xref: /linux-6.15/include/linux/netdevice.h (revision 982c97ee)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 struct net_device_stats {
175 	unsigned long	rx_packets;
176 	unsigned long	tx_packets;
177 	unsigned long	rx_bytes;
178 	unsigned long	tx_bytes;
179 	unsigned long	rx_errors;
180 	unsigned long	tx_errors;
181 	unsigned long	rx_dropped;
182 	unsigned long	tx_dropped;
183 	unsigned long	multicast;
184 	unsigned long	collisions;
185 	unsigned long	rx_length_errors;
186 	unsigned long	rx_over_errors;
187 	unsigned long	rx_crc_errors;
188 	unsigned long	rx_frame_errors;
189 	unsigned long	rx_fifo_errors;
190 	unsigned long	rx_missed_errors;
191 	unsigned long	tx_aborted_errors;
192 	unsigned long	tx_carrier_errors;
193 	unsigned long	tx_fifo_errors;
194 	unsigned long	tx_heartbeat_errors;
195 	unsigned long	tx_window_errors;
196 	unsigned long	rx_compressed;
197 	unsigned long	tx_compressed;
198 };
199 
200 /* per-cpu stats, allocated on demand.
201  * Try to fit them in a single cache line, for dev_get_stats() sake.
202  */
203 struct net_device_core_stats {
204 	unsigned long	rx_dropped;
205 	unsigned long	tx_dropped;
206 	unsigned long	rx_nohandler;
207 	unsigned long	rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209 
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212 
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218 
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222 
223 struct netdev_hw_addr {
224 	struct list_head	list;
225 	struct rb_node		node;
226 	unsigned char		addr[MAX_ADDR_LEN];
227 	unsigned char		type;
228 #define NETDEV_HW_ADDR_T_LAN		1
229 #define NETDEV_HW_ADDR_T_SAN		2
230 #define NETDEV_HW_ADDR_T_UNICAST	3
231 #define NETDEV_HW_ADDR_T_MULTICAST	4
232 	bool			global_use;
233 	int			sync_cnt;
234 	int			refcount;
235 	int			synced;
236 	struct rcu_head		rcu_head;
237 };
238 
239 struct netdev_hw_addr_list {
240 	struct list_head	list;
241 	int			count;
242 
243 	/* Auxiliary tree for faster lookup on addition and deletion */
244 	struct rb_root		tree;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261 
262 struct hh_cache {
263 	unsigned int	hh_len;
264 	seqlock_t	hh_lock;
265 
266 	/* cached hardware header; allow for machine alignment needs.        */
267 #define HH_DATA_MOD	16
268 #define HH_DATA_OFF(__len) \
269 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270 #define HH_DATA_ALIGN(__len) \
271 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273 };
274 
275 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
276  * Alternative is:
277  *   dev->hard_header_len ? (dev->hard_header_len +
278  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279  *
280  * We could use other alignment values, but we must maintain the
281  * relationship HH alignment <= LL alignment.
282  */
283 #define LL_RESERVED_SPACE(dev) \
284 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287 
288 struct header_ops {
289 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
290 			   unsigned short type, const void *daddr,
291 			   const void *saddr, unsigned int len);
292 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 	void	(*cache_update)(struct hh_cache *hh,
295 				const struct net_device *dev,
296 				const unsigned char *haddr);
297 	bool	(*validate)(const char *ll_header, unsigned int len);
298 	__be16	(*parse_protocol)(const struct sk_buff *skb);
299 };
300 
301 /* These flag bits are private to the generic network queueing
302  * layer; they may not be explicitly referenced by any other
303  * code.
304  */
305 
306 enum netdev_state_t {
307 	__LINK_STATE_START,
308 	__LINK_STATE_PRESENT,
309 	__LINK_STATE_NOCARRIER,
310 	__LINK_STATE_LINKWATCH_PENDING,
311 	__LINK_STATE_DORMANT,
312 	__LINK_STATE_TESTING,
313 };
314 
315 struct gro_list {
316 	struct list_head	list;
317 	int			count;
318 };
319 
320 /*
321  * size of gro hash buckets, must less than bit number of
322  * napi_struct::gro_bitmask
323  */
324 #define GRO_HASH_BUCKETS	8
325 
326 /*
327  * Structure for NAPI scheduling similar to tasklet but with weighting
328  */
329 struct napi_struct {
330 	/* The poll_list must only be managed by the entity which
331 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
332 	 * whoever atomically sets that bit can add this napi_struct
333 	 * to the per-CPU poll_list, and whoever clears that bit
334 	 * can remove from the list right before clearing the bit.
335 	 */
336 	struct list_head	poll_list;
337 
338 	unsigned long		state;
339 	int			weight;
340 	int			defer_hard_irqs_count;
341 	unsigned long		gro_bitmask;
342 	int			(*poll)(struct napi_struct *, int);
343 #ifdef CONFIG_NETPOLL
344 	int			poll_owner;
345 #endif
346 	struct net_device	*dev;
347 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
348 	struct sk_buff		*skb;
349 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
350 	int			rx_count; /* length of rx_list */
351 	struct hrtimer		timer;
352 	struct list_head	dev_list;
353 	struct hlist_node	napi_hash_node;
354 	unsigned int		napi_id;
355 	struct task_struct	*thread;
356 };
357 
358 enum {
359 	NAPI_STATE_SCHED,		/* Poll is scheduled */
360 	NAPI_STATE_MISSED,		/* reschedule a napi */
361 	NAPI_STATE_DISABLE,		/* Disable pending */
362 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
363 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
364 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
365 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
366 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
367 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
368 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
369 };
370 
371 enum {
372 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
373 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
374 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
375 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
376 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
377 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
378 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
379 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
380 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
381 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
382 };
383 
384 enum gro_result {
385 	GRO_MERGED,
386 	GRO_MERGED_FREE,
387 	GRO_HELD,
388 	GRO_NORMAL,
389 	GRO_CONSUMED,
390 };
391 typedef enum gro_result gro_result_t;
392 
393 /*
394  * enum rx_handler_result - Possible return values for rx_handlers.
395  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396  * further.
397  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398  * case skb->dev was changed by rx_handler.
399  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
401  *
402  * rx_handlers are functions called from inside __netif_receive_skb(), to do
403  * special processing of the skb, prior to delivery to protocol handlers.
404  *
405  * Currently, a net_device can only have a single rx_handler registered. Trying
406  * to register a second rx_handler will return -EBUSY.
407  *
408  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409  * To unregister a rx_handler on a net_device, use
410  * netdev_rx_handler_unregister().
411  *
412  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413  * do with the skb.
414  *
415  * If the rx_handler consumed the skb in some way, it should return
416  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417  * the skb to be delivered in some other way.
418  *
419  * If the rx_handler changed skb->dev, to divert the skb to another
420  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421  * new device will be called if it exists.
422  *
423  * If the rx_handler decides the skb should be ignored, it should return
424  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425  * are registered on exact device (ptype->dev == skb->dev).
426  *
427  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
428  * delivered, it should return RX_HANDLER_PASS.
429  *
430  * A device without a registered rx_handler will behave as if rx_handler
431  * returned RX_HANDLER_PASS.
432  */
433 
434 enum rx_handler_result {
435 	RX_HANDLER_CONSUMED,
436 	RX_HANDLER_ANOTHER,
437 	RX_HANDLER_EXACT,
438 	RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442 
443 void __napi_schedule(struct napi_struct *n);
444 void __napi_schedule_irqoff(struct napi_struct *n);
445 
446 static inline bool napi_disable_pending(struct napi_struct *n)
447 {
448 	return test_bit(NAPI_STATE_DISABLE, &n->state);
449 }
450 
451 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
452 {
453 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
454 }
455 
456 bool napi_schedule_prep(struct napi_struct *n);
457 
458 /**
459  *	napi_schedule - schedule NAPI poll
460  *	@n: NAPI context
461  *
462  * Schedule NAPI poll routine to be called if it is not already
463  * running.
464  */
465 static inline void napi_schedule(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule(n);
469 }
470 
471 /**
472  *	napi_schedule_irqoff - schedule NAPI poll
473  *	@n: NAPI context
474  *
475  * Variant of napi_schedule(), assuming hard irqs are masked.
476  */
477 static inline void napi_schedule_irqoff(struct napi_struct *n)
478 {
479 	if (napi_schedule_prep(n))
480 		__napi_schedule_irqoff(n);
481 }
482 
483 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
484 static inline bool napi_reschedule(struct napi_struct *napi)
485 {
486 	if (napi_schedule_prep(napi)) {
487 		__napi_schedule(napi);
488 		return true;
489 	}
490 	return false;
491 }
492 
493 bool napi_complete_done(struct napi_struct *n, int work_done);
494 /**
495  *	napi_complete - NAPI processing complete
496  *	@n: NAPI context
497  *
498  * Mark NAPI processing as complete.
499  * Consider using napi_complete_done() instead.
500  * Return false if device should avoid rearming interrupts.
501  */
502 static inline bool napi_complete(struct napi_struct *n)
503 {
504 	return napi_complete_done(n, 0);
505 }
506 
507 int dev_set_threaded(struct net_device *dev, bool threaded);
508 
509 /**
510  *	napi_disable - prevent NAPI from scheduling
511  *	@n: NAPI context
512  *
513  * Stop NAPI from being scheduled on this context.
514  * Waits till any outstanding processing completes.
515  */
516 void napi_disable(struct napi_struct *n);
517 
518 void napi_enable(struct napi_struct *n);
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	netdevice_tracker	dev_tracker;
595 
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	atomic_long_t		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xsk_buff_pool    *pool;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 /*
637  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638  *                                     == 1 : For initns only
639  *                                     == 2 : For none.
640  */
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 	return !IS_ENABLED(CONFIG_SYSCTL) ||
644 	       !sysctl_fb_tunnels_only_for_init_net ||
645 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
646 }
647 
648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	return q->numa_node;
652 #else
653 	return NUMA_NO_NODE;
654 #endif
655 }
656 
657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658 {
659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 	q->numa_node = node;
661 #endif
662 }
663 
664 #ifdef CONFIG_RPS
665 /*
666  * This structure holds an RPS map which can be of variable length.  The
667  * map is an array of CPUs.
668  */
669 struct rps_map {
670 	unsigned int len;
671 	struct rcu_head rcu;
672 	u16 cpus[];
673 };
674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675 
676 /*
677  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678  * tail pointer for that CPU's input queue at the time of last enqueue, and
679  * a hardware filter index.
680  */
681 struct rps_dev_flow {
682 	u16 cpu;
683 	u16 filter;
684 	unsigned int last_qtail;
685 };
686 #define RPS_NO_FILTER 0xffff
687 
688 /*
689  * The rps_dev_flow_table structure contains a table of flow mappings.
690  */
691 struct rps_dev_flow_table {
692 	unsigned int mask;
693 	struct rcu_head rcu;
694 	struct rps_dev_flow flows[];
695 };
696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697     ((_num) * sizeof(struct rps_dev_flow)))
698 
699 /*
700  * The rps_sock_flow_table contains mappings of flows to the last CPU
701  * on which they were processed by the application (set in recvmsg).
702  * Each entry is a 32bit value. Upper part is the high-order bits
703  * of flow hash, lower part is CPU number.
704  * rps_cpu_mask is used to partition the space, depending on number of
705  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707  * meaning we use 32-6=26 bits for the hash.
708  */
709 struct rps_sock_flow_table {
710 	u32	mask;
711 
712 	u32	ents[] ____cacheline_aligned_in_smp;
713 };
714 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715 
716 #define RPS_NO_CPU 0xffff
717 
718 extern u32 rps_cpu_mask;
719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720 
721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 					u32 hash)
723 {
724 	if (table && hash) {
725 		unsigned int index = hash & table->mask;
726 		u32 val = hash & ~rps_cpu_mask;
727 
728 		/* We only give a hint, preemption can change CPU under us */
729 		val |= raw_smp_processor_id();
730 
731 		if (table->ents[index] != val)
732 			table->ents[index] = val;
733 	}
734 }
735 
736 #ifdef CONFIG_RFS_ACCEL
737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 			 u16 filter_id);
739 #endif
740 #endif /* CONFIG_RPS */
741 
742 /* This structure contains an instance of an RX queue. */
743 struct netdev_rx_queue {
744 	struct xdp_rxq_info		xdp_rxq;
745 #ifdef CONFIG_RPS
746 	struct rps_map __rcu		*rps_map;
747 	struct rps_dev_flow_table __rcu	*rps_flow_table;
748 #endif
749 	struct kobject			kobj;
750 	struct net_device		*dev;
751 	netdevice_tracker		dev_tracker;
752 
753 #ifdef CONFIG_XDP_SOCKETS
754 	struct xsk_buff_pool            *pool;
755 #endif
756 } ____cacheline_aligned_in_smp;
757 
758 /*
759  * RX queue sysfs structures and functions.
760  */
761 struct rx_queue_attribute {
762 	struct attribute attr;
763 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
764 	ssize_t (*store)(struct netdev_rx_queue *queue,
765 			 const char *buf, size_t len);
766 };
767 
768 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
769 enum xps_map_type {
770 	XPS_CPUS = 0,
771 	XPS_RXQS,
772 	XPS_MAPS_MAX,
773 };
774 
775 #ifdef CONFIG_XPS
776 /*
777  * This structure holds an XPS map which can be of variable length.  The
778  * map is an array of queues.
779  */
780 struct xps_map {
781 	unsigned int len;
782 	unsigned int alloc_len;
783 	struct rcu_head rcu;
784 	u16 queues[];
785 };
786 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
787 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
788        - sizeof(struct xps_map)) / sizeof(u16))
789 
790 /*
791  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
792  *
793  * We keep track of the number of cpus/rxqs used when the struct is allocated,
794  * in nr_ids. This will help not accessing out-of-bound memory.
795  *
796  * We keep track of the number of traffic classes used when the struct is
797  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
798  * not crossing its upper bound, as the original dev->num_tc can be updated in
799  * the meantime.
800  */
801 struct xps_dev_maps {
802 	struct rcu_head rcu;
803 	unsigned int nr_ids;
804 	s16 num_tc;
805 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
806 };
807 
808 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
809 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
810 
811 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
812 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
813 
814 #endif /* CONFIG_XPS */
815 
816 #define TC_MAX_QUEUE	16
817 #define TC_BITMASK	15
818 /* HW offloaded queuing disciplines txq count and offset maps */
819 struct netdev_tc_txq {
820 	u16 count;
821 	u16 offset;
822 };
823 
824 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
825 /*
826  * This structure is to hold information about the device
827  * configured to run FCoE protocol stack.
828  */
829 struct netdev_fcoe_hbainfo {
830 	char	manufacturer[64];
831 	char	serial_number[64];
832 	char	hardware_version[64];
833 	char	driver_version[64];
834 	char	optionrom_version[64];
835 	char	firmware_version[64];
836 	char	model[256];
837 	char	model_description[256];
838 };
839 #endif
840 
841 #define MAX_PHYS_ITEM_ID_LEN 32
842 
843 /* This structure holds a unique identifier to identify some
844  * physical item (port for example) used by a netdevice.
845  */
846 struct netdev_phys_item_id {
847 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
848 	unsigned char id_len;
849 };
850 
851 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
852 					    struct netdev_phys_item_id *b)
853 {
854 	return a->id_len == b->id_len &&
855 	       memcmp(a->id, b->id, a->id_len) == 0;
856 }
857 
858 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
859 				       struct sk_buff *skb,
860 				       struct net_device *sb_dev);
861 
862 enum net_device_path_type {
863 	DEV_PATH_ETHERNET = 0,
864 	DEV_PATH_VLAN,
865 	DEV_PATH_BRIDGE,
866 	DEV_PATH_PPPOE,
867 	DEV_PATH_DSA,
868 	DEV_PATH_MTK_WDMA,
869 };
870 
871 struct net_device_path {
872 	enum net_device_path_type	type;
873 	const struct net_device		*dev;
874 	union {
875 		struct {
876 			u16		id;
877 			__be16		proto;
878 			u8		h_dest[ETH_ALEN];
879 		} encap;
880 		struct {
881 			enum {
882 				DEV_PATH_BR_VLAN_KEEP,
883 				DEV_PATH_BR_VLAN_TAG,
884 				DEV_PATH_BR_VLAN_UNTAG,
885 				DEV_PATH_BR_VLAN_UNTAG_HW,
886 			}		vlan_mode;
887 			u16		vlan_id;
888 			__be16		vlan_proto;
889 		} bridge;
890 		struct {
891 			int port;
892 			u16 proto;
893 		} dsa;
894 		struct {
895 			u8 wdma_idx;
896 			u8 queue;
897 			u16 wcid;
898 			u8 bss;
899 		} mtk_wdma;
900 	};
901 };
902 
903 #define NET_DEVICE_PATH_STACK_MAX	5
904 #define NET_DEVICE_PATH_VLAN_MAX	2
905 
906 struct net_device_path_stack {
907 	int			num_paths;
908 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
909 };
910 
911 struct net_device_path_ctx {
912 	const struct net_device *dev;
913 	const u8		*daddr;
914 
915 	int			num_vlans;
916 	struct {
917 		u16		id;
918 		__be16		proto;
919 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
920 };
921 
922 enum tc_setup_type {
923 	TC_SETUP_QDISC_MQPRIO,
924 	TC_SETUP_CLSU32,
925 	TC_SETUP_CLSFLOWER,
926 	TC_SETUP_CLSMATCHALL,
927 	TC_SETUP_CLSBPF,
928 	TC_SETUP_BLOCK,
929 	TC_SETUP_QDISC_CBS,
930 	TC_SETUP_QDISC_RED,
931 	TC_SETUP_QDISC_PRIO,
932 	TC_SETUP_QDISC_MQ,
933 	TC_SETUP_QDISC_ETF,
934 	TC_SETUP_ROOT_QDISC,
935 	TC_SETUP_QDISC_GRED,
936 	TC_SETUP_QDISC_TAPRIO,
937 	TC_SETUP_FT,
938 	TC_SETUP_QDISC_ETS,
939 	TC_SETUP_QDISC_TBF,
940 	TC_SETUP_QDISC_FIFO,
941 	TC_SETUP_QDISC_HTB,
942 	TC_SETUP_ACT,
943 };
944 
945 /* These structures hold the attributes of bpf state that are being passed
946  * to the netdevice through the bpf op.
947  */
948 enum bpf_netdev_command {
949 	/* Set or clear a bpf program used in the earliest stages of packet
950 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
951 	 * is responsible for calling bpf_prog_put on any old progs that are
952 	 * stored. In case of error, the callee need not release the new prog
953 	 * reference, but on success it takes ownership and must bpf_prog_put
954 	 * when it is no longer used.
