *  Remove all addresses that were added to the device by dev_uc_sync().
4634  */
4635 static inline void __dev_uc_unsync(struct net_device *dev,
4636 				   int (*unsync)(struct net_device *,
4637 						 const unsigned char *))
4638 {
4639 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4640 }
4641 
4642 /* Functions used for multicast addresses handling */
4643 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4644 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4645 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4646 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4647 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4648 int dev_mc_sync(struct net_device *to, struct net_device *from);
4649 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4650 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4651 void dev_mc_flush(struct net_device *dev);
4652 void dev_mc_init(struct net_device *dev);
4653 
4654 /**
4655  *  __dev_mc_sync - Synchonize device's multicast list
4656  *  @dev:  device to sync
4657  *  @sync: function to call if address should be added
4658  *  @unsync: function to call if address should be removed
4659  *
4660  *  Add newly added addresses to the interface, and release
4661  *  addresses that have been deleted.
4662  */
4663 static inline int __dev_mc_sync(struct net_device *dev,
4664 				int (*sync)(struct net_device *,
4665 					    const unsigned char *),
4666 				int (*unsync)(struct net_device *,
4667 					      const unsigned char *))
4668 {
4669 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4670 }
4671 
4672 /**
4673  *  __dev_mc_unsync - Remove synchronized addresses from device
4674  *  @dev:  device to sync
4675  *  @unsync: function to call if address should be removed
4676  *
4677  *  Remove all addresses that were added to the device by dev_mc_sync().
4678  */
4679 static inline void __dev_mc_unsync(struct net_device *dev,
4680 				   int (*unsync)(struct net_device *,
4681 						 const unsigned char *))
4682 {
4683 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4684 }
4685 
4686 /* Functions used for secondary unicast and multicast support */
4687 void dev_set_rx_mode(struct net_device *dev);
4688 int dev_set_promiscuity(struct net_device *dev, int inc);
4689 int dev_set_allmulti(struct net_device *dev, int inc);
4690 void netdev_state_change(struct net_device *dev);
4691 void __netdev_notify_peers(struct net_device *dev);
4692 void netdev_notify_peers(struct net_device *dev);
4693 void netdev_features_change(struct net_device *dev);
4694 /* Load a device via the kmod */
4695 void dev_load(struct net *net, const char *name);
4696 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4697 					struct rtnl_link_stats64 *storage);
4698 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4699 			     const struct net_device_stats *netdev_stats);
4700 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4701 			   const struct pcpu_sw_netstats __percpu *netstats);
4702 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4703 
4704 extern int		netdev_max_backlog;
4705 extern int		dev_rx_weight;
4706 extern int		dev_tx_weight;
4707 extern int		gro_normal_batch;
4708 
4709 enum {
4710 	NESTED_SYNC_IMM_BIT,
4711 	NESTED_SYNC_TODO_BIT,
4712 };
4713 
4714 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4715 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4716 
4717 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4718 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4719 
4720 struct netdev_nested_priv {
4721 	unsigned char flags;
4722 	void *data;
4723 };
4724 
4725 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4726 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4727 						     struct list_head **iter);
4728 
4729 /* iterate through upper list, must be called under RCU read lock */
4730 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4731 	for (iter = &(dev)->adj_list.upper, \
4732 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4733 	     updev; \
4734 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4735 
4736 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4737 				  int (*fn)(struct net_device *upper_dev,
4738 					    struct netdev_nested_priv *priv),
4739 				  struct netdev_nested_priv *priv);
4740 
4741 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4742 				  struct net_device *upper_dev);
4743 
4744 bool netdev_has_any_upper_dev(struct net_device *dev);
4745 
4746 void *netdev_lower_get_next_private(struct net_device *dev,
4747 				    struct list_head **iter);
4748 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4749 					struct list_head **iter);
4750 
4751 #define netdev_for_each_lower_private(dev, priv, iter) \
4752 	for (iter = (dev)->adj_list.lower.next, \
4753 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4754 	     priv; \
4755 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4756 
4757 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4758 	for (iter = &(dev)->adj_list.lower, \
4759 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4760 	     priv; \
4761 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4762 
4763 void *netdev_lower_get_next(struct net_device *dev,
