1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 /* DPLL specific */ 83 struct dpll_pin; 84 85 typedef u32 xdp_features_t; 86 87 void synchronize_net(void); 88 void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92 /* Backlog congestion levels */ 93 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94 #define NET_RX_DROP 1 /* packet dropped */ 95 96 #define MAX_NEST_DEV 8 97 98 /* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115 /* qdisc ->enqueue() return codes. */ 116 #define NET_XMIT_SUCCESS 0x00 117 #define NET_XMIT_DROP 0x01 /* skb dropped */ 118 #define NET_XMIT_CN 0x02 /* congestion notification */ 119 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127 /* Driver transmit return codes */ 128 #define NETDEV_TX_MASK 0xf0 129 130 enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134 }; 135 typedef enum netdev_tx netdev_tx_t; 136 137 /* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141 static inline bool dev_xmit_complete(int rc) 142 { 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153 } 154 155 /* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160 #if defined(CONFIG_HYPERV_NET) 161 # define LL_MAX_HEADER 128 162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163 # if defined(CONFIG_MAC80211_MESH) 164 # define LL_MAX_HEADER 128 165 # else 166 # define LL_MAX_HEADER 96 167 # endif 168 #else 169 # define LL_MAX_HEADER 32 170 #endif 171 172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174 #define MAX_HEADER LL_MAX_HEADER 175 #else 176 #define MAX_HEADER (LL_MAX_HEADER + 48) 177 #endif 178 179 /* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184 #define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190 struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214 }; 215 #undef NET_DEV_STAT 216 217 /* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220 struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225 } __aligned(4 * sizeof(unsigned long)); 226 227 #include <linux/cache.h> 228 #include <linux/skbuff.h> 229 230 #ifdef CONFIG_RPS 231 #include <linux/static_key.h> 232 extern struct static_key_false rps_needed; 233 extern struct static_key_false rfs_needed; 234 #endif 235 236 struct neighbour; 237 struct neigh_parms; 238 struct sk_buff; 239 240 struct netdev_hw_addr { 241 struct list_head list; 242 struct rb_node node; 243 unsigned char addr[MAX_ADDR_LEN]; 244 unsigned char type; 245 #define NETDEV_HW_ADDR_T_LAN 1 246 #define NETDEV_HW_ADDR_T_SAN 2 247 #define NETDEV_HW_ADDR_T_UNICAST 3 248 #define NETDEV_HW_ADDR_T_MULTICAST 4 249 bool global_use; 250 int sync_cnt; 251 int refcount; 252 int synced; 253 struct rcu_head rcu_head; 254 }; 255 256 struct netdev_hw_addr_list { 257 struct list_head list; 258 int count; 259 260 /* Auxiliary tree for faster lookup on addition and deletion */ 261 struct rb_root tree; 262 }; 263 264 #define netdev_hw_addr_list_count(l) ((l)->count) 265 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 266 #define netdev_hw_addr_list_for_each(ha, l) \ 267 list_for_each_entry(ha, &(l)->list, list) 268 269 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 270 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 271 #define netdev_for_each_uc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 273 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 274 netdev_for_each_uc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 278 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 279 #define netdev_for_each_mc_addr(ha, dev) \ 280 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 281 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 282 netdev_for_each_mc_addr((_ha), (_dev)) \ 283 if ((_ha)->sync_cnt) 284 285 struct hh_cache { 286 unsigned int hh_len; 287 seqlock_t hh_lock; 288 289 /* cached hardware header; allow for machine alignment needs. */ 290 #define HH_DATA_MOD 16 291 #define HH_DATA_OFF(__len) \ 292 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 293 #define HH_DATA_ALIGN(__len) \ 294 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 295 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 296 }; 297 298 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 299 * Alternative is: 300 * dev->hard_header_len ? (dev->hard_header_len + 301 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 302 * 303 * We could use other alignment values, but we must maintain the 304 * relationship HH alignment <= LL alignment. 305 */ 306 #define LL_RESERVED_SPACE(dev) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 310 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 311 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 312 313 struct header_ops { 314 int (*create) (struct sk_buff *skb, struct net_device *dev, 315 unsigned short type, const void *daddr, 316 const void *saddr, unsigned int len); 317 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 bool (*validate)(const char *ll_header, unsigned int len); 323 __be16 (*parse_protocol)(const struct sk_buff *skb); 324 }; 325 326 /* These flag bits are private to the generic network queueing 327 * layer; they may not be explicitly referenced by any other 328 * code. 329 */ 330 331 enum netdev_state_t { 332 __LINK_STATE_START, 333 __LINK_STATE_PRESENT, 334 __LINK_STATE_NOCARRIER, 335 __LINK_STATE_LINKWATCH_PENDING, 336 __LINK_STATE_DORMANT, 337 __LINK_STATE_TESTING, 338 }; 339 340 struct gro_list { 341 struct list_head list; 342 int count; 343 }; 344 345 /* 346 * size of gro hash buckets, must less than bit number of 347 * napi_struct::gro_bitmask 348 */ 349 #define GRO_HASH_BUCKETS 8 350 351 /* 352 * Structure for NAPI scheduling similar to tasklet but with weighting 353 */ 354 struct napi_struct { 355 /* The poll_list must only be managed by the entity which 356 * changes the state of the NAPI_STATE_SCHED bit. This means 357 * whoever atomically sets that bit can add this napi_struct 358 * to the per-CPU poll_list, and whoever clears that bit 359 * can remove from the list right before clearing the bit. 360 */ 361 struct list_head poll_list; 362 363 unsigned long state; 364 int weight; 365 int defer_hard_irqs_count; 366 unsigned long gro_bitmask; 367 int (*poll)(struct napi_struct *, int); 368 #ifdef CONFIG_NETPOLL 369 /* CPU actively polling if netpoll is configured */ 370 int poll_owner; 371 #endif 372 /* CPU on which NAPI has been scheduled for processing */ 373 int list_owner; 374 struct net_device *dev; 375 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 376 struct sk_buff *skb; 377 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 378 int rx_count; /* length of rx_list */ 379 unsigned int napi_id; 380 struct hrtimer timer; 381 struct task_struct *thread; 382 /* control-path-only fields follow */ 383 struct list_head dev_list; 384 struct hlist_node napi_hash_node; 385 }; 386 387 enum { 388 NAPI_STATE_SCHED, /* Poll is scheduled */ 389 NAPI_STATE_MISSED, /* reschedule a napi */ 390 NAPI_STATE_DISABLE, /* Disable pending */ 391 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 392 NAPI_STATE_LISTED, /* NAPI added to system lists */ 393 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 394 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 395 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 396 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 397 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 398 }; 399 400 enum { 401 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 402 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 403 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 404 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 405 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 406 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 407 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 408 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 409 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 410 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 411 }; 412 413 enum gro_result { 414 GRO_MERGED, 415 GRO_MERGED_FREE, 416 GRO_HELD, 417 GRO_NORMAL, 418 GRO_CONSUMED, 419 }; 420 typedef enum gro_result gro_result_t; 421 422 /* 423 * enum rx_handler_result - Possible return values for rx_handlers. 424 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 425 * further. 426 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 427 * case skb->dev was changed by rx_handler. 428 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 429 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 430 * 431 * rx_handlers are functions called from inside __netif_receive_skb(), to do 432 * special processing of the skb, prior to delivery to protocol handlers. 433 * 434 * Currently, a net_device can only have a single rx_handler registered. Trying 435 * to register a second rx_handler will return -EBUSY. 436 * 437 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 438 * To unregister a rx_handler on a net_device, use 439 * netdev_rx_handler_unregister(). 440 * 441 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 442 * do with the skb. 443 * 444 * If the rx_handler consumed the skb in some way, it should return 445 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 446 * the skb to be delivered in some other way. 447 * 448 * If the rx_handler changed skb->dev, to divert the skb to another 449 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 450 * new device will be called if it exists. 451 * 452 * If the rx_handler decides the skb should be ignored, it should return 453 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 454 * are registered on exact device (ptype->dev == skb->dev). 455 * 456 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 457 * delivered, it should return RX_HANDLER_PASS. 458 * 459 * A device without a registered rx_handler will behave as if rx_handler 460 * returned RX_HANDLER_PASS. 461 */ 462 463 enum rx_handler_result { 464 RX_HANDLER_CONSUMED, 465 RX_HANDLER_ANOTHER, 466 RX_HANDLER_EXACT, 467 RX_HANDLER_PASS, 468 }; 469 typedef enum rx_handler_result rx_handler_result_t; 470 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 471 472 void __napi_schedule(struct napi_struct *n); 473 void __napi_schedule_irqoff(struct napi_struct *n); 474 475 static inline bool napi_disable_pending(struct napi_struct *n) 476 { 477 return test_bit(NAPI_STATE_DISABLE, &n->state); 478 } 479 480 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 481 { 482 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 483 } 484 485 bool napi_schedule_prep(struct napi_struct *n); 486 487 /** 488 * napi_schedule - schedule NAPI poll 489 * @n: NAPI context 490 * 491 * Schedule NAPI poll routine to be called if it is not already 492 * running. 493 */ 494 static inline void napi_schedule(struct napi_struct *n) 495 { 496 if (napi_schedule_prep(n)) 497 __napi_schedule(n); 498 } 499 500 /** 501 * napi_schedule_irqoff - schedule NAPI poll 502 * @n: NAPI context 503 * 504 * Variant of napi_schedule(), assuming hard irqs are masked. 505 */ 506 static inline void napi_schedule_irqoff(struct napi_struct *n) 507 { 508 if (napi_schedule_prep(n)) 509 __napi_schedule_irqoff(n); 510 } 511 512 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 513 static inline bool napi_reschedule(struct napi_struct *napi) 514 { 515 if (napi_schedule_prep(napi)) { 516 __napi_schedule(napi); 517 return true; 518 } 519 return false; 520 } 521 522 /** 523 * napi_complete_done - NAPI processing complete 524 * @n: NAPI context 525 * @work_done: number of packets processed 526 * 527 * Mark NAPI processing as complete. Should only be called if poll budget 528 * has not been completely consumed. 529 * Prefer over napi_complete(). 530 * Return false if device should avoid rearming interrupts. 531 */ 532 bool napi_complete_done(struct napi_struct *n, int work_done); 533 534 static inline bool napi_complete(struct napi_struct *n) 535 { 536 return napi_complete_done(n, 0); 537 } 538 539 int dev_set_threaded(struct net_device *dev, bool threaded); 540 541 /** 542 * napi_disable - prevent NAPI from scheduling 543 * @n: NAPI context 544 * 545 * Stop NAPI from being scheduled on this context. 546 * Waits till any outstanding processing completes. 547 */ 548 void napi_disable(struct napi_struct *n); 549 550 void napi_enable(struct napi_struct *n); 551 552 /** 553 * napi_synchronize - wait until NAPI is not running 554 * @n: NAPI context 555 * 556 * Wait until NAPI is done being scheduled on this context. 557 * Waits till any outstanding processing completes but 558 * does not disable future activations. 559 */ 560 static inline void napi_synchronize(const struct napi_struct *n) 561 { 562 if (IS_ENABLED(CONFIG_SMP)) 563 while (test_bit(NAPI_STATE_SCHED, &n->state)) 564 msleep(1); 565 else 566 barrier(); 567 } 568 569 /** 570 * napi_if_scheduled_mark_missed - if napi is running, set the 571 * NAPIF_STATE_MISSED 572 * @n: NAPI context 573 * 574 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 575 * NAPI is scheduled. 576 **/ 577 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 578 { 579 unsigned long val, new; 580 581 val = READ_ONCE(n->state); 582 do { 583 if (val & NAPIF_STATE_DISABLE) 584 return true; 585 586 if (!(val & NAPIF_STATE_SCHED)) 587 return false; 588 589 new = val | NAPIF_STATE_MISSED; 590 } while (!try_cmpxchg(&n->state, &val, new)); 591 592 return true; 593 } 594 595 enum netdev_queue_state_t { 596 __QUEUE_STATE_DRV_XOFF, 597 __QUEUE_STATE_STACK_XOFF, 598 __QUEUE_STATE_FROZEN, 599 }; 600 601 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 602 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 603 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 604 605 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 606 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 607 QUEUE_STATE_FROZEN) 608 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 609 QUEUE_STATE_FROZEN) 610 611 /* 612 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 613 * netif_tx_* functions below are used to manipulate this flag. The 614 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 615 * queue independently. The netif_xmit_*stopped functions below are called 616 * to check if the queue has been stopped by the driver or stack (either 617 * of the XOFF bits are set in the state). Drivers should not need to call 618 * netif_xmit*stopped functions, they should only be using netif_tx_*. 619 */ 620 621 struct netdev_queue { 622 /* 623 * read-mostly part 624 */ 625 struct net_device *dev; 626 netdevice_tracker dev_tracker; 627 628 struct Qdisc __rcu *qdisc; 629 struct Qdisc __rcu *qdisc_sleeping; 630 #ifdef CONFIG_SYSFS 631 struct kobject kobj; 632 #endif 633 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 634 int numa_node; 635 #endif 636 unsigned long tx_maxrate; 637 /* 638 * Number of TX timeouts for this queue 639 * (/sys/class/net/DEV/Q/trans_timeout) 640 */ 641 atomic_long_t trans_timeout; 642 643 /* Subordinate device that the queue has been assigned to */ 644 struct net_device *sb_dev; 645 #ifdef CONFIG_XDP_SOCKETS 646 struct xsk_buff_pool *pool; 647 #endif 648 /* 649 * write-mostly part 650 */ 651 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 652 int xmit_lock_owner; 653 /* 654 * Time (in jiffies) of last Tx 655 */ 656 unsigned long trans_start; 657 658 unsigned long state; 659 660 #ifdef CONFIG_BQL 661 struct dql dql; 662 #endif 663 } ____cacheline_aligned_in_smp; 664 665 extern int sysctl_fb_tunnels_only_for_init_net; 666 extern int sysctl_devconf_inherit_init_net; 667 668 /* 669 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 670 * == 1 : For initns only 671 * == 2 : For none. 672 */ 673 static inline bool net_has_fallback_tunnels(const struct net *net) 674 { 675 #if IS_ENABLED(CONFIG_SYSCTL) 676 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 677 678 return !fb_tunnels_only_for_init_net || 679 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 680 #else 681 return true; 682 #endif 683 } 684 685 static inline int net_inherit_devconf(void) 686 { 687 #if IS_ENABLED(CONFIG_SYSCTL) 688 return READ_ONCE(sysctl_devconf_inherit_init_net); 689 #else 690 return 0; 691 #endif 692 } 693 694 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 695 { 696 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 697 return q->numa_node; 698 #else 699 return NUMA_NO_NODE; 700 #endif 701 } 702 703 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 704 { 705 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 706 q->numa_node = node; 707 #endif 708 } 709 710 #ifdef CONFIG_RPS 711 /* 712 * This structure holds an RPS map which can be of variable length. The 713 * map is an array of CPUs. 714 */ 715 struct rps_map { 716 unsigned int len; 717 struct rcu_head rcu; 718 u16 cpus[]; 719 }; 720 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 721 722 /* 723 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 724 * tail pointer for that CPU's input queue at the time of last enqueue, and 725 * a hardware filter index. 726 */ 727 struct rps_dev_flow { 728 u16 cpu; 729 u16 filter; 730 unsigned int last_qtail; 731 }; 732 #define RPS_NO_FILTER 0xffff 733 734 /* 735 * The rps_dev_flow_table structure contains a table of flow mappings. 736 */ 737 struct rps_dev_flow_table { 738 unsigned int mask; 739 struct rcu_head rcu; 740 struct rps_dev_flow flows[]; 741 }; 742 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 743 ((_num) * sizeof(struct rps_dev_flow))) 744 745 /* 746 * The rps_sock_flow_table contains mappings of flows to the last CPU 747 * on which they were processed by the application (set in recvmsg). 748 * Each entry is a 32bit value. Upper part is the high-order bits 749 * of flow hash, lower part is CPU number. 750 * rps_cpu_mask is used to partition the space, depending on number of 751 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 752 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 753 * meaning we use 32-6=26 bits for the hash. 754 */ 755 struct rps_sock_flow_table { 756 u32 mask; 757 758 u32 ents[] ____cacheline_aligned_in_smp; 759 }; 760 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 761 762 #define RPS_NO_CPU 0xffff 763 764 extern u32 rps_cpu_mask; 765 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 766 767 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 768 u32 hash) 769 { 770 if (table && hash) { 771 unsigned int index = hash & table->mask; 772 u32 val = hash & ~rps_cpu_mask; 773 774 /* We only give a hint, preemption can change CPU under us */ 775 val |= raw_smp_processor_id(); 776 777 /* The following WRITE_ONCE() is paired with the READ_ONCE() 778 * here, and another one in get_rps_cpu(). 779 */ 780 if (READ_ONCE(table->ents[index]) != val) 781 WRITE_ONCE(table->ents[index], val); 782 } 783 } 784 785 #ifdef CONFIG_RFS_ACCEL 786 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 787 u16 filter_id); 788 #endif 789 #endif /* CONFIG_RPS */ 790 791 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 792 enum xps_map_type { 793 XPS_CPUS = 0, 794 XPS_RXQS, 795 XPS_MAPS_MAX, 796 }; 797 798 #ifdef CONFIG_XPS 799 /* 800 * This structure holds an XPS map which can be of variable length. The 801 * map is an array of queues. 802 */ 803 struct xps_map { 804 unsigned int len; 805 unsigned int alloc_len; 806 struct rcu_head rcu; 807 u16 queues[]; 808 }; 809 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 810 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 811 - sizeof(struct xps_map)) / sizeof(u16)) 812 813 /* 814 * This structure holds all XPS maps for device. Maps are indexed by CPU. 815 * 816 * We keep track of the number of cpus/rxqs used when the struct is allocated, 817 * in nr_ids. This will help not accessing out-of-bound memory. 818 * 819 * We keep track of the number of traffic classes used when the struct is 820 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 821 * not crossing its upper bound, as the original dev->num_tc can be updated in 822 * the meantime. 823 */ 824 struct xps_dev_maps { 825 struct rcu_head rcu; 826 unsigned int nr_ids; 827 s16 num_tc; 828 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 829 }; 830 831 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 832 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 833 834 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 835 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 836 837 #endif /* CONFIG_XPS */ 838 839 #define TC_MAX_QUEUE 16 840 #define TC_BITMASK 15 841 /* HW offloaded queuing disciplines txq count and offset maps */ 842 struct netdev_tc_txq { 843 u16 count; 844 u16 offset; 845 }; 846 847 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 848 /* 849 * This structure is to hold information about the device 850 * configured to run FCoE protocol stack. 851 */ 852 struct netdev_fcoe_hbainfo { 853 char manufacturer[64]; 854 char serial_number[64]; 855 char hardware_version[64]; 856 char driver_version[64]; 857 char optionrom_version[64]; 858 char firmware_version[64]; 859 char model[256]; 860 char model_description[256]; 861 }; 862 #endif 863 864 #define MAX_PHYS_ITEM_ID_LEN 32 865 866 /* This structure holds a unique identifier to identify some 867 * physical item (port for example) used by a netdevice. 