1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct bpf_prog; 69 struct xdp_buff; 70 71 void netdev_set_default_ethtool_ops(struct net_device *dev, 72 const struct ethtool_ops *ops); 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously; in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 92 * others are propagated to higher layers. 93 */ 94 95 /* qdisc ->enqueue() return codes. */ 96 #define NET_XMIT_SUCCESS 0x00 97 #define NET_XMIT_DROP 0x01 /* skb dropped */ 98 #define NET_XMIT_CN 0x02 /* congestion notification */ 99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107 /* Driver transmit return codes */ 108 #define NETDEV_TX_MASK 0xf0 109 110 enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 }; 115 typedef enum netdev_tx netdev_tx_t; 116 117 /* 118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 120 */ 121 static inline bool dev_xmit_complete(int rc) 122 { 123 /* 124 * Positive cases with an skb consumed by a driver: 125 * - successful transmission (rc == NETDEV_TX_OK) 126 * - error while transmitting (rc < 0) 127 * - error while queueing to a different device (rc & NET_XMIT_MASK) 128 */ 129 if (likely(rc < NET_XMIT_MASK)) 130 return true; 131 132 return false; 133 } 134 135 /* 136 * Compute the worst-case header length according to the protocols 137 * used. 138 */ 139 140 #if defined(CONFIG_HYPERV_NET) 141 # define LL_MAX_HEADER 128 142 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 143 # if defined(CONFIG_MAC80211_MESH) 144 # define LL_MAX_HEADER 128 145 # else 146 # define LL_MAX_HEADER 96 147 # endif 148 #else 149 # define LL_MAX_HEADER 32 150 #endif 151 152 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 153 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 154 #define MAX_HEADER LL_MAX_HEADER 155 #else 156 #define MAX_HEADER (LL_MAX_HEADER + 48) 157 #endif 158 159 /* 160 * Old network device statistics. Fields are native words 161 * (unsigned long) so they can be read and written atomically. 162 */ 163 164 struct net_device_stats { 165 unsigned long rx_packets; 166 unsigned long tx_packets; 167 unsigned long rx_bytes; 168 unsigned long tx_bytes; 169 unsigned long rx_errors; 170 unsigned long tx_errors; 171 unsigned long rx_dropped; 172 unsigned long tx_dropped; 173 unsigned long multicast; 174 unsigned long collisions; 175 unsigned long rx_length_errors; 176 unsigned long rx_over_errors; 177 unsigned long rx_crc_errors; 178 unsigned long rx_frame_errors; 179 unsigned long rx_fifo_errors; 180 unsigned long rx_missed_errors; 181 unsigned long tx_aborted_errors; 182 unsigned long tx_carrier_errors; 183 unsigned long tx_fifo_errors; 184 unsigned long tx_heartbeat_errors; 185 unsigned long tx_window_errors; 186 unsigned long rx_compressed; 187 unsigned long tx_compressed; 188 }; 189 190 191 #include <linux/cache.h> 192 #include <linux/skbuff.h> 193 194 #ifdef CONFIG_RPS 195 #include <linux/static_key.h> 196 extern struct static_key rps_needed; 197 extern struct static_key rfs_needed; 198 #endif 199 200 struct neighbour; 201 struct neigh_parms; 202 struct sk_buff; 203 204 struct netdev_hw_addr { 205 struct list_head list; 206 unsigned char addr[MAX_ADDR_LEN]; 207 unsigned char type; 208 #define NETDEV_HW_ADDR_T_LAN 1 209 #define NETDEV_HW_ADDR_T_SAN 2 210 #define NETDEV_HW_ADDR_T_SLAVE 3 211 #define NETDEV_HW_ADDR_T_UNICAST 4 212 #define NETDEV_HW_ADDR_T_MULTICAST 5 213 bool global_use; 214 int sync_cnt; 215 int refcount; 216 int synced; 217 struct rcu_head rcu_head; 218 }; 219 220 struct netdev_hw_addr_list { 221 struct list_head list; 222 int count; 223 }; 224 225 #define netdev_hw_addr_list_count(l) ((l)->count) 226 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 227 #define netdev_hw_addr_list_for_each(ha, l) \ 228 list_for_each_entry(ha, &(l)->list, list) 229 230 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 231 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 232 #define netdev_for_each_uc_addr(ha, dev) \ 233 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 234 235 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 236 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 237 #define netdev_for_each_mc_addr(ha, dev) \ 238 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 239 240 struct hh_cache { 241 unsigned int hh_len; 242 seqlock_t hh_lock; 243 244 /* cached hardware header; allow for machine alignment needs. */ 245 #define HH_DATA_MOD 16 246 #define HH_DATA_OFF(__len) \ 247 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 248 #define HH_DATA_ALIGN(__len) \ 249 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 250 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 251 }; 252 253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 254 * Alternative is: 255 * dev->hard_header_len ? (dev->hard_header_len + 256 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 257 * 258 * We could use other alignment values, but we must maintain the 259 * relationship HH alignment <= LL alignment. 260 */ 261 #define LL_RESERVED_SPACE(dev) \ 262 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 264 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 265 266 struct header_ops { 267 int (*create) (struct sk_buff *skb, struct net_device *dev, 268 unsigned short type, const void *daddr, 269 const void *saddr, unsigned int len); 270 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 272 void (*cache_update)(struct hh_cache *hh, 273 const struct net_device *dev, 274 const unsigned char *haddr); 275 bool (*validate)(const char *ll_header, unsigned int len); 276 }; 277 278 /* These flag bits are private to the generic network queueing 279 * layer; they may not be explicitly referenced by any other 280 * code. 281 */ 282 283 enum netdev_state_t { 284 __LINK_STATE_START, 285 __LINK_STATE_PRESENT, 286 __LINK_STATE_NOCARRIER, 287 __LINK_STATE_LINKWATCH_PENDING, 288 __LINK_STATE_DORMANT, 289 }; 290 291 292 /* 293 * This structure holds boot-time configured netdevice settings. They 294 * are then used in the device probing. 295 */ 296 struct netdev_boot_setup { 297 char name[IFNAMSIZ]; 298 struct ifmap map; 299 }; 300 #define NETDEV_BOOT_SETUP_MAX 8 301 302 int __init netdev_boot_setup(char *str); 303 304 /* 305 * Structure for NAPI scheduling similar to tasklet but with weighting 306 */ 307 struct napi_struct { 308 /* The poll_list must only be managed by the entity which 309 * changes the state of the NAPI_STATE_SCHED bit. This means 310 * whoever atomically sets that bit can add this napi_struct 311 * to the per-CPU poll_list, and whoever clears that bit 312 * can remove from the list right before clearing the bit. 313 */ 314 struct list_head poll_list; 315 316 unsigned long state; 317 int weight; 318 unsigned int gro_count; 319 int (*poll)(struct napi_struct *, int); 320 #ifdef CONFIG_NETPOLL 321 int poll_owner; 322 #endif 323 struct net_device *dev; 324 struct sk_buff *gro_list; 325 struct sk_buff *skb; 326 struct hrtimer timer; 327 struct list_head dev_list; 328 struct hlist_node napi_hash_node; 329 unsigned int napi_id; 330 }; 331 332 enum { 333 NAPI_STATE_SCHED, /* Poll is scheduled */ 334 NAPI_STATE_MISSED, /* reschedule a napi */ 335 NAPI_STATE_DISABLE, /* Disable pending */ 336 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 337 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 338 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 339 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 340 }; 341 342 enum { 343 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 344 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 345 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 346 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 347 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 348 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 349 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 350 }; 351 352 enum gro_result { 353 GRO_MERGED, 354 GRO_MERGED_FREE, 355 GRO_HELD, 356 GRO_NORMAL, 357 GRO_DROP, 358 GRO_CONSUMED, 359 }; 360 typedef enum gro_result gro_result_t; 361 362 /* 363 * enum rx_handler_result - Possible return values for rx_handlers. 364 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 365 * further. 366 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 367 * case skb->dev was changed by rx_handler. 368 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 369 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 370 * 371 * rx_handlers are functions called from inside __netif_receive_skb(), to do 372 * special processing of the skb, prior to delivery to protocol handlers. 373 * 374 * Currently, a net_device can only have a single rx_handler registered. Trying 375 * to register a second rx_handler will return -EBUSY. 376 * 377 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 378 * To unregister a rx_handler on a net_device, use 379 * netdev_rx_handler_unregister(). 380 * 381 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 382 * do with the skb. 383 * 384 * If the rx_handler consumed the skb in some way, it should return 385 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 386 * the skb to be delivered in some other way. 387 * 388 * If the rx_handler changed skb->dev, to divert the skb to another 389 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 390 * new device will be called if it exists. 391 * 392 * If the rx_handler decides the skb should be ignored, it should return 393 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 394 * are registered on exact device (ptype->dev == skb->dev). 395 * 396 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 397 * delivered, it should return RX_HANDLER_PASS. 398 * 399 * A device without a registered rx_handler will behave as if rx_handler 400 * returned RX_HANDLER_PASS. 401 */ 402 403 enum rx_handler_result { 404 RX_HANDLER_CONSUMED, 405 RX_HANDLER_ANOTHER, 406 RX_HANDLER_EXACT, 407 RX_HANDLER_PASS, 408 }; 409 typedef enum rx_handler_result rx_handler_result_t; 410 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 411 412 void __napi_schedule(struct napi_struct *n); 413 void __napi_schedule_irqoff(struct napi_struct *n); 414 415 static inline bool napi_disable_pending(struct napi_struct *n) 416 { 417 return test_bit(NAPI_STATE_DISABLE, &n->state); 418 } 419 420 bool napi_schedule_prep(struct napi_struct *n); 421 422 /** 423 * napi_schedule - schedule NAPI poll 424 * @n: NAPI context 425 * 426 * Schedule NAPI poll routine to be called if it is not already 427 * running. 428 */ 429 static inline void napi_schedule(struct napi_struct *n) 430 { 431 if (napi_schedule_prep(n)) 432 __napi_schedule(n); 433 } 434 435 /** 436 * napi_schedule_irqoff - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Variant of napi_schedule(), assuming hard irqs are masked. 440 */ 441 static inline void napi_schedule_irqoff(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule_irqoff(n); 445 } 446 447 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 448 static inline bool napi_reschedule(struct napi_struct *napi) 449 { 450 if (napi_schedule_prep(napi)) { 451 __napi_schedule(napi); 452 return true; 453 } 454 return false; 455 } 456 457 bool napi_complete_done(struct napi_struct *n, int work_done); 458 /** 459 * napi_complete - NAPI processing complete 460 * @n: NAPI context 461 * 462 * Mark NAPI processing as complete. 463 * Consider using napi_complete_done() instead. 464 * Return false if device should avoid rearming interrupts. 465 */ 466 static inline bool napi_complete(struct napi_struct *n) 467 { 468 return napi_complete_done(n, 0); 469 } 470 471 /** 472 * napi_hash_del - remove a NAPI from global table 473 * @napi: NAPI context 474 * 475 * Warning: caller must observe RCU grace period 476 * before freeing memory containing @napi, if 477 * this function returns true. 478 * Note: core networking stack automatically calls it 479 * from netif_napi_del(). 480 * Drivers might want to call this helper to combine all 481 * the needed RCU grace periods into a single one. 482 */ 483 bool napi_hash_del(struct napi_struct *napi); 484 485 /** 486 * napi_disable - prevent NAPI from scheduling 487 * @n: NAPI context 488 * 489 * Stop NAPI from being scheduled on this context. 490 * Waits till any outstanding processing completes. 491 */ 492 void napi_disable(struct napi_struct *n); 493 494 /** 495 * napi_enable - enable NAPI scheduling 496 * @n: NAPI context 497 * 498 * Resume NAPI from being scheduled on this context. 499 * Must be paired with napi_disable. 500 */ 501 static inline void napi_enable(struct napi_struct *n) 502 { 503 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 504 smp_mb__before_atomic(); 505 clear_bit(NAPI_STATE_SCHED, &n->state); 506 clear_bit(NAPI_STATE_NPSVC, &n->state); 507 } 508 509 /** 510 * napi_synchronize - wait until NAPI is not running 511 * @n: NAPI context 512 * 513 * Wait until NAPI is done being scheduled on this context. 514 * Waits till any outstanding processing completes but 515 * does not disable future activations. 516 */ 517 static inline void napi_synchronize(const struct napi_struct *n) 518 { 519 if (IS_ENABLED(CONFIG_SMP)) 520 while (test_bit(NAPI_STATE_SCHED, &n->state)) 521 msleep(1); 522 else 523 barrier(); 524 } 525 526 enum netdev_queue_state_t { 527 __QUEUE_STATE_DRV_XOFF, 528 __QUEUE_STATE_STACK_XOFF, 529 __QUEUE_STATE_FROZEN, 530 }; 531 532 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 533 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 534 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 535 536 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 537 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 538 QUEUE_STATE_FROZEN) 539 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 540 QUEUE_STATE_FROZEN) 541 542 /* 543 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 544 * netif_tx_* functions below are used to manipulate this flag. The 545 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 546 * queue independently. The netif_xmit_*stopped functions below are called 547 * to check if the queue has been stopped by the driver or stack (either 548 * of the XOFF bits are set in the state). Drivers should not need to call 549 * netif_xmit*stopped functions, they should only be using netif_tx_*. 550 */ 551 552 struct netdev_queue { 553 /* 554 * read-mostly part 555 */ 556 struct net_device *dev; 557 struct Qdisc __rcu *qdisc; 558 struct Qdisc *qdisc_sleeping; 559 #ifdef CONFIG_SYSFS 560 struct kobject kobj; 561 #endif 562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 int numa_node; 564 #endif 565 unsigned long tx_maxrate; 566 /* 567 * Number of TX timeouts for this queue 568 * (/sys/class/net/DEV/Q/trans_timeout) 569 */ 570 unsigned long trans_timeout; 571 /* 572 * write-mostly part 573 */ 574 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 575 int xmit_lock_owner; 576 /* 577 * Time (in jiffies) of last Tx 578 */ 579 unsigned long trans_start; 580 581 unsigned long state; 582 583 #ifdef CONFIG_BQL 584 struct dql dql; 585 #endif 586 } ____cacheline_aligned_in_smp; 587 588 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 589 { 590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 591 return q->numa_node; 592 #else 593 return NUMA_NO_NODE; 594 #endif 595 } 596 597 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 598 { 599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 q->numa_node = node; 601 #endif 602 } 603 604 #ifdef CONFIG_RPS 605 /* 606 * This structure holds an RPS map which can be of variable length. The 607 * map is an array of CPUs. 608 */ 609 struct rps_map { 610 unsigned int len; 611 struct rcu_head rcu; 612 u16 cpus[0]; 613 }; 614 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 615 616 /* 617 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 618 * tail pointer for that CPU's input queue at the time of last enqueue, and 619 * a hardware filter index. 620 */ 621 struct rps_dev_flow { 622 u16 cpu; 623 u16 filter; 624 unsigned int last_qtail; 625 }; 626 #define RPS_NO_FILTER 0xffff 627 628 /* 629 * The rps_dev_flow_table structure contains a table of flow mappings. 630 */ 631 struct rps_dev_flow_table { 632 unsigned int mask; 633 struct rcu_head rcu; 634 struct rps_dev_flow flows[0]; 635 }; 636 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 637 ((_num) * sizeof(struct rps_dev_flow))) 638 639 /* 640 * The rps_sock_flow_table contains mappings of flows to the last CPU 641 * on which they were processed by the application (set in recvmsg). 642 * Each entry is a 32bit value. Upper part is the high-order bits 643 * of flow hash, lower part is CPU number. 644 * rps_cpu_mask is used to partition the space, depending on number of 645 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 646 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 647 * meaning we use 32-6=26 bits for the hash. 648 */ 649 struct rps_sock_flow_table { 650 u32 mask; 651 652 u32 ents[0] ____cacheline_aligned_in_smp; 653 }; 654 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 655 656 #define RPS_NO_CPU 0xffff 657 658 extern u32 rps_cpu_mask; 659 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 660 661 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 662 u32 hash) 663 { 664 if (table && hash) { 665 unsigned int index = hash & table->mask; 666 u32 val = hash & ~rps_cpu_mask; 667 668 /* We only give a hint, preemption can change CPU under us */ 669 val |= raw_smp_processor_id(); 670 671 if (table->ents[index] != val) 672 table->ents[index] = val; 673 } 674 } 675 676 #ifdef CONFIG_RFS_ACCEL 677 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 678 u16 filter_id); 679 #endif 680 #endif /* CONFIG_RPS */ 681 682 /* This structure contains an instance of an RX queue. */ 683 struct netdev_rx_queue { 684 #ifdef CONFIG_RPS 685 struct rps_map __rcu *rps_map; 686 struct rps_dev_flow_table __rcu *rps_flow_table; 687 #endif 688 struct kobject kobj; 689 struct net_device *dev; 690 struct xdp_rxq_info xdp_rxq; 691 } ____cacheline_aligned_in_smp; 692 693 /* 694 * RX queue sysfs structures and functions. 695 */ 696 struct rx_queue_attribute { 697 struct attribute attr; 698 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 699 ssize_t (*store)(struct netdev_rx_queue *queue, 700 const char *buf, size_t len); 701 }; 702 703 #ifdef CONFIG_XPS 704 /* 705 * This structure holds an XPS map which can be of variable length. The 706 * map is an array of queues. 