xref: /linux-6.15/include/linux/netdevice.h (revision 99412221)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,		/* Poll is scheduled */
354 	NAPI_STATE_MISSED,		/* reschedule a napi */
355 	NAPI_STATE_DISABLE,		/* Disable pending */
356 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
358 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
360 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
361 };
362 
363 enum {
364 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
365 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
366 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
367 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
368 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
369 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
370 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
371 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
372 };
373 
374 enum gro_result {
375 	GRO_MERGED,
376 	GRO_MERGED_FREE,
377 	GRO_HELD,
378 	GRO_NORMAL,
379 	GRO_DROP,
380 	GRO_CONSUMED,
381 };
382 typedef enum gro_result gro_result_t;
383 
384 /*
385  * enum rx_handler_result - Possible return values for rx_handlers.
386  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
387  * further.
388  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
389  * case skb->dev was changed by rx_handler.
390  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
391  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
392  *
393  * rx_handlers are functions called from inside __netif_receive_skb(), to do
394  * special processing of the skb, prior to delivery to protocol handlers.
395  *
396  * Currently, a net_device can only have a single rx_handler registered. Trying
397  * to register a second rx_handler will return -EBUSY.
398  *
399  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
400  * To unregister a rx_handler on a net_device, use
401  * netdev_rx_handler_unregister().
402  *
403  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
404  * do with the skb.
405  *
406  * If the rx_handler consumed the skb in some way, it should return
407  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
408  * the skb to be delivered in some other way.
409  *
410  * If the rx_handler changed skb->dev, to divert the skb to another
411  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
412  * new device will be called if it exists.
413  *
414  * If the rx_handler decides the skb should be ignored, it should return
415  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
416  * are registered on exact device (ptype->dev == skb->dev).
417  *
418  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
419  * delivered, it should return RX_HANDLER_PASS.
420  *
421  * A device without a registered rx_handler will behave as if rx_handler
422  * returned RX_HANDLER_PASS.
423  */
424 
425 enum rx_handler_result {
426 	RX_HANDLER_CONSUMED,
427 	RX_HANDLER_ANOTHER,
428 	RX_HANDLER_EXACT,
429 	RX_HANDLER_PASS,
430 };
431 typedef enum rx_handler_result rx_handler_result_t;
432 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
433 
434 void __napi_schedule(struct napi_struct *n);
435 void __napi_schedule_irqoff(struct napi_struct *n);
436 
437 static inline bool napi_disable_pending(struct napi_struct *n)
438 {
439 	return test_bit(NAPI_STATE_DISABLE, &n->state);
440 }
441 
442 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
443 {
444 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
445 }
446 
447 bool napi_schedule_prep(struct napi_struct *n);
448 
449 /**
450  *	napi_schedule - schedule NAPI poll
451  *	@n: NAPI context
452  *
453  * Schedule NAPI poll routine to be called if it is not already
454  * running.
455  */
456 static inline void napi_schedule(struct napi_struct *n)
457 {
458 	if (napi_schedule_prep(n))
459 		__napi_schedule(n);
460 }
461 
462 /**
463  *	napi_schedule_irqoff - schedule NAPI poll
464  *	@n: NAPI context
465  *
466  * Variant of napi_schedule(), assuming hard irqs are masked.
467  */
468 static inline void napi_schedule_irqoff(struct napi_struct *n)
469 {
470 	if (napi_schedule_prep(n))
471 		__napi_schedule_irqoff(n);
472 }
473 
474 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
475 static inline bool napi_reschedule(struct napi_struct *napi)
476 {
477 	if (napi_schedule_prep(napi)) {
478 		__napi_schedule(napi);
479 		return true;
480 	}
481 	return false;
482 }
483 
484 bool napi_complete_done(struct napi_struct *n, int work_done);
485 /**
486  *	napi_complete - NAPI processing complete
487  *	@n: NAPI context
488  *
489  * Mark NAPI processing as complete.
490  * Consider using napi_complete_done() instead.
491  * Return false if device should avoid rearming interrupts.
492  */
493 static inline bool napi_complete(struct napi_struct *n)
494 {
495 	return napi_complete_done(n, 0);
496 }
497 
498 /**
499  *	napi_disable - prevent NAPI from scheduling
500  *	@n: NAPI context
501  *
502  * Stop NAPI from being scheduled on this context.
503  * Waits till any outstanding processing completes.
504  */
505 void napi_disable(struct napi_struct *n);
506 
507 /**
508  *	napi_enable - enable NAPI scheduling
509  *	@n: NAPI context
510  *
511  * Resume NAPI from being scheduled on this context.
512  * Must be paired with napi_disable.
513  */
514 static inline void napi_enable(struct napi_struct *n)
515 {
516 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 	smp_mb__before_atomic();
518 	clear_bit(NAPI_STATE_SCHED, &n->state);
519 	clear_bit(NAPI_STATE_NPSVC, &n->state);
520 }
521 
522 /**
523  *	napi_synchronize - wait until NAPI is not running
524  *	@n: NAPI context
525  *
526  * Wait until NAPI is done being scheduled on this context.
527  * Waits till any outstanding processing completes but
528  * does not disable future activations.
529  */
530 static inline void napi_synchronize(const struct napi_struct *n)
531 {
532 	if (IS_ENABLED(CONFIG_SMP))
533 		while (test_bit(NAPI_STATE_SCHED, &n->state))
534 			msleep(1);
535 	else
536 		barrier();
537 }
538 
539 /**
540  *	napi_if_scheduled_mark_missed - if napi is running, set the
541  *	NAPIF_STATE_MISSED
542  *	@n: NAPI context
543  *
544  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545  * NAPI is scheduled.
546  **/
547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548 {
549 	unsigned long val, new;
550 
551 	do {
552 		val = READ_ONCE(n->state);
553 		if (val & NAPIF_STATE_DISABLE)
554 			return true;
555 
556 		if (!(val & NAPIF_STATE_SCHED))
557 			return false;
558 
559 		new = val | NAPIF_STATE_MISSED;
560 	} while (cmpxchg(&n->state, val, new) != val);
561 
562 	return true;
563 }
564 
565 enum netdev_queue_state_t {
566 	__QUEUE_STATE_DRV_XOFF,
567 	__QUEUE_STATE_STACK_XOFF,
568 	__QUEUE_STATE_FROZEN,
569 };
570 
571 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
572 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
573 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
574 
575 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 
581 /*
582  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
583  * netif_tx_* functions below are used to manipulate this flag.  The
584  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585  * queue independently.  The netif_xmit_*stopped functions below are called
586  * to check if the queue has been stopped by the driver or stack (either
587  * of the XOFF bits are set in the state).  Drivers should not need to call
588  * netif_xmit*stopped functions, they should only be using netif_tx_*.
589  */
590 
591 struct netdev_queue {
592 /*
593  * read-mostly part
594  */
595 	struct net_device	*dev;
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	unsigned long		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xsk_buff_pool    *pool;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 /*
637  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638  *                                     == 1 : For initns only
639  *                                     == 2 : For none.
640  */
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 	return !IS_ENABLED(CONFIG_SYSCTL) ||
644 	       !sysctl_fb_tunnels_only_for_init_net ||
645 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
646 }
647 
648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	return q->numa_node;
652 #else
653 	return NUMA_NO_NODE;
654 #endif
655 }
656 
657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658 {
659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 	q->numa_node = node;
661 #endif
662 }
663 
664 #ifdef CONFIG_RPS
665 /*
666  * This structure holds an RPS map which can be of variable length.  The
667  * map is an array of CPUs.
668  */
669 struct rps_map {
670 	unsigned int len;
671 	struct rcu_head rcu;
672 	u16 cpus[];
673 };
674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675 
676 /*
677  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678  * tail pointer for that CPU's input queue at the time of last enqueue, and
679  * a hardware filter index.
680  */
681 struct rps_dev_flow {
682 	u16 cpu;
683 	u16 filter;
684 	unsigned int last_qtail;
685 };
686 #define RPS_NO_FILTER 0xffff
687 
688 /*
689  * The rps_dev_flow_table structure contains a table of flow mappings.
690  */
691 struct rps_dev_flow_table {
692 	unsigned int mask;
693 	struct rcu_head rcu;
694 	struct rps_dev_flow flows[];
695 };
696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697     ((_num) * sizeof(struct rps_dev_flow)))
698 
699 /*
700  * The rps_sock_flow_table contains mappings of flows to the last CPU
701  * on which they were processed by the application (set in recvmsg).
702  * Each entry is a 32bit value. Upper part is the high-order bits
703  * of flow hash, lower part is CPU number.
704  * rps_cpu_mask is used to partition the space, depending on number of
705  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707  * meaning we use 32-6=26 bits for the hash.
708  */
709 struct rps_sock_flow_table {
710 	u32	mask;
711 
712 	u32	ents[] ____cacheline_aligned_in_smp;
713 };
714 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715 
716 #define RPS_NO_CPU 0xffff
717 
718 extern u32 rps_cpu_mask;
719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720 
721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 					u32 hash)
723 {
724 	if (table && hash) {
725 		unsigned int index = hash & table->mask;
726 		u32 val = hash & ~rps_cpu_mask;
727 
728 		/* We only give a hint, preemption can change CPU under us */
729 		val |= raw_smp_processor_id();
730 
731 		if (table->ents[index] != val)
732 			table->ents[index] = val;
733 	}
734 }
735 
736 #ifdef CONFIG_RFS_ACCEL
737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 			 u16 filter_id);
739 #endif
740 #endif /* CONFIG_RPS */
741 
742 /* This structure contains an instance of an RX queue. */
743 struct netdev_rx_queue {
744 #ifdef CONFIG_RPS
745 	struct rps_map __rcu		*rps_map;
746 	struct rps_dev_flow_table __rcu	*rps_flow_table;
747 #endif
748 	struct kobject			kobj;
749 	struct net_device		*dev;
750 	struct xdp_rxq_info		xdp_rxq;
751 #ifdef CONFIG_XDP_SOCKETS
752 	struct xsk_buff_pool            *pool;
753 #endif
754 } ____cacheline_aligned_in_smp;
755 
756 /*
757  * RX queue sysfs structures and functions.
758  */
759 struct rx_queue_attribute {
760 	struct attribute attr;
761 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
762 	ssize_t (*store)(struct netdev_rx_queue *queue,
763 			 const char *buf, size_t len);
764 };
765 
766 #ifdef CONFIG_XPS
767 /*
768  * This structure holds an XPS map which can be of variable length.  The
769  * map is an array of queues.
770  */
771 struct xps_map {
772 	unsigned int len;
773 	unsigned int alloc_len;
774 	struct rcu_head rcu;
775 	u16 queues[];
776 };
777 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
778 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
779        - sizeof(struct xps_map)) / sizeof(u16))
780 
781 /*
782  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
783  */
784 struct xps_dev_maps {
785 	struct rcu_head rcu;
786 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
787 };
788 
789 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
790 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
791 
792 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
793 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
794 
795 #endif /* CONFIG_XPS */
796 
797 #define TC_MAX_QUEUE	16
798 #define TC_BITMASK	15
799 /* HW offloaded queuing disciplines txq count and offset maps */
800 struct netdev_tc_txq {
801 	u16 count;
802 	u16 offset;
803 };
804 
805 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
806 /*
807  * This structure is to hold information about the device
808  * configured to run FCoE protocol stack.
809  */
810 struct netdev_fcoe_hbainfo {
811 	char	manufacturer[64];
812 	char	serial_number[64];
813 	char	hardware_version[64];
814 	char	driver_version[64];
815 	char	optionrom_version[64];
816 	char	firmware_version[64];
817 	char	model[256];
818 	char	model_description[256];
819 };
820 #endif
821 
822 #define MAX_PHYS_ITEM_ID_LEN 32
823 
824 /* This structure holds a unique identifier to identify some
825  * physical item (port for example) used by a netdevice.
826  */
827 struct netdev_phys_item_id {
828 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
829 	unsigned char id_len;
830 };
831 
832 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
833 					    struct netdev_phys_item_id *b)
834 {
835 	return a->id_len == b->id_len &&
836 	       memcmp(a->id, b->id, a->id_len) == 0;
837 }
838 
839 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
840 				       struct sk_buff *skb,
841 				       struct net_device *sb_dev);
842 
843 enum tc_setup_type {
844 	TC_SETUP_QDISC_MQPRIO,
845 	TC_SETUP_CLSU32,
846 	TC_SETUP_CLSFLOWER,
847 	TC_SETUP_CLSMATCHALL,
848 	TC_SETUP_CLSBPF,
849 	TC_SETUP_BLOCK,
850 	TC_SETUP_QDISC_CBS,
851 	TC_SETUP_QDISC_RED,
852 	TC_SETUP_QDISC_PRIO,
853 	TC_SETUP_QDISC_MQ,
854 	TC_SETUP_QDISC_ETF,
855 	TC_SETUP_ROOT_QDISC,
856 	TC_SETUP_QDISC_GRED,
857 	TC_SETUP_QDISC_TAPRIO,
858 	TC_SETUP_FT,
859 	TC_SETUP_QDISC_ETS,
860 	TC_SETUP_QDISC_TBF,
861 	TC_SETUP_QDISC_FIFO,
862 };
863 
864 /* These structures hold the attributes of bpf state that are being passed
865  * to the netdevice through the bpf op.
866  */
867 enum bpf_netdev_command {
868 	/* Set or clear a bpf program used in the earliest stages of packet
869 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
870 	 * is responsible for calling bpf_prog_put on any old progs that are
871 	 * stored. In case of error, the callee need not release the new prog
872 	 * reference, but on success it takes ownership and must bpf_prog_put
873 	 * when it is no longer used.
874 	 */
875 	XDP_SETUP_PROG,
876 	XDP_SETUP_PROG_HW,
877 	/* BPF program for offload callbacks, invoked at program load time. */
878 	BPF_OFFLOAD_MAP_ALLOC,
879 	BPF_OFFLOAD_MAP_FREE,
880 	XDP_SETUP_XSK_POOL,
881 };
882 
883 struct bpf_prog_offload_ops;
884 struct netlink_ext_ack;
885 struct xdp_umem;
886 struct xdp_dev_bulk_queue;
887 struct bpf_xdp_link;
888 
889 enum bpf_xdp_mode {
890 	XDP_MODE_SKB = 0,
891 	XDP_MODE_DRV = 1,
892 	XDP_MODE_HW = 2,
893 	__MAX_XDP_MODE
894 };
895 
896 struct bpf_xdp_entity {
897 	struct bpf_prog *prog;
898 	struct bpf_xdp_link *link;
899 };
900 
901 struct netdev_bpf {
902 	enum bpf_netdev_command command;
903 	union {
904 		/* XDP_SETUP_PROG */
905 		struct {
906 			u32 flags;
907 			struct bpf_prog *prog;
908 			struct netlink_ext_ack *extack;
909 		};
910 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
911 		struct {
912 			struct bpf_offloaded_map *offmap;
913 		};
914 		/* XDP_SETUP_XSK_POOL */
915 		struct {
916 			struct xsk_buff_pool *pool;
917 			u16 queue_id;
918 		} xsk;
919 	};
920 };
921 
922 /* Flags for ndo_xsk_wakeup. */
923 #define XDP_WAKEUP_RX (1 << 0)
924 #define XDP_WAKEUP_TX (1 << 1)
925 
926 #ifdef CONFIG_XFRM_OFFLOAD
927 struct xfrmdev_ops {
928 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
929 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
930 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
931 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
932 				       struct xfrm_state *x);
933 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
934 };
935 #endif
936 
937 struct dev_ifalias {
938 	struct rcu_head rcuhead;
939 	char ifalias[];
940 };
941 
942 struct devlink;
943 struct tlsdev_ops;
944 
945 struct netdev_name_node {
946 	struct hlist_node hlist;
947 	struct list_head list;
948 	struct net_device *dev;
949 	const char *name;
950 };
951 
952 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
953 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
954 
955 struct netdev_net_notifier {
956 	struct list_head list;
957 	struct notifier_block *nb;
958 };
959 
960 /*
961  * This structure defines the management hooks for network devices.
962  * The following hooks can be defined; unless noted otherwise, they are
963  * optional and can be filled with a null pointer.
964  *
965  * int (*ndo_init)(struct net_device *dev);
966  *     This function is called once when a network device is registered.
967  *     The network device can use this for any late stage initialization
968  *     or semantic validation. It can fail with an error code which will
969  *     be propagated back to register_netdev.
970  *
971  * void (*ndo_uninit)(struct net_device *dev);
972  *     This function is called when device is unregistered or when registration
973  *     fails. It is not called if init fails.
974  *
975  * int (*ndo_open)(struct net_device *dev);
976  *     This function is called when a network device transitions to the up
977  *     state.
978  *
979  * int (*ndo_stop)(struct net_device *dev);
980  *     This function is called when a network device transitions to the down
981  *     state.
982  *
983  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
984  *                               struct net_device *dev);
985  *	Called when a packet needs to be transmitted.
986  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
987  *	the queue before that can happen; it's for obsolete devices and weird
988  *	corner cases, but the stack really does a non-trivial amount
989  *	of useless work if you return NETDEV_TX_BUSY.
990  *	Required; cannot be NULL.
991  *
992  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
993  *					   struct net_device *dev
994  *					   netdev_features_t features);
995  *	Called by core transmit path to determine if device is capable of
996  *	performing offload operations on a given packet. This is to give
997  *	the device an opportunity to implement any restrictions that cannot
998  *	be otherwise expressed by feature flags. The check is called with
999  *	the set of features that the stack has calculated and it returns
1000  *	those the driver believes to be appropriate.
1001  *
1002  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1003  *                         struct net_device *sb_dev);
1004  *	Called to decide which queue to use when device supports multiple
1005  *	transmit queues.
1006  *
1007  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1008  *	This function is called to allow device receiver to make
1009  *	changes to configuration when multicast or promiscuous is enabled.
1010  *
1011  * void (*ndo_set_rx_mode)(struct net_device *dev);
1012  *	This function is called device changes address list filtering.
1013  *	If driver handles unicast address filtering, it should set
1014  *	IFF_UNICAST_FLT in its priv_flags.
1015  *
1016  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1017  *	This function  is called when the Media Access Control address
1018  *	needs to be changed. If this interface is not defined, the
1019  *	MAC address can not be changed.
1020  *
1021  * int (*ndo_validate_addr)(struct net_device *dev);
1022  *	Test if Media Access Control address is valid for the device.
1023  *
1024  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1025  *	Called when a user requests an ioctl which can't be handled by
1026  *	the generic interface code. If not defined ioctls return
1027  *	not supported error code.
1028  *
1029  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1030  *	Used to set network devices bus interface parameters. This interface
1031  *	is retained for legacy reasons; new devices should use the bus
1032  *	interface (PCI) for low level management.
1033  *
1034  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1035  *	Called when a user wants to change the Maximum Transfer Unit
1036  *	of a device.
