xref: /linux-6.15/include/linux/netdevice.h (revision 8fdff1dc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 /* hardware address assignment types */
64 #define NET_ADDR_PERM		0	/* address is permanent (default) */
65 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
66 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
67 
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
70 #define NET_RX_DROP		1	/* packet dropped */
71 
72 /*
73  * Transmit return codes: transmit return codes originate from three different
74  * namespaces:
75  *
76  * - qdisc return codes
77  * - driver transmit return codes
78  * - errno values
79  *
80  * Drivers are allowed to return any one of those in their hard_start_xmit()
81  * function. Real network devices commonly used with qdiscs should only return
82  * the driver transmit return codes though - when qdiscs are used, the actual
83  * transmission happens asynchronously, so the value is not propagated to
84  * higher layers. Virtual network devices transmit synchronously, in this case
85  * the driver transmit return codes are consumed by dev_queue_xmit(), all
86  * others are propagated to higher layers.
87  */
88 
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS	0x00
91 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
92 #define NET_XMIT_CN		0x02	/* congestion notification	*/
93 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
94 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
95 
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97  * indicates that the device will soon be dropping packets, or already drops
98  * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101 
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK		0xf0
104 
105 enum netdev_tx {
106 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
107 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
108 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
109 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112 
113 /*
114  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116  */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 	/*
120 	 * Positive cases with an skb consumed by a driver:
121 	 * - successful transmission (rc == NETDEV_TX_OK)
122 	 * - error while transmitting (rc < 0)
123 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 	 */
125 	if (likely(rc < NET_XMIT_MASK))
126 		return true;
127 
128 	return false;
129 }
130 
131 /*
132  *	Compute the worst case header length according to the protocols
133  *	used.
134  */
135 
136 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
137 # if defined(CONFIG_MAC80211_MESH)
138 #  define LL_MAX_HEADER 128
139 # else
140 #  define LL_MAX_HEADER 96
141 # endif
142 #elif IS_ENABLED(CONFIG_TR)
143 # define LL_MAX_HEADER 48
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147 
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154 
155 /*
156  *	Old network device statistics. Fields are native words
157  *	(unsigned long) so they can be read and written atomically.
158  */
159 
160 struct net_device_stats {
161 	unsigned long	rx_packets;
162 	unsigned long	tx_packets;
163 	unsigned long	rx_bytes;
164 	unsigned long	tx_bytes;
165 	unsigned long	rx_errors;
166 	unsigned long	tx_errors;
167 	unsigned long	rx_dropped;
168 	unsigned long	tx_dropped;
169 	unsigned long	multicast;
170 	unsigned long	collisions;
171 	unsigned long	rx_length_errors;
172 	unsigned long	rx_over_errors;
173 	unsigned long	rx_crc_errors;
174 	unsigned long	rx_frame_errors;
175 	unsigned long	rx_fifo_errors;
176 	unsigned long	rx_missed_errors;
177 	unsigned long	tx_aborted_errors;
178 	unsigned long	tx_carrier_errors;
179 	unsigned long	tx_fifo_errors;
180 	unsigned long	tx_heartbeat_errors;
181 	unsigned long	tx_window_errors;
182 	unsigned long	rx_compressed;
183 	unsigned long	tx_compressed;
184 };
185 
186 
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189 
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194 
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198 
199 struct netdev_hw_addr {
200 	struct list_head	list;
201 	unsigned char		addr[MAX_ADDR_LEN];
202 	unsigned char		type;
203 #define NETDEV_HW_ADDR_T_LAN		1
204 #define NETDEV_HW_ADDR_T_SAN		2
205 #define NETDEV_HW_ADDR_T_SLAVE		3
206 #define NETDEV_HW_ADDR_T_UNICAST	4
207 #define NETDEV_HW_ADDR_T_MULTICAST	5
208 	bool			synced;
209 	bool			global_use;
210 	int			refcount;
211 	struct rcu_head		rcu_head;
212 };
213 
214 struct netdev_hw_addr_list {
215 	struct list_head	list;
216 	int			count;
217 };
218 
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222 	list_for_each_entry(ha, &(l)->list, list)
223 
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228 
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233 
234 struct hh_cache {
235 	u16		hh_len;
236 	u16		__pad;
237 	seqlock_t	hh_lock;
238 
239 	/* cached hardware header; allow for machine alignment needs.        */
240 #define HH_DATA_MOD	16
241 #define HH_DATA_OFF(__len) \
242 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247 
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249  * Alternative is:
250  *   dev->hard_header_len ? (dev->hard_header_len +
251  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252  *
253  * We could use other alignment values, but we must maintain the
254  * relationship HH alignment <= LL alignment.
255  */
256 #define LL_RESERVED_SPACE(dev) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 
261 struct header_ops {
262 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
263 			   unsigned short type, const void *daddr,
264 			   const void *saddr, unsigned int len);
265 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 	int	(*rebuild)(struct sk_buff *skb);
267 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 	void	(*cache_update)(struct hh_cache *hh,
269 				const struct net_device *dev,
270 				const unsigned char *haddr);
271 };
272 
273 /* These flag bits are private to the generic network queueing
274  * layer, they may not be explicitly referenced by any other
275  * code.
276  */
277 
278 enum netdev_state_t {
279 	__LINK_STATE_START,
280 	__LINK_STATE_PRESENT,
281 	__LINK_STATE_NOCARRIER,
282 	__LINK_STATE_LINKWATCH_PENDING,
283 	__LINK_STATE_DORMANT,
284 };
285 
286 
287 /*
288  * This structure holds at boot time configured netdevice settings. They
289  * are then used in the device probing.
290  */
291 struct netdev_boot_setup {
292 	char name[IFNAMSIZ];
293 	struct ifmap map;
294 };
295 #define NETDEV_BOOT_SETUP_MAX 8
296 
297 extern int __init netdev_boot_setup(char *str);
298 
299 /*
300  * Structure for NAPI scheduling similar to tasklet but with weighting
301  */
302 struct napi_struct {
303 	/* The poll_list must only be managed by the entity which
304 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
305 	 * whoever atomically sets that bit can add this napi_struct
306 	 * to the per-cpu poll_list, and whoever clears that bit
307 	 * can remove from the list right before clearing the bit.
308 	 */
309 	struct list_head	poll_list;
310 
311 	unsigned long		state;
312 	int			weight;
313 	unsigned int		gro_count;
314 	int			(*poll)(struct napi_struct *, int);
315 #ifdef CONFIG_NETPOLL
316 	spinlock_t		poll_lock;
317 	int			poll_owner;
318 #endif
319 	struct net_device	*dev;
320 	struct sk_buff		*gro_list;
321 	struct sk_buff		*skb;
322 	struct list_head	dev_list;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 };
330 
331 enum gro_result {
332 	GRO_MERGED,
333 	GRO_MERGED_FREE,
334 	GRO_HELD,
335 	GRO_NORMAL,
336 	GRO_DROP,
337 };
338 typedef enum gro_result gro_result_t;
339 
340 /*
341  * enum rx_handler_result - Possible return values for rx_handlers.
342  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
343  * further.
344  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
345  * case skb->dev was changed by rx_handler.
346  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
347  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
348  *
349  * rx_handlers are functions called from inside __netif_receive_skb(), to do
350  * special processing of the skb, prior to delivery to protocol handlers.
351  *
352  * Currently, a net_device can only have a single rx_handler registered. Trying
353  * to register a second rx_handler will return -EBUSY.
354  *
355  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
356  * To unregister a rx_handler on a net_device, use
357  * netdev_rx_handler_unregister().
358  *
359  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
360  * do with the skb.
361  *
362  * If the rx_handler consumed to skb in some way, it should return
363  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
364  * the skb to be delivered in some other ways.
365  *
366  * If the rx_handler changed skb->dev, to divert the skb to another
367  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
368  * new device will be called if it exists.
369  *
370  * If the rx_handler consider the skb should be ignored, it should return
371  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
372  * are registered on exact device (ptype->dev == skb->dev).
373  *
374  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
375  * delivered, it should return RX_HANDLER_PASS.
376  *
377  * A device without a registered rx_handler will behave as if rx_handler
378  * returned RX_HANDLER_PASS.
379  */
380 
381 enum rx_handler_result {
382 	RX_HANDLER_CONSUMED,
383 	RX_HANDLER_ANOTHER,
384 	RX_HANDLER_EXACT,
385 	RX_HANDLER_PASS,
386 };
387 typedef enum rx_handler_result rx_handler_result_t;
388 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
389 
390 extern void __napi_schedule(struct napi_struct *n);
391 
392 static inline bool napi_disable_pending(struct napi_struct *n)
393 {
394 	return test_bit(NAPI_STATE_DISABLE, &n->state);
395 }
396 
397 /**
398  *	napi_schedule_prep - check if napi can be scheduled
399  *	@n: napi context
400  *
401  * Test if NAPI routine is already running, and if not mark
402  * it as running.  This is used as a condition variable
403  * insure only one NAPI poll instance runs.  We also make
404  * sure there is no pending NAPI disable.
405  */
406 static inline bool napi_schedule_prep(struct napi_struct *n)
407 {
408 	return !napi_disable_pending(n) &&
409 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
410 }
411 
412 /**
413  *	napi_schedule - schedule NAPI poll
414  *	@n: napi context
415  *
416  * Schedule NAPI poll routine to be called if it is not already
417  * running.
418  */
419 static inline void napi_schedule(struct napi_struct *n)
420 {
421 	if (napi_schedule_prep(n))
422 		__napi_schedule(n);
423 }
424 
425 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
426 static inline bool napi_reschedule(struct napi_struct *napi)
427 {
428 	if (napi_schedule_prep(napi)) {
429 		__napi_schedule(napi);
430 		return true;
431 	}
432 	return false;
433 }
434 
435 /**
436  *	napi_complete - NAPI processing complete
437  *	@n: napi context
438  *
439  * Mark NAPI processing as complete.
440  */
441 extern void __napi_complete(struct napi_struct *n);
442 extern void napi_complete(struct napi_struct *n);
443 
444 /**
445  *	napi_disable - prevent NAPI from scheduling
446  *	@n: napi context
447  *
448  * Stop NAPI from being scheduled on this context.
449  * Waits till any outstanding processing completes.
450  */
451 static inline void napi_disable(struct napi_struct *n)
452 {
453 	set_bit(NAPI_STATE_DISABLE, &n->state);
454 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
455 		msleep(1);
456 	clear_bit(NAPI_STATE_DISABLE, &n->state);
457 }
458 
459 /**
460  *	napi_enable - enable NAPI scheduling
461  *	@n: napi context
462  *
463  * Resume NAPI from being scheduled on this context.