4764 				struct list_head **iter);
4765 
4766 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4767 	for (iter = (dev)->adj_list.lower.next, \
4768 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4769 	     ldev; \
4770 	     ldev = netdev_lower_get_next(dev, &(iter)))
4771 
4772 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4773 					     struct list_head **iter);
4774 int netdev_walk_all_lower_dev(struct net_device *dev,
4775 			      int (*fn)(struct net_device *lower_dev,
4776 					struct netdev_nested_priv *priv),
4777 			      struct netdev_nested_priv *priv);
4778 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4779 				  int (*fn)(struct net_device *lower_dev,
4780 					    struct netdev_nested_priv *priv),
4781 				  struct netdev_nested_priv *priv);
4782 
4783 void *netdev_adjacent_get_private(struct list_head *adj_list);
4784 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4785 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4786 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4787 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4788 			  struct netlink_ext_ack *extack);
4789 int netdev_master_upper_dev_link(struct net_device *dev,
4790 				 struct net_device *upper_dev,
4791 				 void *upper_priv, void *upper_info,
4792 				 struct netlink_ext_ack *extack);
4793 void netdev_upper_dev_unlink(struct net_device *dev,
4794 			     struct net_device *upper_dev);
4795 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4796 				   struct net_device *new_dev,
4797 				   struct net_device *dev,
4798 				   struct netlink_ext_ack *extack);
4799 void netdev_adjacent_change_commit(struct net_device *old_dev,
4800 				   struct net_device *new_dev,
4801 				   struct net_device *dev);
4802 void netdev_adjacent_change_abort(struct net_device *old_dev,
4803 				  struct net_device *new_dev,
4804 				  struct net_device *dev);
4805 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4806 void *netdev_lower_dev_get_private(struct net_device *dev,
4807 				   struct net_device *lower_dev);
4808 void netdev_lower_state_changed(struct net_device *lower_dev,
4809 				void *lower_state_info);
4810 
4811 /* RSS keys are 40 or 52 bytes long */
4812 #define NETDEV_RSS_KEY_LEN 52
4813 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4814 void netdev_rss_key_fill(void *buffer, size_t len);
4815 
4816 int skb_checksum_help(struct sk_buff *skb);
4817 int skb_crc32c_csum_help(struct sk_buff *skb);
4818 int skb_csum_hwoffload_help(struct sk_buff *skb,
4819 			    const netdev_features_t features);
4820 
4821 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4822 				  netdev_features_t features, bool tx_path);
4823 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4824 				    netdev_features_t features, __be16 type);
4825 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4826 				    netdev_features_t features);
4827 
4828 struct netdev_bonding_info {
4829 	ifslave	slave;
4830 	ifbond	master;
4831 };
4832 
4833 struct netdev_notifier_bonding_info {
4834 	struct netdev_notifier_info info; /* must be first */
4835 	struct netdev_bonding_info  bonding_info;
4836 };
4837 
4838 void netdev_bonding_info_change(struct net_device *dev,
4839 				struct netdev_bonding_info *bonding_info);
4840 
4841 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4842 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4843 #else
4844 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4845 				  const void *data)
4846 {
4847 }
4848 #endif
4849 
4850 static inline
4851 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4852 {
4853 	return __skb_gso_segment(skb, features, true);
4854 }
4855 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4856 
4857 static inline bool can_checksum_protocol(netdev_features_t features,
4858 					 __be16 protocol)
4859 {
4860 	if (protocol == htons(ETH_P_FCOE))
4861 		return !!(features & NETIF_F_FCOE_CRC);
4862 
4863 	/* Assume this is an IP checksum (not SCTP CRC) */
4864 
4865 	if (features & NETIF_F_HW_CSUM) {
4866 		/* Can checksum everything */
4867 		return true;
4868 	}
4869 
4870 	switch (protocol) {
4871 	case htons(ETH_P_IP):
4872 		return !!(features & NETIF_F_IP_CSUM);
4873 	case htons(ETH_P_IPV6):
4874 		return !!(features & NETIF_F_IPV6_CSUM);
4875 	default:
4876 		return false;
4877 	}
4878 }
4879 
4880 #ifdef CONFIG_BUG
4881 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4882 #else
4883 static inline void netdev_rx_csum_fault(struct net_device *dev,
4884 					struct sk_buff *skb)
4885 {
4886 }
4887 #endif
4888 /* rx skb timestamps */
4889 void net_enable_timestamp(void);
4890 void net_disable_timestamp(void);
4891 
4892 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4893 					const struct skb_shared_hwtstamps *hwtstamps,
4894 					bool cycles)
4895 {
4896 	const struct net_device_ops *ops = dev->netdev_ops;
4897 
4898 	if (ops->ndo_get_tstamp)
4899 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4900 
4901 	return hwtstamps->hwtstamp;
4902 }
4903 
4904 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4905 					      struct sk_buff *skb, struct net_device *dev,
4906 					      bool more)
4907 {
4908 	__this_cpu_write(softnet_data.xmit.more, more);