868 */ 869 struct netdev_phys_item_id { 870 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 871 unsigned char id_len; 872 }; 873 874 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 875 struct netdev_phys_item_id *b) 876 { 877 return a->id_len == b->id_len && 878 memcmp(a->id, b->id, a->id_len) == 0; 879 } 880 881 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 882 struct sk_buff *skb, 883 struct net_device *sb_dev); 884 885 enum net_device_path_type { 886 DEV_PATH_ETHERNET = 0, 887 DEV_PATH_VLAN, 888 DEV_PATH_BRIDGE, 889 DEV_PATH_PPPOE, 890 DEV_PATH_DSA, 891 DEV_PATH_MTK_WDMA, 892 }; 893 894 struct net_device_path { 895 enum net_device_path_type type; 896 const struct net_device *dev; 897 union { 898 struct { 899 u16 id; 900 __be16 proto; 901 u8 h_dest[ETH_ALEN]; 902 } encap; 903 struct { 904 enum { 905 DEV_PATH_BR_VLAN_KEEP, 906 DEV_PATH_BR_VLAN_TAG, 907 DEV_PATH_BR_VLAN_UNTAG, 908 DEV_PATH_BR_VLAN_UNTAG_HW, 909 } vlan_mode; 910 u16 vlan_id; 911 __be16 vlan_proto; 912 } bridge; 913 struct { 914 int port; 915 u16 proto; 916 } dsa; 917 struct { 918 u8 wdma_idx; 919 u8 queue; 920 u16 wcid; 921 u8 bss; 922 u8 amsdu; 923 } mtk_wdma; 924 }; 925 }; 926 927 #define NET_DEVICE_PATH_STACK_MAX 5 928 #define NET_DEVICE_PATH_VLAN_MAX 2 929 930 struct net_device_path_stack { 931 int num_paths; 932 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 933 }; 934 935 struct net_device_path_ctx { 936 const struct net_device *dev; 937 u8 daddr[ETH_ALEN]; 938 939 int num_vlans; 940 struct { 941 u16 id; 942 __be16 proto; 943 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 944 }; 945 946 enum tc_setup_type { 947 TC_QUERY_CAPS, 948 TC_SETUP_QDISC_MQPRIO, 949 TC_SETUP_CLSU32, 950 TC_SETUP_CLSFLOWER, 951 TC_SETUP_CLSMATCHALL, 952 TC_SETUP_CLSBPF, 953 TC_SETUP_BLOCK, 954 TC_SETUP_QDISC_CBS, 955 TC_SETUP_QDISC_RED, 956 TC_SETUP_QDISC_PRIO, 957 TC_SETUP_QDISC_MQ, 958 TC_SETUP_QDISC_ETF, 959 TC_SETUP_ROOT_QDISC, 960 TC_SETUP_QDISC_GRED, 961 TC_SETUP_QDISC_TAPRIO, 962 TC_SETUP_FT, 963 TC_SETUP_QDISC_ETS, 964 TC_SETUP_QDISC_TBF, 965 TC_SETUP_QDISC_FIFO, 966 TC_SETUP_QDISC_HTB, 967 TC_SETUP_ACT, 968 }; 969 970 /* These structures hold the attributes of bpf state that are being passed 971 * to the netdevice through the bpf op. 972 */ 973 enum bpf_netdev_command { 974 /* Set or clear a bpf program used in the earliest stages of packet 975 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 976 * is responsible for calling bpf_prog_put on any old progs that are 977 * stored. In case of error, the callee need not release the new prog 978 * reference, but on success it takes ownership and must bpf_prog_put 979 * when it is no longer used. 980 */ 981 XDP_SETUP_PROG, 982 XDP_SETUP_PROG_HW, 983 /* BPF program for offload callbacks, invoked at program load time. */ 984 BPF_OFFLOAD_MAP_ALLOC, 985 BPF_OFFLOAD_MAP_FREE, 986 XDP_SETUP_XSK_POOL, 987 }; 988 989 struct bpf_prog_offload_ops; 990 struct netlink_ext_ack; 991 struct xdp_umem; 992 struct xdp_dev_bulk_queue; 993 struct bpf_xdp_link; 994 995 enum bpf_xdp_mode { 996 XDP_MODE_SKB = 0, 997 XDP_MODE_DRV = 1, 998 XDP_MODE_HW = 2, 999 __MAX_XDP_MODE 1000 }; 1001 1002 struct bpf_xdp_entity { 1003 struct bpf_prog *prog; 1004 struct bpf_xdp_link *link; 1005 }; 1006 1007 struct netdev_bpf { 1008 enum bpf_netdev_command command; 1009 union { 1010 /* XDP_SETUP_PROG */ 1011 struct { 1012 u32 flags; 1013 struct bpf_prog *prog; 1014 struct netlink_ext_ack *extack; 1015 }; 1016 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1017 struct { 1018 struct bpf_offloaded_map *offmap; 1019 }; 1020 /* XDP_SETUP_XSK_POOL */ 1021 struct { 1022 struct xsk_buff_pool *pool; 1023 u16 queue_id; 1024 } xsk; 1025 }; 1026 }; 1027 1028 /* Flags for ndo_xsk_wakeup. */ 1029 #define XDP_WAKEUP_RX (1 << 0) 1030 #define XDP_WAKEUP_TX (1 << 1) 1031 1032 #ifdef CONFIG_XFRM_OFFLOAD 1033 struct xfrmdev_ops { 1034 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1035 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1036 void (*xdo_dev_state_free) (struct xfrm_state *x); 1037 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1038 struct xfrm_state *x); 1039 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1040 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1041 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1042 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1043 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1044 }; 1045 #endif 1046 1047 struct dev_ifalias { 1048 struct rcu_head rcuhead; 1049 char ifalias[]; 1050 }; 1051 1052 struct devlink; 1053 struct tlsdev_ops; 1054 1055 struct netdev_net_notifier { 1056 struct list_head list; 1057 struct notifier_block *nb; 1058 }; 1059 1060 /* 1061 * This structure defines the management hooks for network devices. 1062 * The following hooks can be defined; unless noted otherwise, they are 1063 * optional and can be filled with a null pointer. 1064 * 1065 * int (*ndo_init)(struct net_device *dev); 1066 * This function is called once when a network device is registered. 1067 * The network device can use this for any late stage initialization 1068 * or semantic validation. It can fail with an error code which will 1069 * be propagated back to register_netdev. 1070 * 1071 * void (*ndo_uninit)(struct net_device *dev); 1072 * This function is called when device is unregistered or when registration 1073 * fails. It is not called if init fails. 1074 * 1075 * int (*ndo_open)(struct net_device *dev); 1076 * This function is called when a network device transitions to the up 1077 * state. 1078 * 1079 * int (*ndo_stop)(struct net_device *dev); 1080 * This function is called when a network device transitions to the down 1081 * state. 1082 * 1083 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1084 * struct net_device *dev); 1085 * Called when a packet needs to be transmitted. 1086 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1087 * the queue before that can happen; it's for obsolete devices and weird 1088 * corner cases, but the stack really does a non-trivial amount 1089 * of useless work if you return NETDEV_TX_BUSY. 1090 * Required; cannot be NULL. 1091 * 1092 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1093 * struct net_device *dev 1094 * netdev_features_t features); 1095 * Called by core transmit path to determine if device is capable of 1096 * performing offload operations on a given packet. This is to give 1097 * the device an opportunity to implement any restrictions that cannot 1098 * be otherwise expressed by feature flags. The check is called with 1099 * the set of features that the stack has calculated and it returns 1100 * those the driver believes to be appropriate. 1101 * 1102 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1103 * struct net_device *sb_dev); 1104 * Called to decide which queue to use when device supports multiple 1105 * transmit queues. 1106 * 1107 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1108 * This function is called to allow device receiver to make 1109 * changes to configuration when multicast or promiscuous is enabled. 1110 * 1111 * void (*ndo_set_rx_mode)(struct net_device *dev); 1112 * This function is called device changes address list filtering. 1113 * If driver handles unicast address filtering, it should set 1114 * IFF_UNICAST_FLT in its priv_flags. 1115 * 1116 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1117 * This function is called when the Media Access Control address 1118 * needs to be changed. If this interface is not defined, the 1119 * MAC address can not be changed. 1120 * 1121 * int (*ndo_validate_addr)(struct net_device *dev); 1122 * Test if Media Access Control address is valid for the device. 1123 * 1124 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1125 * Old-style ioctl entry point. This is used internally by the 1126 * appletalk and ieee802154 subsystems but is no longer called by 1127 * the device ioctl handler. 1128 * 1129 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1130 * Used by the bonding driver for its device specific ioctls: 1131 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1132 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1133 * 1134 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1135 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1136 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1137 * 1138 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1139 * Used to set network devices bus interface parameters. This interface 1140 * is retained for legacy reasons; new devices should use the bus 1141 * interface (PCI) for low level management. 1142 * 1143 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1144 * Called when a user wants to change the Maximum Transfer Unit 1145 * of a device. 1146 * 1147 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1148 * Callback used when the transmitter has not made any progress 1149 * for dev->watchdog ticks. 1150 * 1151 * void (*ndo_get_stats64)(struct net_device *dev, 1152 * struct rtnl_link_stats64 *storage); 1153 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1154 * Called when a user wants to get the network device usage 1155 * statistics. Drivers must do one of the following: 1156 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1157 * rtnl_link_stats64 structure passed by the caller. 1158 * 2. Define @ndo_get_stats to update a net_device_stats structure 1159 * (which should normally be dev->stats) and return a pointer to 1160 * it. The structure may be changed asynchronously only if each 1161 * field is written atomically. 1162 * 3. Update dev->stats asynchronously and atomically, and define 1163 * neither operation. 1164 * 1165 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1166 * Return true if this device supports offload stats of this attr_id. 1167 * 1168 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1169 * void *attr_data) 1170 * Get statistics for offload operations by attr_id. Write it into the 1171 * attr_data pointer. 1172 * 1173 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1174 * If device supports VLAN filtering this function is called when a 1175 * VLAN id is registered. 1176 * 1177 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1178 * If device supports VLAN filtering this function is called when a 1179 * VLAN id is unregistered. 1180 * 1181 * void (*ndo_poll_controller)(struct net_device *dev); 1182 * 1183 * SR-IOV management functions. 1184 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1185 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1186 * u8 qos, __be16 proto); 1187 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1188 * int max_tx_rate); 1189 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1190 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1191 * int (*ndo_get_vf_config)(struct net_device *dev, 1192 * int vf, struct ifla_vf_info *ivf); 1193 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1194 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1195 * struct nlattr *port[]); 1196 * 1197 * Enable or disable the VF ability to query its RSS Redirection Table and 1198 * Hash Key. This is needed since on some devices VF share this information 1199 * with PF and querying it may introduce a theoretical security risk. 1200 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1201 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1202 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1203 * void *type_data); 1204 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1205 * This is always called from the stack with the rtnl lock held and netif 1206 * tx queues stopped. This allows the netdevice to perform queue 1207 * management safely. 1208 * 1209 * Fiber Channel over Ethernet (FCoE) offload functions. 1210 * int (*ndo_fcoe_enable)(struct net_device *dev); 1211 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1212 * so the underlying device can perform whatever needed configuration or 1213 * initialization to support acceleration of FCoE traffic. 1214 * 1215 * int (*ndo_fcoe_disable)(struct net_device *dev); 1216 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1217 * so the underlying device can perform whatever needed clean-ups to 1218 * stop supporting acceleration of FCoE traffic. 1219 * 1220 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1221 * struct scatterlist *sgl, unsigned int sgc); 1222 * Called when the FCoE Initiator wants to initialize an I/O that 1223 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1224 * perform necessary setup and returns 1 to indicate the device is set up 1225 * successfully to perform DDP on this I/O, otherwise this returns 0. 1226 * 1227 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1228 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1229 * indicated by the FC exchange id 'xid', so the underlying device can 1230 * clean up and reuse resources for later DDP requests. 1231 * 1232 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1233 * struct scatterlist *sgl, unsigned int sgc); 1234 * Called when the FCoE Target wants to initialize an I/O that 1235 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1236 * perform necessary setup and returns 1 to indicate the device is set up 1237 * successfully to perform DDP on this I/O, otherwise this returns 0. 1238 * 1239 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1240 * struct netdev_fcoe_hbainfo *hbainfo); 1241 * Called when the FCoE Protocol stack wants information on the underlying 1242 * device. This information is utilized by the FCoE protocol stack to 1243 * register attributes with Fiber Channel management service as per the 1244 * FC-GS Fabric Device Management Information(FDMI) specification. 1245 * 1246 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1247 * Called when the underlying device wants to override default World Wide 1248 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1249 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1250 * protocol stack to use. 1251 * 1252 * RFS acceleration. 1253 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1254 * u16 rxq_index, u32 flow_id); 1255 * Set hardware filter for RFS. rxq_index is the target queue index; 1256 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1257 * Return the filter ID on success, or a negative error code. 1258 * 1259 * Slave management functions (for bridge, bonding, etc). 1260 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1261 * Called to make another netdev an underling. 1262 * 1263 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1264 * Called to release previously enslaved netdev. 1265 * 1266 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1267 * struct sk_buff *skb, 1268 * bool all_slaves); 1269 * Get the xmit slave of master device. If all_slaves is true, function 1270 * assume all the slaves can transmit. 1271 * 1272 * Feature/offload setting functions. 1273 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1274 * netdev_features_t features); 1275 * Adjusts the requested feature flags according to device-specific 1276 * constraints, and returns the resulting flags. Must not modify 1277 * the device state. 1278 * 1279 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1280 * Called to update device configuration to new features. Passed 1281 * feature set might be less than what was returned by ndo_fix_features()). 1282 * Must return >0 or -errno if it changed dev->features itself. 1283 * 1284 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1285 * struct net_device *dev, 1286 * const unsigned char *addr, u16 vid, u16 flags, 1287 * struct netlink_ext_ack *extack); 1288 * Adds an FDB entry to dev for addr. 1289 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1290 * struct net_device *dev, 1291 * const unsigned char *addr, u16 vid) 1292 * Deletes the FDB entry from dev coresponding to addr. 1293 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1294 * struct net_device *dev, 1295 * u16 vid, 1296 * struct netlink_ext_ack *extack); 1297 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1298 * struct net_device *dev, struct net_device *filter_dev, 1299 * int *idx) 1300 * Used to add FDB entries to dump requests. Implementers should add 1301 * entries to skb and update idx with the number of entries. 1302 * 1303 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1304 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1305 * Adds an MDB entry to dev. 1306 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1307 * struct netlink_ext_ack *extack); 1308 * Deletes the MDB entry from dev. 1309 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1310 * struct netlink_callback *cb); 1311 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1312 * callback is used by core rtnetlink code. 1313 * 1314 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1315 * u16 flags, struct netlink_ext_ack *extack) 1316 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1317 * struct net_device *dev, u32 filter_mask, 1318 * int nlflags) 1319 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1320 * u16 flags); 1321 * 1322 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1323 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1324 * which do not represent real hardware may define this to allow their 1325 * userspace components to manage their virtual carrier state. Devices 1326 * that determine carrier state from physical hardware properties (eg 1327 * network cables) or protocol-dependent mechanisms (eg 1328 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1329 * 1330 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1331 * struct netdev_phys_item_id *ppid); 1332 * Called to get ID of physical port of this device. If driver does 1333 * not implement this, it is assumed that the hw is not able to have 1334 * multiple net devices on single physical port. 1335 * 1336 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1337 * struct netdev_phys_item_id *ppid) 1338 * Called to get the parent ID of the physical port of this device. 1339 * 1340 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1341 * struct net_device *dev) 1342 * Called by upper layer devices to accelerate switching or other 1343 * station functionality into hardware. 'pdev is the lowerdev 1344 * to use for the offload and 'dev' is the net device that will 1345 * back the offload. Returns a pointer to the private structure 1346 * the upper layer will maintain. 1347 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1348 * Called by upper layer device to delete the station created 1349 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1350 * the station and priv is the structure returned by the add 1351 * operation. 1352 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1353 * int queue_index, u32 maxrate); 1354 * Called when a user wants to set a max-rate limitation of specific 1355 * TX queue. 1356 * int (*ndo_get_iflink)(const struct net_device *dev); 1357 * Called to get the iflink value of this device. 1358 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1359 * This function is used to get egress tunnel information for given skb. 1360 * This is useful for retrieving outer tunnel header parameters while 1361 * sampling packet. 1362 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1363 * This function is used to specify the headroom that the skb must 1364 * consider when allocation skb during packet reception. Setting 1365 * appropriate rx headroom value allows avoiding skb head copy on 1366 * forward. Setting a negative value resets the rx headroom to the 1367 * default value. 1368 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1369 * This function is used to set or query state related to XDP on the 1370 * netdevice and manage BPF offload. See definition of 1371 * enum bpf_netdev_command for details. 1372 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1373 * u32 flags); 1374 * This function is used to submit @n XDP packets for transmit on a 1375 * netdevice. Returns number of frames successfully transmitted, frames 1376 * that got dropped are freed/returned via xdp_return_frame(). 1377 * Returns negative number, means general error invoking ndo, meaning 1378 * no frames were xmit'ed and core-caller will free all frames. 1379 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1380 * struct xdp_buff *xdp); 1381 * Get the xmit slave of master device based on the xdp_buff. 1382 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1383 * This function is used to wake up the softirq, ksoftirqd or kthread 1384 * responsible for sending and/or receiving packets on a specific 1385 * queue id bound to an AF_XDP socket. The flags field specifies if 1386 * only RX, only Tx, or both should be woken up using the flags 1387 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1388 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1389 * int cmd); 1390 * Add, change, delete or get information on an IPv4 tunnel. 1391 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1392 * If a device is paired with a peer device, return the peer instance. 1393 * The caller must be under RCU read context. 