955 	 */
956 	XDP_SETUP_PROG,
957 	XDP_SETUP_PROG_HW,
958 	/* BPF program for offload callbacks, invoked at program load time. */
959 	BPF_OFFLOAD_MAP_ALLOC,
960 	BPF_OFFLOAD_MAP_FREE,
961 	XDP_SETUP_XSK_POOL,
962 };
963 
964 struct bpf_prog_offload_ops;
965 struct netlink_ext_ack;
966 struct xdp_umem;
967 struct xdp_dev_bulk_queue;
968 struct bpf_xdp_link;
969 
970 enum bpf_xdp_mode {
971 	XDP_MODE_SKB = 0,
972 	XDP_MODE_DRV = 1,
973 	XDP_MODE_HW = 2,
974 	__MAX_XDP_MODE
975 };
976 
977 struct bpf_xdp_entity {
978 	struct bpf_prog *prog;
979 	struct bpf_xdp_link *link;
980 };
981 
982 struct netdev_bpf {
983 	enum bpf_netdev_command command;
984 	union {
985 		/* XDP_SETUP_PROG */
986 		struct {
987 			u32 flags;
988 			struct bpf_prog *prog;
989 			struct netlink_ext_ack *extack;
990 		};
991 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
992 		struct {
993 			struct bpf_offloaded_map *offmap;
994 		};
995 		/* XDP_SETUP_XSK_POOL */
996 		struct {
997 			struct xsk_buff_pool *pool;
998 			u16 queue_id;
999 		} xsk;
1000 	};
1001 };
1002 
1003 /* Flags for ndo_xsk_wakeup. */
1004 #define XDP_WAKEUP_RX (1 << 0)
1005 #define XDP_WAKEUP_TX (1 << 1)
1006 
1007 #ifdef CONFIG_XFRM_OFFLOAD
1008 struct xfrmdev_ops {
1009 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1010 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1011 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1012 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1013 				       struct xfrm_state *x);
1014 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1015 };
1016 #endif
1017 
1018 struct dev_ifalias {
1019 	struct rcu_head rcuhead;
1020 	char ifalias[];
1021 };
1022 
1023 struct devlink;
1024 struct tlsdev_ops;
1025 
1026 struct netdev_net_notifier {
1027 	struct list_head list;
1028 	struct notifier_block *nb;
1029 };
1030 
1031 /*
1032  * This structure defines the management hooks for network devices.
1033  * The following hooks can be defined; unless noted otherwise, they are
1034  * optional and can be filled with a null pointer.
1035  *
1036  * int (*ndo_init)(struct net_device *dev);
1037  *     This function is called once when a network device is registered.
1038  *     The network device can use this for any late stage initialization
1039  *     or semantic validation. It can fail with an error code which will
1040  *     be propagated back to register_netdev.
1041  *
1042  * void (*ndo_uninit)(struct net_device *dev);
1043  *     This function is called when device is unregistered or when registration
1044  *     fails. It is not called if init fails.
1045  *
1046  * int (*ndo_open)(struct net_device *dev);
1047  *     This function is called when a network device transitions to the up
1048  *     state.
1049  *
1050  * int (*ndo_stop)(struct net_device *dev);
1051  *     This function is called when a network device transitions to the down
1052  *     state.
1053  *
1054  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1055  *                               struct net_device *dev);
1056  *	Called when a packet needs to be transmitted.
1057  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1058  *	the queue before that can happen; it's for obsolete devices and weird
1059  *	corner cases, but the stack really does a non-trivial amount
1060  *	of useless work if you return NETDEV_TX_BUSY.
1061  *	Required; cannot be NULL.
1062  *
1063  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1064  *					   struct net_device *dev
1065  *					   netdev_features_t features);
1066  *	Called by core transmit path to determine if device is capable of
1067  *	performing offload operations on a given packet. This is to give
1068  *	the device an opportunity to implement any restrictions that cannot
1069  *	be otherwise expressed by feature flags. The check is called with
1070  *	the set of features that the stack has calculated and it returns
1071  *	those the driver believes to be appropriate.
1072  *
1073  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1074  *                         struct net_device *sb_dev);
1075  *	Called to decide which queue to use when device supports multiple
1076  *	transmit queues.
1077  *
1078  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1079  *	This function is called to allow device receiver to make
1080  *	changes to configuration when multicast or promiscuous is enabled.
1081  *
1082  * void (*ndo_set_rx_mode)(struct net_device *dev);
1083  *	This function is called device changes address list filtering.
1084  *	If driver handles unicast address filtering, it should set
1085  *	IFF_UNICAST_FLT in its priv_flags.
1086  *
1087  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1088  *	This function  is called when the Media Access Control address
1089  *	needs to be changed. If this interface is not defined, the
1090  *	MAC address can not be changed.
1091  *
1092  * int (*ndo_validate_addr)(struct net_device *dev);
1093  *	Test if Media Access Control address is valid for the device.
1094  *
1095  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1096  *	Old-style ioctl entry point. This is used internally by the
1097  *	appletalk and ieee802154 subsystems but is no longer called by
1098  *	the device ioctl handler.
1099  *
1100  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1101  *	Used by the bonding driver for its device specific ioctls:
1102  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1103  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1104  *
1105  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1106  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1107  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1108  *
1109  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1110  *	Used to set network devices bus interface parameters. This interface
1111  *	is retained for legacy reasons; new devices should use the bus
1112  *	interface (PCI) for low level management.
1113  *
1114  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1115  *	Called when a user wants to change the Maximum Transfer Unit
1116  *	of a device.
1117  *
1118  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1119  *	Callback used when the transmitter has not made any progress
1120  *	for dev->watchdog ticks.
1121  *
1122  * void (*ndo_get_stats64)(struct net_device *dev,
1123  *                         struct rtnl_link_stats64 *storage);
1124  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1125  *	Called when a user wants to get the network device usage
1126  *	statistics. Drivers must do one of the following:
1127  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1128  *	   rtnl_link_stats64 structure passed by the caller.
1129  *	2. Define @ndo_get_stats to update a net_device_stats structure
1130  *	   (which should normally be dev->stats) and return a pointer to
1131  *	   it. The structure may be changed asynchronously only if each
1132  *	   field is written atomically.
1133  *	3. Update dev->stats asynchronously and atomically, and define
1134  *	   neither operation.
1135  *
1136  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1137  *	Return true if this device supports offload stats of this attr_id.
1138  *
1139  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1140  *	void *attr_data)
1141  *	Get statistics for offload operations by attr_id. Write it into the
1142  *	attr_data pointer.
1143  *
1144  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1145  *	If device supports VLAN filtering this function is called when a
1146  *	VLAN id is registered.
1147  *
1148  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1149  *	If device supports VLAN filtering this function is called when a
1150  *	VLAN id is unregistered.
1151  *
1152  * void (*ndo_poll_controller)(struct net_device *dev);
1153  *
1154  *	SR-IOV management functions.
1155  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1156  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1157  *			  u8 qos, __be16 proto);
1158  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1159  *			  int max_tx_rate);
1160  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1161  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1162  * int (*ndo_get_vf_config)(struct net_device *dev,
1163  *			    int vf, struct ifla_vf_info *ivf);
1164  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1165  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1166  *			  struct nlattr *port[]);
1167  *
1168  *      Enable or disable the VF ability to query its RSS Redirection Table and
1169  *      Hash Key. This is needed since on some devices VF share this information
1170  *      with PF and querying it may introduce a theoretical security risk.
1171  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1172  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1173  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1174  *		       void *type_data);
1175  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1176  *	This is always called from the stack with the rtnl lock held and netif
1177  *	tx queues stopped. This allows the netdevice to perform queue
1178  *	management safely.
1179  *
1180  *	Fiber Channel over Ethernet (FCoE) offload functions.
1181  * int (*ndo_fcoe_enable)(struct net_device *dev);
1182  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1183  *	so the underlying device can perform whatever needed configuration or
1184  *	initialization to support acceleration of FCoE traffic.
1185  *
1186  * int (*ndo_fcoe_disable)(struct net_device *dev);
1187  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1188  *	so the underlying device can perform whatever needed clean-ups to
1189  *	stop supporting acceleration of FCoE traffic.
1190  *
1191  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1192  *			     struct scatterlist *sgl, unsigned int sgc);
1193  *	Called when the FCoE Initiator wants to initialize an I/O that
1194  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1195  *	perform necessary setup and returns 1 to indicate the device is set up
1196  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1197  *
1198  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1199  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1200  *	indicated by the FC exchange id 'xid', so the underlying device can
1201  *	clean up and reuse resources for later DDP requests.
1202  *
1203  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1204  *			      struct scatterlist *sgl, unsigned int sgc);
1205  *	Called when the FCoE Target wants to initialize an I/O that
1206  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1207  *	perform necessary setup and returns 1 to indicate the device is set up
1208  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1209  *
1210  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1211  *			       struct netdev_fcoe_hbainfo *hbainfo);
1212  *	Called when the FCoE Protocol stack wants information on the underlying
1213  *	device. This information is utilized by the FCoE protocol stack to
1214  *	register attributes with Fiber Channel management service as per the
1215  *	FC-GS Fabric Device Management Information(FDMI) specification.
1216  *
1217  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1218  *	Called when the underlying device wants to override default World Wide
1219  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1220  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1221  *	protocol stack to use.
1222  *
1223  *	RFS acceleration.
1224  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1225  *			    u16 rxq_index, u32 flow_id);
1226  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1227  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1228  *	Return the filter ID on success, or a negative error code.
1229  *
1230  *	Slave management functions (for bridge, bonding, etc).
1231  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1232  *	Called to make another netdev an underling.
1233  *
1234  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1235  *	Called to release previously enslaved netdev.
1236  *
1237  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1238  *					    struct sk_buff *skb,
1239  *					    bool all_slaves);
1240  *	Get the xmit slave of master device. If all_slaves is true, function
1241  *	assume all the slaves can transmit.
1242  *
1243  *      Feature/offload setting functions.
1244  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1245  *		netdev_features_t features);
1246  *	Adjusts the requested feature flags according to device-specific
1247  *	constraints, and returns the resulting flags. Must not modify
1248  *	the device state.
1249  *
1250  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1251  *	Called to update device configuration to new features. Passed
1252  *	feature set might be less than what was returned by ndo_fix_features()).
1253  *	Must return >0 or -errno if it changed dev->features itself.
1254  *
1255  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1256  *		      struct net_device *dev,
1257  *		      const unsigned char *addr, u16 vid, u16 flags,
1258  *		      struct netlink_ext_ack *extack);
1259  *	Adds an FDB entry to dev for addr.
1260  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1261  *		      struct net_device *dev,
1262  *		      const unsigned char *addr, u16 vid)
1263  *	Deletes the FDB entry from dev coresponding to addr.
1264  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1265  *			   struct net_device *dev,
1266  *			   u16 vid,
1267  *			   struct netlink_ext_ack *extack);
1268  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1269  *		       struct net_device *dev, struct net_device *filter_dev,
1270  *		       int *idx)
1271  *	Used to add FDB entries to dump requests. Implementers should add
1272  *	entries to skb and update idx with the number of entries.
1273  *
1274  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1275  *			     u16 flags, struct netlink_ext_ack *extack)
1276  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1277  *			     struct net_device *dev, u32 filter_mask,
1278  *			     int nlflags)
1279  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1280  *			     u16 flags);
1281  *
1282  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1283  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1284  *	which do not represent real hardware may define this to allow their
1285  *	userspace components to manage their virtual carrier state. Devices
1286  *	that determine carrier state from physical hardware properties (eg
1287  *	network cables) or protocol-dependent mechanisms (eg
1288  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1289  *
1290  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1291  *			       struct netdev_phys_item_id *ppid);
1292  *	Called to get ID of physical port of this device. If driver does
1293  *	not implement this, it is assumed that the hw is not able to have
1294  *	multiple net devices on single physical port.
1295  *
1296  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1297  *				 struct netdev_phys_item_id *ppid)
1298  *	Called to get the parent ID of the physical port of this device.
1299  *
1300  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1301  *				 struct net_device *dev)
1302  *	Called by upper layer devices to accelerate switching or other
1303  *	station functionality into hardware. 'pdev is the lowerdev
1304  *	to use for the offload and 'dev' is the net device that will
1305  *	back the offload. Returns a pointer to the private structure
1306  *	the upper layer will maintain.
1307  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1308  *	Called by upper layer device to delete the station created
1309  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1310  *	the station and priv is the structure returned by the add
1311  *	operation.
1312  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1313  *			     int queue_index, u32 maxrate);
1314  *	Called when a user wants to set a max-rate limitation of specific
1315  *	TX queue.
1316  * int (*ndo_get_iflink)(const struct net_device *dev);
1317  *	Called to get the iflink value of this device.
1318  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1319  *	This function is used to get egress tunnel information for given skb.
1320  *	This is useful for retrieving outer tunnel header parameters while
1321  *	sampling packet.
1322  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1323  *	This function is used to specify the headroom that the skb must
1324  *	consider when allocation skb during packet reception. Setting
1325  *	appropriate rx headroom value allows avoiding skb head copy on
1326  *	forward. Setting a negative value resets the rx headroom to the
1327  *	default value.
1328  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1329  *	This function is used to set or query state related to XDP on the
1330  *	netdevice and manage BPF offload. See definition of
1331  *	enum bpf_netdev_command for details.
1332  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1333  *			u32 flags);
1334  *	This function is used to submit @n XDP packets for transmit on a
1335  *	netdevice. Returns number of frames successfully transmitted, frames
1336  *	that got dropped are freed/returned via xdp_return_frame().
1337  *	Returns negative number, means general error invoking ndo, meaning
1338  *	no frames were xmit'ed and core-caller will free all frames.
1339  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1340  *					        struct xdp_buff *xdp);
1341  *      Get the xmit slave of master device based on the xdp_buff.
1342  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1343  *      This function is used to wake up the softirq, ksoftirqd or kthread
1344  *	responsible for sending and/or receiving packets on a specific
1345  *	queue id bound to an AF_XDP socket. The flags field specifies if
1346  *	only RX, only Tx, or both should be woken up using the flags
1347  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1348  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1349  *	Get devlink port instance associated with a given netdev.
1350  *	Called with a reference on the netdevice and devlink locks only,
1351  *	rtnl_lock is not held.
1352  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1353  *			 int cmd);
1354  *	Add, change, delete or get information on an IPv4 tunnel.
1355  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1356  *	If a device is paired with a peer device, return the peer instance.
1357  *	The caller must be under RCU read context.
1358  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1359  *     Get the forwarding path to reach the real device from the HW destination address
1360  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1361  *			     const struct skb_shared_hwtstamps *hwtstamps,
1362  *			     bool cycles);
1363  *	Get hardware timestamp based on normal/adjustable time or free running
1364  *	cycle counter. This function is required if physical clock supports a
1365  *	free running cycle counter.
1366  */
1367 struct net_device_ops {
1368 	int			(*ndo_init)(struct net_device *dev);
1369 	void			(*ndo_uninit)(struct net_device *dev);
1370 	int			(*ndo_open)(struct net_device *dev);
1371 	int			(*ndo_stop)(struct net_device *dev);
1372 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1373 						  struct net_device *dev);
1374 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1375 						      struct net_device *dev,
1376 						      netdev_features_t features);
1377 	u16			(*ndo_select_queue)(struct net_device *dev,
1378 						    struct sk_buff *skb,
1379 						    struct net_device *sb_dev);
1380 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1381 						       int flags);
1382 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1383 	int			(*ndo_set_mac_address)(struct net_device *dev,
1384 						       void *addr);
1385 	int			(*ndo_validate_addr)(struct net_device *dev);
1386 	int			(*ndo_do_ioctl)(struct net_device *dev,
1387 					        struct ifreq *ifr, int cmd);
1388 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1389 						 struct ifreq *ifr, int cmd);
1390 	int			(*ndo_siocbond)(struct net_device *dev,
1391 						struct ifreq *ifr, int cmd);
1392 	int			(*ndo_siocwandev)(struct net_device *dev,
1393 						  struct if_settings *ifs);
1394 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1395 						      struct ifreq *ifr,
1396 						      void __user *data, int cmd);
1397 	int			(*ndo_set_config)(struct net_device *dev,
1398 					          struct ifmap *map);
1399 	int			(*ndo_change_mtu)(struct net_device *dev,
1400 						  int new_mtu);
1401 	int			(*ndo_neigh_setup)(struct net_device *dev,
1402 						   struct neigh_parms *);
1403 	void			(*ndo_tx_timeout) (struct net_device *dev,
1404 						   unsigned int txqueue);
1405 
1406 	void			(*ndo_get_stats64)(struct net_device *dev,
1407 						   struct rtnl_link_stats64 *storage);
1408 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1409 	int			(*ndo_get_offload_stats)(int attr_id,
1410 							 const struct net_device *dev,
1411 							 void *attr_data);
1412 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1413 
1414 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1415 						       __be16 proto, u16 vid);
1416 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1417 						        __be16 proto, u16 vid);
1418 #ifdef CONFIG_NET_POLL_CONTROLLER
1419 	void                    (*ndo_poll_controller)(struct net_device *dev);
1420 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1421 						     struct netpoll_info *info);
1422 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1423 #endif
1424 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1425 						  int queue, u8 *mac);
1426 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1427 						   int queue, u16 vlan,
1428 						   u8 qos, __be16 proto);
1429 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1430 						   int vf, int min_tx_rate,
1431 						   int max_tx_rate);
1432 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1433 						       int vf, bool setting);
1434 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1435 						    int vf, bool setting);
1436 	int			(*ndo_get_vf_config)(struct net_device *dev,
1437 						     int vf,
1438 						     struct ifla_vf_info *ivf);
1439 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1440 							 int vf, int link_state);
1441 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1442 						    int vf,
1443 						    struct ifla_vf_stats
1444 						    *vf_stats);
1445 	int			(*ndo_set_vf_port)(struct net_device *dev,
1446 						   int vf,
1447 						   struct nlattr *port[]);
1448 	int			(*ndo_get_vf_port)(struct net_device *dev,
1449 						   int vf, struct sk_buff *skb);
1450 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1451 						   int vf,
1452 						   struct ifla_vf_guid *node_guid,
1453 						   struct ifla_vf_guid *port_guid);
1454 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1455 						   int vf, u64 guid,
1456 						   int guid_type);
1457 	int			(*ndo_set_vf_rss_query_en)(
1458 						   struct net_device *dev,
1459 						   int vf, bool setting);
1460 	int			(*ndo_setup_tc)(struct net_device *dev,
1461 						enum tc_setup_type type,
1462 						void *type_data);
1463 #if IS_ENABLED(CONFIG_FCOE)
1464 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1465 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1466 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1467 						      u16 xid,
1468 						      struct scatterlist *sgl,
1469 						      unsigned int sgc);
1470 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1471 						     u16 xid);
1472 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1473 						       u16 xid,
1474 						       struct scatterlist *sgl,
1475 						       unsigned int sgc);
1476 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1477 							struct netdev_fcoe_hbainfo *hbainfo);
1478 #endif
1479 
1480 #if IS_ENABLED(CONFIG_LIBFCOE)
1481 #define NETDEV_FCOE_WWNN 0
1482 #define NETDEV_FCOE_WWPN 1
1483 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1484 						    u64 *wwn, int type);
1485 #endif
1486 
1487 #ifdef CONFIG_RFS_ACCEL
1488 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1489 						     const struct sk_buff *skb,
1490 						     u16 rxq_index,
1491 						     u32 flow_id);
1492 #endif
1493 	int			(*ndo_add_slave)(struct net_device *dev,
1494 						 struct net_device *slave_dev,
1495 						 struct netlink_ext_ack *extack);
1496 	int			(*ndo_del_slave)(struct net_device *dev,
1497 						 struct net_device *slave_dev);
1498 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1499 						      struct sk_buff *skb,
1500 						      bool all_slaves);
1501 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1502 							struct sock *sk);
1503 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1504 						    netdev_features_t features);
1505 	int			(*ndo_set_features)(struct net_device *dev,
1506 						    netdev_features_t features);
1507 	int			(*ndo_neigh_construct)(struct net_device *dev,
1508 						       struct neighbour *n);
1509 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1510 						     struct neighbour *n);
1511 
1512 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1513 					       struct nlattr *tb[],
1514 					       struct net_device *dev,
1515 					       const unsigned char *addr,
1516 					       u16 vid,
1517 					       u16 flags,
1518 					       struct netlink_ext_ack *extack);
1519 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1520 					       struct nlattr *tb[],
1521 					       struct net_device *dev,
1522 					       const unsigned char *addr,
1523 					       u16 vid, struct netlink_ext_ack *extack);
1524 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1525 						    struct nlattr *tb[],
1526 						    struct net_device *dev,
1527 						    u16 vid,
1528 						    struct netlink_ext_ack *extack);
1529 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1530 						struct netlink_callback *cb,
1531 						struct net_device *dev,
1532 						struct net_device *filter_dev,
1533 						int *idx);
1534 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1535 					       struct nlattr *tb[],
1536 					       struct net_device *dev,
1537 					       const unsigned char *addr,
1538 					       u16 vid, u32 portid, u32 seq,
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1541 						      struct nlmsghdr *nlh,
1542 						      u16 flags,
1543 						      struct netlink_ext_ack *extack);
1544 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1545 						      u32 pid, u32 seq,
1546 						      struct net_device *dev,
1547 						      u32 filter_mask,
1548 						      int nlflags);
1549 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1550 						      struct nlmsghdr *nlh,
1551 						      u16 flags);
1552 	int			(*ndo_change_carrier)(struct net_device *dev,
1553 						      bool new_carrier);
1554 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1555 							struct netdev_phys_item_id *ppid);
1556 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1557 							  struct netdev_phys_item_id *ppid);
1558 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1559 							  char *name, size_t len);
1560 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1561 							struct net_device *dev);
1562 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1563 							void *priv);
1564 
1565 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1566 						      int queue_index,
1567 						      u32 maxrate);
1568 	int			(*ndo_get_iflink)(const struct net_device *dev);
1569 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1570 						       struct sk_buff *skb);
1571 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1572 						       int needed_headroom);
1573 	int			(*ndo_bpf)(struct net_device *dev,
1574 					   struct netdev_bpf *bpf);
1575 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1576 						struct xdp_frame **xdp,
1577 						u32 flags);
1578 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1579 							  struct xdp_buff *xdp);
1580 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1581 						  u32 queue_id, u32 flags);
1582 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1583 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1584 						  struct ip_tunnel_parm *p, int cmd);
1585 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1586 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1587                                                          struct net_device_path *path);
1588 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1589 						  const struct skb_shared_hwtstamps *hwtstamps,
1590 						  bool cycles);
1591 };
1592 
1593 /**
1594  * enum netdev_priv_flags - &struct net_device priv_flags
1595  *
1596  * These are the &struct net_device, they are only set internally
1597  * by drivers and used in the kernel. These flags are invisible to
1598  * userspace; this means that the order of these flags can change
1599  * during any kernel release.