1037  *
1038  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1039  *	Callback used when the transmitter has not made any progress
1040  *	for dev->watchdog ticks.
1041  *
1042  * void (*ndo_get_stats64)(struct net_device *dev,
1043  *                         struct rtnl_link_stats64 *storage);
1044  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1045  *	Called when a user wants to get the network device usage
1046  *	statistics. Drivers must do one of the following:
1047  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1048  *	   rtnl_link_stats64 structure passed by the caller.
1049  *	2. Define @ndo_get_stats to update a net_device_stats structure
1050  *	   (which should normally be dev->stats) and return a pointer to
1051  *	   it. The structure may be changed asynchronously only if each
1052  *	   field is written atomically.
1053  *	3. Update dev->stats asynchronously and atomically, and define
1054  *	   neither operation.
1055  *
1056  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1057  *	Return true if this device supports offload stats of this attr_id.
1058  *
1059  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1060  *	void *attr_data)
1061  *	Get statistics for offload operations by attr_id. Write it into the
1062  *	attr_data pointer.
1063  *
1064  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1065  *	If device supports VLAN filtering this function is called when a
1066  *	VLAN id is registered.
1067  *
1068  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1069  *	If device supports VLAN filtering this function is called when a
1070  *	VLAN id is unregistered.
1071  *
1072  * void (*ndo_poll_controller)(struct net_device *dev);
1073  *
1074  *	SR-IOV management functions.
1075  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1076  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1077  *			  u8 qos, __be16 proto);
1078  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1079  *			  int max_tx_rate);
1080  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1081  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1082  * int (*ndo_get_vf_config)(struct net_device *dev,
1083  *			    int vf, struct ifla_vf_info *ivf);
1084  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1085  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1086  *			  struct nlattr *port[]);
1087  *
1088  *      Enable or disable the VF ability to query its RSS Redirection Table and
1089  *      Hash Key. This is needed since on some devices VF share this information
1090  *      with PF and querying it may introduce a theoretical security risk.
1091  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1092  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1093  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1094  *		       void *type_data);
1095  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1096  *	This is always called from the stack with the rtnl lock held and netif
1097  *	tx queues stopped. This allows the netdevice to perform queue
1098  *	management safely.
1099  *
1100  *	Fiber Channel over Ethernet (FCoE) offload functions.
1101  * int (*ndo_fcoe_enable)(struct net_device *dev);
1102  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1103  *	so the underlying device can perform whatever needed configuration or
1104  *	initialization to support acceleration of FCoE traffic.
1105  *
1106  * int (*ndo_fcoe_disable)(struct net_device *dev);
1107  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1108  *	so the underlying device can perform whatever needed clean-ups to
1109  *	stop supporting acceleration of FCoE traffic.
1110  *
1111  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1112  *			     struct scatterlist *sgl, unsigned int sgc);
1113  *	Called when the FCoE Initiator wants to initialize an I/O that
1114  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1115  *	perform necessary setup and returns 1 to indicate the device is set up
1116  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1117  *
1118  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1119  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1120  *	indicated by the FC exchange id 'xid', so the underlying device can
1121  *	clean up and reuse resources for later DDP requests.
1122  *
1123  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1124  *			      struct scatterlist *sgl, unsigned int sgc);
1125  *	Called when the FCoE Target wants to initialize an I/O that
1126  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1127  *	perform necessary setup and returns 1 to indicate the device is set up
1128  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1129  *
1130  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1131  *			       struct netdev_fcoe_hbainfo *hbainfo);
1132  *	Called when the FCoE Protocol stack wants information on the underlying
1133  *	device. This information is utilized by the FCoE protocol stack to
1134  *	register attributes with Fiber Channel management service as per the
1135  *	FC-GS Fabric Device Management Information(FDMI) specification.
1136  *
1137  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1138  *	Called when the underlying device wants to override default World Wide
1139  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1140  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1141  *	protocol stack to use.
1142  *
1143  *	RFS acceleration.
1144  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1145  *			    u16 rxq_index, u32 flow_id);
1146  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1147  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1148  *	Return the filter ID on success, or a negative error code.
1149  *
1150  *	Slave management functions (for bridge, bonding, etc).
1151  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1152  *	Called to make another netdev an underling.
1153  *
1154  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1155  *	Called to release previously enslaved netdev.
1156  *
1157  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1158  *					    struct sk_buff *skb,
1159  *					    bool all_slaves);
1160  *	Get the xmit slave of master device. If all_slaves is true, function
1161  *	assume all the slaves can transmit.
1162  *
1163  *      Feature/offload setting functions.
1164  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1165  *		netdev_features_t features);
1166  *	Adjusts the requested feature flags according to device-specific
1167  *	constraints, and returns the resulting flags. Must not modify
1168  *	the device state.
1169  *
1170  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1171  *	Called to update device configuration to new features. Passed
1172  *	feature set might be less than what was returned by ndo_fix_features()).
1173  *	Must return >0 or -errno if it changed dev->features itself.
1174  *
1175  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1176  *		      struct net_device *dev,
1177  *		      const unsigned char *addr, u16 vid, u16 flags,
1178  *		      struct netlink_ext_ack *extack);
1179  *	Adds an FDB entry to dev for addr.
1180  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1181  *		      struct net_device *dev,
1182  *		      const unsigned char *addr, u16 vid)
1183  *	Deletes the FDB entry from dev coresponding to addr.
1184  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1185  *		       struct net_device *dev, struct net_device *filter_dev,
1186  *		       int *idx)
1187  *	Used to add FDB entries to dump requests. Implementers should add
1188  *	entries to skb and update idx with the number of entries.
1189  *
1190  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1191  *			     u16 flags, struct netlink_ext_ack *extack)
1192  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1193  *			     struct net_device *dev, u32 filter_mask,
1194  *			     int nlflags)
1195  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1196  *			     u16 flags);
1197  *
1198  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1199  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1200  *	which do not represent real hardware may define this to allow their
1201  *	userspace components to manage their virtual carrier state. Devices
1202  *	that determine carrier state from physical hardware properties (eg
1203  *	network cables) or protocol-dependent mechanisms (eg
1204  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1205  *
1206  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1207  *			       struct netdev_phys_item_id *ppid);
1208  *	Called to get ID of physical port of this device. If driver does
1209  *	not implement this, it is assumed that the hw is not able to have
1210  *	multiple net devices on single physical port.
1211  *
1212  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1213  *				 struct netdev_phys_item_id *ppid)
1214  *	Called to get the parent ID of the physical port of this device.
1215  *
1216  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1217  *				 struct net_device *dev)
1218  *	Called by upper layer devices to accelerate switching or other
1219  *	station functionality into hardware. 'pdev is the lowerdev
1220  *	to use for the offload and 'dev' is the net device that will
1221  *	back the offload. Returns a pointer to the private structure
1222  *	the upper layer will maintain.
1223  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1224  *	Called by upper layer device to delete the station created
1225  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1226  *	the station and priv is the structure returned by the add
1227  *	operation.
1228  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1229  *			     int queue_index, u32 maxrate);
1230  *	Called when a user wants to set a max-rate limitation of specific
1231  *	TX queue.
1232  * int (*ndo_get_iflink)(const struct net_device *dev);
1233  *	Called to get the iflink value of this device.
1234  * void (*ndo_change_proto_down)(struct net_device *dev,
1235  *				 bool proto_down);
1236  *	This function is used to pass protocol port error state information
1237  *	to the switch driver. The switch driver can react to the proto_down
1238  *      by doing a phys down on the associated switch port.
1239  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1240  *	This function is used to get egress tunnel information for given skb.
1241  *	This is useful for retrieving outer tunnel header parameters while
1242  *	sampling packet.
1243  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1244  *	This function is used to specify the headroom that the skb must
1245  *	consider when allocation skb during packet reception. Setting
1246  *	appropriate rx headroom value allows avoiding skb head copy on
1247  *	forward. Setting a negative value resets the rx headroom to the
1248  *	default value.
1249  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1250  *	This function is used to set or query state related to XDP on the
1251  *	netdevice and manage BPF offload. See definition of
1252  *	enum bpf_netdev_command for details.
1253  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1254  *			u32 flags);
1255  *	This function is used to submit @n XDP packets for transmit on a
1256  *	netdevice. Returns number of frames successfully transmitted, frames
1257  *	that got dropped are freed/returned via xdp_return_frame().
1258  *	Returns negative number, means general error invoking ndo, meaning
1259  *	no frames were xmit'ed and core-caller will free all frames.
1260  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1261  *      This function is used to wake up the softirq, ksoftirqd or kthread
1262  *	responsible for sending and/or receiving packets on a specific
1263  *	queue id bound to an AF_XDP socket. The flags field specifies if
1264  *	only RX, only Tx, or both should be woken up using the flags
1265  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1266  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1267  *	Get devlink port instance associated with a given netdev.
1268  *	Called with a reference on the netdevice and devlink locks only,
1269  *	rtnl_lock is not held.
1270  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1271  *			 int cmd);
1272  *	Add, change, delete or get information on an IPv4 tunnel.
1273  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1274  *	If a device is paired with a peer device, return the peer instance.
1275  *	The caller must be under RCU read context.
1276  */
1277 struct net_device_ops {
1278 	int			(*ndo_init)(struct net_device *dev);
1279 	void			(*ndo_uninit)(struct net_device *dev);
1280 	int			(*ndo_open)(struct net_device *dev);
1281 	int			(*ndo_stop)(struct net_device *dev);
1282 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1283 						  struct net_device *dev);
1284 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1285 						      struct net_device *dev,
1286 						      netdev_features_t features);
1287 	u16			(*ndo_select_queue)(struct net_device *dev,
1288 						    struct sk_buff *skb,
1289 						    struct net_device *sb_dev);
1290 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1291 						       int flags);
1292 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1293 	int			(*ndo_set_mac_address)(struct net_device *dev,
1294 						       void *addr);
1295 	int			(*ndo_validate_addr)(struct net_device *dev);
1296 	int			(*ndo_do_ioctl)(struct net_device *dev,
1297 					        struct ifreq *ifr, int cmd);
1298 	int			(*ndo_set_config)(struct net_device *dev,
1299 					          struct ifmap *map);
1300 	int			(*ndo_change_mtu)(struct net_device *dev,
1301 						  int new_mtu);
1302 	int			(*ndo_neigh_setup)(struct net_device *dev,
1303 						   struct neigh_parms *);
1304 	void			(*ndo_tx_timeout) (struct net_device *dev,
1305 						   unsigned int txqueue);
1306 
1307 	void			(*ndo_get_stats64)(struct net_device *dev,
1308 						   struct rtnl_link_stats64 *storage);
1309 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1310 	int			(*ndo_get_offload_stats)(int attr_id,
1311 							 const struct net_device *dev,
1312 							 void *attr_data);
1313 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1314 
1315 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1316 						       __be16 proto, u16 vid);
1317 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1318 						        __be16 proto, u16 vid);
1319 #ifdef CONFIG_NET_POLL_CONTROLLER
1320 	void                    (*ndo_poll_controller)(struct net_device *dev);
1321 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1322 						     struct netpoll_info *info);
1323 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1324 #endif
1325 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1326 						  int queue, u8 *mac);
1327 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1328 						   int queue, u16 vlan,
1329 						   u8 qos, __be16 proto);
1330 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1331 						   int vf, int min_tx_rate,
1332 						   int max_tx_rate);
1333 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1334 						       int vf, bool setting);
1335 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1336 						    int vf, bool setting);
1337 	int			(*ndo_get_vf_config)(struct net_device *dev,
1338 						     int vf,
1339 						     struct ifla_vf_info *ivf);
1340 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1341 							 int vf, int link_state);
1342 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1343 						    int vf,
1344 						    struct ifla_vf_stats
1345 						    *vf_stats);
1346 	int			(*ndo_set_vf_port)(struct net_device *dev,
1347 						   int vf,
1348 						   struct nlattr *port[]);
1349 	int			(*ndo_get_vf_port)(struct net_device *dev,
1350 						   int vf, struct sk_buff *skb);
1351 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1352 						   int vf,
1353 						   struct ifla_vf_guid *node_guid,
1354 						   struct ifla_vf_guid *port_guid);
1355 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1356 						   int vf, u64 guid,
1357 						   int guid_type);
1358 	int			(*ndo_set_vf_rss_query_en)(
1359 						   struct net_device *dev,
1360 						   int vf, bool setting);
1361 	int			(*ndo_setup_tc)(struct net_device *dev,
1362 						enum tc_setup_type type,
1363 						void *type_data);
1364 #if IS_ENABLED(CONFIG_FCOE)
1365 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1366 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1367 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1368 						      u16 xid,
1369 						      struct scatterlist *sgl,
1370 						      unsigned int sgc);
1371 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1372 						     u16 xid);
1373 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1374 						       u16 xid,
1375 						       struct scatterlist *sgl,
1376 						       unsigned int sgc);
1377 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1378 							struct netdev_fcoe_hbainfo *hbainfo);
1379 #endif
1380 
1381 #if IS_ENABLED(CONFIG_LIBFCOE)
1382 #define NETDEV_FCOE_WWNN 0
1383 #define NETDEV_FCOE_WWPN 1
1384 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1385 						    u64 *wwn, int type);
1386 #endif
1387 
1388 #ifdef CONFIG_RFS_ACCEL
1389 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1390 						     const struct sk_buff *skb,
1391 						     u16 rxq_index,
1392 						     u32 flow_id);
1393 #endif
1394 	int			(*ndo_add_slave)(struct net_device *dev,
1395 						 struct net_device *slave_dev,
1396 						 struct netlink_ext_ack *extack);
1397 	int			(*ndo_del_slave)(struct net_device *dev,
1398 						 struct net_device *slave_dev);
1399 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1400 						      struct sk_buff *skb,
1401 						      bool all_slaves);
1402 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1403 						    netdev_features_t features);
1404 	int			(*ndo_set_features)(struct net_device *dev,
1405 						    netdev_features_t features);
1406 	int			(*ndo_neigh_construct)(struct net_device *dev,
1407 						       struct neighbour *n);
1408 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1409 						     struct neighbour *n);
1410 
1411 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1412 					       struct nlattr *tb[],
1413 					       struct net_device *dev,
1414 					       const unsigned char *addr,
1415 					       u16 vid,
1416 					       u16 flags,
1417 					       struct netlink_ext_ack *extack);
1418 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1419 					       struct nlattr *tb[],
1420 					       struct net_device *dev,
1421 					       const unsigned char *addr,
1422 					       u16 vid);
1423 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1424 						struct netlink_callback *cb,
1425 						struct net_device *dev,
1426 						struct net_device *filter_dev,
1427 						int *idx);
1428 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1429 					       struct nlattr *tb[],
1430 					       struct net_device *dev,
1431 					       const unsigned char *addr,
1432 					       u16 vid, u32 portid, u32 seq,
1433 					       struct netlink_ext_ack *extack);
1434 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1435 						      struct nlmsghdr *nlh,
1436 						      u16 flags,
1437 						      struct netlink_ext_ack *extack);
1438 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1439 						      u32 pid, u32 seq,
1440 						      struct net_device *dev,
1441 						      u32 filter_mask,
1442 						      int nlflags);
1443 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1444 						      struct nlmsghdr *nlh,
1445 						      u16 flags);
1446 	int			(*ndo_change_carrier)(struct net_device *dev,
1447 						      bool new_carrier);
1448 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1449 							struct netdev_phys_item_id *ppid);
1450 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1451 							  struct netdev_phys_item_id *ppid);
1452 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1453 							  char *name, size_t len);
1454 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1455 							struct net_device *dev);
1456 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1457 							void *priv);
1458 
1459 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1460 						      int queue_index,
1461 						      u32 maxrate);
1462 	int			(*ndo_get_iflink)(const struct net_device *dev);
1463 	int			(*ndo_change_proto_down)(struct net_device *dev,
1464 							 bool proto_down);
1465 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1466 						       struct sk_buff *skb);
1467 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1468 						       int needed_headroom);
1469 	int			(*ndo_bpf)(struct net_device *dev,
1470 					   struct netdev_bpf *bpf);
1471 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1472 						struct xdp_frame **xdp,
1473 						u32 flags);
1474 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1475 						  u32 queue_id, u32 flags);
1476 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1477 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1478 						  struct ip_tunnel_parm *p, int cmd);
1479 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1480 };
1481 
1482 /**
1483  * enum netdev_priv_flags - &struct net_device priv_flags
1484  *
1485  * These are the &struct net_device, they are only set internally
1486  * by drivers and used in the kernel. These flags are invisible to
1487  * userspace; this means that the order of these flags can change
1488  * during any kernel release.
1489  *
1490  * You should have a pretty good reason to be extending these flags.
1491  *
1492  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1493  * @IFF_EBRIDGE: Ethernet bridging device
1494  * @IFF_BONDING: bonding master or slave
1495  * @IFF_ISATAP: ISATAP interface (RFC4214)
1496  * @IFF_WAN_HDLC: WAN HDLC device
1497  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1498  *	release skb->dst
1499  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1500  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1501  * @IFF_MACVLAN_PORT: device used as macvlan port
1502  * @IFF_BRIDGE_PORT: device used as bridge port
1503  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1504  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1505  * @IFF_UNICAST_FLT: Supports unicast filtering
1506  * @IFF_TEAM_PORT: device used as team port
1507  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1508  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1509  *	change when it's running
1510  * @IFF_MACVLAN: Macvlan device
1511  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1512  *	underlying stacked devices
1513  * @IFF_L3MDEV_MASTER: device is an L3 master device
1514  * @IFF_NO_QUEUE: device can run without qdisc attached
1515  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1516  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1517  * @IFF_TEAM: device is a team device
1518  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1519  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1520  *	entity (i.e. the master device for bridged veth)
1521  * @IFF_MACSEC: device is a MACsec device
1522  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1523  * @IFF_FAILOVER: device is a failover master device
1524  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1525  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1526  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1527  */
1528 enum netdev_priv_flags {
1529 	IFF_802_1Q_VLAN			= 1<<0,
1530 	IFF_EBRIDGE			= 1<<1,
1531 	IFF_BONDING			= 1<<2,
1532 	IFF_ISATAP			= 1<<3,
1533 	IFF_WAN_HDLC			= 1<<4,
1534 	IFF_XMIT_DST_RELEASE		= 1<<5,
1535 	IFF_DONT_BRIDGE			= 1<<6,
1536 	IFF_DISABLE_NETPOLL		= 1<<7,
1537 	IFF_MACVLAN_PORT		= 1<<8,
1538 	IFF_BRIDGE_PORT			= 1<<9,
1539 	IFF_OVS_DATAPATH		= 1<<10,
1540 	IFF_TX_SKB_SHARING		= 1<<11,
1541 	IFF_UNICAST_FLT			= 1<<12,
1542 	IFF_TEAM_PORT			= 1<<13,
1543 	IFF_SUPP_NOFCS			= 1<<14,
1544 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1545 	IFF_MACVLAN			= 1<<16,
1546 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1547 	IFF_L3MDEV_MASTER		= 1<<18,
1548 	IFF_NO_QUEUE			= 1<<19,
1549 	IFF_OPENVSWITCH			= 1<<20,
1550 	IFF_L3MDEV_SLAVE		= 1<<21,
1551 	IFF_TEAM			= 1<<22,
1552 	IFF_RXFH_CONFIGURED		= 1<<23,
1553 	IFF_PHONY_HEADROOM		= 1<<24,
1554 	IFF_MACSEC			= 1<<25,
1555 	IFF_NO_RX_HANDLER		= 1<<26,
1556 	IFF_FAILOVER			= 1<<27,
1557 	IFF_FAILOVER_SLAVE		= 1<<28,
1558 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1559 	IFF_LIVE_RENAME_OK		= 1<<30,
1560 };
1561 
1562 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1563 #define IFF_EBRIDGE			IFF_EBRIDGE
1564 #define IFF_BONDING			IFF_BONDING
1565 #define IFF_ISATAP			IFF_ISATAP
1566 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1567 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1568 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1569 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1570 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1571 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1572 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1573 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1574 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1575 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1576 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1577 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1578 #define IFF_MACVLAN			IFF_MACVLAN
1579 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1580 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1581 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1582 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1583 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1584 #define IFF_TEAM			IFF_TEAM
1585 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1586 #define IFF_MACSEC			IFF_MACSEC
1587 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1588 #define IFF_FAILOVER			IFF_FAILOVER
1589 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1590 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1591 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1592 
1593 /**
1594  *	struct net_device - The DEVICE structure.