707 */ 708 struct xps_map { 709 unsigned int len; 710 unsigned int alloc_len; 711 struct rcu_head rcu; 712 u16 queues[0]; 713 }; 714 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 715 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 716 - sizeof(struct xps_map)) / sizeof(u16)) 717 718 /* 719 * This structure holds all XPS maps for device. Maps are indexed by CPU. 720 */ 721 struct xps_dev_maps { 722 struct rcu_head rcu; 723 struct xps_map __rcu *cpu_map[0]; 724 }; 725 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 726 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 727 #endif /* CONFIG_XPS */ 728 729 #define TC_MAX_QUEUE 16 730 #define TC_BITMASK 15 731 /* HW offloaded queuing disciplines txq count and offset maps */ 732 struct netdev_tc_txq { 733 u16 count; 734 u16 offset; 735 }; 736 737 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 738 /* 739 * This structure is to hold information about the device 740 * configured to run FCoE protocol stack. 741 */ 742 struct netdev_fcoe_hbainfo { 743 char manufacturer[64]; 744 char serial_number[64]; 745 char hardware_version[64]; 746 char driver_version[64]; 747 char optionrom_version[64]; 748 char firmware_version[64]; 749 char model[256]; 750 char model_description[256]; 751 }; 752 #endif 753 754 #define MAX_PHYS_ITEM_ID_LEN 32 755 756 /* This structure holds a unique identifier to identify some 757 * physical item (port for example) used by a netdevice. 758 */ 759 struct netdev_phys_item_id { 760 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 761 unsigned char id_len; 762 }; 763 764 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 765 struct netdev_phys_item_id *b) 766 { 767 return a->id_len == b->id_len && 768 memcmp(a->id, b->id, a->id_len) == 0; 769 } 770 771 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 772 struct sk_buff *skb); 773 774 enum tc_setup_type { 775 TC_SETUP_QDISC_MQPRIO, 776 TC_SETUP_CLSU32, 777 TC_SETUP_CLSFLOWER, 778 TC_SETUP_CLSMATCHALL, 779 TC_SETUP_CLSBPF, 780 TC_SETUP_BLOCK, 781 TC_SETUP_QDISC_CBS, 782 TC_SETUP_QDISC_RED, 783 TC_SETUP_QDISC_PRIO, 784 }; 785 786 /* These structures hold the attributes of bpf state that are being passed 787 * to the netdevice through the bpf op. 788 */ 789 enum bpf_netdev_command { 790 /* Set or clear a bpf program used in the earliest stages of packet 791 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 792 * is responsible for calling bpf_prog_put on any old progs that are 793 * stored. In case of error, the callee need not release the new prog 794 * reference, but on success it takes ownership and must bpf_prog_put 795 * when it is no longer used. 796 */ 797 XDP_SETUP_PROG, 798 XDP_SETUP_PROG_HW, 799 /* Check if a bpf program is set on the device. The callee should 800 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 801 * is equivalent to XDP_ATTACHED_DRV. 802 */ 803 XDP_QUERY_PROG, 804 /* BPF program for offload callbacks, invoked at program load time. */ 805 BPF_OFFLOAD_VERIFIER_PREP, 806 BPF_OFFLOAD_TRANSLATE, 807 BPF_OFFLOAD_DESTROY, 808 BPF_OFFLOAD_MAP_ALLOC, 809 BPF_OFFLOAD_MAP_FREE, 810 }; 811 812 struct bpf_prog_offload_ops; 813 struct netlink_ext_ack; 814 815 struct netdev_bpf { 816 enum bpf_netdev_command command; 817 union { 818 /* XDP_SETUP_PROG */ 819 struct { 820 u32 flags; 821 struct bpf_prog *prog; 822 struct netlink_ext_ack *extack; 823 }; 824 /* XDP_QUERY_PROG */ 825 struct { 826 u8 prog_attached; 827 u32 prog_id; 828 /* flags with which program was installed */ 829 u32 prog_flags; 830 }; 831 /* BPF_OFFLOAD_VERIFIER_PREP */ 832 struct { 833 struct bpf_prog *prog; 834 const struct bpf_prog_offload_ops *ops; /* callee set */ 835 } verifier; 836 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 837 struct { 838 struct bpf_prog *prog; 839 } offload; 840 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 841 struct { 842 struct bpf_offloaded_map *offmap; 843 }; 844 }; 845 }; 846 847 #ifdef CONFIG_XFRM_OFFLOAD 848 struct xfrmdev_ops { 849 int (*xdo_dev_state_add) (struct xfrm_state *x); 850 void (*xdo_dev_state_delete) (struct xfrm_state *x); 851 void (*xdo_dev_state_free) (struct xfrm_state *x); 852 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 853 struct xfrm_state *x); 854 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 855 }; 856 #endif 857 858 struct dev_ifalias { 859 struct rcu_head rcuhead; 860 char ifalias[]; 861 }; 862 863 /* 864 * This structure defines the management hooks for network devices. 865 * The following hooks can be defined; unless noted otherwise, they are 866 * optional and can be filled with a null pointer. 867 * 868 * int (*ndo_init)(struct net_device *dev); 869 * This function is called once when a network device is registered. 870 * The network device can use this for any late stage initialization 871 * or semantic validation. It can fail with an error code which will 872 * be propagated back to register_netdev. 873 * 874 * void (*ndo_uninit)(struct net_device *dev); 875 * This function is called when device is unregistered or when registration 876 * fails. It is not called if init fails. 877 * 878 * int (*ndo_open)(struct net_device *dev); 879 * This function is called when a network device transitions to the up 880 * state. 881 * 882 * int (*ndo_stop)(struct net_device *dev); 883 * This function is called when a network device transitions to the down 884 * state. 885 * 886 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 887 * struct net_device *dev); 888 * Called when a packet needs to be transmitted. 889 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 890 * the queue before that can happen; it's for obsolete devices and weird 891 * corner cases, but the stack really does a non-trivial amount 892 * of useless work if you return NETDEV_TX_BUSY. 893 * Required; cannot be NULL. 894 * 895 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 896 * struct net_device *dev 897 * netdev_features_t features); 898 * Called by core transmit path to determine if device is capable of 899 * performing offload operations on a given packet. This is to give 900 * the device an opportunity to implement any restrictions that cannot 901 * be otherwise expressed by feature flags. The check is called with 902 * the set of features that the stack has calculated and it returns 903 * those the driver believes to be appropriate. 904 * 905 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 906 * void *accel_priv, select_queue_fallback_t fallback); 907 * Called to decide which queue to use when device supports multiple 908 * transmit queues. 909 * 910 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 911 * This function is called to allow device receiver to make 912 * changes to configuration when multicast or promiscuous is enabled. 913 * 914 * void (*ndo_set_rx_mode)(struct net_device *dev); 915 * This function is called device changes address list filtering. 916 * If driver handles unicast address filtering, it should set 917 * IFF_UNICAST_FLT in its priv_flags. 918 * 919 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 920 * This function is called when the Media Access Control address 921 * needs to be changed. If this interface is not defined, the 922 * MAC address can not be changed. 923 * 924 * int (*ndo_validate_addr)(struct net_device *dev); 925 * Test if Media Access Control address is valid for the device. 926 * 927 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 928 * Called when a user requests an ioctl which can't be handled by 929 * the generic interface code. If not defined ioctls return 930 * not supported error code. 931 * 932 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 933 * Used to set network devices bus interface parameters. This interface 934 * is retained for legacy reasons; new devices should use the bus 935 * interface (PCI) for low level management. 936 * 937 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 938 * Called when a user wants to change the Maximum Transfer Unit 939 * of a device. 940 * 941 * void (*ndo_tx_timeout)(struct net_device *dev); 942 * Callback used when the transmitter has not made any progress 943 * for dev->watchdog ticks. 944 * 945 * void (*ndo_get_stats64)(struct net_device *dev, 946 * struct rtnl_link_stats64 *storage); 947 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 948 * Called when a user wants to get the network device usage 949 * statistics. Drivers must do one of the following: 950 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 951 * rtnl_link_stats64 structure passed by the caller. 952 * 2. Define @ndo_get_stats to update a net_device_stats structure 953 * (which should normally be dev->stats) and return a pointer to 954 * it. The structure may be changed asynchronously only if each 955 * field is written atomically. 956 * 3. Update dev->stats asynchronously and atomically, and define 957 * neither operation. 958 * 959 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 960 * Return true if this device supports offload stats of this attr_id. 961 * 962 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 963 * void *attr_data) 964 * Get statistics for offload operations by attr_id. Write it into the 965 * attr_data pointer. 966 * 967 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 968 * If device supports VLAN filtering this function is called when a 969 * VLAN id is registered. 970 * 971 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 972 * If device supports VLAN filtering this function is called when a 973 * VLAN id is unregistered. 974 * 975 * void (*ndo_poll_controller)(struct net_device *dev); 976 * 977 * SR-IOV management functions. 978 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 979 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 980 * u8 qos, __be16 proto); 981 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 982 * int max_tx_rate); 983 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 984 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 985 * int (*ndo_get_vf_config)(struct net_device *dev, 986 * int vf, struct ifla_vf_info *ivf); 987 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 988 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 989 * struct nlattr *port[]); 990 * 991 * Enable or disable the VF ability to query its RSS Redirection Table and 992 * Hash Key. This is needed since on some devices VF share this information 993 * with PF and querying it may introduce a theoretical security risk. 994 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 995 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 996 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 997 * void *type_data); 998 * Called to setup any 'tc' scheduler, classifier or action on @dev. 999 * This is always called from the stack with the rtnl lock held and netif 1000 * tx queues stopped. This allows the netdevice to perform queue 1001 * management safely. 1002 * 1003 * Fiber Channel over Ethernet (FCoE) offload functions. 1004 * int (*ndo_fcoe_enable)(struct net_device *dev); 1005 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1006 * so the underlying device can perform whatever needed configuration or 1007 * initialization to support acceleration of FCoE traffic. 1008 * 1009 * int (*ndo_fcoe_disable)(struct net_device *dev); 1010 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1011 * so the underlying device can perform whatever needed clean-ups to 1012 * stop supporting acceleration of FCoE traffic. 1013 * 1014 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1015 * struct scatterlist *sgl, unsigned int sgc); 1016 * Called when the FCoE Initiator wants to initialize an I/O that 1017 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1018 * perform necessary setup and returns 1 to indicate the device is set up 1019 * successfully to perform DDP on this I/O, otherwise this returns 0. 1020 * 1021 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1022 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1023 * indicated by the FC exchange id 'xid', so the underlying device can 1024 * clean up and reuse resources for later DDP requests. 1025 * 1026 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1027 * struct scatterlist *sgl, unsigned int sgc); 1028 * Called when the FCoE Target wants to initialize an I/O that 1029 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1030 * perform necessary setup and returns 1 to indicate the device is set up 1031 * successfully to perform DDP on this I/O, otherwise this returns 0. 1032 * 1033 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1034 * struct netdev_fcoe_hbainfo *hbainfo); 1035 * Called when the FCoE Protocol stack wants information on the underlying 1036 * device. This information is utilized by the FCoE protocol stack to 1037 * register attributes with Fiber Channel management service as per the 1038 * FC-GS Fabric Device Management Information(FDMI) specification. 1039 * 1040 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1041 * Called when the underlying device wants to override default World Wide 1042 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1043 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1044 * protocol stack to use. 1045 * 1046 * RFS acceleration. 1047 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1048 * u16 rxq_index, u32 flow_id); 1049 * Set hardware filter for RFS. rxq_index is the target queue index; 1050 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1051 * Return the filter ID on success, or a negative error code. 1052 * 1053 * Slave management functions (for bridge, bonding, etc). 1054 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1055 * Called to make another netdev an underling. 1056 * 1057 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1058 * Called to release previously enslaved netdev. 1059 * 1060 * Feature/offload setting functions. 1061 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1062 * netdev_features_t features); 1063 * Adjusts the requested feature flags according to device-specific 1064 * constraints, and returns the resulting flags. Must not modify 1065 * the device state. 1066 * 1067 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1068 * Called to update device configuration to new features. Passed 1069 * feature set might be less than what was returned by ndo_fix_features()). 1070 * Must return >0 or -errno if it changed dev->features itself. 1071 * 1072 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1073 * struct net_device *dev, 1074 * const unsigned char *addr, u16 vid, u16 flags) 1075 * Adds an FDB entry to dev for addr. 1076 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1077 * struct net_device *dev, 1078 * const unsigned char *addr, u16 vid) 1079 * Deletes the FDB entry from dev coresponding to addr. 1080 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1081 * struct net_device *dev, struct net_device *filter_dev, 1082 * int *idx) 1083 * Used to add FDB entries to dump requests. Implementers should add 1084 * entries to skb and update idx with the number of entries. 1085 * 1086 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1087 * u16 flags) 1088 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1089 * struct net_device *dev, u32 filter_mask, 1090 * int nlflags) 1091 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1092 * u16 flags); 1093 * 1094 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1095 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1096 * which do not represent real hardware may define this to allow their 1097 * userspace components to manage their virtual carrier state. Devices 1098 * that determine carrier state from physical hardware properties (eg 1099 * network cables) or protocol-dependent mechanisms (eg 1100 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1101 * 1102 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1103 * struct netdev_phys_item_id *ppid); 1104 * Called to get ID of physical port of this device. If driver does 1105 * not implement this, it is assumed that the hw is not able to have 1106 * multiple net devices on single physical port. 1107 * 1108 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1109 * struct udp_tunnel_info *ti); 1110 * Called by UDP tunnel to notify a driver about the UDP port and socket 1111 * address family that a UDP tunnel is listnening to. It is called only 1112 * when a new port starts listening. The operation is protected by the 1113 * RTNL. 1114 * 1115 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1116 * struct udp_tunnel_info *ti); 1117 * Called by UDP tunnel to notify the driver about a UDP port and socket 1118 * address family that the UDP tunnel is not listening to anymore. The 1119 * operation is protected by the RTNL. 1120 * 1121 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1122 * struct net_device *dev) 1123 * Called by upper layer devices to accelerate switching or other 1124 * station functionality into hardware. 'pdev is the lowerdev 1125 * to use for the offload and 'dev' is the net device that will 1126 * back the offload. Returns a pointer to the private structure 1127 * the upper layer will maintain. 1128 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1129 * Called by upper layer device to delete the station created 1130 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1131 * the station and priv is the structure returned by the add 1132 * operation. 1133 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1134 * int queue_index, u32 maxrate); 1135 * Called when a user wants to set a max-rate limitation of specific 1136 * TX queue. 1137 * int (*ndo_get_iflink)(const struct net_device *dev); 1138 * Called to get the iflink value of this device. 1139 * void (*ndo_change_proto_down)(struct net_device *dev, 1140 * bool proto_down); 1141 * This function is used to pass protocol port error state information 1142 * to the switch driver. The switch driver can react to the proto_down 1143 * by doing a phys down on the associated switch port. 1144 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1145 * This function is used to get egress tunnel information for given skb. 1146 * This is useful for retrieving outer tunnel header parameters while 1147 * sampling packet. 