464  * Must be paired with napi_disable.
465  */
466 static inline void napi_enable(struct napi_struct *n)
467 {
468 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
469 	smp_mb__before_clear_bit();
470 	clear_bit(NAPI_STATE_SCHED, &n->state);
471 }
472 
473 #ifdef CONFIG_SMP
474 /**
475  *	napi_synchronize - wait until NAPI is not running
476  *	@n: napi context
477  *
478  * Wait until NAPI is done being scheduled on this context.
479  * Waits till any outstanding processing completes but
480  * does not disable future activations.
481  */
482 static inline void napi_synchronize(const struct napi_struct *n)
483 {
484 	while (test_bit(NAPI_STATE_SCHED, &n->state))
485 		msleep(1);
486 }
487 #else
488 # define napi_synchronize(n)	barrier()
489 #endif
490 
491 enum netdev_queue_state_t {
492 	__QUEUE_STATE_DRV_XOFF,
493 	__QUEUE_STATE_STACK_XOFF,
494 	__QUEUE_STATE_FROZEN,
495 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
496 			      (1 << __QUEUE_STATE_STACK_XOFF))
497 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
498 					(1 << __QUEUE_STATE_FROZEN))
499 };
500 /*
501  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
502  * netif_tx_* functions below are used to manipulate this flag.  The
503  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
504  * queue independently.  The netif_xmit_*stopped functions below are called
505  * to check if the queue has been stopped by the driver or stack (either
506  * of the XOFF bits are set in the state).  Drivers should not need to call
507  * netif_xmit*stopped functions, they should only be using netif_tx_*.
508  */
509 
510 struct netdev_queue {
511 /*
512  * read mostly part
513  */
514 	struct net_device	*dev;
515 	struct Qdisc		*qdisc;
516 	struct Qdisc		*qdisc_sleeping;
517 #ifdef CONFIG_SYSFS
518 	struct kobject		kobj;
519 #endif
520 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
521 	int			numa_node;
522 #endif
523 /*
524  * write mostly part
525  */
526 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
527 	int			xmit_lock_owner;
528 	/*
529 	 * please use this field instead of dev->trans_start
530 	 */
531 	unsigned long		trans_start;
532 
533 	/*
534 	 * Number of TX timeouts for this queue
535 	 * (/sys/class/net/DEV/Q/trans_timeout)
536 	 */
537 	unsigned long		trans_timeout;
538 
539 	unsigned long		state;
540 
541 #ifdef CONFIG_BQL
542 	struct dql		dql;
543 #endif
544 } ____cacheline_aligned_in_smp;
545 
546 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
547 {
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 	return q->numa_node;
550 #else
551 	return NUMA_NO_NODE;
552 #endif
553 }
554 
555 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
556 {
557 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
558 	q->numa_node = node;
559 #endif
560 }
561 
562 #ifdef CONFIG_RPS
563 /*
564  * This structure holds an RPS map which can be of variable length.  The
565  * map is an array of CPUs.
566  */
567 struct rps_map {
568 	unsigned int len;
569 	struct rcu_head rcu;
570 	u16 cpus[0];
571 };
572 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
573 
574 /*
575  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
576  * tail pointer for that CPU's input queue at the time of last enqueue, and
577  * a hardware filter index.
578  */
579 struct rps_dev_flow {
580 	u16 cpu;
581 	u16 filter;
582 	unsigned int last_qtail;
583 };
584 #define RPS_NO_FILTER 0xffff
585 
586 /*
587  * The rps_dev_flow_table structure contains a table of flow mappings.
588  */
589 struct rps_dev_flow_table {
590 	unsigned int mask;
591 	struct rcu_head rcu;
592 	struct work_struct free_work;
593 	struct rps_dev_flow flows[0];
594 };
595 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
596     ((_num) * sizeof(struct rps_dev_flow)))
597 
598 /*
599  * The rps_sock_flow_table contains mappings of flows to the last CPU
600  * on which they were processed by the application (set in recvmsg).
601  */
602 struct rps_sock_flow_table {
603 	unsigned int mask;
604 	u16 ents[0];
605 };
606 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
607     ((_num) * sizeof(u16)))
608 
609 #define RPS_NO_CPU 0xffff
610 
611 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
612 					u32 hash)
613 {
614 	if (table && hash) {
615 		unsigned int cpu, index = hash & table->mask;
616 
617 		/* We only give a hint, preemption can change cpu under us */
618 		cpu = raw_smp_processor_id();
619 
620 		if (table->ents[index] != cpu)
621 			table->ents[index] = cpu;
622 	}
623 }
624 
625 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
626 				       u32 hash)
627 {
628 	if (table && hash)
629 		table->ents[hash & table->mask] = RPS_NO_CPU;
630 }
631 
632 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
633 
634 #ifdef CONFIG_RFS_ACCEL
635 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
636 				u32 flow_id, u16 filter_id);
637 #endif
638 
639 /* This structure contains an instance of an RX queue. */
640 struct netdev_rx_queue {
641 	struct rps_map __rcu		*rps_map;
642 	struct rps_dev_flow_table __rcu	*rps_flow_table;
643 	struct kobject			kobj;
644 	struct net_device		*dev;
645 } ____cacheline_aligned_in_smp;
646 #endif /* CONFIG_RPS */
647 
648 #ifdef CONFIG_XPS
649 /*
650  * This structure holds an XPS map which can be of variable length.  The
651  * map is an array of queues.
652  */
653 struct xps_map {
654 	unsigned int len;
655 	unsigned int alloc_len;
656 	struct rcu_head rcu;
657 	u16 queues[0];
658 };
659 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
660 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
661     / sizeof(u16))
662 
663 /*
664  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
665  */
666 struct xps_dev_maps {
667 	struct rcu_head rcu;
668 	struct xps_map __rcu *cpu_map[0];
669 };
670 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
671     (nr_cpu_ids * sizeof(struct xps_map *)))
672 #endif /* CONFIG_XPS */
673 
674 #define TC_MAX_QUEUE	16
675 #define TC_BITMASK	15
676 /* HW offloaded queuing disciplines txq count and offset maps */
677 struct netdev_tc_txq {
678 	u16 count;
679 	u16 offset;
680 };
681 
682 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
683 /*
684  * This structure is to hold information about the device
685  * configured to run FCoE protocol stack.
686  */
687 struct netdev_fcoe_hbainfo {
688 	char	manufacturer[64];
689 	char	serial_number[64];
690 	char	hardware_version[64];
691 	char	driver_version[64];
692 	char	optionrom_version[64];
693 	char	firmware_version[64];
694 	char	model[256];
695 	char	model_description[256];
696 };
697 #endif
698 
699 /*
700  * This structure defines the management hooks for network devices.
701  * The following hooks can be defined; unless noted otherwise, they are
702  * optional and can be filled with a null pointer.
703  *
704  * int (*ndo_init)(struct net_device *dev);
705  *     This function is called once when network device is registered.
706  *     The network device can use this to any late stage initializaton
707  *     or semantic validattion. It can fail with an error code which will
708  *     be propogated back to register_netdev
709  *
710  * void (*ndo_uninit)(struct net_device *dev);
711  *     This function is called when device is unregistered or when registration
712  *     fails. It is not called if init fails.
713  *
714  * int (*ndo_open)(struct net_device *dev);
715  *     This function is called when network device transistions to the up
716  *     state.
717  *
718  * int (*ndo_stop)(struct net_device *dev);
719  *     This function is called when network device transistions to the down
720  *     state.
721  *
722  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
723  *                               struct net_device *dev);
724  *	Called when a packet needs to be transmitted.
725  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
726  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
727  *	Required can not be NULL.
728  *
729  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
730  *	Called to decide which queue to when device supports multiple
731  *	transmit queues.
732  *
733  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
734  *	This function is called to allow device receiver to make
735  *	changes to configuration when multicast or promiscious is enabled.
736  *
737  * void (*ndo_set_rx_mode)(struct net_device *dev);
738  *	This function is called device changes address list filtering.
739  *	If driver handles unicast address filtering, it should set
740  *	IFF_UNICAST_FLT to its priv_flags.
741  *
742  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
743  *	This function  is called when the Media Access Control address
744  *	needs to be changed. If this interface is not defined, the
745  *	mac address can not be changed.
746  *
747  * int (*ndo_validate_addr)(struct net_device *dev);
748  *	Test if Media Access Control address is valid for the device.
749  *
750  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
751  *	Called when a user request an ioctl which can't be handled by
752  *	the generic interface code. If not defined ioctl's return
753  *	not supported error code.
754  *
755  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
756  *	Used to set network devices bus interface parameters. This interface
757  *	is retained for legacy reason, new devices should use the bus
758  *	interface (PCI) for low level management.
759  *
760  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
761  *	Called when a user wants to change the Maximum Transfer Unit
762  *	of a device. If not defined, any request to change MTU will
763  *	will return an error.
764  *
765  * void (*ndo_tx_timeout)(struct net_device *dev);
766  *	Callback uses when the transmitter has not made any progress
767  *	for dev->watchdog ticks.
768  *
769  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
770  *                      struct rtnl_link_stats64 *storage);
771  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
772  *	Called when a user wants to get the network device usage
773  *	statistics. Drivers must do one of the following:
774  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
775  *	   rtnl_link_stats64 structure passed by the caller.
776  *	2. Define @ndo_get_stats to update a net_device_stats structure
777  *	   (which should normally be dev->stats) and return a pointer to
778  *	   it. The structure may be changed asynchronously only if each
779  *	   field is written atomically.
780  *	3. Update dev->stats asynchronously and atomically, and define
781  *	   neither operation.
782  *
783  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
784  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
785  *	this function is called when a VLAN id is registered.
786  *
787  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
788  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
789  *	this function is called when a VLAN id is unregistered.
790  *
791  * void (*ndo_poll_controller)(struct net_device *dev);
792  *
793  *	SR-IOV management functions.
794  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
795  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
796  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
797  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
798  * int (*ndo_get_vf_config)(struct net_device *dev,
799  *			    int vf, struct ifla_vf_info *ivf);
800  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
801  *			  struct nlattr *port[]);
802  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
803  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
804  * 	Called to setup 'tc' number of traffic classes in the net device. This
805  * 	is always called from the stack with the rtnl lock held and netif tx
806  * 	queues stopped. This allows the netdevice to perform queue management
807  * 	safely.
808  *
809  *	Fiber Channel over Ethernet (FCoE) offload functions.
810  * int (*ndo_fcoe_enable)(struct net_device *dev);
811  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
812  *	so the underlying device can perform whatever needed configuration or
813  *	initialization to support acceleration of FCoE traffic.