1595  *
1596  *	Actually, this whole structure is a big mistake.  It mixes I/O
1597  *	data with strictly "high-level" data, and it has to know about
1598  *	almost every data structure used in the INET module.
1599  *
1600  *	@name:	This is the first field of the "visible" part of this structure
1601  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1602  *		of the interface.
1603  *
1604  *	@name_node:	Name hashlist node
1605  *	@ifalias:	SNMP alias
1606  *	@mem_end:	Shared memory end
1607  *	@mem_start:	Shared memory start
1608  *	@base_addr:	Device I/O address
1609  *	@irq:		Device IRQ number
1610  *
1611  *	@state:		Generic network queuing layer state, see netdev_state_t
1612  *	@dev_list:	The global list of network devices
1613  *	@napi_list:	List entry used for polling NAPI devices
1614  *	@unreg_list:	List entry  when we are unregistering the
1615  *			device; see the function unregister_netdev
1616  *	@close_list:	List entry used when we are closing the device
1617  *	@ptype_all:     Device-specific packet handlers for all protocols
1618  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1619  *
1620  *	@adj_list:	Directly linked devices, like slaves for bonding
1621  *	@features:	Currently active device features
1622  *	@hw_features:	User-changeable features
1623  *
1624  *	@wanted_features:	User-requested features
1625  *	@vlan_features:		Mask of features inheritable by VLAN devices
1626  *
1627  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1628  *				This field indicates what encapsulation
1629  *				offloads the hardware is capable of doing,
1630  *				and drivers will need to set them appropriately.
1631  *
1632  *	@mpls_features:	Mask of features inheritable by MPLS
1633  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1634  *
1635  *	@ifindex:	interface index
1636  *	@group:		The group the device belongs to
1637  *
1638  *	@stats:		Statistics struct, which was left as a legacy, use
1639  *			rtnl_link_stats64 instead
1640  *
1641  *	@rx_dropped:	Dropped packets by core network,
1642  *			do not use this in drivers
1643  *	@tx_dropped:	Dropped packets by core network,
1644  *			do not use this in drivers
1645  *	@rx_nohandler:	nohandler dropped packets by core network on
1646  *			inactive devices, do not use this in drivers
1647  *	@carrier_up_count:	Number of times the carrier has been up
1648  *	@carrier_down_count:	Number of times the carrier has been down
1649  *
1650  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1651  *				instead of ioctl,
1652  *				see <net/iw_handler.h> for details.
1653  *	@wireless_data:	Instance data managed by the core of wireless extensions
1654  *
1655  *	@netdev_ops:	Includes several pointers to callbacks,
1656  *			if one wants to override the ndo_*() functions
1657  *	@ethtool_ops:	Management operations
1658  *	@l3mdev_ops:	Layer 3 master device operations
1659  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1660  *			discovery handling. Necessary for e.g. 6LoWPAN.
1661  *	@xfrmdev_ops:	Transformation offload operations
1662  *	@tlsdev_ops:	Transport Layer Security offload operations
1663  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1664  *			of Layer 2 headers.
1665  *
1666  *	@flags:		Interface flags (a la BSD)
1667  *	@priv_flags:	Like 'flags' but invisible to userspace,
1668  *			see if.h for the definitions
1669  *	@gflags:	Global flags ( kept as legacy )
1670  *	@padded:	How much padding added by alloc_netdev()
1671  *	@operstate:	RFC2863 operstate
1672  *	@link_mode:	Mapping policy to operstate
1673  *	@if_port:	Selectable AUI, TP, ...
1674  *	@dma:		DMA channel
1675  *	@mtu:		Interface MTU value
1676  *	@min_mtu:	Interface Minimum MTU value
1677  *	@max_mtu:	Interface Maximum MTU value
1678  *	@type:		Interface hardware type
1679  *	@hard_header_len: Maximum hardware header length.
1680  *	@min_header_len:  Minimum hardware header length
1681  *
1682  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1683  *			  cases can this be guaranteed
1684  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1685  *			  cases can this be guaranteed. Some cases also use
1686  *			  LL_MAX_HEADER instead to allocate the skb
1687  *
1688  *	interface address info:
1689  *
1690  * 	@perm_addr:		Permanent hw address
1691  * 	@addr_assign_type:	Hw address assignment type
1692  * 	@addr_len:		Hardware address length
1693  *	@upper_level:		Maximum depth level of upper devices.
1694  *	@lower_level:		Maximum depth level of lower devices.
1695  *	@neigh_priv_len:	Used in neigh_alloc()
1696  * 	@dev_id:		Used to differentiate devices that share
1697  * 				the same link layer address
1698  * 	@dev_port:		Used to differentiate devices that share
1699  * 				the same function
1700  *	@addr_list_lock:	XXX: need comments on this one
1701  *	@name_assign_type:	network interface name assignment type
1702  *	@uc_promisc:		Counter that indicates promiscuous mode
1703  *				has been enabled due to the need to listen to
1704  *				additional unicast addresses in a device that
1705  *				does not implement ndo_set_rx_mode()
1706  *	@uc:			unicast mac addresses
1707  *	@mc:			multicast mac addresses
1708  *	@dev_addrs:		list of device hw addresses
1709  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1710  *	@promiscuity:		Number of times the NIC is told to work in
1711  *				promiscuous mode; if it becomes 0 the NIC will
1712  *				exit promiscuous mode
1713  *	@allmulti:		Counter, enables or disables allmulticast mode
1714  *
1715  *	@vlan_info:	VLAN info
1716  *	@dsa_ptr:	dsa specific data
1717  *	@tipc_ptr:	TIPC specific data
1718  *	@atalk_ptr:	AppleTalk link
1719  *	@ip_ptr:	IPv4 specific data
1720  *	@dn_ptr:	DECnet specific data
1721  *	@ip6_ptr:	IPv6 specific data
1722  *	@ax25_ptr:	AX.25 specific data
1723  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1724  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1725  *			 device struct
1726  *	@mpls_ptr:	mpls_dev struct pointer
1727  *
1728  *	@dev_addr:	Hw address (before bcast,
1729  *			because most packets are unicast)
1730  *
1731  *	@_rx:			Array of RX queues
1732  *	@num_rx_queues:		Number of RX queues
1733  *				allocated at register_netdev() time
1734  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1735  *	@xdp_prog:		XDP sockets filter program pointer
1736  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1737  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1738  *				allow to avoid NIC hard IRQ, on busy queues.
1739  *
1740  *	@rx_handler:		handler for received packets
1741  *	@rx_handler_data: 	XXX: need comments on this one
1742  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1743  *				ingress processing
1744  *	@ingress_queue:		XXX: need comments on this one
1745  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1746  *	@broadcast:		hw bcast address
1747  *
1748  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1749  *			indexed by RX queue number. Assigned by driver.
1750  *			This must only be set if the ndo_rx_flow_steer
1751  *			operation is defined
1752  *	@index_hlist:		Device index hash chain
1753  *
1754  *	@_tx:			Array of TX queues
1755  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1756  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1757  *	@qdisc:			Root qdisc from userspace point of view
1758  *	@tx_queue_len:		Max frames per queue allowed
1759  *	@tx_global_lock: 	XXX: need comments on this one
1760  *	@xdp_bulkq:		XDP device bulk queue
1761  *	@xps_cpus_map:		all CPUs map for XPS device
1762  *	@xps_rxqs_map:		all RXQs map for XPS device
1763  *
1764  *	@xps_maps:	XXX: need comments on this one
1765  *	@miniq_egress:		clsact qdisc specific data for
1766  *				egress processing
1767  *	@qdisc_hash:		qdisc hash table
1768  *	@watchdog_timeo:	Represents the timeout that is used by
1769  *				the watchdog (see dev_watchdog())
1770  *	@watchdog_timer:	List of timers
1771  *
1772  *	@proto_down_reason:	reason a netdev interface is held down
1773  *	@pcpu_refcnt:		Number of references to this device
1774  *	@todo_list:		Delayed register/unregister
1775  *	@link_watch_list:	XXX: need comments on this one
1776  *
1777  *	@reg_state:		Register/unregister state machine
1778  *	@dismantle:		Device is going to be freed
1779  *	@rtnl_link_state:	This enum represents the phases of creating
1780  *				a new link
1781  *
1782  *	@needs_free_netdev:	Should unregister perform free_netdev?
1783  *	@priv_destructor:	Called from unregister
1784  *	@npinfo:		XXX: need comments on this one
1785  * 	@nd_net:		Network namespace this network device is inside
1786  *
1787  * 	@ml_priv:	Mid-layer private
1788  * 	@lstats:	Loopback statistics
1789  * 	@tstats:	Tunnel statistics
1790  * 	@dstats:	Dummy statistics
1791  * 	@vstats:	Virtual ethernet statistics
1792  *
1793  *	@garp_port:	GARP
1794  *	@mrp_port:	MRP
1795  *
1796  *	@dev:		Class/net/name entry
1797  *	@sysfs_groups:	Space for optional device, statistics and wireless
1798  *			sysfs groups
1799  *
1800  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1801  *	@rtnl_link_ops:	Rtnl_link_ops
1802  *
1803  *	@gso_max_size:	Maximum size of generic segmentation offload
1804  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1805  *			NIC for GSO
1806  *
1807  *	@dcbnl_ops:	Data Center Bridging netlink ops
1808  *	@num_tc:	Number of traffic classes in the net device
1809  *	@tc_to_txq:	XXX: need comments on this one
1810  *	@prio_tc_map:	XXX: need comments on this one
1811  *
1812  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1813  *
1814  *	@priomap:	XXX: need comments on this one
1815  *	@phydev:	Physical device may attach itself
1816  *			for hardware timestamping
1817  *	@sfp_bus:	attached &struct sfp_bus structure.
1818  *
1819  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1820  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1821  *
1822  *	@proto_down:	protocol port state information can be sent to the
1823  *			switch driver and used to set the phys state of the
1824  *			switch port.
1825  *
1826  *	@wol_enabled:	Wake-on-LAN is enabled
1827  *
1828  *	@net_notifier_list:	List of per-net netdev notifier block
1829  *				that follow this device when it is moved
1830  *				to another network namespace.
1831  *
1832  *	@macsec_ops:    MACsec offloading ops
1833  *
1834  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1835  *				offload capabilities of the device
1836  *	@udp_tunnel_nic:	UDP tunnel offload state
1837  *	@xdp_state:		stores info on attached XDP BPF programs
1838  *
1839  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1840  *			dev->addr_list_lock.
1841  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1842  *			keep a list of interfaces to be deleted.
1843  *
1844  *	FIXME: cleanup struct net_device such that network protocol info
1845  *	moves out.
1846  */
1847 
1848 struct net_device {
1849 	char			name[IFNAMSIZ];
1850 	struct netdev_name_node	*name_node;
1851 	struct dev_ifalias	__rcu *ifalias;
1852 	/*
1853 	 *	I/O specific fields
1854 	 *	FIXME: Merge these and struct ifmap into one
1855 	 */
1856 	unsigned long		mem_end;
1857 	unsigned long		mem_start;
1858 	unsigned long		base_addr;
1859 	int			irq;
1860 
1861 	/*
1862 	 *	Some hardware also needs these fields (state,dev_list,
1863 	 *	napi_list,unreg_list,close_list) but they are not
1864 	 *	part of the usual set specified in Space.c.
1865 	 */
1866 
1867 	unsigned long		state;
1868 
1869 	struct list_head	dev_list;
1870 	struct list_head	napi_list;
1871 	struct list_head	unreg_list;
1872 	struct list_head	close_list;
1873 	struct list_head	ptype_all;
1874 	struct list_head	ptype_specific;
1875 
1876 	struct {
1877 		struct list_head upper;
1878 		struct list_head lower;
1879 	} adj_list;
1880 
1881 	netdev_features_t	features;
1882 	netdev_features_t	hw_features;
1883 	netdev_features_t	wanted_features;
1884 	netdev_features_t	vlan_features;
1885 	netdev_features_t	hw_enc_features;
1886 	netdev_features_t	mpls_features;
1887 	netdev_features_t	gso_partial_features;
1888 
1889 	int			ifindex;
1890 	int			group;
1891 
1892 	struct net_device_stats	stats;
1893 
1894 	atomic_long_t		rx_dropped;
1895 	atomic_long_t		tx_dropped;
1896 	atomic_long_t		rx_nohandler;
1897 
1898 	/* Stats to monitor link on/off, flapping */
1899 	atomic_t		carrier_up_count;
1900 	atomic_t		carrier_down_count;
1901 
1902 #ifdef CONFIG_WIRELESS_EXT
1903 	const struct iw_handler_def *wireless_handlers;
1904 	struct iw_public_data	*wireless_data;
1905 #endif
1906 	const struct net_device_ops *netdev_ops;
1907 	const struct ethtool_ops *ethtool_ops;
1908 #ifdef CONFIG_NET_L3_MASTER_DEV
1909 	const struct l3mdev_ops	*l3mdev_ops;
1910 #endif
1911 #if IS_ENABLED(CONFIG_IPV6)
1912 	const struct ndisc_ops *ndisc_ops;
1913 #endif
1914 
1915 #ifdef CONFIG_XFRM_OFFLOAD
1916 	const struct xfrmdev_ops *xfrmdev_ops;
1917 #endif
1918 
1919 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1920 	const struct tlsdev_ops *tlsdev_ops;
1921 #endif
1922 
1923 	const struct header_ops *header_ops;
1924 
1925 	unsigned int		flags;
1926 	unsigned int		priv_flags;
1927 
1928 	unsigned short		gflags;
1929 	unsigned short		padded;
1930 
1931 	unsigned char		operstate;
1932 	unsigned char		link_mode;
1933 
1934 	unsigned char		if_port;
1935 	unsigned char		dma;
1936 
1937 	/* Note : dev->mtu is often read without holding a lock.
1938 	 * Writers usually hold RTNL.
1939 	 * It is recommended to use READ_ONCE() to annotate the reads,
1940 	 * and to use WRITE_ONCE() to annotate the writes.