1148 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1149 * This function is used to specify the headroom that the skb must 1150 * consider when allocation skb during packet reception. Setting 1151 * appropriate rx headroom value allows avoiding skb head copy on 1152 * forward. Setting a negative value resets the rx headroom to the 1153 * default value. 1154 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1155 * This function is used to set or query state related to XDP on the 1156 * netdevice and manage BPF offload. See definition of 1157 * enum bpf_netdev_command for details. 1158 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp); 1159 * This function is used to submit a XDP packet for transmit on a 1160 * netdevice. 1161 * void (*ndo_xdp_flush)(struct net_device *dev); 1162 * This function is used to inform the driver to flush a particular 1163 * xdp tx queue. Must be called on same CPU as xdp_xmit. 1164 */ 1165 struct net_device_ops { 1166 int (*ndo_init)(struct net_device *dev); 1167 void (*ndo_uninit)(struct net_device *dev); 1168 int (*ndo_open)(struct net_device *dev); 1169 int (*ndo_stop)(struct net_device *dev); 1170 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1171 struct net_device *dev); 1172 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1173 struct net_device *dev, 1174 netdev_features_t features); 1175 u16 (*ndo_select_queue)(struct net_device *dev, 1176 struct sk_buff *skb, 1177 void *accel_priv, 1178 select_queue_fallback_t fallback); 1179 void (*ndo_change_rx_flags)(struct net_device *dev, 1180 int flags); 1181 void (*ndo_set_rx_mode)(struct net_device *dev); 1182 int (*ndo_set_mac_address)(struct net_device *dev, 1183 void *addr); 1184 int (*ndo_validate_addr)(struct net_device *dev); 1185 int (*ndo_do_ioctl)(struct net_device *dev, 1186 struct ifreq *ifr, int cmd); 1187 int (*ndo_set_config)(struct net_device *dev, 1188 struct ifmap *map); 1189 int (*ndo_change_mtu)(struct net_device *dev, 1190 int new_mtu); 1191 int (*ndo_neigh_setup)(struct net_device *dev, 1192 struct neigh_parms *); 1193 void (*ndo_tx_timeout) (struct net_device *dev); 1194 1195 void (*ndo_get_stats64)(struct net_device *dev, 1196 struct rtnl_link_stats64 *storage); 1197 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1198 int (*ndo_get_offload_stats)(int attr_id, 1199 const struct net_device *dev, 1200 void *attr_data); 1201 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1202 1203 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1204 __be16 proto, u16 vid); 1205 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1206 __be16 proto, u16 vid); 1207 #ifdef CONFIG_NET_POLL_CONTROLLER 1208 void (*ndo_poll_controller)(struct net_device *dev); 1209 int (*ndo_netpoll_setup)(struct net_device *dev, 1210 struct netpoll_info *info); 1211 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1212 #endif 1213 int (*ndo_set_vf_mac)(struct net_device *dev, 1214 int queue, u8 *mac); 1215 int (*ndo_set_vf_vlan)(struct net_device *dev, 1216 int queue, u16 vlan, 1217 u8 qos, __be16 proto); 1218 int (*ndo_set_vf_rate)(struct net_device *dev, 1219 int vf, int min_tx_rate, 1220 int max_tx_rate); 1221 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1222 int vf, bool setting); 1223 int (*ndo_set_vf_trust)(struct net_device *dev, 1224 int vf, bool setting); 1225 int (*ndo_get_vf_config)(struct net_device *dev, 1226 int vf, 1227 struct ifla_vf_info *ivf); 1228 int (*ndo_set_vf_link_state)(struct net_device *dev, 1229 int vf, int link_state); 1230 int (*ndo_get_vf_stats)(struct net_device *dev, 1231 int vf, 1232 struct ifla_vf_stats 1233 *vf_stats); 1234 int (*ndo_set_vf_port)(struct net_device *dev, 1235 int vf, 1236 struct nlattr *port[]); 1237 int (*ndo_get_vf_port)(struct net_device *dev, 1238 int vf, struct sk_buff *skb); 1239 int (*ndo_set_vf_guid)(struct net_device *dev, 1240 int vf, u64 guid, 1241 int guid_type); 1242 int (*ndo_set_vf_rss_query_en)( 1243 struct net_device *dev, 1244 int vf, bool setting); 1245 int (*ndo_setup_tc)(struct net_device *dev, 1246 enum tc_setup_type type, 1247 void *type_data); 1248 #if IS_ENABLED(CONFIG_FCOE) 1249 int (*ndo_fcoe_enable)(struct net_device *dev); 1250 int (*ndo_fcoe_disable)(struct net_device *dev); 1251 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1252 u16 xid, 1253 struct scatterlist *sgl, 1254 unsigned int sgc); 1255 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1256 u16 xid); 1257 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1258 u16 xid, 1259 struct scatterlist *sgl, 1260 unsigned int sgc); 1261 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1262 struct netdev_fcoe_hbainfo *hbainfo); 1263 #endif 1264 1265 #if IS_ENABLED(CONFIG_LIBFCOE) 1266 #define NETDEV_FCOE_WWNN 0 1267 #define NETDEV_FCOE_WWPN 1 1268 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1269 u64 *wwn, int type); 1270 #endif 1271 1272 #ifdef CONFIG_RFS_ACCEL 1273 int (*ndo_rx_flow_steer)(struct net_device *dev, 1274 const struct sk_buff *skb, 1275 u16 rxq_index, 1276 u32 flow_id); 1277 #endif 1278 int (*ndo_add_slave)(struct net_device *dev, 1279 struct net_device *slave_dev, 1280 struct netlink_ext_ack *extack); 1281 int (*ndo_del_slave)(struct net_device *dev, 1282 struct net_device *slave_dev); 1283 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1284 netdev_features_t features); 1285 int (*ndo_set_features)(struct net_device *dev, 1286 netdev_features_t features); 1287 int (*ndo_neigh_construct)(struct net_device *dev, 1288 struct neighbour *n); 1289 void (*ndo_neigh_destroy)(struct net_device *dev, 1290 struct neighbour *n); 1291 1292 int (*ndo_fdb_add)(struct ndmsg *ndm, 1293 struct nlattr *tb[], 1294 struct net_device *dev, 1295 const unsigned char *addr, 1296 u16 vid, 1297 u16 flags); 1298 int (*ndo_fdb_del)(struct ndmsg *ndm, 1299 struct nlattr *tb[], 1300 struct net_device *dev, 1301 const unsigned char *addr, 1302 u16 vid); 1303 int (*ndo_fdb_dump)(struct sk_buff *skb, 1304 struct netlink_callback *cb, 1305 struct net_device *dev, 1306 struct net_device *filter_dev, 1307 int *idx); 1308 1309 int (*ndo_bridge_setlink)(struct net_device *dev, 1310 struct nlmsghdr *nlh, 1311 u16 flags); 1312 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1313 u32 pid, u32 seq, 1314 struct net_device *dev, 1315 u32 filter_mask, 1316 int nlflags); 1317 int (*ndo_bridge_dellink)(struct net_device *dev, 1318 struct nlmsghdr *nlh, 1319 u16 flags); 1320 int (*ndo_change_carrier)(struct net_device *dev, 1321 bool new_carrier); 1322 int (*ndo_get_phys_port_id)(struct net_device *dev, 1323 struct netdev_phys_item_id *ppid); 1324 int (*ndo_get_phys_port_name)(struct net_device *dev, 1325 char *name, size_t len); 1326 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1327 struct udp_tunnel_info *ti); 1328 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1329 struct udp_tunnel_info *ti); 1330 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1331 struct net_device *dev); 1332 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1333 void *priv); 1334 1335 int (*ndo_get_lock_subclass)(struct net_device *dev); 1336 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1337 int queue_index, 1338 u32 maxrate); 1339 int (*ndo_get_iflink)(const struct net_device *dev); 1340 int (*ndo_change_proto_down)(struct net_device *dev, 1341 bool proto_down); 1342 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1343 struct sk_buff *skb); 1344 void (*ndo_set_rx_headroom)(struct net_device *dev, 1345 int needed_headroom); 1346 int (*ndo_bpf)(struct net_device *dev, 1347 struct netdev_bpf *bpf); 1348 int (*ndo_xdp_xmit)(struct net_device *dev, 1349 struct xdp_buff *xdp); 1350 void (*ndo_xdp_flush)(struct net_device *dev); 1351 }; 1352 1353 /** 1354 * enum net_device_priv_flags - &struct net_device priv_flags 1355 * 1356 * These are the &struct net_device, they are only set internally 1357 * by drivers and used in the kernel. These flags are invisible to 1358 * userspace; this means that the order of these flags can change 1359 * during any kernel release. 1360 * 1361 * You should have a pretty good reason to be extending these flags. 1362 * 1363 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1364 * @IFF_EBRIDGE: Ethernet bridging device 1365 * @IFF_BONDING: bonding master or slave 1366 * @IFF_ISATAP: ISATAP interface (RFC4214) 1367 * @IFF_WAN_HDLC: WAN HDLC device 1368 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1369 * release skb->dst 1370 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1371 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1372 * @IFF_MACVLAN_PORT: device used as macvlan port 1373 * @IFF_BRIDGE_PORT: device used as bridge port 1374 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1375 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1376 * @IFF_UNICAST_FLT: Supports unicast filtering 1377 * @IFF_TEAM_PORT: device used as team port 1378 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1379 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1380 * change when it's running 1381 * @IFF_MACVLAN: Macvlan device 1382 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1383 * underlying stacked devices 1384 * @IFF_IPVLAN_MASTER: IPvlan master device 1385 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1386 * @IFF_L3MDEV_MASTER: device is an L3 master device 1387 * @IFF_NO_QUEUE: device can run without qdisc attached 1388 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1389 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1390 * @IFF_TEAM: device is a team device 1391 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1392 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1393 * entity (i.e. the master device for bridged veth) 1394 * @IFF_MACSEC: device is a MACsec device 1395 */ 1396 enum netdev_priv_flags { 1397 IFF_802_1Q_VLAN = 1<<0, 1398 IFF_EBRIDGE = 1<<1, 1399 IFF_BONDING = 1<<2, 1400 IFF_ISATAP = 1<<3, 1401 IFF_WAN_HDLC = 1<<4, 1402 IFF_XMIT_DST_RELEASE = 1<<5, 1403 IFF_DONT_BRIDGE = 1<<6, 1404 IFF_DISABLE_NETPOLL = 1<<7, 1405 IFF_MACVLAN_PORT = 1<<8, 1406 IFF_BRIDGE_PORT = 1<<9, 1407 IFF_OVS_DATAPATH = 1<<10, 1408 IFF_TX_SKB_SHARING = 1<<11, 1409 IFF_UNICAST_FLT = 1<<12, 1410 IFF_TEAM_PORT = 1<<13, 1411 IFF_SUPP_NOFCS = 1<<14, 1412 IFF_LIVE_ADDR_CHANGE = 1<<15, 1413 IFF_MACVLAN = 1<<16, 1414 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1415 IFF_IPVLAN_MASTER = 1<<18, 1416 IFF_IPVLAN_SLAVE = 1<<19, 1417 IFF_L3MDEV_MASTER = 1<<20, 1418 IFF_NO_QUEUE = 1<<21, 1419 IFF_OPENVSWITCH = 1<<22, 1420 IFF_L3MDEV_SLAVE = 1<<23, 1421 IFF_TEAM = 1<<24, 1422 IFF_RXFH_CONFIGURED = 1<<25, 1423 IFF_PHONY_HEADROOM = 1<<26, 1424 IFF_MACSEC = 1<<27, 1425 }; 1426 1427 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1428 #define IFF_EBRIDGE IFF_EBRIDGE 1429 #define IFF_BONDING IFF_BONDING 1430 #define IFF_ISATAP IFF_ISATAP 1431 #define IFF_WAN_HDLC IFF_WAN_HDLC 1432 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1433 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1434 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1435 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1436 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1437 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1438 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1439 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1440 #define IFF_TEAM_PORT IFF_TEAM_PORT 1441 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1442 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1443 #define IFF_MACVLAN IFF_MACVLAN 1444 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1445 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1446 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1447 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1448 #define IFF_NO_QUEUE IFF_NO_QUEUE 1449 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1450 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1451 #define IFF_TEAM IFF_TEAM 1452 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1453 #define IFF_MACSEC IFF_MACSEC 1454 1455 /** 1456 * struct net_device - The DEVICE structure. 1457 * 1458 * Actually, this whole structure is a big mistake. It mixes I/O 1459 * data with strictly "high-level" data, and it has to know about 1460 * almost every data structure used in the INET module. 1461 * 1462 * @name: This is the first field of the "visible" part of this structure 1463 * (i.e. as seen by users in the "Space.c" file). It is the name 1464 * of the interface. 1465 * 1466 * @name_hlist: Device name hash chain, please keep it close to name[] 1467 * @ifalias: SNMP alias 1468 * @mem_end: Shared memory end 1469 * @mem_start: Shared memory start 1470 * @base_addr: Device I/O address 1471 * @irq: Device IRQ number 1472 * 1473 * @state: Generic network queuing layer state, see netdev_state_t 1474 * @dev_list: The global list of network devices 1475 * @napi_list: List entry used for polling NAPI devices 1476 * @unreg_list: List entry when we are unregistering the 1477 * device; see the function unregister_netdev 1478 * @close_list: List entry used when we are closing the device 1479 * @ptype_all: Device-specific packet handlers for all protocols 1480 * @ptype_specific: Device-specific, protocol-specific packet handlers 1481 * 1482 * @adj_list: Directly linked devices, like slaves for bonding 1483 * @features: Currently active device features 1484 * @hw_features: User-changeable features 1485 * 1486 * @wanted_features: User-requested features 1487 * @vlan_features: Mask of features inheritable by VLAN devices 1488 * 1489 * @hw_enc_features: Mask of features inherited by encapsulating devices 1490 * This field indicates what encapsulation 1491 * offloads the hardware is capable of doing, 1492 * and drivers will need to set them appropriately. 1493 * 1494 * @mpls_features: Mask of features inheritable by MPLS 1495 * 1496 * @ifindex: interface index 1497 * @group: The group the device belongs to 1498 * 1499 * @stats: Statistics struct, which was left as a legacy, use 1500 * rtnl_link_stats64 instead 1501 * 1502 * @rx_dropped: Dropped packets by core network, 1503 * do not use this in drivers 1504 * @tx_dropped: Dropped packets by core network, 1505 * do not use this in drivers 1506 * @rx_nohandler: nohandler dropped packets by core network on 1507 * inactive devices, do not use this in drivers 1508 * @carrier_up_count: Number of times the carrier has been up 1509 * @carrier_down_count: Number of times the carrier has been down 1510 * 1511 * @wireless_handlers: List of functions to handle Wireless Extensions, 1512 * instead of ioctl, 1513 * see <net/iw_handler.h> for details. 1514 * @wireless_data: Instance data managed by the core of wireless extensions 1515 * 1516 * @netdev_ops: Includes several pointers to callbacks, 1517 * if one wants to override the ndo_*() functions 1518 * @ethtool_ops: Management operations 1519 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1520 * discovery handling. Necessary for e.g. 6LoWPAN. 1521 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1522 * of Layer 2 headers. 1523 * 1524 * @flags: Interface flags (a la BSD) 1525 * @priv_flags: Like 'flags' but invisible to userspace, 1526 * see if.h for the definitions 1527 * @gflags: Global flags ( kept as legacy ) 1528 * @padded: How much padding added by alloc_netdev() 1529 * @operstate: RFC2863 operstate 1530 * @link_mode: Mapping policy to operstate 1531 * @if_port: Selectable AUI, TP, ... 1532 * @dma: DMA channel 1533 * @mtu: Interface MTU value 1534 * @min_mtu: Interface Minimum MTU value 1535 * @max_mtu: Interface Maximum MTU value 1536 * @type: Interface hardware type 1537 * @hard_header_len: Maximum hardware header length. 1538 * @min_header_len: Minimum hardware header length 1539 * 1540 * @needed_headroom: Extra headroom the hardware may need, but not in all 1541 * cases can this be guaranteed 1542 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1543 * cases can this be guaranteed. Some cases also use 1544 * LL_MAX_HEADER instead to allocate the skb 1545 * 1546 * interface address info: 1547 * 1548 * @perm_addr: Permanent hw address 1549 * @addr_assign_type: Hw address assignment type 1550 * @addr_len: Hardware address length 1551 * @neigh_priv_len: Used in neigh_alloc() 1552 * @dev_id: Used to differentiate devices that share 1553 * the same link layer address 1554 * @dev_port: Used to differentiate devices that share 1555 * the same function 1556 * @addr_list_lock: XXX: need comments on this one 1557 * @uc_promisc: Counter that indicates promiscuous mode 1558 * has been enabled due to the need to listen to 1559 * additional unicast addresses in a device that 1560 * does not implement ndo_set_rx_mode() 1561 * @uc: unicast mac addresses 1562 * @mc: multicast mac addresses 1563 * @dev_addrs: list of device hw addresses 1564 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1565 * @promiscuity: Number of times the NIC is told to work in 1566 * promiscuous mode; if it becomes 0 the NIC will 1567 * exit promiscuous mode 1568 * @allmulti: Counter, enables or disables allmulticast mode 1569 * 1570 * @vlan_info: VLAN info 1571 * @dsa_ptr: dsa specific data 1572 * @tipc_ptr: TIPC specific data 1573 * @atalk_ptr: AppleTalk link 1574 * @ip_ptr: IPv4 specific data 1575 * @dn_ptr: DECnet specific data 1576 * @ip6_ptr: IPv6 specific data 1577 * @ax25_ptr: AX.25 specific data 1578 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1579 * 1580 * @dev_addr: Hw address (before bcast, 1581 * because most packets are unicast) 1582 * 1583 * @_rx: Array of RX queues 1584 * @num_rx_queues: Number of RX queues 1585 * allocated at register_netdev() time 1586 * @real_num_rx_queues: Number of RX queues currently active in device 1587 * 1588 * @rx_handler: handler for received packets 1589 * @rx_handler_data: XXX: need comments on this one 1590 * @miniq_ingress: ingress/clsact qdisc specific data for 1591 * ingress processing 1592 * @ingress_queue: XXX: need comments on this one 1593 * @broadcast: hw bcast address 1594 * 1595 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1596 * indexed by RX queue number. Assigned by driver. 