1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/pm_qos.h> 29 #include <linux/timer.h> 30 #include <linux/bug.h> 31 #include <linux/delay.h> 32 #include <linux/atomic.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 54 struct netpoll_info; 55 struct device; 56 struct phy_device; 57 /* 802.11 specific */ 58 struct wireless_dev; 59 /* source back-compat hooks */ 60 #define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63 void netdev_set_default_ethtool_ops(struct net_device *dev, 64 const struct ethtool_ops *ops); 65 66 /* hardware address assignment types */ 67 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 70 #define NET_ADDR_SET 3 /* address is set using 71 * dev_set_mac_address() */ 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously, in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107 /* Driver transmit return codes */ 108 #define NETDEV_TX_MASK 0xf0 109 110 enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142 # if defined(CONFIG_MAC80211_MESH) 143 # define LL_MAX_HEADER 128 144 # else 145 # define LL_MAX_HEADER 96 146 # endif 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key rps_needed; 196 #endif 197 198 struct neighbour; 199 struct neigh_parms; 200 struct sk_buff; 201 202 struct netdev_hw_addr { 203 struct list_head list; 204 unsigned char addr[MAX_ADDR_LEN]; 205 unsigned char type; 206 #define NETDEV_HW_ADDR_T_LAN 1 207 #define NETDEV_HW_ADDR_T_SAN 2 208 #define NETDEV_HW_ADDR_T_SLAVE 3 209 #define NETDEV_HW_ADDR_T_UNICAST 4 210 #define NETDEV_HW_ADDR_T_MULTICAST 5 211 bool global_use; 212 int sync_cnt; 213 int refcount; 214 int synced; 215 struct rcu_head rcu_head; 216 }; 217 218 struct netdev_hw_addr_list { 219 struct list_head list; 220 int count; 221 }; 222 223 #define netdev_hw_addr_list_count(l) ((l)->count) 224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 225 #define netdev_hw_addr_list_for_each(ha, l) \ 226 list_for_each_entry(ha, &(l)->list, list) 227 228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 230 #define netdev_for_each_uc_addr(ha, dev) \ 231 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 232 233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 235 #define netdev_for_each_mc_addr(ha, dev) \ 236 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 237 238 struct hh_cache { 239 u16 hh_len; 240 u16 __pad; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*rebuild)(struct sk_buff *skb); 271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 272 void (*cache_update)(struct hh_cache *hh, 273 const struct net_device *dev, 274 const unsigned char *haddr); 275 }; 276 277 /* These flag bits are private to the generic network queueing 278 * layer, they may not be explicitly referenced by any other 279 * code. 280 */ 281 282 enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288 }; 289 290 291 /* 292 * This structure holds at boot time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295 struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298 }; 299 #define NETDEV_BOOT_SETUP_MAX 8 300 301 int __init netdev_boot_setup(char *str); 302 303 /* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306 struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-cpu poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320 spinlock_t poll_lock; 321 int poll_owner; 322 #endif 323 struct net_device *dev; 324 struct sk_buff *gro_list; 325 struct sk_buff *skb; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329 }; 330 331 enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_DISABLE, /* Disable pending */ 334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 335 NAPI_STATE_HASHED, /* In NAPI hash */ 336 }; 337 338 enum gro_result { 339 GRO_MERGED, 340 GRO_MERGED_FREE, 341 GRO_HELD, 342 GRO_NORMAL, 343 GRO_DROP, 344 }; 345 typedef enum gro_result gro_result_t; 346 347 /* 348 * enum rx_handler_result - Possible return values for rx_handlers. 349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 350 * further. 351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 352 * case skb->dev was changed by rx_handler. 353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 355 * 356 * rx_handlers are functions called from inside __netif_receive_skb(), to do 357 * special processing of the skb, prior to delivery to protocol handlers. 358 * 359 * Currently, a net_device can only have a single rx_handler registered. Trying 360 * to register a second rx_handler will return -EBUSY. 361 * 362 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 363 * To unregister a rx_handler on a net_device, use 364 * netdev_rx_handler_unregister(). 365 * 366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 367 * do with the skb. 368 * 369 * If the rx_handler consumed to skb in some way, it should return 370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 371 * the skb to be delivered in some other ways. 372 * 373 * If the rx_handler changed skb->dev, to divert the skb to another 374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 375 * new device will be called if it exists. 376 * 377 * If the rx_handler consider the skb should be ignored, it should return 378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 379 * are registered on exact device (ptype->dev == skb->dev). 380 * 381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 382 * delivered, it should return RX_HANDLER_PASS. 383 * 384 * A device without a registered rx_handler will behave as if rx_handler 385 * returned RX_HANDLER_PASS. 386 */ 387 388 enum rx_handler_result { 389 RX_HANDLER_CONSUMED, 390 RX_HANDLER_ANOTHER, 391 RX_HANDLER_EXACT, 392 RX_HANDLER_PASS, 393 }; 394 typedef enum rx_handler_result rx_handler_result_t; 395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 396 397 void __napi_schedule(struct napi_struct *n); 398 399 static inline bool napi_disable_pending(struct napi_struct *n) 400 { 401 return test_bit(NAPI_STATE_DISABLE, &n->state); 402 } 403 404 /** 405 * napi_schedule_prep - check if napi can be scheduled 406 * @n: napi context 407 * 408 * Test if NAPI routine is already running, and if not mark 409 * it as running. This is used as a condition variable 410 * insure only one NAPI poll instance runs. We also make 411 * sure there is no pending NAPI disable. 412 */ 413 static inline bool napi_schedule_prep(struct napi_struct *n) 414 { 415 return !napi_disable_pending(n) && 416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 417 } 418 419 /** 420 * napi_schedule - schedule NAPI poll 421 * @n: napi context 422 * 423 * Schedule NAPI poll routine to be called if it is not already 424 * running. 425 */ 426 static inline void napi_schedule(struct napi_struct *n) 427 { 428 if (napi_schedule_prep(n)) 429 __napi_schedule(n); 430 } 431 432 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 433 static inline bool napi_reschedule(struct napi_struct *napi) 434 { 435 if (napi_schedule_prep(napi)) { 436 __napi_schedule(napi); 437 return true; 438 } 439 return false; 440 } 441 442 /** 443 * napi_complete - NAPI processing complete 444 * @n: napi context 445 * 446 * Mark NAPI processing as complete. 447 */ 448 void __napi_complete(struct napi_struct *n); 449 void napi_complete(struct napi_struct *n); 450 451 /** 452 * napi_by_id - lookup a NAPI by napi_id 453 * @napi_id: hashed napi_id 454 * 455 * lookup @napi_id in napi_hash table 456 * must be called under rcu_read_lock() 457 */ 458 struct napi_struct *napi_by_id(unsigned int napi_id); 459 460 /** 461 * napi_hash_add - add a NAPI to global hashtable 462 * @napi: napi context 463 * 464 * generate a new napi_id and store a @napi under it in napi_hash 465 */ 466 void napi_hash_add(struct napi_struct *napi); 467 468 /** 469 * napi_hash_del - remove a NAPI from global table 470 * @napi: napi context 471 * 472 * Warning: caller must observe rcu grace period 473 * before freeing memory containing @napi 474 */ 475 void napi_hash_del(struct napi_struct *napi); 476 477 /** 478 * napi_disable - prevent NAPI from scheduling 479 * @n: napi context 480 * 481 * Stop NAPI from being scheduled on this context. 482 * Waits till any outstanding processing completes. 483 */ 484 static inline void napi_disable(struct napi_struct *n) 485 { 486 might_sleep(); 487 set_bit(NAPI_STATE_DISABLE, &n->state); 488 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 489 msleep(1); 490 clear_bit(NAPI_STATE_DISABLE, &n->state); 491 } 492 493 /** 494 * napi_enable - enable NAPI scheduling 495 * @n: napi context 496 * 497 * Resume NAPI from being scheduled on this context. 498 * Must be paired with napi_disable. 499 */ 500 static inline void napi_enable(struct napi_struct *n) 501 { 502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 503 smp_mb__before_clear_bit(); 504 clear_bit(NAPI_STATE_SCHED, &n->state); 505 } 506 507 #ifdef CONFIG_SMP 508 /** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: napi context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516 static inline void napi_synchronize(const struct napi_struct *n) 517 { 518 while (test_bit(NAPI_STATE_SCHED, &n->state)) 519 msleep(1); 520 } 521 #else 522 # define napi_synchronize(n) barrier() 523 #endif 524 525 enum netdev_queue_state_t { 526 __QUEUE_STATE_DRV_XOFF, 527 __QUEUE_STATE_STACK_XOFF, 528 __QUEUE_STATE_FROZEN, 529 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 530 (1 << __QUEUE_STATE_STACK_XOFF)) 531 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 532 (1 << __QUEUE_STATE_FROZEN)) 533 }; 534 /* 535 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 536 * netif_tx_* functions below are used to manipulate this flag. The 537 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 538 * queue independently. The netif_xmit_*stopped functions below are called 539 * to check if the queue has been stopped by the driver or stack (either 540 * of the XOFF bits are set in the state). Drivers should not need to call 541 * netif_xmit*stopped functions, they should only be using netif_tx_*. 542 */ 543 544 struct netdev_queue { 545 /* 546 * read mostly part 547 */ 548 struct net_device *dev; 549 struct Qdisc *qdisc; 550 struct Qdisc *qdisc_sleeping; 551 #ifdef CONFIG_SYSFS 552 struct kobject kobj; 553 #endif 554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 555 int numa_node; 556 #endif 557 /* 558 * write mostly part 559 */ 560 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 561 int xmit_lock_owner; 562 /* 563 * please use this field instead of dev->trans_start 564 */ 565 unsigned long trans_start; 566 567 /* 568 * Number of TX timeouts for this queue 569 * (/sys/class/net/DEV/Q/trans_timeout) 570 */ 571 unsigned long trans_timeout; 572 573 unsigned long state; 574 575 #ifdef CONFIG_BQL 576 struct dql dql; 577 #endif 578 } ____cacheline_aligned_in_smp; 579 580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 581 { 582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 583 return q->numa_node; 584 #else 585 return NUMA_NO_NODE; 586 #endif 587 } 588 589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 590 { 591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 592 q->numa_node = node; 593 #endif 594 } 595 596 #ifdef CONFIG_RPS 597 /* 598 * This structure holds an RPS map which can be of variable length. The 599 * map is an array of CPUs. 600 */ 601 struct rps_map { 602 unsigned int len; 603 struct rcu_head rcu; 604 u16 cpus[0]; 605 }; 606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 607 608 /* 609 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 610 * tail pointer for that CPU's input queue at the time of last enqueue, and 611 * a hardware filter index. 612 */ 613 struct rps_dev_flow { 614 u16 cpu; 615 u16 filter; 616 unsigned int last_qtail; 617 }; 618 #define RPS_NO_FILTER 0xffff 619 620 /* 621 * The rps_dev_flow_table structure contains a table of flow mappings. 622 */ 623 struct rps_dev_flow_table { 624 unsigned int mask; 625 struct rcu_head rcu; 626 struct rps_dev_flow flows[0]; 627 }; 628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 629 ((_num) * sizeof(struct rps_dev_flow))) 630 631 /* 632 * The rps_sock_flow_table contains mappings of flows to the last CPU 633 * on which they were processed by the application (set in recvmsg). 