1600  *
1601  * You should have a pretty good reason to be extending these flags.
1602  *
1603  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1604  * @IFF_EBRIDGE: Ethernet bridging device
1605  * @IFF_BONDING: bonding master or slave
1606  * @IFF_ISATAP: ISATAP interface (RFC4214)
1607  * @IFF_WAN_HDLC: WAN HDLC device
1608  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1609  *	release skb->dst
1610  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1611  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1612  * @IFF_MACVLAN_PORT: device used as macvlan port
1613  * @IFF_BRIDGE_PORT: device used as bridge port
1614  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1615  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1616  * @IFF_UNICAST_FLT: Supports unicast filtering
1617  * @IFF_TEAM_PORT: device used as team port
1618  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1619  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1620  *	change when it's running
1621  * @IFF_MACVLAN: Macvlan device
1622  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1623  *	underlying stacked devices
1624  * @IFF_L3MDEV_MASTER: device is an L3 master device
1625  * @IFF_NO_QUEUE: device can run without qdisc attached
1626  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1627  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1628  * @IFF_TEAM: device is a team device
1629  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1630  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1631  *	entity (i.e. the master device for bridged veth)
1632  * @IFF_MACSEC: device is a MACsec device
1633  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1634  * @IFF_FAILOVER: device is a failover master device
1635  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1636  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1637  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1638  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1639  *	skb_headlen(skb) == 0 (data starts from frag0)
1640  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1641  */
1642 enum netdev_priv_flags {
1643 	IFF_802_1Q_VLAN			= 1<<0,
1644 	IFF_EBRIDGE			= 1<<1,
1645 	IFF_BONDING			= 1<<2,
1646 	IFF_ISATAP			= 1<<3,
1647 	IFF_WAN_HDLC			= 1<<4,
1648 	IFF_XMIT_DST_RELEASE		= 1<<5,
1649 	IFF_DONT_BRIDGE			= 1<<6,
1650 	IFF_DISABLE_NETPOLL		= 1<<7,
1651 	IFF_MACVLAN_PORT		= 1<<8,
1652 	IFF_BRIDGE_PORT			= 1<<9,
1653 	IFF_OVS_DATAPATH		= 1<<10,
1654 	IFF_TX_SKB_SHARING		= 1<<11,
1655 	IFF_UNICAST_FLT			= 1<<12,
1656 	IFF_TEAM_PORT			= 1<<13,
1657 	IFF_SUPP_NOFCS			= 1<<14,
1658 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1659 	IFF_MACVLAN			= 1<<16,
1660 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1661 	IFF_L3MDEV_MASTER		= 1<<18,
1662 	IFF_NO_QUEUE			= 1<<19,
1663 	IFF_OPENVSWITCH			= 1<<20,
1664 	IFF_L3MDEV_SLAVE		= 1<<21,
1665 	IFF_TEAM			= 1<<22,
1666 	IFF_RXFH_CONFIGURED		= 1<<23,
1667 	IFF_PHONY_HEADROOM		= 1<<24,
1668 	IFF_MACSEC			= 1<<25,
1669 	IFF_NO_RX_HANDLER		= 1<<26,
1670 	IFF_FAILOVER			= 1<<27,
1671 	IFF_FAILOVER_SLAVE		= 1<<28,
1672 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1673 	IFF_LIVE_RENAME_OK		= 1<<30,
1674 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1675 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1676 };
1677 
1678 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1679 #define IFF_EBRIDGE			IFF_EBRIDGE
1680 #define IFF_BONDING			IFF_BONDING
1681 #define IFF_ISATAP			IFF_ISATAP
1682 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1683 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1684 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1685 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1686 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1687 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1688 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1689 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1690 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1691 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1692 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1693 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1694 #define IFF_MACVLAN			IFF_MACVLAN
1695 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1696 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1697 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1698 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1699 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1700 #define IFF_TEAM			IFF_TEAM
1701 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1702 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1703 #define IFF_MACSEC			IFF_MACSEC
1704 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1705 #define IFF_FAILOVER			IFF_FAILOVER
1706 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1707 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1708 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1709 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1710 
1711 /* Specifies the type of the struct net_device::ml_priv pointer */
1712 enum netdev_ml_priv_type {
1713 	ML_PRIV_NONE,
1714 	ML_PRIV_CAN,
1715 };
1716 
1717 /**
1718  *	struct net_device - The DEVICE structure.
1719  *
1720  *	Actually, this whole structure is a big mistake.  It mixes I/O
1721  *	data with strictly "high-level" data, and it has to know about
1722  *	almost every data structure used in the INET module.
1723  *
1724  *	@name:	This is the first field of the "visible" part of this structure
1725  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1726  *		of the interface.
1727  *
1728  *	@name_node:	Name hashlist node
1729  *	@ifalias:	SNMP alias
1730  *	@mem_end:	Shared memory end
1731  *	@mem_start:	Shared memory start
1732  *	@base_addr:	Device I/O address
1733  *	@irq:		Device IRQ number
1734  *
1735  *	@state:		Generic network queuing layer state, see netdev_state_t
1736  *	@dev_list:	The global list of network devices
1737  *	@napi_list:	List entry used for polling NAPI devices
1738  *	@unreg_list:	List entry  when we are unregistering the
1739  *			device; see the function unregister_netdev
1740  *	@close_list:	List entry used when we are closing the device
1741  *	@ptype_all:     Device-specific packet handlers for all protocols
1742  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1743  *
1744  *	@adj_list:	Directly linked devices, like slaves for bonding
1745  *	@features:	Currently active device features
1746  *	@hw_features:	User-changeable features
1747  *
1748  *	@wanted_features:	User-requested features
1749  *	@vlan_features:		Mask of features inheritable by VLAN devices
1750  *
1751  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1752  *				This field indicates what encapsulation
1753  *				offloads the hardware is capable of doing,
1754  *				and drivers will need to set them appropriately.
1755  *
1756  *	@mpls_features:	Mask of features inheritable by MPLS
1757  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1758  *
1759  *	@ifindex:	interface index
1760  *	@group:		The group the device belongs to
1761  *
1762  *	@stats:		Statistics struct, which was left as a legacy, use
1763  *			rtnl_link_stats64 instead
1764  *
1765  *	@core_stats:	core networking counters,
1766  *			do not use this in drivers
1767  *	@carrier_up_count:	Number of times the carrier has been up
1768  *	@carrier_down_count:	Number of times the carrier has been down
1769  *
1770  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1771  *				instead of ioctl,
1772  *				see <net/iw_handler.h> for details.
1773  *	@wireless_data:	Instance data managed by the core of wireless extensions
1774  *
1775  *	@netdev_ops:	Includes several pointers to callbacks,
1776  *			if one wants to override the ndo_*() functions
1777  *	@ethtool_ops:	Management operations
1778  *	@l3mdev_ops:	Layer 3 master device operations
1779  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1780  *			discovery handling. Necessary for e.g. 6LoWPAN.
1781  *	@xfrmdev_ops:	Transformation offload operations
1782  *	@tlsdev_ops:	Transport Layer Security offload operations
1783  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1784  *			of Layer 2 headers.
1785  *
1786  *	@flags:		Interface flags (a la BSD)
1787  *	@priv_flags:	Like 'flags' but invisible to userspace,
1788  *			see if.h for the definitions
1789  *	@gflags:	Global flags ( kept as legacy )
1790  *	@padded:	How much padding added by alloc_netdev()
1791  *	@operstate:	RFC2863 operstate
1792  *	@link_mode:	Mapping policy to operstate
1793  *	@if_port:	Selectable AUI, TP, ...
1794  *	@dma:		DMA channel
1795  *	@mtu:		Interface MTU value
1796  *	@min_mtu:	Interface Minimum MTU value
1797  *	@max_mtu:	Interface Maximum MTU value
1798  *	@type:		Interface hardware type
1799  *	@hard_header_len: Maximum hardware header length.
1800  *	@min_header_len:  Minimum hardware header length
1801  *
1802  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1803  *			  cases can this be guaranteed
1804  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1805  *			  cases can this be guaranteed. Some cases also use
1806  *			  LL_MAX_HEADER instead to allocate the skb
1807  *
1808  *	interface address info:
1809  *
1810  * 	@perm_addr:		Permanent hw address
1811  * 	@addr_assign_type:	Hw address assignment type
1812  * 	@addr_len:		Hardware address length
1813  *	@upper_level:		Maximum depth level of upper devices.
1814  *	@lower_level:		Maximum depth level of lower devices.
1815  *	@neigh_priv_len:	Used in neigh_alloc()
1816  * 	@dev_id:		Used to differentiate devices that share
1817  * 				the same link layer address
1818  * 	@dev_port:		Used to differentiate devices that share
1819  * 				the same function
1820  *	@addr_list_lock:	XXX: need comments on this one
1821  *	@name_assign_type:	network interface name assignment type
1822  *	@uc_promisc:		Counter that indicates promiscuous mode
1823  *				has been enabled due to the need to listen to
1824  *				additional unicast addresses in a device that
1825  *				does not implement ndo_set_rx_mode()
1826  *	@uc:			unicast mac addresses
1827  *	@mc:			multicast mac addresses
1828  *	@dev_addrs:		list of device hw addresses
1829  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1830  *	@promiscuity:		Number of times the NIC is told to work in
1831  *				promiscuous mode; if it becomes 0 the NIC will
1832  *				exit promiscuous mode
1833  *	@allmulti:		Counter, enables or disables allmulticast mode
1834  *
1835  *	@vlan_info:	VLAN info
1836  *	@dsa_ptr:	dsa specific data
1837  *	@tipc_ptr:	TIPC specific data
1838  *	@atalk_ptr:	AppleTalk link
1839  *	@ip_ptr:	IPv4 specific data
1840  *	@dn_ptr:	DECnet specific data
1841  *	@ip6_ptr:	IPv6 specific data
1842  *	@ax25_ptr:	AX.25 specific data
1843  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1844  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1845  *			 device struct
1846  *	@mpls_ptr:	mpls_dev struct pointer
1847  *	@mctp_ptr:	MCTP specific data
1848  *
1849  *	@dev_addr:	Hw address (before bcast,
1850  *			because most packets are unicast)
1851  *
1852  *	@_rx:			Array of RX queues
1853  *	@num_rx_queues:		Number of RX queues
1854  *				allocated at register_netdev() time
1855  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1856  *	@xdp_prog:		XDP sockets filter program pointer
1857  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1858  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1859  *				allow to avoid NIC hard IRQ, on busy queues.
1860  *
1861  *	@rx_handler:		handler for received packets
1862  *	@rx_handler_data: 	XXX: need comments on this one
1863  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1864  *				ingress processing
1865  *	@ingress_queue:		XXX: need comments on this one
1866  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1867  *	@broadcast:		hw bcast address
1868  *
1869  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1870  *			indexed by RX queue number. Assigned by driver.
1871  *			This must only be set if the ndo_rx_flow_steer
1872  *			operation is defined
1873  *	@index_hlist:		Device index hash chain
1874  *
1875  *	@_tx:			Array of TX queues
1876  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1877  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1878  *	@qdisc:			Root qdisc from userspace point of view
1879  *	@tx_queue_len:		Max frames per queue allowed
1880  *	@tx_global_lock: 	XXX: need comments on this one
1881  *	@xdp_bulkq:		XDP device bulk queue
1882  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1883  *
1884  *	@xps_maps:	XXX: need comments on this one
1885  *	@miniq_egress:		clsact qdisc specific data for
1886  *				egress processing
1887  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1888  *	@qdisc_hash:		qdisc hash table
1889  *	@watchdog_timeo:	Represents the timeout that is used by
1890  *				the watchdog (see dev_watchdog())
1891  *	@watchdog_timer:	List of timers
1892  *
1893  *	@proto_down_reason:	reason a netdev interface is held down
1894  *	@pcpu_refcnt:		Number of references to this device
1895  *	@dev_refcnt:		Number of references to this device
1896  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1897  *	@todo_list:		Delayed register/unregister
1898  *	@link_watch_list:	XXX: need comments on this one
1899  *
1900  *	@reg_state:		Register/unregister state machine
1901  *	@dismantle:		Device is going to be freed
1902  *	@rtnl_link_state:	This enum represents the phases of creating
1903  *				a new link
1904  *
1905  *	@needs_free_netdev:	Should unregister perform free_netdev?
1906  *	@priv_destructor:	Called from unregister
1907  *	@npinfo:		XXX: need comments on this one
1908  * 	@nd_net:		Network namespace this network device is inside
1909  *
1910  * 	@ml_priv:	Mid-layer private
1911  *	@ml_priv_type:  Mid-layer private type
1912  * 	@lstats:	Loopback statistics
1913  * 	@tstats:	Tunnel statistics
1914  * 	@dstats:	Dummy statistics
1915  * 	@vstats:	Virtual ethernet statistics
1916  *
1917  *	@garp_port:	GARP
1918  *	@mrp_port:	MRP
1919  *
1920  *	@dm_private:	Drop monitor private
1921  *
1922  *	@dev:		Class/net/name entry
1923  *	@sysfs_groups:	Space for optional device, statistics and wireless
1924  *			sysfs groups
1925  *
1926  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1927  *	@rtnl_link_ops:	Rtnl_link_ops
1928  *
1929  *	@gso_max_size:	Maximum size of generic segmentation offload
1930  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1931  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1932  *			NIC for GSO
1933  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1934  *
1935  *	@dcbnl_ops:	Data Center Bridging netlink ops
1936  *	@num_tc:	Number of traffic classes in the net device
1937  *	@tc_to_txq:	XXX: need comments on this one
1938  *	@prio_tc_map:	XXX: need comments on this one
1939  *
1940  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1941  *
1942  *	@priomap:	XXX: need comments on this one
1943  *	@phydev:	Physical device may attach itself
1944  *			for hardware timestamping
1945  *	@sfp_bus:	attached &struct sfp_bus structure.
1946  *
1947  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1948  *
1949  *	@proto_down:	protocol port state information can be sent to the
1950  *			switch driver and used to set the phys state of the
1951  *			switch port.
1952  *
1953  *	@wol_enabled:	Wake-on-LAN is enabled
1954  *
1955  *	@threaded:	napi threaded mode is enabled
1956  *
1957  *	@net_notifier_list:	List of per-net netdev notifier block
1958  *				that follow this device when it is moved
1959  *				to another network namespace.
1960  *
1961  *	@macsec_ops:    MACsec offloading ops
1962  *
1963  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1964  *				offload capabilities of the device
1965  *	@udp_tunnel_nic:	UDP tunnel offload state
1966  *	@xdp_state:		stores info on attached XDP BPF programs
1967  *
1968  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1969  *			dev->addr_list_lock.
1970  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1971  *			keep a list of interfaces to be deleted.
