xref: /linux-6.15/include/linux/netdevice.h (revision 8481a249)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 /* DPLL specific */
83 struct dpll_pin;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 #ifdef CONFIG_RPS
231 #include <linux/static_key.h>
232 extern struct static_key_false rps_needed;
233 extern struct static_key_false rfs_needed;
234 #endif
235 
236 struct neighbour;
237 struct neigh_parms;
238 struct sk_buff;
239 
240 struct netdev_hw_addr {
241 	struct list_head	list;
242 	struct rb_node		node;
243 	unsigned char		addr[MAX_ADDR_LEN];
244 	unsigned char		type;
245 #define NETDEV_HW_ADDR_T_LAN		1
246 #define NETDEV_HW_ADDR_T_SAN		2
247 #define NETDEV_HW_ADDR_T_UNICAST	3
248 #define NETDEV_HW_ADDR_T_MULTICAST	4
249 	bool			global_use;
250 	int			sync_cnt;
251 	int			refcount;
252 	int			synced;
253 	struct rcu_head		rcu_head;
254 };
255 
256 struct netdev_hw_addr_list {
257 	struct list_head	list;
258 	int			count;
259 
260 	/* Auxiliary tree for faster lookup on addition and deletion */
261 	struct rb_root		tree;
262 };
263 
264 #define netdev_hw_addr_list_count(l) ((l)->count)
265 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
266 #define netdev_hw_addr_list_for_each(ha, l) \
267 	list_for_each_entry(ha, &(l)->list, list)
268 
269 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
270 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
271 #define netdev_for_each_uc_addr(ha, dev) \
272 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
273 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
274 	netdev_for_each_uc_addr((_ha), (_dev)) \
275 		if ((_ha)->sync_cnt)
276 
277 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
278 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
279 #define netdev_for_each_mc_addr(ha, dev) \
280 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
281 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
282 	netdev_for_each_mc_addr((_ha), (_dev)) \
283 		if ((_ha)->sync_cnt)
284 
285 struct hh_cache {
286 	unsigned int	hh_len;
287 	seqlock_t	hh_lock;
288 
289 	/* cached hardware header; allow for machine alignment needs.        */
290 #define HH_DATA_MOD	16
291 #define HH_DATA_OFF(__len) \
292 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
293 #define HH_DATA_ALIGN(__len) \
294 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
295 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
296 };
297 
298 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
299  * Alternative is:
300  *   dev->hard_header_len ? (dev->hard_header_len +
301  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
302  *
303  * We could use other alignment values, but we must maintain the
304  * relationship HH alignment <= LL alignment.
305  */
306 #define LL_RESERVED_SPACE(dev) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
310 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
311 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
312 
313 struct header_ops {
314 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
315 			   unsigned short type, const void *daddr,
316 			   const void *saddr, unsigned int len);
317 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
318 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
319 	void	(*cache_update)(struct hh_cache *hh,
320 				const struct net_device *dev,
321 				const unsigned char *haddr);
322 	bool	(*validate)(const char *ll_header, unsigned int len);
323 	__be16	(*parse_protocol)(const struct sk_buff *skb);
324 };
325 
326 /* These flag bits are private to the generic network queueing
327  * layer; they may not be explicitly referenced by any other
328  * code.
329  */
330 
331 enum netdev_state_t {
332 	__LINK_STATE_START,
333 	__LINK_STATE_PRESENT,
334 	__LINK_STATE_NOCARRIER,
335 	__LINK_STATE_LINKWATCH_PENDING,
336 	__LINK_STATE_DORMANT,
337 	__LINK_STATE_TESTING,
338 };
339 
340 struct gro_list {
341 	struct list_head	list;
342 	int			count;
343 };
344 
345 /*
346  * size of gro hash buckets, must less than bit number of
347  * napi_struct::gro_bitmask
348  */
349 #define GRO_HASH_BUCKETS	8
350 
351 /*
352  * Structure for NAPI scheduling similar to tasklet but with weighting
353  */
354 struct napi_struct {
355 	/* The poll_list must only be managed by the entity which
356 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
357 	 * whoever atomically sets that bit can add this napi_struct
358 	 * to the per-CPU poll_list, and whoever clears that bit
359 	 * can remove from the list right before clearing the bit.
360 	 */
361 	struct list_head	poll_list;
362 
363 	unsigned long		state;
364 	int			weight;
365 	int			defer_hard_irqs_count;
366 	unsigned long		gro_bitmask;
367 	int			(*poll)(struct napi_struct *, int);
368 #ifdef CONFIG_NETPOLL
369 	/* CPU actively polling if netpoll is configured */
370 	int			poll_owner;
371 #endif
372 	/* CPU on which NAPI has been scheduled for processing */
373 	int			list_owner;
374 	struct net_device	*dev;
375 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
376 	struct sk_buff		*skb;
377 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
378 	int			rx_count; /* length of rx_list */
379 	unsigned int		napi_id;
380 	struct hrtimer		timer;
381 	struct task_struct	*thread;
382 	/* control-path-only fields follow */
383 	struct list_head	dev_list;
384 	struct hlist_node	napi_hash_node;
385 	int			irq;
386 };
387 
388 enum {
389 	NAPI_STATE_SCHED,		/* Poll is scheduled */
390 	NAPI_STATE_MISSED,		/* reschedule a napi */
391 	NAPI_STATE_DISABLE,		/* Disable pending */
392 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
393 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
394 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
395 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
396 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
397 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
398 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
399 };
400 
401 enum {
402 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
403 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
404 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
405 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
406 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
407 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
408 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
409 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
410 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
411 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
412 };
413 
414 enum gro_result {
415 	GRO_MERGED,
416 	GRO_MERGED_FREE,
417 	GRO_HELD,
418 	GRO_NORMAL,
419 	GRO_CONSUMED,
420 };
421 typedef enum gro_result gro_result_t;
422 
423 /*
424  * enum rx_handler_result - Possible return values for rx_handlers.
425  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
426  * further.
427  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
428  * case skb->dev was changed by rx_handler.