634 */ 635 struct rps_sock_flow_table { 636 unsigned int mask; 637 u16 ents[0]; 638 }; 639 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 640 ((_num) * sizeof(u16))) 641 642 #define RPS_NO_CPU 0xffff 643 644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 645 u32 hash) 646 { 647 if (table && hash) { 648 unsigned int cpu, index = hash & table->mask; 649 650 /* We only give a hint, preemption can change cpu under us */ 651 cpu = raw_smp_processor_id(); 652 653 if (table->ents[index] != cpu) 654 table->ents[index] = cpu; 655 } 656 } 657 658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 659 u32 hash) 660 { 661 if (table && hash) 662 table->ents[hash & table->mask] = RPS_NO_CPU; 663 } 664 665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 666 667 #ifdef CONFIG_RFS_ACCEL 668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 669 u16 filter_id); 670 #endif 671 #endif /* CONFIG_RPS */ 672 673 /* This structure contains an instance of an RX queue. */ 674 struct netdev_rx_queue { 675 #ifdef CONFIG_RPS 676 struct rps_map __rcu *rps_map; 677 struct rps_dev_flow_table __rcu *rps_flow_table; 678 #endif 679 struct kobject kobj; 680 struct net_device *dev; 681 } ____cacheline_aligned_in_smp; 682 683 /* 684 * RX queue sysfs structures and functions. 685 */ 686 struct rx_queue_attribute { 687 struct attribute attr; 688 ssize_t (*show)(struct netdev_rx_queue *queue, 689 struct rx_queue_attribute *attr, char *buf); 690 ssize_t (*store)(struct netdev_rx_queue *queue, 691 struct rx_queue_attribute *attr, const char *buf, size_t len); 692 }; 693 694 #ifdef CONFIG_XPS 695 /* 696 * This structure holds an XPS map which can be of variable length. The 697 * map is an array of queues. 698 */ 699 struct xps_map { 700 unsigned int len; 701 unsigned int alloc_len; 702 struct rcu_head rcu; 703 u16 queues[0]; 704 }; 705 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 706 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 707 / sizeof(u16)) 708 709 /* 710 * This structure holds all XPS maps for device. Maps are indexed by CPU. 711 */ 712 struct xps_dev_maps { 713 struct rcu_head rcu; 714 struct xps_map __rcu *cpu_map[0]; 715 }; 716 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 717 (nr_cpu_ids * sizeof(struct xps_map *))) 718 #endif /* CONFIG_XPS */ 719 720 #define TC_MAX_QUEUE 16 721 #define TC_BITMASK 15 722 /* HW offloaded queuing disciplines txq count and offset maps */ 723 struct netdev_tc_txq { 724 u16 count; 725 u16 offset; 726 }; 727 728 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 729 /* 730 * This structure is to hold information about the device 731 * configured to run FCoE protocol stack. 732 */ 733 struct netdev_fcoe_hbainfo { 734 char manufacturer[64]; 735 char serial_number[64]; 736 char hardware_version[64]; 737 char driver_version[64]; 738 char optionrom_version[64]; 739 char firmware_version[64]; 740 char model[256]; 741 char model_description[256]; 742 }; 743 #endif 744 745 #define MAX_PHYS_PORT_ID_LEN 32 746 747 /* This structure holds a unique identifier to identify the 748 * physical port used by a netdevice. 749 */ 750 struct netdev_phys_port_id { 751 unsigned char id[MAX_PHYS_PORT_ID_LEN]; 752 unsigned char id_len; 753 }; 754 755 /* 756 * This structure defines the management hooks for network devices. 757 * The following hooks can be defined; unless noted otherwise, they are 758 * optional and can be filled with a null pointer. 759 * 760 * int (*ndo_init)(struct net_device *dev); 761 * This function is called once when network device is registered. 762 * The network device can use this to any late stage initializaton 763 * or semantic validattion. It can fail with an error code which will 764 * be propogated back to register_netdev 765 * 766 * void (*ndo_uninit)(struct net_device *dev); 767 * This function is called when device is unregistered or when registration 768 * fails. It is not called if init fails. 769 * 770 * int (*ndo_open)(struct net_device *dev); 771 * This function is called when network device transistions to the up 772 * state. 773 * 774 * int (*ndo_stop)(struct net_device *dev); 775 * This function is called when network device transistions to the down 776 * state. 777 * 778 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 779 * struct net_device *dev); 780 * Called when a packet needs to be transmitted. 781 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 782 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 783 * Required can not be NULL. 784 * 785 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 786 * void *accel_priv); 787 * Called to decide which queue to when device supports multiple 788 * transmit queues. 789 * 790 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 791 * This function is called to allow device receiver to make 792 * changes to configuration when multicast or promiscious is enabled. 793 * 794 * void (*ndo_set_rx_mode)(struct net_device *dev); 795 * This function is called device changes address list filtering. 796 * If driver handles unicast address filtering, it should set 797 * IFF_UNICAST_FLT to its priv_flags. 798 * 799 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 800 * This function is called when the Media Access Control address 801 * needs to be changed. If this interface is not defined, the 802 * mac address can not be changed. 803 * 804 * int (*ndo_validate_addr)(struct net_device *dev); 805 * Test if Media Access Control address is valid for the device. 806 * 807 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 808 * Called when a user request an ioctl which can't be handled by 809 * the generic interface code. If not defined ioctl's return 810 * not supported error code. 811 * 812 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 813 * Used to set network devices bus interface parameters. This interface 814 * is retained for legacy reason, new devices should use the bus 815 * interface (PCI) for low level management. 816 * 817 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 818 * Called when a user wants to change the Maximum Transfer Unit 819 * of a device. If not defined, any request to change MTU will 820 * will return an error. 821 * 822 * void (*ndo_tx_timeout)(struct net_device *dev); 823 * Callback uses when the transmitter has not made any progress 824 * for dev->watchdog ticks. 825 * 826 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 827 * struct rtnl_link_stats64 *storage); 828 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 829 * Called when a user wants to get the network device usage 830 * statistics. Drivers must do one of the following: 831 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 832 * rtnl_link_stats64 structure passed by the caller. 833 * 2. Define @ndo_get_stats to update a net_device_stats structure 834 * (which should normally be dev->stats) and return a pointer to 835 * it. The structure may be changed asynchronously only if each 836 * field is written atomically. 837 * 3. Update dev->stats asynchronously and atomically, and define 838 * neither operation. 839 * 840 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid); 841 * If device support VLAN filtering this function is called when a 842 * VLAN id is registered. 843 * 844 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 845 * If device support VLAN filtering this function is called when a 846 * VLAN id is unregistered. 847 * 848 * void (*ndo_poll_controller)(struct net_device *dev); 849 * 850 * SR-IOV management functions. 851 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 852 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 853 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 854 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 855 * int (*ndo_get_vf_config)(struct net_device *dev, 856 * int vf, struct ifla_vf_info *ivf); 857 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 858 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 859 * struct nlattr *port[]); 860 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 861 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 862 * Called to setup 'tc' number of traffic classes in the net device. This 863 * is always called from the stack with the rtnl lock held and netif tx 864 * queues stopped. This allows the netdevice to perform queue management 865 * safely. 866 * 867 * Fiber Channel over Ethernet (FCoE) offload functions. 868 * int (*ndo_fcoe_enable)(struct net_device *dev); 869 * Called when the FCoE protocol stack wants to start using LLD for FCoE 870 * so the underlying device can perform whatever needed configuration or 871 * initialization to support acceleration of FCoE traffic. 872 * 873 * int (*ndo_fcoe_disable)(struct net_device *dev); 874 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 875 * so the underlying device can perform whatever needed clean-ups to 876 * stop supporting acceleration of FCoE traffic. 877 * 878 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 879 * struct scatterlist *sgl, unsigned int sgc); 880 * Called when the FCoE Initiator wants to initialize an I/O that 881 * is a possible candidate for Direct Data Placement (DDP). The LLD can 882 * perform necessary setup and returns 1 to indicate the device is set up 883 * successfully to perform DDP on this I/O, otherwise this returns 0. 884 * 885 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 886 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 887 * indicated by the FC exchange id 'xid', so the underlying device can 888 * clean up and reuse resources for later DDP requests. 889 * 890 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 891 * struct scatterlist *sgl, unsigned int sgc); 892 * Called when the FCoE Target wants to initialize an I/O that 893 * is a possible candidate for Direct Data Placement (DDP). The LLD can 894 * perform necessary setup and returns 1 to indicate the device is set up 895 * successfully to perform DDP on this I/O, otherwise this returns 0. 896 * 897 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 898 * struct netdev_fcoe_hbainfo *hbainfo); 899 * Called when the FCoE Protocol stack wants information on the underlying 900 * device. This information is utilized by the FCoE protocol stack to 901 * register attributes with Fiber Channel management service as per the 902 * FC-GS Fabric Device Management Information(FDMI) specification. 903 * 904 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 905 * Called when the underlying device wants to override default World Wide 906 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 907 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 908 * protocol stack to use. 909 * 910 * RFS acceleration. 911 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 912 * u16 rxq_index, u32 flow_id); 913 * Set hardware filter for RFS. rxq_index is the target queue index; 914 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 915 * Return the filter ID on success, or a negative error code. 916 * 917 * Slave management functions (for bridge, bonding, etc). 918 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 919 * Called to make another netdev an underling. 920 * 921 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 922 * Called to release previously enslaved netdev. 923 * 924 * Feature/offload setting functions. 925 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 926 * netdev_features_t features); 927 * Adjusts the requested feature flags according to device-specific 928 * constraints, and returns the resulting flags. Must not modify 929 * the device state. 930 * 931 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 932 * Called to update device configuration to new features. Passed 933 * feature set might be less than what was returned by ndo_fix_features()). 934 * Must return >0 or -errno if it changed dev->features itself. 935 * 936 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 937 * struct net_device *dev, 938 * const unsigned char *addr, u16 flags) 939 * Adds an FDB entry to dev for addr. 940 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 941 * struct net_device *dev, 942 * const unsigned char *addr) 943 * Deletes the FDB entry from dev coresponding to addr. 944 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 945 * struct net_device *dev, int idx) 946 * Used to add FDB entries to dump requests. Implementers should add 947 * entries to skb and update idx with the number of entries. 