814  *
815  * int (*ndo_fcoe_disable)(struct net_device *dev);
816  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
817  *	so the underlying device can perform whatever needed clean-ups to
818  *	stop supporting acceleration of FCoE traffic.
819  *
820  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
821  *			     struct scatterlist *sgl, unsigned int sgc);
822  *	Called when the FCoE Initiator wants to initialize an I/O that
823  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
824  *	perform necessary setup and returns 1 to indicate the device is set up
825  *	successfully to perform DDP on this I/O, otherwise this returns 0.
826  *
827  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
828  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
829  *	indicated by the FC exchange id 'xid', so the underlying device can
830  *	clean up and reuse resources for later DDP requests.
831  *
832  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
833  *			      struct scatterlist *sgl, unsigned int sgc);
834  *	Called when the FCoE Target wants to initialize an I/O that
835  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
836  *	perform necessary setup and returns 1 to indicate the device is set up
837  *	successfully to perform DDP on this I/O, otherwise this returns 0.
838  *
839  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
840  *			       struct netdev_fcoe_hbainfo *hbainfo);
841  *	Called when the FCoE Protocol stack wants information on the underlying
842  *	device. This information is utilized by the FCoE protocol stack to
843  *	register attributes with Fiber Channel management service as per the
844  *	FC-GS Fabric Device Management Information(FDMI) specification.
845  *
846  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
847  *	Called when the underlying device wants to override default World Wide
848  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
849  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
850  *	protocol stack to use.
851  *
852  *	RFS acceleration.
853  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
854  *			    u16 rxq_index, u32 flow_id);
855  *	Set hardware filter for RFS.  rxq_index is the target queue index;
856  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
857  *	Return the filter ID on success, or a negative error code.
858  *
859  *	Slave management functions (for bridge, bonding, etc). User should
860  *	call netdev_set_master() to set dev->master properly.
861  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
862  *	Called to make another netdev an underling.
863  *
864  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
865  *	Called to release previously enslaved netdev.
866  *
867  *      Feature/offload setting functions.
868  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
869  *		netdev_features_t features);
870  *	Adjusts the requested feature flags according to device-specific
871  *	constraints, and returns the resulting flags. Must not modify
872  *	the device state.
873  *
874  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
875  *	Called to update device configuration to new features. Passed
876  *	feature set might be less than what was returned by ndo_fix_features()).
877  *	Must return >0 or -errno if it changed dev->features itself.
878  *
879  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
880  *		      struct net_device *dev,
881  *		      const unsigned char *addr, u16 flags)
882  *	Adds an FDB entry to dev for addr.
883  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
884  *		      const unsigned char *addr)
885  *	Deletes the FDB entry from dev coresponding to addr.
886  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
887  *		       struct net_device *dev, int idx)
888  *	Used to add FDB entries to dump requests. Implementers should add
889  *	entries to skb and update idx with the number of entries.
890  *
891  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
892  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
893  *			     struct net_device *dev)
894  */
895 struct net_device_ops {
896 	int			(*ndo_init)(struct net_device *dev);
897 	void			(*ndo_uninit)(struct net_device *dev);
898 	int			(*ndo_open)(struct net_device *dev);
899 	int			(*ndo_stop)(struct net_device *dev);
900 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
901 						   struct net_device *dev);
902 	u16			(*ndo_select_queue)(struct net_device *dev,
903 						    struct sk_buff *skb);
904 	void			(*ndo_change_rx_flags)(struct net_device *dev,
905 						       int flags);
906 	void			(*ndo_set_rx_mode)(struct net_device *dev);
907 	int			(*ndo_set_mac_address)(struct net_device *dev,
908 						       void *addr);
909 	int			(*ndo_validate_addr)(struct net_device *dev);
910 	int			(*ndo_do_ioctl)(struct net_device *dev,
911 					        struct ifreq *ifr, int cmd);
912 	int			(*ndo_set_config)(struct net_device *dev,
913 					          struct ifmap *map);
914 	int			(*ndo_change_mtu)(struct net_device *dev,
915 						  int new_mtu);
916 	int			(*ndo_neigh_setup)(struct net_device *dev,
917 						   struct neigh_parms *);
918 	void			(*ndo_tx_timeout) (struct net_device *dev);
919 
920 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
921 						     struct rtnl_link_stats64 *storage);
922 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
923 
924 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
925 						       unsigned short vid);
926 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
927 						        unsigned short vid);
928 #ifdef CONFIG_NET_POLL_CONTROLLER
929 	void                    (*ndo_poll_controller)(struct net_device *dev);
930 	int			(*ndo_netpoll_setup)(struct net_device *dev,
931 						     struct netpoll_info *info,
932 						     gfp_t gfp);
933 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
934 #endif
935 	int			(*ndo_set_vf_mac)(struct net_device *dev,
936 						  int queue, u8 *mac);
937 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
938 						   int queue, u16 vlan, u8 qos);
939 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
940 						      int vf, int rate);
941 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
942 						       int vf, bool setting);
943 	int			(*ndo_get_vf_config)(struct net_device *dev,
944 						     int vf,
945 						     struct ifla_vf_info *ivf);
946 	int			(*ndo_set_vf_port)(struct net_device *dev,
947 						   int vf,
948 						   struct nlattr *port[]);
949 	int			(*ndo_get_vf_port)(struct net_device *dev,
950 						   int vf, struct sk_buff *skb);
951 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
952 #if IS_ENABLED(CONFIG_FCOE)
953 	int			(*ndo_fcoe_enable)(struct net_device *dev);
954 	int			(*ndo_fcoe_disable)(struct net_device *dev);
955 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
956 						      u16 xid,
957 						      struct scatterlist *sgl,
958 						      unsigned int sgc);
959 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
960 						     u16 xid);
961 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
962 						       u16 xid,
963 						       struct scatterlist *sgl,
964 						       unsigned int sgc);
965 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
966 							struct netdev_fcoe_hbainfo *hbainfo);
967 #endif
968 
969 #if IS_ENABLED(CONFIG_LIBFCOE)
970 #define NETDEV_FCOE_WWNN 0
971 #define NETDEV_FCOE_WWPN 1
972 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
973 						    u64 *wwn, int type);
974 #endif
975 
976 #ifdef CONFIG_RFS_ACCEL
977 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
978 						     const struct sk_buff *skb,
979 						     u16 rxq_index,
980 						     u32 flow_id);
981 #endif
982 	int			(*ndo_add_slave)(struct net_device *dev,
983 						 struct net_device *slave_dev);
984 	int			(*ndo_del_slave)(struct net_device *dev,
985 						 struct net_device *slave_dev);
986 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
987 						    netdev_features_t features);
988 	int			(*ndo_set_features)(struct net_device *dev,
989 						    netdev_features_t features);
990 	int			(*ndo_neigh_construct)(struct neighbour *n);
991 	void			(*ndo_neigh_destroy)(struct neighbour *n);
992 
993 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
994 					       struct nlattr *tb[],
995 					       struct net_device *dev,
996 					       const unsigned char *addr,
997 					       u16 flags);
998 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
999 					       struct net_device *dev,
1000 					       const unsigned char *addr);
1001 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1002 						struct netlink_callback *cb,
1003 						struct net_device *dev,
1004 						int idx);
1005 
1006 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1007 						      struct nlmsghdr *nlh);
1008 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1009 						      u32 pid, u32 seq,
1010 						      struct net_device *dev);
1011 };
1012 
1013 /*
1014  *	The DEVICE structure.
1015  *	Actually, this whole structure is a big mistake.  It mixes I/O
1016  *	data with strictly "high-level" data, and it has to know about
1017  *	almost every data structure used in the INET module.
1018  *
1019  *	FIXME: cleanup struct net_device such that network protocol info
1020  *	moves out.
1021  */
1022 
1023 struct net_device {
1024 
1025 	/*
1026 	 * This is the first field of the "visible" part of this structure
1027 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1028 	 * of the interface.
1029 	 */
1030 	char			name[IFNAMSIZ];
1031 
1032 	/* device name hash chain, please keep it close to name[] */
1033 	struct hlist_node	name_hlist;
1034 
1035 	/* snmp alias */
1036 	char 			*ifalias;
1037 
1038 	/*
1039 	 *	I/O specific fields
1040 	 *	FIXME: Merge these and struct ifmap into one
1041 	 */
1042 	unsigned long		mem_end;	/* shared mem end	*/
1043 	unsigned long		mem_start;	/* shared mem start	*/
1044 	unsigned long		base_addr;	/* device I/O address	*/
1045 	unsigned int		irq;		/* device IRQ number	*/
1046 
1047 	/*
1048 	 *	Some hardware also needs these fields, but they are not
1049 	 *	part of the usual set specified in Space.c.
1050 	 */
1051 
1052 	unsigned long		state;
1053 
1054 	struct list_head	dev_list;
1055 	struct list_head	napi_list;
1056 	struct list_head	unreg_list;
1057 
1058 	/* currently active device features */
1059 	netdev_features_t	features;
1060 	/* user-changeable features */
1061 	netdev_features_t	hw_features;
1062 	/* user-requested features */
1063 	netdev_features_t	wanted_features;
1064 	/* mask of features inheritable by VLAN devices */
1065 	netdev_features_t	vlan_features;
1066 	/* mask of features inherited by encapsulating devices
1067 	 * This field indicates what encapsulation offloads
1068 	 * the hardware is capable of doing, and drivers will
1069 	 * need to set them appropriately.
1070 	 */
1071 	netdev_features_t	hw_enc_features;
1072 
1073 	/* Interface index. Unique device identifier	*/
1074 	int			ifindex;
1075 	int			iflink;
1076 
1077 	struct net_device_stats	stats;
1078 	atomic_long_t		rx_dropped; /* dropped packets by core network
1079 					     * Do not use this in drivers.
1080 					     */
1081 
1082 #ifdef CONFIG_WIRELESS_EXT
1083 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1084 	 * See <net/iw_handler.h> for details. Jean II */
1085 	const struct iw_handler_def *	wireless_handlers;
1086 	/* Instance data managed by the core of Wireless Extensions. */
1087 	struct iw_public_data *	wireless_data;
1088 #endif
1089 	/* Management operations */
1090 	const struct net_device_ops *netdev_ops;
1091 	const struct ethtool_ops *ethtool_ops;
1092 
1093 	/* Hardware header description */
1094 	const struct header_ops *header_ops;
1095 
1096 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1097 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1098 					     * See if.h for definitions. */
1099 	unsigned short		gflags;
1100 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1101 
1102 	unsigned char		operstate; /* RFC2863 operstate */
1103 	unsigned char		link_mode; /* mapping policy to operstate */
1104 
1105 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1106 	unsigned char		dma;		/* DMA channel		*/
1107 
1108 	unsigned int		mtu;	/* interface MTU value		*/
1109 	unsigned short		type;	/* interface hardware type	*/
1110 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1111 
1112 	/* extra head- and tailroom the hardware may need, but not in all cases
1113 	 * can this be guaranteed, especially tailroom. Some cases also use
1114 	 * LL_MAX_HEADER instead to allocate the skb.