429  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
430  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
431  *
432  * rx_handlers are functions called from inside __netif_receive_skb(), to do
433  * special processing of the skb, prior to delivery to protocol handlers.
434  *
435  * Currently, a net_device can only have a single rx_handler registered. Trying
436  * to register a second rx_handler will return -EBUSY.
437  *
438  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
439  * To unregister a rx_handler on a net_device, use
440  * netdev_rx_handler_unregister().
441  *
442  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
443  * do with the skb.
444  *
445  * If the rx_handler consumed the skb in some way, it should return
446  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
447  * the skb to be delivered in some other way.
448  *
449  * If the rx_handler changed skb->dev, to divert the skb to another
450  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
451  * new device will be called if it exists.
452  *
453  * If the rx_handler decides the skb should be ignored, it should return
454  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
455  * are registered on exact device (ptype->dev == skb->dev).
456  *
457  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
458  * delivered, it should return RX_HANDLER_PASS.
459  *
460  * A device without a registered rx_handler will behave as if rx_handler
461  * returned RX_HANDLER_PASS.
462  */
463 
464 enum rx_handler_result {
465 	RX_HANDLER_CONSUMED,
466 	RX_HANDLER_ANOTHER,
467 	RX_HANDLER_EXACT,
468 	RX_HANDLER_PASS,
469 };
470 typedef enum rx_handler_result rx_handler_result_t;
471 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
472 
473 void __napi_schedule(struct napi_struct *n);
474 void __napi_schedule_irqoff(struct napi_struct *n);
475 
476 static inline bool napi_disable_pending(struct napi_struct *n)
477 {
478 	return test_bit(NAPI_STATE_DISABLE, &n->state);
479 }
480 
481 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
482 {
483 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
484 }
485 
486 /**
487  * napi_is_scheduled - test if NAPI is scheduled
488  * @n: NAPI context
489  *
490  * This check is "best-effort". With no locking implemented,
491  * a NAPI can be scheduled or terminate right after this check
492  * and produce not precise results.
493  *
494  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
495  * should not be used normally and napi_schedule should be
496  * used instead.
497  *
498  * Use only if the driver really needs to check if a NAPI
499  * is scheduled for example in the context of delayed timer
500  * that can be skipped if a NAPI is already scheduled.
501  *
502  * Return True if NAPI is scheduled, False otherwise.
503  */
504 static inline bool napi_is_scheduled(struct napi_struct *n)
505 {
506 	return test_bit(NAPI_STATE_SCHED, &n->state);
507 }
508 
509 bool napi_schedule_prep(struct napi_struct *n);
510 
511 /**
512  *	napi_schedule - schedule NAPI poll
513  *	@n: NAPI context
514  *
515  * Schedule NAPI poll routine to be called if it is not already
516  * running.
517  * Return true if we schedule a NAPI or false if not.
518  * Refer to napi_schedule_prep() for additional reason on why
519  * a NAPI might not be scheduled.
520  */
521 static inline bool napi_schedule(struct napi_struct *n)
522 {
523 	if (napi_schedule_prep(n)) {
524 		__napi_schedule(n);
525 		return true;
526 	}
527 
528 	return false;
529 }
530 
531 /**
532  *	napi_schedule_irqoff - schedule NAPI poll
533  *	@n: NAPI context
534  *
535  * Variant of napi_schedule(), assuming hard irqs are masked.
536  */
537 static inline void napi_schedule_irqoff(struct napi_struct *n)
538 {
539 	if (napi_schedule_prep(n))
540 		__napi_schedule_irqoff(n);
541 }
542 
543 /**
544  * napi_complete_done - NAPI processing complete
545  * @n: NAPI context
546  * @work_done: number of packets processed
547  *
548  * Mark NAPI processing as complete. Should only be called if poll budget
549  * has not been completely consumed.
550  * Prefer over napi_complete().
551  * Return false if device should avoid rearming interrupts.
552  */
553 bool napi_complete_done(struct napi_struct *n, int work_done);
554 
555 static inline bool napi_complete(struct napi_struct *n)
556 {
557 	return napi_complete_done(n, 0);
558 }
559 
560 int dev_set_threaded(struct net_device *dev, bool threaded);
561 
562 /**
563  *	napi_disable - prevent NAPI from scheduling
564  *	@n: NAPI context
565  *
566  * Stop NAPI from being scheduled on this context.
567  * Waits till any outstanding processing completes.
568  */
569 void napi_disable(struct napi_struct *n);
570 
571 void napi_enable(struct napi_struct *n);
572 
573 /**
574  *	napi_synchronize - wait until NAPI is not running
575  *	@n: NAPI context
576  *
577  * Wait until NAPI is done being scheduled on this context.
578  * Waits till any outstanding processing completes but
579  * does not disable future activations.
580  */
581 static inline void napi_synchronize(const struct napi_struct *n)
582 {
583 	if (IS_ENABLED(CONFIG_SMP))
584 		while (test_bit(NAPI_STATE_SCHED, &n->state))
585 			msleep(1);
586 	else
587 		barrier();
588 }
589 
590 /**
591  *	napi_if_scheduled_mark_missed - if napi is running, set the
592  *	NAPIF_STATE_MISSED
593  *	@n: NAPI context
594  *
595  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
596  * NAPI is scheduled.
597  **/
598 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
599 {
600 	unsigned long val, new;
601 
602 	val = READ_ONCE(n->state);
603 	do {
604 		if (val & NAPIF_STATE_DISABLE)
605 			return true;
606 
607 		if (!(val & NAPIF_STATE_SCHED))
608 			return false;
609 
610 		new = val | NAPIF_STATE_MISSED;
611 	} while (!try_cmpxchg(&n->state, &val, new));
612 
613 	return true;
614 }
615 
616 enum netdev_queue_state_t {
617 	__QUEUE_STATE_DRV_XOFF,
618 	__QUEUE_STATE_STACK_XOFF,
619 	__QUEUE_STATE_FROZEN,
620 };
621 
622 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
623 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
624 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
625 
626 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
627 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
628 					QUEUE_STATE_FROZEN)
629 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
630 					QUEUE_STATE_FROZEN)
631 
632 /*
633  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
634  * netif_tx_* functions below are used to manipulate this flag.  The
635  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
636  * queue independently.  The netif_xmit_*stopped functions below are called
637  * to check if the queue has been stopped by the driver or stack (either
638  * of the XOFF bits are set in the state).  Drivers should not need to call
639  * netif_xmit*stopped functions, they should only be using netif_tx_*.