948 * 949 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 950 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 951 * struct net_device *dev, u32 filter_mask) 952 * 953 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 954 * Called to change device carrier. Soft-devices (like dummy, team, etc) 955 * which do not represent real hardware may define this to allow their 956 * userspace components to manage their virtual carrier state. Devices 957 * that determine carrier state from physical hardware properties (eg 958 * network cables) or protocol-dependent mechanisms (eg 959 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 960 * 961 * int (*ndo_get_phys_port_id)(struct net_device *dev, 962 * struct netdev_phys_port_id *ppid); 963 * Called to get ID of physical port of this device. If driver does 964 * not implement this, it is assumed that the hw is not able to have 965 * multiple net devices on single physical port. 966 * 967 * void (*ndo_add_vxlan_port)(struct net_device *dev, 968 * sa_family_t sa_family, __be16 port); 969 * Called by vxlan to notiy a driver about the UDP port and socket 970 * address family that vxlan is listnening to. It is called only when 971 * a new port starts listening. The operation is protected by the 972 * vxlan_net->sock_lock. 973 * 974 * void (*ndo_del_vxlan_port)(struct net_device *dev, 975 * sa_family_t sa_family, __be16 port); 976 * Called by vxlan to notify the driver about a UDP port and socket 977 * address family that vxlan is not listening to anymore. The operation 978 * is protected by the vxlan_net->sock_lock. 979 * 980 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 981 * struct net_device *dev) 982 * Called by upper layer devices to accelerate switching or other 983 * station functionality into hardware. 'pdev is the lowerdev 984 * to use for the offload and 'dev' is the net device that will 985 * back the offload. Returns a pointer to the private structure 986 * the upper layer will maintain. 987 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 988 * Called by upper layer device to delete the station created 989 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 990 * the station and priv is the structure returned by the add 991 * operation. 992 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 993 * struct net_device *dev, 994 * void *priv); 995 * Callback to use for xmit over the accelerated station. This 996 * is used in place of ndo_start_xmit on accelerated net 997 * devices. 998 */ 999 struct net_device_ops { 1000 int (*ndo_init)(struct net_device *dev); 1001 void (*ndo_uninit)(struct net_device *dev); 1002 int (*ndo_open)(struct net_device *dev); 1003 int (*ndo_stop)(struct net_device *dev); 1004 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1005 struct net_device *dev); 1006 u16 (*ndo_select_queue)(struct net_device *dev, 1007 struct sk_buff *skb, 1008 void *accel_priv); 1009 void (*ndo_change_rx_flags)(struct net_device *dev, 1010 int flags); 1011 void (*ndo_set_rx_mode)(struct net_device *dev); 1012 int (*ndo_set_mac_address)(struct net_device *dev, 1013 void *addr); 1014 int (*ndo_validate_addr)(struct net_device *dev); 1015 int (*ndo_do_ioctl)(struct net_device *dev, 1016 struct ifreq *ifr, int cmd); 1017 int (*ndo_set_config)(struct net_device *dev, 1018 struct ifmap *map); 1019 int (*ndo_change_mtu)(struct net_device *dev, 1020 int new_mtu); 1021 int (*ndo_neigh_setup)(struct net_device *dev, 1022 struct neigh_parms *); 1023 void (*ndo_tx_timeout) (struct net_device *dev); 1024 1025 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1026 struct rtnl_link_stats64 *storage); 1027 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1028 1029 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1030 __be16 proto, u16 vid); 1031 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1032 __be16 proto, u16 vid); 1033 #ifdef CONFIG_NET_POLL_CONTROLLER 1034 void (*ndo_poll_controller)(struct net_device *dev); 1035 int (*ndo_netpoll_setup)(struct net_device *dev, 1036 struct netpoll_info *info, 1037 gfp_t gfp); 1038 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1039 #endif 1040 #ifdef CONFIG_NET_RX_BUSY_POLL 1041 int (*ndo_busy_poll)(struct napi_struct *dev); 1042 #endif 1043 int (*ndo_set_vf_mac)(struct net_device *dev, 1044 int queue, u8 *mac); 1045 int (*ndo_set_vf_vlan)(struct net_device *dev, 1046 int queue, u16 vlan, u8 qos); 1047 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 1048 int vf, int rate); 1049 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1050 int vf, bool setting); 1051 int (*ndo_get_vf_config)(struct net_device *dev, 1052 int vf, 1053 struct ifla_vf_info *ivf); 1054 int (*ndo_set_vf_link_state)(struct net_device *dev, 1055 int vf, int link_state); 1056 int (*ndo_set_vf_port)(struct net_device *dev, 1057 int vf, 1058 struct nlattr *port[]); 1059 int (*ndo_get_vf_port)(struct net_device *dev, 1060 int vf, struct sk_buff *skb); 1061 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1062 #if IS_ENABLED(CONFIG_FCOE) 1063 int (*ndo_fcoe_enable)(struct net_device *dev); 1064 int (*ndo_fcoe_disable)(struct net_device *dev); 1065 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1066 u16 xid, 1067 struct scatterlist *sgl, 1068 unsigned int sgc); 1069 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1070 u16 xid); 1071 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1072 u16 xid, 1073 struct scatterlist *sgl, 1074 unsigned int sgc); 1075 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1076 struct netdev_fcoe_hbainfo *hbainfo); 1077 #endif 1078 1079 #if IS_ENABLED(CONFIG_LIBFCOE) 1080 #define NETDEV_FCOE_WWNN 0 1081 #define NETDEV_FCOE_WWPN 1 1082 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1083 u64 *wwn, int type); 1084 #endif 1085 1086 #ifdef CONFIG_RFS_ACCEL 1087 int (*ndo_rx_flow_steer)(struct net_device *dev, 1088 const struct sk_buff *skb, 1089 u16 rxq_index, 1090 u32 flow_id); 1091 #endif 1092 int (*ndo_add_slave)(struct net_device *dev, 1093 struct net_device *slave_dev); 1094 int (*ndo_del_slave)(struct net_device *dev, 1095 struct net_device *slave_dev); 1096 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1097 netdev_features_t features); 1098 int (*ndo_set_features)(struct net_device *dev, 1099 netdev_features_t features); 1100 int (*ndo_neigh_construct)(struct neighbour *n); 1101 void (*ndo_neigh_destroy)(struct neighbour *n); 1102 1103 int (*ndo_fdb_add)(struct ndmsg *ndm, 1104 struct nlattr *tb[], 1105 struct net_device *dev, 1106 const unsigned char *addr, 1107 u16 flags); 1108 int (*ndo_fdb_del)(struct ndmsg *ndm, 1109 struct nlattr *tb[], 1110 struct net_device *dev, 1111 const unsigned char *addr); 1112 int (*ndo_fdb_dump)(struct sk_buff *skb, 1113 struct netlink_callback *cb, 1114 struct net_device *dev, 1115 int idx); 1116 1117 int (*ndo_bridge_setlink)(struct net_device *dev, 1118 struct nlmsghdr *nlh); 1119 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1120 u32 pid, u32 seq, 1121 struct net_device *dev, 1122 u32 filter_mask); 1123 int (*ndo_bridge_dellink)(struct net_device *dev, 1124 struct nlmsghdr *nlh); 1125 int (*ndo_change_carrier)(struct net_device *dev, 1126 bool new_carrier); 1127 int (*ndo_get_phys_port_id)(struct net_device *dev, 1128 struct netdev_phys_port_id *ppid); 1129 void (*ndo_add_vxlan_port)(struct net_device *dev, 1130 sa_family_t sa_family, 1131 __be16 port); 1132 void (*ndo_del_vxlan_port)(struct net_device *dev, 1133 sa_family_t sa_family, 1134 __be16 port); 1135 1136 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1137 struct net_device *dev); 1138 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1139 void *priv); 1140 1141 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1142 struct net_device *dev, 1143 void *priv); 1144 }; 1145 1146 /* 1147 * The DEVICE structure. 1148 * Actually, this whole structure is a big mistake. It mixes I/O 1149 * data with strictly "high-level" data, and it has to know about 1150 * almost every data structure used in the INET module. 1151 * 1152 * FIXME: cleanup struct net_device such that network protocol info 1153 * moves out. 1154 */ 1155 1156 struct net_device { 1157 1158 /* 1159 * This is the first field of the "visible" part of this structure 1160 * (i.e. as seen by users in the "Space.c" file). It is the name 1161 * of the interface. 1162 */ 1163 char name[IFNAMSIZ]; 1164 1165 /* device name hash chain, please keep it close to name[] */ 1166 struct hlist_node name_hlist; 1167 1168 /* snmp alias */ 1169 char *ifalias; 1170 1171 /* 1172 * I/O specific fields 1173 * FIXME: Merge these and struct ifmap into one 1174 */ 1175 unsigned long mem_end; /* shared mem end */ 1176 unsigned long mem_start; /* shared mem start */ 1177 unsigned long base_addr; /* device I/O address */ 1178 int irq; /* device IRQ number */ 1179 1180 /* 1181 * Some hardware also needs these fields, but they are not 1182 * part of the usual set specified in Space.c. 1183 */ 1184 1185 unsigned long state; 1186 1187 struct list_head dev_list; 1188 struct list_head napi_list; 1189 struct list_head unreg_list; 1190 struct list_head close_list; 1191 1192 /* directly linked devices, like slaves for bonding */ 1193 struct { 1194 struct list_head upper; 1195 struct list_head lower; 1196 } adj_list; 1197 1198 /* all linked devices, *including* neighbours */ 1199 struct { 1200 struct list_head upper; 1201 struct list_head lower; 1202 } all_adj_list; 1203 1204 1205 /* currently active device features */ 1206 netdev_features_t features; 1207 /* user-changeable features */ 1208 netdev_features_t hw_features; 1209 /* user-requested features */ 1210 netdev_features_t wanted_features; 1211 /* mask of features inheritable by VLAN devices */ 1212 netdev_features_t vlan_features; 1213 /* mask of features inherited by encapsulating devices 1214 * This field indicates what encapsulation offloads 1215 * the hardware is capable of doing, and drivers will 1216 * need to set them appropriately. 1217 */ 1218 netdev_features_t hw_enc_features; 1219 /* mask of fetures inheritable by MPLS */ 1220 netdev_features_t mpls_features; 1221 1222 /* Interface index. Unique device identifier */ 1223 int ifindex; 1224 int iflink; 1225 1226 struct net_device_stats stats; 1227 atomic_long_t rx_dropped; /* dropped packets by core network 1228 * Do not use this in drivers. 1229 */ 1230 1231 #ifdef CONFIG_WIRELESS_EXT 1232 /* List of functions to handle Wireless Extensions (instead of ioctl). 1233 * See <net/iw_handler.h> for details. Jean II */ 1234 const struct iw_handler_def * wireless_handlers; 1235 /* Instance data managed by the core of Wireless Extensions. */ 1236 struct iw_public_data * wireless_data; 1237 #endif 1238 /* Management operations */ 1239 const struct net_device_ops *netdev_ops; 1240 const struct ethtool_ops *ethtool_ops; 1241 const struct forwarding_accel_ops *fwd_ops; 1242 1243 /* Hardware header description */ 1244 const struct header_ops *header_ops; 1245 1246 unsigned int flags; /* interface flags (a la BSD) */ 1247 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1248 * See if.h for definitions. */ 1249 unsigned short gflags; 1250 unsigned short padded; /* How much padding added by alloc_netdev() */ 1251 1252 unsigned char operstate; /* RFC2863 operstate */ 1253 unsigned char link_mode; /* mapping policy to operstate */ 1254 1255 unsigned char if_port; /* Selectable AUI, TP,..