1597 * This must only be set if the ndo_rx_flow_steer 1598 * operation is defined 1599 * @index_hlist: Device index hash chain 1600 * 1601 * @_tx: Array of TX queues 1602 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1603 * @real_num_tx_queues: Number of TX queues currently active in device 1604 * @qdisc: Root qdisc from userspace point of view 1605 * @tx_queue_len: Max frames per queue allowed 1606 * @tx_global_lock: XXX: need comments on this one 1607 * 1608 * @xps_maps: XXX: need comments on this one 1609 * @miniq_egress: clsact qdisc specific data for 1610 * egress processing 1611 * @watchdog_timeo: Represents the timeout that is used by 1612 * the watchdog (see dev_watchdog()) 1613 * @watchdog_timer: List of timers 1614 * 1615 * @pcpu_refcnt: Number of references to this device 1616 * @todo_list: Delayed register/unregister 1617 * @link_watch_list: XXX: need comments on this one 1618 * 1619 * @reg_state: Register/unregister state machine 1620 * @dismantle: Device is going to be freed 1621 * @rtnl_link_state: This enum represents the phases of creating 1622 * a new link 1623 * 1624 * @needs_free_netdev: Should unregister perform free_netdev? 1625 * @priv_destructor: Called from unregister 1626 * @npinfo: XXX: need comments on this one 1627 * @nd_net: Network namespace this network device is inside 1628 * 1629 * @ml_priv: Mid-layer private 1630 * @lstats: Loopback statistics 1631 * @tstats: Tunnel statistics 1632 * @dstats: Dummy statistics 1633 * @vstats: Virtual ethernet statistics 1634 * 1635 * @garp_port: GARP 1636 * @mrp_port: MRP 1637 * 1638 * @dev: Class/net/name entry 1639 * @sysfs_groups: Space for optional device, statistics and wireless 1640 * sysfs groups 1641 * 1642 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1643 * @rtnl_link_ops: Rtnl_link_ops 1644 * 1645 * @gso_max_size: Maximum size of generic segmentation offload 1646 * @gso_max_segs: Maximum number of segments that can be passed to the 1647 * NIC for GSO 1648 * 1649 * @dcbnl_ops: Data Center Bridging netlink ops 1650 * @num_tc: Number of traffic classes in the net device 1651 * @tc_to_txq: XXX: need comments on this one 1652 * @prio_tc_map: XXX: need comments on this one 1653 * 1654 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1655 * 1656 * @priomap: XXX: need comments on this one 1657 * @phydev: Physical device may attach itself 1658 * for hardware timestamping 1659 * 1660 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1661 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1662 * 1663 * @proto_down: protocol port state information can be sent to the 1664 * switch driver and used to set the phys state of the 1665 * switch port. 1666 * 1667 * FIXME: cleanup struct net_device such that network protocol info 1668 * moves out. 1669 */ 1670 1671 struct net_device { 1672 char name[IFNAMSIZ]; 1673 struct hlist_node name_hlist; 1674 struct dev_ifalias __rcu *ifalias; 1675 /* 1676 * I/O specific fields 1677 * FIXME: Merge these and struct ifmap into one 1678 */ 1679 unsigned long mem_end; 1680 unsigned long mem_start; 1681 unsigned long base_addr; 1682 int irq; 1683 1684 /* 1685 * Some hardware also needs these fields (state,dev_list, 1686 * napi_list,unreg_list,close_list) but they are not 1687 * part of the usual set specified in Space.c. 1688 */ 1689 1690 unsigned long state; 1691 1692 struct list_head dev_list; 1693 struct list_head napi_list; 1694 struct list_head unreg_list; 1695 struct list_head close_list; 1696 struct list_head ptype_all; 1697 struct list_head ptype_specific; 1698 1699 struct { 1700 struct list_head upper; 1701 struct list_head lower; 1702 } adj_list; 1703 1704 netdev_features_t features; 1705 netdev_features_t hw_features; 1706 netdev_features_t wanted_features; 1707 netdev_features_t vlan_features; 1708 netdev_features_t hw_enc_features; 1709 netdev_features_t mpls_features; 1710 netdev_features_t gso_partial_features; 1711 1712 int ifindex; 1713 int group; 1714 1715 struct net_device_stats stats; 1716 1717 atomic_long_t rx_dropped; 1718 atomic_long_t tx_dropped; 1719 atomic_long_t rx_nohandler; 1720 1721 /* Stats to monitor link on/off, flapping */ 1722 atomic_t carrier_up_count; 1723 atomic_t carrier_down_count; 1724 1725 #ifdef CONFIG_WIRELESS_EXT 1726 const struct iw_handler_def *wireless_handlers; 1727 struct iw_public_data *wireless_data; 1728 #endif 1729 const struct net_device_ops *netdev_ops; 1730 const struct ethtool_ops *ethtool_ops; 1731 #ifdef CONFIG_NET_SWITCHDEV 1732 const struct switchdev_ops *switchdev_ops; 1733 #endif 1734 #ifdef CONFIG_NET_L3_MASTER_DEV 1735 const struct l3mdev_ops *l3mdev_ops; 1736 #endif 1737 #if IS_ENABLED(CONFIG_IPV6) 1738 const struct ndisc_ops *ndisc_ops; 1739 #endif 1740 1741 #ifdef CONFIG_XFRM_OFFLOAD 1742 const struct xfrmdev_ops *xfrmdev_ops; 1743 #endif 1744 1745 const struct header_ops *header_ops; 1746 1747 unsigned int flags; 1748 unsigned int priv_flags; 1749 1750 unsigned short gflags; 1751 unsigned short padded; 1752 1753 unsigned char operstate; 1754 unsigned char link_mode; 1755 1756 unsigned char if_port; 1757 unsigned char dma; 1758 1759 unsigned int mtu; 1760 unsigned int min_mtu; 1761 unsigned int max_mtu; 1762 unsigned short type; 1763 unsigned short hard_header_len; 1764 unsigned char min_header_len; 1765 1766 unsigned short needed_headroom; 1767 unsigned short needed_tailroom; 1768 1769 /* Interface address info. */ 1770 unsigned char perm_addr[MAX_ADDR_LEN]; 1771 unsigned char addr_assign_type; 1772 unsigned char addr_len; 1773 unsigned short neigh_priv_len; 1774 unsigned short dev_id; 1775 unsigned short dev_port; 1776 spinlock_t addr_list_lock; 1777 unsigned char name_assign_type; 1778 bool uc_promisc; 1779 struct netdev_hw_addr_list uc; 1780 struct netdev_hw_addr_list mc; 1781 struct netdev_hw_addr_list dev_addrs; 1782 1783 #ifdef CONFIG_SYSFS 1784 struct kset *queues_kset; 1785 #endif 1786 unsigned int promiscuity; 1787 unsigned int allmulti; 1788 1789 1790 /* Protocol-specific pointers */ 1791 1792 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1793 struct vlan_info __rcu *vlan_info; 1794 #endif 1795 #if IS_ENABLED(CONFIG_NET_DSA) 1796 struct dsa_port *dsa_ptr; 1797 #endif 1798 #if IS_ENABLED(CONFIG_TIPC) 1799 struct tipc_bearer __rcu *tipc_ptr; 1800 #endif 1801 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1802 void *atalk_ptr; 1803 #endif 1804 struct in_device __rcu *ip_ptr; 1805 #if IS_ENABLED(CONFIG_DECNET) 1806 struct dn_dev __rcu *dn_ptr; 1807 #endif 1808 struct inet6_dev __rcu *ip6_ptr; 1809 #if IS_ENABLED(CONFIG_AX25) 1810 void *ax25_ptr; 1811 #endif 1812 struct wireless_dev *ieee80211_ptr; 1813 struct wpan_dev *ieee802154_ptr; 1814 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1815 struct mpls_dev __rcu *mpls_ptr; 1816 #endif 1817 1818 /* 1819 * Cache lines mostly used on receive path (including eth_type_trans()) 1820 */ 1821 /* Interface address info used in eth_type_trans() */ 1822 unsigned char *dev_addr; 1823 1824 struct netdev_rx_queue *_rx; 1825 unsigned int num_rx_queues; 1826 unsigned int real_num_rx_queues; 1827 1828 struct bpf_prog __rcu *xdp_prog; 1829 unsigned long gro_flush_timeout; 1830 rx_handler_func_t __rcu *rx_handler; 1831 void __rcu *rx_handler_data; 1832 1833 #ifdef CONFIG_NET_CLS_ACT 1834 struct mini_Qdisc __rcu *miniq_ingress; 1835 #endif 1836 struct netdev_queue __rcu *ingress_queue; 1837 #ifdef CONFIG_NETFILTER_INGRESS 1838 struct nf_hook_entries __rcu *nf_hooks_ingress; 1839 #endif 1840 1841 unsigned char broadcast[MAX_ADDR_LEN]; 1842 #ifdef CONFIG_RFS_ACCEL 1843 struct cpu_rmap *rx_cpu_rmap; 1844 #endif 1845 struct hlist_node index_hlist; 1846 1847 /* 1848 * Cache lines mostly used on transmit path 1849 */ 1850 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1851 unsigned int num_tx_queues; 1852 unsigned int real_num_tx_queues; 1853 struct Qdisc *qdisc; 1854 #ifdef CONFIG_NET_SCHED 1855 DECLARE_HASHTABLE (qdisc_hash, 4); 1856 #endif 1857 unsigned int tx_queue_len; 1858 spinlock_t tx_global_lock; 1859 int watchdog_timeo; 1860 1861 #ifdef CONFIG_XPS 1862 struct xps_dev_maps __rcu *xps_maps; 1863 #endif 1864 #ifdef CONFIG_NET_CLS_ACT 1865 struct mini_Qdisc __rcu *miniq_egress; 1866 #endif 1867 1868 /* These may be needed for future network-power-down code. */ 1869 struct timer_list watchdog_timer; 1870 1871 int __percpu *pcpu_refcnt; 1872 struct list_head todo_list; 1873 1874 struct list_head link_watch_list; 1875 1876 enum { NETREG_UNINITIALIZED=0, 1877 NETREG_REGISTERED, /* completed register_netdevice */ 1878 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1879 NETREG_UNREGISTERED, /* completed unregister todo */ 1880 NETREG_RELEASED, /* called free_netdev */ 1881 NETREG_DUMMY, /* dummy device for NAPI poll */ 1882 } reg_state:8; 1883 1884 bool dismantle; 1885 1886 enum { 1887 RTNL_LINK_INITIALIZED, 1888 RTNL_LINK_INITIALIZING, 1889 } rtnl_link_state:16; 1890 1891 bool needs_free_netdev; 1892 void (*priv_destructor)(struct net_device *dev); 1893 1894 #ifdef CONFIG_NETPOLL 1895 struct netpoll_info __rcu *npinfo; 1896 #endif 1897 1898 possible_net_t nd_net; 1899 1900 /* mid-layer private */ 1901 union { 1902 void *ml_priv; 1903 struct pcpu_lstats __percpu *lstats; 1904 struct pcpu_sw_netstats __percpu *tstats; 1905 struct pcpu_dstats __percpu *dstats; 1906 struct pcpu_vstats __percpu *vstats; 1907 }; 1908 1909 #if IS_ENABLED(CONFIG_GARP) 1910 struct garp_port __rcu *garp_port; 1911 #endif 1912 #if IS_ENABLED(CONFIG_MRP) 1913 struct mrp_port __rcu *mrp_port; 1914 #endif 1915 1916 struct device dev; 1917 const struct attribute_group *sysfs_groups[4]; 1918 const struct attribute_group *sysfs_rx_queue_group; 1919 1920 const struct rtnl_link_ops *rtnl_link_ops; 1921 1922 /* for setting kernel sock attribute on TCP connection setup */ 1923 #define GSO_MAX_SIZE 65536 1924 unsigned int gso_max_size; 1925 #define GSO_MAX_SEGS 65535 1926 u16 gso_max_segs; 1927 1928 #ifdef CONFIG_DCB 1929 const struct dcbnl_rtnl_ops *dcbnl_ops; 1930 #endif 1931 u8 num_tc; 1932 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1933 u8 prio_tc_map[TC_BITMASK + 1]; 1934 1935 #if IS_ENABLED(CONFIG_FCOE) 1936 unsigned int fcoe_ddp_xid; 1937 #endif 1938 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1939 struct netprio_map __rcu *priomap; 1940 #endif 1941 struct phy_device *phydev; 1942 struct lock_class_key *qdisc_tx_busylock; 1943 struct lock_class_key *qdisc_running_key; 1944 bool proto_down; 1945 }; 1946 #define to_net_dev(d) container_of(d, struct net_device, dev) 1947 1948 static inline bool netif_elide_gro(const struct net_device *dev) 1949 { 1950 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1951 return true; 1952 return false; 1953 } 1954 1955 #define NETDEV_ALIGN 32 1956 1957 static inline 1958 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1959 { 1960 return dev->prio_tc_map[prio & TC_BITMASK]; 1961 } 1962 1963 static inline 1964 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1965 { 1966 if (tc >= dev->num_tc) 1967 return -EINVAL; 1968 1969 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1970 return 0; 1971 } 1972 1973 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1974 void netdev_reset_tc(struct net_device *dev); 1975 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1976 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1977 1978 static inline 1979 int netdev_get_num_tc(struct net_device *dev) 1980 { 1981 return dev->num_tc; 1982 } 1983 1984 static inline 1985 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1986 unsigned int index) 1987 { 1988 return &dev->_tx[index]; 1989 } 1990 1991 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1992 const struct sk_buff *skb) 1993 { 1994 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1995 } 1996 1997 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1998 void (*f)(struct net_device *, 1999 struct netdev_queue *, 2000 void *), 2001 void *arg) 2002 { 2003 unsigned int i; 2004 2005 for (i = 0; i < dev->num_tx_queues; i++) 2006 f(dev, &dev->_tx[i], arg); 2007 } 2008 2009 #define netdev_lockdep_set_classes(dev) \ 2010 { \ 2011 static struct lock_class_key qdisc_tx_busylock_key; \ 2012 static struct lock_class_key qdisc_running_key; \ 2013 static struct lock_class_key qdisc_xmit_lock_key; \ 2014 static struct lock_class_key dev_addr_list_lock_key; \ 2015 unsigned int i; \ 2016 \ 2017 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2018 (dev)->qdisc_running_key = &qdisc_running_key; \ 2019 lockdep_set_class(&(dev)->addr_list_lock, \ 2020 &dev_addr_list_lock_key); \ 2021 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2022 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2023 &qdisc_xmit_lock_key); \ 2024 } 2025 2026 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2027 struct sk_buff *skb, 2028 void *accel_priv); 2029 2030 /* returns the headroom that the master device needs to take in account 2031 * when forwarding to this dev 2032 */ 2033 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2034 { 2035 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2036 } 2037 2038 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2039 { 2040 if (dev->netdev_ops->ndo_set_rx_headroom) 2041 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2042 } 2043 2044 /* set the device rx headroom to the dev's default */ 2045 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2046 { 2047 netdev_set_rx_headroom(dev, -1); 2048 } 2049 2050 /* 2051 * Net namespace inlines 2052 */ 2053 static inline 2054 struct net *dev_net(const struct net_device *dev) 2055 { 2056 return read_pnet(&dev->nd_net); 2057 } 2058 2059 static inline 2060 void dev_net_set(struct net_device *dev, struct net *net) 2061 { 2062 write_pnet(&dev->nd_net, net); 2063 } 2064 2065 /** 2066 * netdev_priv - access network device private data 2067 * @dev: network device 2068 * 2069 * Get network device private data 2070 */ 2071 static inline void *netdev_priv(const struct net_device *dev) 2072 { 2073 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2074 } 2075 2076 /* Set the sysfs physical device reference for the network logical device 2077 * if set prior to registration will cause a symlink during initialization. 2078 */ 2079 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2080 2081 /* Set the sysfs device type for the network logical device to allow 2082 * fine-grained identification of different network device types. For 2083 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2084 */ 2085 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2086 2087 /* Default NAPI poll() weight 2088 * Device drivers are strongly advised to not use bigger value 2089 */ 2090 #define NAPI_POLL_WEIGHT 64 2091 2092 /** 2093 * netif_napi_add - initialize a NAPI context 2094 * @dev: network device 2095 * @napi: NAPI context 2096 * @poll: polling function 2097 * @weight: default weight 2098 * 2099 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2100 * *any* of the other NAPI-related functions. 2101 */ 2102 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2103 int (*poll)(struct napi_struct *, int), int weight); 2104 2105 /** 2106 * netif_tx_napi_add - initialize a NAPI context 2107 * @dev: network device 2108 * @napi: NAPI context 2109 * @poll: polling function 2110 * @weight: default weight 2111 * 2112 * This variant of netif_napi_add() should be used from drivers using NAPI 2113 * to exclusively poll a TX queue. 2114 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2115 */ 2116 static inline void netif_tx_napi_add(struct net_device *dev, 2117 struct napi_struct *napi, 2118 int (*poll)(struct napi_struct *, int), 2119 int weight) 2120 { 2121 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2122 netif_napi_add(dev, napi, poll, weight); 2123 } 2124 2125 /** 2126 * netif_napi_del - remove a NAPI context 2127 * @napi: NAPI context 2128 * 2129 * netif_napi_del() removes a NAPI context from the network device NAPI list 2130 */ 2131 void netif_napi_del(struct napi_struct *napi); 2132 2133 struct napi_gro_cb { 2134 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2135 void *frag0; 2136 2137 /* Length of frag0. */ 2138 unsigned int frag0_len; 2139 2140 /* This indicates where we are processing relative to skb->data. */ 2141 int data_offset; 2142 2143 /* This is non-zero if the packet cannot be merged with the new skb. */ 2144 u16 flush; 2145 2146 /* Save the IP ID here and check when we get to the transport layer */ 2147 u16 flush_id; 2148 2149 /* Number of segments aggregated. */ 2150 u16 count; 2151 2152 /* Start offset for remote checksum offload */ 2153 u16 gro_remcsum_start; 2154 2155 /* jiffies when first packet was created/queued */ 2156 unsigned long age; 2157 2158 /* Used in ipv6_gro_receive() and foo-over-udp */ 2159 u16 proto; 2160 2161 /* This is non-zero if the packet may be of the same flow. */ 2162 u8 same_flow:1; 2163 2164 /* Used in tunnel GRO receive */ 2165 u8 encap_mark:1; 2166 2167 /* GRO checksum is valid */ 2168 u8 csum_valid:1; 2169 2170 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2171 u8 csum_cnt:3; 2172 2173 /* Free the skb? */ 2174 u8 free:2; 2175 #define NAPI_GRO_FREE 1 2176 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2177 2178 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2179 u8 is_ipv6:1; 2180 2181 /* Used in GRE, set in fou/gue_gro_receive */ 2182 u8 is_fou:1; 2183 2184 /* Used to determine if flush_id can be ignored */ 2185 u8 is_atomic:1; 2186 2187 /* Number of gro_receive callbacks this packet already went through */ 2188 u8 recursion_counter:4; 2189 2190 /* 1 bit hole */ 2191 2192 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2193 __wsum csum; 2194 2195 /* used in skb_gro_receive() slow path */ 2196 struct sk_buff *last; 2197 }; 2198 2199 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2200 2201 #define GRO_RECURSION_LIMIT 15 2202 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2203 { 2204 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2205 } 2206 2207 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2208 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2209 struct sk_buff **head, 2210 struct sk_buff *skb) 2211 { 2212 if (unlikely(gro_recursion_inc_test(skb))) { 2213 NAPI_GRO_CB(skb)->flush |= 1; 2214 return NULL; 2215 } 2216 2217 return cb(head, skb); 2218 } 2219 2220 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2221 struct sk_buff *); 2222 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2223 struct sock *sk, 2224 struct sk_buff **head, 2225 struct sk_buff *skb) 2226 { 2227 if (unlikely(gro_recursion_inc_test(skb))) { 2228 NAPI_GRO_CB(skb)->flush |= 1; 2229 return NULL; 2230 } 2231 2232 return cb(sk, head, skb); 2233 } 2234 2235 struct packet_type { 2236 __be16 type; /* This is really htons(ether_type). */ 2237 struct net_device *dev; /* NULL is wildcarded here */ 2238 int (*func) (struct sk_buff *, 2239 struct net_device *, 2240 struct packet_type *, 2241 struct net_device *); 2242 bool (*id_match)(struct packet_type *ptype, 2243 struct sock *sk); 2244 void *af_packet_priv; 2245 struct list_head list; 2246 }; 2247 2248 struct offload_callbacks { 2249 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2250 netdev_features_t features); 2251 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2252 struct sk_buff *skb); 2253 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2254 }; 2255 2256 struct packet_offload { 2257 __be16 type; /* This is really htons(ether_type). */ 2258 u16 priority; 2259 struct offload_callbacks callbacks; 2260 struct list_head list; 2261 }; 2262 2263 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2264 struct pcpu_sw_netstats { 2265 u64 rx_packets; 2266 u64 rx_bytes; 2267 u64 tx_packets; 2268 u64 tx_bytes; 2269 struct u64_stats_sync syncp; 2270 }; 2271 2272 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2273 ({ \ 2274 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2275 if (pcpu_stats) { \ 2276 int __cpu; \ 2277 for_each_possible_cpu(__cpu) { \ 2278 typeof(type) *stat; \ 2279 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2280 u64_stats_init(&stat->syncp); \ 2281 } \ 2282 } \ 2283 pcpu_stats; \ 2284 }) 2285 2286 #define netdev_alloc_pcpu_stats(type) \ 2287 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2288 2289 enum netdev_lag_tx_type { 2290 NETDEV_LAG_TX_TYPE_UNKNOWN, 2291 NETDEV_LAG_TX_TYPE_RANDOM, 2292 NETDEV_LAG_TX_TYPE_BROADCAST, 2293 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2294 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2295 NETDEV_LAG_TX_TYPE_HASH, 2296 }; 2297 2298 struct netdev_lag_upper_info { 2299 enum netdev_lag_tx_type tx_type; 2300 }; 2301 2302 struct netdev_lag_lower_state_info { 2303 u8 link_up : 1, 2304 tx_enabled : 1; 2305 }; 2306 2307 #include <linux/notifier.h> 2308 2309 /* netdevice notifier chain. Please remember to update the rtnetlink 2310 * notification exclusion list in rtnetlink_event() when adding new 2311 * types. 