1941 	 */
1942 	unsigned int		mtu;
1943 	unsigned int		min_mtu;
1944 	unsigned int		max_mtu;
1945 	unsigned short		type;
1946 	unsigned short		hard_header_len;
1947 	unsigned char		min_header_len;
1948 	unsigned char		name_assign_type;
1949 
1950 	unsigned short		needed_headroom;
1951 	unsigned short		needed_tailroom;
1952 
1953 	/* Interface address info. */
1954 	unsigned char		perm_addr[MAX_ADDR_LEN];
1955 	unsigned char		addr_assign_type;
1956 	unsigned char		addr_len;
1957 	unsigned char		upper_level;
1958 	unsigned char		lower_level;
1959 
1960 	unsigned short		neigh_priv_len;
1961 	unsigned short          dev_id;
1962 	unsigned short          dev_port;
1963 	spinlock_t		addr_list_lock;
1964 
1965 	struct netdev_hw_addr_list	uc;
1966 	struct netdev_hw_addr_list	mc;
1967 	struct netdev_hw_addr_list	dev_addrs;
1968 
1969 #ifdef CONFIG_SYSFS
1970 	struct kset		*queues_kset;
1971 #endif
1972 #ifdef CONFIG_LOCKDEP
1973 	struct list_head	unlink_list;
1974 #endif
1975 	unsigned int		promiscuity;
1976 	unsigned int		allmulti;
1977 	bool			uc_promisc;
1978 #ifdef CONFIG_LOCKDEP
1979 	unsigned char		nested_level;
1980 #endif
1981 
1982 
1983 	/* Protocol-specific pointers */
1984 
1985 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1986 	struct vlan_info __rcu	*vlan_info;
1987 #endif
1988 #if IS_ENABLED(CONFIG_NET_DSA)
1989 	struct dsa_port		*dsa_ptr;
1990 #endif
1991 #if IS_ENABLED(CONFIG_TIPC)
1992 	struct tipc_bearer __rcu *tipc_ptr;
1993 #endif
1994 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1995 	void 			*atalk_ptr;
1996 #endif
1997 	struct in_device __rcu	*ip_ptr;
1998 #if IS_ENABLED(CONFIG_DECNET)
1999 	struct dn_dev __rcu     *dn_ptr;
2000 #endif
2001 	struct inet6_dev __rcu	*ip6_ptr;
2002 #if IS_ENABLED(CONFIG_AX25)
2003 	void			*ax25_ptr;
2004 #endif
2005 	struct wireless_dev	*ieee80211_ptr;
2006 	struct wpan_dev		*ieee802154_ptr;
2007 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2008 	struct mpls_dev __rcu	*mpls_ptr;
2009 #endif
2010 
2011 /*
2012  * Cache lines mostly used on receive path (including eth_type_trans())
2013  */
2014 	/* Interface address info used in eth_type_trans() */
2015 	unsigned char		*dev_addr;
2016 
2017 	struct netdev_rx_queue	*_rx;
2018 	unsigned int		num_rx_queues;
2019 	unsigned int		real_num_rx_queues;
2020 
2021 	struct bpf_prog __rcu	*xdp_prog;
2022 	unsigned long		gro_flush_timeout;
2023 	int			napi_defer_hard_irqs;
2024 	rx_handler_func_t __rcu	*rx_handler;
2025 	void __rcu		*rx_handler_data;
2026 
2027 #ifdef CONFIG_NET_CLS_ACT
2028 	struct mini_Qdisc __rcu	*miniq_ingress;
2029 #endif
2030 	struct netdev_queue __rcu *ingress_queue;
2031 #ifdef CONFIG_NETFILTER_INGRESS
2032 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2033 #endif
2034 
2035 	unsigned char		broadcast[MAX_ADDR_LEN];
2036 #ifdef CONFIG_RFS_ACCEL
2037 	struct cpu_rmap		*rx_cpu_rmap;
2038 #endif
2039 	struct hlist_node	index_hlist;
2040 
2041 /*
2042  * Cache lines mostly used on transmit path
2043  */
2044 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2045 	unsigned int		num_tx_queues;
2046 	unsigned int		real_num_tx_queues;
2047 	struct Qdisc		*qdisc;
2048 	unsigned int		tx_queue_len;
2049 	spinlock_t		tx_global_lock;
2050 
2051 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2052 
2053 #ifdef CONFIG_XPS
2054 	struct xps_dev_maps __rcu *xps_cpus_map;
2055 	struct xps_dev_maps __rcu *xps_rxqs_map;
2056 #endif
2057 #ifdef CONFIG_NET_CLS_ACT
2058 	struct mini_Qdisc __rcu	*miniq_egress;
2059 #endif
2060 
2061 #ifdef CONFIG_NET_SCHED
2062 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2063 #endif
2064 	/* These may be needed for future network-power-down code. */
2065 	struct timer_list	watchdog_timer;
2066 	int			watchdog_timeo;
2067 
2068 	u32                     proto_down_reason;
2069 
2070 	struct list_head	todo_list;
2071 	int __percpu		*pcpu_refcnt;
2072 
2073 	struct list_head	link_watch_list;
2074 
2075 	enum { NETREG_UNINITIALIZED=0,
2076 	       NETREG_REGISTERED,	/* completed register_netdevice */
2077 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2078 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2079 	       NETREG_RELEASED,		/* called free_netdev */
2080 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2081 	} reg_state:8;
2082 
2083 	bool dismantle;
2084 
2085 	enum {
2086 		RTNL_LINK_INITIALIZED,
2087 		RTNL_LINK_INITIALIZING,
2088 	} rtnl_link_state:16;
2089 
2090 	bool needs_free_netdev;
2091 	void (*priv_destructor)(struct net_device *dev);
2092 
2093 #ifdef CONFIG_NETPOLL
2094 	struct netpoll_info __rcu	*npinfo;
2095 #endif
2096 
2097 	possible_net_t			nd_net;
2098 
2099 	/* mid-layer private */
2100 	union {
2101 		void					*ml_priv;
2102 		struct pcpu_lstats __percpu		*lstats;
2103 		struct pcpu_sw_netstats __percpu	*tstats;
2104 		struct pcpu_dstats __percpu		*dstats;
2105 	};
2106 
2107 #if IS_ENABLED(CONFIG_GARP)
2108 	struct garp_port __rcu	*garp_port;
2109 #endif
2110 #if IS_ENABLED(CONFIG_MRP)
2111 	struct mrp_port __rcu	*mrp_port;
2112 #endif
2113 
2114 	struct device		dev;
2115 	const struct attribute_group *sysfs_groups[4];
2116 	const struct attribute_group *sysfs_rx_queue_group;
2117 
2118 	const struct rtnl_link_ops *rtnl_link_ops;
2119 
2120 	/* for setting kernel sock attribute on TCP connection setup */
2121 #define GSO_MAX_SIZE		65536
2122 	unsigned int		gso_max_size;
2123 #define GSO_MAX_SEGS		65535
2124 	u16			gso_max_segs;
2125 
2126 #ifdef CONFIG_DCB
2127 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2128 #endif
2129 	s16			num_tc;
2130 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2131 	u8			prio_tc_map[TC_BITMASK + 1];
2132 
2133 #if IS_ENABLED(CONFIG_FCOE)
2134 	unsigned int		fcoe_ddp_xid;
2135 #endif
2136 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2137 	struct netprio_map __rcu *priomap;
2138 #endif
2139 	struct phy_device	*phydev;
2140 	struct sfp_bus		*sfp_bus;
2141 	struct lock_class_key	*qdisc_tx_busylock;
2142 	struct lock_class_key	*qdisc_running_key;
2143 	bool			proto_down;
2144 	unsigned		wol_enabled:1;
2145 
2146 	struct list_head	net_notifier_list;
2147 
2148 #if IS_ENABLED(CONFIG_MACSEC)
2149 	/* MACsec management functions */
2150 	const struct macsec_ops *macsec_ops;
2151 #endif
2152 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2153 	struct udp_tunnel_nic	*udp_tunnel_nic;
2154 
2155 	/* protected by rtnl_lock */
2156 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2157 };
2158 #define to_net_dev(d) container_of(d, struct net_device, dev)
2159 
2160 static inline bool netif_elide_gro(const struct net_device *dev)
2161 {
2162 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2163 		return true;
2164 	return false;
2165 }
2166 
2167 #define	NETDEV_ALIGN		32
2168 
2169 static inline
2170 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2171 {
2172 	return dev->prio_tc_map[prio & TC_BITMASK];
2173 }
2174 
2175 static inline
2176 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2177 {
2178 	if (tc >= dev->num_tc)
2179 		return -EINVAL;
2180 
2181 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2182 	return 0;
2183 }
2184 
2185 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2186 void netdev_reset_tc(struct net_device *dev);
2187 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2188 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2189 
2190 static inline
2191 int netdev_get_num_tc(struct net_device *dev)
2192 {
2193 	return dev->num_tc;
2194 }
2195 
2196 static inline void net_prefetch(void *p)
2197 {
2198 	prefetch(p);
2199 #if L1_CACHE_BYTES < 128
2200 	prefetch((u8 *)p + L1_CACHE_BYTES);
2201 #endif
2202 }
2203 
2204 static inline void net_prefetchw(void *p)
2205 {
2206 	prefetchw(p);
2207 #if L1_CACHE_BYTES < 128
2208 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2209 #endif
2210 }
2211 
2212 void netdev_unbind_sb_channel(struct net_device *dev,
2213 			      struct net_device *sb_dev);
2214 int netdev_bind_sb_channel_queue(struct net_device *dev,
2215 				 struct net_device *sb_dev,
2216 				 u8 tc, u16 count, u16 offset);
2217 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2218 static inline int netdev_get_sb_channel(struct net_device *dev)
2219 {
2220 	return max_t(int, -dev->num_tc, 0);
2221 }
2222 
2223 static inline
2224 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2225 					 unsigned int index)
2226 {
2227 	return &dev->_tx[index];
2228 }
2229 
2230 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2231 						    const struct sk_buff *skb)
2232 {
2233 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2234 }
2235 
2236 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2237 					    void (*f)(struct net_device *,
2238 						      struct netdev_queue *,
2239 						      void *),
2240 					    void *arg)
2241 {
2242 	unsigned int i;
2243 
2244 	for (i = 0; i < dev->num_tx_queues; i++)
2245 		f(dev, &dev->_tx[i], arg);
2246 }
2247 
2248 #define netdev_lockdep_set_classes(dev)				\
2249 {								\
2250 	static struct lock_class_key qdisc_tx_busylock_key;	\
2251 	static struct lock_class_key qdisc_running_key;		\
2252 	static struct lock_class_key qdisc_xmit_lock_key;	\
2253 	static struct lock_class_key dev_addr_list_lock_key;	\
2254 	unsigned int i;						\
2255 								\
2256 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2257 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2258 	lockdep_set_class(&(dev)->addr_list_lock,		\
2259 			  &dev_addr_list_lock_key);		\
2260 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2261 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2262 				  &qdisc_xmit_lock_key);	\
2263 }
2264 
2265 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2266 		     struct net_device *sb_dev);
2267 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2268 					 struct sk_buff *skb,
2269 					 struct net_device *sb_dev);
2270 
2271 /* returns the headroom that the master device needs to take in account
2272  * when forwarding to this dev
2273  */
2274 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2275 {
2276 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2277 }
2278 
2279 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2280 {
2281 	if (dev->netdev_ops->ndo_set_rx_headroom)
2282 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2283 }
2284 
2285 /* set the device rx headroom to the dev's default */
2286 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2287 {
2288 	netdev_set_rx_headroom(dev, -1);
2289 }
2290 
2291 /*
2292  * Net namespace inlines
2293  */
2294 static inline
2295 struct net *dev_net(const struct net_device *dev)
2296 {
2297 	return read_pnet(&dev->nd_net);
2298 }
2299 
2300 static inline
2301 void dev_net_set(struct net_device *dev, struct net *net)
2302 {
2303 	write_pnet(&dev->nd_net, net);
2304 }
2305 
2306 /**
2307  *	netdev_priv - access network device private data
2308  *	@dev: network device
2309  *
2310  * Get network device private data
2311  */
2312 static inline void *netdev_priv(const struct net_device *dev)
2313 {
2314 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2315 }
2316 
2317 /* Set the sysfs physical device reference for the network logical device
2318  * if set prior to registration will cause a symlink during initialization.
2319  */
2320 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2321 
2322 /* Set the sysfs device type for the network logical device to allow
2323  * fine-grained identification of different network device types. For
2324  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2325  */
2326 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2327 
2328 /* Default NAPI poll() weight
2329  * Device drivers are strongly advised to not use bigger value
2330  */
2331 #define NAPI_POLL_WEIGHT 64
2332 
2333 /**
2334  *	netif_napi_add - initialize a NAPI context
2335  *	@dev:  network device
2336  *	@napi: NAPI context
2337  *	@poll: polling function
2338  *	@weight: default weight
2339  *
2340  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2341  * *any* of the other NAPI-related functions.
2342  */
2343 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2344 		    int (*poll)(struct napi_struct *, int), int weight);
2345 
2346 /**
2347  *	netif_tx_napi_add - initialize a NAPI context
2348  *	@dev:  network device
2349  *	@napi: NAPI context
2350  *	@poll: polling function
2351  *	@weight: default weight
2352  *
2353  * This variant of netif_napi_add() should be used from drivers using NAPI
2354  * to exclusively poll a TX queue.
2355  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2356  */
2357 static inline void netif_tx_napi_add(struct net_device *dev,
2358 				     struct napi_struct *napi,
2359 				     int (*poll)(struct napi_struct *, int),
2360 				     int weight)
2361 {
2362 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2363 	netif_napi_add(dev, napi, poll, weight);
2364 }
2365 
2366 /**
2367  *  __netif_napi_del - remove a NAPI context
2368  *  @napi: NAPI context
2369  *
2370  * Warning: caller must observe RCU grace period before freeing memory
2371  * containing @napi. Drivers might want to call this helper to combine
2372  * all the needed RCU grace periods into a single one.
2373  */
2374 void __netif_napi_del(struct napi_struct *napi);
2375 
2376 /**
2377  *  netif_napi_del - remove a NAPI context
2378  *  @napi: NAPI context
2379  *
2380  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2381  */
2382 static inline void netif_napi_del(struct napi_struct *napi)
2383 {
2384 	__netif_napi_del(napi);
2385 	synchronize_net();
2386 }
2387 
2388 struct napi_gro_cb {
2389 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2390 	void	*frag0;
2391 
2392 	/* Length of frag0. */
2393 	unsigned int frag0_len;
2394 
2395 	/* This indicates where we are processing relative to skb->data. */
2396 	int	data_offset;
2397 
2398 	/* This is non-zero if the packet cannot be merged with the new skb. */
2399 	u16	flush;
2400 
2401 	/* Save the IP ID here and check when we get to the transport layer */
2402 	u16	flush_id;
2403 
2404 	/* Number of segments aggregated. */
2405 	u16	count;
2406 
2407 	/* Start offset for remote checksum offload */
2408 	u16	gro_remcsum_start;
2409 
2410 	/* jiffies when first packet was created/queued */
2411 	unsigned long age;
2412 
2413 	/* Used in ipv6_gro_receive() and foo-over-udp */
2414 	u16	proto;
2415 
2416 	/* This is non-zero if the packet may be of the same flow. */
2417 	u8	same_flow:1;
2418 
2419 	/* Used in tunnel GRO receive */
2420 	u8	encap_mark:1;
2421 
2422 	/* GRO checksum is valid */
2423 	u8	csum_valid:1;
2424 
2425 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2426 	u8	csum_cnt:3;
2427 
2428 	/* Free the skb? */
2429 	u8	free:2;
2430 #define NAPI_GRO_FREE		  1
2431 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2432 
2433 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2434 	u8	is_ipv6:1;
2435 
2436 	/* Used in GRE, set in fou/gue_gro_receive */
2437 	u8	is_fou:1;
2438 
2439 	/* Used to determine if flush_id can be ignored */
2440 	u8	is_atomic:1;
2441 
2442 	/* Number of gro_receive callbacks this packet already went through */
2443 	u8 recursion_counter:4;
2444 
2445 	/* GRO is done by frag_list pointer chaining. */
2446 	u8	is_flist:1;
2447 
2448 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2449 	__wsum	csum;
2450 
2451 	/* used in skb_gro_receive() slow path */
2452 	struct sk_buff *last;
2453 };
2454 
2455 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2456 
2457 #define GRO_RECURSION_LIMIT 15
2458 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2459 {
2460 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2461 }
2462 
2463 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2464 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2465 					       struct list_head *head,
2466 					       struct sk_buff *skb)
2467 {
2468 	if (unlikely(gro_recursion_inc_test(skb))) {
2469 		NAPI_GRO_CB(skb)->flush |= 1;
2470 		return NULL;
2471 	}
2472 
2473 	return cb(head, skb);
2474 }
2475 
2476 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2477 					    struct sk_buff *);
2478 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2479 						  struct sock *sk,
2480 						  struct list_head *head,
2481 						  struct sk_buff *skb)
2482 {
2483 	if (unlikely(gro_recursion_inc_test(skb))) {
2484 		NAPI_GRO_CB(skb)->flush |= 1;
2485 		return NULL;
2486 	}
2487 
2488 	return cb(sk, head, skb);
2489 }
2490 
2491 struct packet_type {
2492 	__be16			type;	/* This is really htons(ether_type). */
2493 	bool			ignore_outgoing;
2494 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2495 	int			(*func) (struct sk_buff *,
2496 					 struct net_device *,
2497 					 struct packet_type *,
2498 					 struct net_device *);
2499 	void			(*list_func) (struct list_head *,
2500 					      struct packet_type *,
2501 					      struct net_device *);
2502 	bool			(*id_match)(struct packet_type *ptype,
2503 					    struct sock *sk);
2504 	void			*af_packet_priv;
2505 	struct list_head	list;
2506 };
2507 
2508 struct offload_callbacks {
2509 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2510 						netdev_features_t features);
2511 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2512 						struct sk_buff *skb);
2513 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2514 };
2515 
2516 struct packet_offload {
2517 	__be16			 type;	/* This is really htons(ether_type). */
2518 	u16			 priority;
2519 	struct offload_callbacks callbacks;
2520 	struct list_head	 list;
2521 };
2522 
2523 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2524 struct pcpu_sw_netstats {
2525 	u64     rx_packets;
2526 	u64     rx_bytes;
2527 	u64     tx_packets;
2528 	u64     tx_bytes;
2529 	struct u64_stats_sync   syncp;
2530 } __aligned(4 * sizeof(u64));
2531 
2532 struct pcpu_lstats {
2533 	u64_stats_t packets;
2534 	u64_stats_t bytes;
2535 	struct u64_stats_sync syncp;
2536 } __aligned(2 * sizeof(u64));
2537 
2538 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2539 
2540 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2541 {
2542 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2543 
2544 	u64_stats_update_begin(&tstats->syncp);
2545 	tstats->rx_bytes += len;
2546 	tstats->rx_packets++;
2547 	u64_stats_update_end(&tstats->syncp);
2548 }
2549 
2550 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2551 					  unsigned int packets,
2552 					  unsigned int len)
2553 {
2554 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2555 
2556 	u64_stats_update_begin(&tstats->syncp);
2557 	tstats->tx_bytes += len;
2558 	tstats->tx_packets += packets;
2559 	u64_stats_update_end(&tstats->syncp);
2560 }
2561 
2562 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2563 {
2564 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2565 
2566 	u64_stats_update_begin(&lstats->syncp);
2567 	u64_stats_add(&lstats->bytes, len);
2568 	u64_stats_inc(&lstats->packets);
2569 	u64_stats_update_end(&lstats->syncp);
2570 }
2571 
2572 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2573 ({									\
2574 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2575 	if (pcpu_stats)	{						\
2576 		int __cpu;						\
2577 		for_each_possible_cpu(__cpu) {				\
2578 			typeof(type) *stat;				\
2579 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2580 			u64_stats_init(&stat->syncp);			\
2581 		}							\
2582 	}								\
2583 	pcpu_stats;							\
2584 })
2585 
2586 #define netdev_alloc_pcpu_stats(type)					\
2587 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2588 
2589 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2590 ({									\
2591 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2592 	if (pcpu_stats) {						\
2593 		int __cpu;						\
2594 		for_each_possible_cpu(__cpu) {				\
2595 			typeof(type) *stat;				\
2596 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2597 			u64_stats_init(&stat->syncp);			\
2598 		}							\
2599 	}								\
2600 	pcpu_stats;							\
2601 })
2602 
2603 enum netdev_lag_tx_type {
2604 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2605 	NETDEV_LAG_TX_TYPE_RANDOM,
2606 	NETDEV_LAG_TX_TYPE_BROADCAST,
2607 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2608 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2609 	NETDEV_LAG_TX_TYPE_HASH,
2610 };
2611 
2612 enum netdev_lag_hash {
2613 	NETDEV_LAG_HASH_NONE,
2614 	NETDEV_LAG_HASH_L2,
2615 	NETDEV_LAG_HASH_L34,
2616 	NETDEV_LAG_HASH_L23,
2617 	NETDEV_LAG_HASH_E23,
2618 	NETDEV_LAG_HASH_E34,
2619 	NETDEV_LAG_HASH_UNKNOWN,
2620 };
2621 
2622 struct netdev_lag_upper_info {
2623 	enum netdev_lag_tx_type tx_type;
2624 	enum netdev_lag_hash hash_type;
2625 };
2626 
2627 struct netdev_lag_lower_state_info {
2628 	u8 link_up : 1,
2629 	   tx_enabled : 1;
2630 };
2631 
2632 #include <linux/notifier.h>
2633 
2634 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2635  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2636  * adding new types.