*/ 1256 unsigned char dma; /* DMA channel */ 1257 1258 unsigned int mtu; /* interface MTU value */ 1259 unsigned short type; /* interface hardware type */ 1260 unsigned short hard_header_len; /* hardware hdr length */ 1261 1262 /* extra head- and tailroom the hardware may need, but not in all cases 1263 * can this be guaranteed, especially tailroom. Some cases also use 1264 * LL_MAX_HEADER instead to allocate the skb. 1265 */ 1266 unsigned short needed_headroom; 1267 unsigned short needed_tailroom; 1268 1269 /* Interface address info. */ 1270 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1271 unsigned char addr_assign_type; /* hw address assignment type */ 1272 unsigned char addr_len; /* hardware address length */ 1273 unsigned short neigh_priv_len; 1274 unsigned short dev_id; /* Used to differentiate devices 1275 * that share the same link 1276 * layer address 1277 */ 1278 spinlock_t addr_list_lock; 1279 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1280 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1281 struct netdev_hw_addr_list dev_addrs; /* list of device 1282 * hw addresses 1283 */ 1284 #ifdef CONFIG_SYSFS 1285 struct kset *queues_kset; 1286 #endif 1287 1288 bool uc_promisc; 1289 unsigned int promiscuity; 1290 unsigned int allmulti; 1291 1292 1293 /* Protocol specific pointers */ 1294 1295 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1296 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1297 #endif 1298 #if IS_ENABLED(CONFIG_NET_DSA) 1299 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1300 #endif 1301 #if IS_ENABLED(CONFIG_TIPC) 1302 struct tipc_bearer __rcu *tipc_ptr; /* TIPC specific data */ 1303 #endif 1304 void *atalk_ptr; /* AppleTalk link */ 1305 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1306 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1307 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1308 void *ax25_ptr; /* AX.25 specific data */ 1309 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1310 assign before registering */ 1311 1312 /* 1313 * Cache lines mostly used on receive path (including eth_type_trans()) 1314 */ 1315 unsigned long last_rx; /* Time of last Rx 1316 * This should not be set in 1317 * drivers, unless really needed, 1318 * because network stack (bonding) 1319 * use it if/when necessary, to 1320 * avoid dirtying this cache line. 1321 */ 1322 1323 /* Interface address info used in eth_type_trans() */ 1324 unsigned char *dev_addr; /* hw address, (before bcast 1325 because most packets are 1326 unicast) */ 1327 1328 1329 #ifdef CONFIG_SYSFS 1330 struct netdev_rx_queue *_rx; 1331 1332 /* Number of RX queues allocated at register_netdev() time */ 1333 unsigned int num_rx_queues; 1334 1335 /* Number of RX queues currently active in device */ 1336 unsigned int real_num_rx_queues; 1337 1338 #endif 1339 1340 rx_handler_func_t __rcu *rx_handler; 1341 void __rcu *rx_handler_data; 1342 1343 struct netdev_queue __rcu *ingress_queue; 1344 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1345 1346 1347 /* 1348 * Cache lines mostly used on transmit path 1349 */ 1350 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1351 1352 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1353 unsigned int num_tx_queues; 1354 1355 /* Number of TX queues currently active in device */ 1356 unsigned int real_num_tx_queues; 1357 1358 /* root qdisc from userspace point of view */ 1359 struct Qdisc *qdisc; 1360 1361 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1362 spinlock_t tx_global_lock; 1363 1364 #ifdef CONFIG_XPS 1365 struct xps_dev_maps __rcu *xps_maps; 1366 #endif 1367 #ifdef CONFIG_RFS_ACCEL 1368 /* CPU reverse-mapping for RX completion interrupts, indexed 1369 * by RX queue number. Assigned by driver. This must only be 1370 * set if the ndo_rx_flow_steer operation is defined. */ 1371 struct cpu_rmap *rx_cpu_rmap; 1372 #endif 1373 1374 /* These may be needed for future network-power-down code. */ 1375 1376 /* 1377 * trans_start here is expensive for high speed devices on SMP, 1378 * please use netdev_queue->trans_start instead. 1379 */ 1380 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1381 1382 int watchdog_timeo; /* used by dev_watchdog() */ 1383 struct timer_list watchdog_timer; 1384 1385 /* Number of references to this device */ 1386 int __percpu *pcpu_refcnt; 1387 1388 /* delayed register/unregister */ 1389 struct list_head todo_list; 1390 /* device index hash chain */ 1391 struct hlist_node index_hlist; 1392 1393 struct list_head link_watch_list; 1394 1395 /* register/unregister state machine */ 1396 enum { NETREG_UNINITIALIZED=0, 1397 NETREG_REGISTERED, /* completed register_netdevice */ 1398 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1399 NETREG_UNREGISTERED, /* completed unregister todo */ 1400 NETREG_RELEASED, /* called free_netdev */ 1401 NETREG_DUMMY, /* dummy device for NAPI poll */ 1402 } reg_state:8; 1403 1404 bool dismantle; /* device is going do be freed */ 1405 1406 enum { 1407 RTNL_LINK_INITIALIZED, 1408 RTNL_LINK_INITIALIZING, 1409 } rtnl_link_state:16; 1410 1411 /* Called from unregister, can be used to call free_netdev */ 1412 void (*destructor)(struct net_device *dev); 1413 1414 #ifdef CONFIG_NETPOLL 1415 struct netpoll_info __rcu *npinfo; 1416 #endif 1417 1418 #ifdef CONFIG_NET_NS 1419 /* Network namespace this network device is inside */ 1420 struct net *nd_net; 1421 #endif 1422 1423 /* mid-layer private */ 1424 union { 1425 void *ml_priv; 1426 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1427 struct pcpu_sw_netstats __percpu *tstats; 1428 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1429 struct pcpu_vstats __percpu *vstats; /* veth stats */ 1430 }; 1431 /* GARP */ 1432 struct garp_port __rcu *garp_port; 1433 /* MRP */ 1434 struct mrp_port __rcu *mrp_port; 1435 1436 /* class/net/name entry */ 1437 struct device dev; 1438 /* space for optional device, statistics, and wireless sysfs groups */ 1439 const struct attribute_group *sysfs_groups[4]; 1440 /* space for optional per-rx queue attributes */ 1441 const struct attribute_group *sysfs_rx_queue_group; 1442 1443 /* rtnetlink link ops */ 1444 const struct rtnl_link_ops *rtnl_link_ops; 1445 1446 /* for setting kernel sock attribute on TCP connection setup */ 1447 #define GSO_MAX_SIZE 65536 1448 unsigned int gso_max_size; 1449 #define GSO_MAX_SEGS 65535 1450 u16 gso_max_segs; 1451 1452 #ifdef CONFIG_DCB 1453 /* Data Center Bridging netlink ops */ 1454 const struct dcbnl_rtnl_ops *dcbnl_ops; 1455 #endif 1456 u8 num_tc; 1457 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1458 u8 prio_tc_map[TC_BITMASK + 1]; 1459 1460 #if IS_ENABLED(CONFIG_FCOE) 1461 /* max exchange id for FCoE LRO by ddp */ 1462 unsigned int fcoe_ddp_xid; 1463 #endif 1464 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1465 struct netprio_map __rcu *priomap; 1466 #endif 1467 /* phy device may attach itself for hardware timestamping */ 1468 struct phy_device *phydev; 1469 1470 struct lock_class_key *qdisc_tx_busylock; 1471 1472 /* group the device belongs to */ 1473 int group; 1474 1475 struct pm_qos_request pm_qos_req; 1476 }; 1477 #define to_net_dev(d) container_of(d, struct net_device, dev) 1478 1479 #define NETDEV_ALIGN 32 1480 1481 static inline 1482 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1483 { 1484 return dev->prio_tc_map[prio & TC_BITMASK]; 1485 } 1486 1487 static inline 1488 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1489 { 1490 if (tc >= dev->num_tc) 1491 return -EINVAL; 1492 1493 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1494 return 0; 1495 } 1496 1497 static inline 1498 void netdev_reset_tc(struct net_device *dev) 1499 { 1500 dev->num_tc = 0; 1501 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1502 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1503 } 1504 1505 static inline 1506 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1507 { 1508 if (tc >= dev->num_tc) 1509 return -EINVAL; 1510 1511 dev->tc_to_txq[tc].count = count; 1512 dev->tc_to_txq[tc].offset = offset; 1513 return 0; 1514 } 1515 1516 static inline 1517 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1518 { 1519 if (num_tc > TC_MAX_QUEUE) 1520 return -EINVAL; 1521 1522 dev->num_tc = num_tc; 1523 return 0; 1524 } 1525 1526 static inline 1527 int netdev_get_num_tc(struct net_device *dev) 1528 { 1529 return dev->num_tc; 1530 } 1531 1532 static inline 1533 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1534 unsigned int index) 1535 { 1536 return &dev->_tx[index]; 1537 } 1538 1539 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1540 void (*f)(struct net_device *, 1541 struct netdev_queue *, 1542 void *), 1543 void *arg) 1544 { 1545 unsigned int i; 1546 1547 for (i = 0; i < dev->num_tx_queues; i++) 1548 f(dev, &dev->_tx[i], arg); 1549 } 1550 1551 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1552 struct sk_buff *skb, 1553 void *accel_priv); 1554 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb); 1555 1556 /* 1557 * Net namespace inlines 1558 */ 1559 static inline 1560 struct net *dev_net(const struct net_device *dev) 1561 { 1562 return read_pnet(&dev->nd_net); 1563 } 1564 1565 static inline 1566 void dev_net_set(struct net_device *dev, struct net *net) 1567 { 1568 #ifdef CONFIG_NET_NS 1569 release_net(dev->nd_net); 1570 dev->nd_net = hold_net(net); 1571 #endif 1572 } 1573 1574 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1575 { 1576 #ifdef CONFIG_NET_DSA_TAG_DSA 1577 if (dev->dsa_ptr != NULL) 1578 return dsa_uses_dsa_tags(dev->dsa_ptr); 1579 #endif 1580 1581 return 0; 1582 } 1583 1584 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1585 { 1586 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1587 if (dev->dsa_ptr != NULL) 1588 return dsa_uses_trailer_tags(dev->dsa_ptr); 1589 #endif 1590 1591 return 0; 1592 } 1593 1594 /** 1595 * netdev_priv - access network device private data 1596 * @dev: network device 1597 * 1598 * Get network device private data 1599 */ 1600 static inline void *netdev_priv(const struct net_device *dev) 1601 { 1602 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1603 } 1604 1605 /* Set the sysfs physical device reference for the network logical device 1606 * if set prior to registration will cause a symlink during initialization. 1607 */ 1608 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1609 1610 /* Set the sysfs device type for the network logical device to allow 1611 * fine-grained identification of different network device types. For 1612 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1613 */ 1614 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1615 1616 /* Default NAPI poll() weight 1617 * Device drivers are strongly advised to not use bigger value 1618 */ 1619 #define NAPI_POLL_WEIGHT 64 1620 1621 /** 1622 * netif_napi_add - initialize a napi context 1623 * @dev: network device 1624 * @napi: napi context 1625 * @poll: polling function 1626 * @weight: default weight 1627 * 1628 * netif_napi_add() must be used to initialize a napi context prior to calling 1629 * *any* of the other napi related functions. 1630 */ 1631 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1632 int (*poll)(struct napi_struct *, int), int weight); 1633 1634 /** 1635 * netif_napi_del - remove a napi context 1636 * @napi: napi context 1637 * 1638 * netif_napi_del() removes a napi context from the network device napi list 1639 */ 1640 void netif_napi_del(struct napi_struct *napi); 1641 1642 struct napi_gro_cb { 1643 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1644 void *frag0; 1645 1646 /* Length of frag0. */ 1647 unsigned int frag0_len; 1648 1649 /* This indicates where we are processing relative to skb->data. */ 1650 int data_offset; 1651 1652 /* This is non-zero if the packet cannot be merged with the new skb. */ 1653 u16 flush; 1654 1655 /* Save the IP ID here and check when we get to the transport layer */ 1656 u16 flush_id; 1657 1658 /* Number of segments aggregated. */ 1659 u16 count; 1660 1661 /* This is non-zero if the packet may be of the same flow. */ 1662 u8 same_flow; 1663 1664 /* Free the skb? */ 1665 u8 free; 1666 #define NAPI_GRO_FREE 1 1667 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1668 1669 /* jiffies when first packet was created/queued */ 1670 unsigned long age; 1671 1672 /* Used in ipv6_gro_receive() */ 1673 u16 proto; 1674 1675 /* Used in udp_gro_receive */ 1676 u16 udp_mark; 1677 1678 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1679 __wsum csum; 1680 1681 /* used in skb_gro_receive() slow path */ 1682 struct sk_buff *last; 1683 }; 1684 1685 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1686 1687 struct packet_type { 1688 __be16 type; /* This is really htons(ether_type). */ 1689 struct net_device *dev; /* NULL is wildcarded here */ 1690 int (*func) (struct sk_buff *, 1691 struct net_device *, 1692 struct packet_type *, 1693 struct net_device *); 1694 bool (*id_match)(struct packet_type *ptype, 1695 struct sock *sk); 1696 void *af_packet_priv; 1697 struct list_head list; 1698 }; 1699 1700 struct offload_callbacks { 1701 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1702 netdev_features_t features); 1703 int (*gso_send_check)(struct sk_buff *skb); 1704 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1705 struct sk_buff *skb); 1706 int (*gro_complete)(struct sk_buff *skb, int nhoff); 1707 }; 1708 1709 struct packet_offload { 1710 __be16 type; /* This is really htons(ether_type). */ 1711 struct offload_callbacks callbacks; 1712 struct list_head list; 1713 }; 1714 1715 struct udp_offload { 1716 __be16 port; 1717 struct offload_callbacks callbacks; 1718 }; 1719 1720 /* often modified stats are per cpu, other are shared (netdev->stats) */ 1721 struct pcpu_sw_netstats { 1722 u64 rx_packets; 1723 u64 rx_bytes; 1724 u64 tx_packets; 1725 u64 tx_bytes; 1726 struct u64_stats_sync syncp; 1727 }; 1728 1729 #include <linux/notifier.h> 1730 1731 /* netdevice notifier chain. Please remember to update the rtnetlink 1732 * notification exclusion list in rtnetlink_event() when adding new 1733 * types. 