640  */
641 
642 struct netdev_queue {
643 /*
644  * read-mostly part
645  */
646 	struct net_device	*dev;
647 	netdevice_tracker	dev_tracker;
648 
649 	struct Qdisc __rcu	*qdisc;
650 	struct Qdisc __rcu	*qdisc_sleeping;
651 #ifdef CONFIG_SYSFS
652 	struct kobject		kobj;
653 #endif
654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
655 	int			numa_node;
656 #endif
657 	unsigned long		tx_maxrate;
658 	/*
659 	 * Number of TX timeouts for this queue
660 	 * (/sys/class/net/DEV/Q/trans_timeout)
661 	 */
662 	atomic_long_t		trans_timeout;
663 
664 	/* Subordinate device that the queue has been assigned to */
665 	struct net_device	*sb_dev;
666 #ifdef CONFIG_XDP_SOCKETS
667 	struct xsk_buff_pool    *pool;
668 #endif
669 	/* NAPI instance for the queue
670 	 * Readers and writers must hold RTNL
671 	 */
672 	struct napi_struct      *napi;
673 /*
674  * write-mostly part
675  */
676 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
677 	int			xmit_lock_owner;
678 	/*
679 	 * Time (in jiffies) of last Tx
680 	 */
681 	unsigned long		trans_start;
682 
683 	unsigned long		state;
684 
685 #ifdef CONFIG_BQL
686 	struct dql		dql;
687 #endif
688 } ____cacheline_aligned_in_smp;
689 
690 extern int sysctl_fb_tunnels_only_for_init_net;
691 extern int sysctl_devconf_inherit_init_net;
692 
693 /*
694  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
695  *                                     == 1 : For initns only
696  *                                     == 2 : For none.
697  */
698 static inline bool net_has_fallback_tunnels(const struct net *net)
699 {
700 #if IS_ENABLED(CONFIG_SYSCTL)
701 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
702 
703 	return !fb_tunnels_only_for_init_net ||
704 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
705 #else
706 	return true;
707 #endif
708 }
709 
710 static inline int net_inherit_devconf(void)
711 {
712 #if IS_ENABLED(CONFIG_SYSCTL)
713 	return READ_ONCE(sysctl_devconf_inherit_init_net);
714 #else
715 	return 0;
716 #endif
717 }
718 
719 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
720 {
721 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
722 	return q->numa_node;
723 #else
724 	return NUMA_NO_NODE;
725 #endif
726 }
727 
728 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
729 {
730 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
731 	q->numa_node = node;
732 #endif
733 }
734 
735 #ifdef CONFIG_RPS
736 /*
737  * This structure holds an RPS map which can be of variable length.  The
738  * map is an array of CPUs.
739  */
740 struct rps_map {
741 	unsigned int len;
742 	struct rcu_head rcu;
743 	u16 cpus[];
744 };
745 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
746 
747 /*
748  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
749  * tail pointer for that CPU's input queue at the time of last enqueue, and
750  * a hardware filter index.
751  */
752 struct rps_dev_flow {
753 	u16 cpu;
754 	u16 filter;
755 	unsigned int last_qtail;
756 };
757 #define RPS_NO_FILTER 0xffff
758 
759 /*
760  * The rps_dev_flow_table structure contains a table of flow mappings.
761  */
762 struct rps_dev_flow_table {
763 	unsigned int mask;
764 	struct rcu_head rcu;
765 	struct rps_dev_flow flows[];
766 };
767 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
768     ((_num) * sizeof(struct rps_dev_flow)))
769 
770 /*
771  * The rps_sock_flow_table contains mappings of flows to the last CPU
772  * on which they were processed by the application (set in recvmsg).
773  * Each entry is a 32bit value. Upper part is the high-order bits
774  * of flow hash, lower part is CPU number.
775  * rps_cpu_mask is used to partition the space, depending on number of
776  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
777  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
778  * meaning we use 32-6=26 bits for the hash.
779  */
780 struct rps_sock_flow_table {
781 	u32	mask;
782 
783 	u32	ents[] ____cacheline_aligned_in_smp;
784 };
785 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
786 
787 #define RPS_NO_CPU 0xffff
788 
789 extern u32 rps_cpu_mask;
790 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
791 
792 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
793 					u32 hash)
794 {
795 	if (table && hash) {
796 		unsigned int index = hash & table->mask;
797 		u32 val = hash & ~rps_cpu_mask;
798 
799 		/* We only give a hint, preemption can change CPU under us */
800 		val |= raw_smp_processor_id();
801 
802 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
803 		 * here, and another one in get_rps_cpu().
804 		 */
805 		if (READ_ONCE(table->ents[index]) != val)
806 			WRITE_ONCE(table->ents[index], val);
807 	}
808 }
809 
810 #ifdef CONFIG_RFS_ACCEL
811 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
812 			 u16 filter_id);
813 #endif
814 #endif /* CONFIG_RPS */
815 
816 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
817 enum xps_map_type {
818 	XPS_CPUS = 0,
819 	XPS_RXQS,
820 	XPS_MAPS_MAX,
821 };
822 
823 #ifdef CONFIG_XPS
824 /*
825  * This structure holds an XPS map which can be of variable length.  The
826  * map is an array of queues.
827  */
828 struct xps_map {
829 	unsigned int len;
830 	unsigned int alloc_len;
831 	struct rcu_head rcu;
832 	u16 queues[];
833 };
834 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
835 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
836        - sizeof(struct xps_map)) / sizeof(u16))
837 
838 /*
839  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
840  *
841  * We keep track of the number of cpus/rxqs used when the struct is allocated,
842  * in nr_ids. This will help not accessing out-of-bound memory.