1972  *	@gro_max_size:	Maximum size of aggregated packet in generic
1973  *			receive offload (GRO)
1974  *
1975  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1976  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1977  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1978  *	@dev_registered_tracker:	tracker for reference held while
1979  *					registered
1980  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1981  *
1982  *	FIXME: cleanup struct net_device such that network protocol info
1983  *	moves out.
1984  */
1985 
1986 struct net_device {
1987 	char			name[IFNAMSIZ];
1988 	struct netdev_name_node	*name_node;
1989 	struct dev_ifalias	__rcu *ifalias;
1990 	/*
1991 	 *	I/O specific fields
1992 	 *	FIXME: Merge these and struct ifmap into one
1993 	 */
1994 	unsigned long		mem_end;
1995 	unsigned long		mem_start;
1996 	unsigned long		base_addr;
1997 
1998 	/*
1999 	 *	Some hardware also needs these fields (state,dev_list,
2000 	 *	napi_list,unreg_list,close_list) but they are not
2001 	 *	part of the usual set specified in Space.c.
2002 	 */
2003 
2004 	unsigned long		state;
2005 
2006 	struct list_head	dev_list;
2007 	struct list_head	napi_list;
2008 	struct list_head	unreg_list;
2009 	struct list_head	close_list;
2010 	struct list_head	ptype_all;
2011 	struct list_head	ptype_specific;
2012 
2013 	struct {
2014 		struct list_head upper;
2015 		struct list_head lower;
2016 	} adj_list;
2017 
2018 	/* Read-mostly cache-line for fast-path access */
2019 	unsigned int		flags;
2020 	unsigned long long	priv_flags;
2021 	const struct net_device_ops *netdev_ops;
2022 	int			ifindex;
2023 	unsigned short		gflags;
2024 	unsigned short		hard_header_len;
2025 
2026 	/* Note : dev->mtu is often read without holding a lock.
2027 	 * Writers usually hold RTNL.
2028 	 * It is recommended to use READ_ONCE() to annotate the reads,
2029 	 * and to use WRITE_ONCE() to annotate the writes.
2030 	 */
2031 	unsigned int		mtu;
2032 	unsigned short		needed_headroom;
2033 	unsigned short		needed_tailroom;
2034 
2035 	netdev_features_t	features;
2036 	netdev_features_t	hw_features;
2037 	netdev_features_t	wanted_features;
2038 	netdev_features_t	vlan_features;
2039 	netdev_features_t	hw_enc_features;
2040 	netdev_features_t	mpls_features;
2041 	netdev_features_t	gso_partial_features;
2042 
2043 	unsigned int		min_mtu;
2044 	unsigned int		max_mtu;
2045 	unsigned short		type;
2046 	unsigned char		min_header_len;
2047 	unsigned char		name_assign_type;
2048 
2049 	int			group;
2050 
2051 	struct net_device_stats	stats; /* not used by modern drivers */
2052 
2053 	struct net_device_core_stats __percpu *core_stats;
2054 
2055 	/* Stats to monitor link on/off, flapping */
2056 	atomic_t		carrier_up_count;
2057 	atomic_t		carrier_down_count;
2058 
2059 #ifdef CONFIG_WIRELESS_EXT
2060 	const struct iw_handler_def *wireless_handlers;
2061 	struct iw_public_data	*wireless_data;
2062 #endif
2063 	const struct ethtool_ops *ethtool_ops;
2064 #ifdef CONFIG_NET_L3_MASTER_DEV
2065 	const struct l3mdev_ops	*l3mdev_ops;
2066 #endif
2067 #if IS_ENABLED(CONFIG_IPV6)
2068 	const struct ndisc_ops *ndisc_ops;
2069 #endif
2070 
2071 #ifdef CONFIG_XFRM_OFFLOAD
2072 	const struct xfrmdev_ops *xfrmdev_ops;
2073 #endif
2074 
2075 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2076 	const struct tlsdev_ops *tlsdev_ops;
2077 #endif
2078 
2079 	const struct header_ops *header_ops;
2080 
2081 	unsigned char		operstate;
2082 	unsigned char		link_mode;
2083 
2084 	unsigned char		if_port;
2085 	unsigned char		dma;
2086 
2087 	/* Interface address info. */
2088 	unsigned char		perm_addr[MAX_ADDR_LEN];
2089 	unsigned char		addr_assign_type;
2090 	unsigned char		addr_len;
2091 	unsigned char		upper_level;
2092 	unsigned char		lower_level;
2093 
2094 	unsigned short		neigh_priv_len;
2095 	unsigned short          dev_id;
2096 	unsigned short          dev_port;
2097 	unsigned short		padded;
2098 
2099 	spinlock_t		addr_list_lock;
2100 	int			irq;
2101 
2102 	struct netdev_hw_addr_list	uc;
2103 	struct netdev_hw_addr_list	mc;
2104 	struct netdev_hw_addr_list	dev_addrs;
2105 
2106 #ifdef CONFIG_SYSFS
2107 	struct kset		*queues_kset;
2108 #endif
2109 #ifdef CONFIG_LOCKDEP
2110 	struct list_head	unlink_list;
2111 #endif
2112 	unsigned int		promiscuity;
2113 	unsigned int		allmulti;
2114 	bool			uc_promisc;
2115 #ifdef CONFIG_LOCKDEP
2116 	unsigned char		nested_level;
2117 #endif
2118 
2119 
2120 	/* Protocol-specific pointers */
2121 
2122 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2123 	struct vlan_info __rcu	*vlan_info;
2124 #endif
2125 #if IS_ENABLED(CONFIG_NET_DSA)
2126 	struct dsa_port		*dsa_ptr;
2127 #endif
2128 #if IS_ENABLED(CONFIG_TIPC)
2129 	struct tipc_bearer __rcu *tipc_ptr;
2130 #endif
2131 #if IS_ENABLED(CONFIG_ATALK)
2132 	void 			*atalk_ptr;
2133 #endif
2134 	struct in_device __rcu	*ip_ptr;
2135 #if IS_ENABLED(CONFIG_DECNET)
2136 	struct dn_dev __rcu     *dn_ptr;
2137 #endif
2138 	struct inet6_dev __rcu	*ip6_ptr;
2139 #if IS_ENABLED(CONFIG_AX25)
2140 	void			*ax25_ptr;
2141 #endif
2142 	struct wireless_dev	*ieee80211_ptr;
2143 	struct wpan_dev		*ieee802154_ptr;
2144 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2145 	struct mpls_dev __rcu	*mpls_ptr;
2146 #endif
2147 #if IS_ENABLED(CONFIG_MCTP)
2148 	struct mctp_dev __rcu	*mctp_ptr;
2149 #endif
2150 
2151 /*
2152  * Cache lines mostly used on receive path (including eth_type_trans())
2153  */
2154 	/* Interface address info used in eth_type_trans() */
2155 	const unsigned char	*dev_addr;
2156 
2157 	struct netdev_rx_queue	*_rx;
2158 	unsigned int		num_rx_queues;
2159 	unsigned int		real_num_rx_queues;
2160 
2161 	struct bpf_prog __rcu	*xdp_prog;
2162 	unsigned long		gro_flush_timeout;
2163 	int			napi_defer_hard_irqs;
2164 #define GRO_MAX_SIZE		65536
2165 	unsigned int		gro_max_size;
2166 	rx_handler_func_t __rcu	*rx_handler;
2167 	void __rcu		*rx_handler_data;
2168 
2169 #ifdef CONFIG_NET_CLS_ACT
2170 	struct mini_Qdisc __rcu	*miniq_ingress;
2171 #endif
2172 	struct netdev_queue __rcu *ingress_queue;
2173 #ifdef CONFIG_NETFILTER_INGRESS
2174 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2175 #endif
2176 
2177 	unsigned char		broadcast[MAX_ADDR_LEN];
2178 #ifdef CONFIG_RFS_ACCEL
2179 	struct cpu_rmap		*rx_cpu_rmap;
2180 #endif
2181 	struct hlist_node	index_hlist;
2182 
2183 /*
2184  * Cache lines mostly used on transmit path
2185  */
2186 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2187 	unsigned int		num_tx_queues;
2188 	unsigned int		real_num_tx_queues;
2189 	struct Qdisc __rcu	*qdisc;
2190 	unsigned int		tx_queue_len;
2191 	spinlock_t		tx_global_lock;
2192 
2193 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2194 
2195 #ifdef CONFIG_XPS
2196 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2197 #endif
2198 #ifdef CONFIG_NET_CLS_ACT
2199 	struct mini_Qdisc __rcu	*miniq_egress;
2200 #endif
2201 #ifdef CONFIG_NETFILTER_EGRESS
2202 	struct nf_hook_entries __rcu *nf_hooks_egress;
2203 #endif
2204 
2205 #ifdef CONFIG_NET_SCHED
2206 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2207 #endif
2208 	/* These may be needed for future network-power-down code. */
2209 	struct timer_list	watchdog_timer;
2210 	int			watchdog_timeo;
2211 
2212 	u32                     proto_down_reason;
2213 
2214 	struct list_head	todo_list;
2215 
2216 #ifdef CONFIG_PCPU_DEV_REFCNT
2217 	int __percpu		*pcpu_refcnt;
2218 #else
2219 	refcount_t		dev_refcnt;
2220 #endif
2221 	struct ref_tracker_dir	refcnt_tracker;
2222 
2223 	struct list_head	link_watch_list;
2224 
2225 	enum { NETREG_UNINITIALIZED=0,
2226 	       NETREG_REGISTERED,	/* completed register_netdevice */
2227 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2228 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2229 	       NETREG_RELEASED,		/* called free_netdev */
2230 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2231 	} reg_state:8;
2232 
2233 	bool dismantle;
2234 
2235 	enum {
2236 		RTNL_LINK_INITIALIZED,
2237 		RTNL_LINK_INITIALIZING,
2238 	} rtnl_link_state:16;
2239 
2240 	bool needs_free_netdev;
2241 	void (*priv_destructor)(struct net_device *dev);
2242 
2243 #ifdef CONFIG_NETPOLL
2244 	struct netpoll_info __rcu	*npinfo;
2245 #endif
2246 
2247 	possible_net_t			nd_net;
2248 
2249 	/* mid-layer private */
2250 	void				*ml_priv;
2251 	enum netdev_ml_priv_type	ml_priv_type;
2252 
2253 	union {
2254 		struct pcpu_lstats __percpu		*lstats;
2255 		struct pcpu_sw_netstats __percpu	*tstats;
2256 		struct pcpu_dstats __percpu		*dstats;
2257 	};
2258 
2259 #if IS_ENABLED(CONFIG_GARP)
2260 	struct garp_port __rcu	*garp_port;
2261 #endif
2262 #if IS_ENABLED(CONFIG_MRP)
2263 	struct mrp_port __rcu	*mrp_port;
2264 #endif
2265 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2266 	struct dm_hw_stat_delta __rcu *dm_private;
2267 #endif
2268 	struct device		dev;
2269 	const struct attribute_group *sysfs_groups[4];
2270 	const struct attribute_group *sysfs_rx_queue_group;
2271 
2272 	const struct rtnl_link_ops *rtnl_link_ops;
2273 
2274 	/* for setting kernel sock attribute on TCP connection setup */
2275 #define GSO_MAX_SIZE		65536
2276 	unsigned int		gso_max_size;
2277 #define TSO_LEGACY_MAX_SIZE	65536
2278 #define TSO_MAX_SIZE		UINT_MAX
2279 	unsigned int		tso_max_size;
2280 #define GSO_MAX_SEGS		65535
2281 	u16			gso_max_segs;
2282 #define TSO_MAX_SEGS		U16_MAX
2283 	u16			tso_max_segs;
2284 
2285 #ifdef CONFIG_DCB
2286 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2287 #endif
2288 	s16			num_tc;
2289 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2290 	u8			prio_tc_map[TC_BITMASK + 1];
2291 
2292 #if IS_ENABLED(CONFIG_FCOE)
2293 	unsigned int		fcoe_ddp_xid;
2294 #endif
2295 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2296 	struct netprio_map __rcu *priomap;
2297 #endif
2298 	struct phy_device	*phydev;
2299 	struct sfp_bus		*sfp_bus;
2300 	struct lock_class_key	*qdisc_tx_busylock;
2301 	bool			proto_down;
2302 	unsigned		wol_enabled:1;
2303 	unsigned		threaded:1;
2304 
2305 	struct list_head	net_notifier_list;
2306 
2307 #if IS_ENABLED(CONFIG_MACSEC)
2308 	/* MACsec management functions */
2309 	const struct macsec_ops *macsec_ops;
2310 #endif
2311 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2312 	struct udp_tunnel_nic	*udp_tunnel_nic;
2313 
2314 	/* protected by rtnl_lock */
2315 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2316 
2317 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2318 	netdevice_tracker	linkwatch_dev_tracker;
2319 	netdevice_tracker	watchdog_dev_tracker;
2320 	netdevice_tracker	dev_registered_tracker;
2321 	struct rtnl_hw_stats64	*offload_xstats_l3;
2322 };
2323 #define to_net_dev(d) container_of(d, struct net_device, dev)
2324 
2325 static inline bool netif_elide_gro(const struct net_device *dev)
2326 {
2327 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2328 		return true;
2329 	return false;
2330 }
2331 
2332 #define	NETDEV_ALIGN		32
2333 
2334 static inline
2335 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2336 {
2337 	return dev->prio_tc_map[prio & TC_BITMASK];
2338 }
2339 
2340 static inline
2341 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2342 {
2343 	if (tc >= dev->num_tc)
2344 		return -EINVAL;
2345 
2346 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2347 	return 0;
2348 }
2349 
2350 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2351 void netdev_reset_tc(struct net_device *dev);
2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2353 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2354 
2355 static inline
2356 int netdev_get_num_tc(struct net_device *dev)
2357 {
2358 	return dev->num_tc;
2359 }
2360 
2361 static inline void net_prefetch(void *p)
2362 {
2363 	prefetch(p);
2364 #if L1_CACHE_BYTES < 128
2365 	prefetch((u8 *)p + L1_CACHE_BYTES);
2366 #endif
2367 }
2368 
2369 static inline void net_prefetchw(void *p)
2370 {
2371 	prefetchw(p);
2372 #if L1_CACHE_BYTES < 128
2373 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2374 #endif
2375 }
2376 
2377 void netdev_unbind_sb_channel(struct net_device *dev,
2378 			      struct net_device *sb_dev);
2379 int netdev_bind_sb_channel_queue(struct net_device *dev,
2380 				 struct net_device *sb_dev,
2381 				 u8 tc, u16 count, u16 offset);
2382 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2383 static inline int netdev_get_sb_channel(struct net_device *dev)
2384 {
2385 	return max_t(int, -dev->num_tc, 0);
2386 }
2387 
2388 static inline
2389 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2390 					 unsigned int index)
2391 {
2392 	return &dev->_tx[index];
2393 }
2394 
2395 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2396 						    const struct sk_buff *skb)
2397 {
2398 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2399 }
2400 
2401 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2402 					    void (*f)(struct net_device *,
2403 						      struct netdev_queue *,
2404 						      void *),
2405 					    void *arg)
2406 {
2407 	unsigned int i;
2408 
2409 	for (i = 0; i < dev->num_tx_queues; i++)
2410 		f(dev, &dev->_tx[i], arg);
2411 }
2412 
2413 #define netdev_lockdep_set_classes(dev)				\
2414 {								\
2415 	static struct lock_class_key qdisc_tx_busylock_key;	\
2416 	static struct lock_class_key qdisc_xmit_lock_key;	\
2417 	static struct lock_class_key dev_addr_list_lock_key;	\
2418 	unsigned int i;						\
2419 								\
2420 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2421 	lockdep_set_class(&(dev)->addr_list_lock,		\
2422 			  &dev_addr_list_lock_key);		\
2423 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2424 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2425 				  &qdisc_xmit_lock_key);	\
2426 }
2427 
2428 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2429 		     struct net_device *sb_dev);
2430 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2431 					 struct sk_buff *skb,
2432 					 struct net_device *sb_dev);
2433 
2434 /* returns the headroom that the master device needs to take in account
2435  * when forwarding to this dev
2436  */
2437 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2438 {
2439 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2440 }
2441 
2442 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2443 {
2444 	if (dev->netdev_ops->ndo_set_rx_headroom)
2445 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2446 }
2447 
2448 /* set the device rx headroom to the dev's default */
2449 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2450 {
2451 	netdev_set_rx_headroom(dev, -1);
2452 }
2453 
2454 static inline void *netdev_get_ml_priv(struct net_device *dev,
2455 				       enum netdev_ml_priv_type type)
2456 {
2457 	if (dev->ml_priv_type != type)
2458 		return NULL;
2459 
2460 	return dev->ml_priv;
2461 }
2462 
2463 static inline void netdev_set_ml_priv(struct net_device *dev,
2464 				      void *ml_priv,
2465 				      enum netdev_ml_priv_type type)
2466 {
2467 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2468 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2469 	     dev->ml_priv_type, type);
2470 	WARN(!dev->ml_priv_type && dev->ml_priv,
2471 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2472 
2473 	dev->ml_priv = ml_priv;
2474 	dev->ml_priv_type = type;
2475 }
2476 
2477 /*
2478  * Net namespace inlines
2479  */
2480 static inline
2481 struct net *dev_net(const struct net_device *dev)
2482 {
2483 	return read_pnet(&dev->nd_net);
2484 }
2485 
2486 static inline
2487 void dev_net_set(struct net_device *dev, struct net *net)
2488 {
2489 	write_pnet(&dev->nd_net, net);
2490 }
2491 
2492 /**
2493  *	netdev_priv - access network device private data
2494  *	@dev: network device
2495  *
2496  * Get network device private data
2497  */
2498 static inline void *netdev_priv(const struct net_device *dev)
2499 {
2500 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2501 }
2502 
2503 /* Set the sysfs physical device reference for the network logical device
2504  * if set prior to registration will cause a symlink during initialization.
2505  */
2506 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2507 
2508 /* Set the sysfs device type for the network logical device to allow
2509  * fine-grained identification of different network device types. For
2510  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2511  */
2512 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2513 
2514 /* Default NAPI poll() weight
2515  * Device drivers are strongly advised to not use bigger value
2516  */
2517 #define NAPI_POLL_WEIGHT 64
2518 
2519 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2520 			   int (*poll)(struct napi_struct *, int), int weight);
2521 
2522 /**
2523  * netif_napi_add() - initialize a NAPI context
2524  * @dev:  network device
2525  * @napi: NAPI context
2526  * @poll: polling function
2527  * @weight: default weight
2528  *
2529  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2530  * *any* of the other NAPI-related functions.