2312 */ 2313 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2314 #define NETDEV_DOWN 0x0002 2315 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2316 detected a hardware crash and restarted 2317 - we can use this eg to kick tcp sessions 2318 once done */ 2319 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2320 #define NETDEV_REGISTER 0x0005 2321 #define NETDEV_UNREGISTER 0x0006 2322 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2323 #define NETDEV_CHANGEADDR 0x0008 2324 #define NETDEV_GOING_DOWN 0x0009 2325 #define NETDEV_CHANGENAME 0x000A 2326 #define NETDEV_FEAT_CHANGE 0x000B 2327 #define NETDEV_BONDING_FAILOVER 0x000C 2328 #define NETDEV_PRE_UP 0x000D 2329 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2330 #define NETDEV_POST_TYPE_CHANGE 0x000F 2331 #define NETDEV_POST_INIT 0x0010 2332 #define NETDEV_UNREGISTER_FINAL 0x0011 2333 #define NETDEV_RELEASE 0x0012 2334 #define NETDEV_NOTIFY_PEERS 0x0013 2335 #define NETDEV_JOIN 0x0014 2336 #define NETDEV_CHANGEUPPER 0x0015 2337 #define NETDEV_RESEND_IGMP 0x0016 2338 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2339 #define NETDEV_CHANGEINFODATA 0x0018 2340 #define NETDEV_BONDING_INFO 0x0019 2341 #define NETDEV_PRECHANGEUPPER 0x001A 2342 #define NETDEV_CHANGELOWERSTATE 0x001B 2343 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2344 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D 2345 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2346 2347 int register_netdevice_notifier(struct notifier_block *nb); 2348 int unregister_netdevice_notifier(struct notifier_block *nb); 2349 2350 struct netdev_notifier_info { 2351 struct net_device *dev; 2352 struct netlink_ext_ack *extack; 2353 }; 2354 2355 struct netdev_notifier_change_info { 2356 struct netdev_notifier_info info; /* must be first */ 2357 unsigned int flags_changed; 2358 }; 2359 2360 struct netdev_notifier_changeupper_info { 2361 struct netdev_notifier_info info; /* must be first */ 2362 struct net_device *upper_dev; /* new upper dev */ 2363 bool master; /* is upper dev master */ 2364 bool linking; /* is the notification for link or unlink */ 2365 void *upper_info; /* upper dev info */ 2366 }; 2367 2368 struct netdev_notifier_changelowerstate_info { 2369 struct netdev_notifier_info info; /* must be first */ 2370 void *lower_state_info; /* is lower dev state */ 2371 }; 2372 2373 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2374 struct net_device *dev) 2375 { 2376 info->dev = dev; 2377 info->extack = NULL; 2378 } 2379 2380 static inline struct net_device * 2381 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2382 { 2383 return info->dev; 2384 } 2385 2386 static inline struct netlink_ext_ack * 2387 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2388 { 2389 return info->extack; 2390 } 2391 2392 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2393 2394 2395 extern rwlock_t dev_base_lock; /* Device list lock */ 2396 2397 #define for_each_netdev(net, d) \ 2398 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2399 #define for_each_netdev_reverse(net, d) \ 2400 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2401 #define for_each_netdev_rcu(net, d) \ 2402 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2403 #define for_each_netdev_safe(net, d, n) \ 2404 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2405 #define for_each_netdev_continue(net, d) \ 2406 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2407 #define for_each_netdev_continue_rcu(net, d) \ 2408 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2409 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2410 for_each_netdev_rcu(&init_net, slave) \ 2411 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2412 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2413 2414 static inline struct net_device *next_net_device(struct net_device *dev) 2415 { 2416 struct list_head *lh; 2417 struct net *net; 2418 2419 net = dev_net(dev); 2420 lh = dev->dev_list.next; 2421 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2422 } 2423 2424 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2425 { 2426 struct list_head *lh; 2427 struct net *net; 2428 2429 net = dev_net(dev); 2430 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2431 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2432 } 2433 2434 static inline struct net_device *first_net_device(struct net *net) 2435 { 2436 return list_empty(&net->dev_base_head) ? NULL : 2437 net_device_entry(net->dev_base_head.next); 2438 } 2439 2440 static inline struct net_device *first_net_device_rcu(struct net *net) 2441 { 2442 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2443 2444 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2445 } 2446 2447 int netdev_boot_setup_check(struct net_device *dev); 2448 unsigned long netdev_boot_base(const char *prefix, int unit); 2449 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2450 const char *hwaddr); 2451 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2452 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2453 void dev_add_pack(struct packet_type *pt); 2454 void dev_remove_pack(struct packet_type *pt); 2455 void __dev_remove_pack(struct packet_type *pt); 2456 void dev_add_offload(struct packet_offload *po); 2457 void dev_remove_offload(struct packet_offload *po); 2458 2459 int dev_get_iflink(const struct net_device *dev); 2460 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2461 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2462 unsigned short mask); 2463 struct net_device *dev_get_by_name(struct net *net, const char *name); 2464 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2465 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2466 int dev_alloc_name(struct net_device *dev, const char *name); 2467 int dev_open(struct net_device *dev); 2468 void dev_close(struct net_device *dev); 2469 void dev_close_many(struct list_head *head, bool unlink); 2470 void dev_disable_lro(struct net_device *dev); 2471 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2472 int dev_queue_xmit(struct sk_buff *skb); 2473 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2474 int register_netdevice(struct net_device *dev); 2475 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2476 void unregister_netdevice_many(struct list_head *head); 2477 static inline void unregister_netdevice(struct net_device *dev) 2478 { 2479 unregister_netdevice_queue(dev, NULL); 2480 } 2481 2482 int netdev_refcnt_read(const struct net_device *dev); 2483 void free_netdev(struct net_device *dev); 2484 void netdev_freemem(struct net_device *dev); 2485 void synchronize_net(void); 2486 int init_dummy_netdev(struct net_device *dev); 2487 2488 DECLARE_PER_CPU(int, xmit_recursion); 2489 #define XMIT_RECURSION_LIMIT 10 2490 2491 static inline int dev_recursion_level(void) 2492 { 2493 return this_cpu_read(xmit_recursion); 2494 } 2495 2496 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2497 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2498 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2499 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2500 int netdev_get_name(struct net *net, char *name, int ifindex); 2501 int dev_restart(struct net_device *dev); 2502 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2503 2504 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2505 { 2506 return NAPI_GRO_CB(skb)->data_offset; 2507 } 2508 2509 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2510 { 2511 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2512 } 2513 2514 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2515 { 2516 NAPI_GRO_CB(skb)->data_offset += len; 2517 } 2518 2519 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2520 unsigned int offset) 2521 { 2522 return NAPI_GRO_CB(skb)->frag0 + offset; 2523 } 2524 2525 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2526 { 2527 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2528 } 2529 2530 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2531 { 2532 NAPI_GRO_CB(skb)->frag0 = NULL; 2533 NAPI_GRO_CB(skb)->frag0_len = 0; 2534 } 2535 2536 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2537 unsigned int offset) 2538 { 2539 if (!pskb_may_pull(skb, hlen)) 2540 return NULL; 2541 2542 skb_gro_frag0_invalidate(skb); 2543 return skb->data + offset; 2544 } 2545 2546 static inline void *skb_gro_network_header(struct sk_buff *skb) 2547 { 2548 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2549 skb_network_offset(skb); 2550 } 2551 2552 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2553 const void *start, unsigned int len) 2554 { 2555 if (NAPI_GRO_CB(skb)->csum_valid) 2556 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2557 csum_partial(start, len, 0)); 2558 } 2559 2560 /* GRO checksum functions. These are logical equivalents of the normal 2561 * checksum functions (in skbuff.h) except that they operate on the GRO 2562 * offsets and fields in sk_buff. 2563 */ 2564 2565 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2566 2567 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2568 { 2569 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2570 } 2571 2572 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2573 bool zero_okay, 2574 __sum16 check) 2575 { 2576 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2577 skb_checksum_start_offset(skb) < 2578 skb_gro_offset(skb)) && 2579 !skb_at_gro_remcsum_start(skb) && 2580 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2581 (!zero_okay || check)); 2582 } 2583 2584 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2585 __wsum psum) 2586 { 2587 if (NAPI_GRO_CB(skb)->csum_valid && 2588 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2589 return 0; 2590 2591 NAPI_GRO_CB(skb)->csum = psum; 2592 2593 return __skb_gro_checksum_complete(skb); 2594 } 2595 2596 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2597 { 2598 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2599 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2600 NAPI_GRO_CB(skb)->csum_cnt--; 2601 } else { 2602 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2603 * verified a new top level checksum or an encapsulated one 2604 * during GRO. This saves work if we fallback to normal path. 2605 */ 2606 __skb_incr_checksum_unnecessary(skb); 2607 } 2608 } 2609 2610 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2611 compute_pseudo) \ 2612 ({ \ 2613 __sum16 __ret = 0; \ 2614 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2615 __ret = __skb_gro_checksum_validate_complete(skb, \ 2616 compute_pseudo(skb, proto)); \ 2617 if (!__ret) \ 2618 skb_gro_incr_csum_unnecessary(skb); \ 2619 __ret; \ 2620 }) 2621 2622 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2623 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2624 2625 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2626 compute_pseudo) \ 2627 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2628 2629 #define skb_gro_checksum_simple_validate(skb) \ 2630 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2631 2632 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2633 { 2634 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2635 !NAPI_GRO_CB(skb)->csum_valid); 2636 } 2637 2638 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2639 __sum16 check, __wsum pseudo) 2640 { 2641 NAPI_GRO_CB(skb)->csum = ~pseudo; 2642 NAPI_GRO_CB(skb)->csum_valid = 1; 2643 } 2644 2645 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2646 do { \ 2647 if (__skb_gro_checksum_convert_check(skb)) \ 2648 __skb_gro_checksum_convert(skb, check, \ 2649 compute_pseudo(skb, proto)); \ 2650 } while (0) 2651 2652 struct gro_remcsum { 2653 int offset; 2654 __wsum delta; 2655 }; 2656 2657 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2658 { 2659 grc->offset = 0; 2660 grc->delta = 0; 2661 } 2662 2663 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2664 unsigned int off, size_t hdrlen, 2665 int start, int offset, 2666 struct gro_remcsum *grc, 2667 bool nopartial) 2668 { 2669 __wsum delta; 2670 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2671 2672 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2673 2674 if (!nopartial) { 2675 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2676 return ptr; 2677 } 2678 2679 ptr = skb_gro_header_fast(skb, off); 2680 if (skb_gro_header_hard(skb, off + plen)) { 2681 ptr = skb_gro_header_slow(skb, off + plen, off); 2682 if (!ptr) 2683 return NULL; 2684 } 2685 2686 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2687 start, offset); 2688 2689 /* Adjust skb->csum since we changed the packet */ 2690 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2691 2692 grc->offset = off + hdrlen + offset; 2693 grc->delta = delta; 2694 2695 return ptr; 2696 } 2697 2698 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2699 struct gro_remcsum *grc) 2700 { 2701 void *ptr; 2702 size_t plen = grc->offset + sizeof(u16); 2703 2704 if (!grc->delta) 2705 return; 2706 2707 ptr = skb_gro_header_fast(skb, grc->offset); 2708 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2709 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2710 if (!ptr) 2711 return; 2712 } 2713 2714 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2715 } 2716 2717 #ifdef CONFIG_XFRM_OFFLOAD 2718 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2719 { 2720 if (PTR_ERR(pp) != -EINPROGRESS) 2721 NAPI_GRO_CB(skb)->flush |= flush; 2722 } 2723 #else 2724 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2725 { 2726 NAPI_GRO_CB(skb)->flush |= flush; 2727 } 2728 #endif 2729 2730 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2731 unsigned short type, 2732 const void *daddr, const void *saddr, 2733 unsigned int len) 2734 { 2735 if (!dev->header_ops || !dev->header_ops->create) 2736 return 0; 2737 2738 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2739 } 2740 2741 static inline int dev_parse_header(const struct sk_buff *skb, 2742 unsigned char *haddr) 2743 { 2744 const struct net_device *dev = skb->dev; 2745 2746 if (!dev->header_ops || !dev->header_ops->parse) 2747 return 0; 2748 return dev->header_ops->parse(skb, haddr); 2749 } 2750 2751 /* ll_header must have at least hard_header_len allocated */ 2752 static inline bool dev_validate_header(const struct net_device *dev, 2753 char *ll_header, int len) 2754 { 2755 if (likely(len >= dev->hard_header_len)) 2756 return true; 2757 if (len < dev->min_header_len) 2758 return false; 2759 2760 if (capable(CAP_SYS_RAWIO)) { 2761 memset(ll_header + len, 0, dev->hard_header_len - len); 2762 return true; 2763 } 2764 2765 if (dev->header_ops && dev->header_ops->validate) 2766 return dev->header_ops->validate(ll_header, len); 2767 2768 return false; 2769 } 2770 2771 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2772 int len, int size); 2773 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2774 static inline int unregister_gifconf(unsigned int family) 2775 { 2776 return register_gifconf(family, NULL); 2777 } 2778 2779 #ifdef CONFIG_NET_FLOW_LIMIT 2780 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2781 struct sd_flow_limit { 2782 u64 count; 2783 unsigned int num_buckets; 2784 unsigned int history_head; 2785 u16 history[FLOW_LIMIT_HISTORY]; 2786 u8 buckets[]; 2787 }; 2788 2789 extern int netdev_flow_limit_table_len; 2790 #endif /* CONFIG_NET_FLOW_LIMIT */ 2791 2792 /* 2793 * Incoming packets are placed on per-CPU queues 2794 */ 2795 struct softnet_data { 2796 struct list_head poll_list; 2797 struct sk_buff_head process_queue; 2798 2799 /* stats */ 2800 unsigned int processed; 2801 unsigned int time_squeeze; 2802 unsigned int received_rps; 2803 #ifdef CONFIG_RPS 2804 struct softnet_data *rps_ipi_list; 2805 #endif 2806 #ifdef CONFIG_NET_FLOW_LIMIT 2807 struct sd_flow_limit __rcu *flow_limit; 2808 #endif 2809 struct Qdisc *output_queue; 2810 struct Qdisc **output_queue_tailp; 2811 struct sk_buff *completion_queue; 2812 #ifdef CONFIG_XFRM_OFFLOAD 2813 struct sk_buff_head xfrm_backlog; 2814 #endif 2815 #ifdef CONFIG_RPS 2816 /* input_queue_head should be written by cpu owning this struct, 2817 * and only read by other cpus. Worth using a cache line. 2818 */ 2819 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2820 2821 /* Elements below can be accessed between CPUs for RPS/RFS */ 2822 call_single_data_t csd ____cacheline_aligned_in_smp; 2823 struct softnet_data *rps_ipi_next; 2824 unsigned int cpu; 2825 unsigned int input_queue_tail; 2826 #endif 2827 unsigned int dropped; 2828 struct sk_buff_head input_pkt_queue; 2829 struct napi_struct backlog; 2830 2831 }; 2832 2833 static inline void input_queue_head_incr(struct softnet_data *sd) 2834 { 2835 #ifdef CONFIG_RPS 2836 sd->input_queue_head++; 2837 #endif 2838 } 2839 2840 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2841 unsigned int *qtail) 2842 { 2843 #ifdef CONFIG_RPS 2844 *qtail = ++sd->input_queue_tail; 2845 #endif 2846 } 2847 2848 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2849 2850 void __netif_schedule(struct Qdisc *q); 2851 void netif_schedule_queue(struct netdev_queue *txq); 2852 2853 static inline void netif_tx_schedule_all(struct net_device *dev) 2854 { 2855 unsigned int i; 2856 2857 for (i = 0; i < dev->num_tx_queues; i++) 2858 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2859 } 2860 2861 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2862 { 2863 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2864 } 2865 2866 /** 2867 * netif_start_queue - allow transmit 2868 * @dev: network device 2869 * 2870 * Allow upper layers to call the device hard_start_xmit routine. 