843  *
844  * We keep track of the number of traffic classes used when the struct is
845  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
846  * not crossing its upper bound, as the original dev->num_tc can be updated in
847  * the meantime.
848  */
849 struct xps_dev_maps {
850 	struct rcu_head rcu;
851 	unsigned int nr_ids;
852 	s16 num_tc;
853 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
854 };
855 
856 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
857 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
858 
859 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
860 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
861 
862 #endif /* CONFIG_XPS */
863 
864 #define TC_MAX_QUEUE	16
865 #define TC_BITMASK	15
866 /* HW offloaded queuing disciplines txq count and offset maps */
867 struct netdev_tc_txq {
868 	u16 count;
869 	u16 offset;
870 };
871 
872 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
873 /*
874  * This structure is to hold information about the device
875  * configured to run FCoE protocol stack.
876  */
877 struct netdev_fcoe_hbainfo {
878 	char	manufacturer[64];
879 	char	serial_number[64];
880 	char	hardware_version[64];
881 	char	driver_version[64];
882 	char	optionrom_version[64];
883 	char	firmware_version[64];
884 	char	model[256];
885 	char	model_description[256];
886 };
887 #endif
888 
889 #define MAX_PHYS_ITEM_ID_LEN 32
890 
891 /* This structure holds a unique identifier to identify some
892  * physical item (port for example) used by a netdevice.
893  */
894 struct netdev_phys_item_id {
895 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
896 	unsigned char id_len;
897 };
898 
899 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
900 					    struct netdev_phys_item_id *b)
901 {
902 	return a->id_len == b->id_len &&
903 	       memcmp(a->id, b->id, a->id_len) == 0;
904 }
905 
906 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
907 				       struct sk_buff *skb,
908 				       struct net_device *sb_dev);
909 
910 enum net_device_path_type {
911 	DEV_PATH_ETHERNET = 0,
912 	DEV_PATH_VLAN,
913 	DEV_PATH_BRIDGE,
914 	DEV_PATH_PPPOE,
915 	DEV_PATH_DSA,
916 	DEV_PATH_MTK_WDMA,
917 };
918 
919 struct net_device_path {
920 	enum net_device_path_type	type;
921 	const struct net_device		*dev;
922 	union {
923 		struct {
924 			u16		id;
925 			__be16		proto;
926 			u8		h_dest[ETH_ALEN];
927 		} encap;
928 		struct {
929 			enum {
930 				DEV_PATH_BR_VLAN_KEEP,
931 				DEV_PATH_BR_VLAN_TAG,
932 				DEV_PATH_BR_VLAN_UNTAG,
933 				DEV_PATH_BR_VLAN_UNTAG_HW,
934 			}		vlan_mode;
935 			u16		vlan_id;
936 			__be16		vlan_proto;
937 		} bridge;
938 		struct {
939 			int port;
940 			u16 proto;
941 		} dsa;
942 		struct {
943 			u8 wdma_idx;
944 			u8 queue;
945 			u16 wcid;
946 			u8 bss;
947 			u8 amsdu;
948 		} mtk_wdma;
949 	};
950 };
951 
952 #define NET_DEVICE_PATH_STACK_MAX	5
953 #define NET_DEVICE_PATH_VLAN_MAX	2
954 
955 struct net_device_path_stack {
956 	int			num_paths;
957 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
958 };
959 
960 struct net_device_path_ctx {
961 	const struct net_device *dev;
962 	u8			daddr[ETH_ALEN];
963 
964 	int			num_vlans;
965 	struct {
966 		u16		id;
967 		__be16		proto;
968 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
969 };
970 
971 enum tc_setup_type {
972 	TC_QUERY_CAPS,
973 	TC_SETUP_QDISC_MQPRIO,
974 	TC_SETUP_CLSU32,
975 	TC_SETUP_CLSFLOWER,
976 	TC_SETUP_CLSMATCHALL,
977 	TC_SETUP_CLSBPF,
978 	TC_SETUP_BLOCK,
979 	TC_SETUP_QDISC_CBS,
980 	TC_SETUP_QDISC_RED,
981 	TC_SETUP_QDISC_PRIO,
982 	TC_SETUP_QDISC_MQ,
983 	TC_SETUP_QDISC_ETF,
984 	TC_SETUP_ROOT_QDISC,
985 	TC_SETUP_QDISC_GRED,
986 	TC_SETUP_QDISC_TAPRIO,
987 	TC_SETUP_FT,
988 	TC_SETUP_QDISC_ETS,
989 	TC_SETUP_QDISC_TBF,
990 	TC_SETUP_QDISC_FIFO,
991 	TC_SETUP_QDISC_HTB,
992 	TC_SETUP_ACT,
993 };
994 
995 /* These structures hold the attributes of bpf state that are being passed
996  * to the netdevice through the bpf op.
997  */
998 enum bpf_netdev_command {
999 	/* Set or clear a bpf program used in the earliest stages of packet
1000 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
1001 	 * is responsible for calling bpf_prog_put on any old progs that are
1002 	 * stored. In case of error, the callee need not release the new prog
1003 	 * reference, but on success it takes ownership and must bpf_prog_put
1004 	 * when it is no longer used.