1394 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1395 * Get the forwarding path to reach the real device from the HW destination address 1396 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1397 * const struct skb_shared_hwtstamps *hwtstamps, 1398 * bool cycles); 1399 * Get hardware timestamp based on normal/adjustable time or free running 1400 * cycle counter. This function is required if physical clock supports a 1401 * free running cycle counter. 1402 * 1403 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1404 * struct kernel_hwtstamp_config *kernel_config); 1405 * Get the currently configured hardware timestamping parameters for the 1406 * NIC device. 1407 * 1408 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1409 * struct kernel_hwtstamp_config *kernel_config, 1410 * struct netlink_ext_ack *extack); 1411 * Change the hardware timestamping parameters for NIC device. 1412 */ 1413 struct net_device_ops { 1414 int (*ndo_init)(struct net_device *dev); 1415 void (*ndo_uninit)(struct net_device *dev); 1416 int (*ndo_open)(struct net_device *dev); 1417 int (*ndo_stop)(struct net_device *dev); 1418 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1419 struct net_device *dev); 1420 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1421 struct net_device *dev, 1422 netdev_features_t features); 1423 u16 (*ndo_select_queue)(struct net_device *dev, 1424 struct sk_buff *skb, 1425 struct net_device *sb_dev); 1426 void (*ndo_change_rx_flags)(struct net_device *dev, 1427 int flags); 1428 void (*ndo_set_rx_mode)(struct net_device *dev); 1429 int (*ndo_set_mac_address)(struct net_device *dev, 1430 void *addr); 1431 int (*ndo_validate_addr)(struct net_device *dev); 1432 int (*ndo_do_ioctl)(struct net_device *dev, 1433 struct ifreq *ifr, int cmd); 1434 int (*ndo_eth_ioctl)(struct net_device *dev, 1435 struct ifreq *ifr, int cmd); 1436 int (*ndo_siocbond)(struct net_device *dev, 1437 struct ifreq *ifr, int cmd); 1438 int (*ndo_siocwandev)(struct net_device *dev, 1439 struct if_settings *ifs); 1440 int (*ndo_siocdevprivate)(struct net_device *dev, 1441 struct ifreq *ifr, 1442 void __user *data, int cmd); 1443 int (*ndo_set_config)(struct net_device *dev, 1444 struct ifmap *map); 1445 int (*ndo_change_mtu)(struct net_device *dev, 1446 int new_mtu); 1447 int (*ndo_neigh_setup)(struct net_device *dev, 1448 struct neigh_parms *); 1449 void (*ndo_tx_timeout) (struct net_device *dev, 1450 unsigned int txqueue); 1451 1452 void (*ndo_get_stats64)(struct net_device *dev, 1453 struct rtnl_link_stats64 *storage); 1454 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1455 int (*ndo_get_offload_stats)(int attr_id, 1456 const struct net_device *dev, 1457 void *attr_data); 1458 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1459 1460 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1461 __be16 proto, u16 vid); 1462 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1463 __be16 proto, u16 vid); 1464 #ifdef CONFIG_NET_POLL_CONTROLLER 1465 void (*ndo_poll_controller)(struct net_device *dev); 1466 int (*ndo_netpoll_setup)(struct net_device *dev, 1467 struct netpoll_info *info); 1468 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1469 #endif 1470 int (*ndo_set_vf_mac)(struct net_device *dev, 1471 int queue, u8 *mac); 1472 int (*ndo_set_vf_vlan)(struct net_device *dev, 1473 int queue, u16 vlan, 1474 u8 qos, __be16 proto); 1475 int (*ndo_set_vf_rate)(struct net_device *dev, 1476 int vf, int min_tx_rate, 1477 int max_tx_rate); 1478 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1479 int vf, bool setting); 1480 int (*ndo_set_vf_trust)(struct net_device *dev, 1481 int vf, bool setting); 1482 int (*ndo_get_vf_config)(struct net_device *dev, 1483 int vf, 1484 struct ifla_vf_info *ivf); 1485 int (*ndo_set_vf_link_state)(struct net_device *dev, 1486 int vf, int link_state); 1487 int (*ndo_get_vf_stats)(struct net_device *dev, 1488 int vf, 1489 struct ifla_vf_stats 1490 *vf_stats); 1491 int (*ndo_set_vf_port)(struct net_device *dev, 1492 int vf, 1493 struct nlattr *port[]); 1494 int (*ndo_get_vf_port)(struct net_device *dev, 1495 int vf, struct sk_buff *skb); 1496 int (*ndo_get_vf_guid)(struct net_device *dev, 1497 int vf, 1498 struct ifla_vf_guid *node_guid, 1499 struct ifla_vf_guid *port_guid); 1500 int (*ndo_set_vf_guid)(struct net_device *dev, 1501 int vf, u64 guid, 1502 int guid_type); 1503 int (*ndo_set_vf_rss_query_en)( 1504 struct net_device *dev, 1505 int vf, bool setting); 1506 int (*ndo_setup_tc)(struct net_device *dev, 1507 enum tc_setup_type type, 1508 void *type_data); 1509 #if IS_ENABLED(CONFIG_FCOE) 1510 int (*ndo_fcoe_enable)(struct net_device *dev); 1511 int (*ndo_fcoe_disable)(struct net_device *dev); 1512 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1513 u16 xid, 1514 struct scatterlist *sgl, 1515 unsigned int sgc); 1516 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1517 u16 xid); 1518 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1519 u16 xid, 1520 struct scatterlist *sgl, 1521 unsigned int sgc); 1522 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1523 struct netdev_fcoe_hbainfo *hbainfo); 1524 #endif 1525 1526 #if IS_ENABLED(CONFIG_LIBFCOE) 1527 #define NETDEV_FCOE_WWNN 0 1528 #define NETDEV_FCOE_WWPN 1 1529 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1530 u64 *wwn, int type); 1531 #endif 1532 1533 #ifdef CONFIG_RFS_ACCEL 1534 int (*ndo_rx_flow_steer)(struct net_device *dev, 1535 const struct sk_buff *skb, 1536 u16 rxq_index, 1537 u32 flow_id); 1538 #endif 1539 int (*ndo_add_slave)(struct net_device *dev, 1540 struct net_device *slave_dev, 1541 struct netlink_ext_ack *extack); 1542 int (*ndo_del_slave)(struct net_device *dev, 1543 struct net_device *slave_dev); 1544 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1545 struct sk_buff *skb, 1546 bool all_slaves); 1547 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1548 struct sock *sk); 1549 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1550 netdev_features_t features); 1551 int (*ndo_set_features)(struct net_device *dev, 1552 netdev_features_t features); 1553 int (*ndo_neigh_construct)(struct net_device *dev, 1554 struct neighbour *n); 1555 void (*ndo_neigh_destroy)(struct net_device *dev, 1556 struct neighbour *n); 1557 1558 int (*ndo_fdb_add)(struct ndmsg *ndm, 1559 struct nlattr *tb[], 1560 struct net_device *dev, 1561 const unsigned char *addr, 1562 u16 vid, 1563 u16 flags, 1564 struct netlink_ext_ack *extack); 1565 int (*ndo_fdb_del)(struct ndmsg *ndm, 1566 struct nlattr *tb[], 1567 struct net_device *dev, 1568 const unsigned char *addr, 1569 u16 vid, struct netlink_ext_ack *extack); 1570 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1571 struct nlattr *tb[], 1572 struct net_device *dev, 1573 u16 vid, 1574 struct netlink_ext_ack *extack); 1575 int (*ndo_fdb_dump)(struct sk_buff *skb, 1576 struct netlink_callback *cb, 1577 struct net_device *dev, 1578 struct net_device *filter_dev, 1579 int *idx); 1580 int (*ndo_fdb_get)(struct sk_buff *skb, 1581 struct nlattr *tb[], 1582 struct net_device *dev, 1583 const unsigned char *addr, 1584 u16 vid, u32 portid, u32 seq, 1585 struct netlink_ext_ack *extack); 1586 int (*ndo_mdb_add)(struct net_device *dev, 1587 struct nlattr *tb[], 1588 u16 nlmsg_flags, 1589 struct netlink_ext_ack *extack); 1590 int (*ndo_mdb_del)(struct net_device *dev, 1591 struct nlattr *tb[], 1592 struct netlink_ext_ack *extack); 1593 int (*ndo_mdb_dump)(struct net_device *dev, 1594 struct sk_buff *skb, 1595 struct netlink_callback *cb); 1596 int (*ndo_bridge_setlink)(struct net_device *dev, 1597 struct nlmsghdr *nlh, 1598 u16 flags, 1599 struct netlink_ext_ack *extack); 1600 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1601 u32 pid, u32 seq, 1602 struct net_device *dev, 1603 u32 filter_mask, 1604 int nlflags); 1605 int (*ndo_bridge_dellink)(struct net_device *dev, 1606 struct nlmsghdr *nlh, 1607 u16 flags); 1608 int (*ndo_change_carrier)(struct net_device *dev, 1609 bool new_carrier); 1610 int (*ndo_get_phys_port_id)(struct net_device *dev, 1611 struct netdev_phys_item_id *ppid); 1612 int (*ndo_get_port_parent_id)(struct net_device *dev, 1613 struct netdev_phys_item_id *ppid); 1614 int (*ndo_get_phys_port_name)(struct net_device *dev, 1615 char *name, size_t len); 1616 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1617 struct net_device *dev); 1618 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1619 void *priv); 1620 1621 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1622 int queue_index, 1623 u32 maxrate); 1624 int (*ndo_get_iflink)(const struct net_device *dev); 1625 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1626 struct sk_buff *skb); 1627 void (*ndo_set_rx_headroom)(struct net_device *dev, 1628 int needed_headroom); 1629 int (*ndo_bpf)(struct net_device *dev, 1630 struct netdev_bpf *bpf); 1631 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1632 struct xdp_frame **xdp, 1633 u32 flags); 1634 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1635 struct xdp_buff *xdp); 1636 int (*ndo_xsk_wakeup)(struct net_device *dev, 1637 u32 queue_id, u32 flags); 1638 int (*ndo_tunnel_ctl)(struct net_device *dev, 1639 struct ip_tunnel_parm *p, int cmd); 1640 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1641 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1642 struct net_device_path *path); 1643 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1644 const struct skb_shared_hwtstamps *hwtstamps, 1645 bool cycles); 1646 int (*ndo_hwtstamp_get)(struct net_device *dev, 1647 struct kernel_hwtstamp_config *kernel_config); 1648 int (*ndo_hwtstamp_set)(struct net_device *dev, 1649 struct kernel_hwtstamp_config *kernel_config, 1650 struct netlink_ext_ack *extack); 1651 }; 1652 1653 /** 1654 * enum netdev_priv_flags - &struct net_device priv_flags 1655 * 1656 * These are the &struct net_device, they are only set internally 1657 * by drivers and used in the kernel. These flags are invisible to 1658 * userspace; this means that the order of these flags can change 1659 * during any kernel release. 1660 * 1661 * You should have a pretty good reason to be extending these flags. 1662 * 1663 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1664 * @IFF_EBRIDGE: Ethernet bridging device 1665 * @IFF_BONDING: bonding master or slave 1666 * @IFF_ISATAP: ISATAP interface (RFC4214) 1667 * @IFF_WAN_HDLC: WAN HDLC device 1668 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1669 * release skb->dst 1670 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1671 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1672 * @IFF_MACVLAN_PORT: device used as macvlan port 1673 * @IFF_BRIDGE_PORT: device used as bridge port 1674 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1675 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1676 * @IFF_UNICAST_FLT: Supports unicast filtering 1677 * @IFF_TEAM_PORT: device used as team port 1678 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1679 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1680 * change when it's running 1681 * @IFF_MACVLAN: Macvlan device 1682 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1683 * underlying stacked devices 1684 * @IFF_L3MDEV_MASTER: device is an L3 master device 1685 * @IFF_NO_QUEUE: device can run without qdisc attached 1686 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1687 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1688 * @IFF_TEAM: device is a team device 1689 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1690 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1691 * entity (i.e. the master device for bridged veth) 1692 * @IFF_MACSEC: device is a MACsec device 1693 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1694 * @IFF_FAILOVER: device is a failover master device 1695 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1696 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1697 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1698 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1699 * skb_headlen(skb) == 0 (data starts from frag0) 1700 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1701 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1702 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1703 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1704 */ 1705 enum netdev_priv_flags { 1706 IFF_802_1Q_VLAN = 1<<0, 1707 IFF_EBRIDGE = 1<<1, 1708 IFF_BONDING = 1<<2, 1709 IFF_ISATAP = 1<<3, 1710 IFF_WAN_HDLC = 1<<4, 1711 IFF_XMIT_DST_RELEASE = 1<<5, 1712 IFF_DONT_BRIDGE = 1<<6, 1713 IFF_DISABLE_NETPOLL = 1<<7, 1714 IFF_MACVLAN_PORT = 1<<8, 1715 IFF_BRIDGE_PORT = 1<<9, 1716 IFF_OVS_DATAPATH = 1<<10, 1717 IFF_TX_SKB_SHARING = 1<<11, 1718 IFF_UNICAST_FLT = 1<<12, 1719 IFF_TEAM_PORT = 1<<13, 1720 IFF_SUPP_NOFCS = 1<<14, 1721 IFF_LIVE_ADDR_CHANGE = 1<<15, 1722 IFF_MACVLAN = 1<<16, 1723 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1724 IFF_L3MDEV_MASTER = 1<<18, 1725 IFF_NO_QUEUE = 1<<19, 1726 IFF_OPENVSWITCH = 1<<20, 1727 IFF_L3MDEV_SLAVE = 1<<21, 1728 IFF_TEAM = 1<<22, 1729 IFF_RXFH_CONFIGURED = 1<<23, 1730 IFF_PHONY_HEADROOM = 1<<24, 1731 IFF_MACSEC = 1<<25, 1732 IFF_NO_RX_HANDLER = 1<<26, 1733 IFF_FAILOVER = 1<<27, 1734 IFF_FAILOVER_SLAVE = 1<<28, 1735 IFF_L3MDEV_RX_HANDLER = 1<<29, 1736 IFF_NO_ADDRCONF = BIT_ULL(30), 1737 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1738 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1739 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1740 }; 1741 1742 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1743 #define IFF_EBRIDGE IFF_EBRIDGE 1744 #define IFF_BONDING IFF_BONDING 1745 #define IFF_ISATAP IFF_ISATAP 1746 #define IFF_WAN_HDLC IFF_WAN_HDLC 1747 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1748 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1749 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1750 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1751 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1752 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1753 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1754 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1755 #define IFF_TEAM_PORT IFF_TEAM_PORT 1756 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1757 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1758 #define IFF_MACVLAN IFF_MACVLAN 1759 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1760 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1761 #define IFF_NO_QUEUE IFF_NO_QUEUE 1762 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1763 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1764 #define IFF_TEAM IFF_TEAM 1765 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1766 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1767 #define IFF_MACSEC IFF_MACSEC 1768 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1769 #define IFF_FAILOVER IFF_FAILOVER 1770 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1771 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1772 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1773 1774 /* Specifies the type of the struct net_device::ml_priv pointer */ 1775 enum netdev_ml_priv_type { 1776 ML_PRIV_NONE, 1777 ML_PRIV_CAN, 1778 }; 1779 1780 /** 1781 * struct net_device - The DEVICE structure. 1782 * 1783 * Actually, this whole structure is a big mistake. It mixes I/O 1784 * data with strictly "high-level" data, and it has to know about 1785 * almost every data structure used in the INET module. 1786 * 1787 * @name: This is the first field of the "visible" part of this structure 1788 * (i.e. as seen by users in the "Space.c" file). It is the name 1789 * of the interface. 1790 * 1791 * @name_node: Name hashlist node 1792 * @ifalias: SNMP alias 1793 * @mem_end: Shared memory end 1794 * @mem_start: Shared memory start 1795 * @base_addr: Device I/O address 1796 * @irq: Device IRQ number 1797 * 1798 * @state: Generic network queuing layer state, see netdev_state_t 1799 * @dev_list: The global list of network devices 1800 * @napi_list: List entry used for polling NAPI devices 1801 * @unreg_list: List entry when we are unregistering the 1802 * device; see the function unregister_netdev 1803 * @close_list: List entry used when we are closing the device 1804 * @ptype_all: Device-specific packet handlers for all protocols 1805 * @ptype_specific: Device-specific, protocol-specific packet handlers 1806 * 1807 * @adj_list: Directly linked devices, like slaves for bonding 1808 * @features: Currently active device features 1809 * @hw_features: User-changeable features 1810 * 1811 * @wanted_features: User-requested features 1812 * @vlan_features: Mask of features inheritable by VLAN devices 1813 * 1814 * @hw_enc_features: Mask of features inherited by encapsulating devices 1815 * This field indicates what encapsulation 1816 * offloads the hardware is capable of doing, 1817 * and drivers will need to set them appropriately. 1818 * 1819 * @mpls_features: Mask of features inheritable by MPLS 1820 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1821 * 1822 * @ifindex: interface index 1823 * @group: The group the device belongs to 1824 * 1825 * @stats: Statistics struct, which was left as a legacy, use 1826 * rtnl_link_stats64 instead 1827 * 1828 * @core_stats: core networking counters, 1829 * do not use this in drivers 1830 * @carrier_up_count: Number of times the carrier has been up 1831 * @carrier_down_count: Number of times the carrier has been down 1832 * 1833 * @wireless_handlers: List of functions to handle Wireless Extensions, 1834 * instead of ioctl, 1835 * see <net/iw_handler.h> for details. 1836 * @wireless_data: Instance data managed by the core of wireless extensions 1837 * 1838 * @netdev_ops: Includes several pointers to callbacks, 1839 * if one wants to override the ndo_*() functions 1840 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1841 * @ethtool_ops: Management operations 1842 * @l3mdev_ops: Layer 3 master device operations 1843 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1844 * discovery handling. Necessary for e.g. 6LoWPAN. 1845 * @xfrmdev_ops: Transformation offload operations 1846 * @tlsdev_ops: Transport Layer Security offload operations 1847 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1848 * of Layer 2 headers. 1849 * 1850 * @flags: Interface flags (a la BSD) 1851 * @xdp_features: XDP capability supported by the device 1852 * @priv_flags: Like 'flags' but invisible to userspace, 1853 * see if.h for the definitions 1854 * @gflags: Global flags ( kept as legacy ) 1855 * @padded: How much padding added by alloc_netdev() 1856 * @operstate: RFC2863 operstate 1857 * @link_mode: Mapping policy to operstate 1858 * @if_port: Selectable AUI, TP, ... 1859 * @dma: DMA channel 1860 * @mtu: Interface MTU value 1861 * @min_mtu: Interface Minimum MTU value 1862 * @max_mtu: Interface Maximum MTU value 1863 * @type: Interface hardware type 1864 * @hard_header_len: Maximum hardware header length. 1865 * @min_header_len: Minimum hardware header length 1866 * 1867 * @needed_headroom: Extra headroom the hardware may need, but not in all 1868 * cases can this be guaranteed 1869 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1870 * cases can this be guaranteed. Some cases also use 1871 * LL_MAX_HEADER instead to allocate the skb 1872 * 1873 * interface address info: 1874 * 1875 * @perm_addr: Permanent hw address 1876 * @addr_assign_type: Hw address assignment type 1877 * @addr_len: Hardware address length 1878 * @upper_level: Maximum depth level of upper devices. 1879 * @lower_level: Maximum depth level of lower devices. 1880 * @neigh_priv_len: Used in neigh_alloc() 1881 * @dev_id: Used to differentiate devices that share 1882 * the same link layer address 1883 * @dev_port: Used to differentiate devices that share 1884 * the same function 1885 * @addr_list_lock: XXX: need comments on this one 1886 * @name_assign_type: network interface name assignment type 1887 * @uc_promisc: Counter that indicates promiscuous mode 1888 * has been enabled due to the need to listen to 1889 * additional unicast addresses in a device that 1890 * does not implement ndo_set_rx_mode() 1891 * @uc: unicast mac addresses 1892 * @mc: multicast mac addresses 1893 * @dev_addrs: list of device hw addresses 1894 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1895 * @promiscuity: Number of times the NIC is told to work in 1896 * promiscuous mode; if it becomes 0 the NIC will 1897 * exit promiscuous mode 1898 * @allmulti: Counter, enables or disables allmulticast mode 1899 * 1900 * @vlan_info: VLAN info 1901 * @dsa_ptr: dsa specific data 1902 * @tipc_ptr: TIPC specific data 1903 * @atalk_ptr: AppleTalk link 1904 * @ip_ptr: IPv4 specific data 1905 * @ip6_ptr: IPv6 specific data 1906 * @ax25_ptr: AX.25 specific data 1907 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1908 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1909 * device struct 1910 * @mpls_ptr: mpls_dev struct pointer 1911 * @mctp_ptr: MCTP specific data 1912 * 1913 * @dev_addr: Hw address (before bcast, 1914 * because most packets are unicast) 1915 * 1916 * @_rx: Array of RX queues 1917 * @num_rx_queues: Number of RX queues 1918 * allocated at register_netdev() time 1919 * @real_num_rx_queues: Number of RX queues currently active in device 1920 * @xdp_prog: XDP sockets filter program pointer 1921 * @gro_flush_timeout: timeout for GRO layer in NAPI 1922 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1923 * allow to avoid NIC hard IRQ, on busy queues. 