1734 */ 1735 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1736 #define NETDEV_DOWN 0x0002 1737 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1738 detected a hardware crash and restarted 1739 - we can use this eg to kick tcp sessions 1740 once done */ 1741 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1742 #define NETDEV_REGISTER 0x0005 1743 #define NETDEV_UNREGISTER 0x0006 1744 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 1745 #define NETDEV_CHANGEADDR 0x0008 1746 #define NETDEV_GOING_DOWN 0x0009 1747 #define NETDEV_CHANGENAME 0x000A 1748 #define NETDEV_FEAT_CHANGE 0x000B 1749 #define NETDEV_BONDING_FAILOVER 0x000C 1750 #define NETDEV_PRE_UP 0x000D 1751 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1752 #define NETDEV_POST_TYPE_CHANGE 0x000F 1753 #define NETDEV_POST_INIT 0x0010 1754 #define NETDEV_UNREGISTER_FINAL 0x0011 1755 #define NETDEV_RELEASE 0x0012 1756 #define NETDEV_NOTIFY_PEERS 0x0013 1757 #define NETDEV_JOIN 0x0014 1758 #define NETDEV_CHANGEUPPER 0x0015 1759 #define NETDEV_RESEND_IGMP 0x0016 1760 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 1761 1762 int register_netdevice_notifier(struct notifier_block *nb); 1763 int unregister_netdevice_notifier(struct notifier_block *nb); 1764 1765 struct netdev_notifier_info { 1766 struct net_device *dev; 1767 }; 1768 1769 struct netdev_notifier_change_info { 1770 struct netdev_notifier_info info; /* must be first */ 1771 unsigned int flags_changed; 1772 }; 1773 1774 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 1775 struct net_device *dev) 1776 { 1777 info->dev = dev; 1778 } 1779 1780 static inline struct net_device * 1781 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 1782 { 1783 return info->dev; 1784 } 1785 1786 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1787 1788 1789 extern rwlock_t dev_base_lock; /* Device list lock */ 1790 1791 #define for_each_netdev(net, d) \ 1792 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1793 #define for_each_netdev_reverse(net, d) \ 1794 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1795 #define for_each_netdev_rcu(net, d) \ 1796 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1797 #define for_each_netdev_safe(net, d, n) \ 1798 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1799 #define for_each_netdev_continue(net, d) \ 1800 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1801 #define for_each_netdev_continue_rcu(net, d) \ 1802 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1803 #define for_each_netdev_in_bond_rcu(bond, slave) \ 1804 for_each_netdev_rcu(&init_net, slave) \ 1805 if (netdev_master_upper_dev_get_rcu(slave) == bond) 1806 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1807 1808 static inline struct net_device *next_net_device(struct net_device *dev) 1809 { 1810 struct list_head *lh; 1811 struct net *net; 1812 1813 net = dev_net(dev); 1814 lh = dev->dev_list.next; 1815 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1816 } 1817 1818 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1819 { 1820 struct list_head *lh; 1821 struct net *net; 1822 1823 net = dev_net(dev); 1824 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1825 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1826 } 1827 1828 static inline struct net_device *first_net_device(struct net *net) 1829 { 1830 return list_empty(&net->dev_base_head) ? NULL : 1831 net_device_entry(net->dev_base_head.next); 1832 } 1833 1834 static inline struct net_device *first_net_device_rcu(struct net *net) 1835 { 1836 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1837 1838 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1839 } 1840 1841 int netdev_boot_setup_check(struct net_device *dev); 1842 unsigned long netdev_boot_base(const char *prefix, int unit); 1843 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1844 const char *hwaddr); 1845 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1846 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1847 void dev_add_pack(struct packet_type *pt); 1848 void dev_remove_pack(struct packet_type *pt); 1849 void __dev_remove_pack(struct packet_type *pt); 1850 void dev_add_offload(struct packet_offload *po); 1851 void dev_remove_offload(struct packet_offload *po); 1852 1853 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1854 unsigned short mask); 1855 struct net_device *dev_get_by_name(struct net *net, const char *name); 1856 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1857 struct net_device *__dev_get_by_name(struct net *net, const char *name); 1858 int dev_alloc_name(struct net_device *dev, const char *name); 1859 int dev_open(struct net_device *dev); 1860 int dev_close(struct net_device *dev); 1861 void dev_disable_lro(struct net_device *dev); 1862 int dev_loopback_xmit(struct sk_buff *newskb); 1863 int dev_queue_xmit(struct sk_buff *skb); 1864 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 1865 int register_netdevice(struct net_device *dev); 1866 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 1867 void unregister_netdevice_many(struct list_head *head); 1868 static inline void unregister_netdevice(struct net_device *dev) 1869 { 1870 unregister_netdevice_queue(dev, NULL); 1871 } 1872 1873 int netdev_refcnt_read(const struct net_device *dev); 1874 void free_netdev(struct net_device *dev); 1875 void netdev_freemem(struct net_device *dev); 1876 void synchronize_net(void); 1877 int init_dummy_netdev(struct net_device *dev); 1878 1879 struct net_device *dev_get_by_index(struct net *net, int ifindex); 1880 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1881 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1882 int netdev_get_name(struct net *net, char *name, int ifindex); 1883 int dev_restart(struct net_device *dev); 1884 #ifdef CONFIG_NETPOLL_TRAP 1885 int netpoll_trap(void); 1886 #endif 1887 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 1888 1889 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1890 { 1891 return NAPI_GRO_CB(skb)->data_offset; 1892 } 1893 1894 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1895 { 1896 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1897 } 1898 1899 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1900 { 1901 NAPI_GRO_CB(skb)->data_offset += len; 1902 } 1903 1904 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1905 unsigned int offset) 1906 { 1907 return NAPI_GRO_CB(skb)->frag0 + offset; 1908 } 1909 1910 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1911 { 1912 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1913 } 1914 1915 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1916 unsigned int offset) 1917 { 1918 if (!pskb_may_pull(skb, hlen)) 1919 return NULL; 1920 1921 NAPI_GRO_CB(skb)->frag0 = NULL; 1922 NAPI_GRO_CB(skb)->frag0_len = 0; 1923 return skb->data + offset; 1924 } 1925 1926 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1927 { 1928 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1929 } 1930 1931 static inline void *skb_gro_network_header(struct sk_buff *skb) 1932 { 1933 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1934 skb_network_offset(skb); 1935 } 1936 1937 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 1938 const void *start, unsigned int len) 1939 { 1940 if (skb->ip_summed == CHECKSUM_COMPLETE) 1941 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 1942 csum_partial(start, len, 0)); 1943 } 1944 1945 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1946 unsigned short type, 1947 const void *daddr, const void *saddr, 1948 unsigned int len) 1949 { 1950 if (!dev->header_ops || !dev->header_ops->create) 1951 return 0; 1952 1953 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1954 } 1955 1956 static inline int dev_parse_header(const struct sk_buff *skb, 1957 unsigned char *haddr) 1958 { 1959 const struct net_device *dev = skb->dev; 1960 1961 if (!dev->header_ops || !dev->header_ops->parse) 1962 return 0; 1963 return dev->header_ops->parse(skb, haddr); 1964 } 1965 1966 static inline int dev_rebuild_header(struct sk_buff *skb) 1967 { 1968 const struct net_device *dev = skb->dev; 1969 1970 if (!dev->header_ops || !dev->header_ops->rebuild) 1971 return 0; 1972 return dev->header_ops->rebuild(skb); 1973 } 1974 1975 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1976 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 1977 static inline int unregister_gifconf(unsigned int family) 1978 { 1979 return register_gifconf(family, NULL); 1980 } 1981 1982 #ifdef CONFIG_NET_FLOW_LIMIT 1983 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 1984 struct sd_flow_limit { 1985 u64 count; 1986 unsigned int num_buckets; 1987 unsigned int history_head; 1988 u16 history[FLOW_LIMIT_HISTORY]; 1989 u8 buckets[]; 1990 }; 1991 1992 extern int netdev_flow_limit_table_len; 1993 #endif /* CONFIG_NET_FLOW_LIMIT */ 1994 1995 /* 1996 * Incoming packets are placed on per-cpu queues 1997 */ 1998 struct softnet_data { 1999 struct Qdisc *output_queue; 2000 struct Qdisc **output_queue_tailp; 2001 struct list_head poll_list; 2002 struct sk_buff *completion_queue; 2003 struct sk_buff_head process_queue; 2004 2005 /* stats */ 2006 unsigned int processed; 2007 unsigned int time_squeeze; 2008 unsigned int cpu_collision; 2009 unsigned int received_rps; 2010 2011 #ifdef CONFIG_RPS 2012 struct softnet_data *rps_ipi_list; 2013 2014 /* Elements below can be accessed between CPUs for RPS */ 2015 struct call_single_data csd ____cacheline_aligned_in_smp; 2016 struct softnet_data *rps_ipi_next; 2017 unsigned int cpu; 2018 unsigned int input_queue_head; 2019 unsigned int input_queue_tail; 2020 #endif 2021 unsigned int dropped; 2022 struct sk_buff_head input_pkt_queue; 2023 struct napi_struct backlog; 2024 2025 #ifdef CONFIG_NET_FLOW_LIMIT 2026 struct sd_flow_limit __rcu *flow_limit; 2027 #endif 2028 }; 2029 2030 static inline void input_queue_head_incr(struct softnet_data *sd) 2031 { 2032 #ifdef CONFIG_RPS 2033 sd->input_queue_head++; 2034 #endif 2035 } 2036 2037 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2038 unsigned int *qtail) 2039 { 2040 #ifdef CONFIG_RPS 2041 *qtail = ++sd->input_queue_tail; 2042 #endif 2043 } 2044 2045 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2046 2047 void __netif_schedule(struct Qdisc *q); 2048 2049 static inline void netif_schedule_queue(struct netdev_queue *txq) 2050 { 2051 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 2052 __netif_schedule(txq->qdisc); 2053 } 2054 2055 static inline void netif_tx_schedule_all(struct net_device *dev) 2056 { 2057 unsigned int i; 2058 2059 for (i = 0; i < dev->num_tx_queues; i++) 2060 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2061 } 2062 2063 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2064 { 2065 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2066 } 2067 2068 /** 2069 * netif_start_queue - allow transmit 2070 * @dev: network device 2071 * 2072 * Allow upper layers to call the device hard_start_xmit routine. 2073 */ 2074 static inline void netif_start_queue(struct net_device *dev) 2075 { 2076 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2077 } 2078 2079 static inline void netif_tx_start_all_queues(struct net_device *dev) 2080 { 2081 unsigned int i; 2082 2083 for (i = 0; i < dev->num_tx_queues; i++) { 2084 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2085 netif_tx_start_queue(txq); 2086 } 2087 } 2088 2089 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2090 { 2091 #ifdef CONFIG_NETPOLL_TRAP 2092 if (netpoll_trap()) { 2093 netif_tx_start_queue(dev_queue); 2094 return; 2095 } 2096 #endif 2097 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 2098 __netif_schedule(dev_queue->qdisc); 2099 } 2100 2101 /** 2102 * netif_wake_queue - restart transmit 2103 * @dev: network device 2104 * 2105 * Allow upper layers to call the device hard_start_xmit routine. 2106 * Used for flow control when transmit resources are available. 2107 */ 2108 static inline void netif_wake_queue(struct net_device *dev) 2109 { 2110 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2111 } 2112 2113 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2114 { 2115 unsigned int i; 2116 2117 for (i = 0; i < dev->num_tx_queues; i++) { 2118 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2119 netif_tx_wake_queue(txq); 2120 } 2121 } 2122 2123 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2124 { 2125 if (WARN_ON(!dev_queue)) { 2126 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 2127 return; 2128 } 2129 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2130 } 2131 2132 /** 2133 * netif_stop_queue - stop transmitted packets 2134 * @dev: network device 2135 * 2136 * Stop upper layers calling the device hard_start_xmit routine. 2137 * Used for flow control when transmit resources are unavailable. 