4909 	return ops->ndo_start_xmit(skb, dev);
4910 }
4911 
4912 static inline bool netdev_xmit_more(void)
4913 {
4914 	return __this_cpu_read(softnet_data.xmit.more);
4915 }
4916 
4917 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4918 					    struct netdev_queue *txq, bool more)
4919 {
4920 	const struct net_device_ops *ops = dev->netdev_ops;
4921 	netdev_tx_t rc;
4922 
4923 	rc = __netdev_start_xmit(ops, skb, dev, more);
4924 	if (rc == NETDEV_TX_OK)
4925 		txq_trans_update(txq);
4926 
4927 	return rc;
4928 }
4929 
4930 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4931 				const void *ns);
4932 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4933 				 const void *ns);
4934 
4935 extern const struct kobj_ns_type_operations net_ns_type_operations;
4936 
4937 const char *netdev_drivername(const struct net_device *dev);
4938 
4939 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4940 							  netdev_features_t f2)
4941 {
4942 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4943 		if (f1 & NETIF_F_HW_CSUM)
4944 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4945 		else
4946 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4947 	}
4948 
4949 	return f1 & f2;
4950 }
4951 
4952 static inline netdev_features_t netdev_get_wanted_features(
4953 	struct net_device *dev)
4954 {
4955 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4956 }
4957 netdev_features_t netdev_increment_features(netdev_features_t all,
4958 	netdev_features_t one, netdev_features_t mask);
4959 
4960 /* Allow TSO being used on stacked device :
4961  * Performing the GSO segmentation before last device
4962  * is a performance improvement.
4963  */
4964 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4965 							netdev_features_t mask)
4966 {
4967 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4968 }
4969 
4970 int __netdev_update_features(struct net_device *dev);
4971 void netdev_update_features(struct net_device *dev);
4972 void netdev_change_features(struct net_device *dev);
4973 
4974 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4975 					struct net_device *dev);
4976 
4977 netdev_features_t passthru_features_check(struct sk_buff *skb,
4978 					  struct net_device *dev,
4979 					  netdev_features_t features);
4980 netdev_features_t netif_skb_features(struct sk_buff *skb);
4981 
4982 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4983 {
4984 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4985 
4986 	/* check flags correspondence */
4987 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4988 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4989 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4990 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4991 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4992 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4993 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4994 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4995 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4996 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5002 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5003 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5004 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5005 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5006 
5007 	return (features & feature) == feature;
5008 }
5009 
5010 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5011 {
5012 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5013 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5014 }
5015 
5016 static inline bool netif_needs_gso(struct sk_buff *skb,
5017 				   netdev_features_t features)
5018 {
5019 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5020 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5021 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5022 }
5023 
5024 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5025 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5026 void netif_inherit_tso_max(struct net_device *to,
5027 			   const struct net_device *from);
5028 
5029 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5030 					int pulled_hlen, u16 mac_offset,
5031 					int mac_len)
5032 {
5033 	skb->protocol = protocol;
5034 	skb->encapsulation = 1;
5035 	skb_push(skb, pulled_hlen);
5036 	skb_reset_transport_header(skb);
5037 	skb->mac_header = mac_offset;
5038 	skb->network_header = skb->mac_header + mac_len;
5039 	skb->mac_len = mac_len;
5040 }
5041 
5042 static inline bool netif_is_macsec(const struct net_device *dev)
5043 {
5044 	return dev->priv_flags & IFF_MACSEC;
5045 }
5046 
5047 static inline bool netif_is_macvlan(const struct net_device *dev)
5048 {
5049 	return dev->priv_flags & IFF_MACVLAN;
5050 }
5051 
5052 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5053 {
5054 	return dev->priv_flags & IFF_MACVLAN_PORT;
5055 }
5056 
5057 static inline bool netif_is_bond_master(const struct net_device *dev)
5058 {
5059 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5060 }
5061 
5062 static inline bool netif_is_bond_slave(const struct net_device *dev)
5063 {
5064 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5065 }
5066 
5067 static inline bool netif_supports_nofcs(struct net_device *dev)