1924 * 1925 * @rx_handler: handler for received packets 1926 * @rx_handler_data: XXX: need comments on this one 1927 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1928 * @ingress_queue: XXX: need comments on this one 1929 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1930 * @broadcast: hw bcast address 1931 * 1932 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1933 * indexed by RX queue number. Assigned by driver. 1934 * This must only be set if the ndo_rx_flow_steer 1935 * operation is defined 1936 * @index_hlist: Device index hash chain 1937 * 1938 * @_tx: Array of TX queues 1939 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1940 * @real_num_tx_queues: Number of TX queues currently active in device 1941 * @qdisc: Root qdisc from userspace point of view 1942 * @tx_queue_len: Max frames per queue allowed 1943 * @tx_global_lock: XXX: need comments on this one 1944 * @xdp_bulkq: XDP device bulk queue 1945 * @xps_maps: all CPUs/RXQs maps for XPS device 1946 * 1947 * @xps_maps: XXX: need comments on this one 1948 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1949 * @nf_hooks_egress: netfilter hooks executed for egress packets 1950 * @qdisc_hash: qdisc hash table 1951 * @watchdog_timeo: Represents the timeout that is used by 1952 * the watchdog (see dev_watchdog()) 1953 * @watchdog_timer: List of timers 1954 * 1955 * @proto_down_reason: reason a netdev interface is held down 1956 * @pcpu_refcnt: Number of references to this device 1957 * @dev_refcnt: Number of references to this device 1958 * @refcnt_tracker: Tracker directory for tracked references to this device 1959 * @todo_list: Delayed register/unregister 1960 * @link_watch_list: XXX: need comments on this one 1961 * 1962 * @reg_state: Register/unregister state machine 1963 * @dismantle: Device is going to be freed 1964 * @rtnl_link_state: This enum represents the phases of creating 1965 * a new link 1966 * 1967 * @needs_free_netdev: Should unregister perform free_netdev? 1968 * @priv_destructor: Called from unregister 1969 * @npinfo: XXX: need comments on this one 1970 * @nd_net: Network namespace this network device is inside 1971 * 1972 * @ml_priv: Mid-layer private 1973 * @ml_priv_type: Mid-layer private type 1974 * @lstats: Loopback statistics 1975 * @tstats: Tunnel statistics 1976 * @dstats: Dummy statistics 1977 * @vstats: Virtual ethernet statistics 1978 * 1979 * @garp_port: GARP 1980 * @mrp_port: MRP 1981 * 1982 * @dm_private: Drop monitor private 1983 * 1984 * @dev: Class/net/name entry 1985 * @sysfs_groups: Space for optional device, statistics and wireless 1986 * sysfs groups 1987 * 1988 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1989 * @rtnl_link_ops: Rtnl_link_ops 1990 * 1991 * @gso_max_size: Maximum size of generic segmentation offload 1992 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1993 * @gso_max_segs: Maximum number of segments that can be passed to the 1994 * NIC for GSO 1995 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1996 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1997 * for IPv4. 1998 * 1999 * @dcbnl_ops: Data Center Bridging netlink ops 2000 * @num_tc: Number of traffic classes in the net device 2001 * @tc_to_txq: XXX: need comments on this one 2002 * @prio_tc_map: XXX: need comments on this one 2003 * 2004 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2005 * 2006 * @priomap: XXX: need comments on this one 2007 * @phydev: Physical device may attach itself 2008 * for hardware timestamping 2009 * @sfp_bus: attached &struct sfp_bus structure. 2010 * 2011 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2012 * 2013 * @proto_down: protocol port state information can be sent to the 2014 * switch driver and used to set the phys state of the 2015 * switch port. 2016 * 2017 * @wol_enabled: Wake-on-LAN is enabled 2018 * 2019 * @threaded: napi threaded mode is enabled 2020 * 2021 * @net_notifier_list: List of per-net netdev notifier block 2022 * that follow this device when it is moved 2023 * to another network namespace. 2024 * 2025 * @macsec_ops: MACsec offloading ops 2026 * 2027 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2028 * offload capabilities of the device 2029 * @udp_tunnel_nic: UDP tunnel offload state 2030 * @xdp_state: stores info on attached XDP BPF programs 2031 * 2032 * @nested_level: Used as a parameter of spin_lock_nested() of 2033 * dev->addr_list_lock. 2034 * @unlink_list: As netif_addr_lock() can be called recursively, 2035 * keep a list of interfaces to be deleted. 2036 * @gro_max_size: Maximum size of aggregated packet in generic 2037 * receive offload (GRO) 2038 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2039 * receive offload (GRO), for IPv4. 2040 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2041 * zero copy driver 2042 * 2043 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2044 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2045 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2046 * @dev_registered_tracker: tracker for reference held while 2047 * registered 2048 * @offload_xstats_l3: L3 HW stats for this netdevice. 2049 * 2050 * @devlink_port: Pointer to related devlink port structure. 2051 * Assigned by a driver before netdev registration using 2052 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2053 * during the time netdevice is registered. 2054 * 2055 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2056 * where the clock is recovered. 2057 * 2058 * FIXME: cleanup struct net_device such that network protocol info 2059 * moves out. 2060 */ 2061 2062 struct net_device { 2063 char name[IFNAMSIZ]; 2064 struct netdev_name_node *name_node; 2065 struct dev_ifalias __rcu *ifalias; 2066 /* 2067 * I/O specific fields 2068 * FIXME: Merge these and struct ifmap into one 2069 */ 2070 unsigned long mem_end; 2071 unsigned long mem_start; 2072 unsigned long base_addr; 2073 2074 /* 2075 * Some hardware also needs these fields (state,dev_list, 2076 * napi_list,unreg_list,close_list) but they are not 2077 * part of the usual set specified in Space.c. 2078 */ 2079 2080 unsigned long state; 2081 2082 struct list_head dev_list; 2083 struct list_head napi_list; 2084 struct list_head unreg_list; 2085 struct list_head close_list; 2086 struct list_head ptype_all; 2087 struct list_head ptype_specific; 2088 2089 struct { 2090 struct list_head upper; 2091 struct list_head lower; 2092 } adj_list; 2093 2094 /* Read-mostly cache-line for fast-path access */ 2095 unsigned int flags; 2096 xdp_features_t xdp_features; 2097 unsigned long long priv_flags; 2098 const struct net_device_ops *netdev_ops; 2099 const struct xdp_metadata_ops *xdp_metadata_ops; 2100 int ifindex; 2101 unsigned short gflags; 2102 unsigned short hard_header_len; 2103 2104 /* Note : dev->mtu is often read without holding a lock. 2105 * Writers usually hold RTNL. 2106 * It is recommended to use READ_ONCE() to annotate the reads, 2107 * and to use WRITE_ONCE() to annotate the writes. 2108 */ 2109 unsigned int mtu; 2110 unsigned short needed_headroom; 2111 unsigned short needed_tailroom; 2112 2113 netdev_features_t features; 2114 netdev_features_t hw_features; 2115 netdev_features_t wanted_features; 2116 netdev_features_t vlan_features; 2117 netdev_features_t hw_enc_features; 2118 netdev_features_t mpls_features; 2119 netdev_features_t gso_partial_features; 2120 2121 unsigned int min_mtu; 2122 unsigned int max_mtu; 2123 unsigned short type; 2124 unsigned char min_header_len; 2125 unsigned char name_assign_type; 2126 2127 int group; 2128 2129 struct net_device_stats stats; /* not used by modern drivers */ 2130 2131 struct net_device_core_stats __percpu *core_stats; 2132 2133 /* Stats to monitor link on/off, flapping */ 2134 atomic_t carrier_up_count; 2135 atomic_t carrier_down_count; 2136 2137 #ifdef CONFIG_WIRELESS_EXT 2138 const struct iw_handler_def *wireless_handlers; 2139 struct iw_public_data *wireless_data; 2140 #endif 2141 const struct ethtool_ops *ethtool_ops; 2142 #ifdef CONFIG_NET_L3_MASTER_DEV 2143 const struct l3mdev_ops *l3mdev_ops; 2144 #endif 2145 #if IS_ENABLED(CONFIG_IPV6) 2146 const struct ndisc_ops *ndisc_ops; 2147 #endif 2148 2149 #ifdef CONFIG_XFRM_OFFLOAD 2150 const struct xfrmdev_ops *xfrmdev_ops; 2151 #endif 2152 2153 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2154 const struct tlsdev_ops *tlsdev_ops; 2155 #endif 2156 2157 const struct header_ops *header_ops; 2158 2159 unsigned char operstate; 2160 unsigned char link_mode; 2161 2162 unsigned char if_port; 2163 unsigned char dma; 2164 2165 /* Interface address info. */ 2166 unsigned char perm_addr[MAX_ADDR_LEN]; 2167 unsigned char addr_assign_type; 2168 unsigned char addr_len; 2169 unsigned char upper_level; 2170 unsigned char lower_level; 2171 2172 unsigned short neigh_priv_len; 2173 unsigned short dev_id; 2174 unsigned short dev_port; 2175 unsigned short padded; 2176 2177 spinlock_t addr_list_lock; 2178 int irq; 2179 2180 struct netdev_hw_addr_list uc; 2181 struct netdev_hw_addr_list mc; 2182 struct netdev_hw_addr_list dev_addrs; 2183 2184 #ifdef CONFIG_SYSFS 2185 struct kset *queues_kset; 2186 #endif 2187 #ifdef CONFIG_LOCKDEP 2188 struct list_head unlink_list; 2189 #endif 2190 unsigned int promiscuity; 2191 unsigned int allmulti; 2192 bool uc_promisc; 2193 #ifdef CONFIG_LOCKDEP 2194 unsigned char nested_level; 2195 #endif 2196 2197 2198 /* Protocol-specific pointers */ 2199 2200 struct in_device __rcu *ip_ptr; 2201 struct inet6_dev __rcu *ip6_ptr; 2202 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2203 struct vlan_info __rcu *vlan_info; 2204 #endif 2205 #if IS_ENABLED(CONFIG_NET_DSA) 2206 struct dsa_port *dsa_ptr; 2207 #endif 2208 #if IS_ENABLED(CONFIG_TIPC) 2209 struct tipc_bearer __rcu *tipc_ptr; 2210 #endif 2211 #if IS_ENABLED(CONFIG_ATALK) 2212 void *atalk_ptr; 2213 #endif 2214 #if IS_ENABLED(CONFIG_AX25) 2215 void *ax25_ptr; 2216 #endif 2217 #if IS_ENABLED(CONFIG_CFG80211) 2218 struct wireless_dev *ieee80211_ptr; 2219 #endif 2220 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2221 struct wpan_dev *ieee802154_ptr; 2222 #endif 2223 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2224 struct mpls_dev __rcu *mpls_ptr; 2225 #endif 2226 #if IS_ENABLED(CONFIG_MCTP) 2227 struct mctp_dev __rcu *mctp_ptr; 2228 #endif 2229 2230 /* 2231 * Cache lines mostly used on receive path (including eth_type_trans()) 2232 */ 2233 /* Interface address info used in eth_type_trans() */ 2234 const unsigned char *dev_addr; 2235 2236 struct netdev_rx_queue *_rx; 2237 unsigned int num_rx_queues; 2238 unsigned int real_num_rx_queues; 2239 2240 struct bpf_prog __rcu *xdp_prog; 2241 unsigned long gro_flush_timeout; 2242 int napi_defer_hard_irqs; 2243 #define GRO_LEGACY_MAX_SIZE 65536u 2244 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2245 * and shinfo->gso_segs is a 16bit field. 2246 */ 2247 #define GRO_MAX_SIZE (8 * 65535u) 2248 unsigned int gro_max_size; 2249 unsigned int gro_ipv4_max_size; 2250 unsigned int xdp_zc_max_segs; 2251 rx_handler_func_t __rcu *rx_handler; 2252 void __rcu *rx_handler_data; 2253 #ifdef CONFIG_NET_XGRESS 2254 struct bpf_mprog_entry __rcu *tcx_ingress; 2255 #endif 2256 struct netdev_queue __rcu *ingress_queue; 2257 #ifdef CONFIG_NETFILTER_INGRESS 2258 struct nf_hook_entries __rcu *nf_hooks_ingress; 2259 #endif 2260 2261 unsigned char broadcast[MAX_ADDR_LEN]; 2262 #ifdef CONFIG_RFS_ACCEL 2263 struct cpu_rmap *rx_cpu_rmap; 2264 #endif 2265 struct hlist_node index_hlist; 2266 2267 /* 2268 * Cache lines mostly used on transmit path 2269 */ 2270 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2271 unsigned int num_tx_queues; 2272 unsigned int real_num_tx_queues; 2273 struct Qdisc __rcu *qdisc; 2274 unsigned int tx_queue_len; 2275 spinlock_t tx_global_lock; 2276 2277 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2278 2279 #ifdef CONFIG_XPS 2280 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2281 #endif 2282 #ifdef CONFIG_NET_XGRESS 2283 struct bpf_mprog_entry __rcu *tcx_egress; 2284 #endif 2285 #ifdef CONFIG_NETFILTER_EGRESS 2286 struct nf_hook_entries __rcu *nf_hooks_egress; 2287 #endif 2288 2289 #ifdef CONFIG_NET_SCHED 2290 DECLARE_HASHTABLE (qdisc_hash, 4); 2291 #endif 2292 /* These may be needed for future network-power-down code. */ 2293 struct timer_list watchdog_timer; 2294 int watchdog_timeo; 2295 2296 u32 proto_down_reason; 2297 2298 struct list_head todo_list; 2299 2300 #ifdef CONFIG_PCPU_DEV_REFCNT 2301 int __percpu *pcpu_refcnt; 2302 #else 2303 refcount_t dev_refcnt; 2304 #endif 2305 struct ref_tracker_dir refcnt_tracker; 2306 2307 struct list_head link_watch_list; 2308 2309 enum { NETREG_UNINITIALIZED=0, 2310 NETREG_REGISTERED, /* completed register_netdevice */ 2311 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2312 NETREG_UNREGISTERED, /* completed unregister todo */ 2313 NETREG_RELEASED, /* called free_netdev */ 2314 NETREG_DUMMY, /* dummy device for NAPI poll */ 2315 } reg_state:8; 2316 2317 bool dismantle; 2318 2319 enum { 2320 RTNL_LINK_INITIALIZED, 2321 RTNL_LINK_INITIALIZING, 2322 } rtnl_link_state:16; 2323 2324 bool needs_free_netdev; 2325 void (*priv_destructor)(struct net_device *dev); 2326 2327 #ifdef CONFIG_NETPOLL 2328 struct netpoll_info __rcu *npinfo; 2329 #endif 2330 2331 possible_net_t nd_net; 2332 2333 /* mid-layer private */ 2334 void *ml_priv; 2335 enum netdev_ml_priv_type ml_priv_type; 2336 2337 union { 2338 struct pcpu_lstats __percpu *lstats; 2339 struct pcpu_sw_netstats __percpu *tstats; 2340 struct pcpu_dstats __percpu *dstats; 2341 }; 2342 2343 #if IS_ENABLED(CONFIG_GARP) 2344 struct garp_port __rcu *garp_port; 2345 #endif 2346 #if IS_ENABLED(CONFIG_MRP) 2347 struct mrp_port __rcu *mrp_port; 2348 #endif 2349 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2350 struct dm_hw_stat_delta __rcu *dm_private; 2351 #endif 2352 struct device dev; 2353 const struct attribute_group *sysfs_groups[4]; 2354 const struct attribute_group *sysfs_rx_queue_group; 2355 2356 const struct rtnl_link_ops *rtnl_link_ops; 2357 2358 /* for setting kernel sock attribute on TCP connection setup */ 2359 #define GSO_MAX_SEGS 65535u 2360 #define GSO_LEGACY_MAX_SIZE 65536u 2361 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2362 * and shinfo->gso_segs is a 16bit field. 2363 */ 2364 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2365 2366 unsigned int gso_max_size; 2367 #define TSO_LEGACY_MAX_SIZE 65536 2368 #define TSO_MAX_SIZE UINT_MAX 2369 unsigned int tso_max_size; 2370 u16 gso_max_segs; 2371 #define TSO_MAX_SEGS U16_MAX 2372 u16 tso_max_segs; 2373 unsigned int gso_ipv4_max_size; 2374 2375 #ifdef CONFIG_DCB 2376 const struct dcbnl_rtnl_ops *dcbnl_ops; 2377 #endif 2378 s16 num_tc; 2379 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2380 u8 prio_tc_map[TC_BITMASK + 1]; 2381 2382 #if IS_ENABLED(CONFIG_FCOE) 2383 unsigned int fcoe_ddp_xid; 2384 #endif 2385 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2386 struct netprio_map __rcu *priomap; 2387 #endif 2388 struct phy_device *phydev; 2389 struct sfp_bus *sfp_bus; 2390 struct lock_class_key *qdisc_tx_busylock; 2391 bool proto_down; 2392 unsigned wol_enabled:1; 2393 unsigned threaded:1; 2394 2395 struct list_head net_notifier_list; 2396 2397 #if IS_ENABLED(CONFIG_MACSEC) 2398 /* MACsec management functions */ 2399 const struct macsec_ops *macsec_ops; 2400 #endif 2401 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2402 struct udp_tunnel_nic *udp_tunnel_nic; 2403 2404 /* protected by rtnl_lock */ 2405 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2406 2407 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2408 netdevice_tracker linkwatch_dev_tracker; 2409 netdevice_tracker watchdog_dev_tracker; 2410 netdevice_tracker dev_registered_tracker; 2411 struct rtnl_hw_stats64 *offload_xstats_l3; 2412 2413 struct devlink_port *devlink_port; 2414 2415 #if IS_ENABLED(CONFIG_DPLL) 2416 struct dpll_pin *dpll_pin; 2417 #endif 2418 }; 2419 #define to_net_dev(d) container_of(d, struct net_device, dev) 2420 2421 /* 2422 * Driver should use this to assign devlink port instance to a netdevice 2423 * before it registers the netdevice. Therefore devlink_port is static 2424 * during the netdev lifetime after it is registered. 2425 */ 2426 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2427 ({ \ 2428 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2429 ((dev)->devlink_port = (port)); \ 2430 }) 2431 2432 static inline bool netif_elide_gro(const struct net_device *dev) 2433 { 2434 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2435 return true; 2436 return false; 2437 } 2438 2439 #define NETDEV_ALIGN 32 2440 2441 static inline 2442 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2443 { 2444 return dev->prio_tc_map[prio & TC_BITMASK]; 2445 } 2446 2447 static inline 2448 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2449 { 2450 if (tc >= dev->num_tc) 2451 return -EINVAL; 2452 2453 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2454 return 0; 2455 } 2456 2457 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2458 void netdev_reset_tc(struct net_device *dev); 2459 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2460 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2461 2462 static inline 2463 int netdev_get_num_tc(struct net_device *dev) 2464 { 2465 return dev->num_tc; 2466 } 2467 2468 static inline void net_prefetch(void *p) 2469 { 2470 prefetch(p); 2471 #if L1_CACHE_BYTES < 128 2472 prefetch((u8 *)p + L1_CACHE_BYTES); 2473 #endif 2474 } 2475 2476 static inline void net_prefetchw(void *p) 2477 { 2478 prefetchw(p); 2479 #if L1_CACHE_BYTES < 128 2480 prefetchw((u8 *)p + L1_CACHE_BYTES); 2481 #endif 2482 } 2483 2484 void netdev_unbind_sb_channel(struct net_device *dev, 2485 struct net_device *sb_dev); 2486 int netdev_bind_sb_channel_queue(struct net_device *dev, 2487 struct net_device *sb_dev, 2488 u8 tc, u16 count, u16 offset); 2489 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2490 static inline int netdev_get_sb_channel(struct net_device *dev) 2491 { 2492 return max_t(int, -dev->num_tc, 0); 2493 } 2494 2495 static inline 2496 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2497 unsigned int index) 2498 { 2499 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2500 return &dev->_tx[index]; 2501 } 2502 2503 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2504 const struct sk_buff *skb) 2505 { 2506 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2507 } 2508 2509 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2510 void (*f)(struct net_device *, 2511 struct netdev_queue *, 2512 void *), 2513 void *arg) 2514 { 2515 unsigned int i; 2516 2517 for (i = 0; i < dev->num_tx_queues; i++) 2518 f(dev, &dev->_tx[i], arg); 2519 } 2520 2521 #define netdev_lockdep_set_classes(dev) \ 2522 { \ 2523 static struct lock_class_key qdisc_tx_busylock_key; \ 2524 static struct lock_class_key qdisc_xmit_lock_key; \ 2525 static struct lock_class_key dev_addr_list_lock_key; \ 2526 unsigned int i; \ 2527 \ 2528 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2529 lockdep_set_class(&(dev)->addr_list_lock, \ 2530 &dev_addr_list_lock_key); \ 2531 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2532 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2533 &qdisc_xmit_lock_key); \ 2534 } 2535 2536 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2537 struct net_device *sb_dev); 2538 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2539 struct sk_buff *skb, 2540 struct net_device *sb_dev); 2541 2542 /* returns the headroom that the master device needs to take in account 2543 * when forwarding to this dev 2544 */ 2545 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2546 { 2547 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2548 } 2549 2550 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2551 { 2552 if (dev->netdev_ops->ndo_set_rx_headroom) 2553 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2554 } 2555 2556 /* set the device rx headroom to the dev's default */ 2557 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2558 { 2559 netdev_set_rx_headroom(dev, -1); 2560 } 2561 2562 static inline void *netdev_get_ml_priv(struct net_device *dev, 2563 enum netdev_ml_priv_type type) 2564 { 2565 if (dev->ml_priv_type != type) 2566 return NULL; 2567 2568 return dev->ml_priv; 2569 } 2570 2571 static inline void netdev_set_ml_priv(struct net_device *dev, 2572 void *ml_priv, 2573 enum netdev_ml_priv_type type) 2574 { 2575 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2576 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2577 dev->ml_priv_type, type); 2578 WARN(!dev->ml_priv_type && dev->ml_priv, 2579 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2580 2581 dev->ml_priv = ml_priv; 2582 dev->ml_priv_type = type; 2583 } 2584 2585 /* 2586 * Net namespace inlines 2587 */ 2588 static inline 2589 struct net *dev_net(const struct net_device *dev) 2590 { 2591 return read_pnet(&dev->nd_net); 2592 } 2593 2594 static inline 2595 void dev_net_set(struct net_device *dev, struct net *net) 2596 { 2597 write_pnet(&dev->nd_net, net); 2598 } 2599 2600 /** 2601 * netdev_priv - access network device private data 2602 * @dev: network device 2603 * 2604 * Get network device private data 2605 */ 2606 static inline void *netdev_priv(const struct net_device *dev) 2607 { 2608 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2609 } 2610 2611 /* Set the sysfs physical device reference for the network logical device 2612 * if set prior to registration will cause a symlink during initialization. 