2637  */
2638 enum netdev_cmd {
2639 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2640 	NETDEV_DOWN,
2641 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2642 				   detected a hardware crash and restarted
2643 				   - we can use this eg to kick tcp sessions
2644 				   once done */
2645 	NETDEV_CHANGE,		/* Notify device state change */
2646 	NETDEV_REGISTER,
2647 	NETDEV_UNREGISTER,
2648 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2649 	NETDEV_CHANGEADDR,	/* notify after the address change */
2650 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2651 	NETDEV_GOING_DOWN,
2652 	NETDEV_CHANGENAME,
2653 	NETDEV_FEAT_CHANGE,
2654 	NETDEV_BONDING_FAILOVER,
2655 	NETDEV_PRE_UP,
2656 	NETDEV_PRE_TYPE_CHANGE,
2657 	NETDEV_POST_TYPE_CHANGE,
2658 	NETDEV_POST_INIT,
2659 	NETDEV_RELEASE,
2660 	NETDEV_NOTIFY_PEERS,
2661 	NETDEV_JOIN,
2662 	NETDEV_CHANGEUPPER,
2663 	NETDEV_RESEND_IGMP,
2664 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2665 	NETDEV_CHANGEINFODATA,
2666 	NETDEV_BONDING_INFO,
2667 	NETDEV_PRECHANGEUPPER,
2668 	NETDEV_CHANGELOWERSTATE,
2669 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2670 	NETDEV_UDP_TUNNEL_DROP_INFO,
2671 	NETDEV_CHANGE_TX_QUEUE_LEN,
2672 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2673 	NETDEV_CVLAN_FILTER_DROP_INFO,
2674 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2675 	NETDEV_SVLAN_FILTER_DROP_INFO,
2676 };
2677 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2678 
2679 int register_netdevice_notifier(struct notifier_block *nb);
2680 int unregister_netdevice_notifier(struct notifier_block *nb);
2681 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2682 int unregister_netdevice_notifier_net(struct net *net,
2683 				      struct notifier_block *nb);
2684 int register_netdevice_notifier_dev_net(struct net_device *dev,
2685 					struct notifier_block *nb,
2686 					struct netdev_net_notifier *nn);
2687 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2688 					  struct notifier_block *nb,
2689 					  struct netdev_net_notifier *nn);
2690 
2691 struct netdev_notifier_info {
2692 	struct net_device	*dev;
2693 	struct netlink_ext_ack	*extack;
2694 };
2695 
2696 struct netdev_notifier_info_ext {
2697 	struct netdev_notifier_info info; /* must be first */
2698 	union {
2699 		u32 mtu;
2700 	} ext;
2701 };
2702 
2703 struct netdev_notifier_change_info {
2704 	struct netdev_notifier_info info; /* must be first */
2705 	unsigned int flags_changed;
2706 };
2707 
2708 struct netdev_notifier_changeupper_info {
2709 	struct netdev_notifier_info info; /* must be first */
2710 	struct net_device *upper_dev; /* new upper dev */
2711 	bool master; /* is upper dev master */
2712 	bool linking; /* is the notification for link or unlink */
2713 	void *upper_info; /* upper dev info */
2714 };
2715 
2716 struct netdev_notifier_changelowerstate_info {
2717 	struct netdev_notifier_info info; /* must be first */
2718 	void *lower_state_info; /* is lower dev state */
2719 };
2720 
2721 struct netdev_notifier_pre_changeaddr_info {
2722 	struct netdev_notifier_info info; /* must be first */
2723 	const unsigned char *dev_addr;
2724 };
2725 
2726 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2727 					     struct net_device *dev)
2728 {
2729 	info->dev = dev;
2730 	info->extack = NULL;
2731 }
2732 
2733 static inline struct net_device *
2734 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2735 {
2736 	return info->dev;
2737 }
2738 
2739 static inline struct netlink_ext_ack *
2740 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2741 {
2742 	return info->extack;
2743 }
2744 
2745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2746 
2747 
2748 extern rwlock_t				dev_base_lock;		/* Device list lock */
2749 
2750 #define for_each_netdev(net, d)		\
2751 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2752 #define for_each_netdev_reverse(net, d)	\
2753 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2754 #define for_each_netdev_rcu(net, d)		\
2755 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2756 #define for_each_netdev_safe(net, d, n)	\
2757 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2758 #define for_each_netdev_continue(net, d)		\
2759 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2760 #define for_each_netdev_continue_reverse(net, d)		\
2761 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2762 						     dev_list)
2763 #define for_each_netdev_continue_rcu(net, d)		\
2764 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2765 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2766 		for_each_netdev_rcu(&init_net, slave)	\
2767 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2768 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2769 
2770 static inline struct net_device *next_net_device(struct net_device *dev)
2771 {
2772 	struct list_head *lh;
2773 	struct net *net;
2774 
2775 	net = dev_net(dev);
2776 	lh = dev->dev_list.next;
2777 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2778 }
2779 
2780 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2781 {
2782 	struct list_head *lh;
2783 	struct net *net;
2784 
2785 	net = dev_net(dev);
2786 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2787 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2788 }
2789 
2790 static inline struct net_device *first_net_device(struct net *net)
2791 {
2792 	return list_empty(&net->dev_base_head) ? NULL :
2793 		net_device_entry(net->dev_base_head.next);
2794 }
2795 
2796 static inline struct net_device *first_net_device_rcu(struct net *net)
2797 {
2798 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2799 
2800 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2801 }
2802 
2803 int netdev_boot_setup_check(struct net_device *dev);
2804 unsigned long netdev_boot_base(const char *prefix, int unit);
2805 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2806 				       const char *hwaddr);
2807 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2808 void dev_add_pack(struct packet_type *pt);
2809 void dev_remove_pack(struct packet_type *pt);
2810 void __dev_remove_pack(struct packet_type *pt);
2811 void dev_add_offload(struct packet_offload *po);
2812 void dev_remove_offload(struct packet_offload *po);
2813 
2814 int dev_get_iflink(const struct net_device *dev);
2815 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2816 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2817 				      unsigned short mask);
2818 struct net_device *dev_get_by_name(struct net *net, const char *name);
2819 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2820 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2821 int dev_alloc_name(struct net_device *dev, const char *name);
2822 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2823 void dev_close(struct net_device *dev);
2824 void dev_close_many(struct list_head *head, bool unlink);
2825 void dev_disable_lro(struct net_device *dev);
2826 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2827 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2828 		     struct net_device *sb_dev);
2829 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2830 		       struct net_device *sb_dev);
2831 
2832 int dev_queue_xmit(struct sk_buff *skb);
2833 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2834 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2835 
2836 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2837 {
2838 	int ret;
2839 
2840 	ret = __dev_direct_xmit(skb, queue_id);
2841 	if (!dev_xmit_complete(ret))
2842 		kfree_skb(skb);
2843 	return ret;
2844 }
2845 
2846 int register_netdevice(struct net_device *dev);
2847 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2848 void unregister_netdevice_many(struct list_head *head);
2849 static inline void unregister_netdevice(struct net_device *dev)
2850 {
2851 	unregister_netdevice_queue(dev, NULL);
2852 }
2853 
2854 int netdev_refcnt_read(const struct net_device *dev);
2855 void free_netdev(struct net_device *dev);
2856 void netdev_freemem(struct net_device *dev);
2857 int init_dummy_netdev(struct net_device *dev);
2858 
2859 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2860 					 struct sk_buff *skb,
2861 					 bool all_slaves);
2862 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2863 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2864 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2865 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2866 int netdev_get_name(struct net *net, char *name, int ifindex);
2867 int dev_restart(struct net_device *dev);
2868 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2869 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2870 
2871 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2872 {
2873 	return NAPI_GRO_CB(skb)->data_offset;
2874 }
2875 
2876 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2877 {
2878 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2879 }
2880 
2881 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2882 {
2883 	NAPI_GRO_CB(skb)->data_offset += len;
2884 }
2885 
2886 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2887 					unsigned int offset)
2888 {
2889 	return NAPI_GRO_CB(skb)->frag0 + offset;
2890 }
2891 
2892 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2893 {
2894 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2895 }
2896 
2897 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2898 {
2899 	NAPI_GRO_CB(skb)->frag0 = NULL;
2900 	NAPI_GRO_CB(skb)->frag0_len = 0;
2901 }
2902 
2903 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2904 					unsigned int offset)
2905 {
2906 	if (!pskb_may_pull(skb, hlen))
2907 		return NULL;
2908 
2909 	skb_gro_frag0_invalidate(skb);
2910 	return skb->data + offset;
2911 }
2912 
2913 static inline void *skb_gro_network_header(struct sk_buff *skb)
2914 {
2915 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2916 	       skb_network_offset(skb);
2917 }
2918 
2919 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2920 					const void *start, unsigned int len)
2921 {
2922 	if (NAPI_GRO_CB(skb)->csum_valid)
2923 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2924 						  csum_partial(start, len, 0));
2925 }
2926 
2927 /* GRO checksum functions. These are logical equivalents of the normal
2928  * checksum functions (in skbuff.h) except that they operate on the GRO
2929  * offsets and fields in sk_buff.
2930  */
2931 
2932 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2933 
2934 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2935 {
2936 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2937 }
2938 
2939 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2940 						      bool zero_okay,
2941 						      __sum16 check)
2942 {
2943 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2944 		skb_checksum_start_offset(skb) <
2945 		 skb_gro_offset(skb)) &&
2946 		!skb_at_gro_remcsum_start(skb) &&
2947 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2948 		(!zero_okay || check));
2949 }
2950 
2951 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2952 							   __wsum psum)
2953 {
2954 	if (NAPI_GRO_CB(skb)->csum_valid &&
2955 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2956 		return 0;
2957 
2958 	NAPI_GRO_CB(skb)->csum = psum;
2959 
2960 	return __skb_gro_checksum_complete(skb);
2961 }
2962 
2963 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2964 {
2965 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2966 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2967 		NAPI_GRO_CB(skb)->csum_cnt--;
2968 	} else {
2969 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2970 		 * verified a new top level checksum or an encapsulated one
2971 		 * during GRO. This saves work if we fallback to normal path.
2972 		 */
2973 		__skb_incr_checksum_unnecessary(skb);
2974 	}
2975 }
2976 
2977 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2978 				    compute_pseudo)			\
2979 ({									\
2980 	__sum16 __ret = 0;						\
2981 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2982 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2983 				compute_pseudo(skb, proto));		\
2984 	if (!__ret)							\
2985 		skb_gro_incr_csum_unnecessary(skb);			\
2986 	__ret;								\
2987 })
2988 
2989 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2990 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2991 
2992 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2993 					     compute_pseudo)		\
2994 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2995 
2996 #define skb_gro_checksum_simple_validate(skb)				\
2997 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2998 
2999 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3000 {
3001 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3002 		!NAPI_GRO_CB(skb)->csum_valid);
3003 }
3004 
3005 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3006 					      __wsum pseudo)
3007 {
3008 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3009 	NAPI_GRO_CB(skb)->csum_valid = 1;
3010 }
3011 
3012 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3013 do {									\
3014 	if (__skb_gro_checksum_convert_check(skb))			\
3015 		__skb_gro_checksum_convert(skb, 			\
3016 					   compute_pseudo(skb, proto));	\
3017 } while (0)
3018 
3019 struct gro_remcsum {
3020 	int offset;
3021 	__wsum delta;
3022 };
3023 
3024 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3025 {
3026 	grc->offset = 0;
3027 	grc->delta = 0;
3028 }
3029 
3030 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3031 					    unsigned int off, size_t hdrlen,
3032 					    int start, int offset,
3033 					    struct gro_remcsum *grc,
3034 					    bool nopartial)
3035 {
3036 	__wsum delta;
3037 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3038 
3039 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3040 
3041 	if (!nopartial) {
3042 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3043 		return ptr;
3044 	}
3045 
3046 	ptr = skb_gro_header_fast(skb, off);
3047 	if (skb_gro_header_hard(skb, off + plen)) {
3048 		ptr = skb_gro_header_slow(skb, off + plen, off);
3049 		if (!ptr)
3050 			return NULL;
3051 	}
3052 
3053 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3054 			       start, offset);
3055 
3056 	/* Adjust skb->csum since we changed the packet */
3057 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3058 
3059 	grc->offset = off + hdrlen + offset;
3060 	grc->delta = delta;
3061 
3062 	return ptr;
3063 }
3064 
3065 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3066 					   struct gro_remcsum *grc)
3067 {
3068 	void *ptr;
3069 	size_t plen = grc->offset + sizeof(u16);
3070 
3071 	if (!grc->delta)
3072 		return;
3073 
3074 	ptr = skb_gro_header_fast(skb, grc->offset);
3075 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3076 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3077 		if (!ptr)
3078 			return;
3079 	}
3080 
3081 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3082 }
3083 
3084 #ifdef CONFIG_XFRM_OFFLOAD
3085 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3086 {
3087 	if (PTR_ERR(pp) != -EINPROGRESS)
3088 		NAPI_GRO_CB(skb)->flush |= flush;
3089 }
3090 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3091 					       struct sk_buff *pp,
3092 					       int flush,
3093 					       struct gro_remcsum *grc)
3094 {
3095 	if (PTR_ERR(pp) != -EINPROGRESS) {
3096 		NAPI_GRO_CB(skb)->flush |= flush;
3097 		skb_gro_remcsum_cleanup(skb, grc);
3098 		skb->remcsum_offload = 0;
3099 	}
3100 }
3101 #else
3102 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3103 {
3104 	NAPI_GRO_CB(skb)->flush |= flush;
3105 }
3106 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3107 					       struct sk_buff *pp,
3108 					       int flush,
3109 					       struct gro_remcsum *grc)
3110 {
3111 	NAPI_GRO_CB(skb)->flush |= flush;
3112 	skb_gro_remcsum_cleanup(skb, grc);
3113 	skb->remcsum_offload = 0;
3114 }
3115 #endif
3116 
3117 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3118 				  unsigned short type,
3119 				  const void *daddr, const void *saddr,
3120 				  unsigned int len)
3121 {
3122 	if (!dev->header_ops || !dev->header_ops->create)
3123 		return 0;
3124 
3125 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3126 }
3127 
3128 static inline int dev_parse_header(const struct sk_buff *skb,
3129 				   unsigned char *haddr)
3130 {
3131 	const struct net_device *dev = skb->dev;
3132 
3133 	if (!dev->header_ops || !dev->header_ops->parse)
3134 		return 0;
3135 	return dev->header_ops->parse(skb, haddr);
3136 }
3137 
3138 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3139 {
3140 	const struct net_device *dev = skb->dev;
3141 
3142 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3143 		return 0;
3144 	return dev->header_ops->parse_protocol(skb);
3145 }
3146 
3147 /* ll_header must have at least hard_header_len allocated */
3148 static inline bool dev_validate_header(const struct net_device *dev,
3149 				       char *ll_header, int len)
3150 {
3151 	if (likely(len >= dev->hard_header_len))
3152 		return true;
3153 	if (len < dev->min_header_len)
3154 		return false;
3155 
3156 	if (capable(CAP_SYS_RAWIO)) {
3157 		memset(ll_header + len, 0, dev->hard_header_len - len);
3158 		return true;
3159 	}
3160 
3161 	if (dev->header_ops && dev->header_ops->validate)
3162 		return dev->header_ops->validate(ll_header, len);
3163 
3164 	return false;
3165 }
3166 
3167 static inline bool dev_has_header(const struct net_device *dev)
3168 {
3169 	return dev->header_ops && dev->header_ops->create;
3170 }
3171 
3172 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3173 			   int len, int size);
3174 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3175 static inline int unregister_gifconf(unsigned int family)
3176 {
3177 	return register_gifconf(family, NULL);
3178 }
3179 
3180 #ifdef CONFIG_NET_FLOW_LIMIT
3181 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3182 struct sd_flow_limit {
3183 	u64			count;
3184 	unsigned int		num_buckets;
3185 	unsigned int		history_head;
3186 	u16			history[FLOW_LIMIT_HISTORY];
3187 	u8			buckets[];
3188 };
3189 
3190 extern int netdev_flow_limit_table_len;
3191 #endif /* CONFIG_NET_FLOW_LIMIT */
3192 
3193 /*
3194  * Incoming packets are placed on per-CPU queues
3195  */
3196 struct softnet_data {
3197 	struct list_head	poll_list;
3198 	struct sk_buff_head	process_queue;
3199 
3200 	/* stats */
3201 	unsigned int		processed;
3202 	unsigned int		time_squeeze;
3203 	unsigned int		received_rps;
3204 #ifdef CONFIG_RPS
3205 	struct softnet_data	*rps_ipi_list;
3206 #endif
3207 #ifdef CONFIG_NET_FLOW_LIMIT
3208 	struct sd_flow_limit __rcu *flow_limit;
3209 #endif
3210 	struct Qdisc		*output_queue;
3211 	struct Qdisc		**output_queue_tailp;
3212 	struct sk_buff		*completion_queue;
3213 #ifdef CONFIG_XFRM_OFFLOAD
3214 	struct sk_buff_head	xfrm_backlog;
3215 #endif
3216 	/* written and read only by owning cpu: */
3217 	struct {
3218 		u16 recursion;
3219 		u8  more;
3220 	} xmit;
3221 #ifdef CONFIG_RPS
3222 	/* input_queue_head should be written by cpu owning this struct,
3223 	 * and only read by other cpus. Worth using a cache line.
3224 	 */
3225 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3226 
3227 	/* Elements below can be accessed between CPUs for RPS/RFS */
3228 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3229 	struct softnet_data	*rps_ipi_next;
3230 	unsigned int		cpu;
3231 	unsigned int		input_queue_tail;
3232 #endif
3233 	unsigned int		dropped;
3234 	struct sk_buff_head	input_pkt_queue;
3235 	struct napi_struct	backlog;
3236 
3237 };
3238 
3239 static inline void input_queue_head_incr(struct softnet_data *sd)
3240 {
3241 #ifdef CONFIG_RPS
3242 	sd->input_queue_head++;
3243 #endif
3244 }
3245 
3246 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3247 					      unsigned int *qtail)
3248 {
3249 #ifdef CONFIG_RPS
3250 	*qtail = ++sd->input_queue_tail;
3251 #endif
3252 }
3253 
3254 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3255 
3256 static inline int dev_recursion_level(void)
3257 {
3258 	return this_cpu_read(softnet_data.xmit.recursion);
3259 }
3260 
3261 #define XMIT_RECURSION_LIMIT	8
3262 static inline bool dev_xmit_recursion(void)
3263 {
3264 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3265 			XMIT_RECURSION_LIMIT);
3266 }
3267 
3268 static inline void dev_xmit_recursion_inc(void)
3269 {
3270 	__this_cpu_inc(softnet_data.xmit.recursion);
3271 }
3272 
3273 static inline void dev_xmit_recursion_dec(void)
3274 {
3275 	__this_cpu_dec(softnet_data.xmit.recursion);
3276 }
3277 
3278 void __netif_schedule(struct Qdisc *q);
3279 void netif_schedule_queue(struct netdev_queue *txq);
3280 
3281 static inline void netif_tx_schedule_all(struct net_device *dev)
3282 {
3283 	unsigned int i;
3284 
3285 	for (i = 0; i < dev->num_tx_queues; i++)
3286 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3287 }
3288 
3289 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3290 {
3291 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3292 }
3293 
3294 /**
3295  *	netif_start_queue - allow transmit
3296  *	@dev: network device
3297  *
3298  *	Allow upper layers to call the device hard_start_xmit routine.