1005 	 */
1006 	XDP_SETUP_PROG,
1007 	XDP_SETUP_PROG_HW,
1008 	/* BPF program for offload callbacks, invoked at program load time. */
1009 	BPF_OFFLOAD_MAP_ALLOC,
1010 	BPF_OFFLOAD_MAP_FREE,
1011 	XDP_SETUP_XSK_POOL,
1012 };
1013 
1014 struct bpf_prog_offload_ops;
1015 struct netlink_ext_ack;
1016 struct xdp_umem;
1017 struct xdp_dev_bulk_queue;
1018 struct bpf_xdp_link;
1019 
1020 enum bpf_xdp_mode {
1021 	XDP_MODE_SKB = 0,
1022 	XDP_MODE_DRV = 1,
1023 	XDP_MODE_HW = 2,
1024 	__MAX_XDP_MODE
1025 };
1026 
1027 struct bpf_xdp_entity {
1028 	struct bpf_prog *prog;
1029 	struct bpf_xdp_link *link;
1030 };
1031 
1032 struct netdev_bpf {
1033 	enum bpf_netdev_command command;
1034 	union {
1035 		/* XDP_SETUP_PROG */
1036 		struct {
1037 			u32 flags;
1038 			struct bpf_prog *prog;
1039 			struct netlink_ext_ack *extack;
1040 		};
1041 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1042 		struct {
1043 			struct bpf_offloaded_map *offmap;
1044 		};
1045 		/* XDP_SETUP_XSK_POOL */
1046 		struct {
1047 			struct xsk_buff_pool *pool;
1048 			u16 queue_id;
1049 		} xsk;
1050 	};
1051 };
1052 
1053 /* Flags for ndo_xsk_wakeup. */
1054 #define XDP_WAKEUP_RX (1 << 0)
1055 #define XDP_WAKEUP_TX (1 << 1)
1056 
1057 #ifdef CONFIG_XFRM_OFFLOAD
1058 struct xfrmdev_ops {
1059 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1060 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1061 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1062 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1063 				       struct xfrm_state *x);
1064 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1065 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1066 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1067 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1068 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1069 };
1070 #endif
1071 
1072 struct dev_ifalias {
1073 	struct rcu_head rcuhead;
1074 	char ifalias[];
1075 };
1076 
1077 struct devlink;
1078 struct tlsdev_ops;
1079 
1080 struct netdev_net_notifier {
1081 	struct list_head list;
1082 	struct notifier_block *nb;
1083 };
1084 
1085 /*
1086  * This structure defines the management hooks for network devices.
1087  * The following hooks can be defined; unless noted otherwise, they are
1088  * optional and can be filled with a null pointer.
1089  *
1090  * int (*ndo_init)(struct net_device *dev);
1091  *     This function is called once when a network device is registered.
1092  *     The network device can use this for any late stage initialization
1093  *     or semantic validation. It can fail with an error code which will
1094  *     be propagated back to register_netdev.
1095  *
1096  * void (*ndo_uninit)(struct net_device *dev);
1097  *     This function is called when device is unregistered or when registration
1098  *     fails. It is not called if init fails.
1099  *
1100  * int (*ndo_open)(struct net_device *dev);
1101  *     This function is called when a network device transitions to the up
1102  *     state.
1103  *
1104  * int (*ndo_stop)(struct net_device *dev);
1105  *     This function is called when a network device transitions to the down
1106  *     state.
1107  *
1108  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1109  *                               struct net_device *dev);
1110  *	Called when a packet needs to be transmitted.
1111  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1112  *	the queue before that can happen; it's for obsolete devices and weird
1113  *	corner cases, but the stack really does a non-trivial amount
1114  *	of useless work if you return NETDEV_TX_BUSY.
1115  *	Required; cannot be NULL.
1116  *
1117  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1118  *					   struct net_device *dev
1119  *					   netdev_features_t features);
1120  *	Called by core transmit path to determine if device is capable of
1121  *	performing offload operations on a given packet. This is to give
1122  *	the device an opportunity to implement any restrictions that cannot
1123  *	be otherwise expressed by feature flags. The check is called with
1124  *	the set of features that the stack has calculated and it returns
1125  *	those the driver believes to be appropriate.
1126  *
1127  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1128  *                         struct net_device *sb_dev);
1129  *	Called to decide which queue to use when device supports multiple
1130  *	transmit queues.
1131  *
1132  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1133  *	This function is called to allow device receiver to make
1134  *	changes to configuration when multicast or promiscuous is enabled.
1135  *
1136  * void (*ndo_set_rx_mode)(struct net_device *dev);
1137  *	This function is called device changes address list filtering.
1138  *	If driver handles unicast address filtering, it should set
1139  *	IFF_UNICAST_FLT in its priv_flags.
1140  *
1141  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1142  *	This function  is called when the Media Access Control address
1143  *	needs to be changed. If this interface is not defined, the
1144  *	MAC address can not be changed.
1145  *
1146  * int (*ndo_validate_addr)(struct net_device *dev);
1147  *	Test if Media Access Control address is valid for the device.
1148  *
1149  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1150  *	Old-style ioctl entry point. This is used internally by the
1151  *	appletalk and ieee802154 subsystems but is no longer called by
1152  *	the device ioctl handler.
1153  *
1154  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1155  *	Used by the bonding driver for its device specific ioctls:
1156  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1157  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1158  *
1159  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1160  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1161  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1162  *
1163  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1164  *	Used to set network devices bus interface parameters. This interface
1165  *	is retained for legacy reasons; new devices should use the bus
1166  *	interface (PCI) for low level management.
1167  *
1168  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1169  *	Called when a user wants to change the Maximum Transfer Unit
1170  *	of a device.
1171  *
1172  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1173  *	Callback used when the transmitter has not made any progress
1174  *	for dev->watchdog ticks.
1175  *
1176  * void (*ndo_get_stats64)(struct net_device *dev,
1177  *                         struct rtnl_link_stats64 *storage);
1178  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1179  *	Called when a user wants to get the network device usage
1180  *	statistics. Drivers must do one of the following:
1181  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1182  *	   rtnl_link_stats64 structure passed by the caller.
1183  *	2. Define @ndo_get_stats to update a net_device_stats structure
1184  *	   (which should normally be dev->stats) and return a pointer to
1185  *	   it. The structure may be changed asynchronously only if each
1186  *	   field is written atomically.
1187  *	3. Update dev->stats asynchronously and atomically, and define
1188  *	   neither operation.
1189  *
1190  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1191  *	Return true if this device supports offload stats of this attr_id.
1192  *
1193  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1194  *	void *attr_data)
1195  *	Get statistics for offload operations by attr_id. Write it into the
1196  *	attr_data pointer.
1197  *
1198  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1199  *	If device supports VLAN filtering this function is called when a
1200  *	VLAN id is registered.
1201  *
1202  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1203  *	If device supports VLAN filtering this function is called when a
1204  *	VLAN id is unregistered.
1205  *
1206  * void (*ndo_poll_controller)(struct net_device *dev);
1207  *
1208  *	SR-IOV management functions.