2613 */ 2614 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2615 2616 /* Set the sysfs device type for the network logical device to allow 2617 * fine-grained identification of different network device types. For 2618 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2619 */ 2620 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2621 2622 /* Default NAPI poll() weight 2623 * Device drivers are strongly advised to not use bigger value 2624 */ 2625 #define NAPI_POLL_WEIGHT 64 2626 2627 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2628 int (*poll)(struct napi_struct *, int), int weight); 2629 2630 /** 2631 * netif_napi_add() - initialize a NAPI context 2632 * @dev: network device 2633 * @napi: NAPI context 2634 * @poll: polling function 2635 * 2636 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2637 * *any* of the other NAPI-related functions. 2638 */ 2639 static inline void 2640 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2641 int (*poll)(struct napi_struct *, int)) 2642 { 2643 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2644 } 2645 2646 static inline void 2647 netif_napi_add_tx_weight(struct net_device *dev, 2648 struct napi_struct *napi, 2649 int (*poll)(struct napi_struct *, int), 2650 int weight) 2651 { 2652 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2653 netif_napi_add_weight(dev, napi, poll, weight); 2654 } 2655 2656 /** 2657 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2658 * @dev: network device 2659 * @napi: NAPI context 2660 * @poll: polling function 2661 * 2662 * This variant of netif_napi_add() should be used from drivers using NAPI 2663 * to exclusively poll a TX queue. 2664 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2665 */ 2666 static inline void netif_napi_add_tx(struct net_device *dev, 2667 struct napi_struct *napi, 2668 int (*poll)(struct napi_struct *, int)) 2669 { 2670 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2671 } 2672 2673 /** 2674 * __netif_napi_del - remove a NAPI context 2675 * @napi: NAPI context 2676 * 2677 * Warning: caller must observe RCU grace period before freeing memory 2678 * containing @napi. Drivers might want to call this helper to combine 2679 * all the needed RCU grace periods into a single one. 2680 */ 2681 void __netif_napi_del(struct napi_struct *napi); 2682 2683 /** 2684 * netif_napi_del - remove a NAPI context 2685 * @napi: NAPI context 2686 * 2687 * netif_napi_del() removes a NAPI context from the network device NAPI list 2688 */ 2689 static inline void netif_napi_del(struct napi_struct *napi) 2690 { 2691 __netif_napi_del(napi); 2692 synchronize_net(); 2693 } 2694 2695 struct packet_type { 2696 __be16 type; /* This is really htons(ether_type). */ 2697 bool ignore_outgoing; 2698 struct net_device *dev; /* NULL is wildcarded here */ 2699 netdevice_tracker dev_tracker; 2700 int (*func) (struct sk_buff *, 2701 struct net_device *, 2702 struct packet_type *, 2703 struct net_device *); 2704 void (*list_func) (struct list_head *, 2705 struct packet_type *, 2706 struct net_device *); 2707 bool (*id_match)(struct packet_type *ptype, 2708 struct sock *sk); 2709 struct net *af_packet_net; 2710 void *af_packet_priv; 2711 struct list_head list; 2712 }; 2713 2714 struct offload_callbacks { 2715 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2716 netdev_features_t features); 2717 struct sk_buff *(*gro_receive)(struct list_head *head, 2718 struct sk_buff *skb); 2719 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2720 }; 2721 2722 struct packet_offload { 2723 __be16 type; /* This is really htons(ether_type). */ 2724 u16 priority; 2725 struct offload_callbacks callbacks; 2726 struct list_head list; 2727 }; 2728 2729 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2730 struct pcpu_sw_netstats { 2731 u64_stats_t rx_packets; 2732 u64_stats_t rx_bytes; 2733 u64_stats_t tx_packets; 2734 u64_stats_t tx_bytes; 2735 struct u64_stats_sync syncp; 2736 } __aligned(4 * sizeof(u64)); 2737 2738 struct pcpu_lstats { 2739 u64_stats_t packets; 2740 u64_stats_t bytes; 2741 struct u64_stats_sync syncp; 2742 } __aligned(2 * sizeof(u64)); 2743 2744 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2745 2746 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2747 { 2748 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2749 2750 u64_stats_update_begin(&tstats->syncp); 2751 u64_stats_add(&tstats->rx_bytes, len); 2752 u64_stats_inc(&tstats->rx_packets); 2753 u64_stats_update_end(&tstats->syncp); 2754 } 2755 2756 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2757 unsigned int packets, 2758 unsigned int len) 2759 { 2760 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2761 2762 u64_stats_update_begin(&tstats->syncp); 2763 u64_stats_add(&tstats->tx_bytes, len); 2764 u64_stats_add(&tstats->tx_packets, packets); 2765 u64_stats_update_end(&tstats->syncp); 2766 } 2767 2768 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2769 { 2770 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2771 2772 u64_stats_update_begin(&lstats->syncp); 2773 u64_stats_add(&lstats->bytes, len); 2774 u64_stats_inc(&lstats->packets); 2775 u64_stats_update_end(&lstats->syncp); 2776 } 2777 2778 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2779 ({ \ 2780 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2781 if (pcpu_stats) { \ 2782 int __cpu; \ 2783 for_each_possible_cpu(__cpu) { \ 2784 typeof(type) *stat; \ 2785 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2786 u64_stats_init(&stat->syncp); \ 2787 } \ 2788 } \ 2789 pcpu_stats; \ 2790 }) 2791 2792 #define netdev_alloc_pcpu_stats(type) \ 2793 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2794 2795 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2796 ({ \ 2797 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2798 if (pcpu_stats) { \ 2799 int __cpu; \ 2800 for_each_possible_cpu(__cpu) { \ 2801 typeof(type) *stat; \ 2802 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2803 u64_stats_init(&stat->syncp); \ 2804 } \ 2805 } \ 2806 pcpu_stats; \ 2807 }) 2808 2809 enum netdev_lag_tx_type { 2810 NETDEV_LAG_TX_TYPE_UNKNOWN, 2811 NETDEV_LAG_TX_TYPE_RANDOM, 2812 NETDEV_LAG_TX_TYPE_BROADCAST, 2813 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2814 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2815 NETDEV_LAG_TX_TYPE_HASH, 2816 }; 2817 2818 enum netdev_lag_hash { 2819 NETDEV_LAG_HASH_NONE, 2820 NETDEV_LAG_HASH_L2, 2821 NETDEV_LAG_HASH_L34, 2822 NETDEV_LAG_HASH_L23, 2823 NETDEV_LAG_HASH_E23, 2824 NETDEV_LAG_HASH_E34, 2825 NETDEV_LAG_HASH_VLAN_SRCMAC, 2826 NETDEV_LAG_HASH_UNKNOWN, 2827 }; 2828 2829 struct netdev_lag_upper_info { 2830 enum netdev_lag_tx_type tx_type; 2831 enum netdev_lag_hash hash_type; 2832 }; 2833 2834 struct netdev_lag_lower_state_info { 2835 u8 link_up : 1, 2836 tx_enabled : 1; 2837 }; 2838 2839 #include <linux/notifier.h> 2840 2841 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2842 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2843 * adding new types. 2844 */ 2845 enum netdev_cmd { 2846 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2847 NETDEV_DOWN, 2848 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2849 detected a hardware crash and restarted 2850 - we can use this eg to kick tcp sessions 2851 once done */ 2852 NETDEV_CHANGE, /* Notify device state change */ 2853 NETDEV_REGISTER, 2854 NETDEV_UNREGISTER, 2855 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2856 NETDEV_CHANGEADDR, /* notify after the address change */ 2857 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2858 NETDEV_GOING_DOWN, 2859 NETDEV_CHANGENAME, 2860 NETDEV_FEAT_CHANGE, 2861 NETDEV_BONDING_FAILOVER, 2862 NETDEV_PRE_UP, 2863 NETDEV_PRE_TYPE_CHANGE, 2864 NETDEV_POST_TYPE_CHANGE, 2865 NETDEV_POST_INIT, 2866 NETDEV_PRE_UNINIT, 2867 NETDEV_RELEASE, 2868 NETDEV_NOTIFY_PEERS, 2869 NETDEV_JOIN, 2870 NETDEV_CHANGEUPPER, 2871 NETDEV_RESEND_IGMP, 2872 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2873 NETDEV_CHANGEINFODATA, 2874 NETDEV_BONDING_INFO, 2875 NETDEV_PRECHANGEUPPER, 2876 NETDEV_CHANGELOWERSTATE, 2877 NETDEV_UDP_TUNNEL_PUSH_INFO, 2878 NETDEV_UDP_TUNNEL_DROP_INFO, 2879 NETDEV_CHANGE_TX_QUEUE_LEN, 2880 NETDEV_CVLAN_FILTER_PUSH_INFO, 2881 NETDEV_CVLAN_FILTER_DROP_INFO, 2882 NETDEV_SVLAN_FILTER_PUSH_INFO, 2883 NETDEV_SVLAN_FILTER_DROP_INFO, 2884 NETDEV_OFFLOAD_XSTATS_ENABLE, 2885 NETDEV_OFFLOAD_XSTATS_DISABLE, 2886 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2887 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2888 NETDEV_XDP_FEAT_CHANGE, 2889 }; 2890 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2891 2892 int register_netdevice_notifier(struct notifier_block *nb); 2893 int unregister_netdevice_notifier(struct notifier_block *nb); 2894 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2895 int unregister_netdevice_notifier_net(struct net *net, 2896 struct notifier_block *nb); 2897 int register_netdevice_notifier_dev_net(struct net_device *dev, 2898 struct notifier_block *nb, 2899 struct netdev_net_notifier *nn); 2900 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2901 struct notifier_block *nb, 2902 struct netdev_net_notifier *nn); 2903 2904 struct netdev_notifier_info { 2905 struct net_device *dev; 2906 struct netlink_ext_ack *extack; 2907 }; 2908 2909 struct netdev_notifier_info_ext { 2910 struct netdev_notifier_info info; /* must be first */ 2911 union { 2912 u32 mtu; 2913 } ext; 2914 }; 2915 2916 struct netdev_notifier_change_info { 2917 struct netdev_notifier_info info; /* must be first */ 2918 unsigned int flags_changed; 2919 }; 2920 2921 struct netdev_notifier_changeupper_info { 2922 struct netdev_notifier_info info; /* must be first */ 2923 struct net_device *upper_dev; /* new upper dev */ 2924 bool master; /* is upper dev master */ 2925 bool linking; /* is the notification for link or unlink */ 2926 void *upper_info; /* upper dev info */ 2927 }; 2928 2929 struct netdev_notifier_changelowerstate_info { 2930 struct netdev_notifier_info info; /* must be first */ 2931 void *lower_state_info; /* is lower dev state */ 2932 }; 2933 2934 struct netdev_notifier_pre_changeaddr_info { 2935 struct netdev_notifier_info info; /* must be first */ 2936 const unsigned char *dev_addr; 2937 }; 2938 2939 enum netdev_offload_xstats_type { 2940 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2941 }; 2942 2943 struct netdev_notifier_offload_xstats_info { 2944 struct netdev_notifier_info info; /* must be first */ 2945 enum netdev_offload_xstats_type type; 2946 2947 union { 2948 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2949 struct netdev_notifier_offload_xstats_rd *report_delta; 2950 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2951 struct netdev_notifier_offload_xstats_ru *report_used; 2952 }; 2953 }; 2954 2955 int netdev_offload_xstats_enable(struct net_device *dev, 2956 enum netdev_offload_xstats_type type, 2957 struct netlink_ext_ack *extack); 2958 int netdev_offload_xstats_disable(struct net_device *dev, 2959 enum netdev_offload_xstats_type type); 2960 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2961 enum netdev_offload_xstats_type type); 2962 int netdev_offload_xstats_get(struct net_device *dev, 2963 enum netdev_offload_xstats_type type, 2964 struct rtnl_hw_stats64 *stats, bool *used, 2965 struct netlink_ext_ack *extack); 2966 void 2967 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2968 const struct rtnl_hw_stats64 *stats); 2969 void 2970 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2971 void netdev_offload_xstats_push_delta(struct net_device *dev, 2972 enum netdev_offload_xstats_type type, 2973 const struct rtnl_hw_stats64 *stats); 2974 2975 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2976 struct net_device *dev) 2977 { 2978 info->dev = dev; 2979 info->extack = NULL; 2980 } 2981 2982 static inline struct net_device * 2983 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2984 { 2985 return info->dev; 2986 } 2987 2988 static inline struct netlink_ext_ack * 2989 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2990 { 2991 return info->extack; 2992 } 2993 2994 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2995 int call_netdevice_notifiers_info(unsigned long val, 2996 struct netdev_notifier_info *info); 2997 2998 extern rwlock_t dev_base_lock; /* Device list lock */ 2999 3000 #define for_each_netdev(net, d) \ 3001 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3002 #define for_each_netdev_reverse(net, d) \ 3003 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3004 #define for_each_netdev_rcu(net, d) \ 3005 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3006 #define for_each_netdev_safe(net, d, n) \ 3007 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3008 #define for_each_netdev_continue(net, d) \ 3009 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3010 #define for_each_netdev_continue_reverse(net, d) \ 3011 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3012 dev_list) 3013 #define for_each_netdev_continue_rcu(net, d) \ 3014 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3015 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3016 for_each_netdev_rcu(&init_net, slave) \ 3017 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3018 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3019 3020 #define for_each_netdev_dump(net, d, ifindex) \ 3021 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3022 3023 static inline struct net_device *next_net_device(struct net_device *dev) 3024 { 3025 struct list_head *lh; 3026 struct net *net; 3027 3028 net = dev_net(dev); 3029 lh = dev->dev_list.next; 3030 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3031 } 3032 3033 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3034 { 3035 struct list_head *lh; 3036 struct net *net; 3037 3038 net = dev_net(dev); 3039 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3040 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3041 } 3042 3043 static inline struct net_device *first_net_device(struct net *net) 3044 { 3045 return list_empty(&net->dev_base_head) ? NULL : 3046 net_device_entry(net->dev_base_head.next); 3047 } 3048 3049 static inline struct net_device *first_net_device_rcu(struct net *net) 3050 { 3051 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3052 3053 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3054 } 3055 3056 int netdev_boot_setup_check(struct net_device *dev); 3057 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3058 const char *hwaddr); 3059 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3060 void dev_add_pack(struct packet_type *pt); 3061 void dev_remove_pack(struct packet_type *pt); 3062 void __dev_remove_pack(struct packet_type *pt); 3063 void dev_add_offload(struct packet_offload *po); 3064 void dev_remove_offload(struct packet_offload *po); 3065 3066 int dev_get_iflink(const struct net_device *dev); 3067 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3068 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3069 struct net_device_path_stack *stack); 3070 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3071 unsigned short mask); 3072 struct net_device *dev_get_by_name(struct net *net, const char *name); 3073 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3074 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3075 bool netdev_name_in_use(struct net *net, const char *name); 3076 int dev_alloc_name(struct net_device *dev, const char *name); 3077 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3078 void dev_close(struct net_device *dev); 3079 void dev_close_many(struct list_head *head, bool unlink); 3080 void dev_disable_lro(struct net_device *dev); 3081 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3082 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3083 struct net_device *sb_dev); 3084 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3085 struct net_device *sb_dev); 3086 3087 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3088 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3089 3090 static inline int dev_queue_xmit(struct sk_buff *skb) 3091 { 3092 return __dev_queue_xmit(skb, NULL); 3093 } 3094 3095 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3096 struct net_device *sb_dev) 3097 { 3098 return __dev_queue_xmit(skb, sb_dev); 3099 } 3100 3101 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3102 { 3103 int ret; 3104 3105 ret = __dev_direct_xmit(skb, queue_id); 3106 if (!dev_xmit_complete(ret)) 3107 kfree_skb(skb); 3108 return ret; 3109 } 3110 3111 int register_netdevice(struct net_device *dev); 3112 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3113 void unregister_netdevice_many(struct list_head *head); 3114 static inline void unregister_netdevice(struct net_device *dev) 3115 { 3116 unregister_netdevice_queue(dev, NULL); 3117 } 3118 3119 int netdev_refcnt_read(const struct net_device *dev); 3120 void free_netdev(struct net_device *dev); 3121 void netdev_freemem(struct net_device *dev); 3122 int init_dummy_netdev(struct net_device *dev); 3123 3124 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3125 struct sk_buff *skb, 3126 bool all_slaves); 3127 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3128 struct sock *sk); 3129 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3130 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3131 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3132 netdevice_tracker *tracker, gfp_t gfp); 3133 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3134 netdevice_tracker *tracker, gfp_t gfp); 3135 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3136 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3137 3138 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3139 unsigned short type, 3140 const void *daddr, const void *saddr, 3141 unsigned int len) 3142 { 3143 if (!dev->header_ops || !dev->header_ops->create) 3144 return 0; 3145 3146 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3147 } 3148 3149 static inline int dev_parse_header(const struct sk_buff *skb, 3150 unsigned char *haddr) 3151 { 3152 const struct net_device *dev = skb->dev; 3153 3154 if (!dev->header_ops || !dev->header_ops->parse) 3155 return 0; 3156 return dev->header_ops->parse(skb, haddr); 3157 } 3158 3159 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3160 { 3161 const struct net_device *dev = skb->dev; 3162 3163 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3164 return 0; 3165 return dev->header_ops->parse_protocol(skb); 3166 } 3167 3168 /* ll_header must have at least hard_header_len allocated */ 3169 static inline bool dev_validate_header(const struct net_device *dev, 3170 char *ll_header, int len) 3171 { 3172 if (likely(len >= dev->hard_header_len)) 3173 return true; 3174 if (len < dev->min_header_len) 3175 return false; 3176 3177 if (capable(CAP_SYS_RAWIO)) { 3178 memset(ll_header + len, 0, dev->hard_header_len - len); 3179 return true; 3180 } 3181 3182 if (dev->header_ops && dev->header_ops->validate) 3183 return dev->header_ops->validate(ll_header, len); 3184 3185 return false; 3186 } 3187 3188 static inline bool dev_has_header(const struct net_device *dev) 3189 { 3190 return dev->header_ops && dev->header_ops->create; 3191 } 3192 3193 /* 3194 * Incoming packets are placed on per-CPU queues 3195 */ 3196 struct softnet_data { 3197 struct list_head poll_list; 3198 struct sk_buff_head process_queue; 3199 3200 /* stats */ 3201 unsigned int processed; 3202 unsigned int time_squeeze; 3203 #ifdef CONFIG_RPS 3204 struct softnet_data *rps_ipi_list; 3205 #endif 3206 3207 bool in_net_rx_action; 3208 bool in_napi_threaded_poll; 3209 3210 #ifdef CONFIG_NET_FLOW_LIMIT 3211 struct sd_flow_limit __rcu *flow_limit; 3212 #endif 3213 struct Qdisc *output_queue; 3214 struct Qdisc **output_queue_tailp; 3215 struct sk_buff *completion_queue; 3216 #ifdef CONFIG_XFRM_OFFLOAD 3217 struct sk_buff_head xfrm_backlog; 3218 #endif 3219 /* written and read only by owning cpu: */ 3220 struct { 3221 u16 recursion; 3222 u8 more; 3223 #ifdef CONFIG_NET_EGRESS 3224 u8 skip_txqueue; 3225 #endif 3226 } xmit; 3227 #ifdef CONFIG_RPS 3228 /* input_queue_head should be written by cpu owning this struct, 3229 * and only read by other cpus. Worth using a cache line. 3230 */ 3231 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3232 3233 /* Elements below can be accessed between CPUs for RPS/RFS */ 3234 call_single_data_t csd ____cacheline_aligned_in_smp; 3235 struct softnet_data *rps_ipi_next; 3236 unsigned int cpu; 3237 unsigned int input_queue_tail; 3238 #endif 3239 unsigned int received_rps; 3240 unsigned int dropped; 3241 struct sk_buff_head input_pkt_queue; 3242 struct napi_struct backlog; 3243 3244 /* Another possibly contended cache line */ 3245 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3246 int defer_count; 3247 int defer_ipi_scheduled; 3248 struct sk_buff *defer_list; 3249 call_single_data_t defer_csd; 3250 }; 3251 3252 static inline void input_queue_head_incr(struct softnet_data *sd) 3253 { 3254 #ifdef CONFIG_RPS 3255 sd->input_queue_head++; 3256 #endif 3257 } 3258 3259 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3260 unsigned int *qtail) 3261 { 3262 #ifdef CONFIG_RPS 3263 *qtail = ++sd->input_queue_tail; 3264 #endif 3265 } 3266 3267 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3268 3269 static inline int dev_recursion_level(void) 3270 { 3271 return this_cpu_read(softnet_data.xmit.recursion); 3272 } 3273 3274 #define XMIT_RECURSION_LIMIT 8 3275 static inline bool dev_xmit_recursion(void) 3276 { 3277 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3278 XMIT_RECURSION_LIMIT); 3279 } 3280 3281 static inline void dev_xmit_recursion_inc(void) 3282 { 3283 __this_cpu_inc(softnet_data.xmit.recursion); 3284 } 3285 3286 static inline void dev_xmit_recursion_dec(void) 3287 { 3288 __this_cpu_dec(softnet_data.xmit.recursion); 3289 } 3290 3291 void __netif_schedule(struct Qdisc *q); 3292 void netif_schedule_queue(struct netdev_queue *txq); 3293 3294 static inline void netif_tx_schedule_all(struct net_device *dev) 3295 { 3296 unsigned int i; 3297 3298 for (i = 0; i < dev->num_tx_queues; i++) 3299 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3300 } 3301 3302 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3303 { 3304 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3305 } 3306 3307 /** 3308 * netif_start_queue - allow transmit 3309 * @dev: network device 3310 * 3311 * Allow upper layers to call the device hard_start_xmit routine. 