1115 	 */
1116 	unsigned short		needed_headroom;
1117 	unsigned short		needed_tailroom;
1118 
1119 	/* Interface address info. */
1120 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1121 	unsigned char		addr_assign_type; /* hw address assignment type */
1122 	unsigned char		addr_len;	/* hardware address length	*/
1123 	unsigned char		neigh_priv_len;
1124 	unsigned short          dev_id;		/* for shared network cards */
1125 
1126 	spinlock_t		addr_list_lock;
1127 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1128 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1129 	bool			uc_promisc;
1130 	unsigned int		promiscuity;
1131 	unsigned int		allmulti;
1132 
1133 
1134 	/* Protocol specific pointers */
1135 
1136 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1137 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1138 #endif
1139 #if IS_ENABLED(CONFIG_NET_DSA)
1140 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1141 #endif
1142 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1143 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1144 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1145 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1146 	void			*ax25_ptr;	/* AX.25 specific data */
1147 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1148 						   assign before registering */
1149 
1150 /*
1151  * Cache lines mostly used on receive path (including eth_type_trans())
1152  */
1153 	unsigned long		last_rx;	/* Time of last Rx
1154 						 * This should not be set in
1155 						 * drivers, unless really needed,
1156 						 * because network stack (bonding)
1157 						 * use it if/when necessary, to
1158 						 * avoid dirtying this cache line.
1159 						 */
1160 
1161 	struct net_device	*master; /* Pointer to master device of a group,
1162 					  * which this device is member of.
1163 					  */
1164 
1165 	/* Interface address info used in eth_type_trans() */
1166 	unsigned char		*dev_addr;	/* hw address, (before bcast
1167 						   because most packets are
1168 						   unicast) */
1169 
1170 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1171 						      hw addresses */
1172 
1173 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1174 
1175 #ifdef CONFIG_SYSFS
1176 	struct kset		*queues_kset;
1177 #endif
1178 
1179 #ifdef CONFIG_RPS
1180 	struct netdev_rx_queue	*_rx;
1181 
1182 	/* Number of RX queues allocated at register_netdev() time */
1183 	unsigned int		num_rx_queues;
1184 
1185 	/* Number of RX queues currently active in device */
1186 	unsigned int		real_num_rx_queues;
1187 
1188 #ifdef CONFIG_RFS_ACCEL
1189 	/* CPU reverse-mapping for RX completion interrupts, indexed
1190 	 * by RX queue number.  Assigned by driver.  This must only be
1191 	 * set if the ndo_rx_flow_steer operation is defined. */
1192 	struct cpu_rmap		*rx_cpu_rmap;
1193 #endif
1194 #endif
1195 
1196 	rx_handler_func_t __rcu	*rx_handler;
1197 	void __rcu		*rx_handler_data;
1198 
1199 	struct netdev_queue __rcu *ingress_queue;
1200 
1201 /*
1202  * Cache lines mostly used on transmit path
1203  */
1204 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1205 
1206 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1207 	unsigned int		num_tx_queues;
1208 
1209 	/* Number of TX queues currently active in device  */
1210 	unsigned int		real_num_tx_queues;
1211 
1212 	/* root qdisc from userspace point of view */
1213 	struct Qdisc		*qdisc;
1214 
1215 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1216 	spinlock_t		tx_global_lock;
1217 
1218 #ifdef CONFIG_XPS
1219 	struct xps_dev_maps __rcu *xps_maps;
1220 #endif
1221 
1222 	/* These may be needed for future network-power-down code. */
1223 
1224 	/*
1225 	 * trans_start here is expensive for high speed devices on SMP,
1226 	 * please use netdev_queue->trans_start instead.
1227 	 */
1228 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1229 
1230 	int			watchdog_timeo; /* used by dev_watchdog() */
1231 	struct timer_list	watchdog_timer;
1232 
1233 	/* Number of references to this device */
1234 	int __percpu		*pcpu_refcnt;
1235 
1236 	/* delayed register/unregister */
1237 	struct list_head	todo_list;
1238 	/* device index hash chain */
1239 	struct hlist_node	index_hlist;
1240 
1241 	struct list_head	link_watch_list;
1242 
1243 	/* register/unregister state machine */
1244 	enum { NETREG_UNINITIALIZED=0,
1245 	       NETREG_REGISTERED,	/* completed register_netdevice */
1246 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1247 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1248 	       NETREG_RELEASED,		/* called free_netdev */
1249 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1250 	} reg_state:8;
1251 
1252 	bool dismantle; /* device is going do be freed */
1253 
1254 	enum {
1255 		RTNL_LINK_INITIALIZED,
1256 		RTNL_LINK_INITIALIZING,
1257 	} rtnl_link_state:16;
1258 
1259 	/* Called from unregister, can be used to call free_netdev */
1260 	void (*destructor)(struct net_device *dev);
1261 
1262 #ifdef CONFIG_NETPOLL
1263 	struct netpoll_info	*npinfo;
1264 #endif
1265 
1266 #ifdef CONFIG_NET_NS
1267 	/* Network namespace this network device is inside */
1268 	struct net		*nd_net;
1269 #endif
1270 
1271 	/* mid-layer private */
1272 	union {
1273 		void				*ml_priv;
1274 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1275 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1276 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1277 	};
1278 	/* GARP */
1279 	struct garp_port __rcu	*garp_port;
1280 
1281 	/* class/net/name entry */
1282 	struct device		dev;
1283 	/* space for optional device, statistics, and wireless sysfs groups */
1284 	const struct attribute_group *sysfs_groups[4];
1285 
1286 	/* rtnetlink link ops */
1287 	const struct rtnl_link_ops *rtnl_link_ops;
1288 
1289 	/* for setting kernel sock attribute on TCP connection setup */
1290 #define GSO_MAX_SIZE		65536
1291 	unsigned int		gso_max_size;
1292 #define GSO_MAX_SEGS		65535
1293 	u16			gso_max_segs;
1294 
1295 #ifdef CONFIG_DCB
1296 	/* Data Center Bridging netlink ops */
1297 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1298 #endif
1299 	u8 num_tc;
1300 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1301 	u8 prio_tc_map[TC_BITMASK + 1];
1302 
1303 #if IS_ENABLED(CONFIG_FCOE)
1304 	/* max exchange id for FCoE LRO by ddp */
1305 	unsigned int		fcoe_ddp_xid;
1306 #endif
1307 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1308 	struct netprio_map __rcu *priomap;
1309 #endif
1310 	/* phy device may attach itself for hardware timestamping */
1311 	struct phy_device *phydev;
1312 
1313 	struct lock_class_key *qdisc_tx_busylock;
1314 
1315 	/* group the device belongs to */
1316 	int group;
1317 
1318 	struct pm_qos_request	pm_qos_req;
1319 };
1320 #define to_net_dev(d) container_of(d, struct net_device, dev)
1321 
1322 #define	NETDEV_ALIGN		32
1323 
1324 static inline
1325 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1326 {
1327 	return dev->prio_tc_map[prio & TC_BITMASK];
1328 }
1329 
1330 static inline
1331 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1332 {
1333 	if (tc >= dev->num_tc)
1334 		return -EINVAL;
1335 
1336 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1337 	return 0;
1338 }
1339 
1340 static inline
1341 void netdev_reset_tc(struct net_device *dev)
1342 {
1343 	dev->num_tc = 0;
1344 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1345 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1346 }
1347 
1348 static inline
1349 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1350 {
1351 	if (tc >= dev->num_tc)
1352 		return -EINVAL;
1353 
1354 	dev->tc_to_txq[tc].count = count;
1355 	dev->tc_to_txq[tc].offset = offset;
1356 	return 0;
1357 }
1358 
1359 static inline
1360 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1361 {
1362 	if (num_tc > TC_MAX_QUEUE)
1363 		return -EINVAL;
1364 
1365 	dev->num_tc = num_tc;
1366 	return 0;
1367 }
1368 
1369 static inline
1370 int netdev_get_num_tc(struct net_device *dev)
1371 {
1372 	return dev->num_tc;
1373 }
1374 
1375 static inline
1376 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1377 					 unsigned int index)
1378 {
1379 	return &dev->_tx[index];
1380 }
1381 
1382 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1383 					    void (*f)(struct net_device *,
1384 						      struct netdev_queue *,
1385 						      void *),
1386 					    void *arg)
1387 {
1388 	unsigned int i;
1389 
1390 	for (i = 0; i < dev->num_tx_queues; i++)
1391 		f(dev, &dev->_tx[i], arg);
1392 }
1393 
1394 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1395 					   struct sk_buff *skb);
1396 
1397 /*
1398  * Net namespace inlines
1399  */
1400 static inline
1401 struct net *dev_net(const struct net_device *dev)
1402 {
1403 	return read_pnet(&dev->nd_net);
1404 }
1405 
1406 static inline
1407 void dev_net_set(struct net_device *dev, struct net *net)
1408 {
1409 #ifdef CONFIG_NET_NS
1410 	release_net(dev->nd_net);
1411 	dev->nd_net = hold_net(net);
1412 #endif
1413 }
1414 
1415 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1416 {
1417 #ifdef CONFIG_NET_DSA_TAG_DSA
1418 	if (dev->dsa_ptr != NULL)
1419 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1420 #endif
1421 
1422 	return 0;
1423 }
1424 
1425 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1426 {
1427 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1428 	if (dev->dsa_ptr != NULL)
1429 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1430 #endif
1431 
1432 	return 0;
1433 }
1434 
1435 /**
1436  *	netdev_priv - access network device private data
1437  *	@dev: network device
1438  *
1439  * Get network device private data
1440  */
1441 static inline void *netdev_priv(const struct net_device *dev)
1442 {
1443 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1444 }
1445 
1446 /* Set the sysfs physical device reference for the network logical device
1447  * if set prior to registration will cause a symlink during initialization.