2138 */ 2139 static inline void netif_stop_queue(struct net_device *dev) 2140 { 2141 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2142 } 2143 2144 static inline void netif_tx_stop_all_queues(struct net_device *dev) 2145 { 2146 unsigned int i; 2147 2148 for (i = 0; i < dev->num_tx_queues; i++) { 2149 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2150 netif_tx_stop_queue(txq); 2151 } 2152 } 2153 2154 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2155 { 2156 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2157 } 2158 2159 /** 2160 * netif_queue_stopped - test if transmit queue is flowblocked 2161 * @dev: network device 2162 * 2163 * Test if transmit queue on device is currently unable to send. 2164 */ 2165 static inline bool netif_queue_stopped(const struct net_device *dev) 2166 { 2167 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2168 } 2169 2170 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2171 { 2172 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2173 } 2174 2175 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2176 { 2177 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2178 } 2179 2180 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2181 unsigned int bytes) 2182 { 2183 #ifdef CONFIG_BQL 2184 dql_queued(&dev_queue->dql, bytes); 2185 2186 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2187 return; 2188 2189 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2190 2191 /* 2192 * The XOFF flag must be set before checking the dql_avail below, 2193 * because in netdev_tx_completed_queue we update the dql_completed 2194 * before checking the XOFF flag. 2195 */ 2196 smp_mb(); 2197 2198 /* check again in case another CPU has just made room avail */ 2199 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2200 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2201 #endif 2202 } 2203 2204 /** 2205 * netdev_sent_queue - report the number of bytes queued to hardware 2206 * @dev: network device 2207 * @bytes: number of bytes queued to the hardware device queue 2208 * 2209 * Report the number of bytes queued for sending/completion to the network 2210 * device hardware queue. @bytes should be a good approximation and should 2211 * exactly match netdev_completed_queue() @bytes 2212 */ 2213 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2214 { 2215 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2216 } 2217 2218 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2219 unsigned int pkts, unsigned int bytes) 2220 { 2221 #ifdef CONFIG_BQL 2222 if (unlikely(!bytes)) 2223 return; 2224 2225 dql_completed(&dev_queue->dql, bytes); 2226 2227 /* 2228 * Without the memory barrier there is a small possiblity that 2229 * netdev_tx_sent_queue will miss the update and cause the queue to 2230 * be stopped forever 2231 */ 2232 smp_mb(); 2233 2234 if (dql_avail(&dev_queue->dql) < 0) 2235 return; 2236 2237 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2238 netif_schedule_queue(dev_queue); 2239 #endif 2240 } 2241 2242 /** 2243 * netdev_completed_queue - report bytes and packets completed by device 2244 * @dev: network device 2245 * @pkts: actual number of packets sent over the medium 2246 * @bytes: actual number of bytes sent over the medium 2247 * 2248 * Report the number of bytes and packets transmitted by the network device 2249 * hardware queue over the physical medium, @bytes must exactly match the 2250 * @bytes amount passed to netdev_sent_queue() 2251 */ 2252 static inline void netdev_completed_queue(struct net_device *dev, 2253 unsigned int pkts, unsigned int bytes) 2254 { 2255 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2256 } 2257 2258 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2259 { 2260 #ifdef CONFIG_BQL 2261 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2262 dql_reset(&q->dql); 2263 #endif 2264 } 2265 2266 /** 2267 * netdev_reset_queue - reset the packets and bytes count of a network device 2268 * @dev_queue: network device 2269 * 2270 * Reset the bytes and packet count of a network device and clear the 2271 * software flow control OFF bit for this network device 2272 */ 2273 static inline void netdev_reset_queue(struct net_device *dev_queue) 2274 { 2275 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2276 } 2277 2278 /** 2279 * netif_running - test if up 2280 * @dev: network device 2281 * 2282 * Test if the device has been brought up. 2283 */ 2284 static inline bool netif_running(const struct net_device *dev) 2285 { 2286 return test_bit(__LINK_STATE_START, &dev->state); 2287 } 2288 2289 /* 2290 * Routines to manage the subqueues on a device. We only need start 2291 * stop, and a check if it's stopped. All other device management is 2292 * done at the overall netdevice level. 2293 * Also test the device if we're multiqueue. 2294 */ 2295 2296 /** 2297 * netif_start_subqueue - allow sending packets on subqueue 2298 * @dev: network device 2299 * @queue_index: sub queue index 2300 * 2301 * Start individual transmit queue of a device with multiple transmit queues. 2302 */ 2303 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2304 { 2305 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2306 2307 netif_tx_start_queue(txq); 2308 } 2309 2310 /** 2311 * netif_stop_subqueue - stop sending packets on subqueue 2312 * @dev: network device 2313 * @queue_index: sub queue index 2314 * 2315 * Stop individual transmit queue of a device with multiple transmit queues. 2316 */ 2317 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2318 { 2319 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2320 #ifdef CONFIG_NETPOLL_TRAP 2321 if (netpoll_trap()) 2322 return; 2323 #endif 2324 netif_tx_stop_queue(txq); 2325 } 2326 2327 /** 2328 * netif_subqueue_stopped - test status of subqueue 2329 * @dev: network device 2330 * @queue_index: sub queue index 2331 * 2332 * Check individual transmit queue of a device with multiple transmit queues. 2333 */ 2334 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2335 u16 queue_index) 2336 { 2337 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2338 2339 return netif_tx_queue_stopped(txq); 2340 } 2341 2342 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2343 struct sk_buff *skb) 2344 { 2345 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2346 } 2347 2348 /** 2349 * netif_wake_subqueue - allow sending packets on subqueue 2350 * @dev: network device 2351 * @queue_index: sub queue index 2352 * 2353 * Resume individual transmit queue of a device with multiple transmit queues. 2354 */ 2355 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2356 { 2357 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2358 #ifdef CONFIG_NETPOLL_TRAP 2359 if (netpoll_trap()) 2360 return; 2361 #endif 2362 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2363 __netif_schedule(txq->qdisc); 2364 } 2365 2366 #ifdef CONFIG_XPS 2367 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2368 u16 index); 2369 #else 2370 static inline int netif_set_xps_queue(struct net_device *dev, 2371 const struct cpumask *mask, 2372 u16 index) 2373 { 2374 return 0; 2375 } 2376 #endif 2377 2378 /* 2379 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2380 * as a distribution range limit for the returned value. 2381 */ 2382 static inline u16 skb_tx_hash(const struct net_device *dev, 2383 const struct sk_buff *skb) 2384 { 2385 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2386 } 2387 2388 /** 2389 * netif_is_multiqueue - test if device has multiple transmit queues 2390 * @dev: network device 2391 * 2392 * Check if device has multiple transmit queues 2393 */ 2394 static inline bool netif_is_multiqueue(const struct net_device *dev) 2395 { 2396 return dev->num_tx_queues > 1; 2397 } 2398 2399 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2400 2401 #ifdef CONFIG_SYSFS 2402 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2403 #else 2404 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2405 unsigned int rxq) 2406 { 2407 return 0; 2408 } 2409 #endif 2410 2411 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2412 const struct net_device *from_dev) 2413 { 2414 int err; 2415 2416 err = netif_set_real_num_tx_queues(to_dev, 2417 from_dev->real_num_tx_queues); 2418 if (err) 2419 return err; 2420 #ifdef CONFIG_SYSFS 2421 return netif_set_real_num_rx_queues(to_dev, 2422 from_dev->real_num_rx_queues); 2423 #else 2424 return 0; 2425 #endif 2426 } 2427 2428 #ifdef CONFIG_SYSFS 2429 static inline unsigned int get_netdev_rx_queue_index( 2430 struct netdev_rx_queue *queue) 2431 { 2432 struct net_device *dev = queue->dev; 2433 int index = queue - dev->_rx; 2434 2435 BUG_ON(index >= dev->num_rx_queues); 2436 return index; 2437 } 2438 #endif 2439 2440 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2441 int netif_get_num_default_rss_queues(void); 2442 2443 enum skb_free_reason { 2444 SKB_REASON_CONSUMED, 2445 SKB_REASON_DROPPED, 2446 }; 2447 2448 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2449 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2450 2451 /* 2452 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2453 * interrupt context or with hardware interrupts being disabled. 2454 * (in_irq() || irqs_disabled()) 2455 * 2456 * We provide four helpers that can be used in following contexts : 2457 * 2458 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2459 * replacing kfree_skb(skb) 2460 * 2461 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2462 * Typically used in place of consume_skb(skb) in TX completion path 2463 * 2464 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2465 * replacing kfree_skb(skb) 2466 * 2467 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2468 * and consumed a packet. Used in place of consume_skb(skb) 2469 */ 2470 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2471 { 2472 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2473 } 2474 2475 static inline void dev_consume_skb_irq(struct sk_buff *skb) 2476 { 2477 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2478 } 2479 2480 static inline void dev_kfree_skb_any(struct sk_buff *skb) 2481 { 2482 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2483 } 2484 2485 static inline void dev_consume_skb_any(struct sk_buff *skb) 2486 { 2487 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2488 } 2489 2490 int netif_rx(struct sk_buff *skb); 2491 int netif_rx_ni(struct sk_buff *skb); 2492 int netif_receive_skb(struct sk_buff *skb); 2493 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2494 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2495 struct sk_buff *napi_get_frags(struct napi_struct *napi); 2496 gro_result_t napi_gro_frags(struct napi_struct *napi); 2497 struct packet_offload *gro_find_receive_by_type(__be16 type); 2498 struct packet_offload *gro_find_complete_by_type(__be16 type); 2499 2500 static inline void napi_free_frags(struct napi_struct *napi) 2501 { 2502 kfree_skb(napi->skb); 2503 napi->skb = NULL; 2504 } 2505 2506 int netdev_rx_handler_register(struct net_device *dev, 2507 rx_handler_func_t *rx_handler, 2508 void *rx_handler_data); 2509 void netdev_rx_handler_unregister(struct net_device *dev); 2510 2511 bool dev_valid_name(const char *name); 2512 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2513 int dev_ethtool(struct net *net, struct ifreq *); 2514 unsigned int dev_get_flags(const struct net_device *); 2515 int __dev_change_flags(struct net_device *, unsigned int flags); 2516 int dev_change_flags(struct net_device *, unsigned int); 2517 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2518 unsigned int gchanges); 2519 int dev_change_name(struct net_device *, const char *); 2520 int dev_set_alias(struct net_device *, const char *, size_t); 2521 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2522 int dev_set_mtu(struct net_device *, int); 2523 void dev_set_group(struct net_device *, int); 2524 int dev_set_mac_address(struct net_device *, struct sockaddr *); 2525 int dev_change_carrier(struct net_device *, bool new_carrier); 2526 int dev_get_phys_port_id(struct net_device *dev, 2527 struct netdev_phys_port_id *ppid); 2528 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2529 struct netdev_queue *txq); 2530 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2531 2532 extern int netdev_budget; 2533 2534 /* Called by rtnetlink.c:rtnl_unlock() */ 2535 void netdev_run_todo(void); 2536 2537 /** 2538 * dev_put - release reference to device 2539 * @dev: network device 2540 * 2541 * Release reference to device to allow it to be freed. 