3312 */ 3313 static inline void netif_start_queue(struct net_device *dev) 3314 { 3315 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3316 } 3317 3318 static inline void netif_tx_start_all_queues(struct net_device *dev) 3319 { 3320 unsigned int i; 3321 3322 for (i = 0; i < dev->num_tx_queues; i++) { 3323 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3324 netif_tx_start_queue(txq); 3325 } 3326 } 3327 3328 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3329 3330 /** 3331 * netif_wake_queue - restart transmit 3332 * @dev: network device 3333 * 3334 * Allow upper layers to call the device hard_start_xmit routine. 3335 * Used for flow control when transmit resources are available. 3336 */ 3337 static inline void netif_wake_queue(struct net_device *dev) 3338 { 3339 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3340 } 3341 3342 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3343 { 3344 unsigned int i; 3345 3346 for (i = 0; i < dev->num_tx_queues; i++) { 3347 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3348 netif_tx_wake_queue(txq); 3349 } 3350 } 3351 3352 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3353 { 3354 /* Must be an atomic op see netif_txq_try_stop() */ 3355 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3356 } 3357 3358 /** 3359 * netif_stop_queue - stop transmitted packets 3360 * @dev: network device 3361 * 3362 * Stop upper layers calling the device hard_start_xmit routine. 3363 * Used for flow control when transmit resources are unavailable. 3364 */ 3365 static inline void netif_stop_queue(struct net_device *dev) 3366 { 3367 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3368 } 3369 3370 void netif_tx_stop_all_queues(struct net_device *dev); 3371 3372 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3373 { 3374 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3375 } 3376 3377 /** 3378 * netif_queue_stopped - test if transmit queue is flowblocked 3379 * @dev: network device 3380 * 3381 * Test if transmit queue on device is currently unable to send. 3382 */ 3383 static inline bool netif_queue_stopped(const struct net_device *dev) 3384 { 3385 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3386 } 3387 3388 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3389 { 3390 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3391 } 3392 3393 static inline bool 3394 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3395 { 3396 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3397 } 3398 3399 static inline bool 3400 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3401 { 3402 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3403 } 3404 3405 /** 3406 * netdev_queue_set_dql_min_limit - set dql minimum limit 3407 * @dev_queue: pointer to transmit queue 3408 * @min_limit: dql minimum limit 3409 * 3410 * Forces xmit_more() to return true until the minimum threshold 3411 * defined by @min_limit is reached (or until the tx queue is 3412 * empty). Warning: to be use with care, misuse will impact the 3413 * latency. 3414 */ 3415 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3416 unsigned int min_limit) 3417 { 3418 #ifdef CONFIG_BQL 3419 dev_queue->dql.min_limit = min_limit; 3420 #endif 3421 } 3422 3423 /** 3424 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3425 * @dev_queue: pointer to transmit queue 3426 * 3427 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3428 * to give appropriate hint to the CPU. 3429 */ 3430 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3431 { 3432 #ifdef CONFIG_BQL 3433 prefetchw(&dev_queue->dql.num_queued); 3434 #endif 3435 } 3436 3437 /** 3438 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3439 * @dev_queue: pointer to transmit queue 3440 * 3441 * BQL enabled drivers might use this helper in their TX completion path, 3442 * to give appropriate hint to the CPU. 3443 */ 3444 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3445 { 3446 #ifdef CONFIG_BQL 3447 prefetchw(&dev_queue->dql.limit); 3448 #endif 3449 } 3450 3451 /** 3452 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3453 * @dev_queue: network device queue 3454 * @bytes: number of bytes queued to the device queue 3455 * 3456 * Report the number of bytes queued for sending/completion to the network 3457 * device hardware queue. @bytes should be a good approximation and should 3458 * exactly match netdev_completed_queue() @bytes. 3459 * This is typically called once per packet, from ndo_start_xmit(). 3460 */ 3461 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3462 unsigned int bytes) 3463 { 3464 #ifdef CONFIG_BQL 3465 dql_queued(&dev_queue->dql, bytes); 3466 3467 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3468 return; 3469 3470 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3471 3472 /* 3473 * The XOFF flag must be set before checking the dql_avail below, 3474 * because in netdev_tx_completed_queue we update the dql_completed 3475 * before checking the XOFF flag. 3476 */ 3477 smp_mb(); 3478 3479 /* check again in case another CPU has just made room avail */ 3480 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3481 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3482 #endif 3483 } 3484 3485 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3486 * that they should not test BQL status themselves. 3487 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3488 * skb of a batch. 3489 * Returns true if the doorbell must be used to kick the NIC. 3490 */ 3491 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3492 unsigned int bytes, 3493 bool xmit_more) 3494 { 3495 if (xmit_more) { 3496 #ifdef CONFIG_BQL 3497 dql_queued(&dev_queue->dql, bytes); 3498 #endif 3499 return netif_tx_queue_stopped(dev_queue); 3500 } 3501 netdev_tx_sent_queue(dev_queue, bytes); 3502 return true; 3503 } 3504 3505 /** 3506 * netdev_sent_queue - report the number of bytes queued to hardware 3507 * @dev: network device 3508 * @bytes: number of bytes queued to the hardware device queue 3509 * 3510 * Report the number of bytes queued for sending/completion to the network 3511 * device hardware queue#0. @bytes should be a good approximation and should 3512 * exactly match netdev_completed_queue() @bytes. 3513 * This is typically called once per packet, from ndo_start_xmit(). 3514 */ 3515 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3516 { 3517 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3518 } 3519 3520 static inline bool __netdev_sent_queue(struct net_device *dev, 3521 unsigned int bytes, 3522 bool xmit_more) 3523 { 3524 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3525 xmit_more); 3526 } 3527 3528 /** 3529 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3530 * @dev_queue: network device queue 3531 * @pkts: number of packets (currently ignored) 3532 * @bytes: number of bytes dequeued from the device queue 3533 * 3534 * Must be called at most once per TX completion round (and not per 3535 * individual packet), so that BQL can adjust its limits appropriately. 3536 */ 3537 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3538 unsigned int pkts, unsigned int bytes) 3539 { 3540 #ifdef CONFIG_BQL 3541 if (unlikely(!bytes)) 3542 return; 3543 3544 dql_completed(&dev_queue->dql, bytes); 3545 3546 /* 3547 * Without the memory barrier there is a small possiblity that 3548 * netdev_tx_sent_queue will miss the update and cause the queue to 3549 * be stopped forever 3550 */ 3551 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3552 3553 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3554 return; 3555 3556 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3557 netif_schedule_queue(dev_queue); 3558 #endif 3559 } 3560 3561 /** 3562 * netdev_completed_queue - report bytes and packets completed by device 3563 * @dev: network device 3564 * @pkts: actual number of packets sent over the medium 3565 * @bytes: actual number of bytes sent over the medium 3566 * 3567 * Report the number of bytes and packets transmitted by the network device 3568 * hardware queue over the physical medium, @bytes must exactly match the 3569 * @bytes amount passed to netdev_sent_queue() 3570 */ 3571 static inline void netdev_completed_queue(struct net_device *dev, 3572 unsigned int pkts, unsigned int bytes) 3573 { 3574 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3575 } 3576 3577 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3578 { 3579 #ifdef CONFIG_BQL 3580 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3581 dql_reset(&q->dql); 3582 #endif 3583 } 3584 3585 /** 3586 * netdev_reset_queue - reset the packets and bytes count of a network device 3587 * @dev_queue: network device 3588 * 3589 * Reset the bytes and packet count of a network device and clear the 3590 * software flow control OFF bit for this network device 3591 */ 3592 static inline void netdev_reset_queue(struct net_device *dev_queue) 3593 { 3594 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3595 } 3596 3597 /** 3598 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3599 * @dev: network device 3600 * @queue_index: given tx queue index 3601 * 3602 * Returns 0 if given tx queue index >= number of device tx queues, 3603 * otherwise returns the originally passed tx queue index. 3604 */ 3605 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3606 { 3607 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3608 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3609 dev->name, queue_index, 3610 dev->real_num_tx_queues); 3611 return 0; 3612 } 3613 3614 return queue_index; 3615 } 3616 3617 /** 3618 * netif_running - test if up 3619 * @dev: network device 3620 * 3621 * Test if the device has been brought up. 3622 */ 3623 static inline bool netif_running(const struct net_device *dev) 3624 { 3625 return test_bit(__LINK_STATE_START, &dev->state); 3626 } 3627 3628 /* 3629 * Routines to manage the subqueues on a device. We only need start, 3630 * stop, and a check if it's stopped. All other device management is 3631 * done at the overall netdevice level. 3632 * Also test the device if we're multiqueue. 3633 */ 3634 3635 /** 3636 * netif_start_subqueue - allow sending packets on subqueue 3637 * @dev: network device 3638 * @queue_index: sub queue index 3639 * 3640 * Start individual transmit queue of a device with multiple transmit queues. 3641 */ 3642 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3643 { 3644 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3645 3646 netif_tx_start_queue(txq); 3647 } 3648 3649 /** 3650 * netif_stop_subqueue - stop sending packets on subqueue 3651 * @dev: network device 3652 * @queue_index: sub queue index 3653 * 3654 * Stop individual transmit queue of a device with multiple transmit queues. 3655 */ 3656 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3657 { 3658 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3659 netif_tx_stop_queue(txq); 3660 } 3661 3662 /** 3663 * __netif_subqueue_stopped - test status of subqueue 3664 * @dev: network device 3665 * @queue_index: sub queue index 3666 * 3667 * Check individual transmit queue of a device with multiple transmit queues. 3668 */ 3669 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3670 u16 queue_index) 3671 { 3672 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3673 3674 return netif_tx_queue_stopped(txq); 3675 } 3676 3677 /** 3678 * netif_subqueue_stopped - test status of subqueue 3679 * @dev: network device 3680 * @skb: sub queue buffer pointer 3681 * 3682 * Check individual transmit queue of a device with multiple transmit queues. 3683 */ 3684 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3685 struct sk_buff *skb) 3686 { 3687 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3688 } 3689 3690 /** 3691 * netif_wake_subqueue - allow sending packets on subqueue 3692 * @dev: network device 3693 * @queue_index: sub queue index 3694 * 3695 * Resume individual transmit queue of a device with multiple transmit queues. 3696 */ 3697 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3698 { 3699 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3700 3701 netif_tx_wake_queue(txq); 3702 } 3703 3704 #ifdef CONFIG_XPS 3705 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3706 u16 index); 3707 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3708 u16 index, enum xps_map_type type); 3709 3710 /** 3711 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3712 * @j: CPU/Rx queue index 3713 * @mask: bitmask of all cpus/rx queues 3714 * @nr_bits: number of bits in the bitmask 3715 * 3716 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3717 */ 3718 static inline bool netif_attr_test_mask(unsigned long j, 3719 const unsigned long *mask, 3720 unsigned int nr_bits) 3721 { 3722 cpu_max_bits_warn(j, nr_bits); 3723 return test_bit(j, mask); 3724 } 3725 3726 /** 3727 * netif_attr_test_online - Test for online CPU/Rx queue 3728 * @j: CPU/Rx queue index 3729 * @online_mask: bitmask for CPUs/Rx queues that are online 3730 * @nr_bits: number of bits in the bitmask 3731 * 3732 * Returns true if a CPU/Rx queue is online. 3733 */ 3734 static inline bool netif_attr_test_online(unsigned long j, 3735 const unsigned long *online_mask, 3736 unsigned int nr_bits) 3737 { 3738 cpu_max_bits_warn(j, nr_bits); 3739 3740 if (online_mask) 3741 return test_bit(j, online_mask); 3742 3743 return (j < nr_bits); 3744 } 3745 3746 /** 3747 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3748 * @n: CPU/Rx queue index 3749 * @srcp: the cpumask/Rx queue mask pointer 3750 * @nr_bits: number of bits in the bitmask 3751 * 3752 * Returns >= nr_bits if no further CPUs/Rx queues set. 3753 */ 3754 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3755 unsigned int nr_bits) 3756 { 3757 /* -1 is a legal arg here. */ 3758 if (n != -1) 3759 cpu_max_bits_warn(n, nr_bits); 3760 3761 if (srcp) 3762 return find_next_bit(srcp, nr_bits, n + 1); 3763 3764 return n + 1; 3765 } 3766 3767 /** 3768 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3769 * @n: CPU/Rx queue index 3770 * @src1p: the first CPUs/Rx queues mask pointer 3771 * @src2p: the second CPUs/Rx queues mask pointer 3772 * @nr_bits: number of bits in the bitmask 3773 * 3774 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3775 */ 3776 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3777 const unsigned long *src2p, 3778 unsigned int nr_bits) 3779 { 3780 /* -1 is a legal arg here. */ 3781 if (n != -1) 3782 cpu_max_bits_warn(n, nr_bits); 3783 3784 if (src1p && src2p) 3785 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3786 else if (src1p) 3787 return find_next_bit(src1p, nr_bits, n + 1); 3788 else if (src2p) 3789 return find_next_bit(src2p, nr_bits, n + 1); 3790 3791 return n + 1; 3792 } 3793 #else 3794 static inline int netif_set_xps_queue(struct net_device *dev, 3795 const struct cpumask *mask, 3796 u16 index) 3797 { 3798 return 0; 3799 } 3800 3801 static inline int __netif_set_xps_queue(struct net_device *dev, 3802 const unsigned long *mask, 3803 u16 index, enum xps_map_type type) 3804 { 3805 return 0; 3806 } 3807 #endif 3808 3809 /** 3810 * netif_is_multiqueue - test if device has multiple transmit queues 3811 * @dev: network device 3812 * 3813 * Check if device has multiple transmit queues 3814 */ 3815 static inline bool netif_is_multiqueue(const struct net_device *dev) 3816 { 3817 return dev->num_tx_queues > 1; 3818 } 3819 3820 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3821 3822 #ifdef CONFIG_SYSFS 3823 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3824 #else 3825 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3826 unsigned int rxqs) 3827 { 3828 dev->real_num_rx_queues = rxqs; 3829 return 0; 3830 } 3831 #endif 3832 int netif_set_real_num_queues(struct net_device *dev, 3833 unsigned int txq, unsigned int rxq); 3834 3835 int netif_get_num_default_rss_queues(void); 3836 3837 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3838 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3839 3840 /* 3841 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3842 * interrupt context or with hardware interrupts being disabled. 3843 * (in_hardirq() || irqs_disabled()) 3844 * 3845 * We provide four helpers that can be used in following contexts : 3846 * 3847 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3848 * replacing kfree_skb(skb) 3849 * 3850 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3851 * Typically used in place of consume_skb(skb) in TX completion path 3852 * 3853 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3854 * replacing kfree_skb(skb) 3855 * 3856 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3857 * and consumed a packet. Used in place of consume_skb(skb) 3858 */ 3859 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3860 { 3861 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3862 } 3863 3864 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3865 { 3866 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3867 } 3868 3869 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3870 { 3871 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3872 } 3873 3874 static inline void dev_consume_skb_any(struct sk_buff *skb) 3875 { 3876 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3877 } 3878 3879 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3880 struct bpf_prog *xdp_prog); 3881 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3882 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3883 int netif_rx(struct sk_buff *skb); 3884 int __netif_rx(struct sk_buff *skb); 3885 3886 int netif_receive_skb(struct sk_buff *skb); 3887 int netif_receive_skb_core(struct sk_buff *skb); 3888 void netif_receive_skb_list_internal(struct list_head *head); 3889 void netif_receive_skb_list(struct list_head *head); 3890 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3891 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3892 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3893 void napi_get_frags_check(struct napi_struct *napi); 3894 gro_result_t napi_gro_frags(struct napi_struct *napi); 3895 struct packet_offload *gro_find_receive_by_type(__be16 type); 3896 struct packet_offload *gro_find_complete_by_type(__be16 type); 3897 3898 static inline void napi_free_frags(struct napi_struct *napi) 3899 { 3900 kfree_skb(napi->skb); 3901 napi->skb = NULL; 3902 } 3903 3904 bool netdev_is_rx_handler_busy(struct net_device *dev); 3905 int netdev_rx_handler_register(struct net_device *dev, 3906 rx_handler_func_t *rx_handler, 3907 void *rx_handler_data); 3908 void netdev_rx_handler_unregister(struct net_device *dev); 3909 3910 bool dev_valid_name(const char *name); 3911 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3912 { 3913 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3914 } 3915 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3916 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3917 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3918 void __user *data, bool *need_copyout); 3919 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3920 int generic_hwtstamp_get_lower(struct net_device *dev, 3921 struct kernel_hwtstamp_config *kernel_cfg); 3922 int generic_hwtstamp_set_lower(struct net_device *dev, 3923 struct kernel_hwtstamp_config *kernel_cfg, 3924 struct netlink_ext_ack *extack); 3925 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3926 unsigned int dev_get_flags(const struct net_device *); 3927 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3928 struct netlink_ext_ack *extack); 3929 int dev_change_flags(struct net_device *dev, unsigned int flags, 3930 struct netlink_ext_ack *extack); 3931 int dev_set_alias(struct net_device *, const char *, size_t); 3932 int dev_get_alias(const struct net_device *, char *, size_t); 3933 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3934 const char *pat, int new_ifindex); 3935 static inline 3936 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3937 const char *pat) 3938 { 3939 return __dev_change_net_namespace(dev, net, pat, 0); 3940 } 3941 int __dev_set_mtu(struct net_device *, int); 3942 int dev_set_mtu(struct net_device *, int); 3943 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3944 struct netlink_ext_ack *extack); 3945 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3946 struct netlink_ext_ack *extack); 3947 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3948 struct netlink_ext_ack *extack); 3949 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3950 int dev_get_port_parent_id(struct net_device *dev, 3951 struct netdev_phys_item_id *ppid, bool recurse); 3952 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3953 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin); 3954 void netdev_dpll_pin_clear(struct net_device *dev); 3955 3956 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev) 3957 { 3958 #if IS_ENABLED(CONFIG_DPLL) 3959 return dev->dpll_pin; 3960 #else 3961 return NULL; 3962 #endif 3963 } 3964 3965 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3966 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3967 struct netdev_queue *txq, int *ret); 3968 3969 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3970 u8 dev_xdp_prog_count(struct net_device *dev); 3971 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3972 3973 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3974 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3975 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3976 bool is_skb_forwardable(const struct net_device *dev, 3977 const struct sk_buff *skb); 3978 3979 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3980 const struct sk_buff *skb, 3981 const bool check_mtu) 3982 { 3983 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3984 unsigned int len; 3985 3986 if (!