2871 */ 2872 static inline void netif_start_queue(struct net_device *dev) 2873 { 2874 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2875 } 2876 2877 static inline void netif_tx_start_all_queues(struct net_device *dev) 2878 { 2879 unsigned int i; 2880 2881 for (i = 0; i < dev->num_tx_queues; i++) { 2882 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2883 netif_tx_start_queue(txq); 2884 } 2885 } 2886 2887 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2888 2889 /** 2890 * netif_wake_queue - restart transmit 2891 * @dev: network device 2892 * 2893 * Allow upper layers to call the device hard_start_xmit routine. 2894 * Used for flow control when transmit resources are available. 2895 */ 2896 static inline void netif_wake_queue(struct net_device *dev) 2897 { 2898 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2899 } 2900 2901 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2902 { 2903 unsigned int i; 2904 2905 for (i = 0; i < dev->num_tx_queues; i++) { 2906 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2907 netif_tx_wake_queue(txq); 2908 } 2909 } 2910 2911 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2912 { 2913 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2914 } 2915 2916 /** 2917 * netif_stop_queue - stop transmitted packets 2918 * @dev: network device 2919 * 2920 * Stop upper layers calling the device hard_start_xmit routine. 2921 * Used for flow control when transmit resources are unavailable. 2922 */ 2923 static inline void netif_stop_queue(struct net_device *dev) 2924 { 2925 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2926 } 2927 2928 void netif_tx_stop_all_queues(struct net_device *dev); 2929 2930 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2931 { 2932 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2933 } 2934 2935 /** 2936 * netif_queue_stopped - test if transmit queue is flowblocked 2937 * @dev: network device 2938 * 2939 * Test if transmit queue on device is currently unable to send. 2940 */ 2941 static inline bool netif_queue_stopped(const struct net_device *dev) 2942 { 2943 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2944 } 2945 2946 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2947 { 2948 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2949 } 2950 2951 static inline bool 2952 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2953 { 2954 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2955 } 2956 2957 static inline bool 2958 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2959 { 2960 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2961 } 2962 2963 /** 2964 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2965 * @dev_queue: pointer to transmit queue 2966 * 2967 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2968 * to give appropriate hint to the CPU. 2969 */ 2970 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2971 { 2972 #ifdef CONFIG_BQL 2973 prefetchw(&dev_queue->dql.num_queued); 2974 #endif 2975 } 2976 2977 /** 2978 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2979 * @dev_queue: pointer to transmit queue 2980 * 2981 * BQL enabled drivers might use this helper in their TX completion path, 2982 * to give appropriate hint to the CPU. 2983 */ 2984 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2985 { 2986 #ifdef CONFIG_BQL 2987 prefetchw(&dev_queue->dql.limit); 2988 #endif 2989 } 2990 2991 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2992 unsigned int bytes) 2993 { 2994 #ifdef CONFIG_BQL 2995 dql_queued(&dev_queue->dql, bytes); 2996 2997 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2998 return; 2999 3000 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3001 3002 /* 3003 * The XOFF flag must be set before checking the dql_avail below, 3004 * because in netdev_tx_completed_queue we update the dql_completed 3005 * before checking the XOFF flag. 3006 */ 3007 smp_mb(); 3008 3009 /* check again in case another CPU has just made room avail */ 3010 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3011 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3012 #endif 3013 } 3014 3015 /** 3016 * netdev_sent_queue - report the number of bytes queued to hardware 3017 * @dev: network device 3018 * @bytes: number of bytes queued to the hardware device queue 3019 * 3020 * Report the number of bytes queued for sending/completion to the network 3021 * device hardware queue. @bytes should be a good approximation and should 3022 * exactly match netdev_completed_queue() @bytes 3023 */ 3024 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3025 { 3026 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3027 } 3028 3029 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3030 unsigned int pkts, unsigned int bytes) 3031 { 3032 #ifdef CONFIG_BQL 3033 if (unlikely(!bytes)) 3034 return; 3035 3036 dql_completed(&dev_queue->dql, bytes); 3037 3038 /* 3039 * Without the memory barrier there is a small possiblity that 3040 * netdev_tx_sent_queue will miss the update and cause the queue to 3041 * be stopped forever 3042 */ 3043 smp_mb(); 3044 3045 if (dql_avail(&dev_queue->dql) < 0) 3046 return; 3047 3048 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3049 netif_schedule_queue(dev_queue); 3050 #endif 3051 } 3052 3053 /** 3054 * netdev_completed_queue - report bytes and packets completed by device 3055 * @dev: network device 3056 * @pkts: actual number of packets sent over the medium 3057 * @bytes: actual number of bytes sent over the medium 3058 * 3059 * Report the number of bytes and packets transmitted by the network device 3060 * hardware queue over the physical medium, @bytes must exactly match the 3061 * @bytes amount passed to netdev_sent_queue() 3062 */ 3063 static inline void netdev_completed_queue(struct net_device *dev, 3064 unsigned int pkts, unsigned int bytes) 3065 { 3066 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3067 } 3068 3069 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3070 { 3071 #ifdef CONFIG_BQL 3072 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3073 dql_reset(&q->dql); 3074 #endif 3075 } 3076 3077 /** 3078 * netdev_reset_queue - reset the packets and bytes count of a network device 3079 * @dev_queue: network device 3080 * 3081 * Reset the bytes and packet count of a network device and clear the 3082 * software flow control OFF bit for this network device 3083 */ 3084 static inline void netdev_reset_queue(struct net_device *dev_queue) 3085 { 3086 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3087 } 3088 3089 /** 3090 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3091 * @dev: network device 3092 * @queue_index: given tx queue index 3093 * 3094 * Returns 0 if given tx queue index >= number of device tx queues, 3095 * otherwise returns the originally passed tx queue index. 3096 */ 3097 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3098 { 3099 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3100 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3101 dev->name, queue_index, 3102 dev->real_num_tx_queues); 3103 return 0; 3104 } 3105 3106 return queue_index; 3107 } 3108 3109 /** 3110 * netif_running - test if up 3111 * @dev: network device 3112 * 3113 * Test if the device has been brought up. 3114 */ 3115 static inline bool netif_running(const struct net_device *dev) 3116 { 3117 return test_bit(__LINK_STATE_START, &dev->state); 3118 } 3119 3120 /* 3121 * Routines to manage the subqueues on a device. We only need start, 3122 * stop, and a check if it's stopped. All other device management is 3123 * done at the overall netdevice level. 3124 * Also test the device if we're multiqueue. 3125 */ 3126 3127 /** 3128 * netif_start_subqueue - allow sending packets on subqueue 3129 * @dev: network device 3130 * @queue_index: sub queue index 3131 * 3132 * Start individual transmit queue of a device with multiple transmit queues. 3133 */ 3134 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3135 { 3136 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3137 3138 netif_tx_start_queue(txq); 3139 } 3140 3141 /** 3142 * netif_stop_subqueue - stop sending packets on subqueue 3143 * @dev: network device 3144 * @queue_index: sub queue index 3145 * 3146 * Stop individual transmit queue of a device with multiple transmit queues. 3147 */ 3148 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3149 { 3150 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3151 netif_tx_stop_queue(txq); 3152 } 3153 3154 /** 3155 * netif_subqueue_stopped - test status of subqueue 3156 * @dev: network device 3157 * @queue_index: sub queue index 3158 * 3159 * Check individual transmit queue of a device with multiple transmit queues. 3160 */ 3161 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3162 u16 queue_index) 3163 { 3164 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3165 3166 return netif_tx_queue_stopped(txq); 3167 } 3168 3169 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3170 struct sk_buff *skb) 3171 { 3172 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3173 } 3174 3175 /** 3176 * netif_wake_subqueue - allow sending packets on subqueue 3177 * @dev: network device 3178 * @queue_index: sub queue index 3179 * 3180 * Resume individual transmit queue of a device with multiple transmit queues. 3181 */ 3182 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3183 { 3184 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3185 3186 netif_tx_wake_queue(txq); 3187 } 3188 3189 #ifdef CONFIG_XPS 3190 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3191 u16 index); 3192 #else 3193 static inline int netif_set_xps_queue(struct net_device *dev, 3194 const struct cpumask *mask, 3195 u16 index) 3196 { 3197 return 0; 3198 } 3199 #endif 3200 3201 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3202 unsigned int num_tx_queues); 3203 3204 /* 3205 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3206 * as a distribution range limit for the returned value. 3207 */ 3208 static inline u16 skb_tx_hash(const struct net_device *dev, 3209 struct sk_buff *skb) 3210 { 3211 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3212 } 3213 3214 /** 3215 * netif_is_multiqueue - test if device has multiple transmit queues 3216 * @dev: network device 3217 * 3218 * Check if device has multiple transmit queues 3219 */ 3220 static inline bool netif_is_multiqueue(const struct net_device *dev) 3221 { 3222 return dev->num_tx_queues > 1; 3223 } 3224 3225 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3226 3227 #ifdef CONFIG_SYSFS 3228 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3229 #else 3230 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3231 unsigned int rxq) 3232 { 3233 return 0; 3234 } 3235 #endif 3236 3237 static inline struct netdev_rx_queue * 3238 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3239 { 3240 return dev->_rx + rxq; 3241 } 3242 3243 #ifdef CONFIG_SYSFS 3244 static inline unsigned int get_netdev_rx_queue_index( 3245 struct netdev_rx_queue *queue) 3246 { 3247 struct net_device *dev = queue->dev; 3248 int index = queue - dev->_rx; 3249 3250 BUG_ON(index >= dev->num_rx_queues); 3251 return index; 3252 } 3253 #endif 3254 3255 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3256 int netif_get_num_default_rss_queues(void); 3257 3258 enum skb_free_reason { 3259 SKB_REASON_CONSUMED, 3260 SKB_REASON_DROPPED, 3261 }; 3262 3263 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3264 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3265 3266 /* 3267 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3268 * interrupt context or with hardware interrupts being disabled. 3269 * (in_irq() || irqs_disabled()) 3270 * 3271 * We provide four helpers that can be used in following contexts : 3272 * 3273 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3274 * replacing kfree_skb(skb) 3275 * 3276 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3277 * Typically used in place of consume_skb(skb) in TX completion path 3278 * 3279 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3280 * replacing kfree_skb(skb) 3281 * 3282 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3283 * and consumed a packet. Used in place of consume_skb(skb) 3284 */ 3285 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3286 { 3287 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3288 } 3289 3290 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3291 { 3292 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3293 } 3294 3295 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3296 { 3297 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3298 } 3299 3300 static inline void dev_consume_skb_any(struct sk_buff *skb) 3301 { 3302 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3303 } 3304 3305 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3306 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3307 int netif_rx(struct sk_buff *skb); 3308 int netif_rx_ni(struct sk_buff *skb); 3309 int netif_receive_skb(struct sk_buff *skb); 3310 int netif_receive_skb_core(struct sk_buff *skb); 3311 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3312 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3313 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3314 gro_result_t napi_gro_frags(struct napi_struct *napi); 3315 struct packet_offload *gro_find_receive_by_type(__be16 type); 3316 struct packet_offload *gro_find_complete_by_type(__be16 type); 3317 3318 static inline void napi_free_frags(struct napi_struct *napi) 3319 { 3320 kfree_skb(napi->skb); 3321 napi->skb = NULL; 3322 } 3323 3324 bool netdev_is_rx_handler_busy(struct net_device *dev); 3325 int netdev_rx_handler_register(struct net_device *dev, 3326 rx_handler_func_t *rx_handler, 3327 void *rx_handler_data); 3328 void netdev_rx_handler_unregister(struct net_device *dev); 3329 3330 bool dev_valid_name(const char *name); 3331 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3332 bool *need_copyout); 3333 int dev_ifconf(struct net *net, struct ifconf *, int); 3334 int dev_ethtool(struct net *net, struct ifreq *); 3335 unsigned int dev_get_flags(const struct net_device *); 3336 int __dev_change_flags(struct net_device *, unsigned int flags); 3337 int dev_change_flags(struct net_device *, unsigned int); 3338 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3339 unsigned int gchanges); 3340 int dev_change_name(struct net_device *, const char *); 3341 int dev_set_alias(struct net_device *, const char *, size_t); 3342 int dev_get_alias(const struct net_device *, char *, size_t); 3343 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3344 int __dev_set_mtu(struct net_device *, int); 3345 int dev_set_mtu(struct net_device *, int); 3346 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3347 void dev_set_group(struct net_device *, int); 3348 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3349 int dev_change_carrier(struct net_device *, bool new_carrier); 3350 int dev_get_phys_port_id(struct net_device *dev, 3351 struct netdev_phys_item_id *ppid); 3352 int dev_get_phys_port_name(struct net_device *dev, 3353 char *name, size_t len); 3354 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3355 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3356 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3357 struct netdev_queue *txq, int *ret); 3358 3359 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3360 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3361 int fd, u32 flags); 3362 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3363 struct netdev_bpf *xdp); 3364 3365 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3366 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3367 bool is_skb_forwardable(const struct net_device *dev, 3368 const struct sk_buff *skb); 3369 3370 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3371 struct sk_buff *skb) 3372 { 3373 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3374 unlikely(!is_skb_forwardable(dev, skb))) { 3375 atomic_long_inc(&dev->rx_dropped); 3376 kfree_skb(skb); 3377 return NET_RX_DROP; 3378 } 3379 3380 skb_scrub_packet(skb, true); 3381 skb->priority = 0; 3382 return 0; 3383 } 3384 3385 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3386 3387 extern int netdev_budget; 3388 extern unsigned int netdev_budget_usecs; 3389 3390 /* Called by rtnetlink.c:rtnl_unlock() */ 3391 void netdev_run_todo(void); 3392 3393 /** 3394 * dev_put - release reference to device 3395 * @dev: network device 3396 * 3397 * Release reference to device to allow it to be freed. 3398 */ 3399 static inline void dev_put(struct net_device *dev) 3400 { 3401 this_cpu_dec(*dev->pcpu_refcnt); 3402 } 3403 3404 /** 3405 * dev_hold - get reference to device 3406 * @dev: network device 3407 * 3408 * Hold reference to device to keep it from being freed. 