1209  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1210  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1211  *			  u8 qos, __be16 proto);
1212  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1213  *			  int max_tx_rate);
1214  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1215  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1216  * int (*ndo_get_vf_config)(struct net_device *dev,
1217  *			    int vf, struct ifla_vf_info *ivf);
1218  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1219  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1220  *			  struct nlattr *port[]);
1221  *
1222  *      Enable or disable the VF ability to query its RSS Redirection Table and
1223  *      Hash Key. This is needed since on some devices VF share this information
1224  *      with PF and querying it may introduce a theoretical security risk.
1225  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1226  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1227  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1228  *		       void *type_data);
1229  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1230  *	This is always called from the stack with the rtnl lock held and netif
1231  *	tx queues stopped. This allows the netdevice to perform queue
1232  *	management safely.
1233  *
1234  *	Fiber Channel over Ethernet (FCoE) offload functions.
1235  * int (*ndo_fcoe_enable)(struct net_device *dev);
1236  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1237  *	so the underlying device can perform whatever needed configuration or
1238  *	initialization to support acceleration of FCoE traffic.
1239  *
1240  * int (*ndo_fcoe_disable)(struct net_device *dev);
1241  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1242  *	so the underlying device can perform whatever needed clean-ups to
1243  *	stop supporting acceleration of FCoE traffic.
1244  *
1245  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1246  *			     struct scatterlist *sgl, unsigned int sgc);
1247  *	Called when the FCoE Initiator wants to initialize an I/O that
1248  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1249  *	perform necessary setup and returns 1 to indicate the device is set up
1250  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1251  *
1252  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1253  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1254  *	indicated by the FC exchange id 'xid', so the underlying device can
1255  *	clean up and reuse resources for later DDP requests.
1256  *
1257  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1258  *			      struct scatterlist *sgl, unsigned int sgc);
1259  *	Called when the FCoE Target wants to initialize an I/O that
1260  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1261  *	perform necessary setup and returns 1 to indicate the device is set up
1262  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1263  *
1264  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1265  *			       struct netdev_fcoe_hbainfo *hbainfo);
1266  *	Called when the FCoE Protocol stack wants information on the underlying
1267  *	device. This information is utilized by the FCoE protocol stack to
1268  *	register attributes with Fiber Channel management service as per the
1269  *	FC-GS Fabric Device Management Information(FDMI) specification.
1270  *
1271  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1272  *	Called when the underlying device wants to override default World Wide
1273  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1274  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1275  *	protocol stack to use.
1276  *
1277  *	RFS acceleration.
1278  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1279  *			    u16 rxq_index, u32 flow_id);
1280  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1281  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1282  *	Return the filter ID on success, or a negative error code.
1283  *
1284  *	Slave management functions (for bridge, bonding, etc).
1285  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1286  *	Called to make another netdev an underling.
1287  *
1288  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1289  *	Called to release previously enslaved netdev.
1290  *
1291  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1292  *					    struct sk_buff *skb,
1293  *					    bool all_slaves);
1294  *	Get the xmit slave of master device. If all_slaves is true, function
1295  *	assume all the slaves can transmit.
1296  *
1297  *      Feature/offload setting functions.
1298  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1299  *		netdev_features_t features);
1300  *	Adjusts the requested feature flags according to device-specific
1301  *	constraints, and returns the resulting flags. Must not modify
1302  *	the device state.
1303  *
1304  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1305  *	Called to update device configuration to new features. Passed
1306  *	feature set might be less than what was returned by ndo_fix_features()).
1307  *	Must return >0 or -errno if it changed dev->features itself.
1308  *
1309  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1310  *		      struct net_device *dev,
1311  *		      const unsigned char *addr, u16 vid, u16 flags,
1312  *		      struct netlink_ext_ack *extack);
1313  *	Adds an FDB entry to dev for addr.
1314  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1315  *		      struct net_device *dev,
1316  *		      const unsigned char *addr, u16 vid)
1317  *	Deletes the FDB entry from dev coresponding to addr.
1318  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1319  *			   struct netlink_ext_ack *extack);
1320  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1321  *		       struct net_device *dev, struct net_device *filter_dev,
1322  *		       int *idx)
1323  *	Used to add FDB entries to dump requests. Implementers should add
1324  *	entries to skb and update idx with the number of entries.
1325  *
1326  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1327  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1328  *	Adds an MDB entry to dev.
1329  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1330  *		      struct netlink_ext_ack *extack);
1331  *	Deletes the MDB entry from dev.
1332  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1333  *		       struct netlink_callback *cb);
1334  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1335  *	callback is used by core rtnetlink code.
1336  *
1337  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1338  *			     u16 flags, struct netlink_ext_ack *extack)
1339  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1340  *			     struct net_device *dev, u32 filter_mask,
1341  *			     int nlflags)
1342  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1343  *			     u16 flags);
1344  *
1345  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1346  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1347  *	which do not represent real hardware may define this to allow their
1348  *	userspace components to manage their virtual carrier state. Devices
1349  *	that determine carrier state from physical hardware properties (eg
1350  *	network cables) or protocol-dependent mechanisms (eg
1351  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1352  *
1353  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1354  *			       struct netdev_phys_item_id *ppid);
1355  *	Called to get ID of physical port of this device. If driver does
1356  *	not implement this, it is assumed that the hw is not able to have
1357  *	multiple net devices on single physical port.
1358  *
1359  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1360  *				 struct netdev_phys_item_id *ppid)
1361  *	Called to get the parent ID of the physical port of this device.
1362  *
1363  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1364  *				 struct net_device *dev)
1365  *	Called by upper layer devices to accelerate switching or other
1366  *	station functionality into hardware. 'pdev is the lowerdev
1367  *	to use for the offload and 'dev' is the net device that will
1368  *	back the offload. Returns a pointer to the private structure
1369  *	the upper layer will maintain.
1370  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1371  *	Called by upper layer device to delete the station created
1372  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1373  *	the station and priv is the structure returned by the add
1374  *	operation.
1375  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1376  *			     int queue_index, u32 maxrate);
1377  *	Called when a user wants to set a max-rate limitation of specific
1378  *	TX queue.