1448  */
1449 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1450 
1451 /* Set the sysfs device type for the network logical device to allow
1452  * fin grained indentification of different network device types. For
1453  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1454  */
1455 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1456 
1457 /**
1458  *	netif_napi_add - initialize a napi context
1459  *	@dev:  network device
1460  *	@napi: napi context
1461  *	@poll: polling function
1462  *	@weight: default weight
1463  *
1464  * netif_napi_add() must be used to initialize a napi context prior to calling
1465  * *any* of the other napi related functions.
1466  */
1467 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1468 		    int (*poll)(struct napi_struct *, int), int weight);
1469 
1470 /**
1471  *  netif_napi_del - remove a napi context
1472  *  @napi: napi context
1473  *
1474  *  netif_napi_del() removes a napi context from the network device napi list
1475  */
1476 void netif_napi_del(struct napi_struct *napi);
1477 
1478 struct napi_gro_cb {
1479 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1480 	void *frag0;
1481 
1482 	/* Length of frag0. */
1483 	unsigned int frag0_len;
1484 
1485 	/* This indicates where we are processing relative to skb->data. */
1486 	int data_offset;
1487 
1488 	/* This is non-zero if the packet cannot be merged with the new skb. */
1489 	int flush;
1490 
1491 	/* Number of segments aggregated. */
1492 	u16	count;
1493 
1494 	/* This is non-zero if the packet may be of the same flow. */
1495 	u8	same_flow;
1496 
1497 	/* Free the skb? */
1498 	u8	free;
1499 #define NAPI_GRO_FREE		  1
1500 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1501 
1502 	/* jiffies when first packet was created/queued */
1503 	unsigned long age;
1504 
1505 	/* Used in ipv6_gro_receive() */
1506 	int	proto;
1507 
1508 	/* used in skb_gro_receive() slow path */
1509 	struct sk_buff *last;
1510 };
1511 
1512 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1513 
1514 struct packet_type {
1515 	__be16			type;	/* This is really htons(ether_type). */
1516 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1517 	int			(*func) (struct sk_buff *,
1518 					 struct net_device *,
1519 					 struct packet_type *,
1520 					 struct net_device *);
1521 	bool			(*id_match)(struct packet_type *ptype,
1522 					    struct sock *sk);
1523 	void			*af_packet_priv;
1524 	struct list_head	list;
1525 };
1526 
1527 struct offload_callbacks {
1528 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1529 						netdev_features_t features);
1530 	int			(*gso_send_check)(struct sk_buff *skb);
1531 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1532 					       struct sk_buff *skb);
1533 	int			(*gro_complete)(struct sk_buff *skb);
1534 };
1535 
1536 struct packet_offload {
1537 	__be16			 type;	/* This is really htons(ether_type). */
1538 	struct offload_callbacks callbacks;
1539 	struct list_head	 list;
1540 };
1541 
1542 #include <linux/notifier.h>
1543 
1544 /* netdevice notifier chain. Please remember to update the rtnetlink
1545  * notification exclusion list in rtnetlink_event() when adding new
1546  * types.
1547  */
1548 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1549 #define NETDEV_DOWN	0x0002
1550 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1551 				   detected a hardware crash and restarted
1552 				   - we can use this eg to kick tcp sessions
1553 				   once done */
1554 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1555 #define NETDEV_REGISTER 0x0005
1556 #define NETDEV_UNREGISTER	0x0006
1557 #define NETDEV_CHANGEMTU	0x0007
1558 #define NETDEV_CHANGEADDR	0x0008
1559 #define NETDEV_GOING_DOWN	0x0009
1560 #define NETDEV_CHANGENAME	0x000A
1561 #define NETDEV_FEAT_CHANGE	0x000B
1562 #define NETDEV_BONDING_FAILOVER 0x000C
1563 #define NETDEV_PRE_UP		0x000D
1564 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1565 #define NETDEV_POST_TYPE_CHANGE	0x000F
1566 #define NETDEV_POST_INIT	0x0010
1567 #define NETDEV_UNREGISTER_FINAL 0x0011
1568 #define NETDEV_RELEASE		0x0012
1569 #define NETDEV_NOTIFY_PEERS	0x0013
1570 #define NETDEV_JOIN		0x0014
1571 
1572 extern int register_netdevice_notifier(struct notifier_block *nb);
1573 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1574 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1575 
1576 
1577 extern rwlock_t				dev_base_lock;		/* Device list lock */
1578 
1579 extern seqcount_t	devnet_rename_seq;	/* Device rename seq */
1580 
1581 
1582 #define for_each_netdev(net, d)		\
1583 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1584 #define for_each_netdev_reverse(net, d)	\
1585 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1586 #define for_each_netdev_rcu(net, d)		\
1587 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1588 #define for_each_netdev_safe(net, d, n)	\
1589 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1590 #define for_each_netdev_continue(net, d)		\
1591 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1592 #define for_each_netdev_continue_rcu(net, d)		\
1593 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1594 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1595 
1596 static inline struct net_device *next_net_device(struct net_device *dev)
1597 {
1598 	struct list_head *lh;
1599 	struct net *net;
1600 
1601 	net = dev_net(dev);
1602 	lh = dev->dev_list.next;
1603 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1604 }
1605 
1606 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1607 {
1608 	struct list_head *lh;
1609 	struct net *net;
1610 
1611 	net = dev_net(dev);
1612 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1613 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1614 }
1615 
1616 static inline struct net_device *first_net_device(struct net *net)
1617 {
1618 	return list_empty(&net->dev_base_head) ? NULL :
1619 		net_device_entry(net->dev_base_head.next);
1620 }
1621 
1622 static inline struct net_device *first_net_device_rcu(struct net *net)
1623 {
1624 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1625 
1626 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1627 }
1628 
1629 extern int 			netdev_boot_setup_check(struct net_device *dev);
1630 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1631 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1632 					      const char *hwaddr);
1633 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1634 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1635 extern void		dev_add_pack(struct packet_type *pt);
1636 extern void		dev_remove_pack(struct packet_type *pt);
1637 extern void		__dev_remove_pack(struct packet_type *pt);
1638 extern void		dev_add_offload(struct packet_offload *po);
1639 extern void		dev_remove_offload(struct packet_offload *po);
1640 extern void		__dev_remove_offload(struct packet_offload *po);
1641 
1642 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1643 						      unsigned short mask);
1644 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1645 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1646 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1647 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1648 extern int		dev_open(struct net_device *dev);
1649 extern int		dev_close(struct net_device *dev);
1650 extern void		dev_disable_lro(struct net_device *dev);
1651 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1652 extern int		dev_queue_xmit(struct sk_buff *skb);
1653 extern int		register_netdevice(struct net_device *dev);
1654 extern void		unregister_netdevice_queue(struct net_device *dev,
1655 						   struct list_head *head);
1656 extern void		unregister_netdevice_many(struct list_head *head);
1657 static inline void unregister_netdevice(struct net_device *dev)
1658 {
1659 	unregister_netdevice_queue(dev, NULL);
1660 }
1661 
1662 extern int 		netdev_refcnt_read(const struct net_device *dev);
1663 extern void		free_netdev(struct net_device *dev);
1664 extern void		synchronize_net(void);
1665 extern int		init_dummy_netdev(struct net_device *dev);
1666 extern void		netdev_resync_ops(struct net_device *dev);
1667 
1668 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1669 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1670 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1671 extern int		dev_restart(struct net_device *dev);
1672 #ifdef CONFIG_NETPOLL_TRAP
1673 extern int		netpoll_trap(void);
1674 #endif
1675 extern int	       skb_gro_receive(struct sk_buff **head,
1676 				       struct sk_buff *skb);
1677 
1678 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1679 {
1680 	return NAPI_GRO_CB(skb)->data_offset;
1681 }
1682 
1683 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1684 {
1685 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1686 }
1687 
1688 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1689 {
1690 	NAPI_GRO_CB(skb)->data_offset += len;
1691 }
1692 
1693 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1694 					unsigned int offset)
1695 {
1696 	return NAPI_GRO_CB(skb)->frag0 + offset;
1697 }
1698 
1699 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1700 {
1701 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1702 }
1703 
1704 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1705 					unsigned int offset)
1706 {
1707 	if (!pskb_may_pull(skb, hlen))
1708 		return NULL;
1709 
1710 	NAPI_GRO_CB(skb)->frag0 = NULL;
1711 	NAPI_GRO_CB(skb)->frag0_len = 0;
1712 	return skb->data + offset;
1713 }
1714 
1715 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1716 {
1717 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1718 }
1719 
1720 static inline void *skb_gro_network_header(struct sk_buff *skb)
1721 {
1722 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1723 	       skb_network_offset(skb);
1724 }
1725 
1726 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1727 				  unsigned short type,
1728 				  const void *daddr, const void *saddr,
1729 				  unsigned int len)
1730 {
1731 	if (!dev->header_ops || !dev->header_ops->create)
1732 		return 0;
1733 
1734 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1735 }
1736 
1737 static inline int dev_parse_header(const struct sk_buff *skb,
1738 				   unsigned char *haddr)
1739 {
1740 	const struct net_device *dev = skb->dev;
1741 
1742 	if (!dev->header_ops || !dev->header_ops->parse)
1743 		return 0;
1744 	return dev->header_ops->parse(skb, haddr);
1745 }
1746 
1747 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1748 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1749 static inline int unregister_gifconf(unsigned int family)
1750 {
1751 	return register_gifconf(family, NULL);
1752 }
1753 
1754 /*
1755  * Incoming packets are placed on per-cpu queues
1756  */
1757 struct softnet_data {
1758 	struct Qdisc		*output_queue;
1759 	struct Qdisc		**output_queue_tailp;
1760 	struct list_head	poll_list;
1761 	struct sk_buff		*completion_queue;
1762 	struct sk_buff_head	process_queue;
1763 
1764 	/* stats */
1765 	unsigned int		processed;
1766 	unsigned int		time_squeeze;
1767 	unsigned int		cpu_collision;
1768 	unsigned int		received_rps;
1769 
1770 #ifdef CONFIG_RPS
1771 	struct softnet_data	*rps_ipi_list;
1772 
1773 	/* Elements below can be accessed between CPUs for RPS */
1774 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1775 	struct softnet_data	*rps_ipi_next;
1776 	unsigned int		cpu;
1777 	unsigned int		input_queue_head;
1778 	unsigned int		input_queue_tail;
1779 #endif
1780 	unsigned int		dropped;
1781 	struct sk_buff_head	input_pkt_queue;
1782 	struct napi_struct	backlog;
1783 };
1784 
1785 static inline void input_queue_head_incr(struct softnet_data *sd)
1786 {
1787 #ifdef CONFIG_RPS
1788 	sd->input_queue_head++;
1789 #endif
1790 }
1791 
1792 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1793 					      unsigned int *qtail)
1794 {
1795 #ifdef CONFIG_RPS
1796 	*qtail = ++sd->input_queue_tail;
1797 #endif
1798 }
1799 
1800 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1801 
1802 extern void __netif_schedule(struct Qdisc *q);
1803 
1804 static inline void netif_schedule_queue(struct netdev_queue *txq)
1805 {
1806 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1807 		__netif_schedule(txq->qdisc);
1808 }
1809 
1810 static inline void netif_tx_schedule_all(struct net_device *dev)
1811 {
1812 	unsigned int i;
1813 
1814 	for (i = 0; i < dev->num_tx_queues; i++)
1815 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1816 }
1817 
1818 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1819 {
1820 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1821 }
1822 
1823 /**
1824  *	netif_start_queue - allow transmit
1825  *	@dev: network device
1826  *
1827  *	Allow upper layers to call the device hard_start_xmit routine.