(dev->flags & IFF_UP)) 3987 return false; 3988 3989 if (!check_mtu) 3990 return true; 3991 3992 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3993 if (skb->len <= len) 3994 return true; 3995 3996 /* if TSO is enabled, we don't care about the length as the packet 3997 * could be forwarded without being segmented before 3998 */ 3999 if (skb_is_gso(skb)) 4000 return true; 4001 4002 return false; 4003 } 4004 4005 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 4006 4007 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 4008 { 4009 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 4010 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 4011 4012 if (likely(p)) 4013 return p; 4014 4015 return netdev_core_stats_alloc(dev); 4016 } 4017 4018 #define DEV_CORE_STATS_INC(FIELD) \ 4019 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4020 { \ 4021 struct net_device_core_stats __percpu *p; \ 4022 \ 4023 p = dev_core_stats(dev); \ 4024 if (p) \ 4025 this_cpu_inc(p->FIELD); \ 4026 } 4027 DEV_CORE_STATS_INC(rx_dropped) 4028 DEV_CORE_STATS_INC(tx_dropped) 4029 DEV_CORE_STATS_INC(rx_nohandler) 4030 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4031 4032 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4033 struct sk_buff *skb, 4034 const bool check_mtu) 4035 { 4036 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4037 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4038 dev_core_stats_rx_dropped_inc(dev); 4039 kfree_skb(skb); 4040 return NET_RX_DROP; 4041 } 4042 4043 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4044 skb->priority = 0; 4045 return 0; 4046 } 4047 4048 bool dev_nit_active(struct net_device *dev); 4049 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4050 4051 static inline void __dev_put(struct net_device *dev) 4052 { 4053 if (dev) { 4054 #ifdef CONFIG_PCPU_DEV_REFCNT 4055 this_cpu_dec(*dev->pcpu_refcnt); 4056 #else 4057 refcount_dec(&dev->dev_refcnt); 4058 #endif 4059 } 4060 } 4061 4062 static inline void __dev_hold(struct net_device *dev) 4063 { 4064 if (dev) { 4065 #ifdef CONFIG_PCPU_DEV_REFCNT 4066 this_cpu_inc(*dev->pcpu_refcnt); 4067 #else 4068 refcount_inc(&dev->dev_refcnt); 4069 #endif 4070 } 4071 } 4072 4073 static inline void __netdev_tracker_alloc(struct net_device *dev, 4074 netdevice_tracker *tracker, 4075 gfp_t gfp) 4076 { 4077 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4078 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4079 #endif 4080 } 4081 4082 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4083 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4084 */ 4085 static inline void netdev_tracker_alloc(struct net_device *dev, 4086 netdevice_tracker *tracker, gfp_t gfp) 4087 { 4088 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4089 refcount_dec(&dev->refcnt_tracker.no_tracker); 4090 __netdev_tracker_alloc(dev, tracker, gfp); 4091 #endif 4092 } 4093 4094 static inline void netdev_tracker_free(struct net_device *dev, 4095 netdevice_tracker *tracker) 4096 { 4097 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4098 ref_tracker_free(&dev->refcnt_tracker, tracker); 4099 #endif 4100 } 4101 4102 static inline void netdev_hold(struct net_device *dev, 4103 netdevice_tracker *tracker, gfp_t gfp) 4104 { 4105 if (dev) { 4106 __dev_hold(dev); 4107 __netdev_tracker_alloc(dev, tracker, gfp); 4108 } 4109 } 4110 4111 static inline void netdev_put(struct net_device *dev, 4112 netdevice_tracker *tracker) 4113 { 4114 if (dev) { 4115 netdev_tracker_free(dev, tracker); 4116 __dev_put(dev); 4117 } 4118 } 4119 4120 /** 4121 * dev_hold - get reference to device 4122 * @dev: network device 4123 * 4124 * Hold reference to device to keep it from being freed. 4125 * Try using netdev_hold() instead. 4126 */ 4127 static inline void dev_hold(struct net_device *dev) 4128 { 4129 netdev_hold(dev, NULL, GFP_ATOMIC); 4130 } 4131 4132 /** 4133 * dev_put - release reference to device 4134 * @dev: network device 4135 * 4136 * Release reference to device to allow it to be freed. 4137 * Try using netdev_put() instead. 4138 */ 4139 static inline void dev_put(struct net_device *dev) 4140 { 4141 netdev_put(dev, NULL); 4142 } 4143 4144 static inline void netdev_ref_replace(struct net_device *odev, 4145 struct net_device *ndev, 4146 netdevice_tracker *tracker, 4147 gfp_t gfp) 4148 { 4149 if (odev) 4150 netdev_tracker_free(odev, tracker); 4151 4152 __dev_hold(ndev); 4153 __dev_put(odev); 4154 4155 if (ndev) 4156 __netdev_tracker_alloc(ndev, tracker, gfp); 4157 } 4158 4159 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4160 * and _off may be called from IRQ context, but it is caller 4161 * who is responsible for serialization of these calls. 4162 * 4163 * The name carrier is inappropriate, these functions should really be 4164 * called netif_lowerlayer_*() because they represent the state of any 4165 * kind of lower layer not just hardware media. 4166 */ 4167 void linkwatch_fire_event(struct net_device *dev); 4168 4169 /** 4170 * netif_carrier_ok - test if carrier present 4171 * @dev: network device 4172 * 4173 * Check if carrier is present on device 4174 */ 4175 static inline bool netif_carrier_ok(const struct net_device *dev) 4176 { 4177 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4178 } 4179 4180 unsigned long dev_trans_start(struct net_device *dev); 4181 4182 void __netdev_watchdog_up(struct net_device *dev); 4183 4184 void netif_carrier_on(struct net_device *dev); 4185 void netif_carrier_off(struct net_device *dev); 4186 void netif_carrier_event(struct net_device *dev); 4187 4188 /** 4189 * netif_dormant_on - mark device as dormant. 4190 * @dev: network device 4191 * 4192 * Mark device as dormant (as per RFC2863). 4193 * 4194 * The dormant state indicates that the relevant interface is not 4195 * actually in a condition to pass packets (i.e., it is not 'up') but is 4196 * in a "pending" state, waiting for some external event. For "on- 4197 * demand" interfaces, this new state identifies the situation where the 4198 * interface is waiting for events to place it in the up state. 4199 */ 4200 static inline void netif_dormant_on(struct net_device *dev) 4201 { 4202 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4203 linkwatch_fire_event(dev); 4204 } 4205 4206 /** 4207 * netif_dormant_off - set device as not dormant. 4208 * @dev: network device 4209 * 4210 * Device is not in dormant state. 4211 */ 4212 static inline void netif_dormant_off(struct net_device *dev) 4213 { 4214 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4215 linkwatch_fire_event(dev); 4216 } 4217 4218 /** 4219 * netif_dormant - test if device is dormant 4220 * @dev: network device 4221 * 4222 * Check if device is dormant. 4223 */ 4224 static inline bool netif_dormant(const struct net_device *dev) 4225 { 4226 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4227 } 4228 4229 4230 /** 4231 * netif_testing_on - mark device as under test. 4232 * @dev: network device 4233 * 4234 * Mark device as under test (as per RFC2863). 4235 * 4236 * The testing state indicates that some test(s) must be performed on 4237 * the interface. After completion, of the test, the interface state 4238 * will change to up, dormant, or down, as appropriate. 4239 */ 4240 static inline void netif_testing_on(struct net_device *dev) 4241 { 4242 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4243 linkwatch_fire_event(dev); 4244 } 4245 4246 /** 4247 * netif_testing_off - set device as not under test. 4248 * @dev: network device 4249 * 4250 * Device is not in testing state. 4251 */ 4252 static inline void netif_testing_off(struct net_device *dev) 4253 { 4254 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4255 linkwatch_fire_event(dev); 4256 } 4257 4258 /** 4259 * netif_testing - test if device is under test 4260 * @dev: network device 4261 * 4262 * Check if device is under test 4263 */ 4264 static inline bool netif_testing(const struct net_device *dev) 4265 { 4266 return test_bit(__LINK_STATE_TESTING, &dev->state); 4267 } 4268 4269 4270 /** 4271 * netif_oper_up - test if device is operational 4272 * @dev: network device 4273 * 4274 * Check if carrier is operational 4275 */ 4276 static inline bool netif_oper_up(const struct net_device *dev) 4277 { 4278 return (dev->operstate == IF_OPER_UP || 4279 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4280 } 4281 4282 /** 4283 * netif_device_present - is device available or removed 4284 * @dev: network device 4285 * 4286 * Check if device has not been removed from system. 4287 */ 4288 static inline bool netif_device_present(const struct net_device *dev) 4289 { 4290 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4291 } 4292 4293 void netif_device_detach(struct net_device *dev); 4294 4295 void netif_device_attach(struct net_device *dev); 4296 4297 /* 4298 * Network interface message level settings 4299 */ 4300 4301 enum { 4302 NETIF_MSG_DRV_BIT, 4303 NETIF_MSG_PROBE_BIT, 4304 NETIF_MSG_LINK_BIT, 4305 NETIF_MSG_TIMER_BIT, 4306 NETIF_MSG_IFDOWN_BIT, 4307 NETIF_MSG_IFUP_BIT, 4308 NETIF_MSG_RX_ERR_BIT, 4309 NETIF_MSG_TX_ERR_BIT, 4310 NETIF_MSG_TX_QUEUED_BIT, 4311 NETIF_MSG_INTR_BIT, 4312 NETIF_MSG_TX_DONE_BIT, 4313 NETIF_MSG_RX_STATUS_BIT, 4314 NETIF_MSG_PKTDATA_BIT, 4315 NETIF_MSG_HW_BIT, 4316 NETIF_MSG_WOL_BIT, 4317 4318 /* When you add a new bit above, update netif_msg_class_names array 4319 * in net/ethtool/common.c 4320 */ 4321 NETIF_MSG_CLASS_COUNT, 4322 }; 4323 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4324 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4325 4326 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4327 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4328 4329 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4330 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4331 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4332 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4333 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4334 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4335 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4336 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4337 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4338 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4339 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4340 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4341 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4342 #define NETIF_MSG_HW __NETIF_MSG(HW) 4343 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4344 4345 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4346 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4347 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4348 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4349 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4350 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4351 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4352 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4353 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4354 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4355 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4356 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4357 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4358 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4359 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4360 4361 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4362 { 4363 /* use default */ 4364 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4365 return default_msg_enable_bits; 4366 if (debug_value == 0) /* no output */ 4367 return 0; 4368 /* set low N bits */ 4369 return (1U << debug_value) - 1; 4370 } 4371 4372 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4373 { 4374 spin_lock(&txq->_xmit_lock); 4375 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4376 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4377 } 4378 4379 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4380 { 4381 __acquire(&txq->_xmit_lock); 4382 return true; 4383 } 4384 4385 static inline void __netif_tx_release(struct netdev_queue *txq) 4386 { 4387 __release(&txq->_xmit_lock); 4388 } 4389 4390 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4391 { 4392 spin_lock_bh(&txq->_xmit_lock); 4393 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4394 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4395 } 4396 4397 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4398 { 4399 bool ok = spin_trylock(&txq->_xmit_lock); 4400 4401 if (likely(ok)) { 4402 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4403 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4404 } 4405 return ok; 4406 } 4407 4408 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4409 { 4410 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4411 WRITE_ONCE(txq->xmit_lock_owner, -1); 4412 spin_unlock(&txq->_xmit_lock); 4413 } 4414 4415 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4416 { 4417 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4418 WRITE_ONCE(txq->xmit_lock_owner, -1); 4419 spin_unlock_bh(&txq->_xmit_lock); 4420 } 4421 4422 /* 4423 * txq->trans_start can be read locklessly from dev_watchdog() 4424 */ 4425 static inline void txq_trans_update(struct netdev_queue *txq) 4426 { 4427 if (txq->xmit_lock_owner != -1) 4428 WRITE_ONCE(txq->trans_start, jiffies); 4429 } 4430 4431 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4432 { 4433 unsigned long now = jiffies; 4434 4435 if (READ_ONCE(txq->trans_start) != now) 4436 WRITE_ONCE(txq->trans_start, now); 4437 } 4438 4439 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4440 static inline void netif_trans_update(struct net_device *dev) 4441 { 4442 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4443 4444 txq_trans_cond_update(txq); 4445 } 4446 4447 /** 4448 * netif_tx_lock - grab network device transmit lock 4449 * @dev: network device 4450 * 4451 * Get network device transmit lock 4452 */ 4453 void netif_tx_lock(struct net_device *dev); 4454 4455 static inline void netif_tx_lock_bh(struct net_device *dev) 4456 { 4457 local_bh_disable(); 4458 netif_tx_lock(dev); 4459 } 4460 4461 void netif_tx_unlock(struct net_device *dev); 4462 4463 static inline void netif_tx_unlock_bh(struct net_device *dev) 4464 { 4465 netif_tx_unlock(dev); 4466 local_bh_enable(); 4467 } 4468 4469 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4470 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4471 __netif_tx_lock(txq, cpu); \ 4472 } else { \ 4473 __netif_tx_acquire(txq); \ 4474 } \ 4475 } 4476 4477 #define HARD_TX_TRYLOCK(dev, txq) \ 4478 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4479 __netif_tx_trylock(txq) : \ 4480 __netif_tx_acquire(txq)) 4481 4482 #define HARD_TX_UNLOCK(dev, txq) { \ 4483 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4484 __netif_tx_unlock(txq); \ 4485 } else { \ 4486 __netif_tx_release(txq); \ 4487 } \ 4488 } 4489 4490 static inline void netif_tx_disable(struct net_device *dev) 4491 { 4492 unsigned int i; 4493 int cpu; 4494 4495 local_bh_disable(); 4496 cpu = smp_processor_id(); 4497 spin_lock(&dev->tx_global_lock); 4498 for (i = 0; i < dev->num_tx_queues; i++) { 4499 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4500 4501 __netif_tx_lock(txq, cpu); 4502 netif_tx_stop_queue(txq); 4503 __netif_tx_unlock(txq); 4504 } 4505 spin_unlock(&dev->tx_global_lock); 4506 local_bh_enable(); 4507 } 4508 4509 static inline void netif_addr_lock(struct net_device *dev) 4510 { 4511 unsigned char nest_level = 0; 4512 4513 #ifdef CONFIG_LOCKDEP 4514 nest_level = dev->nested_level; 4515 #endif 4516 spin_lock_nested(&dev->addr_list_lock, nest_level); 4517 } 4518 4519 static inline void netif_addr_lock_bh(struct net_device *dev) 4520 { 4521 unsigned char nest_level = 0; 4522 4523 #ifdef CONFIG_LOCKDEP 4524 nest_level = dev->nested_level; 4525 #endif 4526 local_bh_disable(); 4527 spin_lock_nested(&dev->addr_list_lock, nest_level); 4528 } 4529 4530 static inline void netif_addr_unlock(struct net_device *dev) 4531 { 4532 spin_unlock(&dev->addr_list_lock); 4533 } 4534 4535 static inline void netif_addr_unlock_bh(struct net_device *dev) 4536 { 4537 spin_unlock_bh(&dev->addr_list_lock); 4538 } 4539 4540 /* 4541 * dev_addrs walker. Should be used only for read access. Call with 4542 * rcu_read_lock held. 4543 */ 4544 #define for_each_dev_addr(dev, ha) \ 4545 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4546 4547 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4548 4549 void ether_setup(struct net_device *dev); 4550 4551 /* Support for loadable net-drivers */ 4552 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4553 unsigned char name_assign_type, 4554 void (*setup)(struct net_device *), 4555 unsigned int txqs, unsigned int rxqs); 4556 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4557 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4558 4559 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4560 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4561 count) 4562 4563 int register_netdev(struct net_device *dev); 4564 void unregister_netdev(struct net_device *dev); 4565 4566 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4567 4568 /* General hardware address lists handling functions */ 4569 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4570 struct netdev_hw_addr_list *from_list, int addr_len); 4571 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4572 struct netdev_hw_addr_list *from_list, int addr_len); 4573 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4574 struct net_device *dev, 4575 int (*sync)(struct net_device *, const unsigned char *), 4576 int (*unsync)(struct net_device *, 4577 const unsigned char *)); 4578 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4579 struct net_device *dev, 4580 int (*sync)(struct net_device *, 4581 const unsigned char *, int), 4582 int (*unsync)(struct net_device *, 4583 const unsigned char *, int)); 4584 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4585 struct net_device *dev, 4586 int (*unsync)(struct net_device *, 4587 const unsigned char *, int)); 4588 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4589 struct net_device *dev, 4590 int (*unsync)(struct net_device *, 4591 const unsigned char *)); 4592 void __hw_addr_init(struct netdev_hw_addr_list *list); 4593 4594 /* Functions used for device addresses handling */ 4595 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4596 const void *addr, size_t len); 4597 4598 static inline void 4599 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4600 { 4601 dev_addr_mod(dev, 0, addr, len); 4602 } 4603 4604 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4605 { 4606 __dev_addr_set(dev, addr, dev->addr_len); 4607 } 4608 4609 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4610 unsigned char addr_type); 4611 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4612 unsigned char addr_type); 4613 4614 /* Functions used for unicast addresses handling */ 4615 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4616 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4617 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4618 int dev_uc_sync(struct net_device *to, struct net_device *from); 4619 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4620 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4621 void dev_uc_flush(struct net_device *dev); 4622 void dev_uc_init(struct net_device *dev); 4623 4624 /** 4625 * __dev_uc_sync - Synchonize device's unicast list 4626 * @dev: device to sync 4627 * @sync: function to call if address should be added 4628 * @unsync: function to call if address should be removed 4629 * 4630 * Add newly added addresses to the interface, and release 4631 * addresses that have been deleted. 