3299  */
3300 static inline void netif_start_queue(struct net_device *dev)
3301 {
3302 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3303 }
3304 
3305 static inline void netif_tx_start_all_queues(struct net_device *dev)
3306 {
3307 	unsigned int i;
3308 
3309 	for (i = 0; i < dev->num_tx_queues; i++) {
3310 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3311 		netif_tx_start_queue(txq);
3312 	}
3313 }
3314 
3315 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3316 
3317 /**
3318  *	netif_wake_queue - restart transmit
3319  *	@dev: network device
3320  *
3321  *	Allow upper layers to call the device hard_start_xmit routine.
3322  *	Used for flow control when transmit resources are available.
3323  */
3324 static inline void netif_wake_queue(struct net_device *dev)
3325 {
3326 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3327 }
3328 
3329 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3330 {
3331 	unsigned int i;
3332 
3333 	for (i = 0; i < dev->num_tx_queues; i++) {
3334 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3335 		netif_tx_wake_queue(txq);
3336 	}
3337 }
3338 
3339 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3340 {
3341 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3342 }
3343 
3344 /**
3345  *	netif_stop_queue - stop transmitted packets
3346  *	@dev: network device
3347  *
3348  *	Stop upper layers calling the device hard_start_xmit routine.
3349  *	Used for flow control when transmit resources are unavailable.
3350  */
3351 static inline void netif_stop_queue(struct net_device *dev)
3352 {
3353 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3354 }
3355 
3356 void netif_tx_stop_all_queues(struct net_device *dev);
3357 
3358 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3359 {
3360 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3361 }
3362 
3363 /**
3364  *	netif_queue_stopped - test if transmit queue is flowblocked
3365  *	@dev: network device
3366  *
3367  *	Test if transmit queue on device is currently unable to send.
3368  */
3369 static inline bool netif_queue_stopped(const struct net_device *dev)
3370 {
3371 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3372 }
3373 
3374 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3375 {
3376 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3377 }
3378 
3379 static inline bool
3380 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3381 {
3382 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3383 }
3384 
3385 static inline bool
3386 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3387 {
3388 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3389 }
3390 
3391 /**
3392  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3393  *	@dev_queue: pointer to transmit queue
3394  *
3395  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3396  * to give appropriate hint to the CPU.
3397  */
3398 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3399 {
3400 #ifdef CONFIG_BQL
3401 	prefetchw(&dev_queue->dql.num_queued);
3402 #endif
3403 }
3404 
3405 /**
3406  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3407  *	@dev_queue: pointer to transmit queue
3408  *
3409  * BQL enabled drivers might use this helper in their TX completion path,
3410  * to give appropriate hint to the CPU.
3411  */
3412 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3413 {
3414 #ifdef CONFIG_BQL
3415 	prefetchw(&dev_queue->dql.limit);
3416 #endif
3417 }
3418 
3419 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3420 					unsigned int bytes)
3421 {
3422 #ifdef CONFIG_BQL
3423 	dql_queued(&dev_queue->dql, bytes);
3424 
3425 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3426 		return;
3427 
3428 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3429 
3430 	/*
3431 	 * The XOFF flag must be set before checking the dql_avail below,
3432 	 * because in netdev_tx_completed_queue we update the dql_completed
3433 	 * before checking the XOFF flag.
3434 	 */
3435 	smp_mb();
3436 
3437 	/* check again in case another CPU has just made room avail */
3438 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3439 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3440 #endif
3441 }
3442 
3443 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3444  * that they should not test BQL status themselves.
3445  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3446  * skb of a batch.
3447  * Returns true if the doorbell must be used to kick the NIC.
3448  */
3449 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3450 					  unsigned int bytes,
3451 					  bool xmit_more)
3452 {
3453 	if (xmit_more) {
3454 #ifdef CONFIG_BQL
3455 		dql_queued(&dev_queue->dql, bytes);
3456 #endif
3457 		return netif_tx_queue_stopped(dev_queue);
3458 	}
3459 	netdev_tx_sent_queue(dev_queue, bytes);
3460 	return true;
3461 }
3462 
3463 /**
3464  * 	netdev_sent_queue - report the number of bytes queued to hardware
3465  * 	@dev: network device
3466  * 	@bytes: number of bytes queued to the hardware device queue
3467  *
3468  * 	Report the number of bytes queued for sending/completion to the network
3469  * 	device hardware queue. @bytes should be a good approximation and should
3470  * 	exactly match netdev_completed_queue() @bytes
3471  */
3472 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3473 {
3474 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3475 }
3476 
3477 static inline bool __netdev_sent_queue(struct net_device *dev,
3478 				       unsigned int bytes,
3479 				       bool xmit_more)
3480 {
3481 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3482 				      xmit_more);
3483 }
3484 
3485 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3486 					     unsigned int pkts, unsigned int bytes)
3487 {
3488 #ifdef CONFIG_BQL
3489 	if (unlikely(!bytes))
3490 		return;
3491 
3492 	dql_completed(&dev_queue->dql, bytes);
3493 
3494 	/*
3495 	 * Without the memory barrier there is a small possiblity that
3496 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3497 	 * be stopped forever
3498 	 */
3499 	smp_mb();
3500 
3501 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3502 		return;
3503 
3504 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3505 		netif_schedule_queue(dev_queue);
3506 #endif
3507 }
3508 
3509 /**
3510  * 	netdev_completed_queue - report bytes and packets completed by device
3511  * 	@dev: network device
3512  * 	@pkts: actual number of packets sent over the medium
3513  * 	@bytes: actual number of bytes sent over the medium
3514  *
3515  * 	Report the number of bytes and packets transmitted by the network device
3516  * 	hardware queue over the physical medium, @bytes must exactly match the
3517  * 	@bytes amount passed to netdev_sent_queue()
3518  */
3519 static inline void netdev_completed_queue(struct net_device *dev,
3520 					  unsigned int pkts, unsigned int bytes)
3521 {
3522 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3523 }
3524 
3525 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3526 {
3527 #ifdef CONFIG_BQL
3528 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3529 	dql_reset(&q->dql);
3530 #endif
3531 }
3532 
3533 /**
3534  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3535  * 	@dev_queue: network device
3536  *
3537  * 	Reset the bytes and packet count of a network device and clear the
3538  * 	software flow control OFF bit for this network device
3539  */
3540 static inline void netdev_reset_queue(struct net_device *dev_queue)
3541 {
3542 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3543 }
3544 
3545 /**
3546  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3547  * 	@dev: network device
3548  * 	@queue_index: given tx queue index
3549  *
3550  * 	Returns 0 if given tx queue index >= number of device tx queues,
3551  * 	otherwise returns the originally passed tx queue index.
3552  */
3553 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3554 {
3555 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3556 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3557 				     dev->name, queue_index,
3558 				     dev->real_num_tx_queues);
3559 		return 0;
3560 	}
3561 
3562 	return queue_index;
3563 }
3564 
3565 /**
3566  *	netif_running - test if up
3567  *	@dev: network device
3568  *
3569  *	Test if the device has been brought up.
3570  */
3571 static inline bool netif_running(const struct net_device *dev)
3572 {
3573 	return test_bit(__LINK_STATE_START, &dev->state);
3574 }
3575 
3576 /*
3577  * Routines to manage the subqueues on a device.  We only need start,
3578  * stop, and a check if it's stopped.  All other device management is
3579  * done at the overall netdevice level.
3580  * Also test the device if we're multiqueue.
3581  */
3582 
3583 /**
3584  *	netif_start_subqueue - allow sending packets on subqueue
3585  *	@dev: network device
3586  *	@queue_index: sub queue index
3587  *
3588  * Start individual transmit queue of a device with multiple transmit queues.
3589  */
3590 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3591 {
3592 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3593 
3594 	netif_tx_start_queue(txq);
3595 }
3596 
3597 /**
3598  *	netif_stop_subqueue - stop sending packets on subqueue
3599  *	@dev: network device
3600  *	@queue_index: sub queue index
3601  *
3602  * Stop individual transmit queue of a device with multiple transmit queues.
3603  */
3604 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3605 {
3606 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3607 	netif_tx_stop_queue(txq);
3608 }
3609 
3610 /**
3611  *	__netif_subqueue_stopped - test status of subqueue
3612  *	@dev: network device
3613  *	@queue_index: sub queue index
3614  *
3615  * Check individual transmit queue of a device with multiple transmit queues.
3616  */
3617 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3618 					    u16 queue_index)
3619 {
3620 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3621 
3622 	return netif_tx_queue_stopped(txq);
3623 }
3624 
3625 /**
3626  *	netif_subqueue_stopped - test status of subqueue
3627  *	@dev: network device
3628  *	@skb: sub queue buffer pointer
3629  *
3630  * Check individual transmit queue of a device with multiple transmit queues.
3631  */
3632 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3633 					  struct sk_buff *skb)
3634 {
3635 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3636 }
3637 
3638 /**
3639  *	netif_wake_subqueue - allow sending packets on subqueue
3640  *	@dev: network device
3641  *	@queue_index: sub queue index
3642  *
3643  * Resume individual transmit queue of a device with multiple transmit queues.
3644  */
3645 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3646 {
3647 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3648 
3649 	netif_tx_wake_queue(txq);
3650 }
3651 
3652 #ifdef CONFIG_XPS
3653 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3654 			u16 index);
3655 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3656 			  u16 index, bool is_rxqs_map);
3657 
3658 /**
3659  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3660  *	@j: CPU/Rx queue index
3661  *	@mask: bitmask of all cpus/rx queues
3662  *	@nr_bits: number of bits in the bitmask
3663  *
3664  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3665  */
3666 static inline bool netif_attr_test_mask(unsigned long j,
3667 					const unsigned long *mask,
3668 					unsigned int nr_bits)
3669 {
3670 	cpu_max_bits_warn(j, nr_bits);
3671 	return test_bit(j, mask);
3672 }
3673 
3674 /**
3675  *	netif_attr_test_online - Test for online CPU/Rx queue
3676  *	@j: CPU/Rx queue index
3677  *	@online_mask: bitmask for CPUs/Rx queues that are online
3678  *	@nr_bits: number of bits in the bitmask
3679  *
3680  * Returns true if a CPU/Rx queue is online.
3681  */
3682 static inline bool netif_attr_test_online(unsigned long j,
3683 					  const unsigned long *online_mask,
3684 					  unsigned int nr_bits)
3685 {
3686 	cpu_max_bits_warn(j, nr_bits);
3687 
3688 	if (online_mask)
3689 		return test_bit(j, online_mask);
3690 
3691 	return (j < nr_bits);
3692 }
3693 
3694 /**
3695  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3696  *	@n: CPU/Rx queue index
3697  *	@srcp: the cpumask/Rx queue mask pointer
3698  *	@nr_bits: number of bits in the bitmask
3699  *
3700  * Returns >= nr_bits if no further CPUs/Rx queues set.
3701  */
3702 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3703 					       unsigned int nr_bits)
3704 {
3705 	/* -1 is a legal arg here. */
3706 	if (n != -1)
3707 		cpu_max_bits_warn(n, nr_bits);
3708 
3709 	if (srcp)
3710 		return find_next_bit(srcp, nr_bits, n + 1);
3711 
3712 	return n + 1;
3713 }
3714 
3715 /**
3716  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3717  *	@n: CPU/Rx queue index
3718  *	@src1p: the first CPUs/Rx queues mask pointer
3719  *	@src2p: the second CPUs/Rx queues mask pointer
3720  *	@nr_bits: number of bits in the bitmask
3721  *
3722  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3723  */
3724 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3725 					  const unsigned long *src2p,
3726 					  unsigned int nr_bits)
3727 {
3728 	/* -1 is a legal arg here. */
3729 	if (n != -1)
3730 		cpu_max_bits_warn(n, nr_bits);
3731 
3732 	if (src1p && src2p)
3733 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3734 	else if (src1p)
3735 		return find_next_bit(src1p, nr_bits, n + 1);
3736 	else if (src2p)
3737 		return find_next_bit(src2p, nr_bits, n + 1);
3738 
3739 	return n + 1;
3740 }
3741 #else
3742 static inline int netif_set_xps_queue(struct net_device *dev,
3743 				      const struct cpumask *mask,
3744 				      u16 index)
3745 {
3746 	return 0;
3747 }
3748 
3749 static inline int __netif_set_xps_queue(struct net_device *dev,
3750 					const unsigned long *mask,
3751 					u16 index, bool is_rxqs_map)
3752 {
3753 	return 0;
3754 }
3755 #endif
3756 
3757 /**
3758  *	netif_is_multiqueue - test if device has multiple transmit queues
3759  *	@dev: network device
3760  *
3761  * Check if device has multiple transmit queues
3762  */
3763 static inline bool netif_is_multiqueue(const struct net_device *dev)
3764 {
3765 	return dev->num_tx_queues > 1;
3766 }
3767 
3768 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3769 
3770 #ifdef CONFIG_SYSFS
3771 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3772 #else
3773 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3774 						unsigned int rxqs)
3775 {
3776 	dev->real_num_rx_queues = rxqs;
3777 	return 0;
3778 }
3779 #endif
3780 
3781 static inline struct netdev_rx_queue *
3782 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3783 {
3784 	return dev->_rx + rxq;
3785 }
3786 
3787 #ifdef CONFIG_SYSFS
3788 static inline unsigned int get_netdev_rx_queue_index(
3789 		struct netdev_rx_queue *queue)
3790 {
3791 	struct net_device *dev = queue->dev;
3792 	int index = queue - dev->_rx;
3793 
3794 	BUG_ON(index >= dev->num_rx_queues);
3795 	return index;
3796 }
3797 #endif
3798 
3799 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3800 int netif_get_num_default_rss_queues(void);
3801 
3802 enum skb_free_reason {
3803 	SKB_REASON_CONSUMED,
3804 	SKB_REASON_DROPPED,
3805 };
3806 
3807 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3808 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3809 
3810 /*
3811  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3812  * interrupt context or with hardware interrupts being disabled.
3813  * (in_irq() || irqs_disabled())
3814  *
3815  * We provide four helpers that can be used in following contexts :
3816  *
3817  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3818  *  replacing kfree_skb(skb)
3819  *
3820  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3821  *  Typically used in place of consume_skb(skb) in TX completion path
3822  *
3823  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3824  *  replacing kfree_skb(skb)
3825  *
3826  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3827  *  and consumed a packet. Used in place of consume_skb(skb)
3828  */
3829 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3830 {
3831 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3832 }
3833 
3834 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3835 {
3836 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3837 }
3838 
3839 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3840 {
3841 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3842 }
3843 
3844 static inline void dev_consume_skb_any(struct sk_buff *skb)
3845 {
3846 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3847 }
3848 
3849 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3850 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3851 int netif_rx(struct sk_buff *skb);
3852 int netif_rx_ni(struct sk_buff *skb);
3853 int netif_rx_any_context(struct sk_buff *skb);
3854 int netif_receive_skb(struct sk_buff *skb);
3855 int netif_receive_skb_core(struct sk_buff *skb);
3856 void netif_receive_skb_list(struct list_head *head);
3857 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3858 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3859 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3860 gro_result_t napi_gro_frags(struct napi_struct *napi);
3861 struct packet_offload *gro_find_receive_by_type(__be16 type);
3862 struct packet_offload *gro_find_complete_by_type(__be16 type);
3863 
3864 static inline void napi_free_frags(struct napi_struct *napi)
3865 {
3866 	kfree_skb(napi->skb);
3867 	napi->skb = NULL;
3868 }
3869 
3870 bool netdev_is_rx_handler_busy(struct net_device *dev);
3871 int netdev_rx_handler_register(struct net_device *dev,
3872 			       rx_handler_func_t *rx_handler,
3873 			       void *rx_handler_data);
3874 void netdev_rx_handler_unregister(struct net_device *dev);
3875 
3876 bool dev_valid_name(const char *name);
3877 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3878 		bool *need_copyout);
3879 int dev_ifconf(struct net *net, struct ifconf *, int);
3880 int dev_ethtool(struct net *net, struct ifreq *);
3881 unsigned int dev_get_flags(const struct net_device *);
3882 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3883 		       struct netlink_ext_ack *extack);
3884 int dev_change_flags(struct net_device *dev, unsigned int flags,
3885 		     struct netlink_ext_ack *extack);
3886 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3887 			unsigned int gchanges);
3888 int dev_change_name(struct net_device *, const char *);
3889 int dev_set_alias(struct net_device *, const char *, size_t);
3890 int dev_get_alias(const struct net_device *, char *, size_t);
3891 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3892 int __dev_set_mtu(struct net_device *, int);
3893 int dev_validate_mtu(struct net_device *dev, int mtu,
3894 		     struct netlink_ext_ack *extack);
3895 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3896 		    struct netlink_ext_ack *extack);
3897 int dev_set_mtu(struct net_device *, int);
3898 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3899 void dev_set_group(struct net_device *, int);
3900 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3901 			      struct netlink_ext_ack *extack);
3902 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3903 			struct netlink_ext_ack *extack);
3904 int dev_change_carrier(struct net_device *, bool new_carrier);
3905 int dev_get_phys_port_id(struct net_device *dev,
3906 			 struct netdev_phys_item_id *ppid);
3907 int dev_get_phys_port_name(struct net_device *dev,
3908 			   char *name, size_t len);
3909 int dev_get_port_parent_id(struct net_device *dev,
3910 			   struct netdev_phys_item_id *ppid, bool recurse);
3911 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3912 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3913 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3914 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3915 				  u32 value);
3916 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3917 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3918 				    struct netdev_queue *txq, int *ret);
3919 
3920 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3921 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3922 		      int fd, int expected_fd, u32 flags);
3923 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3924 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3925 
3926 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3927 
3928 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3929 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3930 bool is_skb_forwardable(const struct net_device *dev,
3931 			const struct sk_buff *skb);
3932 
3933 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3934 					       struct sk_buff *skb)
3935 {
3936 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3937 	    unlikely(!is_skb_forwardable(dev, skb))) {
3938 		atomic_long_inc(&dev->rx_dropped);
3939 		kfree_skb(skb);
3940 		return NET_RX_DROP;
3941 	}
3942 
3943 	skb_scrub_packet(skb, true);
3944 	skb->priority = 0;
3945 	return 0;
3946 }
3947 
3948 bool dev_nit_active(struct net_device *dev);
3949 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3950 
3951 extern int		netdev_budget;
3952 extern unsigned int	netdev_budget_usecs;
3953 
3954 /* Called by rtnetlink.c:rtnl_unlock() */
3955 void netdev_run_todo(void);
3956 
3957 /**
3958  *	dev_put - release reference to device
3959  *	@dev: network device
3960  *
3961  * Release reference to device to allow it to be freed.
3962  */
3963 static inline void dev_put(struct net_device *dev)
3964 {
3965 	this_cpu_dec(*dev->pcpu_refcnt);
3966 }
3967 
3968 /**
3969  *	dev_hold - get reference to device
3970  *	@dev: network device
3971  *
3972  * Hold reference to device to keep it from being freed.