1828  */
1829 static inline void netif_start_queue(struct net_device *dev)
1830 {
1831 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1832 }
1833 
1834 static inline void netif_tx_start_all_queues(struct net_device *dev)
1835 {
1836 	unsigned int i;
1837 
1838 	for (i = 0; i < dev->num_tx_queues; i++) {
1839 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1840 		netif_tx_start_queue(txq);
1841 	}
1842 }
1843 
1844 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1845 {
1846 #ifdef CONFIG_NETPOLL_TRAP
1847 	if (netpoll_trap()) {
1848 		netif_tx_start_queue(dev_queue);
1849 		return;
1850 	}
1851 #endif
1852 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1853 		__netif_schedule(dev_queue->qdisc);
1854 }
1855 
1856 /**
1857  *	netif_wake_queue - restart transmit
1858  *	@dev: network device
1859  *
1860  *	Allow upper layers to call the device hard_start_xmit routine.
1861  *	Used for flow control when transmit resources are available.
1862  */
1863 static inline void netif_wake_queue(struct net_device *dev)
1864 {
1865 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1866 }
1867 
1868 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1869 {
1870 	unsigned int i;
1871 
1872 	for (i = 0; i < dev->num_tx_queues; i++) {
1873 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1874 		netif_tx_wake_queue(txq);
1875 	}
1876 }
1877 
1878 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1879 {
1880 	if (WARN_ON(!dev_queue)) {
1881 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1882 		return;
1883 	}
1884 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1885 }
1886 
1887 /**
1888  *	netif_stop_queue - stop transmitted packets
1889  *	@dev: network device
1890  *
1891  *	Stop upper layers calling the device hard_start_xmit routine.
1892  *	Used for flow control when transmit resources are unavailable.
1893  */
1894 static inline void netif_stop_queue(struct net_device *dev)
1895 {
1896 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1897 }
1898 
1899 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1900 {
1901 	unsigned int i;
1902 
1903 	for (i = 0; i < dev->num_tx_queues; i++) {
1904 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1905 		netif_tx_stop_queue(txq);
1906 	}
1907 }
1908 
1909 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1910 {
1911 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1912 }
1913 
1914 /**
1915  *	netif_queue_stopped - test if transmit queue is flowblocked
1916  *	@dev: network device
1917  *
1918  *	Test if transmit queue on device is currently unable to send.
1919  */
1920 static inline bool netif_queue_stopped(const struct net_device *dev)
1921 {
1922 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1923 }
1924 
1925 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1926 {
1927 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1928 }
1929 
1930 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1931 {
1932 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1933 }
1934 
1935 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1936 					unsigned int bytes)
1937 {
1938 #ifdef CONFIG_BQL
1939 	dql_queued(&dev_queue->dql, bytes);
1940 
1941 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1942 		return;
1943 
1944 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1945 
1946 	/*
1947 	 * The XOFF flag must be set before checking the dql_avail below,
1948 	 * because in netdev_tx_completed_queue we update the dql_completed
1949 	 * before checking the XOFF flag.
1950 	 */
1951 	smp_mb();
1952 
1953 	/* check again in case another CPU has just made room avail */
1954 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1955 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1956 #endif
1957 }
1958 
1959 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1960 {
1961 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1962 }
1963 
1964 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1965 					     unsigned int pkts, unsigned int bytes)
1966 {
1967 #ifdef CONFIG_BQL
1968 	if (unlikely(!bytes))
1969 		return;
1970 
1971 	dql_completed(&dev_queue->dql, bytes);
1972 
1973 	/*
1974 	 * Without the memory barrier there is a small possiblity that
1975 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1976 	 * be stopped forever
1977 	 */
1978 	smp_mb();
1979 
1980 	if (dql_avail(&dev_queue->dql) < 0)
1981 		return;
1982 
1983 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1984 		netif_schedule_queue(dev_queue);
1985 #endif
1986 }
1987 
1988 static inline void netdev_completed_queue(struct net_device *dev,
1989 					  unsigned int pkts, unsigned int bytes)
1990 {
1991 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1992 }
1993 
1994 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1995 {
1996 #ifdef CONFIG_BQL
1997 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1998 	dql_reset(&q->dql);
1999 #endif
2000 }
2001 
2002 static inline void netdev_reset_queue(struct net_device *dev_queue)
2003 {
2004 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2005 }
2006 
2007 /**
2008  *	netif_running - test if up
2009  *	@dev: network device
2010  *
2011  *	Test if the device has been brought up.
2012  */
2013 static inline bool netif_running(const struct net_device *dev)
2014 {
2015 	return test_bit(__LINK_STATE_START, &dev->state);
2016 }
2017 
2018 /*
2019  * Routines to manage the subqueues on a device.  We only need start
2020  * stop, and a check if it's stopped.  All other device management is
2021  * done at the overall netdevice level.
2022  * Also test the device if we're multiqueue.
2023  */
2024 
2025 /**
2026  *	netif_start_subqueue - allow sending packets on subqueue
2027  *	@dev: network device
2028  *	@queue_index: sub queue index
2029  *
2030  * Start individual transmit queue of a device with multiple transmit queues.
2031  */
2032 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2033 {
2034 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2035 
2036 	netif_tx_start_queue(txq);
2037 }
2038 
2039 /**
2040  *	netif_stop_subqueue - stop sending packets on subqueue
2041  *	@dev: network device
2042  *	@queue_index: sub queue index
2043  *
2044  * Stop individual transmit queue of a device with multiple transmit queues.
2045  */
2046 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2047 {
2048 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2049 #ifdef CONFIG_NETPOLL_TRAP
2050 	if (netpoll_trap())
2051 		return;
2052 #endif
2053 	netif_tx_stop_queue(txq);
2054 }
2055 
2056 /**
2057  *	netif_subqueue_stopped - test status of subqueue
2058  *	@dev: network device
2059  *	@queue_index: sub queue index
2060  *
2061  * Check individual transmit queue of a device with multiple transmit queues.
2062  */
2063 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2064 					    u16 queue_index)
2065 {
2066 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2067 
2068 	return netif_tx_queue_stopped(txq);
2069 }
2070 
2071 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2072 					  struct sk_buff *skb)
2073 {
2074 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2075 }
2076 
2077 /**
2078  *	netif_wake_subqueue - allow sending packets on subqueue
2079  *	@dev: network device
2080  *	@queue_index: sub queue index
2081  *
2082  * Resume individual transmit queue of a device with multiple transmit queues.
2083  */
2084 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2085 {
2086 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2087 #ifdef CONFIG_NETPOLL_TRAP
2088 	if (netpoll_trap())
2089 		return;
2090 #endif
2091 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2092 		__netif_schedule(txq->qdisc);
2093 }
2094 
2095 /*
2096  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2097  * as a distribution range limit for the returned value.
2098  */
2099 static inline u16 skb_tx_hash(const struct net_device *dev,
2100 			      const struct sk_buff *skb)
2101 {
2102 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2103 }
2104 
2105 /**
2106  *	netif_is_multiqueue - test if device has multiple transmit queues
2107  *	@dev: network device
2108  *
2109  * Check if device has multiple transmit queues
2110  */
2111 static inline bool netif_is_multiqueue(const struct net_device *dev)
2112 {
2113 	return dev->num_tx_queues > 1;
2114 }
2115 
2116 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2117 					unsigned int txq);
2118 
2119 #ifdef CONFIG_RPS
2120 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2121 					unsigned int rxq);
2122 #else
2123 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2124 						unsigned int rxq)
2125 {
2126 	return 0;
2127 }
2128 #endif
2129 
2130 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2131 					     const struct net_device *from_dev)
2132 {
2133 	int err;
2134 
2135 	err = netif_set_real_num_tx_queues(to_dev,
2136 					   from_dev->real_num_tx_queues);
2137 	if (err)
2138 		return err;
2139 #ifdef CONFIG_RPS
2140 	return netif_set_real_num_rx_queues(to_dev,
2141 					    from_dev->real_num_rx_queues);
2142 #else
2143 	return 0;
2144 #endif
2145 }
2146 
2147 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2148 extern int netif_get_num_default_rss_queues(void);
2149 
2150 /* Use this variant when it is known for sure that it
2151  * is executing from hardware interrupt context or with hardware interrupts
2152  * disabled.
2153  */
2154 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2155 
2156 /* Use this variant in places where it could be invoked
2157  * from either hardware interrupt or other context, with hardware interrupts
2158  * either disabled or enabled.
2159  */
2160 extern void dev_kfree_skb_any(struct sk_buff *skb);
2161 
2162 extern int		netif_rx(struct sk_buff *skb);
2163 extern int		netif_rx_ni(struct sk_buff *skb);
2164 extern int		netif_receive_skb(struct sk_buff *skb);
2165 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2166 					 struct sk_buff *skb);
2167 extern void		napi_gro_flush(struct napi_struct *napi, bool flush_old);
2168 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2169 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2170 
2171 static inline void napi_free_frags(struct napi_struct *napi)
2172 {
2173 	kfree_skb(napi->skb);
2174 	napi->skb = NULL;
2175 }
2176 
2177 extern int netdev_rx_handler_register(struct net_device *dev,
2178 				      rx_handler_func_t *rx_handler,
2179 				      void *rx_handler_data);
2180 extern void netdev_rx_handler_unregister(struct net_device *dev);
2181 
2182 extern bool		dev_valid_name(const char *name);
2183 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2184 extern int		dev_ethtool(struct net *net, struct ifreq *);
2185 extern unsigned int	dev_get_flags(const struct net_device *);
2186 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2187 extern int		dev_change_flags(struct net_device *, unsigned int);
2188 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2189 extern int		dev_change_name(struct net_device *, const char *);
2190 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2191 extern int		dev_change_net_namespace(struct net_device *,
2192 						 struct net *, const char *);
2193 extern int		dev_set_mtu(struct net_device *, int);
2194 extern void		dev_set_group(struct net_device *, int);
2195 extern int		dev_set_mac_address(struct net_device *,
2196 					    struct sockaddr *);
2197 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2198 					    struct net_device *dev,
2199 					    struct netdev_queue *txq);
2200 extern int		dev_forward_skb(struct net_device *dev,
2201 					struct sk_buff *skb);
2202 
2203 extern int		netdev_budget;
2204 
2205 /* Called by rtnetlink.c:rtnl_unlock() */
2206 extern void netdev_run_todo(void);
2207 
2208 /**
2209  *	dev_put - release reference to device
2210  *	@dev: network device
2211  *
2212  * Release reference to device to allow it to be freed.