2531  */
2532 static inline void
2533 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2534 	       int (*poll)(struct napi_struct *, int), int weight)
2535 {
2536 	netif_napi_add_weight(dev, napi, poll, weight);
2537 }
2538 
2539 static inline void
2540 netif_napi_add_tx_weight(struct net_device *dev,
2541 			 struct napi_struct *napi,
2542 			 int (*poll)(struct napi_struct *, int),
2543 			 int weight)
2544 {
2545 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2546 	netif_napi_add_weight(dev, napi, poll, weight);
2547 }
2548 
2549 #define netif_tx_napi_add netif_napi_add_tx_weight
2550 
2551 /**
2552  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2553  * @dev:  network device
2554  * @napi: NAPI context
2555  * @poll: polling function
2556  *
2557  * This variant of netif_napi_add() should be used from drivers using NAPI
2558  * to exclusively poll a TX queue.
2559  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2560  */
2561 static inline void netif_napi_add_tx(struct net_device *dev,
2562 				     struct napi_struct *napi,
2563 				     int (*poll)(struct napi_struct *, int))
2564 {
2565 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2566 }
2567 
2568 /**
2569  *  __netif_napi_del - remove a NAPI context
2570  *  @napi: NAPI context
2571  *
2572  * Warning: caller must observe RCU grace period before freeing memory
2573  * containing @napi. Drivers might want to call this helper to combine
2574  * all the needed RCU grace periods into a single one.
2575  */
2576 void __netif_napi_del(struct napi_struct *napi);
2577 
2578 /**
2579  *  netif_napi_del - remove a NAPI context
2580  *  @napi: NAPI context
2581  *
2582  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2583  */
2584 static inline void netif_napi_del(struct napi_struct *napi)
2585 {
2586 	__netif_napi_del(napi);
2587 	synchronize_net();
2588 }
2589 
2590 struct packet_type {
2591 	__be16			type;	/* This is really htons(ether_type). */
2592 	bool			ignore_outgoing;
2593 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2594 	netdevice_tracker	dev_tracker;
2595 	int			(*func) (struct sk_buff *,
2596 					 struct net_device *,
2597 					 struct packet_type *,
2598 					 struct net_device *);
2599 	void			(*list_func) (struct list_head *,
2600 					      struct packet_type *,
2601 					      struct net_device *);
2602 	bool			(*id_match)(struct packet_type *ptype,
2603 					    struct sock *sk);
2604 	struct net		*af_packet_net;
2605 	void			*af_packet_priv;
2606 	struct list_head	list;
2607 };
2608 
2609 struct offload_callbacks {
2610 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2611 						netdev_features_t features);
2612 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2613 						struct sk_buff *skb);
2614 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2615 };
2616 
2617 struct packet_offload {
2618 	__be16			 type;	/* This is really htons(ether_type). */
2619 	u16			 priority;
2620 	struct offload_callbacks callbacks;
2621 	struct list_head	 list;
2622 };
2623 
2624 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2625 struct pcpu_sw_netstats {
2626 	u64     rx_packets;
2627 	u64     rx_bytes;
2628 	u64     tx_packets;
2629 	u64     tx_bytes;
2630 	struct u64_stats_sync   syncp;
2631 } __aligned(4 * sizeof(u64));
2632 
2633 struct pcpu_lstats {
2634 	u64_stats_t packets;
2635 	u64_stats_t bytes;
2636 	struct u64_stats_sync syncp;
2637 } __aligned(2 * sizeof(u64));
2638 
2639 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2640 
2641 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2642 {
2643 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2644 
2645 	u64_stats_update_begin(&tstats->syncp);
2646 	tstats->rx_bytes += len;
2647 	tstats->rx_packets++;
2648 	u64_stats_update_end(&tstats->syncp);
2649 }
2650 
2651 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2652 					  unsigned int packets,
2653 					  unsigned int len)
2654 {
2655 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2656 
2657 	u64_stats_update_begin(&tstats->syncp);
2658 	tstats->tx_bytes += len;
2659 	tstats->tx_packets += packets;
2660 	u64_stats_update_end(&tstats->syncp);
2661 }
2662 
2663 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2664 {
2665 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2666 
2667 	u64_stats_update_begin(&lstats->syncp);
2668 	u64_stats_add(&lstats->bytes, len);
2669 	u64_stats_inc(&lstats->packets);
2670 	u64_stats_update_end(&lstats->syncp);
2671 }
2672 
2673 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2674 ({									\
2675 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2676 	if (pcpu_stats)	{						\
2677 		int __cpu;						\
2678 		for_each_possible_cpu(__cpu) {				\
2679 			typeof(type) *stat;				\
2680 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2681 			u64_stats_init(&stat->syncp);			\
2682 		}							\
2683 	}								\
2684 	pcpu_stats;							\
2685 })
2686 
2687 #define netdev_alloc_pcpu_stats(type)					\
2688 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2689 
2690 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2691 ({									\
2692 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2693 	if (pcpu_stats) {						\
2694 		int __cpu;						\
2695 		for_each_possible_cpu(__cpu) {				\
2696 			typeof(type) *stat;				\
2697 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2698 			u64_stats_init(&stat->syncp);			\
2699 		}							\
2700 	}								\
2701 	pcpu_stats;							\
2702 })
2703 
2704 enum netdev_lag_tx_type {
2705 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2706 	NETDEV_LAG_TX_TYPE_RANDOM,
2707 	NETDEV_LAG_TX_TYPE_BROADCAST,
2708 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2709 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2710 	NETDEV_LAG_TX_TYPE_HASH,
2711 };
2712 
2713 enum netdev_lag_hash {
2714 	NETDEV_LAG_HASH_NONE,
2715 	NETDEV_LAG_HASH_L2,
2716 	NETDEV_LAG_HASH_L34,
2717 	NETDEV_LAG_HASH_L23,
2718 	NETDEV_LAG_HASH_E23,
2719 	NETDEV_LAG_HASH_E34,
2720 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2721 	NETDEV_LAG_HASH_UNKNOWN,
2722 };
2723 
2724 struct netdev_lag_upper_info {
2725 	enum netdev_lag_tx_type tx_type;
2726 	enum netdev_lag_hash hash_type;
2727 };
2728 
2729 struct netdev_lag_lower_state_info {
2730 	u8 link_up : 1,
2731 	   tx_enabled : 1;
2732 };
2733 
2734 #include <linux/notifier.h>
2735 
2736 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2737  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2738  * adding new types.
2739  */
2740 enum netdev_cmd {
2741 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2742 	NETDEV_DOWN,
2743 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2744 				   detected a hardware crash and restarted
2745 				   - we can use this eg to kick tcp sessions
2746 				   once done */
2747 	NETDEV_CHANGE,		/* Notify device state change */
2748 	NETDEV_REGISTER,
2749 	NETDEV_UNREGISTER,
2750 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2751 	NETDEV_CHANGEADDR,	/* notify after the address change */
2752 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2753 	NETDEV_GOING_DOWN,
2754 	NETDEV_CHANGENAME,
2755 	NETDEV_FEAT_CHANGE,
2756 	NETDEV_BONDING_FAILOVER,
2757 	NETDEV_PRE_UP,
2758 	NETDEV_PRE_TYPE_CHANGE,
2759 	NETDEV_POST_TYPE_CHANGE,
2760 	NETDEV_POST_INIT,
2761 	NETDEV_RELEASE,
2762 	NETDEV_NOTIFY_PEERS,
2763 	NETDEV_JOIN,
2764 	NETDEV_CHANGEUPPER,
2765 	NETDEV_RESEND_IGMP,
2766 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2767 	NETDEV_CHANGEINFODATA,
2768 	NETDEV_BONDING_INFO,
2769 	NETDEV_PRECHANGEUPPER,
2770 	NETDEV_CHANGELOWERSTATE,
2771 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2772 	NETDEV_UDP_TUNNEL_DROP_INFO,
2773 	NETDEV_CHANGE_TX_QUEUE_LEN,
2774 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2775 	NETDEV_CVLAN_FILTER_DROP_INFO,
2776 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2777 	NETDEV_SVLAN_FILTER_DROP_INFO,
2778 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2779 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2780 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2781 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2782 };
2783 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2784 
2785 int register_netdevice_notifier(struct notifier_block *nb);
2786 int unregister_netdevice_notifier(struct notifier_block *nb);
2787 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2788 int unregister_netdevice_notifier_net(struct net *net,
2789 				      struct notifier_block *nb);
2790 int register_netdevice_notifier_dev_net(struct net_device *dev,
2791 					struct notifier_block *nb,
2792 					struct netdev_net_notifier *nn);
2793 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2794 					  struct notifier_block *nb,
2795 					  struct netdev_net_notifier *nn);
2796 
2797 struct netdev_notifier_info {
2798 	struct net_device	*dev;
2799 	struct netlink_ext_ack	*extack;
2800 };
2801 
2802 struct netdev_notifier_info_ext {
2803 	struct netdev_notifier_info info; /* must be first */
2804 	union {
2805 		u32 mtu;
2806 	} ext;
2807 };
2808 
2809 struct netdev_notifier_change_info {
2810 	struct netdev_notifier_info info; /* must be first */
2811 	unsigned int flags_changed;
2812 };
2813 
2814 struct netdev_notifier_changeupper_info {
2815 	struct netdev_notifier_info info; /* must be first */
2816 	struct net_device *upper_dev; /* new upper dev */
2817 	bool master; /* is upper dev master */
2818 	bool linking; /* is the notification for link or unlink */
2819 	void *upper_info; /* upper dev info */
2820 };
2821 
2822 struct netdev_notifier_changelowerstate_info {
2823 	struct netdev_notifier_info info; /* must be first */
2824 	void *lower_state_info; /* is lower dev state */
2825 };
2826 
2827 struct netdev_notifier_pre_changeaddr_info {
2828 	struct netdev_notifier_info info; /* must be first */
2829 	const unsigned char *dev_addr;
2830 };
2831 
2832 enum netdev_offload_xstats_type {
2833 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2834 };
2835 
2836 struct netdev_notifier_offload_xstats_info {
2837 	struct netdev_notifier_info info; /* must be first */
2838 	enum netdev_offload_xstats_type type;
2839 
2840 	union {
2841 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2842 		struct netdev_notifier_offload_xstats_rd *report_delta;
2843 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2844 		struct netdev_notifier_offload_xstats_ru *report_used;
2845 	};
2846 };
2847 
2848 int netdev_offload_xstats_enable(struct net_device *dev,
2849 				 enum netdev_offload_xstats_type type,
2850 				 struct netlink_ext_ack *extack);
2851 int netdev_offload_xstats_disable(struct net_device *dev,
2852 				  enum netdev_offload_xstats_type type);
2853 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2854 				   enum netdev_offload_xstats_type type);
2855 int netdev_offload_xstats_get(struct net_device *dev,
2856 			      enum netdev_offload_xstats_type type,
2857 			      struct rtnl_hw_stats64 *stats, bool *used,
2858 			      struct netlink_ext_ack *extack);
2859 void
2860 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2861 				   const struct rtnl_hw_stats64 *stats);
2862 void
2863 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2864 void netdev_offload_xstats_push_delta(struct net_device *dev,
2865 				      enum netdev_offload_xstats_type type,
2866 				      const struct rtnl_hw_stats64 *stats);
2867 
2868 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2869 					     struct net_device *dev)
2870 {
2871 	info->dev = dev;
2872 	info->extack = NULL;
2873 }
2874 
2875 static inline struct net_device *
2876 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2877 {
2878 	return info->dev;
2879 }
2880 
2881 static inline struct netlink_ext_ack *
2882 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2883 {
2884 	return info->extack;
2885 }
2886 
2887 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2888 
2889 
2890 extern rwlock_t				dev_base_lock;		/* Device list lock */
2891 
2892 #define for_each_netdev(net, d)		\
2893 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2894 #define for_each_netdev_reverse(net, d)	\
2895 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2896 #define for_each_netdev_rcu(net, d)		\
2897 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2898 #define for_each_netdev_safe(net, d, n)	\
2899 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2900 #define for_each_netdev_continue(net, d)		\
2901 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2902 #define for_each_netdev_continue_reverse(net, d)		\
2903 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2904 						     dev_list)
2905 #define for_each_netdev_continue_rcu(net, d)		\
2906 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2907 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2908 		for_each_netdev_rcu(&init_net, slave)	\
2909 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2910 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2911 
2912 static inline struct net_device *next_net_device(struct net_device *dev)
2913 {
2914 	struct list_head *lh;
2915 	struct net *net;
2916 
2917 	net = dev_net(dev);
2918 	lh = dev->dev_list.next;
2919 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2920 }
2921 
2922 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2923 {
2924 	struct list_head *lh;
2925 	struct net *net;
2926 
2927 	net = dev_net(dev);
2928 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2929 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2930 }
2931 
2932 static inline struct net_device *first_net_device(struct net *net)
2933 {
2934 	return list_empty(&net->dev_base_head) ? NULL :
2935 		net_device_entry(net->dev_base_head.next);
2936 }
2937 
2938 static inline struct net_device *first_net_device_rcu(struct net *net)
2939 {
2940 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2941 
2942 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2943 }
2944 
2945 int netdev_boot_setup_check(struct net_device *dev);
2946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2947 				       const char *hwaddr);
2948 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2949 void dev_add_pack(struct packet_type *pt);
2950 void dev_remove_pack(struct packet_type *pt);
2951 void __dev_remove_pack(struct packet_type *pt);
2952 void dev_add_offload(struct packet_offload *po);
2953 void dev_remove_offload(struct packet_offload *po);
2954 
2955 int dev_get_iflink(const struct net_device *dev);
2956 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2957 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2958 			  struct net_device_path_stack *stack);
2959 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2960 				      unsigned short mask);
2961 struct net_device *dev_get_by_name(struct net *net, const char *name);
2962 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2963 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2964 bool netdev_name_in_use(struct net *net, const char *name);
2965 int dev_alloc_name(struct net_device *dev, const char *name);
2966 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2967 void dev_close(struct net_device *dev);
2968 void dev_close_many(struct list_head *head, bool unlink);
2969 void dev_disable_lro(struct net_device *dev);
2970 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2971 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2972 		     struct net_device *sb_dev);
2973 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2974 		       struct net_device *sb_dev);
2975 
2976 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
2977 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2978 
2979 static inline int dev_queue_xmit(struct sk_buff *skb)
2980 {
2981 	return __dev_queue_xmit(skb, NULL);
2982 }
2983 
2984 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
2985 				       struct net_device *sb_dev)
2986 {
2987 	return __dev_queue_xmit(skb, sb_dev);
2988 }
2989 
2990 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2991 {
2992 	int ret;
2993 
2994 	ret = __dev_direct_xmit(skb, queue_id);
2995 	if (!dev_xmit_complete(ret))
2996 		kfree_skb(skb);
2997 	return ret;
2998 }
2999 
3000 int register_netdevice(struct net_device *dev);
3001 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3002 void unregister_netdevice_many(struct list_head *head);
3003 static inline void unregister_netdevice(struct net_device *dev)
3004 {
3005 	unregister_netdevice_queue(dev, NULL);
3006 }
3007 
3008 int netdev_refcnt_read(const struct net_device *dev);
3009 void free_netdev(struct net_device *dev);
3010 void netdev_freemem(struct net_device *dev);
3011 int init_dummy_netdev(struct net_device *dev);
3012 
3013 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3014 					 struct sk_buff *skb,
3015 					 bool all_slaves);
3016 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3017 					    struct sock *sk);
3018 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3019 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3020 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3021 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3022 int dev_restart(struct net_device *dev);
3023 
3024 
3025 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3026 				  unsigned short type,
3027 				  const void *daddr, const void *saddr,
3028 				  unsigned int len)
3029 {
3030 	if (!dev->header_ops || !dev->header_ops->create)
3031 		return 0;
3032 
3033 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3034 }
3035 
3036 static inline int dev_parse_header(const struct sk_buff *skb,
3037 				   unsigned char *haddr)
3038 {
3039 	const struct net_device *dev = skb->dev;
3040 
3041 	if (!dev->header_ops || !dev->header_ops->parse)
3042 		return 0;
3043 	return dev->header_ops->parse(skb, haddr);
3044 }
3045 
3046 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3047 {
3048 	const struct net_device *dev = skb->dev;
3049 
3050 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3051 		return 0;
3052 	return dev->header_ops->parse_protocol(skb);
3053 }
3054 
3055 /* ll_header must have at least hard_header_len allocated */
3056 static inline bool dev_validate_header(const struct net_device *dev,
3057 				       char *ll_header, int len)
3058 {
3059 	if (likely(len >= dev->hard_header_len))
3060 		return true;
3061 	if (len < dev->min_header_len)
3062 		return false;
3063 
3064 	if (capable(CAP_SYS_RAWIO)) {
3065 		memset(ll_header + len, 0, dev->hard_header_len - len);
3066 		return true;
3067 	}
3068 
3069 	if (dev->header_ops && dev->header_ops->validate)
3070 		return dev->header_ops->validate(ll_header, len);
3071 
3072 	return false;
3073 }
3074 
3075 static inline bool dev_has_header(const struct net_device *dev)
3076 {
3077 	return dev->header_ops && dev->header_ops->create;
3078 }
3079 
3080 /*
3081  * Incoming packets are placed on per-CPU queues
3082  */
3083 struct softnet_data {
3084 	struct list_head	poll_list;
3085 	struct sk_buff_head	process_queue;
3086 
3087 	/* stats */
3088 	unsigned int		processed;
3089 	unsigned int		time_squeeze;
3090 	unsigned int		received_rps;
3091 #ifdef CONFIG_RPS
3092 	struct softnet_data	*rps_ipi_list;
3093 #endif
3094 #ifdef CONFIG_NET_FLOW_LIMIT
3095 	struct sd_flow_limit __rcu *flow_limit;
3096 #endif
3097 	struct Qdisc		*output_queue;
3098 	struct Qdisc		**output_queue_tailp;
3099 	struct sk_buff		*completion_queue;
3100 #ifdef CONFIG_XFRM_OFFLOAD
3101 	struct sk_buff_head	xfrm_backlog;
3102 #endif
3103 	/* written and read only by owning cpu: */
3104 	struct {
3105 		u16 recursion;
3106 		u8  more;
3107 #ifdef CONFIG_NET_EGRESS
3108 		u8  skip_txqueue;
3109 #endif
3110 	} xmit;
3111 #ifdef CONFIG_RPS
3112 	/* input_queue_head should be written by cpu owning this struct,
3113 	 * and only read by other cpus. Worth using a cache line.