3973  */
3974 static inline void dev_hold(struct net_device *dev)
3975 {
3976 	this_cpu_inc(*dev->pcpu_refcnt);
3977 }
3978 
3979 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3980  * and _off may be called from IRQ context, but it is caller
3981  * who is responsible for serialization of these calls.
3982  *
3983  * The name carrier is inappropriate, these functions should really be
3984  * called netif_lowerlayer_*() because they represent the state of any
3985  * kind of lower layer not just hardware media.
3986  */
3987 
3988 void linkwatch_init_dev(struct net_device *dev);
3989 void linkwatch_fire_event(struct net_device *dev);
3990 void linkwatch_forget_dev(struct net_device *dev);
3991 
3992 /**
3993  *	netif_carrier_ok - test if carrier present
3994  *	@dev: network device
3995  *
3996  * Check if carrier is present on device
3997  */
3998 static inline bool netif_carrier_ok(const struct net_device *dev)
3999 {
4000 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4001 }
4002 
4003 unsigned long dev_trans_start(struct net_device *dev);
4004 
4005 void __netdev_watchdog_up(struct net_device *dev);
4006 
4007 void netif_carrier_on(struct net_device *dev);
4008 
4009 void netif_carrier_off(struct net_device *dev);
4010 
4011 /**
4012  *	netif_dormant_on - mark device as dormant.
4013  *	@dev: network device
4014  *
4015  * Mark device as dormant (as per RFC2863).
4016  *
4017  * The dormant state indicates that the relevant interface is not
4018  * actually in a condition to pass packets (i.e., it is not 'up') but is
4019  * in a "pending" state, waiting for some external event.  For "on-
4020  * demand" interfaces, this new state identifies the situation where the
4021  * interface is waiting for events to place it in the up state.
4022  */
4023 static inline void netif_dormant_on(struct net_device *dev)
4024 {
4025 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4026 		linkwatch_fire_event(dev);
4027 }
4028 
4029 /**
4030  *	netif_dormant_off - set device as not dormant.
4031  *	@dev: network device
4032  *
4033  * Device is not in dormant state.
4034  */
4035 static inline void netif_dormant_off(struct net_device *dev)
4036 {
4037 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4038 		linkwatch_fire_event(dev);
4039 }
4040 
4041 /**
4042  *	netif_dormant - test if device is dormant
4043  *	@dev: network device
4044  *
4045  * Check if device is dormant.
4046  */
4047 static inline bool netif_dormant(const struct net_device *dev)
4048 {
4049 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4050 }
4051 
4052 
4053 /**
4054  *	netif_testing_on - mark device as under test.
4055  *	@dev: network device
4056  *
4057  * Mark device as under test (as per RFC2863).
4058  *
4059  * The testing state indicates that some test(s) must be performed on
4060  * the interface. After completion, of the test, the interface state
4061  * will change to up, dormant, or down, as appropriate.
4062  */
4063 static inline void netif_testing_on(struct net_device *dev)
4064 {
4065 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4066 		linkwatch_fire_event(dev);
4067 }
4068 
4069 /**
4070  *	netif_testing_off - set device as not under test.
4071  *	@dev: network device
4072  *
4073  * Device is not in testing state.
4074  */
4075 static inline void netif_testing_off(struct net_device *dev)
4076 {
4077 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4078 		linkwatch_fire_event(dev);
4079 }
4080 
4081 /**
4082  *	netif_testing - test if device is under test
4083  *	@dev: network device
4084  *
4085  * Check if device is under test
4086  */
4087 static inline bool netif_testing(const struct net_device *dev)
4088 {
4089 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4090 }
4091 
4092 
4093 /**
4094  *	netif_oper_up - test if device is operational
4095  *	@dev: network device
4096  *
4097  * Check if carrier is operational
4098  */
4099 static inline bool netif_oper_up(const struct net_device *dev)
4100 {
4101 	return (dev->operstate == IF_OPER_UP ||
4102 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4103 }
4104 
4105 /**
4106  *	netif_device_present - is device available or removed
4107  *	@dev: network device
4108  *
4109  * Check if device has not been removed from system.
4110  */
4111 static inline bool netif_device_present(struct net_device *dev)
4112 {
4113 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4114 }
4115 
4116 void netif_device_detach(struct net_device *dev);
4117 
4118 void netif_device_attach(struct net_device *dev);
4119 
4120 /*
4121  * Network interface message level settings
4122  */
4123 
4124 enum {
4125 	NETIF_MSG_DRV_BIT,
4126 	NETIF_MSG_PROBE_BIT,
4127 	NETIF_MSG_LINK_BIT,
4128 	NETIF_MSG_TIMER_BIT,
4129 	NETIF_MSG_IFDOWN_BIT,
4130 	NETIF_MSG_IFUP_BIT,
4131 	NETIF_MSG_RX_ERR_BIT,
4132 	NETIF_MSG_TX_ERR_BIT,
4133 	NETIF_MSG_TX_QUEUED_BIT,
4134 	NETIF_MSG_INTR_BIT,
4135 	NETIF_MSG_TX_DONE_BIT,
4136 	NETIF_MSG_RX_STATUS_BIT,
4137 	NETIF_MSG_PKTDATA_BIT,
4138 	NETIF_MSG_HW_BIT,
4139 	NETIF_MSG_WOL_BIT,
4140 
4141 	/* When you add a new bit above, update netif_msg_class_names array
4142 	 * in net/ethtool/common.c
4143 	 */
4144 	NETIF_MSG_CLASS_COUNT,
4145 };
4146 /* Both ethtool_ops interface and internal driver implementation use u32 */
4147 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4148 
4149 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4150 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4151 
4152 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4153 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4154 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4155 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4156 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4157 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4158 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4159 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4160 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4161 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4162 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4163 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4164 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4165 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4166 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4167 
4168 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4169 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4170 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4171 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4172 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4173 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4174 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4175 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4176 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4177 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4178 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4179 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4180 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4181 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4182 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4183 
4184 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4185 {
4186 	/* use default */
4187 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4188 		return default_msg_enable_bits;
4189 	if (debug_value == 0)	/* no output */
4190 		return 0;
4191 	/* set low N bits */
4192 	return (1U << debug_value) - 1;
4193 }
4194 
4195 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4196 {
4197 	spin_lock(&txq->_xmit_lock);
4198 	txq->xmit_lock_owner = cpu;
4199 }
4200 
4201 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4202 {
4203 	__acquire(&txq->_xmit_lock);
4204 	return true;
4205 }
4206 
4207 static inline void __netif_tx_release(struct netdev_queue *txq)
4208 {
4209 	__release(&txq->_xmit_lock);
4210 }
4211 
4212 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4213 {
4214 	spin_lock_bh(&txq->_xmit_lock);
4215 	txq->xmit_lock_owner = smp_processor_id();
4216 }
4217 
4218 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4219 {
4220 	bool ok = spin_trylock(&txq->_xmit_lock);
4221 	if (likely(ok))
4222 		txq->xmit_lock_owner = smp_processor_id();
4223 	return ok;
4224 }
4225 
4226 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4227 {
4228 	txq->xmit_lock_owner = -1;
4229 	spin_unlock(&txq->_xmit_lock);
4230 }
4231 
4232 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4233 {
4234 	txq->xmit_lock_owner = -1;
4235 	spin_unlock_bh(&txq->_xmit_lock);
4236 }
4237 
4238 static inline void txq_trans_update(struct netdev_queue *txq)
4239 {
4240 	if (txq->xmit_lock_owner != -1)
4241 		txq->trans_start = jiffies;
4242 }
4243 
4244 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4245 static inline void netif_trans_update(struct net_device *dev)
4246 {
4247 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4248 
4249 	if (txq->trans_start != jiffies)
4250 		txq->trans_start = jiffies;
4251 }
4252 
4253 /**
4254  *	netif_tx_lock - grab network device transmit lock
4255  *	@dev: network device
4256  *
4257  * Get network device transmit lock
4258  */
4259 static inline void netif_tx_lock(struct net_device *dev)
4260 {
4261 	unsigned int i;
4262 	int cpu;
4263 
4264 	spin_lock(&dev->tx_global_lock);
4265 	cpu = smp_processor_id();
4266 	for (i = 0; i < dev->num_tx_queues; i++) {
4267 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4268 
4269 		/* We are the only thread of execution doing a
4270 		 * freeze, but we have to grab the _xmit_lock in
4271 		 * order to synchronize with threads which are in
4272 		 * the ->hard_start_xmit() handler and already
4273 		 * checked the frozen bit.
4274 		 */
4275 		__netif_tx_lock(txq, cpu);
4276 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4277 		__netif_tx_unlock(txq);
4278 	}
4279 }
4280 
4281 static inline void netif_tx_lock_bh(struct net_device *dev)
4282 {
4283 	local_bh_disable();
4284 	netif_tx_lock(dev);
4285 }
4286 
4287 static inline void netif_tx_unlock(struct net_device *dev)
4288 {
4289 	unsigned int i;
4290 
4291 	for (i = 0; i < dev->num_tx_queues; i++) {
4292 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4293 
4294 		/* No need to grab the _xmit_lock here.  If the
4295 		 * queue is not stopped for another reason, we
4296 		 * force a schedule.
4297 		 */
4298 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4299 		netif_schedule_queue(txq);
4300 	}
4301 	spin_unlock(&dev->tx_global_lock);
4302 }
4303 
4304 static inline void netif_tx_unlock_bh(struct net_device *dev)
4305 {
4306 	netif_tx_unlock(dev);
4307 	local_bh_enable();
4308 }
4309 
4310 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4311 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4312 		__netif_tx_lock(txq, cpu);		\
4313 	} else {					\
4314 		__netif_tx_acquire(txq);		\
4315 	}						\
4316 }
4317 
4318 #define HARD_TX_TRYLOCK(dev, txq)			\
4319 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4320 		__netif_tx_trylock(txq) :		\
4321 		__netif_tx_acquire(txq))
4322 
4323 #define HARD_TX_UNLOCK(dev, txq) {			\
4324 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4325 		__netif_tx_unlock(txq);			\
4326 	} else {					\
4327 		__netif_tx_release(txq);		\
4328 	}						\
4329 }
4330 
4331 static inline void netif_tx_disable(struct net_device *dev)
4332 {
4333 	unsigned int i;
4334 	int cpu;
4335 
4336 	local_bh_disable();
4337 	cpu = smp_processor_id();
4338 	for (i = 0; i < dev->num_tx_queues; i++) {
4339 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4340 
4341 		__netif_tx_lock(txq, cpu);
4342 		netif_tx_stop_queue(txq);
4343 		__netif_tx_unlock(txq);
4344 	}
4345 	local_bh_enable();
4346 }
4347 
4348 static inline void netif_addr_lock(struct net_device *dev)
4349 {
4350 	unsigned char nest_level = 0;
4351 
4352 #ifdef CONFIG_LOCKDEP
4353 	nest_level = dev->nested_level;
4354 #endif
4355 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4356 }
4357 
4358 static inline void netif_addr_lock_bh(struct net_device *dev)
4359 {
4360 	unsigned char nest_level = 0;
4361 
4362 #ifdef CONFIG_LOCKDEP
4363 	nest_level = dev->nested_level;
4364 #endif
4365 	local_bh_disable();
4366 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4367 }
4368 
4369 static inline void netif_addr_unlock(struct net_device *dev)
4370 {
4371 	spin_unlock(&dev->addr_list_lock);
4372 }
4373 
4374 static inline void netif_addr_unlock_bh(struct net_device *dev)
4375 {
4376 	spin_unlock_bh(&dev->addr_list_lock);
4377 }
4378 
4379 /*
4380  * dev_addrs walker. Should be used only for read access. Call with
4381  * rcu_read_lock held.
4382  */
4383 #define for_each_dev_addr(dev, ha) \
4384 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4385 
4386 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4387 
4388 void ether_setup(struct net_device *dev);
4389 
4390 /* Support for loadable net-drivers */
4391 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4392 				    unsigned char name_assign_type,
4393 				    void (*setup)(struct net_device *),
4394 				    unsigned int txqs, unsigned int rxqs);
4395 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4396 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4397 
4398 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4399 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4400 			 count)
4401 
4402 int register_netdev(struct net_device *dev);
4403 void unregister_netdev(struct net_device *dev);
4404 
4405 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4406 
4407 /* General hardware address lists handling functions */
4408 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4409 		   struct netdev_hw_addr_list *from_list, int addr_len);
4410 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4411 		      struct netdev_hw_addr_list *from_list, int addr_len);
4412 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4413 		       struct net_device *dev,
4414 		       int (*sync)(struct net_device *, const unsigned char *),
4415 		       int (*unsync)(struct net_device *,
4416 				     const unsigned char *));
4417 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4418 			   struct net_device *dev,
4419 			   int (*sync)(struct net_device *,
4420 				       const unsigned char *, int),
4421 			   int (*unsync)(struct net_device *,
4422 					 const unsigned char *, int));
4423 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4424 			      struct net_device *dev,
4425 			      int (*unsync)(struct net_device *,
4426 					    const unsigned char *, int));
4427 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4428 			  struct net_device *dev,
4429 			  int (*unsync)(struct net_device *,
4430 					const unsigned char *));
4431 void __hw_addr_init(struct netdev_hw_addr_list *list);
4432 
4433 /* Functions used for device addresses handling */
4434 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4435 		 unsigned char addr_type);
4436 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4437 		 unsigned char addr_type);
4438 void dev_addr_flush(struct net_device *dev);
4439 int dev_addr_init(struct net_device *dev);
4440 
4441 /* Functions used for unicast addresses handling */
4442 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4443 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4444 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4445 int dev_uc_sync(struct net_device *to, struct net_device *from);
4446 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4447 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4448 void dev_uc_flush(struct net_device *dev);
4449 void dev_uc_init(struct net_device *dev);
4450 
4451 /**
4452  *  __dev_uc_sync - Synchonize device's unicast list
4453  *  @dev:  device to sync
4454  *  @sync: function to call if address should be added
4455  *  @unsync: function to call if address should be removed
4456  *
4457  *  Add newly added addresses to the interface, and release
4458  *  addresses that have been deleted.
4459  */
4460 static inline int __dev_uc_sync(struct net_device *dev,
4461 				int (*sync)(struct net_device *,
4462 					    const unsigned char *),
4463 				int (*unsync)(struct net_device *,
4464 					      const unsigned char *))
4465 {
4466 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4467 }
4468 
4469 /**
4470  *  __dev_uc_unsync - Remove synchronized addresses from device
4471  *  @dev:  device to sync
4472  *  @unsync: function to call if address should be removed
4473  *
4474  *  Remove all addresses that were added to the device by dev_uc_sync().
4475  */
4476 static inline void __dev_uc_unsync(struct net_device *dev,
4477 				   int (*unsync)(struct net_device *,
4478 						 const unsigned char *))
4479 {
4480 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4481 }
4482 
4483 /* Functions used for multicast addresses handling */
4484 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4485 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4486 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4487 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4488 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4489 int dev_mc_sync(struct net_device *to, struct net_device *from);
4490 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4491 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4492 void dev_mc_flush(struct net_device *dev);
4493 void dev_mc_init(struct net_device *dev);
4494 
4495 /**
4496  *  __dev_mc_sync - Synchonize device's multicast list
4497  *  @dev:  device to sync
4498  *  @sync: function to call if address should be added
4499  *  @unsync: function to call if address should be removed
4500  *
4501  *  Add newly added addresses to the interface, and release
4502  *  addresses that have been deleted.
4503  */
4504 static inline int __dev_mc_sync(struct net_device *dev,
4505 				int (*sync)(struct net_device *,
4506 					    const unsigned char *),
4507 				int (*unsync)(struct net_device *,
4508 					      const unsigned char *))
4509 {
4510 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4511 }
4512 
4513 /**
4514  *  __dev_mc_unsync - Remove synchronized addresses from device
4515  *  @dev:  device to sync
4516  *  @unsync: function to call if address should be removed
4517  *
4518  *  Remove all addresses that were added to the device by dev_mc_sync().