4632 */ 4633 static inline int __dev_uc_sync(struct net_device *dev, 4634 int (*sync)(struct net_device *, 4635 const unsigned char *), 4636 int (*unsync)(struct net_device *, 4637 const unsigned char *)) 4638 { 4639 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4640 } 4641 4642 /** 4643 * __dev_uc_unsync - Remove synchronized addresses from device 4644 * @dev: device to sync 4645 * @unsync: function to call if address should be removed 4646 * 4647 * Remove all addresses that were added to the device by dev_uc_sync(). 4648 */ 4649 static inline void __dev_uc_unsync(struct net_device *dev, 4650 int (*unsync)(struct net_device *, 4651 const unsigned char *)) 4652 { 4653 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4654 } 4655 4656 /* Functions used for multicast addresses handling */ 4657 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4658 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4659 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4660 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4661 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4662 int dev_mc_sync(struct net_device *to, struct net_device *from); 4663 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4664 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4665 void dev_mc_flush(struct net_device *dev); 4666 void dev_mc_init(struct net_device *dev); 4667 4668 /** 4669 * __dev_mc_sync - Synchonize device's multicast list 4670 * @dev: device to sync 4671 * @sync: function to call if address should be added 4672 * @unsync: function to call if address should be removed 4673 * 4674 * Add newly added addresses to the interface, and release 4675 * addresses that have been deleted. 4676 */ 4677 static inline int __dev_mc_sync(struct net_device *dev, 4678 int (*sync)(struct net_device *, 4679 const unsigned char *), 4680 int (*unsync)(struct net_device *, 4681 const unsigned char *)) 4682 { 4683 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4684 } 4685 4686 /** 4687 * __dev_mc_unsync - Remove synchronized addresses from device 4688 * @dev: device to sync 4689 * @unsync: function to call if address should be removed 4690 * 4691 * Remove all addresses that were added to the device by dev_mc_sync(). 4692 */ 4693 static inline void __dev_mc_unsync(struct net_device *dev, 4694 int (*unsync)(struct net_device *, 4695 const unsigned char *)) 4696 { 4697 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4698 } 4699 4700 /* Functions used for secondary unicast and multicast support */ 4701 void dev_set_rx_mode(struct net_device *dev); 4702 int dev_set_promiscuity(struct net_device *dev, int inc); 4703 int dev_set_allmulti(struct net_device *dev, int inc); 4704 void netdev_state_change(struct net_device *dev); 4705 void __netdev_notify_peers(struct net_device *dev); 4706 void netdev_notify_peers(struct net_device *dev); 4707 void netdev_features_change(struct net_device *dev); 4708 /* Load a device via the kmod */ 4709 void dev_load(struct net *net, const char *name); 4710 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4711 struct rtnl_link_stats64 *storage); 4712 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4713 const struct net_device_stats *netdev_stats); 4714 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4715 const struct pcpu_sw_netstats __percpu *netstats); 4716 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4717 4718 extern int netdev_max_backlog; 4719 extern int dev_rx_weight; 4720 extern int dev_tx_weight; 4721 extern int gro_normal_batch; 4722 4723 enum { 4724 NESTED_SYNC_IMM_BIT, 4725 NESTED_SYNC_TODO_BIT, 4726 }; 4727 4728 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4729 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4730 4731 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4732 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4733 4734 struct netdev_nested_priv { 4735 unsigned char flags; 4736 void *data; 4737 }; 4738 4739 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4740 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4741 struct list_head **iter); 4742 4743 /* iterate through upper list, must be called under RCU read lock */ 4744 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4745 for (iter = &(dev)->adj_list.upper, \ 4746 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4747 updev; \ 4748 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4749 4750 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4751 int (*fn)(struct net_device *upper_dev, 4752 struct netdev_nested_priv *priv), 4753 struct netdev_nested_priv *priv); 4754 4755 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4756 struct net_device *upper_dev); 4757 4758 bool netdev_has_any_upper_dev(struct net_device *dev); 4759 4760 void *netdev_lower_get_next_private(struct net_device *dev, 4761 struct list_head **iter); 4762 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4763 struct list_head **iter); 4764 4765 #define netdev_for_each_lower_private(dev, priv, iter) \ 4766 for (iter = (dev)->adj_list.lower.next, \ 4767 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4768 priv; \ 4769 priv = netdev_lower_get_next_private(dev, &(iter))) 4770 4771 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4772 for (iter = &(dev)->adj_list.lower, \ 4773 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4774 priv; \ 4775 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4776 4777 void *netdev_lower_get_next(struct net_device *dev, 4778 struct list_head **iter); 4779 4780 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4781 for (iter = (dev)->adj_list.lower.next, \ 4782 ldev = netdev_lower_get_next(dev, &(iter)); \ 4783 ldev; \ 4784 ldev = netdev_lower_get_next(dev, &(iter))) 4785 4786 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4787 struct list_head **iter); 4788 int netdev_walk_all_lower_dev(struct net_device *dev, 4789 int (*fn)(struct net_device *lower_dev, 4790 struct netdev_nested_priv *priv), 4791 struct netdev_nested_priv *priv); 4792 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4793 int (*fn)(struct net_device *lower_dev, 4794 struct netdev_nested_priv *priv), 4795 struct netdev_nested_priv *priv); 4796 4797 void *netdev_adjacent_get_private(struct list_head *adj_list); 4798 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4799 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4800 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4801 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4802 struct netlink_ext_ack *extack); 4803 int netdev_master_upper_dev_link(struct net_device *dev, 4804 struct net_device *upper_dev, 4805 void *upper_priv, void *upper_info, 4806 struct netlink_ext_ack *extack); 4807 void netdev_upper_dev_unlink(struct net_device *dev, 4808 struct net_device *upper_dev); 4809 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4810 struct net_device *new_dev, 4811 struct net_device *dev, 4812 struct netlink_ext_ack *extack); 4813 void netdev_adjacent_change_commit(struct net_device *old_dev, 4814 struct net_device *new_dev, 4815 struct net_device *dev); 4816 void netdev_adjacent_change_abort(struct net_device *old_dev, 4817 struct net_device *new_dev, 4818 struct net_device *dev); 4819 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4820 void *netdev_lower_dev_get_private(struct net_device *dev, 4821 struct net_device *lower_dev); 4822 void netdev_lower_state_changed(struct net_device *lower_dev, 4823 void *lower_state_info); 4824 4825 /* RSS keys are 40 or 52 bytes long */ 4826 #define NETDEV_RSS_KEY_LEN 52 4827 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4828 void netdev_rss_key_fill(void *buffer, size_t len); 4829 4830 int skb_checksum_help(struct sk_buff *skb); 4831 int skb_crc32c_csum_help(struct sk_buff *skb); 4832 int skb_csum_hwoffload_help(struct sk_buff *skb, 4833 const netdev_features_t features); 4834 4835 struct netdev_bonding_info { 4836 ifslave slave; 4837 ifbond master; 4838 }; 4839 4840 struct netdev_notifier_bonding_info { 4841 struct netdev_notifier_info info; /* must be first */ 4842 struct netdev_bonding_info bonding_info; 4843 }; 4844 4845 void netdev_bonding_info_change(struct net_device *dev, 4846 struct netdev_bonding_info *bonding_info); 4847 4848 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4849 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4850 #else 4851 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4852 const void *data) 4853 { 4854 } 4855 #endif 4856 4857 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4858 4859 static inline bool can_checksum_protocol(netdev_features_t features, 4860 __be16 protocol) 4861 { 4862 if (protocol == htons(ETH_P_FCOE)) 4863 return !!(features & NETIF_F_FCOE_CRC); 4864 4865 /* Assume this is an IP checksum (not SCTP CRC) */ 4866 4867 if (features & NETIF_F_HW_CSUM) { 4868 /* Can checksum everything */ 4869 return true; 4870 } 4871 4872 switch (protocol) { 4873 case htons(ETH_P_IP): 4874 return !!(features & NETIF_F_IP_CSUM); 4875 case htons(ETH_P_IPV6): 4876 return !!(features & NETIF_F_IPV6_CSUM); 4877 default: 4878 return false; 4879 } 4880 } 4881 4882 #ifdef CONFIG_BUG 4883 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4884 #else 4885 static inline void netdev_rx_csum_fault(struct net_device *dev, 4886 struct sk_buff *skb) 4887 { 4888 } 4889 #endif 4890 /* rx skb timestamps */ 4891 void net_enable_timestamp(void); 4892 void net_disable_timestamp(void); 4893 4894 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4895 const struct skb_shared_hwtstamps *hwtstamps, 4896 bool cycles) 4897 { 4898 const struct net_device_ops *ops = dev->netdev_ops; 4899 4900 if (ops->ndo_get_tstamp) 4901 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4902 4903 return hwtstamps->hwtstamp; 4904 } 4905 4906 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4907 struct sk_buff *skb, struct net_device *dev, 4908 bool more) 4909 { 4910 __this_cpu_write(softnet_data.xmit.more, more); 4911 return ops->ndo_start_xmit(skb, dev); 4912 } 4913 4914 static inline bool netdev_xmit_more(void) 4915 { 4916 return __this_cpu_read(softnet_data.xmit.more); 4917 } 4918 4919 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4920 struct netdev_queue *txq, bool more) 4921 { 4922 const struct net_device_ops *ops = dev->netdev_ops; 4923 netdev_tx_t rc; 4924 4925 rc = __netdev_start_xmit(ops, skb, dev, more); 4926 if (rc == NETDEV_TX_OK) 4927 txq_trans_update(txq); 4928 4929 return rc; 4930 } 4931 4932 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4933 const void *ns); 4934 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4935 const void *ns); 4936 4937 extern const struct kobj_ns_type_operations net_ns_type_operations; 4938 4939 const char *netdev_drivername(const struct net_device *dev); 4940 4941 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4942 netdev_features_t f2) 4943 { 4944 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4945 if (f1 & NETIF_F_HW_CSUM) 4946 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4947 else 4948 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4949 } 4950 4951 return f1 & f2; 4952 } 4953 4954 static inline netdev_features_t netdev_get_wanted_features( 4955 struct net_device *dev) 4956 { 4957 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4958 } 4959 netdev_features_t netdev_increment_features(netdev_features_t all, 4960 netdev_features_t one, netdev_features_t mask); 4961 4962 /* Allow TSO being used on stacked device : 4963 * Performing the GSO segmentation before last device 4964 * is a performance improvement. 4965 */ 4966 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4967 netdev_features_t mask) 4968 { 4969 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4970 } 4971 4972 int __netdev_update_features(struct net_device *dev); 4973 void netdev_update_features(struct net_device *dev); 4974 void netdev_change_features(struct net_device *dev); 4975 4976 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4977 struct net_device *dev); 4978 4979 netdev_features_t passthru_features_check(struct sk_buff *skb, 4980 struct net_device *dev, 4981 netdev_features_t features); 4982 netdev_features_t netif_skb_features(struct sk_buff *skb); 4983 void skb_warn_bad_offload(const struct sk_buff *skb); 4984 4985 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4986 { 4987 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4988 4989 /* check flags correspondence */ 4990 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4991 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4992 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4993 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4994 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4995 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4996 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4997 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4998 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4999 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5000 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5001 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5002 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5003 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5004 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5005 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5006 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5007 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5008 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5009 5010 return (features & feature) == feature; 5011 } 5012 5013 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5014 { 5015 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5016 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5017 } 5018 5019 static inline bool netif_needs_gso(struct sk_buff *skb, 5020 netdev_features_t features) 5021 { 5022 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5023 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5024 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5025 } 5026 5027 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5028 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5029 void netif_inherit_tso_max(struct net_device *to, 5030 const struct net_device *from); 5031 5032 static inline bool netif_is_macsec(const struct net_device *dev) 5033 { 5034 return dev->priv_flags & IFF_MACSEC; 5035 } 5036 5037 static inline bool netif_is_macvlan(const struct net_device *dev) 5038 { 5039 return dev->priv_flags & IFF_MACVLAN; 5040 } 5041 5042 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5043 { 5044 return dev->priv_flags & IFF_MACVLAN_PORT; 5045 } 5046 5047 static inline bool netif_is_bond_master(const struct net_device *dev) 5048 { 5049 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5050 } 5051 5052 static inline bool netif_is_bond_slave(const struct net_device *dev) 5053 { 5054 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5055 } 5056 5057 static inline bool netif_supports_nofcs(struct net_device *dev) 5058 { 5059 return dev->priv_flags & IFF_SUPP_NOFCS; 5060 } 5061 5062 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5063 { 5064 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5065 } 5066 5067 static inline bool netif_is_l3_master(const struct net_device *dev) 5068 { 5069 return dev->priv_flags & IFF_L3MDEV_MASTER; 5070 } 5071 5072 static inline bool netif_is_l3_slave(const struct net_device *dev) 5073 { 5074 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5075 } 5076 5077 static inline int dev_sdif(const struct net_device *dev) 5078 { 5079 #ifdef CONFIG_NET_L3_MASTER_DEV 5080 if (netif_is_l3_slave(dev)) 5081 return dev->ifindex; 5082 #endif 5083 return 0; 5084 } 5085 5086 static inline bool netif_is_bridge_master(const struct net_device *dev) 5087 { 5088 return dev->priv_flags & IFF_EBRIDGE; 5089 } 5090 5091 static inline bool netif_is_bridge_port(const struct net_device *dev) 5092 { 5093 return dev->priv_flags & IFF_BRIDGE_PORT; 5094 } 5095 5096 static inline bool netif_is_ovs_master(const struct net_device *dev) 5097 { 5098 return dev->priv_flags & IFF_OPENVSWITCH; 5099 } 5100 5101 static inline bool netif_is_ovs_port(const struct net_device *dev) 5102 { 5103 return dev->priv_flags & IFF_OVS_DATAPATH; 5104 } 5105 5106 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5107 { 5108 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5109 } 5110 5111 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5112 { 5113 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5114 } 5115 5116 static inline bool netif_is_team_master(const struct net_device *dev) 5117 { 5118 return dev->priv_flags & IFF_TEAM; 5119 } 5120 5121 static inline bool netif_is_team_port(const struct net_device *dev) 5122 { 5123 return dev->priv_flags & IFF_TEAM_PORT; 5124 } 5125 5126 static inline bool netif_is_lag_master(const struct net_device *dev) 5127 { 5128 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5129 } 5130 5131 static inline bool netif_is_lag_port(const struct net_device *dev) 5132 { 5133 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5134 } 5135 5136 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5137 { 5138 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5139 } 5140 5141 static inline bool netif_is_failover(const struct net_device *dev) 5142 { 5143 return dev->priv_flags & IFF_FAILOVER; 5144 } 5145 5146 static inline bool netif_is_failover_slave(const struct net_device *dev) 5147 { 5148 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5149 } 5150 5151 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5152 static inline void netif_keep_dst(struct net_device *dev) 5153 { 5154 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5155 } 5156 5157 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5158 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5159 { 5160 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5161 return netif_is_macsec(dev); 5162 } 5163 5164 extern struct pernet_operations __net_initdata loopback_net_ops; 5165 5166 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5167 5168 /* netdev_printk helpers, similar to dev_printk */ 5169 5170 static inline const char *netdev_name(const struct net_device *dev) 5171 { 5172 if (!dev->name[0] || strchr(dev->name, '%')) 5173 return "(unnamed net_device)"; 5174 return dev->name; 5175 } 5176 5177 static inline const char *netdev_reg_state(const struct net_device *dev) 5178 { 5179 switch (dev->reg_state) { 5180 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5181 case NETREG_REGISTERED: return ""; 5182 case NETREG_UNREGISTERING: return " (unregistering)"; 5183 case NETREG_UNREGISTERED: return " (unregistered)"; 5184 case NETREG_RELEASED: return " (released)"; 5185 case NETREG_DUMMY: return " (dummy)"; 5186 } 5187 5188 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5189 return " (unknown)"; 5190 } 5191 5192 #define MODULE_ALIAS_NETDEV(device) \ 5193 MODULE_ALIAS("netdev-" device) 5194 5195 /* 5196 * netdev_WARN() acts like dev_printk(), but with the key difference 5197 * of using a WARN/WARN_ON to get the message out, including the 5198 * file/line information and a backtrace. 5199 */ 5200 #define netdev_WARN(dev, format, args...) \ 5201 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5202 netdev_reg_state(dev), ##args) 5203 5204 #define netdev_WARN_ONCE(dev, format, args...) \ 5205 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5206 netdev_reg_state(dev), ##args) 5207 5208 /* 5209 * The list of packet types we will receive (as opposed to discard) 5210 * and the routines to invoke. 5211 * 5212 * Why 16. Because with 16 the only overlap we get on a hash of the 5213 * low nibble of the protocol value is RARP/SNAP/X.25. 5214 * 5215 * 0800 IP 5216 * 0001 802.3 5217 * 0002 AX.25 5218 * 0004 802.2 5219 * 8035 RARP 5220 * 0005 SNAP 5221 * 0805 X.25 5222 * 0806 ARP 5223 * 8137 IPX 5224 * 0009 Localtalk 5225 * 86DD IPv6 5226 */ 5227 #define PTYPE_HASH_SIZE (16) 5228 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5229 5230 extern struct list_head ptype_all __read_mostly; 5231 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5232 5233 extern struct net_device *blackhole_netdev; 5234 5235 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5236 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5237 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5238 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5239 5240 #endif /* _LINUX_NETDEVICE_H */ 5241