3114 	 */
3115 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3116 
3117 	/* Elements below can be accessed between CPUs for RPS/RFS */
3118 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3119 	struct softnet_data	*rps_ipi_next;
3120 	unsigned int		cpu;
3121 	unsigned int		input_queue_tail;
3122 #endif
3123 	unsigned int		dropped;
3124 	struct sk_buff_head	input_pkt_queue;
3125 	struct napi_struct	backlog;
3126 
3127 	/* Another possibly contended cache line */
3128 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3129 	int			defer_count;
3130 	struct sk_buff		*defer_list;
3131 	call_single_data_t	defer_csd;
3132 };
3133 
3134 static inline void input_queue_head_incr(struct softnet_data *sd)
3135 {
3136 #ifdef CONFIG_RPS
3137 	sd->input_queue_head++;
3138 #endif
3139 }
3140 
3141 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3142 					      unsigned int *qtail)
3143 {
3144 #ifdef CONFIG_RPS
3145 	*qtail = ++sd->input_queue_tail;
3146 #endif
3147 }
3148 
3149 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3150 
3151 static inline int dev_recursion_level(void)
3152 {
3153 	return this_cpu_read(softnet_data.xmit.recursion);
3154 }
3155 
3156 #define XMIT_RECURSION_LIMIT	8
3157 static inline bool dev_xmit_recursion(void)
3158 {
3159 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3160 			XMIT_RECURSION_LIMIT);
3161 }
3162 
3163 static inline void dev_xmit_recursion_inc(void)
3164 {
3165 	__this_cpu_inc(softnet_data.xmit.recursion);
3166 }
3167 
3168 static inline void dev_xmit_recursion_dec(void)
3169 {
3170 	__this_cpu_dec(softnet_data.xmit.recursion);
3171 }
3172 
3173 void __netif_schedule(struct Qdisc *q);
3174 void netif_schedule_queue(struct netdev_queue *txq);
3175 
3176 static inline void netif_tx_schedule_all(struct net_device *dev)
3177 {
3178 	unsigned int i;
3179 
3180 	for (i = 0; i < dev->num_tx_queues; i++)
3181 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3182 }
3183 
3184 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3185 {
3186 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3187 }
3188 
3189 /**
3190  *	netif_start_queue - allow transmit
3191  *	@dev: network device
3192  *
3193  *	Allow upper layers to call the device hard_start_xmit routine.
3194  */
3195 static inline void netif_start_queue(struct net_device *dev)
3196 {
3197 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3198 }
3199 
3200 static inline void netif_tx_start_all_queues(struct net_device *dev)
3201 {
3202 	unsigned int i;
3203 
3204 	for (i = 0; i < dev->num_tx_queues; i++) {
3205 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3206 		netif_tx_start_queue(txq);
3207 	}
3208 }
3209 
3210 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3211 
3212 /**
3213  *	netif_wake_queue - restart transmit
3214  *	@dev: network device
3215  *
3216  *	Allow upper layers to call the device hard_start_xmit routine.
3217  *	Used for flow control when transmit resources are available.
3218  */
3219 static inline void netif_wake_queue(struct net_device *dev)
3220 {
3221 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3222 }
3223 
3224 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3225 {
3226 	unsigned int i;
3227 
3228 	for (i = 0; i < dev->num_tx_queues; i++) {
3229 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3230 		netif_tx_wake_queue(txq);
3231 	}
3232 }
3233 
3234 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3235 {
3236 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3237 }
3238 
3239 /**
3240  *	netif_stop_queue - stop transmitted packets
3241  *	@dev: network device
3242  *
3243  *	Stop upper layers calling the device hard_start_xmit routine.
3244  *	Used for flow control when transmit resources are unavailable.
3245  */
3246 static inline void netif_stop_queue(struct net_device *dev)
3247 {
3248 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3249 }
3250 
3251 void netif_tx_stop_all_queues(struct net_device *dev);
3252 
3253 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3254 {
3255 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3256 }
3257 
3258 /**
3259  *	netif_queue_stopped - test if transmit queue is flowblocked
3260  *	@dev: network device
3261  *
3262  *	Test if transmit queue on device is currently unable to send.
3263  */
3264 static inline bool netif_queue_stopped(const struct net_device *dev)
3265 {
3266 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3267 }
3268 
3269 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3270 {
3271 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3272 }
3273 
3274 static inline bool
3275 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3276 {
3277 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3278 }
3279 
3280 static inline bool
3281 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3282 {
3283 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3284 }
3285 
3286 /**
3287  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3288  *	@dev_queue: pointer to transmit queue
3289  *	@min_limit: dql minimum limit
3290  *
3291  * Forces xmit_more() to return true until the minimum threshold
3292  * defined by @min_limit is reached (or until the tx queue is
3293  * empty). Warning: to be use with care, misuse will impact the
3294  * latency.
3295  */
3296 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3297 						  unsigned int min_limit)
3298 {
3299 #ifdef CONFIG_BQL
3300 	dev_queue->dql.min_limit = min_limit;
3301 #endif
3302 }
3303 
3304 /**
3305  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3306  *	@dev_queue: pointer to transmit queue
3307  *
3308  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3309  * to give appropriate hint to the CPU.
3310  */
3311 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3312 {
3313 #ifdef CONFIG_BQL
3314 	prefetchw(&dev_queue->dql.num_queued);
3315 #endif
3316 }
3317 
3318 /**
3319  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3320  *	@dev_queue: pointer to transmit queue
3321  *
3322  * BQL enabled drivers might use this helper in their TX completion path,
3323  * to give appropriate hint to the CPU.
3324  */
3325 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3326 {
3327 #ifdef CONFIG_BQL
3328 	prefetchw(&dev_queue->dql.limit);
3329 #endif
3330 }
3331 
3332 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3333 					unsigned int bytes)
3334 {
3335 #ifdef CONFIG_BQL
3336 	dql_queued(&dev_queue->dql, bytes);
3337 
3338 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3339 		return;
3340 
3341 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3342 
3343 	/*
3344 	 * The XOFF flag must be set before checking the dql_avail below,
3345 	 * because in netdev_tx_completed_queue we update the dql_completed
3346 	 * before checking the XOFF flag.
3347 	 */
3348 	smp_mb();
3349 
3350 	/* check again in case another CPU has just made room avail */
3351 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3352 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3353 #endif
3354 }
3355 
3356 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3357  * that they should not test BQL status themselves.
3358  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3359  * skb of a batch.
3360  * Returns true if the doorbell must be used to kick the NIC.
3361  */
3362 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3363 					  unsigned int bytes,
3364 					  bool xmit_more)
3365 {
3366 	if (xmit_more) {
3367 #ifdef CONFIG_BQL
3368 		dql_queued(&dev_queue->dql, bytes);
3369 #endif
3370 		return netif_tx_queue_stopped(dev_queue);
3371 	}
3372 	netdev_tx_sent_queue(dev_queue, bytes);
3373 	return true;
3374 }
3375 
3376 /**
3377  * 	netdev_sent_queue - report the number of bytes queued to hardware
3378  * 	@dev: network device
3379  * 	@bytes: number of bytes queued to the hardware device queue
3380  *
3381  * 	Report the number of bytes queued for sending/completion to the network
3382  * 	device hardware queue. @bytes should be a good approximation and should
3383  * 	exactly match netdev_completed_queue() @bytes
3384  */
3385 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3386 {
3387 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3388 }
3389 
3390 static inline bool __netdev_sent_queue(struct net_device *dev,
3391 				       unsigned int bytes,
3392 				       bool xmit_more)
3393 {
3394 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3395 				      xmit_more);
3396 }
3397 
3398 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3399 					     unsigned int pkts, unsigned int bytes)
3400 {
3401 #ifdef CONFIG_BQL
3402 	if (unlikely(!bytes))
3403 		return;
3404 
3405 	dql_completed(&dev_queue->dql, bytes);
3406 
3407 	/*
3408 	 * Without the memory barrier there is a small possiblity that
3409 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3410 	 * be stopped forever
3411 	 */
3412 	smp_mb();
3413 
3414 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3415 		return;
3416 
3417 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3418 		netif_schedule_queue(dev_queue);
3419 #endif
3420 }
3421 
3422 /**
3423  * 	netdev_completed_queue - report bytes and packets completed by device
3424  * 	@dev: network device
3425  * 	@pkts: actual number of packets sent over the medium
3426  * 	@bytes: actual number of bytes sent over the medium
3427  *
3428  * 	Report the number of bytes and packets transmitted by the network device
3429  * 	hardware queue over the physical medium, @bytes must exactly match the
3430  * 	@bytes amount passed to netdev_sent_queue()
3431  */
3432 static inline void netdev_completed_queue(struct net_device *dev,
3433 					  unsigned int pkts, unsigned int bytes)
3434 {
3435 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3436 }
3437 
3438 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3439 {
3440 #ifdef CONFIG_BQL
3441 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3442 	dql_reset(&q->dql);
3443 #endif
3444 }
3445 
3446 /**
3447  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3448  * 	@dev_queue: network device
3449  *
3450  * 	Reset the bytes and packet count of a network device and clear the
3451  * 	software flow control OFF bit for this network device
3452  */
3453 static inline void netdev_reset_queue(struct net_device *dev_queue)
3454 {
3455 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3456 }
3457 
3458 /**
3459  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3460  * 	@dev: network device
3461  * 	@queue_index: given tx queue index
3462  *
3463  * 	Returns 0 if given tx queue index >= number of device tx queues,
3464  * 	otherwise returns the originally passed tx queue index.
3465  */
3466 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3467 {
3468 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3469 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3470 				     dev->name, queue_index,
3471 				     dev->real_num_tx_queues);
3472 		return 0;
3473 	}
3474 
3475 	return queue_index;
3476 }
3477 
3478 /**
3479  *	netif_running - test if up
3480  *	@dev: network device
3481  *
3482  *	Test if the device has been brought up.
3483  */
3484 static inline bool netif_running(const struct net_device *dev)
3485 {
3486 	return test_bit(__LINK_STATE_START, &dev->state);
3487 }
3488 
3489 /*
3490  * Routines to manage the subqueues on a device.  We only need start,
3491  * stop, and a check if it's stopped.  All other device management is
3492  * done at the overall netdevice level.
3493  * Also test the device if we're multiqueue.
3494  */
3495 
3496 /**
3497  *	netif_start_subqueue - allow sending packets on subqueue
3498  *	@dev: network device
3499  *	@queue_index: sub queue index
3500  *
3501  * Start individual transmit queue of a device with multiple transmit queues.
3502  */
3503 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3504 {
3505 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3506 
3507 	netif_tx_start_queue(txq);
3508 }
3509 
3510 /**
3511  *	netif_stop_subqueue - stop sending packets on subqueue
3512  *	@dev: network device
3513  *	@queue_index: sub queue index
3514  *
3515  * Stop individual transmit queue of a device with multiple transmit queues.
3516  */
3517 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3518 {
3519 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3520 	netif_tx_stop_queue(txq);
3521 }
3522 
3523 /**
3524  *	__netif_subqueue_stopped - test status of subqueue
3525  *	@dev: network device
3526  *	@queue_index: sub queue index
3527  *
3528  * Check individual transmit queue of a device with multiple transmit queues.
3529  */
3530 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3531 					    u16 queue_index)
3532 {
3533 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3534 
3535 	return netif_tx_queue_stopped(txq);
3536 }
3537 
3538 /**
3539  *	netif_subqueue_stopped - test status of subqueue
3540  *	@dev: network device
3541  *	@skb: sub queue buffer pointer
3542  *
3543  * Check individual transmit queue of a device with multiple transmit queues.
3544  */
3545 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3546 					  struct sk_buff *skb)
3547 {
3548 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3549 }
3550 
3551 /**
3552  *	netif_wake_subqueue - allow sending packets on subqueue
3553  *	@dev: network device
3554  *	@queue_index: sub queue index
3555  *
3556  * Resume individual transmit queue of a device with multiple transmit queues.
3557  */
3558 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3559 {
3560 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3561 
3562 	netif_tx_wake_queue(txq);
3563 }
3564 
3565 #ifdef CONFIG_XPS
3566 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3567 			u16 index);
3568 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3569 			  u16 index, enum xps_map_type type);
3570 
3571 /**
3572  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3573  *	@j: CPU/Rx queue index
3574  *	@mask: bitmask of all cpus/rx queues
3575  *	@nr_bits: number of bits in the bitmask
3576  *
3577  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3578  */
3579 static inline bool netif_attr_test_mask(unsigned long j,
3580 					const unsigned long *mask,
3581 					unsigned int nr_bits)
3582 {
3583 	cpu_max_bits_warn(j, nr_bits);
3584 	return test_bit(j, mask);
3585 }
3586 
3587 /**
3588  *	netif_attr_test_online - Test for online CPU/Rx queue
3589  *	@j: CPU/Rx queue index
3590  *	@online_mask: bitmask for CPUs/Rx queues that are online
3591  *	@nr_bits: number of bits in the bitmask
3592  *
3593  * Returns true if a CPU/Rx queue is online.
3594  */
3595 static inline bool netif_attr_test_online(unsigned long j,
3596 					  const unsigned long *online_mask,
3597 					  unsigned int nr_bits)
3598 {
3599 	cpu_max_bits_warn(j, nr_bits);
3600 
3601 	if (online_mask)
3602 		return test_bit(j, online_mask);
3603 
3604 	return (j < nr_bits);
3605 }
3606 
3607 /**
3608  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3609  *	@n: CPU/Rx queue index
3610  *	@srcp: the cpumask/Rx queue mask pointer
3611  *	@nr_bits: number of bits in the bitmask
3612  *
3613  * Returns >= nr_bits if no further CPUs/Rx queues set.
3614  */
3615 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3616 					       unsigned int nr_bits)
3617 {
3618 	/* -1 is a legal arg here. */
3619 	if (n != -1)
3620 		cpu_max_bits_warn(n, nr_bits);
3621 
3622 	if (srcp)
3623 		return find_next_bit(srcp, nr_bits, n + 1);
3624 
3625 	return n + 1;
3626 }
3627 
3628 /**
3629  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3630  *	@n: CPU/Rx queue index
3631  *	@src1p: the first CPUs/Rx queues mask pointer
3632  *	@src2p: the second CPUs/Rx queues mask pointer
3633  *	@nr_bits: number of bits in the bitmask
3634  *
3635  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3636  */
3637 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3638 					  const unsigned long *src2p,
3639 					  unsigned int nr_bits)
3640 {
3641 	/* -1 is a legal arg here. */
3642 	if (n != -1)
3643 		cpu_max_bits_warn(n, nr_bits);
3644 
3645 	if (src1p && src2p)
3646 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3647 	else if (src1p)
3648 		return find_next_bit(src1p, nr_bits, n + 1);
3649 	else if (src2p)
3650 		return find_next_bit(src2p, nr_bits, n + 1);
3651 
3652 	return n + 1;
3653 }
3654 #else
3655 static inline int netif_set_xps_queue(struct net_device *dev,
3656 				      const struct cpumask *mask,
3657 				      u16 index)
3658 {
3659 	return 0;
3660 }
3661 
3662 static inline int __netif_set_xps_queue(struct net_device *dev,
3663 					const unsigned long *mask,
3664 					u16 index, enum xps_map_type type)
3665 {
3666 	return 0;
3667 }
3668 #endif
3669 
3670 /**
3671  *	netif_is_multiqueue - test if device has multiple transmit queues
3672  *	@dev: network device
3673  *
3674  * Check if device has multiple transmit queues
3675  */
3676 static inline bool netif_is_multiqueue(const struct net_device *dev)
3677 {
3678 	return dev->num_tx_queues > 1;
3679 }
3680 
3681 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3682 
3683 #ifdef CONFIG_SYSFS
3684 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3685 #else
3686 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3687 						unsigned int rxqs)
3688 {
3689 	dev->real_num_rx_queues = rxqs;
3690 	return 0;
3691 }
3692 #endif
3693 int netif_set_real_num_queues(struct net_device *dev,
3694 			      unsigned int txq, unsigned int rxq);
3695 
3696 static inline struct netdev_rx_queue *
3697 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3698 {
3699 	return dev->_rx + rxq;
3700 }
3701 
3702 #ifdef CONFIG_SYSFS
3703 static inline unsigned int get_netdev_rx_queue_index(
3704 		struct netdev_rx_queue *queue)
3705 {
3706 	struct net_device *dev = queue->dev;
3707 	int index = queue - dev->_rx;
3708 
3709 	BUG_ON(index >= dev->num_rx_queues);
3710 	return index;
3711 }
3712 #endif
3713 
3714 int netif_get_num_default_rss_queues(void);
3715 
3716 enum skb_free_reason {
3717 	SKB_REASON_CONSUMED,
3718 	SKB_REASON_DROPPED,
3719 };
3720 
3721 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3722 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3723 
3724 /*
3725  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3726  * interrupt context or with hardware interrupts being disabled.