5068 {
5069 	return dev->priv_flags & IFF_SUPP_NOFCS;
5070 }
5071 
5072 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5073 {
5074 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5075 }
5076 
5077 static inline bool netif_is_l3_master(const struct net_device *dev)
5078 {
5079 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5080 }
5081 
5082 static inline bool netif_is_l3_slave(const struct net_device *dev)
5083 {
5084 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5085 }
5086 
5087 static inline bool netif_is_bridge_master(const struct net_device *dev)
5088 {
5089 	return dev->priv_flags & IFF_EBRIDGE;
5090 }
5091 
5092 static inline bool netif_is_bridge_port(const struct net_device *dev)
5093 {
5094 	return dev->priv_flags & IFF_BRIDGE_PORT;
5095 }
5096 
5097 static inline bool netif_is_ovs_master(const struct net_device *dev)
5098 {
5099 	return dev->priv_flags & IFF_OPENVSWITCH;
5100 }
5101 
5102 static inline bool netif_is_ovs_port(const struct net_device *dev)
5103 {
5104 	return dev->priv_flags & IFF_OVS_DATAPATH;
5105 }
5106 
5107 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5108 {
5109 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5110 }
5111 
5112 static inline bool netif_is_team_master(const struct net_device *dev)
5113 {
5114 	return dev->priv_flags & IFF_TEAM;
5115 }
5116 
5117 static inline bool netif_is_team_port(const struct net_device *dev)
5118 {
5119 	return dev->priv_flags & IFF_TEAM_PORT;
5120 }
5121 
5122 static inline bool netif_is_lag_master(const struct net_device *dev)
5123 {
5124 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5125 }
5126 
5127 static inline bool netif_is_lag_port(const struct net_device *dev)
5128 {
5129 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5130 }
5131 
5132 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5133 {
5134 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5135 }
5136 
5137 static inline bool netif_is_failover(const struct net_device *dev)
5138 {
5139 	return dev->priv_flags & IFF_FAILOVER;
5140 }
5141 
5142 static inline bool netif_is_failover_slave(const struct net_device *dev)
5143 {
5144 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5145 }
5146 
5147 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5148 static inline void netif_keep_dst(struct net_device *dev)
5149 {
5150 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5151 }
5152 
5153 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5154 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5155 {
5156 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5157 	return netif_is_macsec(dev);
5158 }
5159 
5160 extern struct pernet_operations __net_initdata loopback_net_ops;
5161 
5162 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5163 
5164 /* netdev_printk helpers, similar to dev_printk */
5165 
5166 static inline const char *netdev_name(const struct net_device *dev)
5167 {
5168 	if (!dev->name[0] || strchr(dev->name, '%'))
5169 		return "(unnamed net_device)";
5170 	return dev->name;
5171 }
5172 
5173 static inline const char *netdev_reg_state(const struct net_device *dev)
5174 {
5175 	switch (dev->reg_state) {
5176 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5177 	case NETREG_REGISTERED: return "";
5178 	case NETREG_UNREGISTERING: return " (unregistering)";
5179 	case NETREG_UNREGISTERED: return " (unregistered)";
5180 	case NETREG_RELEASED: return " (released)";
5181 	case NETREG_DUMMY: return " (dummy)";
5182 	}
5183 
5184 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5185 	return " (unknown)";
5186 }
5187 
5188 #define MODULE_ALIAS_NETDEV(device) \
5189 	MODULE_ALIAS("netdev-" device)
5190 
5191 /*
5192  * netdev_WARN() acts like dev_printk(), but with the key difference
5193  * of using a WARN/WARN_ON to get the message out, including the
5194  * file/line information and a backtrace.
5195  */
5196 #define netdev_WARN(dev, format, args...)			\
5197 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5198 	     netdev_reg_state(dev), ##args)
5199 
5200 #define netdev_WARN_ONCE(dev, format, args...)				\
5201 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5202 		  netdev_reg_state(dev), ##args)
5203 
5204 /*
5205  *	The list of packet types we will receive (as opposed to discard)
5206  *	and the routines to invoke.
5207  *
5208  *	Why 16. Because with 16 the only overlap we get on a hash of the
5209  *	low nibble of the protocol value is RARP/SNAP/X.25.
5210  *
5211  *		0800	IP
5212  *		0001	802.3
5213  *		0002	AX.25
5214  *		0004	802.2
5215  *		8035	RARP
5216  *		0005	SNAP
5217  *		0805	X.25
5218  *		0806	ARP
5219  *		8137	IPX
5220  *		0009	Localtalk
5221  *		86DD	IPv6
5222  */
5223 #define PTYPE_HASH_SIZE	(16)
5224 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5225 
5226 extern struct list_head ptype_all __read_mostly;
5227 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5228 
5229 extern struct net_device *blackhole_netdev;
5230 
5231 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5232 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5233 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5234 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5235 
5236 #endif	/* _LINUX_NETDEVICE_H */
5237