1379  * int (*ndo_get_iflink)(const struct net_device *dev);
1380  *	Called to get the iflink value of this device.
1381  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1382  *	This function is used to get egress tunnel information for given skb.
1383  *	This is useful for retrieving outer tunnel header parameters while
1384  *	sampling packet.
1385  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1386  *	This function is used to specify the headroom that the skb must
1387  *	consider when allocation skb during packet reception. Setting
1388  *	appropriate rx headroom value allows avoiding skb head copy on
1389  *	forward. Setting a negative value resets the rx headroom to the
1390  *	default value.
1391  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1392  *	This function is used to set or query state related to XDP on the
1393  *	netdevice and manage BPF offload. See definition of
1394  *	enum bpf_netdev_command for details.
1395  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1396  *			u32 flags);
1397  *	This function is used to submit @n XDP packets for transmit on a
1398  *	netdevice. Returns number of frames successfully transmitted, frames
1399  *	that got dropped are freed/returned via xdp_return_frame().
1400  *	Returns negative number, means general error invoking ndo, meaning
1401  *	no frames were xmit'ed and core-caller will free all frames.
1402  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1403  *					        struct xdp_buff *xdp);
1404  *      Get the xmit slave of master device based on the xdp_buff.
1405  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1406  *      This function is used to wake up the softirq, ksoftirqd or kthread
1407  *	responsible for sending and/or receiving packets on a specific
1408  *	queue id bound to an AF_XDP socket. The flags field specifies if
1409  *	only RX, only Tx, or both should be woken up using the flags
1410  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1411  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1412  *			 int cmd);
1413  *	Add, change, delete or get information on an IPv4 tunnel.
1414  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1415  *	If a device is paired with a peer device, return the peer instance.
1416  *	The caller must be under RCU read context.
1417  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1418  *     Get the forwarding path to reach the real device from the HW destination address
1419  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1420  *			     const struct skb_shared_hwtstamps *hwtstamps,
1421  *			     bool cycles);
1422  *	Get hardware timestamp based on normal/adjustable time or free running
1423  *	cycle counter. This function is required if physical clock supports a
1424  *	free running cycle counter.
1425  *
1426  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1427  *			   struct kernel_hwtstamp_config *kernel_config);
1428  *	Get the currently configured hardware timestamping parameters for the
1429  *	NIC device.
1430  *
1431  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1432  *			   struct kernel_hwtstamp_config *kernel_config,
1433  *			   struct netlink_ext_ack *extack);
1434  *	Change the hardware timestamping parameters for NIC device.
1435  */
1436 struct net_device_ops {
1437 	int			(*ndo_init)(struct net_device *dev);
1438 	void			(*ndo_uninit)(struct net_device *dev);
1439 	int			(*ndo_open)(struct net_device *dev);
1440 	int			(*ndo_stop)(struct net_device *dev);
1441 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1442 						  struct net_device *dev);
1443 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1444 						      struct net_device *dev,
1445 						      netdev_features_t features);
1446 	u16			(*ndo_select_queue)(struct net_device *dev,
1447 						    struct sk_buff *skb,
1448 						    struct net_device *sb_dev);
1449 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1450 						       int flags);
1451 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1452 	int			(*ndo_set_mac_address)(struct net_device *dev,
1453 						       void *addr);
1454 	int			(*ndo_validate_addr)(struct net_device *dev);
1455 	int			(*ndo_do_ioctl)(struct net_device *dev,
1456 					        struct ifreq *ifr, int cmd);
1457 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1458 						 struct ifreq *ifr, int cmd);
1459 	int			(*ndo_siocbond)(struct net_device *dev,
1460 						struct ifreq *ifr, int cmd);
1461 	int			(*ndo_siocwandev)(struct net_device *dev,
1462 						  struct if_settings *ifs);
1463 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1464 						      struct ifreq *ifr,
1465 						      void __user *data, int cmd);
1466 	int			(*ndo_set_config)(struct net_device *dev,
1467 					          struct ifmap *map);
1468 	int			(*ndo_change_mtu)(struct net_device *dev,
1469 						  int new_mtu);
1470 	int			(*ndo_neigh_setup)(struct net_device *dev,
1471 						   struct neigh_parms *);
1472 	void			(*ndo_tx_timeout) (struct net_device *dev,
1473 						   unsigned int txqueue);
1474 
1475 	void			(*ndo_get_stats64)(struct net_device *dev,
1476 						   struct rtnl_link_stats64 *storage);
1477 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1478 	int			(*ndo_get_offload_stats)(int attr_id,
1479 							 const struct net_device *dev,
1480 							 void *attr_data);
1481 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1482 
1483 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1484 						       __be16 proto, u16 vid);
1485 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1486 						        __be16 proto, u16 vid);
1487 #ifdef CONFIG_NET_POLL_CONTROLLER
1488 	void                    (*ndo_poll_controller)(struct net_device *dev);
1489 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1490 						     struct netpoll_info *info);
1491 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1492 #endif
1493 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1494 						  int queue, u8 *mac);
1495 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1496 						   int queue, u16 vlan,
1497 						   u8 qos, __be16 proto);
1498 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1499 						   int vf, int min_tx_rate,
1500 						   int max_tx_rate);
1501 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1502 						       int vf, bool setting);
1503 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1504 						    int vf, bool setting);
1505 	int			(*ndo_get_vf_config)(struct net_device *dev,
1506 						     int vf,
1507 						     struct ifla_vf_info *ivf);
1508 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1509 							 int vf, int link_state);
1510 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1511 						    int vf,
1512 						    struct ifla_vf_stats
1513 						    *vf_stats);
1514 	int			(*ndo_set_vf_port)(struct net_device *dev,
1515 						   int vf,
1516 						   struct nlattr *port[]);
1517 	int			(*ndo_get_vf_port)(struct net_device *dev,
1518 						   int vf, struct sk_buff *skb);
1519 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1520 						   int vf,
1521 						   struct ifla_vf_guid *node_guid,
1522 						   struct ifla_vf_guid *port_guid);