3409 */ 3410 static inline void dev_hold(struct net_device *dev) 3411 { 3412 this_cpu_inc(*dev->pcpu_refcnt); 3413 } 3414 3415 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3416 * and _off may be called from IRQ context, but it is caller 3417 * who is responsible for serialization of these calls. 3418 * 3419 * The name carrier is inappropriate, these functions should really be 3420 * called netif_lowerlayer_*() because they represent the state of any 3421 * kind of lower layer not just hardware media. 3422 */ 3423 3424 void linkwatch_init_dev(struct net_device *dev); 3425 void linkwatch_fire_event(struct net_device *dev); 3426 void linkwatch_forget_dev(struct net_device *dev); 3427 3428 /** 3429 * netif_carrier_ok - test if carrier present 3430 * @dev: network device 3431 * 3432 * Check if carrier is present on device 3433 */ 3434 static inline bool netif_carrier_ok(const struct net_device *dev) 3435 { 3436 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3437 } 3438 3439 unsigned long dev_trans_start(struct net_device *dev); 3440 3441 void __netdev_watchdog_up(struct net_device *dev); 3442 3443 void netif_carrier_on(struct net_device *dev); 3444 3445 void netif_carrier_off(struct net_device *dev); 3446 3447 /** 3448 * netif_dormant_on - mark device as dormant. 3449 * @dev: network device 3450 * 3451 * Mark device as dormant (as per RFC2863). 3452 * 3453 * The dormant state indicates that the relevant interface is not 3454 * actually in a condition to pass packets (i.e., it is not 'up') but is 3455 * in a "pending" state, waiting for some external event. For "on- 3456 * demand" interfaces, this new state identifies the situation where the 3457 * interface is waiting for events to place it in the up state. 3458 */ 3459 static inline void netif_dormant_on(struct net_device *dev) 3460 { 3461 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3462 linkwatch_fire_event(dev); 3463 } 3464 3465 /** 3466 * netif_dormant_off - set device as not dormant. 3467 * @dev: network device 3468 * 3469 * Device is not in dormant state. 3470 */ 3471 static inline void netif_dormant_off(struct net_device *dev) 3472 { 3473 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3474 linkwatch_fire_event(dev); 3475 } 3476 3477 /** 3478 * netif_dormant - test if device is dormant 3479 * @dev: network device 3480 * 3481 * Check if device is dormant. 3482 */ 3483 static inline bool netif_dormant(const struct net_device *dev) 3484 { 3485 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3486 } 3487 3488 3489 /** 3490 * netif_oper_up - test if device is operational 3491 * @dev: network device 3492 * 3493 * Check if carrier is operational 3494 */ 3495 static inline bool netif_oper_up(const struct net_device *dev) 3496 { 3497 return (dev->operstate == IF_OPER_UP || 3498 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3499 } 3500 3501 /** 3502 * netif_device_present - is device available or removed 3503 * @dev: network device 3504 * 3505 * Check if device has not been removed from system. 3506 */ 3507 static inline bool netif_device_present(struct net_device *dev) 3508 { 3509 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3510 } 3511 3512 void netif_device_detach(struct net_device *dev); 3513 3514 void netif_device_attach(struct net_device *dev); 3515 3516 /* 3517 * Network interface message level settings 3518 */ 3519 3520 enum { 3521 NETIF_MSG_DRV = 0x0001, 3522 NETIF_MSG_PROBE = 0x0002, 3523 NETIF_MSG_LINK = 0x0004, 3524 NETIF_MSG_TIMER = 0x0008, 3525 NETIF_MSG_IFDOWN = 0x0010, 3526 NETIF_MSG_IFUP = 0x0020, 3527 NETIF_MSG_RX_ERR = 0x0040, 3528 NETIF_MSG_TX_ERR = 0x0080, 3529 NETIF_MSG_TX_QUEUED = 0x0100, 3530 NETIF_MSG_INTR = 0x0200, 3531 NETIF_MSG_TX_DONE = 0x0400, 3532 NETIF_MSG_RX_STATUS = 0x0800, 3533 NETIF_MSG_PKTDATA = 0x1000, 3534 NETIF_MSG_HW = 0x2000, 3535 NETIF_MSG_WOL = 0x4000, 3536 }; 3537 3538 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3539 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3540 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3541 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3542 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3543 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3544 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3545 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3546 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3547 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3548 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3549 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3550 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3551 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3552 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3553 3554 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3555 { 3556 /* use default */ 3557 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3558 return default_msg_enable_bits; 3559 if (debug_value == 0) /* no output */ 3560 return 0; 3561 /* set low N bits */ 3562 return (1 << debug_value) - 1; 3563 } 3564 3565 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3566 { 3567 spin_lock(&txq->_xmit_lock); 3568 txq->xmit_lock_owner = cpu; 3569 } 3570 3571 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3572 { 3573 __acquire(&txq->_xmit_lock); 3574 return true; 3575 } 3576 3577 static inline void __netif_tx_release(struct netdev_queue *txq) 3578 { 3579 __release(&txq->_xmit_lock); 3580 } 3581 3582 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3583 { 3584 spin_lock_bh(&txq->_xmit_lock); 3585 txq->xmit_lock_owner = smp_processor_id(); 3586 } 3587 3588 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3589 { 3590 bool ok = spin_trylock(&txq->_xmit_lock); 3591 if (likely(ok)) 3592 txq->xmit_lock_owner = smp_processor_id(); 3593 return ok; 3594 } 3595 3596 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3597 { 3598 txq->xmit_lock_owner = -1; 3599 spin_unlock(&txq->_xmit_lock); 3600 } 3601 3602 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3603 { 3604 txq->xmit_lock_owner = -1; 3605 spin_unlock_bh(&txq->_xmit_lock); 3606 } 3607 3608 static inline void txq_trans_update(struct netdev_queue *txq) 3609 { 3610 if (txq->xmit_lock_owner != -1) 3611 txq->trans_start = jiffies; 3612 } 3613 3614 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3615 static inline void netif_trans_update(struct net_device *dev) 3616 { 3617 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3618 3619 if (txq->trans_start != jiffies) 3620 txq->trans_start = jiffies; 3621 } 3622 3623 /** 3624 * netif_tx_lock - grab network device transmit lock 3625 * @dev: network device 3626 * 3627 * Get network device transmit lock 3628 */ 3629 static inline void netif_tx_lock(struct net_device *dev) 3630 { 3631 unsigned int i; 3632 int cpu; 3633 3634 spin_lock(&dev->tx_global_lock); 3635 cpu = smp_processor_id(); 3636 for (i = 0; i < dev->num_tx_queues; i++) { 3637 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3638 3639 /* We are the only thread of execution doing a 3640 * freeze, but we have to grab the _xmit_lock in 3641 * order to synchronize with threads which are in 3642 * the ->hard_start_xmit() handler and already 3643 * checked the frozen bit. 3644 */ 3645 __netif_tx_lock(txq, cpu); 3646 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3647 __netif_tx_unlock(txq); 3648 } 3649 } 3650 3651 static inline void netif_tx_lock_bh(struct net_device *dev) 3652 { 3653 local_bh_disable(); 3654 netif_tx_lock(dev); 3655 } 3656 3657 static inline void netif_tx_unlock(struct net_device *dev) 3658 { 3659 unsigned int i; 3660 3661 for (i = 0; i < dev->num_tx_queues; i++) { 3662 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3663 3664 /* No need to grab the _xmit_lock here. If the 3665 * queue is not stopped for another reason, we 3666 * force a schedule. 3667 */ 3668 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3669 netif_schedule_queue(txq); 3670 } 3671 spin_unlock(&dev->tx_global_lock); 3672 } 3673 3674 static inline void netif_tx_unlock_bh(struct net_device *dev) 3675 { 3676 netif_tx_unlock(dev); 3677 local_bh_enable(); 3678 } 3679 3680 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3681 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3682 __netif_tx_lock(txq, cpu); \ 3683 } else { \ 3684 __netif_tx_acquire(txq); \ 3685 } \ 3686 } 3687 3688 #define HARD_TX_TRYLOCK(dev, txq) \ 3689 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3690 __netif_tx_trylock(txq) : \ 3691 __netif_tx_acquire(txq)) 3692 3693 #define HARD_TX_UNLOCK(dev, txq) { \ 3694 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3695 __netif_tx_unlock(txq); \ 3696 } else { \ 3697 __netif_tx_release(txq); \ 3698 } \ 3699 } 3700 3701 static inline void netif_tx_disable(struct net_device *dev) 3702 { 3703 unsigned int i; 3704 int cpu; 3705 3706 local_bh_disable(); 3707 cpu = smp_processor_id(); 3708 for (i = 0; i < dev->num_tx_queues; i++) { 3709 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3710 3711 __netif_tx_lock(txq, cpu); 3712 netif_tx_stop_queue(txq); 3713 __netif_tx_unlock(txq); 3714 } 3715 local_bh_enable(); 3716 } 3717 3718 static inline void netif_addr_lock(struct net_device *dev) 3719 { 3720 spin_lock(&dev->addr_list_lock); 3721 } 3722 3723 static inline void netif_addr_lock_nested(struct net_device *dev) 3724 { 3725 int subclass = SINGLE_DEPTH_NESTING; 3726 3727 if (dev->netdev_ops->ndo_get_lock_subclass) 3728 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3729 3730 spin_lock_nested(&dev->addr_list_lock, subclass); 3731 } 3732 3733 static inline void netif_addr_lock_bh(struct net_device *dev) 3734 { 3735 spin_lock_bh(&dev->addr_list_lock); 3736 } 3737 3738 static inline void netif_addr_unlock(struct net_device *dev) 3739 { 3740 spin_unlock(&dev->addr_list_lock); 3741 } 3742 3743 static inline void netif_addr_unlock_bh(struct net_device *dev) 3744 { 3745 spin_unlock_bh(&dev->addr_list_lock); 3746 } 3747 3748 /* 3749 * dev_addrs walker. Should be used only for read access. Call with 3750 * rcu_read_lock held. 3751 */ 3752 #define for_each_dev_addr(dev, ha) \ 3753 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3754 3755 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3756 3757 void ether_setup(struct net_device *dev); 3758 3759 /* Support for loadable net-drivers */ 3760 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3761 unsigned char name_assign_type, 3762 void (*setup)(struct net_device *), 3763 unsigned int txqs, unsigned int rxqs); 3764 int dev_get_valid_name(struct net *net, struct net_device *dev, 3765 const char *name); 3766 3767 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3768 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3769 3770 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3771 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3772 count) 3773 3774 int register_netdev(struct net_device *dev); 3775 void unregister_netdev(struct net_device *dev); 3776 3777 /* General hardware address lists handling functions */ 3778 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3779 struct netdev_hw_addr_list *from_list, int addr_len); 3780 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3781 struct netdev_hw_addr_list *from_list, int addr_len); 3782 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3783 struct net_device *dev, 3784 int (*sync)(struct net_device *, const unsigned char *), 3785 int (*unsync)(struct net_device *, 3786 const unsigned char *)); 3787 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3788 struct net_device *dev, 3789 int (*unsync)(struct net_device *, 3790 const unsigned char *)); 3791 void __hw_addr_init(struct netdev_hw_addr_list *list); 3792 3793 /* Functions used for device addresses handling */ 3794 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3795 unsigned char addr_type); 3796 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3797 unsigned char addr_type); 3798 void dev_addr_flush(struct net_device *dev); 3799 int dev_addr_init(struct net_device *dev); 3800 3801 /* Functions used for unicast addresses handling */ 3802 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3803 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3804 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3805 int dev_uc_sync(struct net_device *to, struct net_device *from); 3806 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3807 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3808 void dev_uc_flush(struct net_device *dev); 3809 void dev_uc_init(struct net_device *dev); 3810 3811 /** 3812 * __dev_uc_sync - Synchonize device's unicast list 3813 * @dev: device to sync 3814 * @sync: function to call if address should be added 3815 * @unsync: function to call if address should be removed 3816 * 3817 * Add newly added addresses to the interface, and release 3818 * addresses that have been deleted. 3819 */ 3820 static inline int __dev_uc_sync(struct net_device *dev, 3821 int (*sync)(struct net_device *, 3822 const unsigned char *), 3823 int (*unsync)(struct net_device *, 3824 const unsigned char *)) 3825 { 3826 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3827 } 3828 3829 /** 3830 * __dev_uc_unsync - Remove synchronized addresses from device 3831 * @dev: device to sync 3832 * @unsync: function to call if address should be removed 3833 * 3834 * Remove all addresses that were added to the device by dev_uc_sync(). 3835 */ 3836 static inline void __dev_uc_unsync(struct net_device *dev, 3837 int (*unsync)(struct net_device *, 3838 const unsigned char *)) 3839 { 3840 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3841 } 3842 3843 /* Functions used for multicast addresses handling */ 3844 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3845 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3846 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3847 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3848 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3849 int dev_mc_sync(struct net_device *to, struct net_device *from); 3850 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3851 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3852 void dev_mc_flush(struct net_device *dev); 3853 void dev_mc_init(struct net_device *dev); 3854 3855 /** 3856 * __dev_mc_sync - Synchonize device's multicast list 3857 * @dev: device to sync 3858 * @sync: function to call if address should be added 3859 * @unsync: function to call if address should be removed 3860 * 3861 * Add newly added addresses to the interface, and release 3862 * addresses that have been deleted. 3863 */ 3864 static inline int __dev_mc_sync(struct net_device *dev, 3865 int (*sync)(struct net_device *, 3866 const unsigned char *), 3867 int (*unsync)(struct net_device *, 3868 const unsigned char *)) 3869 { 3870 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3871 } 3872 3873 /** 3874 * __dev_mc_unsync - Remove synchronized addresses from device 3875 * @dev: device to sync 3876 * @unsync: function to call if address should be removed 3877 * 3878 * Remove all addresses that were added to the device by dev_mc_sync(). 3879 */ 3880 static inline void __dev_mc_unsync(struct net_device *dev, 3881 int (*unsync)(struct net_device *, 3882 const unsigned char *)) 3883 { 3884 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3885 } 3886 3887 /* Functions used for secondary unicast and multicast support */ 3888 void dev_set_rx_mode(struct net_device *dev); 3889 void __dev_set_rx_mode(struct net_device *dev); 3890 int dev_set_promiscuity(struct net_device *dev, int inc); 3891 int dev_set_allmulti(struct net_device *dev, int inc); 3892 void netdev_state_change(struct net_device *dev); 3893 void netdev_notify_peers(struct net_device *dev); 3894 void netdev_features_change(struct net_device *dev); 3895 /* Load a device via the kmod */ 3896 void dev_load(struct net *net, const char *name); 3897 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3898 struct rtnl_link_stats64 *storage); 3899 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3900 const struct net_device_stats *netdev_stats); 3901 3902 extern int netdev_max_backlog; 3903 extern int netdev_tstamp_prequeue; 3904 extern int weight_p; 3905 extern int dev_weight_rx_bias; 3906 extern int dev_weight_tx_bias; 3907 extern int dev_rx_weight; 3908 extern int dev_tx_weight; 3909 3910 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3911 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3912 struct list_head **iter); 3913 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3914 struct list_head **iter); 3915 3916 /* iterate through upper list, must be called under RCU read lock */ 3917 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3918 for (iter = &(dev)->adj_list.upper, \ 3919 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3920 updev; \ 3921 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3922 3923 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3924 int (*fn)(struct net_device *upper_dev, 3925 void *data), 3926 void *data); 3927 3928 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3929 struct net_device *upper_dev); 3930 3931 bool netdev_has_any_upper_dev(struct net_device *dev); 3932 3933 void *netdev_lower_get_next_private(struct net_device *dev, 3934 struct list_head **iter); 3935 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3936 struct list_head **iter); 3937 3938 #define netdev_for_each_lower_private(dev, priv, iter) \ 3939 for (iter = (dev)->adj_list.lower.next, \ 3940 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3941 priv; \ 3942 priv = netdev_lower_get_next_private(dev, &(iter))) 3943 3944 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3945 for (iter = &(dev)->adj_list.lower, \ 3946 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3947 priv; \ 3948 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3949 3950 void *netdev_lower_get_next(struct net_device *dev, 3951 struct list_head **iter); 3952 3953 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3954 for (iter = (dev)->adj_list.lower.next, \ 3955 ldev = netdev_lower_get_next(dev, &(iter)); \ 3956 ldev; \ 3957 ldev = netdev_lower_get_next(dev, &(iter))) 3958 3959 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3960 struct list_head **iter); 3961 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3962 struct list_head **iter); 3963 3964 int netdev_walk_all_lower_dev(struct net_device *dev, 3965 int (*fn)(struct net_device *lower_dev, 3966 void *data), 3967 void *data); 3968 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3969 int (*fn)(struct net_device *lower_dev, 3970 void *data), 3971 void *data); 3972 3973 void *netdev_adjacent_get_private(struct list_head *adj_list); 3974 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3975 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3976 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3977 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 3978 struct netlink_ext_ack *extack); 3979 int netdev_master_upper_dev_link(struct net_device *dev, 3980 struct net_device *upper_dev, 3981 void *upper_priv, void *upper_info, 3982 struct netlink_ext_ack *extack); 3983 void netdev_upper_dev_unlink(struct net_device *dev, 3984 struct net_device *upper_dev); 3985 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3986 void *netdev_lower_dev_get_private(struct net_device *dev, 3987 struct net_device *lower_dev); 3988 void netdev_lower_state_changed(struct net_device *lower_dev, 3989 void *lower_state_info); 3990 3991 /* RSS keys are 40 or 52 bytes long */ 3992 #define NETDEV_RSS_KEY_LEN 52 3993 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3994 void netdev_rss_key_fill(void *buffer, size_t len); 3995 3996 int dev_get_nest_level(struct net_device *dev); 3997 int skb_checksum_help(struct sk_buff *skb); 3998 int skb_crc32c_csum_help(struct sk_buff *skb); 3999 int skb_csum_hwoffload_help(struct sk_buff *skb, 4000 const netdev_features_t features); 4001 4002 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4003 netdev_features_t features, bool tx_path); 4004 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4005 netdev_features_t features); 4006 4007 struct netdev_bonding_info { 4008 ifslave slave; 4009 ifbond master; 4010 }; 4011 4012 struct netdev_notifier_bonding_info { 4013 struct netdev_notifier_info info; /* must be first */ 4014 struct netdev_bonding_info bonding_info; 4015 }; 4016 4017 void netdev_bonding_info_change(struct net_device *dev, 4018 struct netdev_bonding_info *bonding_info); 4019 4020 static inline 4021 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4022 { 4023 return __skb_gso_segment(skb, features, true); 4024 } 4025 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4026 4027 static inline bool can_checksum_protocol(netdev_features_t features, 4028 __be16 protocol) 4029 { 4030 if (protocol == htons(ETH_P_FCOE)) 4031 return !!