3727  * (in_hardirq() || irqs_disabled())
3728  *
3729  * We provide four helpers that can be used in following contexts :
3730  *
3731  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3732  *  replacing kfree_skb(skb)
3733  *
3734  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3735  *  Typically used in place of consume_skb(skb) in TX completion path
3736  *
3737  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3738  *  replacing kfree_skb(skb)
3739  *
3740  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3741  *  and consumed a packet. Used in place of consume_skb(skb)
3742  */
3743 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3744 {
3745 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3746 }
3747 
3748 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3749 {
3750 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3751 }
3752 
3753 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3754 {
3755 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3756 }
3757 
3758 static inline void dev_consume_skb_any(struct sk_buff *skb)
3759 {
3760 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3761 }
3762 
3763 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3764 			     struct bpf_prog *xdp_prog);
3765 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3766 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3767 int netif_rx(struct sk_buff *skb);
3768 int __netif_rx(struct sk_buff *skb);
3769 
3770 int netif_receive_skb(struct sk_buff *skb);
3771 int netif_receive_skb_core(struct sk_buff *skb);
3772 void netif_receive_skb_list_internal(struct list_head *head);
3773 void netif_receive_skb_list(struct list_head *head);
3774 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3775 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3776 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3777 gro_result_t napi_gro_frags(struct napi_struct *napi);
3778 struct packet_offload *gro_find_receive_by_type(__be16 type);
3779 struct packet_offload *gro_find_complete_by_type(__be16 type);
3780 
3781 static inline void napi_free_frags(struct napi_struct *napi)
3782 {
3783 	kfree_skb(napi->skb);
3784 	napi->skb = NULL;
3785 }
3786 
3787 bool netdev_is_rx_handler_busy(struct net_device *dev);
3788 int netdev_rx_handler_register(struct net_device *dev,
3789 			       rx_handler_func_t *rx_handler,
3790 			       void *rx_handler_data);
3791 void netdev_rx_handler_unregister(struct net_device *dev);
3792 
3793 bool dev_valid_name(const char *name);
3794 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3795 {
3796 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3797 }
3798 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3799 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3800 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3801 		void __user *data, bool *need_copyout);
3802 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3803 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3804 unsigned int dev_get_flags(const struct net_device *);
3805 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3806 		       struct netlink_ext_ack *extack);
3807 int dev_change_flags(struct net_device *dev, unsigned int flags,
3808 		     struct netlink_ext_ack *extack);
3809 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3810 			unsigned int gchanges);
3811 int dev_set_alias(struct net_device *, const char *, size_t);
3812 int dev_get_alias(const struct net_device *, char *, size_t);
3813 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3814 			       const char *pat, int new_ifindex);
3815 static inline
3816 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3817 			     const char *pat)
3818 {
3819 	return __dev_change_net_namespace(dev, net, pat, 0);
3820 }
3821 int __dev_set_mtu(struct net_device *, int);
3822 int dev_set_mtu(struct net_device *, int);
3823 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3824 			      struct netlink_ext_ack *extack);
3825 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3826 			struct netlink_ext_ack *extack);
3827 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3828 			     struct netlink_ext_ack *extack);
3829 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3830 int dev_get_port_parent_id(struct net_device *dev,
3831 			   struct netdev_phys_item_id *ppid, bool recurse);
3832 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3833 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3834 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3835 				    struct netdev_queue *txq, int *ret);
3836 
3837 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3838 u8 dev_xdp_prog_count(struct net_device *dev);
3839 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3840 
3841 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3842 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3843 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3844 bool is_skb_forwardable(const struct net_device *dev,
3845 			const struct sk_buff *skb);
3846 
3847 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3848 						 const struct sk_buff *skb,
3849 						 const bool check_mtu)
3850 {
3851 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3852 	unsigned int len;
3853 
3854 	if (!(dev->flags & IFF_UP))
3855 		return false;
3856 
3857 	if (!check_mtu)
3858 		return true;
3859 
3860 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3861 	if (skb->len <= len)
3862 		return true;
3863 
3864 	/* if TSO is enabled, we don't care about the length as the packet
3865 	 * could be forwarded without being segmented before
3866 	 */
3867 	if (skb_is_gso(skb))
3868 		return true;
3869 
3870 	return false;
3871 }
3872 
3873 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3874 
3875 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3876 {
3877 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3878 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3879 
3880 	if (likely(p))
3881 		return p;
3882 
3883 	return netdev_core_stats_alloc(dev);
3884 }
3885 
3886 #define DEV_CORE_STATS_INC(FIELD)						\
3887 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3888 {										\
3889 	struct net_device_core_stats __percpu *p;				\
3890 										\
3891 	p = dev_core_stats(dev);						\
3892 	if (p)									\
3893 		this_cpu_inc(p->FIELD);						\
3894 }
3895 DEV_CORE_STATS_INC(rx_dropped)
3896 DEV_CORE_STATS_INC(tx_dropped)
3897 DEV_CORE_STATS_INC(rx_nohandler)
3898 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3899 
3900 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3901 					       struct sk_buff *skb,
3902 					       const bool check_mtu)
3903 {
3904 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3905 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3906 		dev_core_stats_rx_dropped_inc(dev);
3907 		kfree_skb(skb);
3908 		return NET_RX_DROP;
3909 	}
3910 
3911 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3912 	skb->priority = 0;
3913 	return 0;
3914 }
3915 
3916 bool dev_nit_active(struct net_device *dev);
3917 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3918 
3919 static inline void __dev_put(struct net_device *dev)
3920 {
3921 	if (dev) {
3922 #ifdef CONFIG_PCPU_DEV_REFCNT
3923 		this_cpu_dec(*dev->pcpu_refcnt);
3924 #else
3925 		refcount_dec(&dev->dev_refcnt);
3926 #endif
3927 	}
3928 }
3929 
3930 static inline void __dev_hold(struct net_device *dev)
3931 {
3932 	if (dev) {
3933 #ifdef CONFIG_PCPU_DEV_REFCNT
3934 		this_cpu_inc(*dev->pcpu_refcnt);
3935 #else
3936 		refcount_inc(&dev->dev_refcnt);
3937 #endif
3938 	}
3939 }
3940 
3941 static inline void __netdev_tracker_alloc(struct net_device *dev,
3942 					  netdevice_tracker *tracker,
3943 					  gfp_t gfp)
3944 {
3945 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3946 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3947 #endif
3948 }
3949 
3950 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3951  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3952  */
3953 static inline void netdev_tracker_alloc(struct net_device *dev,
3954 					netdevice_tracker *tracker, gfp_t gfp)
3955 {
3956 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3957 	refcount_dec(&dev->refcnt_tracker.no_tracker);
3958 	__netdev_tracker_alloc(dev, tracker, gfp);
3959 #endif
3960 }
3961 
3962 static inline void netdev_tracker_free(struct net_device *dev,
3963 				       netdevice_tracker *tracker)
3964 {
3965 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3966 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3967 #endif
3968 }
3969 
3970 static inline void dev_hold_track(struct net_device *dev,
3971 				  netdevice_tracker *tracker, gfp_t gfp)
3972 {
3973 	if (dev) {
3974 		__dev_hold(dev);
3975 		__netdev_tracker_alloc(dev, tracker, gfp);
3976 	}
3977 }
3978 
3979 static inline void dev_put_track(struct net_device *dev,
3980 				 netdevice_tracker *tracker)
3981 {
3982 	if (dev) {
3983 		netdev_tracker_free(dev, tracker);
3984 		__dev_put(dev);
3985 	}
3986 }
3987 
3988 /**
3989  *	dev_hold - get reference to device
3990  *	@dev: network device
3991  *
3992  * Hold reference to device to keep it from being freed.
3993  * Try using dev_hold_track() instead.
3994  */
3995 static inline void dev_hold(struct net_device *dev)
3996 {
3997 	dev_hold_track(dev, NULL, GFP_ATOMIC);
3998 }
3999 
4000 /**
4001  *	dev_put - release reference to device
4002  *	@dev: network device
4003  *
4004  * Release reference to device to allow it to be freed.
4005  * Try using dev_put_track() instead.
4006  */
4007 static inline void dev_put(struct net_device *dev)
4008 {
4009 	dev_put_track(dev, NULL);
4010 }
4011 
4012 static inline void dev_replace_track(struct net_device *odev,
4013 				     struct net_device *ndev,
4014 				     netdevice_tracker *tracker,
4015 				     gfp_t gfp)
4016 {
4017 	if (odev)
4018 		netdev_tracker_free(odev, tracker);
4019 
4020 	__dev_hold(ndev);
4021 	__dev_put(odev);
4022 
4023 	if (ndev)
4024 		__netdev_tracker_alloc(ndev, tracker, gfp);
4025 }
4026 
4027 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4028  * and _off may be called from IRQ context, but it is caller
4029  * who is responsible for serialization of these calls.
4030  *
4031  * The name carrier is inappropriate, these functions should really be
4032  * called netif_lowerlayer_*() because they represent the state of any
4033  * kind of lower layer not just hardware media.
4034  */
4035 void linkwatch_fire_event(struct net_device *dev);
4036 
4037 /**
4038  *	netif_carrier_ok - test if carrier present
4039  *	@dev: network device
4040  *
4041  * Check if carrier is present on device
4042  */
4043 static inline bool netif_carrier_ok(const struct net_device *dev)
4044 {
4045 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4046 }
4047 
4048 unsigned long dev_trans_start(struct net_device *dev);
4049 
4050 void __netdev_watchdog_up(struct net_device *dev);
4051 
4052 void netif_carrier_on(struct net_device *dev);
4053 void netif_carrier_off(struct net_device *dev);
4054 void netif_carrier_event(struct net_device *dev);
4055 
4056 /**
4057  *	netif_dormant_on - mark device as dormant.
4058  *	@dev: network device
4059  *
4060  * Mark device as dormant (as per RFC2863).
4061  *
4062  * The dormant state indicates that the relevant interface is not
4063  * actually in a condition to pass packets (i.e., it is not 'up') but is
4064  * in a "pending" state, waiting for some external event.  For "on-
4065  * demand" interfaces, this new state identifies the situation where the
4066  * interface is waiting for events to place it in the up state.
4067  */
4068 static inline void netif_dormant_on(struct net_device *dev)
4069 {
4070 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4071 		linkwatch_fire_event(dev);
4072 }
4073 
4074 /**
4075  *	netif_dormant_off - set device as not dormant.
4076  *	@dev: network device
4077  *
4078  * Device is not in dormant state.
4079  */
4080 static inline void netif_dormant_off(struct net_device *dev)
4081 {
4082 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4083 		linkwatch_fire_event(dev);
4084 }
4085 
4086 /**
4087  *	netif_dormant - test if device is dormant
4088  *	@dev: network device
4089  *
4090  * Check if device is dormant.
4091  */
4092 static inline bool netif_dormant(const struct net_device *dev)
4093 {
4094 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4095 }
4096 
4097 
4098 /**
4099  *	netif_testing_on - mark device as under test.
4100  *	@dev: network device
4101  *
4102  * Mark device as under test (as per RFC2863).
4103  *
4104  * The testing state indicates that some test(s) must be performed on
4105  * the interface. After completion, of the test, the interface state
4106  * will change to up, dormant, or down, as appropriate.
4107  */
4108 static inline void netif_testing_on(struct net_device *dev)
4109 {
4110 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4111 		linkwatch_fire_event(dev);
4112 }
4113 
4114 /**
4115  *	netif_testing_off - set device as not under test.
4116  *	@dev: network device
4117  *
4118  * Device is not in testing state.
4119  */
4120 static inline void netif_testing_off(struct net_device *dev)
4121 {
4122 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4123 		linkwatch_fire_event(dev);
4124 }
4125 
4126 /**
4127  *	netif_testing - test if device is under test
4128  *	@dev: network device
4129  *
4130  * Check if device is under test
4131  */
4132 static inline bool netif_testing(const struct net_device *dev)
4133 {
4134 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4135 }
4136 
4137 
4138 /**
4139  *	netif_oper_up - test if device is operational
4140  *	@dev: network device
4141  *
4142  * Check if carrier is operational
4143  */
4144 static inline bool netif_oper_up(const struct net_device *dev)
4145 {
4146 	return (dev->operstate == IF_OPER_UP ||
4147 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4148 }
4149 
4150 /**
4151  *	netif_device_present - is device available or removed
4152  *	@dev: network device
4153  *
4154  * Check if device has not been removed from system.
4155  */
4156 static inline bool netif_device_present(const struct net_device *dev)
4157 {
4158 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4159 }
4160 
4161 void netif_device_detach(struct net_device *dev);
4162 
4163 void netif_device_attach(struct net_device *dev);
4164 
4165 /*
4166  * Network interface message level settings
4167  */
4168 
4169 enum {
4170 	NETIF_MSG_DRV_BIT,
4171 	NETIF_MSG_PROBE_BIT,
4172 	NETIF_MSG_LINK_BIT,
4173 	NETIF_MSG_TIMER_BIT,
4174 	NETIF_MSG_IFDOWN_BIT,
4175 	NETIF_MSG_IFUP_BIT,
4176 	NETIF_MSG_RX_ERR_BIT,
4177 	NETIF_MSG_TX_ERR_BIT,
4178 	NETIF_MSG_TX_QUEUED_BIT,
4179 	NETIF_MSG_INTR_BIT,
4180 	NETIF_MSG_TX_DONE_BIT,
4181 	NETIF_MSG_RX_STATUS_BIT,
4182 	NETIF_MSG_PKTDATA_BIT,
4183 	NETIF_MSG_HW_BIT,
4184 	NETIF_MSG_WOL_BIT,
4185 
4186 	/* When you add a new bit above, update netif_msg_class_names array
4187 	 * in net/ethtool/common.c
4188 	 */
4189 	NETIF_MSG_CLASS_COUNT,
4190 };
4191 /* Both ethtool_ops interface and internal driver implementation use u32 */
4192 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4193 
4194 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4195 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4196 
4197 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4198 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4199 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4200 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4201 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4202 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4203 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4204 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4205 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4206 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4207 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4208 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4209 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4210 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4211 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4212 
4213 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4214 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4215 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4216 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4217 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4218 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4219 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4220 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4221 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4222 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4223 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4224 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4225 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4226 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4227 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4228 
4229 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4230 {
4231 	/* use default */
4232 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4233 		return default_msg_enable_bits;
4234 	if (debug_value == 0)	/* no output */
4235 		return 0;
4236 	/* set low N bits */
4237 	return (1U << debug_value) - 1;
4238 }
4239 
4240 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4241 {
4242 	spin_lock(&txq->_xmit_lock);
4243 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4244 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4245 }
4246 
4247 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4248 {
4249 	__acquire(&txq->_xmit_lock);
4250 	return true;
4251 }
4252 
4253 static inline void __netif_tx_release(struct netdev_queue *txq)
4254 {
4255 	__release(&txq->_xmit_lock);
4256 }
4257 
4258 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4259 {
4260 	spin_lock_bh(&txq->_xmit_lock);
4261 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4262 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4263 }
4264 
4265 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4266 {
4267 	bool ok = spin_trylock(&txq->_xmit_lock);
4268 
4269 	if (likely(ok)) {
4270 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4271 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4272 	}
4273 	return ok;
4274 }
4275 
4276 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4277 {
4278 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4279 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4280 	spin_unlock(&txq->_xmit_lock);
4281 }
4282 
4283 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4284 {
4285 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4286 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4287 	spin_unlock_bh(&txq->_xmit_lock);
4288 }
4289 
4290 /*
4291  * txq->trans_start can be read locklessly from dev_watchdog()
4292  */
4293 static inline void txq_trans_update(struct netdev_queue *txq)
4294 {
4295 	if (txq->xmit_lock_owner != -1)
4296 		WRITE_ONCE(txq->trans_start, jiffies);
4297 }
4298 
4299 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4300 {
4301 	unsigned long now = jiffies;
4302 
4303 	if (READ_ONCE(txq->trans_start) != now)
4304 		WRITE_ONCE(txq->trans_start, now);
4305 }
4306 
4307 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4308 static inline void netif_trans_update(struct net_device *dev)
4309 {
4310 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4311 
4312 	txq_trans_cond_update(txq);
4313 }
4314 
4315 /**
4316  *	netif_tx_lock - grab network device transmit lock
4317  *	@dev: network device
4318  *
4319  * Get network device transmit lock
4320  */
4321 void netif_tx_lock(struct net_device *dev);
4322 
4323 static inline void netif_tx_lock_bh(struct net_device *dev)
4324 {
4325 	local_bh_disable();
4326 	netif_tx_lock(dev);
4327 }
4328 
4329 void netif_tx_unlock(struct net_device *dev);
4330 
4331 static inline void netif_tx_unlock_bh(struct net_device *dev)
4332 {
4333 	netif_tx_unlock(dev);
4334 	local_bh_enable();
4335 }
4336 
4337 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4338 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4339 		__netif_tx_lock(txq, cpu);		\
4340 	} else {					\
4341 		__netif_tx_acquire(txq);		\
4342 	}						\
4343 }
4344 
4345 #define HARD_TX_TRYLOCK(dev, txq)			\
4346 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4347 		__netif_tx_trylock(txq) :		\
4348 		__netif_tx_acquire(txq))
4349 
4350 #define HARD_TX_UNLOCK(dev, txq) {			\
4351 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4352 		__netif_tx_unlock(txq);			\
4353 	} else {					\
4354 		__netif_tx_release(txq);		\
4355 	}						\
4356 }
4357 
4358 static inline void netif_tx_disable(struct net_device *dev)
4359 {
4360 	unsigned int i;
4361 	int cpu;
4362 
4363 	local_bh_disable();
4364 	cpu = smp_processor_id();
4365 	spin_lock(&dev->tx_global_lock);
4366 	for (i = 0; i < dev->num_tx_queues; i++) {
4367 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4368 
4369 		__netif_tx_lock(txq, cpu);
4370 		netif_tx_stop_queue(txq);
4371 		__netif_tx_unlock(txq);
4372 	}
4373 	spin_unlock(&dev->tx_global_lock);
4374 	local_bh_enable();
4375 }
4376 
4377 static inline void netif_addr_lock(struct net_device *dev)
4378 {
4379 	unsigned char nest_level = 0;
4380 
4381 #ifdef CONFIG_LOCKDEP
4382 	nest_level = dev->nested_level;
4383 #endif
4384 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4385 }
4386 
4387 static inline void netif_addr_lock_bh(struct net_device *dev)
4388 {
4389 	unsigned char nest_level = 0;
4390 
4391 #ifdef CONFIG_LOCKDEP
4392 	nest_level = dev->nested_level;
4393 #endif
4394 	local_bh_disable();
4395 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4396 }
4397 
4398 static inline void netif_addr_unlock(struct net_device *dev)
4399 {
4400 	spin_unlock(&dev->addr_list_lock);
4401 }
4402 
4403 static inline void netif_addr_unlock_bh(struct net_device *dev)
4404 {
4405 	spin_unlock_bh(&dev->addr_list_lock);
4406 }
4407 
4408 /*
4409  * dev_addrs walker. Should be used only for read access. Call with
4410  * rcu_read_lock held.
4411  */
4412 #define for_each_dev_addr(dev, ha) \
4413 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4414 
4415 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4416 
4417 void ether_setup(struct net_device *dev);
4418 
4419 /* Support for loadable net-drivers */
4420 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4421 				    unsigned char name_assign_type,
4422 				    void (*setup)(struct net_device *),
4423 				    unsigned int txqs, unsigned int rxqs);
4424 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4425 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4426 
4427 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4428 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4429 			 count)
4430 
4431 int register_netdev(struct net_device *dev);
4432 void unregister_netdev(struct net_device *dev);
4433 
4434 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4435 
4436 /* General hardware address lists handling functions */
4437 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4438 		   struct netdev_hw_addr_list *from_list, int addr_len);
4439 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4440 		      struct netdev_hw_addr_list *from_list, int addr_len);
4441 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4442 		       struct net_device *dev,
4443 		       int (*sync)(struct net_device *, const unsigned char *),
4444 		       int (*unsync)(struct net_device *,
4445 				     const unsigned char *));
4446 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4447 			   struct net_device *dev,
4448 			   int (*sync)(struct net_device *,
4449 				       const unsigned char *, int),
4450 			   int (*unsync)(struct net_device *,
4451 					 const unsigned char *, int));
4452 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4453 			      struct net_device *dev,
4454 			      int (*unsync)(struct net_device *,
4455 					    const unsigned char *, int));
4456 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4457 			  struct net_device *dev,
4458 			  int (*unsync)(struct net_device *,
4459 					const unsigned char *));
4460 void __hw_addr_init(struct netdev_hw_addr_list *list);
4461 
4462 /* Functions used for device addresses handling */
4463 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4464 		  const void *addr, size_t len);
4465 
4466 static inline void
4467 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4468 {
4469 	dev_addr_mod(dev, 0, addr, len);
4470 }
4471 
4472 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4473 {
4474 	__dev_addr_set(dev, addr, dev->addr_len);
4475 }
4476 
4477 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4478 		 unsigned char addr_type);
4479 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4480 		 unsigned char addr_type);
4481 
4482 /* Functions used for unicast addresses handling */
4483 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4484 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4485 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4486 int dev_uc_sync(struct net_device *to, struct net_device *from);
4487 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4488 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4489 void dev_uc_flush(struct net_device *dev);
4490 void dev_uc_init(struct net_device *dev);
4491 
4492 /**
4493  *  __dev_uc_sync - Synchonize device's unicast list
4494  *  @dev:  device to sync
4495  *  @sync: function to call if address should be added
4496  *  @unsync: function to call if address should be removed
4497  *
4498  *  Add newly added addresses to the interface, and release
4499  *  addresses that have been deleted.