2213  */
2214 static inline void dev_put(struct net_device *dev)
2215 {
2216 	this_cpu_dec(*dev->pcpu_refcnt);
2217 }
2218 
2219 /**
2220  *	dev_hold - get reference to device
2221  *	@dev: network device
2222  *
2223  * Hold reference to device to keep it from being freed.
2224  */
2225 static inline void dev_hold(struct net_device *dev)
2226 {
2227 	this_cpu_inc(*dev->pcpu_refcnt);
2228 }
2229 
2230 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2231  * and _off may be called from IRQ context, but it is caller
2232  * who is responsible for serialization of these calls.
2233  *
2234  * The name carrier is inappropriate, these functions should really be
2235  * called netif_lowerlayer_*() because they represent the state of any
2236  * kind of lower layer not just hardware media.
2237  */
2238 
2239 extern void linkwatch_init_dev(struct net_device *dev);
2240 extern void linkwatch_fire_event(struct net_device *dev);
2241 extern void linkwatch_forget_dev(struct net_device *dev);
2242 
2243 /**
2244  *	netif_carrier_ok - test if carrier present
2245  *	@dev: network device
2246  *
2247  * Check if carrier is present on device
2248  */
2249 static inline bool netif_carrier_ok(const struct net_device *dev)
2250 {
2251 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2252 }
2253 
2254 extern unsigned long dev_trans_start(struct net_device *dev);
2255 
2256 extern void __netdev_watchdog_up(struct net_device *dev);
2257 
2258 extern void netif_carrier_on(struct net_device *dev);
2259 
2260 extern void netif_carrier_off(struct net_device *dev);
2261 
2262 /**
2263  *	netif_dormant_on - mark device as dormant.
2264  *	@dev: network device
2265  *
2266  * Mark device as dormant (as per RFC2863).
2267  *
2268  * The dormant state indicates that the relevant interface is not
2269  * actually in a condition to pass packets (i.e., it is not 'up') but is
2270  * in a "pending" state, waiting for some external event.  For "on-
2271  * demand" interfaces, this new state identifies the situation where the
2272  * interface is waiting for events to place it in the up state.
2273  *
2274  */
2275 static inline void netif_dormant_on(struct net_device *dev)
2276 {
2277 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2278 		linkwatch_fire_event(dev);
2279 }
2280 
2281 /**
2282  *	netif_dormant_off - set device as not dormant.
2283  *	@dev: network device
2284  *
2285  * Device is not in dormant state.
2286  */
2287 static inline void netif_dormant_off(struct net_device *dev)
2288 {
2289 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2290 		linkwatch_fire_event(dev);
2291 }
2292 
2293 /**
2294  *	netif_dormant - test if carrier present
2295  *	@dev: network device
2296  *
2297  * Check if carrier is present on device
2298  */
2299 static inline bool netif_dormant(const struct net_device *dev)
2300 {
2301 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2302 }
2303 
2304 
2305 /**
2306  *	netif_oper_up - test if device is operational
2307  *	@dev: network device
2308  *
2309  * Check if carrier is operational
2310  */
2311 static inline bool netif_oper_up(const struct net_device *dev)
2312 {
2313 	return (dev->operstate == IF_OPER_UP ||
2314 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2315 }
2316 
2317 /**
2318  *	netif_device_present - is device available or removed
2319  *	@dev: network device
2320  *
2321  * Check if device has not been removed from system.
2322  */
2323 static inline bool netif_device_present(struct net_device *dev)
2324 {
2325 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2326 }
2327 
2328 extern void netif_device_detach(struct net_device *dev);
2329 
2330 extern void netif_device_attach(struct net_device *dev);
2331 
2332 /*
2333  * Network interface message level settings
2334  */
2335 
2336 enum {
2337 	NETIF_MSG_DRV		= 0x0001,
2338 	NETIF_MSG_PROBE		= 0x0002,
2339 	NETIF_MSG_LINK		= 0x0004,
2340 	NETIF_MSG_TIMER		= 0x0008,
2341 	NETIF_MSG_IFDOWN	= 0x0010,
2342 	NETIF_MSG_IFUP		= 0x0020,
2343 	NETIF_MSG_RX_ERR	= 0x0040,
2344 	NETIF_MSG_TX_ERR	= 0x0080,
2345 	NETIF_MSG_TX_QUEUED	= 0x0100,
2346 	NETIF_MSG_INTR		= 0x0200,
2347 	NETIF_MSG_TX_DONE	= 0x0400,
2348 	NETIF_MSG_RX_STATUS	= 0x0800,
2349 	NETIF_MSG_PKTDATA	= 0x1000,
2350 	NETIF_MSG_HW		= 0x2000,
2351 	NETIF_MSG_WOL		= 0x4000,
2352 };
2353 
2354 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2355 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2356 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2357 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2358 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2359 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2360 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2361 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2362 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2363 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2364 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2365 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2366 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2367 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2368 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2369 
2370 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2371 {
2372 	/* use default */
2373 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2374 		return default_msg_enable_bits;
2375 	if (debug_value == 0)	/* no output */
2376 		return 0;
2377 	/* set low N bits */
2378 	return (1 << debug_value) - 1;
2379 }
2380 
2381 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2382 {
2383 	spin_lock(&txq->_xmit_lock);
2384 	txq->xmit_lock_owner = cpu;
2385 }
2386 
2387 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2388 {
2389 	spin_lock_bh(&txq->_xmit_lock);
2390 	txq->xmit_lock_owner = smp_processor_id();
2391 }
2392 
2393 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2394 {
2395 	bool ok = spin_trylock(&txq->_xmit_lock);
2396 	if (likely(ok))
2397 		txq->xmit_lock_owner = smp_processor_id();
2398 	return ok;
2399 }
2400 
2401 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2402 {
2403 	txq->xmit_lock_owner = -1;
2404 	spin_unlock(&txq->_xmit_lock);
2405 }
2406 
2407 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2408 {
2409 	txq->xmit_lock_owner = -1;
2410 	spin_unlock_bh(&txq->_xmit_lock);
2411 }
2412 
2413 static inline void txq_trans_update(struct netdev_queue *txq)
2414 {
2415 	if (txq->xmit_lock_owner != -1)
2416 		txq->trans_start = jiffies;
2417 }
2418 
2419 /**
2420  *	netif_tx_lock - grab network device transmit lock
2421  *	@dev: network device
2422  *
2423  * Get network device transmit lock
2424  */
2425 static inline void netif_tx_lock(struct net_device *dev)
2426 {
2427 	unsigned int i;
2428 	int cpu;
2429 
2430 	spin_lock(&dev->tx_global_lock);
2431 	cpu = smp_processor_id();
2432 	for (i = 0; i < dev->num_tx_queues; i++) {
2433 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2434 
2435 		/* We are the only thread of execution doing a
2436 		 * freeze, but we have to grab the _xmit_lock in
2437 		 * order to synchronize with threads which are in
2438 		 * the ->hard_start_xmit() handler and already
2439 		 * checked the frozen bit.
2440 		 */
2441 		__netif_tx_lock(txq, cpu);
2442 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2443 		__netif_tx_unlock(txq);
2444 	}
2445 }
2446 
2447 static inline void netif_tx_lock_bh(struct net_device *dev)
2448 {
2449 	local_bh_disable();
2450 	netif_tx_lock(dev);
2451 }
2452 
2453 static inline void netif_tx_unlock(struct net_device *dev)
2454 {
2455 	unsigned int i;
2456 
2457 	for (i = 0; i < dev->num_tx_queues; i++) {
2458 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2459 
2460 		/* No need to grab the _xmit_lock here.  If the
2461 		 * queue is not stopped for another reason, we
2462 		 * force a schedule.
2463 		 */
2464 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2465 		netif_schedule_queue(txq);
2466 	}
2467 	spin_unlock(&dev->tx_global_lock);
2468 }
2469 
2470 static inline void netif_tx_unlock_bh(struct net_device *dev)
2471 {
2472 	netif_tx_unlock(dev);
2473 	local_bh_enable();
2474 }
2475 
2476 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2477 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2478 		__netif_tx_lock(txq, cpu);		\
2479 	}						\
2480 }
2481 
2482 #define HARD_TX_UNLOCK(dev, txq) {			\
2483 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2484 		__netif_tx_unlock(txq);			\
2485 	}						\
2486 }
2487 
2488 static inline void netif_tx_disable(struct net_device *dev)
2489 {
2490 	unsigned int i;
2491 	int cpu;
2492 
2493 	local_bh_disable();
2494 	cpu = smp_processor_id();
2495 	for (i = 0; i < dev->num_tx_queues; i++) {
2496 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2497 
2498 		__netif_tx_lock(txq, cpu);
2499 		netif_tx_stop_queue(txq);
2500 		__netif_tx_unlock(txq);
2501 	}
2502 	local_bh_enable();
2503 }
2504 
2505 static inline void netif_addr_lock(struct net_device *dev)
2506 {
2507 	spin_lock(&dev->addr_list_lock);
2508 }
2509 
2510 static inline void netif_addr_lock_nested(struct net_device *dev)
2511 {
2512 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2513 }
2514 
2515 static inline void netif_addr_lock_bh(struct net_device *dev)
2516 {
2517 	spin_lock_bh(&dev->addr_list_lock);
2518 }
2519 
2520 static inline void netif_addr_unlock(struct net_device *dev)
2521 {
2522 	spin_unlock(&dev->addr_list_lock);
2523 }
2524 
2525 static inline void netif_addr_unlock_bh(struct net_device *dev)
2526 {
2527 	spin_unlock_bh(&dev->addr_list_lock);
2528 }
2529 
2530 /*
2531  * dev_addrs walker. Should be used only for read access. Call with
2532  * rcu_read_lock held.