(features & NETIF_F_FCOE_CRC); 4032 4033 /* Assume this is an IP checksum (not SCTP CRC) */ 4034 4035 if (features & NETIF_F_HW_CSUM) { 4036 /* Can checksum everything */ 4037 return true; 4038 } 4039 4040 switch (protocol) { 4041 case htons(ETH_P_IP): 4042 return !!(features & NETIF_F_IP_CSUM); 4043 case htons(ETH_P_IPV6): 4044 return !!(features & NETIF_F_IPV6_CSUM); 4045 default: 4046 return false; 4047 } 4048 } 4049 4050 #ifdef CONFIG_BUG 4051 void netdev_rx_csum_fault(struct net_device *dev); 4052 #else 4053 static inline void netdev_rx_csum_fault(struct net_device *dev) 4054 { 4055 } 4056 #endif 4057 /* rx skb timestamps */ 4058 void net_enable_timestamp(void); 4059 void net_disable_timestamp(void); 4060 4061 #ifdef CONFIG_PROC_FS 4062 int __init dev_proc_init(void); 4063 #else 4064 #define dev_proc_init() 0 4065 #endif 4066 4067 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4068 struct sk_buff *skb, struct net_device *dev, 4069 bool more) 4070 { 4071 skb->xmit_more = more ? 1 : 0; 4072 return ops->ndo_start_xmit(skb, dev); 4073 } 4074 4075 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4076 struct netdev_queue *txq, bool more) 4077 { 4078 const struct net_device_ops *ops = dev->netdev_ops; 4079 int rc; 4080 4081 rc = __netdev_start_xmit(ops, skb, dev, more); 4082 if (rc == NETDEV_TX_OK) 4083 txq_trans_update(txq); 4084 4085 return rc; 4086 } 4087 4088 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4089 const void *ns); 4090 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4091 const void *ns); 4092 4093 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4094 { 4095 return netdev_class_create_file_ns(class_attr, NULL); 4096 } 4097 4098 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4099 { 4100 netdev_class_remove_file_ns(class_attr, NULL); 4101 } 4102 4103 extern const struct kobj_ns_type_operations net_ns_type_operations; 4104 4105 const char *netdev_drivername(const struct net_device *dev); 4106 4107 void linkwatch_run_queue(void); 4108 4109 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4110 netdev_features_t f2) 4111 { 4112 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4113 if (f1 & NETIF_F_HW_CSUM) 4114 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4115 else 4116 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4117 } 4118 4119 return f1 & f2; 4120 } 4121 4122 static inline netdev_features_t netdev_get_wanted_features( 4123 struct net_device *dev) 4124 { 4125 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4126 } 4127 netdev_features_t netdev_increment_features(netdev_features_t all, 4128 netdev_features_t one, netdev_features_t mask); 4129 4130 /* Allow TSO being used on stacked device : 4131 * Performing the GSO segmentation before last device 4132 * is a performance improvement. 4133 */ 4134 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4135 netdev_features_t mask) 4136 { 4137 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4138 } 4139 4140 int __netdev_update_features(struct net_device *dev); 4141 void netdev_update_features(struct net_device *dev); 4142 void netdev_change_features(struct net_device *dev); 4143 4144 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4145 struct net_device *dev); 4146 4147 netdev_features_t passthru_features_check(struct sk_buff *skb, 4148 struct net_device *dev, 4149 netdev_features_t features); 4150 netdev_features_t netif_skb_features(struct sk_buff *skb); 4151 4152 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4153 { 4154 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4155 4156 /* check flags correspondence */ 4157 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4158 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4159 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4160 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4161 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4162 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4163 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4164 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4165 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4166 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4167 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4168 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4169 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4170 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4171 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4172 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4173 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4174 4175 return (features & feature) == feature; 4176 } 4177 4178 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4179 { 4180 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4181 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4182 } 4183 4184 static inline bool netif_needs_gso(struct sk_buff *skb, 4185 netdev_features_t features) 4186 { 4187 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4188 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4189 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4190 } 4191 4192 static inline void netif_set_gso_max_size(struct net_device *dev, 4193 unsigned int size) 4194 { 4195 dev->gso_max_size = size; 4196 } 4197 4198 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4199 int pulled_hlen, u16 mac_offset, 4200 int mac_len) 4201 { 4202 skb->protocol = protocol; 4203 skb->encapsulation = 1; 4204 skb_push(skb, pulled_hlen); 4205 skb_reset_transport_header(skb); 4206 skb->mac_header = mac_offset; 4207 skb->network_header = skb->mac_header + mac_len; 4208 skb->mac_len = mac_len; 4209 } 4210 4211 static inline bool netif_is_macsec(const struct net_device *dev) 4212 { 4213 return dev->priv_flags & IFF_MACSEC; 4214 } 4215 4216 static inline bool netif_is_macvlan(const struct net_device *dev) 4217 { 4218 return dev->priv_flags & IFF_MACVLAN; 4219 } 4220 4221 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4222 { 4223 return dev->priv_flags & IFF_MACVLAN_PORT; 4224 } 4225 4226 static inline bool netif_is_ipvlan(const struct net_device *dev) 4227 { 4228 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4229 } 4230 4231 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4232 { 4233 return dev->priv_flags & IFF_IPVLAN_MASTER; 4234 } 4235 4236 static inline bool netif_is_bond_master(const struct net_device *dev) 4237 { 4238 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4239 } 4240 4241 static inline bool netif_is_bond_slave(const struct net_device *dev) 4242 { 4243 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4244 } 4245 4246 static inline bool netif_supports_nofcs(struct net_device *dev) 4247 { 4248 return dev->priv_flags & IFF_SUPP_NOFCS; 4249 } 4250 4251 static inline bool netif_is_l3_master(const struct net_device *dev) 4252 { 4253 return dev->priv_flags & IFF_L3MDEV_MASTER; 4254 } 4255 4256 static inline bool netif_is_l3_slave(const struct net_device *dev) 4257 { 4258 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4259 } 4260 4261 static inline bool netif_is_bridge_master(const struct net_device *dev) 4262 { 4263 return dev->priv_flags & IFF_EBRIDGE; 4264 } 4265 4266 static inline bool netif_is_bridge_port(const struct net_device *dev) 4267 { 4268 return dev->priv_flags & IFF_BRIDGE_PORT; 4269 } 4270 4271 static inline bool netif_is_ovs_master(const struct net_device *dev) 4272 { 4273 return dev->priv_flags & IFF_OPENVSWITCH; 4274 } 4275 4276 static inline bool netif_is_ovs_port(const struct net_device *dev) 4277 { 4278 return dev->priv_flags & IFF_OVS_DATAPATH; 4279 } 4280 4281 static inline bool netif_is_team_master(const struct net_device *dev) 4282 { 4283 return dev->priv_flags & IFF_TEAM; 4284 } 4285 4286 static inline bool netif_is_team_port(const struct net_device *dev) 4287 { 4288 return dev->priv_flags & IFF_TEAM_PORT; 4289 } 4290 4291 static inline bool netif_is_lag_master(const struct net_device *dev) 4292 { 4293 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4294 } 4295 4296 static inline bool netif_is_lag_port(const struct net_device *dev) 4297 { 4298 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4299 } 4300 4301 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4302 { 4303 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4304 } 4305 4306 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4307 static inline void netif_keep_dst(struct net_device *dev) 4308 { 4309 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4310 } 4311 4312 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4313 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4314 { 4315 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4316 return dev->priv_flags & IFF_MACSEC; 4317 } 4318 4319 extern struct pernet_operations __net_initdata loopback_net_ops; 4320 4321 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4322 4323 /* netdev_printk helpers, similar to dev_printk */ 4324 4325 static inline const char *netdev_name(const struct net_device *dev) 4326 { 4327 if (!dev->name[0] || strchr(dev->name, '%')) 4328 return "(unnamed net_device)"; 4329 return dev->name; 4330 } 4331 4332 static inline bool netdev_unregistering(const struct net_device *dev) 4333 { 4334 return dev->reg_state == NETREG_UNREGISTERING; 4335 } 4336 4337 static inline const char *netdev_reg_state(const struct net_device *dev) 4338 { 4339 switch (dev->reg_state) { 4340 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4341 case NETREG_REGISTERED: return ""; 4342 case NETREG_UNREGISTERING: return " (unregistering)"; 4343 case NETREG_UNREGISTERED: return " (unregistered)"; 4344 case NETREG_RELEASED: return " (released)"; 4345 case NETREG_DUMMY: return " (dummy)"; 4346 } 4347 4348 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4349 return " (unknown)"; 4350 } 4351 4352 __printf(3, 4) 4353 void netdev_printk(const char *level, const struct net_device *dev, 4354 const char *format, ...); 4355 __printf(2, 3) 4356 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4357 __printf(2, 3) 4358 void netdev_alert(const struct net_device *dev, const char *format, ...); 4359 __printf(2, 3) 4360 void netdev_crit(const struct net_device *dev, const char *format, ...); 4361 __printf(2, 3) 4362 void netdev_err(const struct net_device *dev, const char *format, ...); 4363 __printf(2, 3) 4364 void netdev_warn(const struct net_device *dev, const char *format, ...); 4365 __printf(2, 3) 4366 void netdev_notice(const struct net_device *dev, const char *format, ...); 4367 __printf(2, 3) 4368 void netdev_info(const struct net_device *dev, const char *format, ...); 4369 4370 #define netdev_level_once(level, dev, fmt, ...) \ 4371 do { \ 4372 static bool __print_once __read_mostly; \ 4373 \ 4374 if (!__print_once) { \ 4375 __print_once = true; \ 4376 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4377 } \ 4378 } while (0) 4379 4380 #define netdev_emerg_once(dev, fmt, ...) \ 4381 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4382 #define netdev_alert_once(dev, fmt, ...) \ 4383 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4384 #define netdev_crit_once(dev, fmt, ...) \ 4385 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4386 #define netdev_err_once(dev, fmt, ...) \ 4387 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4388 #define netdev_warn_once(dev, fmt, ...) \ 4389 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4390 #define netdev_notice_once(dev, fmt, ...) \ 4391 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4392 #define netdev_info_once(dev, fmt, ...) \ 4393 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4394 4395 #define MODULE_ALIAS_NETDEV(device) \ 4396 MODULE_ALIAS("netdev-" device) 4397 4398 #if defined(CONFIG_DYNAMIC_DEBUG) 4399 #define netdev_dbg(__dev, format, args...) \ 4400 do { \ 4401 dynamic_netdev_dbg(__dev, format, ##args); \ 4402 } while (0) 4403 #elif defined(DEBUG) 4404 #define netdev_dbg(__dev, format, args...) \ 4405 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4406 #else 4407 #define netdev_dbg(__dev, format, args...) \ 4408 ({ \ 4409 if (0) \ 4410 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4411 }) 4412 #endif 4413 4414 #if defined(VERBOSE_DEBUG) 4415 #define netdev_vdbg netdev_dbg 4416 #else 4417 4418 #define netdev_vdbg(dev, format, args...) \ 4419 ({ \ 4420 if (0) \ 4421 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4422 0; \ 4423 }) 4424 #endif 4425 4426 /* 4427 * netdev_WARN() acts like dev_printk(), but with the key difference 4428 * of using a WARN/WARN_ON to get the message out, including the 4429 * file/line information and a backtrace. 4430 */ 4431 #define netdev_WARN(dev, format, args...) \ 4432 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4433 netdev_reg_state(dev), ##args) 4434 4435 #define netdev_WARN_ONCE(dev, format, args...) \ 4436 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4437 netdev_reg_state(dev), ##args) 4438 4439 /* netif printk helpers, similar to netdev_printk */ 4440 4441 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4442 do { \ 4443 if (netif_msg_##type(priv)) \ 4444 netdev_printk(level, (dev), fmt, ##args); \ 4445 } while (0) 4446 4447 #define netif_level(level, priv, type, dev, fmt, args...) \ 4448 do { \ 4449 if (netif_msg_##type(priv)) \ 4450 netdev_##level(dev, fmt, ##args); \ 4451 } while (0) 4452 4453 #define netif_emerg(priv, type, dev, fmt, args...) \ 4454 netif_level(emerg, priv, type, dev, fmt, ##args) 4455 #define netif_alert(priv, type, dev, fmt, args...) \ 4456 netif_level(alert, priv, type, dev, fmt, ##args) 4457 #define netif_crit(priv, type, dev, fmt, args...) \ 4458 netif_level(crit, priv, type, dev, fmt, ##args) 4459 #define netif_err(priv, type, dev, fmt, args...) \ 4460 netif_level(err, priv, type, dev, fmt, ##args) 4461 #define netif_warn(priv, type, dev, fmt, args...) \ 4462 netif_level(warn, priv, type, dev, fmt, ##args) 4463 #define netif_notice(priv, type, dev, fmt, args...) \ 4464 netif_level(notice, priv, type, dev, fmt, ##args) 4465 #define netif_info(priv, type, dev, fmt, args...) \ 4466 netif_level(info, priv, type, dev, fmt, ##args) 4467 4468 #if defined(CONFIG_DYNAMIC_DEBUG) 4469 #define netif_dbg(priv, type, netdev, format, args...) \ 4470 do { \ 4471 if (netif_msg_##type(priv)) \ 4472 dynamic_netdev_dbg(netdev, format, ##args); \ 4473 } while (0) 4474 #elif defined(DEBUG) 4475 #define netif_dbg(priv, type, dev, format, args...) \ 4476 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4477 #else 4478 #define netif_dbg(priv, type, dev, format, args...) \ 4479 ({ \ 4480 if (0) \ 4481 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4482 0; \ 4483 }) 4484 #endif 4485 4486 /* if @cond then downgrade to debug, else print at @level */ 4487 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4488 do { \ 4489 if (cond) \ 4490 netif_dbg(priv, type, netdev, fmt, ##args); \ 4491 else \ 4492 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4493 } while (0) 4494 4495 #if defined(VERBOSE_DEBUG) 4496 #define netif_vdbg netif_dbg 4497 #else 4498 #define netif_vdbg(priv, type, dev, format, args...) \ 4499 ({ \ 4500 if (0) \ 4501 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4502 0; \ 4503 }) 4504 #endif 4505 4506 /* 4507 * The list of packet types we will receive (as opposed to discard) 4508 * and the routines to invoke. 4509 * 4510 * Why 16. Because with 16 the only overlap we get on a hash of the 4511 * low nibble of the protocol value is RARP/SNAP/X.25. 4512 * 4513 * 0800 IP 4514 * 0001 802.3 4515 * 0002 AX.25 4516 * 0004 802.2 4517 * 8035 RARP 4518 * 0005 SNAP 4519 * 0805 X.25 4520 * 0806 ARP 4521 * 8137 IPX 4522 * 0009 Localtalk 4523 * 86DD IPv6 4524 */ 4525 #define PTYPE_HASH_SIZE (16) 4526 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4527 4528 #endif /* _LINUX_NETDEVICE_H */ 4529