4519  */
4520 static inline void __dev_mc_unsync(struct net_device *dev,
4521 				   int (*unsync)(struct net_device *,
4522 						 const unsigned char *))
4523 {
4524 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4525 }
4526 
4527 /* Functions used for secondary unicast and multicast support */
4528 void dev_set_rx_mode(struct net_device *dev);
4529 void __dev_set_rx_mode(struct net_device *dev);
4530 int dev_set_promiscuity(struct net_device *dev, int inc);
4531 int dev_set_allmulti(struct net_device *dev, int inc);
4532 void netdev_state_change(struct net_device *dev);
4533 void __netdev_notify_peers(struct net_device *dev);
4534 void netdev_notify_peers(struct net_device *dev);
4535 void netdev_features_change(struct net_device *dev);
4536 /* Load a device via the kmod */
4537 void dev_load(struct net *net, const char *name);
4538 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4539 					struct rtnl_link_stats64 *storage);
4540 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4541 			     const struct net_device_stats *netdev_stats);
4542 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4543 			   const struct pcpu_sw_netstats __percpu *netstats);
4544 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4545 
4546 extern int		netdev_max_backlog;
4547 extern int		netdev_tstamp_prequeue;
4548 extern int		weight_p;
4549 extern int		dev_weight_rx_bias;
4550 extern int		dev_weight_tx_bias;
4551 extern int		dev_rx_weight;
4552 extern int		dev_tx_weight;
4553 extern int		gro_normal_batch;
4554 
4555 enum {
4556 	NESTED_SYNC_IMM_BIT,
4557 	NESTED_SYNC_TODO_BIT,
4558 };
4559 
4560 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4561 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4562 
4563 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4564 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4565 
4566 struct netdev_nested_priv {
4567 	unsigned char flags;
4568 	void *data;
4569 };
4570 
4571 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4572 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4573 						     struct list_head **iter);
4574 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4575 						     struct list_head **iter);
4576 
4577 #ifdef CONFIG_LOCKDEP
4578 static LIST_HEAD(net_unlink_list);
4579 
4580 static inline void net_unlink_todo(struct net_device *dev)
4581 {
4582 	if (list_empty(&dev->unlink_list))
4583 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4584 }
4585 #endif
4586 
4587 /* iterate through upper list, must be called under RCU read lock */
4588 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4589 	for (iter = &(dev)->adj_list.upper, \
4590 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4591 	     updev; \
4592 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4593 
4594 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4595 				  int (*fn)(struct net_device *upper_dev,
4596 					    struct netdev_nested_priv *priv),
4597 				  struct netdev_nested_priv *priv);
4598 
4599 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4600 				  struct net_device *upper_dev);
4601 
4602 bool netdev_has_any_upper_dev(struct net_device *dev);
4603 
4604 void *netdev_lower_get_next_private(struct net_device *dev,
4605 				    struct list_head **iter);
4606 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4607 					struct list_head **iter);
4608 
4609 #define netdev_for_each_lower_private(dev, priv, iter) \
4610 	for (iter = (dev)->adj_list.lower.next, \
4611 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4612 	     priv; \
4613 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4614 
4615 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4616 	for (iter = &(dev)->adj_list.lower, \
4617 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4618 	     priv; \
4619 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4620 
4621 void *netdev_lower_get_next(struct net_device *dev,
4622 				struct list_head **iter);
4623 
4624 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4625 	for (iter = (dev)->adj_list.lower.next, \
4626 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4627 	     ldev; \
4628 	     ldev = netdev_lower_get_next(dev, &(iter)))
4629 
4630 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4631 					     struct list_head **iter);
4632 int netdev_walk_all_lower_dev(struct net_device *dev,
4633 			      int (*fn)(struct net_device *lower_dev,
4634 					struct netdev_nested_priv *priv),
4635 			      struct netdev_nested_priv *priv);
4636 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4637 				  int (*fn)(struct net_device *lower_dev,
4638 					    struct netdev_nested_priv *priv),
4639 				  struct netdev_nested_priv *priv);
4640 
4641 void *netdev_adjacent_get_private(struct list_head *adj_list);
4642 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4643 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4644 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4645 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4646 			  struct netlink_ext_ack *extack);
4647 int netdev_master_upper_dev_link(struct net_device *dev,
4648 				 struct net_device *upper_dev,
4649 				 void *upper_priv, void *upper_info,
4650 				 struct netlink_ext_ack *extack);
4651 void netdev_upper_dev_unlink(struct net_device *dev,
4652 			     struct net_device *upper_dev);
4653 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4654 				   struct net_device *new_dev,
4655 				   struct net_device *dev,
4656 				   struct netlink_ext_ack *extack);
4657 void netdev_adjacent_change_commit(struct net_device *old_dev,
4658 				   struct net_device *new_dev,
4659 				   struct net_device *dev);
4660 void netdev_adjacent_change_abort(struct net_device *old_dev,
4661 				  struct net_device *new_dev,
4662 				  struct net_device *dev);
4663 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4664 void *netdev_lower_dev_get_private(struct net_device *dev,
4665 				   struct net_device *lower_dev);
4666 void netdev_lower_state_changed(struct net_device *lower_dev,
4667 				void *lower_state_info);
4668 
4669 /* RSS keys are 40 or 52 bytes long */
4670 #define NETDEV_RSS_KEY_LEN 52
4671 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4672 void netdev_rss_key_fill(void *buffer, size_t len);
4673 
4674 int skb_checksum_help(struct sk_buff *skb);
4675 int skb_crc32c_csum_help(struct sk_buff *skb);
4676 int skb_csum_hwoffload_help(struct sk_buff *skb,
4677 			    const netdev_features_t features);
4678 
4679 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4680 				  netdev_features_t features, bool tx_path);
4681 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4682 				    netdev_features_t features);
4683 
4684 struct netdev_bonding_info {
4685 	ifslave	slave;
4686 	ifbond	master;
4687 };
4688 
4689 struct netdev_notifier_bonding_info {
4690 	struct netdev_notifier_info info; /* must be first */
4691 	struct netdev_bonding_info  bonding_info;
4692 };
4693 
4694 void netdev_bonding_info_change(struct net_device *dev,
4695 				struct netdev_bonding_info *bonding_info);
4696 
4697 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4698 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4699 #else
4700 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4701 				  const void *data)
4702 {
4703 }
4704 #endif
4705 
4706 static inline
4707 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4708 {
4709 	return __skb_gso_segment(skb, features, true);
4710 }
4711 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4712 
4713 static inline bool can_checksum_protocol(netdev_features_t features,
4714 					 __be16 protocol)
4715 {
4716 	if (protocol == htons(ETH_P_FCOE))
4717 		return !!(features & NETIF_F_FCOE_CRC);
4718 
4719 	/* Assume this is an IP checksum (not SCTP CRC) */
4720 
4721 	if (features & NETIF_F_HW_CSUM) {
4722 		/* Can checksum everything */
4723 		return true;
4724 	}
4725 
4726 	switch (protocol) {
4727 	case htons(ETH_P_IP):
4728 		return !!(features & NETIF_F_IP_CSUM);
4729 	case htons(ETH_P_IPV6):
4730 		return !!(features & NETIF_F_IPV6_CSUM);
4731 	default:
4732 		return false;
4733 	}
4734 }
4735 
4736 #ifdef CONFIG_BUG
4737 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4738 #else
4739 static inline void netdev_rx_csum_fault(struct net_device *dev,
4740 					struct sk_buff *skb)
4741 {
4742 }
4743 #endif
4744 /* rx skb timestamps */
4745 void net_enable_timestamp(void);
4746 void net_disable_timestamp(void);
4747 
4748 #ifdef CONFIG_PROC_FS
4749 int __init dev_proc_init(void);
4750 #else
4751 #define dev_proc_init() 0
4752 #endif
4753 
4754 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4755 					      struct sk_buff *skb, struct net_device *dev,
4756 					      bool more)
4757 {
4758 	__this_cpu_write(softnet_data.xmit.more, more);
4759 	return ops->ndo_start_xmit(skb, dev);
4760 }
4761 
4762 static inline bool netdev_xmit_more(void)
4763 {
4764 	return __this_cpu_read(softnet_data.xmit.more);
4765 }
4766 
4767 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4768 					    struct netdev_queue *txq, bool more)
4769 {
4770 	const struct net_device_ops *ops = dev->netdev_ops;
4771 	netdev_tx_t rc;
4772 
4773 	rc = __netdev_start_xmit(ops, skb, dev, more);
4774 	if (rc == NETDEV_TX_OK)
4775 		txq_trans_update(txq);
4776 
4777 	return rc;
4778 }
4779 
4780 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4781 				const void *ns);
4782 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4783 				 const void *ns);
4784 
4785 extern const struct kobj_ns_type_operations net_ns_type_operations;
4786 
4787 const char *netdev_drivername(const struct net_device *dev);
4788 
4789 void linkwatch_run_queue(void);
4790 
4791 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4792 							  netdev_features_t f2)
4793 {
4794 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4795 		if (f1 & NETIF_F_HW_CSUM)
4796 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4797 		else
4798 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4799 	}
4800 
4801 	return f1 & f2;
4802 }
4803 
4804 static inline netdev_features_t netdev_get_wanted_features(
4805 	struct net_device *dev)
4806 {
4807 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4808 }
4809 netdev_features_t netdev_increment_features(netdev_features_t all,
4810 	netdev_features_t one, netdev_features_t mask);
4811 
4812 /* Allow TSO being used on stacked device :
4813  * Performing the GSO segmentation before last device
4814  * is a performance improvement.
4815  */
4816 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4817 							netdev_features_t mask)
4818 {
4819 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4820 }
4821 
4822 int __netdev_update_features(struct net_device *dev);
4823 void netdev_update_features(struct net_device *dev);
4824 void netdev_change_features(struct net_device *dev);
4825 
4826 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4827 					struct net_device *dev);
4828 
4829 netdev_features_t passthru_features_check(struct sk_buff *skb,
4830 					  struct net_device *dev,
4831 					  netdev_features_t features);
4832 netdev_features_t netif_skb_features(struct sk_buff *skb);
4833 
4834 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4835 {
4836 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4837 
4838 	/* check flags correspondence */
4839 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4840 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4841 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4842 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4843 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4844 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4845 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4846 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4847 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4848 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4849 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4850 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4851 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4852 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4853 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4854 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4855 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4856 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4857 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4858 
4859 	return (features & feature) == feature;
4860 }
4861 
4862 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4863 {
4864 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4865 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4866 }
4867 
4868 static inline bool netif_needs_gso(struct sk_buff *skb,
4869 				   netdev_features_t features)
4870 {
4871 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4872 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4873 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4874 }
4875 
4876 static inline void netif_set_gso_max_size(struct net_device *dev,
4877 					  unsigned int size)
4878 {
4879 	dev->gso_max_size = size;
4880 }
4881 
4882 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4883 					int pulled_hlen, u16 mac_offset,
4884 					int mac_len)
4885 {
4886 	skb->protocol = protocol;
4887 	skb->encapsulation = 1;
4888 	skb_push(skb, pulled_hlen);
4889 	skb_reset_transport_header(skb);
4890 	skb->mac_header = mac_offset;
4891 	skb->network_header = skb->mac_header + mac_len;
4892 	skb->mac_len = mac_len;
4893 }
4894 
4895 static inline bool netif_is_macsec(const struct net_device *dev)
4896 {
4897 	return dev->priv_flags & IFF_MACSEC;
4898 }
4899 
4900 static inline bool netif_is_macvlan(const struct net_device *dev)
4901 {
4902 	return dev->priv_flags & IFF_MACVLAN;
4903 }
4904 
4905 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4906 {
4907 	return dev->priv_flags & IFF_MACVLAN_PORT;
4908 }
4909 
4910 static inline bool netif_is_bond_master(const struct net_device *dev)
4911 {
4912 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4913 }
4914 
4915 static inline bool netif_is_bond_slave(const struct net_device *dev)
4916 {
4917 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4918 }
4919 
4920 static inline bool netif_supports_nofcs(struct net_device *dev)
4921 {
4922 	return dev->priv_flags & IFF_SUPP_NOFCS;
4923 }
4924 
4925 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4926 {
4927 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4928 }
4929 
4930 static inline bool netif_is_l3_master(const struct net_device *dev)
4931 {
4932 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4933 }
4934 
4935 static inline bool netif_is_l3_slave(const struct net_device *dev)
4936 {
4937 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4938 }
4939 
4940 static inline bool netif_is_bridge_master(const struct net_device *dev)
4941 {
4942 	return dev->priv_flags & IFF_EBRIDGE;
4943 }
4944 
4945 static inline bool netif_is_bridge_port(const struct net_device *dev)
4946 {
4947 	return dev->priv_flags & IFF_BRIDGE_PORT;
4948 }
4949 
4950 static inline bool netif_is_ovs_master(const struct net_device *dev)
4951 {
4952 	return dev->priv_flags & IFF_OPENVSWITCH;
4953 }
4954 
4955 static inline bool netif_is_ovs_port(const struct net_device *dev)
4956 {
4957 	return dev->priv_flags & IFF_OVS_DATAPATH;
4958 }
4959 
4960 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4961 {
4962 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4963 }
4964 
4965 static inline bool netif_is_team_master(const struct net_device *dev)
4966 {
4967 	return dev->priv_flags & IFF_TEAM;
4968 }
4969 
4970 static inline bool netif_is_team_port(const struct net_device *dev)
4971 {
4972 	return dev->priv_flags & IFF_TEAM_PORT;
4973 }
4974 
4975 static inline bool netif_is_lag_master(const struct net_device *dev)
4976 {
4977 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4978 }
4979 
4980 static inline bool netif_is_lag_port(const struct net_device *dev)
4981 {
4982 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4983 }
4984 
4985 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4986 {
4987 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4988 }
4989 
4990 static inline bool netif_is_failover(const struct net_device *dev)
4991 {
4992 	return dev->priv_flags & IFF_FAILOVER;
4993 }
4994 
4995 static inline bool netif_is_failover_slave(const struct net_device *dev)
4996 {
4997 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4998 }
4999 
5000 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5001 static inline void netif_keep_dst(struct net_device *dev)
5002 {
5003 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5004 }
5005 
5006 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5007 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5008 {
5009 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5010 	return dev->priv_flags & IFF_MACSEC;
5011 }
5012 
5013 extern struct pernet_operations __net_initdata loopback_net_ops;
5014 
5015 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5016 
5017 /* netdev_printk helpers, similar to dev_printk */
5018 
5019 static inline const char *netdev_name(const struct net_device *dev)
5020 {
5021 	if (!dev->name[0] || strchr(dev->name, '%'))
5022 		return "(unnamed net_device)";
5023 	return dev->name;
5024 }
5025 
5026 static inline bool netdev_unregistering(const struct net_device *dev)
5027 {
5028 	return dev->reg_state == NETREG_UNREGISTERING;
5029 }
5030 
5031 static inline const char *netdev_reg_state(const struct net_device *dev)
5032 {
5033 	switch (dev->reg_state) {
5034 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5035 	case NETREG_REGISTERED: return "";
5036 	case NETREG_UNREGISTERING: return " (unregistering)";
5037 	case NETREG_UNREGISTERED: return " (unregistered)";
5038 	case NETREG_RELEASED: return " (released)";
5039 	case NETREG_DUMMY: return " (dummy)";
5040 	}
5041 
5042 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5043 	return " (unknown)";
5044 }
5045 
5046 __printf(3, 4) __cold
5047 void netdev_printk(const char *level, const struct net_device *dev,
5048 		   const char *format, ...);
5049 __printf(2, 3) __cold
5050 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5051 __printf(2, 3) __cold
5052 void netdev_alert(const struct net_device *dev, const char *format, ...);
5053 __printf(2, 3) __cold
5054 void netdev_crit(const struct net_device *dev, const char *format, ...);
5055 __printf(2, 3) __cold
5056 void netdev_err(const struct net_device *dev, const char *format, ...);
5057 __printf(2, 3) __cold
5058 void netdev_warn(const struct net_device *dev, const char *format, ...);
5059 __printf(2, 3) __cold
5060 void netdev_notice(const struct net_device *dev, const char *format, ...);
5061 __printf(2, 3) __cold
5062 void netdev_info(const struct net_device *dev, const char *format, ...);
5063 
5064 #define netdev_level_once(level, dev, fmt, ...)			\
5065 do {								\
5066 	static bool __print_once __read_mostly;			\
5067 								\
5068 	if (!__print_once) {					\
5069 		__print_once = true;				\
5070 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5071 	}							\
5072 } while (0)
5073 
5074 #define netdev_emerg_once(dev, fmt, ...) \
5075 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5076 #define netdev_alert_once(dev, fmt, ...) \
5077 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5078 #define netdev_crit_once(dev, fmt, ...) \
5079 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5080 #define netdev_err_once(dev, fmt, ...) \
5081 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5082 #define netdev_warn_once(dev, fmt, ...) \
5083 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5084 #define netdev_notice_once(dev, fmt, ...) \
5085 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5086 #define netdev_info_once(dev, fmt, ...) \
5087 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5088 
5089 #define MODULE_ALIAS_NETDEV(device) \
5090 	MODULE_ALIAS("netdev-" device)
5091 
5092 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5093 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5094 #define netdev_dbg(__dev, format, args...)			\
5095 do {								\
5096 	dynamic_netdev_dbg(__dev, format, ##args);		\
5097 } while (0)
5098 #elif defined(DEBUG)
5099 #define netdev_dbg(__dev, format, args...)			\
5100 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5101 #else
5102 #define netdev_dbg(__dev, format, args...)			\
5103 ({								\
5104 	if (0)							\
5105 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5106 })
5107 #endif
5108 
5109 #if defined(VERBOSE_DEBUG)
5110 #define netdev_vdbg	netdev_dbg
5111 #else
5112 
5113 #define netdev_vdbg(dev, format, args...)			\
5114 ({								\
5115 	if (0)							\
5116 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5117 	0;							\
5118 })
5119 #endif
5120 
5121 /*
5122  * netdev_WARN() acts like dev_printk(), but with the key difference
5123  * of using a WARN/WARN_ON to get the message out, including the
5124  * file/line information and a backtrace.
5125  */
5126 #define netdev_WARN(dev, format, args...)			\
5127 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5128 	     netdev_reg_state(dev), ##args)
5129 
5130 #define netdev_WARN_ONCE(dev, format, args...)				\
5131 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5132 		  netdev_reg_state(dev), ##args)
5133 
5134 /* netif printk helpers, similar to netdev_printk */
5135 
5136 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5137 do {					  			\
5138 	if (netif_msg_##type(priv))				\
5139 		netdev_printk(level, (dev), fmt, ##args);	\
5140 } while (0)
5141 
5142 #define netif_level(level, priv, type, dev, fmt, args...)	\
5143 do {								\
5144 	if (netif_msg_##type(priv))				\
5145 		netdev_##level(dev, fmt, ##args);		\
5146 } while (0)
5147 
5148 #define netif_emerg(priv, type, dev, fmt, args...)		\
5149 	netif_level(emerg, priv, type, dev, fmt, ##args)
5150 #define netif_alert(priv, type, dev, fmt, args...)		\
5151 	netif_level(alert, priv, type, dev, fmt, ##args)
5152 #define netif_crit(priv, type, dev, fmt, args...)		\
5153 	netif_level(crit, priv, type, dev, fmt, ##args)
5154 #define netif_err(priv, type, dev, fmt, args...)		\
5155 	netif_level(err, priv, type, dev, fmt, ##args)
5156 #define netif_warn(priv, type, dev, fmt, args...)		\
5157 	netif_level(warn, priv, type, dev, fmt, ##args)
5158 #define netif_notice(priv, type, dev, fmt, args...)		\
5159 	netif_level(notice, priv, type, dev, fmt, ##args)
5160 #define netif_info(priv, type, dev, fmt, args...)		\
5161 	netif_level(info, priv, type, dev, fmt, ##args)
5162 
5163 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5164 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5165 #define netif_dbg(priv, type, netdev, format, args...)		\
5166 do {								\
5167 	if (netif_msg_##type(priv))				\
5168 		dynamic_netdev_dbg(netdev, format, ##args);	\
5169 } while (0)
5170 #elif defined(DEBUG)
5171 #define netif_dbg(priv, type, dev, format, args...)		\
5172 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5173 #else
5174 #define netif_dbg(priv, type, dev, format, args...)			\
5175 ({									\
5176 	if (0)								\
5177 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5178 	0;								\
5179 })
5180 #endif
5181 
5182 /* if @cond then downgrade to debug, else print at @level */
5183 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5184 	do {                                                              \
5185 		if (cond)                                                 \
5186 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5187 		else                                                      \
5188 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5189 	} while (0)
5190 
5191 #if defined(VERBOSE_DEBUG)
5192 #define netif_vdbg	netif_dbg
5193 #else
5194 #define netif_vdbg(priv, type, dev, format, args...)		\
5195 ({								\
5196 	if (0)							\
5197 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5198 	0;							\
5199 })
5200 #endif
5201 
5202 /*
5203  *	The list of packet types we will receive (as opposed to discard)
5204  *	and the routines to invoke.
5205  *
5206  *	Why 16. Because with 16 the only overlap we get on a hash of the
5207  *	low nibble of the protocol value is RARP/SNAP/X.25.
5208  *
5209  *		0800	IP
5210  *		0001	802.3
5211  *		0002	AX.25
5212  *		0004	802.2
5213  *		8035	RARP
5214  *		0005	SNAP
5215  *		0805	X.25
5216  *		0806	ARP
5217  *		8137	IPX
5218  *		0009	Localtalk
5219  *		86DD	IPv6
5220  */
5221 #define PTYPE_HASH_SIZE	(16)
5222 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5223 
5224 extern struct net_device *blackhole_netdev;
5225 
5226 #endif	/* _LINUX_NETDEVICE_H */
5227