2542 */ 2543 static inline void dev_put(struct net_device *dev) 2544 { 2545 this_cpu_dec(*dev->pcpu_refcnt); 2546 } 2547 2548 /** 2549 * dev_hold - get reference to device 2550 * @dev: network device 2551 * 2552 * Hold reference to device to keep it from being freed. 2553 */ 2554 static inline void dev_hold(struct net_device *dev) 2555 { 2556 this_cpu_inc(*dev->pcpu_refcnt); 2557 } 2558 2559 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2560 * and _off may be called from IRQ context, but it is caller 2561 * who is responsible for serialization of these calls. 2562 * 2563 * The name carrier is inappropriate, these functions should really be 2564 * called netif_lowerlayer_*() because they represent the state of any 2565 * kind of lower layer not just hardware media. 2566 */ 2567 2568 void linkwatch_init_dev(struct net_device *dev); 2569 void linkwatch_fire_event(struct net_device *dev); 2570 void linkwatch_forget_dev(struct net_device *dev); 2571 2572 /** 2573 * netif_carrier_ok - test if carrier present 2574 * @dev: network device 2575 * 2576 * Check if carrier is present on device 2577 */ 2578 static inline bool netif_carrier_ok(const struct net_device *dev) 2579 { 2580 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2581 } 2582 2583 unsigned long dev_trans_start(struct net_device *dev); 2584 2585 void __netdev_watchdog_up(struct net_device *dev); 2586 2587 void netif_carrier_on(struct net_device *dev); 2588 2589 void netif_carrier_off(struct net_device *dev); 2590 2591 /** 2592 * netif_dormant_on - mark device as dormant. 2593 * @dev: network device 2594 * 2595 * Mark device as dormant (as per RFC2863). 2596 * 2597 * The dormant state indicates that the relevant interface is not 2598 * actually in a condition to pass packets (i.e., it is not 'up') but is 2599 * in a "pending" state, waiting for some external event. For "on- 2600 * demand" interfaces, this new state identifies the situation where the 2601 * interface is waiting for events to place it in the up state. 2602 * 2603 */ 2604 static inline void netif_dormant_on(struct net_device *dev) 2605 { 2606 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2607 linkwatch_fire_event(dev); 2608 } 2609 2610 /** 2611 * netif_dormant_off - set device as not dormant. 2612 * @dev: network device 2613 * 2614 * Device is not in dormant state. 2615 */ 2616 static inline void netif_dormant_off(struct net_device *dev) 2617 { 2618 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2619 linkwatch_fire_event(dev); 2620 } 2621 2622 /** 2623 * netif_dormant - test if carrier present 2624 * @dev: network device 2625 * 2626 * Check if carrier is present on device 2627 */ 2628 static inline bool netif_dormant(const struct net_device *dev) 2629 { 2630 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2631 } 2632 2633 2634 /** 2635 * netif_oper_up - test if device is operational 2636 * @dev: network device 2637 * 2638 * Check if carrier is operational 2639 */ 2640 static inline bool netif_oper_up(const struct net_device *dev) 2641 { 2642 return (dev->operstate == IF_OPER_UP || 2643 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2644 } 2645 2646 /** 2647 * netif_device_present - is device available or removed 2648 * @dev: network device 2649 * 2650 * Check if device has not been removed from system. 2651 */ 2652 static inline bool netif_device_present(struct net_device *dev) 2653 { 2654 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2655 } 2656 2657 void netif_device_detach(struct net_device *dev); 2658 2659 void netif_device_attach(struct net_device *dev); 2660 2661 /* 2662 * Network interface message level settings 2663 */ 2664 2665 enum { 2666 NETIF_MSG_DRV = 0x0001, 2667 NETIF_MSG_PROBE = 0x0002, 2668 NETIF_MSG_LINK = 0x0004, 2669 NETIF_MSG_TIMER = 0x0008, 2670 NETIF_MSG_IFDOWN = 0x0010, 2671 NETIF_MSG_IFUP = 0x0020, 2672 NETIF_MSG_RX_ERR = 0x0040, 2673 NETIF_MSG_TX_ERR = 0x0080, 2674 NETIF_MSG_TX_QUEUED = 0x0100, 2675 NETIF_MSG_INTR = 0x0200, 2676 NETIF_MSG_TX_DONE = 0x0400, 2677 NETIF_MSG_RX_STATUS = 0x0800, 2678 NETIF_MSG_PKTDATA = 0x1000, 2679 NETIF_MSG_HW = 0x2000, 2680 NETIF_MSG_WOL = 0x4000, 2681 }; 2682 2683 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2684 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2685 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2686 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2687 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2688 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2689 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2690 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2691 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2692 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2693 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2694 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2695 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2696 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2697 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2698 2699 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2700 { 2701 /* use default */ 2702 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2703 return default_msg_enable_bits; 2704 if (debug_value == 0) /* no output */ 2705 return 0; 2706 /* set low N bits */ 2707 return (1 << debug_value) - 1; 2708 } 2709 2710 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2711 { 2712 spin_lock(&txq->_xmit_lock); 2713 txq->xmit_lock_owner = cpu; 2714 } 2715 2716 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2717 { 2718 spin_lock_bh(&txq->_xmit_lock); 2719 txq->xmit_lock_owner = smp_processor_id(); 2720 } 2721 2722 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2723 { 2724 bool ok = spin_trylock(&txq->_xmit_lock); 2725 if (likely(ok)) 2726 txq->xmit_lock_owner = smp_processor_id(); 2727 return ok; 2728 } 2729 2730 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2731 { 2732 txq->xmit_lock_owner = -1; 2733 spin_unlock(&txq->_xmit_lock); 2734 } 2735 2736 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2737 { 2738 txq->xmit_lock_owner = -1; 2739 spin_unlock_bh(&txq->_xmit_lock); 2740 } 2741 2742 static inline void txq_trans_update(struct netdev_queue *txq) 2743 { 2744 if (txq->xmit_lock_owner != -1) 2745 txq->trans_start = jiffies; 2746 } 2747 2748 /** 2749 * netif_tx_lock - grab network device transmit lock 2750 * @dev: network device 2751 * 2752 * Get network device transmit lock 2753 */ 2754 static inline void netif_tx_lock(struct net_device *dev) 2755 { 2756 unsigned int i; 2757 int cpu; 2758 2759 spin_lock(&dev->tx_global_lock); 2760 cpu = smp_processor_id(); 2761 for (i = 0; i < dev->num_tx_queues; i++) { 2762 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2763 2764 /* We are the only thread of execution doing a 2765 * freeze, but we have to grab the _xmit_lock in 2766 * order to synchronize with threads which are in 2767 * the ->hard_start_xmit() handler and already 2768 * checked the frozen bit. 2769 */ 2770 __netif_tx_lock(txq, cpu); 2771 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2772 __netif_tx_unlock(txq); 2773 } 2774 } 2775 2776 static inline void netif_tx_lock_bh(struct net_device *dev) 2777 { 2778 local_bh_disable(); 2779 netif_tx_lock(dev); 2780 } 2781 2782 static inline void netif_tx_unlock(struct net_device *dev) 2783 { 2784 unsigned int i; 2785 2786 for (i = 0; i < dev->num_tx_queues; i++) { 2787 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2788 2789 /* No need to grab the _xmit_lock here. If the 2790 * queue is not stopped for another reason, we 2791 * force a schedule. 2792 */ 2793 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2794 netif_schedule_queue(txq); 2795 } 2796 spin_unlock(&dev->tx_global_lock); 2797 } 2798 2799 static inline void netif_tx_unlock_bh(struct net_device *dev) 2800 { 2801 netif_tx_unlock(dev); 2802 local_bh_enable(); 2803 } 2804 2805 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2806 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2807 __netif_tx_lock(txq, cpu); \ 2808 } \ 2809 } 2810 2811 #define HARD_TX_UNLOCK(dev, txq) { \ 2812 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2813 __netif_tx_unlock(txq); \ 2814 } \ 2815 } 2816 2817 static inline void netif_tx_disable(struct net_device *dev) 2818 { 2819 unsigned int i; 2820 int cpu; 2821 2822 local_bh_disable(); 2823 cpu = smp_processor_id(); 2824 for (i = 0; i < dev->num_tx_queues; i++) { 2825 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2826 2827 __netif_tx_lock(txq, cpu); 2828 netif_tx_stop_queue(txq); 2829 __netif_tx_unlock(txq); 2830 } 2831 local_bh_enable(); 2832 } 2833 2834 static inline void netif_addr_lock(struct net_device *dev) 2835 { 2836 spin_lock(&dev->addr_list_lock); 2837 } 2838 2839 static inline void netif_addr_lock_nested(struct net_device *dev) 2840 { 2841 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2842 } 2843 2844 static inline void netif_addr_lock_bh(struct net_device *dev) 2845 { 2846 spin_lock_bh(&dev->addr_list_lock); 2847 } 2848 2849 static inline void netif_addr_unlock(struct net_device *dev) 2850 { 2851 spin_unlock(&dev->addr_list_lock); 2852 } 2853 2854 static inline void netif_addr_unlock_bh(struct net_device *dev) 2855 { 2856 spin_unlock_bh(&dev->addr_list_lock); 2857 } 2858 2859 /* 2860 * dev_addrs walker. Should be used only for read access. Call with 2861 * rcu_read_lock held. 2862 */ 2863 #define for_each_dev_addr(dev, ha) \ 2864 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2865 2866 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2867 2868 void ether_setup(struct net_device *dev); 2869 2870 /* Support for loadable net-drivers */ 2871 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2872 void (*setup)(struct net_device *), 2873 unsigned int txqs, unsigned int rxqs); 2874 #define alloc_netdev(sizeof_priv, name, setup) \ 2875 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2876 2877 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2878 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2879 2880 int register_netdev(struct net_device *dev); 2881 void unregister_netdev(struct net_device *dev); 2882 2883 /* General hardware address lists handling functions */ 2884 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2885 struct netdev_hw_addr_list *from_list, int addr_len); 2886 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2887 struct netdev_hw_addr_list *from_list, int addr_len); 2888 void __hw_addr_init(struct netdev_hw_addr_list *list); 2889 2890 /* Functions used for device addresses handling */ 2891 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 2892 unsigned char addr_type); 2893 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 2894 unsigned char addr_type); 2895 void dev_addr_flush(struct net_device *dev); 2896 int dev_addr_init(struct net_device *dev); 2897 2898 /* Functions used for unicast addresses handling */ 2899 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 2900 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 2901 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 2902 int dev_uc_sync(struct net_device *to, struct net_device *from); 2903 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 2904 void dev_uc_unsync(struct net_device *to, struct net_device *from); 2905 void dev_uc_flush(struct net_device *dev); 2906 void dev_uc_init(struct net_device *dev); 2907 2908 /* Functions used for multicast addresses handling */ 2909 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 2910 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 2911 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 2912 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 2913 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 2914 int dev_mc_sync(struct net_device *to, struct net_device *from); 2915 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 2916 void dev_mc_unsync(struct net_device *to, struct net_device *from); 2917 void dev_mc_flush(struct net_device *dev); 2918 void dev_mc_init(struct net_device *dev); 2919 2920 /* Functions used for secondary unicast and multicast support */ 2921 void dev_set_rx_mode(struct net_device *dev); 2922 void __dev_set_rx_mode(struct net_device *dev); 2923 int dev_set_promiscuity(struct net_device *dev, int inc); 2924 int dev_set_allmulti(struct net_device *dev, int inc); 2925 void netdev_state_change(struct net_device *dev); 2926 void netdev_notify_peers(struct net_device *dev); 2927 void netdev_features_change(struct net_device *dev); 2928 /* Load a device via the kmod */ 2929 void dev_load(struct net *net, const char *name); 