4500  */
4501 static inline int __dev_uc_sync(struct net_device *dev,
4502 				int (*sync)(struct net_device *,
4503 					    const unsigned char *),
4504 				int (*unsync)(struct net_device *,
4505 					      const unsigned char *))
4506 {
4507 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4508 }
4509 
4510 /**
4511  *  __dev_uc_unsync - Remove synchronized addresses from device
4512  *  @dev:  device to sync
4513  *  @unsync: function to call if address should be removed
4514  *
4515  *  Remove all addresses that were added to the device by dev_uc_sync().
4516  */
4517 static inline void __dev_uc_unsync(struct net_device *dev,
4518 				   int (*unsync)(struct net_device *,
4519 						 const unsigned char *))
4520 {
4521 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4522 }
4523 
4524 /* Functions used for multicast addresses handling */
4525 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4526 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4527 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4528 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4529 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4530 int dev_mc_sync(struct net_device *to, struct net_device *from);
4531 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4532 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4533 void dev_mc_flush(struct net_device *dev);
4534 void dev_mc_init(struct net_device *dev);
4535 
4536 /**
4537  *  __dev_mc_sync - Synchonize device's multicast list
4538  *  @dev:  device to sync
4539  *  @sync: function to call if address should be added
4540  *  @unsync: function to call if address should be removed
4541  *
4542  *  Add newly added addresses to the interface, and release
4543  *  addresses that have been deleted.
4544  */
4545 static inline int __dev_mc_sync(struct net_device *dev,
4546 				int (*sync)(struct net_device *,
4547 					    const unsigned char *),
4548 				int (*unsync)(struct net_device *,
4549 					      const unsigned char *))
4550 {
4551 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4552 }
4553 
4554 /**
4555  *  __dev_mc_unsync - Remove synchronized addresses from device
4556  *  @dev:  device to sync
4557  *  @unsync: function to call if address should be removed
4558  *
4559  *  Remove all addresses that were added to the device by dev_mc_sync().
4560  */
4561 static inline void __dev_mc_unsync(struct net_device *dev,
4562 				   int (*unsync)(struct net_device *,
4563 						 const unsigned char *))
4564 {
4565 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4566 }
4567 
4568 /* Functions used for secondary unicast and multicast support */
4569 void dev_set_rx_mode(struct net_device *dev);
4570 int dev_set_promiscuity(struct net_device *dev, int inc);
4571 int dev_set_allmulti(struct net_device *dev, int inc);
4572 void netdev_state_change(struct net_device *dev);
4573 void __netdev_notify_peers(struct net_device *dev);
4574 void netdev_notify_peers(struct net_device *dev);
4575 void netdev_features_change(struct net_device *dev);
4576 /* Load a device via the kmod */
4577 void dev_load(struct net *net, const char *name);
4578 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4579 					struct rtnl_link_stats64 *storage);
4580 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4581 			     const struct net_device_stats *netdev_stats);
4582 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4583 			   const struct pcpu_sw_netstats __percpu *netstats);
4584 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4585 
4586 extern int		netdev_max_backlog;
4587 extern int		dev_rx_weight;
4588 extern int		dev_tx_weight;
4589 extern int		gro_normal_batch;
4590 
4591 enum {
4592 	NESTED_SYNC_IMM_BIT,
4593 	NESTED_SYNC_TODO_BIT,
4594 };
4595 
4596 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4597 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4598 
4599 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4600 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4601 
4602 struct netdev_nested_priv {
4603 	unsigned char flags;
4604 	void *data;
4605 };
4606 
4607 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4608 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4609 						     struct list_head **iter);
4610 
4611 /* iterate through upper list, must be called under RCU read lock */
4612 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4613 	for (iter = &(dev)->adj_list.upper, \
4614 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4615 	     updev; \
4616 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4617 
4618 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4619 				  int (*fn)(struct net_device *upper_dev,
4620 					    struct netdev_nested_priv *priv),
4621 				  struct netdev_nested_priv *priv);
4622 
4623 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4624 				  struct net_device *upper_dev);
4625 
4626 bool netdev_has_any_upper_dev(struct net_device *dev);
4627 
4628 void *netdev_lower_get_next_private(struct net_device *dev,
4629 				    struct list_head **iter);
4630 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4631 					struct list_head **iter);
4632 
4633 #define netdev_for_each_lower_private(dev, priv, iter) \
4634 	for (iter = (dev)->adj_list.lower.next, \
4635 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4636 	     priv; \
4637 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4638 
4639 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4640 	for (iter = &(dev)->adj_list.lower, \
4641 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4642 	     priv; \
4643 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4644 
4645 void *netdev_lower_get_next(struct net_device *dev,
4646 				struct list_head **iter);
4647 
4648 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4649 	for (iter = (dev)->adj_list.lower.next, \
4650 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4651 	     ldev; \
4652 	     ldev = netdev_lower_get_next(dev, &(iter)))
4653 
4654 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4655 					     struct list_head **iter);
4656 int netdev_walk_all_lower_dev(struct net_device *dev,
4657 			      int (*fn)(struct net_device *lower_dev,
4658 					struct netdev_nested_priv *priv),
4659 			      struct netdev_nested_priv *priv);
4660 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4661 				  int (*fn)(struct net_device *lower_dev,
4662 					    struct netdev_nested_priv *priv),
4663 				  struct netdev_nested_priv *priv);
4664 
4665 void *netdev_adjacent_get_private(struct list_head *adj_list);
4666 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4667 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4668 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4669 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4670 			  struct netlink_ext_ack *extack);
4671 int netdev_master_upper_dev_link(struct net_device *dev,
4672 				 struct net_device *upper_dev,
4673 				 void *upper_priv, void *upper_info,
4674 				 struct netlink_ext_ack *extack);
4675 void netdev_upper_dev_unlink(struct net_device *dev,
4676 			     struct net_device *upper_dev);
4677 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4678 				   struct net_device *new_dev,
4679 				   struct net_device *dev,
4680 				   struct netlink_ext_ack *extack);
4681 void netdev_adjacent_change_commit(struct net_device *old_dev,
4682 				   struct net_device *new_dev,
4683 				   struct net_device *dev);
4684 void netdev_adjacent_change_abort(struct net_device *old_dev,
4685 				  struct net_device *new_dev,
4686 				  struct net_device *dev);
4687 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4688 void *netdev_lower_dev_get_private(struct net_device *dev,
4689 				   struct net_device *lower_dev);
4690 void netdev_lower_state_changed(struct net_device *lower_dev,
4691 				void *lower_state_info);
4692 
4693 /* RSS keys are 40 or 52 bytes long */
4694 #define NETDEV_RSS_KEY_LEN 52
4695 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4696 void netdev_rss_key_fill(void *buffer, size_t len);
4697 
4698 int skb_checksum_help(struct sk_buff *skb);
4699 int skb_crc32c_csum_help(struct sk_buff *skb);
4700 int skb_csum_hwoffload_help(struct sk_buff *skb,
4701 			    const netdev_features_t features);
4702 
4703 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4704 				  netdev_features_t features, bool tx_path);
4705 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4706 				    netdev_features_t features, __be16 type);
4707 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4708 				    netdev_features_t features);
4709 
4710 struct netdev_bonding_info {
4711 	ifslave	slave;
4712 	ifbond	master;
4713 };
4714 
4715 struct netdev_notifier_bonding_info {
4716 	struct netdev_notifier_info info; /* must be first */
4717 	struct netdev_bonding_info  bonding_info;
4718 };
4719 
4720 void netdev_bonding_info_change(struct net_device *dev,
4721 				struct netdev_bonding_info *bonding_info);
4722 
4723 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4724 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4725 #else
4726 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4727 				  const void *data)
4728 {
4729 }
4730 #endif
4731 
4732 static inline
4733 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4734 {
4735 	return __skb_gso_segment(skb, features, true);
4736 }
4737 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4738 
4739 static inline bool can_checksum_protocol(netdev_features_t features,
4740 					 __be16 protocol)
4741 {
4742 	if (protocol == htons(ETH_P_FCOE))
4743 		return !!(features & NETIF_F_FCOE_CRC);
4744 
4745 	/* Assume this is an IP checksum (not SCTP CRC) */
4746 
4747 	if (features & NETIF_F_HW_CSUM) {
4748 		/* Can checksum everything */
4749 		return true;
4750 	}
4751 
4752 	switch (protocol) {
4753 	case htons(ETH_P_IP):
4754 		return !!(features & NETIF_F_IP_CSUM);
4755 	case htons(ETH_P_IPV6):
4756 		return !!(features & NETIF_F_IPV6_CSUM);
4757 	default:
4758 		return false;
4759 	}
4760 }
4761 
4762 #ifdef CONFIG_BUG
4763 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4764 #else
4765 static inline void netdev_rx_csum_fault(struct net_device *dev,
4766 					struct sk_buff *skb)
4767 {
4768 }
4769 #endif
4770 /* rx skb timestamps */
4771 void net_enable_timestamp(void);
4772 void net_disable_timestamp(void);
4773 
4774 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4775 					const struct skb_shared_hwtstamps *hwtstamps,
4776 					bool cycles)
4777 {
4778 	const struct net_device_ops *ops = dev->netdev_ops;
4779 
4780 	if (ops->ndo_get_tstamp)
4781 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4782 
4783 	return hwtstamps->hwtstamp;
4784 }
4785 
4786 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4787 					      struct sk_buff *skb, struct net_device *dev,
4788 					      bool more)
4789 {
4790 	__this_cpu_write(softnet_data.xmit.more, more);
4791 	return ops->ndo_start_xmit(skb, dev);
4792 }
4793 
4794 static inline bool netdev_xmit_more(void)
4795 {
4796 	return __this_cpu_read(softnet_data.xmit.more);
4797 }
4798 
4799 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4800 					    struct netdev_queue *txq, bool more)
4801 {
4802 	const struct net_device_ops *ops = dev->netdev_ops;
4803 	netdev_tx_t rc;
4804 
4805 	rc = __netdev_start_xmit(ops, skb, dev, more);
4806 	if (rc == NETDEV_TX_OK)
4807 		txq_trans_update(txq);
4808 
4809 	return rc;
4810 }
4811 
4812 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4813 				const void *ns);
4814 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4815 				 const void *ns);
4816 
4817 extern const struct kobj_ns_type_operations net_ns_type_operations;
4818 
4819 const char *netdev_drivername(const struct net_device *dev);
4820 
4821 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4822 							  netdev_features_t f2)
4823 {
4824 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4825 		if (f1 & NETIF_F_HW_CSUM)
4826 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4827 		else
4828 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4829 	}
4830 
4831 	return f1 & f2;
4832 }
4833 
4834 static inline netdev_features_t netdev_get_wanted_features(
4835 	struct net_device *dev)
4836 {
4837 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4838 }
4839 netdev_features_t netdev_increment_features(netdev_features_t all,
4840 	netdev_features_t one, netdev_features_t mask);
4841 
4842 /* Allow TSO being used on stacked device :
4843  * Performing the GSO segmentation before last device
4844  * is a performance improvement.
4845  */
4846 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4847 							netdev_features_t mask)
4848 {
4849 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4850 }
4851 
4852 int __netdev_update_features(struct net_device *dev);
4853 void netdev_update_features(struct net_device *dev);
4854 void netdev_change_features(struct net_device *dev);
4855 
4856 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4857 					struct net_device *dev);
4858 
4859 netdev_features_t passthru_features_check(struct sk_buff *skb,
4860 					  struct net_device *dev,
4861 					  netdev_features_t features);
4862 netdev_features_t netif_skb_features(struct sk_buff *skb);
4863 
4864 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4865 {
4866 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4867 
4868 	/* check flags correspondence */
4869 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4870 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4871 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4872 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4873 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4874 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4875 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4876 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4877 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4878 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4879 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4880 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4881 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4882 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4883 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4884 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4885 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4886 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4887 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4888 
4889 	return (features & feature) == feature;
4890 }
4891 
4892 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4893 {
4894 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4895 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4896 }
4897 
4898 static inline bool netif_needs_gso(struct sk_buff *skb,
4899 				   netdev_features_t features)
4900 {
4901 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4902 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4903 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4904 }
4905 
4906 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4907 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4908 void netif_inherit_tso_max(struct net_device *to,
4909 			   const struct net_device *from);
4910 
4911 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4912 					int pulled_hlen, u16 mac_offset,
4913 					int mac_len)
4914 {
4915 	skb->protocol = protocol;
4916 	skb->encapsulation = 1;
4917 	skb_push(skb, pulled_hlen);
4918 	skb_reset_transport_header(skb);
4919 	skb->mac_header = mac_offset;
4920 	skb->network_header = skb->mac_header + mac_len;
4921 	skb->mac_len = mac_len;
4922 }
4923 
4924 static inline bool netif_is_macsec(const struct net_device *dev)
4925 {
4926 	return dev->priv_flags & IFF_MACSEC;
4927 }
4928 
4929 static inline bool netif_is_macvlan(const struct net_device *dev)
4930 {
4931 	return dev->priv_flags & IFF_MACVLAN;
4932 }
4933 
4934 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4935 {
4936 	return dev->priv_flags & IFF_MACVLAN_PORT;
4937 }
4938 
4939 static inline bool netif_is_bond_master(const struct net_device *dev)
4940 {
4941 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4942 }
4943 
4944 static inline bool netif_is_bond_slave(const struct net_device *dev)
4945 {
4946 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4947 }
4948 
4949 static inline bool netif_supports_nofcs(struct net_device *dev)
4950 {
4951 	return dev->priv_flags & IFF_SUPP_NOFCS;
4952 }
4953 
4954 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4955 {
4956 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4957 }
4958 
4959 static inline bool netif_is_l3_master(const struct net_device *dev)
4960 {
4961 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4962 }
4963 
4964 static inline bool netif_is_l3_slave(const struct net_device *dev)
4965 {
4966 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4967 }
4968 
4969 static inline bool netif_is_bridge_master(const struct net_device *dev)
4970 {
4971 	return dev->priv_flags & IFF_EBRIDGE;
4972 }
4973 
4974 static inline bool netif_is_bridge_port(const struct net_device *dev)
4975 {
4976 	return dev->priv_flags & IFF_BRIDGE_PORT;
4977 }
4978 
4979 static inline bool netif_is_ovs_master(const struct net_device *dev)
4980 {
4981 	return dev->priv_flags & IFF_OPENVSWITCH;
4982 }
4983 
4984 static inline bool netif_is_ovs_port(const struct net_device *dev)
4985 {
4986 	return dev->priv_flags & IFF_OVS_DATAPATH;
4987 }
4988 
4989 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4990 {
4991 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4992 }
4993 
4994 static inline bool netif_is_team_master(const struct net_device *dev)
4995 {
4996 	return dev->priv_flags & IFF_TEAM;
4997 }
4998 
4999 static inline bool netif_is_team_port(const struct net_device *dev)
5000 {
5001 	return dev->priv_flags & IFF_TEAM_PORT;
5002 }
5003 
5004 static inline bool netif_is_lag_master(const struct net_device *dev)
5005 {
5006 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5007 }
5008 
5009 static inline bool netif_is_lag_port(const struct net_device *dev)
5010 {
5011 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5012 }
5013 
5014 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5015 {
5016 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5017 }
5018 
5019 static inline bool netif_is_failover(const struct net_device *dev)
5020 {
5021 	return dev->priv_flags & IFF_FAILOVER;
5022 }
5023 
5024 static inline bool netif_is_failover_slave(const struct net_device *dev)
5025 {
5026 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5027 }
5028 
5029 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5030 static inline void netif_keep_dst(struct net_device *dev)
5031 {
5032 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5033 }
5034 
5035 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5036 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5037 {
5038 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5039 	return netif_is_macsec(dev);
5040 }
5041 
5042 extern struct pernet_operations __net_initdata loopback_net_ops;
5043 
5044 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5045 
5046 /* netdev_printk helpers, similar to dev_printk */
5047 
5048 static inline const char *netdev_name(const struct net_device *dev)
5049 {
5050 	if (!dev->name[0] || strchr(dev->name, '%'))
5051 		return "(unnamed net_device)";
5052 	return dev->name;
5053 }
5054 
5055 static inline bool netdev_unregistering(const struct net_device *dev)
5056 {
5057 	return dev->reg_state == NETREG_UNREGISTERING;
5058 }
5059 
5060 static inline const char *netdev_reg_state(const struct net_device *dev)
5061 {
5062 	switch (dev->reg_state) {
5063 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5064 	case NETREG_REGISTERED: return "";
5065 	case NETREG_UNREGISTERING: return " (unregistering)";
5066 	case NETREG_UNREGISTERED: return " (unregistered)";
5067 	case NETREG_RELEASED: return " (released)";
5068 	case NETREG_DUMMY: return " (dummy)";
5069 	}
5070 
5071 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5072 	return " (unknown)";
5073 }
5074 
5075 #define MODULE_ALIAS_NETDEV(device) \
5076 	MODULE_ALIAS("netdev-" device)
5077 
5078 /*
5079  * netdev_WARN() acts like dev_printk(), but with the key difference
5080  * of using a WARN/WARN_ON to get the message out, including the
5081  * file/line information and a backtrace.
5082  */
5083 #define netdev_WARN(dev, format, args...)			\
5084 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5085 	     netdev_reg_state(dev), ##args)
5086 
5087 #define netdev_WARN_ONCE(dev, format, args...)				\
5088 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5089 		  netdev_reg_state(dev), ##args)
5090 
5091 /*
5092  *	The list of packet types we will receive (as opposed to discard)
5093  *	and the routines to invoke.
5094  *
5095  *	Why 16. Because with 16 the only overlap we get on a hash of the
5096  *	low nibble of the protocol value is RARP/SNAP/X.25.
5097  *
5098  *		0800	IP
5099  *		0001	802.3
5100  *		0002	AX.25
5101  *		0004	802.2
5102  *		8035	RARP
5103  *		0005	SNAP
5104  *		0805	X.25
5105  *		0806	ARP
5106  *		8137	IPX
5107  *		0009	Localtalk
5108  *		86DD	IPv6
5109  */
5110 #define PTYPE_HASH_SIZE	(16)
5111 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5112 
5113 extern struct list_head ptype_all __read_mostly;
5114 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5115 
5116 extern struct net_device *blackhole_netdev;
5117 
5118 #endif	/* _LINUX_NETDEVICE_H */
5119