2533  */
2534 #define for_each_dev_addr(dev, ha) \
2535 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2536 
2537 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2538 
2539 extern void		ether_setup(struct net_device *dev);
2540 
2541 /* Support for loadable net-drivers */
2542 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2543 				       void (*setup)(struct net_device *),
2544 				       unsigned int txqs, unsigned int rxqs);
2545 #define alloc_netdev(sizeof_priv, name, setup) \
2546 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2547 
2548 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2549 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2550 
2551 extern int		register_netdev(struct net_device *dev);
2552 extern void		unregister_netdev(struct net_device *dev);
2553 
2554 /* General hardware address lists handling functions */
2555 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2556 				  struct netdev_hw_addr_list *from_list,
2557 				  int addr_len, unsigned char addr_type);
2558 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2559 				   struct netdev_hw_addr_list *from_list,
2560 				   int addr_len, unsigned char addr_type);
2561 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2562 			  struct netdev_hw_addr_list *from_list,
2563 			  int addr_len);
2564 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2565 			     struct netdev_hw_addr_list *from_list,
2566 			     int addr_len);
2567 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2568 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2569 
2570 /* Functions used for device addresses handling */
2571 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2572 			unsigned char addr_type);
2573 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2574 			unsigned char addr_type);
2575 extern int dev_addr_add_multiple(struct net_device *to_dev,
2576 				 struct net_device *from_dev,
2577 				 unsigned char addr_type);
2578 extern int dev_addr_del_multiple(struct net_device *to_dev,
2579 				 struct net_device *from_dev,
2580 				 unsigned char addr_type);
2581 extern void dev_addr_flush(struct net_device *dev);
2582 extern int dev_addr_init(struct net_device *dev);
2583 
2584 /* Functions used for unicast addresses handling */
2585 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2586 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2587 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2588 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2589 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2590 extern void dev_uc_flush(struct net_device *dev);
2591 extern void dev_uc_init(struct net_device *dev);
2592 
2593 /* Functions used for multicast addresses handling */
2594 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2595 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2596 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2597 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2598 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2599 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2600 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2601 extern void dev_mc_flush(struct net_device *dev);
2602 extern void dev_mc_init(struct net_device *dev);
2603 
2604 /* Functions used for secondary unicast and multicast support */
2605 extern void		dev_set_rx_mode(struct net_device *dev);
2606 extern void		__dev_set_rx_mode(struct net_device *dev);
2607 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2608 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2609 extern void		netdev_state_change(struct net_device *dev);
2610 extern void		netdev_notify_peers(struct net_device *dev);
2611 extern void		netdev_features_change(struct net_device *dev);
2612 /* Load a device via the kmod */
2613 extern void		dev_load(struct net *net, const char *name);
2614 extern void		dev_mcast_init(void);
2615 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2616 					       struct rtnl_link_stats64 *storage);
2617 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2618 				    const struct net_device_stats *netdev_stats);
2619 
2620 extern int		netdev_max_backlog;
2621 extern int		netdev_tstamp_prequeue;
2622 extern int		weight_p;
2623 extern int		bpf_jit_enable;
2624 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2625 extern int netdev_set_bond_master(struct net_device *dev,
2626 				  struct net_device *master);
2627 extern int skb_checksum_help(struct sk_buff *skb);
2628 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2629 	netdev_features_t features);
2630 #ifdef CONFIG_BUG
2631 extern void netdev_rx_csum_fault(struct net_device *dev);
2632 #else
2633 static inline void netdev_rx_csum_fault(struct net_device *dev)
2634 {
2635 }
2636 #endif
2637 /* rx skb timestamps */
2638 extern void		net_enable_timestamp(void);
2639 extern void		net_disable_timestamp(void);
2640 
2641 #ifdef CONFIG_PROC_FS
2642 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2643 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2644 extern void dev_seq_stop(struct seq_file *seq, void *v);
2645 #endif
2646 
2647 extern int netdev_class_create_file(struct class_attribute *class_attr);
2648 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2649 
2650 extern struct kobj_ns_type_operations net_ns_type_operations;
2651 
2652 extern const char *netdev_drivername(const struct net_device *dev);
2653 
2654 extern void linkwatch_run_queue(void);
2655 
2656 static inline netdev_features_t netdev_get_wanted_features(
2657 	struct net_device *dev)
2658 {
2659 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2660 }
2661 netdev_features_t netdev_increment_features(netdev_features_t all,
2662 	netdev_features_t one, netdev_features_t mask);
2663 int __netdev_update_features(struct net_device *dev);
2664 void netdev_update_features(struct net_device *dev);
2665 void netdev_change_features(struct net_device *dev);
2666 
2667 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2668 					struct net_device *dev);
2669 
2670 netdev_features_t netif_skb_features(struct sk_buff *skb);
2671 
2672 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2673 {
2674 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2675 
2676 	/* check flags correspondence */
2677 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2678 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2679 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2680 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2681 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2682 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2683 
2684 	return (features & feature) == feature;
2685 }
2686 
2687 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2688 {
2689 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2690 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2691 }
2692 
2693 static inline bool netif_needs_gso(struct sk_buff *skb,
2694 				   netdev_features_t features)
2695 {
2696 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2697 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2698 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2699 }
2700 
2701 static inline void netif_set_gso_max_size(struct net_device *dev,
2702 					  unsigned int size)
2703 {
2704 	dev->gso_max_size = size;
2705 }
2706 
2707 static inline bool netif_is_bond_slave(struct net_device *dev)
2708 {
2709 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2710 }
2711 
2712 static inline bool netif_supports_nofcs(struct net_device *dev)
2713 {
2714 	return dev->priv_flags & IFF_SUPP_NOFCS;
2715 }
2716 
2717 extern struct pernet_operations __net_initdata loopback_net_ops;
2718 
2719 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2720 
2721 /* netdev_printk helpers, similar to dev_printk */
2722 
2723 static inline const char *netdev_name(const struct net_device *dev)
2724 {
2725 	if (dev->reg_state != NETREG_REGISTERED)
2726 		return "(unregistered net_device)";
2727 	return dev->name;
2728 }
2729 
2730 extern __printf(3, 4)
2731 int netdev_printk(const char *level, const struct net_device *dev,
2732 		  const char *format, ...);
2733 extern __printf(2, 3)
2734 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2735 extern __printf(2, 3)
2736 int netdev_alert(const struct net_device *dev, const char *format, ...);
2737 extern __printf(2, 3)
2738 int netdev_crit(const struct net_device *dev, const char *format, ...);
2739 extern __printf(2, 3)
2740 int netdev_err(const struct net_device *dev, const char *format, ...);
2741 extern __printf(2, 3)
2742 int netdev_warn(const struct net_device *dev, const char *format, ...);
2743 extern __printf(2, 3)
2744 int netdev_notice(const struct net_device *dev, const char *format, ...);
2745 extern __printf(2, 3)
2746 int netdev_info(const struct net_device *dev, const char *format, ...);
2747 
2748 #define MODULE_ALIAS_NETDEV(device) \
2749 	MODULE_ALIAS("netdev-" device)
2750 
2751 #if defined(CONFIG_DYNAMIC_DEBUG)
2752 #define netdev_dbg(__dev, format, args...)			\
2753 do {								\
2754 	dynamic_netdev_dbg(__dev, format, ##args);		\
2755 } while (0)
2756 #elif defined(DEBUG)
2757 #define netdev_dbg(__dev, format, args...)			\
2758 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2759 #else
2760 #define netdev_dbg(__dev, format, args...)			\
2761 ({								\
2762 	if (0)							\
2763 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2764 	0;							\
2765 })
2766 #endif
2767 
2768 #if defined(VERBOSE_DEBUG)
2769 #define netdev_vdbg	netdev_dbg
2770 #else
2771 
2772 #define netdev_vdbg(dev, format, args...)			\
2773 ({								\
2774 	if (0)							\
2775 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2776 	0;							\
2777 })
2778 #endif
2779 
2780 /*
2781  * netdev_WARN() acts like dev_printk(), but with the key difference
2782  * of using a WARN/WARN_ON to get the message out, including the
2783  * file/line information and a backtrace.
2784  */
2785 #define netdev_WARN(dev, format, args...)			\
2786 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2787 
2788 /* netif printk helpers, similar to netdev_printk */
2789 
2790 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2791 do {					  			\
2792 	if (netif_msg_##type(priv))				\
2793 		netdev_printk(level, (dev), fmt, ##args);	\
2794 } while (0)
2795 
2796 #define netif_level(level, priv, type, dev, fmt, args...)	\
2797 do {								\
2798 	if (netif_msg_##type(priv))				\
2799 		netdev_##level(dev, fmt, ##args);		\
2800 } while (0)
2801 
2802 #define netif_emerg(priv, type, dev, fmt, args...)		\
2803 	netif_level(emerg, priv, type, dev, fmt, ##args)
2804 #define netif_alert(priv, type, dev, fmt, args...)		\
2805 	netif_level(alert, priv, type, dev, fmt, ##args)
2806 #define netif_crit(priv, type, dev, fmt, args...)		\
2807 	netif_level(crit, priv, type, dev, fmt, ##args)
2808 #define netif_err(priv, type, dev, fmt, args...)		\
2809 	netif_level(err, priv, type, dev, fmt, ##args)
2810 #define netif_warn(priv, type, dev, fmt, args...)		\
2811 	netif_level(warn, priv, type, dev, fmt, ##args)
2812 #define netif_notice(priv, type, dev, fmt, args...)		\
2813 	netif_level(notice, priv, type, dev, fmt, ##args)
2814 #define netif_info(priv, type, dev, fmt, args...)		\
2815 	netif_level(info, priv, type, dev, fmt, ##args)
2816 
2817 #if defined(CONFIG_DYNAMIC_DEBUG)
2818 #define netif_dbg(priv, type, netdev, format, args...)		\
2819 do {								\
2820 	if (netif_msg_##type(priv))				\
2821 		dynamic_netdev_dbg(netdev, format, ##args);	\
2822 } while (0)
2823 #elif defined(DEBUG)
2824 #define netif_dbg(priv, type, dev, format, args...)		\
2825 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2826 #else
2827 #define netif_dbg(priv, type, dev, format, args...)			\
2828 ({									\
2829 	if (0)								\
2830 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2831 	0;								\
2832 })
2833 #endif
2834 
2835 #if defined(VERBOSE_DEBUG)
2836 #define netif_vdbg	netif_dbg
2837 #else
2838 #define netif_vdbg(priv, type, dev, format, args...)		\
2839 ({								\
2840 	if (0)							\
2841 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2842 	0;							\
2843 })
2844 #endif
2845 
2846 #endif	/* _LINUX_NETDEVICE_H */
2847