2930 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2931 struct rtnl_link_stats64 *storage); 2932 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2933 const struct net_device_stats *netdev_stats); 2934 2935 extern int netdev_max_backlog; 2936 extern int netdev_tstamp_prequeue; 2937 extern int weight_p; 2938 extern int bpf_jit_enable; 2939 2940 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 2941 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 2942 struct list_head **iter); 2943 2944 /* iterate through upper list, must be called under RCU read lock */ 2945 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 2946 for (iter = &(dev)->all_adj_list.upper, \ 2947 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 2948 updev; \ 2949 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 2950 2951 void *netdev_lower_get_next_private(struct net_device *dev, 2952 struct list_head **iter); 2953 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 2954 struct list_head **iter); 2955 2956 #define netdev_for_each_lower_private(dev, priv, iter) \ 2957 for (iter = (dev)->adj_list.lower.next, \ 2958 priv = netdev_lower_get_next_private(dev, &(iter)); \ 2959 priv; \ 2960 priv = netdev_lower_get_next_private(dev, &(iter))) 2961 2962 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 2963 for (iter = &(dev)->adj_list.lower, \ 2964 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 2965 priv; \ 2966 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 2967 2968 void *netdev_adjacent_get_private(struct list_head *adj_list); 2969 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 2970 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 2971 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 2972 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 2973 int netdev_master_upper_dev_link(struct net_device *dev, 2974 struct net_device *upper_dev); 2975 int netdev_master_upper_dev_link_private(struct net_device *dev, 2976 struct net_device *upper_dev, 2977 void *private); 2978 void netdev_upper_dev_unlink(struct net_device *dev, 2979 struct net_device *upper_dev); 2980 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 2981 void *netdev_lower_dev_get_private(struct net_device *dev, 2982 struct net_device *lower_dev); 2983 int skb_checksum_help(struct sk_buff *skb); 2984 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2985 netdev_features_t features, bool tx_path); 2986 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2987 netdev_features_t features); 2988 2989 static inline 2990 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 2991 { 2992 return __skb_gso_segment(skb, features, true); 2993 } 2994 __be16 skb_network_protocol(struct sk_buff *skb); 2995 2996 static inline bool can_checksum_protocol(netdev_features_t features, 2997 __be16 protocol) 2998 { 2999 return ((features & NETIF_F_GEN_CSUM) || 3000 ((features & NETIF_F_V4_CSUM) && 3001 protocol == htons(ETH_P_IP)) || 3002 ((features & NETIF_F_V6_CSUM) && 3003 protocol == htons(ETH_P_IPV6)) || 3004 ((features & NETIF_F_FCOE_CRC) && 3005 protocol == htons(ETH_P_FCOE))); 3006 } 3007 3008 #ifdef CONFIG_BUG 3009 void netdev_rx_csum_fault(struct net_device *dev); 3010 #else 3011 static inline void netdev_rx_csum_fault(struct net_device *dev) 3012 { 3013 } 3014 #endif 3015 /* rx skb timestamps */ 3016 void net_enable_timestamp(void); 3017 void net_disable_timestamp(void); 3018 3019 #ifdef CONFIG_PROC_FS 3020 int __init dev_proc_init(void); 3021 #else 3022 #define dev_proc_init() 0 3023 #endif 3024 3025 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3026 const void *ns); 3027 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3028 const void *ns); 3029 3030 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3031 { 3032 return netdev_class_create_file_ns(class_attr, NULL); 3033 } 3034 3035 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3036 { 3037 netdev_class_remove_file_ns(class_attr, NULL); 3038 } 3039 3040 extern struct kobj_ns_type_operations net_ns_type_operations; 3041 3042 const char *netdev_drivername(const struct net_device *dev); 3043 3044 void linkwatch_run_queue(void); 3045 3046 static inline netdev_features_t netdev_get_wanted_features( 3047 struct net_device *dev) 3048 { 3049 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3050 } 3051 netdev_features_t netdev_increment_features(netdev_features_t all, 3052 netdev_features_t one, netdev_features_t mask); 3053 3054 /* Allow TSO being used on stacked device : 3055 * Performing the GSO segmentation before last device 3056 * is a performance improvement. 3057 */ 3058 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3059 netdev_features_t mask) 3060 { 3061 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3062 } 3063 3064 int __netdev_update_features(struct net_device *dev); 3065 void netdev_update_features(struct net_device *dev); 3066 void netdev_change_features(struct net_device *dev); 3067 3068 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3069 struct net_device *dev); 3070 3071 netdev_features_t netif_skb_features(struct sk_buff *skb); 3072 3073 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3074 { 3075 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3076 3077 /* check flags correspondence */ 3078 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3079 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3080 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3081 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3082 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3083 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3084 3085 return (features & feature) == feature; 3086 } 3087 3088 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3089 { 3090 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3091 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3092 } 3093 3094 static inline bool netif_needs_gso(struct sk_buff *skb, 3095 netdev_features_t features) 3096 { 3097 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3098 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3099 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3100 } 3101 3102 static inline void netif_set_gso_max_size(struct net_device *dev, 3103 unsigned int size) 3104 { 3105 dev->gso_max_size = size; 3106 } 3107 3108 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3109 int pulled_hlen, u16 mac_offset, 3110 int mac_len) 3111 { 3112 skb->protocol = protocol; 3113 skb->encapsulation = 1; 3114 skb_push(skb, pulled_hlen); 3115 skb_reset_transport_header(skb); 3116 skb->mac_header = mac_offset; 3117 skb->network_header = skb->mac_header + mac_len; 3118 skb->mac_len = mac_len; 3119 } 3120 3121 static inline bool netif_is_macvlan(struct net_device *dev) 3122 { 3123 return dev->priv_flags & IFF_MACVLAN; 3124 } 3125 3126 static inline bool netif_is_bond_master(struct net_device *dev) 3127 { 3128 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3129 } 3130 3131 static inline bool netif_is_bond_slave(struct net_device *dev) 3132 { 3133 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3134 } 3135 3136 static inline bool netif_supports_nofcs(struct net_device *dev) 3137 { 3138 return dev->priv_flags & IFF_SUPP_NOFCS; 3139 } 3140 3141 extern struct pernet_operations __net_initdata loopback_net_ops; 3142 3143 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 3144 3145 /* netdev_printk helpers, similar to dev_printk */ 3146 3147 static inline const char *netdev_name(const struct net_device *dev) 3148 { 3149 if (dev->reg_state != NETREG_REGISTERED) 3150 return "(unregistered net_device)"; 3151 return dev->name; 3152 } 3153 3154 __printf(3, 4) 3155 int netdev_printk(const char *level, const struct net_device *dev, 3156 const char *format, ...); 3157 __printf(2, 3) 3158 int netdev_emerg(const struct net_device *dev, const char *format, ...); 3159 __printf(2, 3) 3160 int netdev_alert(const struct net_device *dev, const char *format, ...); 3161 __printf(2, 3) 3162 int netdev_crit(const struct net_device *dev, const char *format, ...); 3163 __printf(2, 3) 3164 int netdev_err(const struct net_device *dev, const char *format, ...); 3165 __printf(2, 3) 3166 int netdev_warn(const struct net_device *dev, const char *format, ...); 3167 __printf(2, 3) 3168 int netdev_notice(const struct net_device *dev, const char *format, ...); 3169 __printf(2, 3) 3170 int netdev_info(const struct net_device *dev, const char *format, ...); 3171 3172 #define MODULE_ALIAS_NETDEV(device) \ 3173 MODULE_ALIAS("netdev-" device) 3174 3175 #if defined(CONFIG_DYNAMIC_DEBUG) 3176 #define netdev_dbg(__dev, format, args...) \ 3177 do { \ 3178 dynamic_netdev_dbg(__dev, format, ##args); \ 3179 } while (0) 3180 #elif defined(DEBUG) 3181 #define netdev_dbg(__dev, format, args...) \ 3182 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3183 #else 3184 #define netdev_dbg(__dev, format, args...) \ 3185 ({ \ 3186 if (0) \ 3187 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3188 0; \ 3189 }) 3190 #endif 3191 3192 #if defined(VERBOSE_DEBUG) 3193 #define netdev_vdbg netdev_dbg 3194 #else 3195 3196 #define netdev_vdbg(dev, format, args...) \ 3197 ({ \ 3198 if (0) \ 3199 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3200 0; \ 3201 }) 3202 #endif 3203 3204 /* 3205 * netdev_WARN() acts like dev_printk(), but with the key difference 3206 * of using a WARN/WARN_ON to get the message out, including the 3207 * file/line information and a backtrace. 3208 */ 3209 #define netdev_WARN(dev, format, args...) \ 3210 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args) 3211 3212 /* netif printk helpers, similar to netdev_printk */ 3213 3214 #define netif_printk(priv, type, level, dev, fmt, args...) \ 3215 do { \ 3216 if (netif_msg_##type(priv)) \ 3217 netdev_printk(level, (dev), fmt, ##args); \ 3218 } while (0) 3219 3220 #define netif_level(level, priv, type, dev, fmt, args...) \ 3221 do { \ 3222 if (netif_msg_##type(priv)) \ 3223 netdev_##level(dev, fmt, ##args); \ 3224 } while (0) 3225 3226 #define netif_emerg(priv, type, dev, fmt, args...) \ 3227 netif_level(emerg, priv, type, dev, fmt, ##args) 3228 #define netif_alert(priv, type, dev, fmt, args...) \ 3229 netif_level(alert, priv, type, dev, fmt, ##args) 3230 #define netif_crit(priv, type, dev, fmt, args...) \ 3231 netif_level(crit, priv, type, dev, fmt, ##args) 3232 #define netif_err(priv, type, dev, fmt, args...) \ 3233 netif_level(err, priv, type, dev, fmt, ##args) 3234 #define netif_warn(priv, type, dev, fmt, args...) \ 3235 netif_level(warn, priv, type, dev, fmt, ##args) 3236 #define netif_notice(priv, type, dev, fmt, args...) \ 3237 netif_level(notice, priv, type, dev, fmt, ##args) 3238 #define netif_info(priv, type, dev, fmt, args...) \ 3239 netif_level(info, priv, type, dev, fmt, ##args) 3240 3241 #if defined(CONFIG_DYNAMIC_DEBUG) 3242 #define netif_dbg(priv, type, netdev, format, args...) \ 3243 do { \ 3244 if (netif_msg_##type(priv)) \ 3245 dynamic_netdev_dbg(netdev, format, ##args); \ 3246 } while (0) 3247 #elif defined(DEBUG) 3248 #define netif_dbg(priv, type, dev, format, args...) \ 3249 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3250 #else 3251 #define netif_dbg(priv, type, dev, format, args...) \ 3252 ({ \ 3253 if (0) \ 3254 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3255 0; \ 3256 }) 3257 #endif 3258 3259 #if defined(VERBOSE_DEBUG) 3260 #define netif_vdbg netif_dbg 3261 #else 3262 #define netif_vdbg(priv, type, dev, format, args...) \ 3263 ({ \ 3264 if (0) \ 3265 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3266 0; \ 3267 }) 3268 #endif 3269 3270 /* 3271 * The list of packet types we will receive (as opposed to discard) 3272 * and the routines to invoke. 3273 * 3274 * Why 16. Because with 16 the only overlap we get on a hash of the 3275 * low nibble of the protocol value is RARP/SNAP/X.25. 3276 * 3277 * NOTE: That is no longer true with the addition of VLAN tags. Not 3278 * sure which should go first, but I bet it won't make much 3279 * difference if we are running VLANs. The good news is that 3280 * this protocol won't be in the list unless compiled in, so 3281 * the average user (w/out VLANs) will not be adversely affected. 3282 * --BLG 3283 * 3284 * 0800 IP 3285 * 8100 802.1Q VLAN 3286 * 0001 802.3 3287 * 0002 AX.25 3288 * 0004 802.2 3289 * 8035 RARP 3290 * 0005 SNAP 3291 * 0805 X.25 3292 * 0806 ARP 3293 * 8137 IPX 3294 * 0009 Localtalk 3295 * 86DD IPv6 3296 */ 3297 #define PTYPE_HASH_SIZE (16) 3298 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3299 3300 #endif /* _LINUX_NETDEVICE_H */ 3301