1523 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1524 						   int vf, u64 guid,
1525 						   int guid_type);
1526 	int			(*ndo_set_vf_rss_query_en)(
1527 						   struct net_device *dev,
1528 						   int vf, bool setting);
1529 	int			(*ndo_setup_tc)(struct net_device *dev,
1530 						enum tc_setup_type type,
1531 						void *type_data);
1532 #if IS_ENABLED(CONFIG_FCOE)
1533 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1534 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1535 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1536 						      u16 xid,
1537 						      struct scatterlist *sgl,
1538 						      unsigned int sgc);
1539 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1540 						     u16 xid);
1541 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1542 						       u16 xid,
1543 						       struct scatterlist *sgl,
1544 						       unsigned int sgc);
1545 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1546 							struct netdev_fcoe_hbainfo *hbainfo);
1547 #endif
1548 
1549 #if IS_ENABLED(CONFIG_LIBFCOE)
1550 #define NETDEV_FCOE_WWNN 0
1551 #define NETDEV_FCOE_WWPN 1
1552 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1553 						    u64 *wwn, int type);
1554 #endif
1555 
1556 #ifdef CONFIG_RFS_ACCEL
1557 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1558 						     const struct sk_buff *skb,
1559 						     u16 rxq_index,
1560 						     u32 flow_id);
1561 #endif
1562 	int			(*ndo_add_slave)(struct net_device *dev,
1563 						 struct net_device *slave_dev,
1564 						 struct netlink_ext_ack *extack);
1565 	int			(*ndo_del_slave)(struct net_device *dev,
1566 						 struct net_device *slave_dev);
1567 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1568 						      struct sk_buff *skb,
1569 						      bool all_slaves);
1570 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1571 							struct sock *sk);
1572 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1573 						    netdev_features_t features);
1574 	int			(*ndo_set_features)(struct net_device *dev,
1575 						    netdev_features_t features);
1576 	int			(*ndo_neigh_construct)(struct net_device *dev,
1577 						       struct neighbour *n);
1578 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1579 						     struct neighbour *n);
1580 
1581 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1582 					       struct nlattr *tb[],
1583 					       struct net_device *dev,
1584 					       const unsigned char *addr,
1585 					       u16 vid,
1586 					       u16 flags,
1587 					       struct netlink_ext_ack *extack);
1588 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1589 					       struct nlattr *tb[],
1590 					       struct net_device *dev,
1591 					       const unsigned char *addr,
1592 					       u16 vid, struct netlink_ext_ack *extack);
1593 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1594 						    struct net_device *dev,
1595 						    struct netlink_ext_ack *extack);
1596 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1597 						struct netlink_callback *cb,
1598 						struct net_device *dev,
1599 						struct net_device *filter_dev,
1600 						int *idx);
1601 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1602 					       struct nlattr *tb[],
1603 					       struct net_device *dev,
1604 					       const unsigned char *addr,
1605 					       u16 vid, u32 portid, u32 seq,
1606 					       struct netlink_ext_ack *extack);
1607 	int			(*ndo_mdb_add)(struct net_device *dev,
1608 					       struct nlattr *tb[],
1609 					       u16 nlmsg_flags,
1610 					       struct netlink_ext_ack *extack);
1611 	int			(*ndo_mdb_del)(struct net_device *dev,
1612 					       struct nlattr *tb[],
1613 					       struct netlink_ext_ack *extack);
1614 	int			(*ndo_mdb_dump)(struct net_device *dev,
1615 						struct sk_buff *skb,
1616 						struct netlink_callback *cb);
1617 	int			(*ndo_mdb_get)(struct net_device *dev,
1618 					       struct nlattr *tb[], u32 portid,
1619 					       u32 seq,
1620 					       struct netlink_ext_ack *extack);
1621 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1622 						      struct nlmsghdr *nlh,
1623 						      u16 flags,
1624 						      struct netlink_ext_ack *extack);
1625 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1626 						      u32 pid, u32 seq,
1627 						      struct net_device *dev,
1628 						      u32 filter_mask,
1629 						      int nlflags);
1630 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1631 						      struct nlmsghdr *nlh,
1632 						      u16 flags);
1633 	int			(*ndo_change_carrier)(struct net_device *dev,
1634 						      bool new_carrier);
1635 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1636 							struct netdev_phys_item_id *ppid);
1637 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1638 							  struct netdev_phys_item_id *ppid);
1639 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1640 							  char *name, size_t len);
1641 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1642 							struct net_device *dev);
1643 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1644 							void *priv);
1645 
1646 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1647 						      int queue_index,
1648 						      u32 maxrate);
1649 	int			(*ndo_get_iflink)(const struct net_device *dev);
1650 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1651 						       struct sk_buff *skb);
1652 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1653 						       int needed_headroom);
1654 	int			(*ndo_bpf)(struct net_device *dev,
1655 					   struct netdev_bpf *bpf);
1656 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1657 						struct xdp_frame **xdp,
1658 						u32 flags);
1659 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1660 							  struct xdp_buff *xdp);
1661 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1662 						  u32 queue_id, u32 flags);
1663 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1664 						  struct ip_tunnel_parm *p, int cmd);
1665 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1666 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1667                                                          struct net_device_path *path);
1668 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1669 						  const struct skb_shared_hwtstamps *hwtstamps,
1670 						  bool cycles);
1671 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1672 						    struct kernel_hwtstamp_config *kernel_config);
1673 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1674 						    struct kernel_hwtstamp_config *kernel_config,
1675 						    struct netlink_ext_ack *extack);
1676 };
1677 
1678 /**
1679  * enum netdev_priv_flags - &struct net_device priv_flags
1680  *
1681  * These are the &struct net_device, they are only set internally
1682  * by drivers and used in the kernel. These flags are invisible to
1683  * userspace; this means that the order of these flags can change
1684  * during any kernel release.
1685  *
1686  * You should have a pretty good reason to be extending these flags.
1687  *
1688  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1689  * @IFF_EBRIDGE: Ethernet bridging device
1690  * @IFF_BONDING: bonding master or slave
1691  * @IFF_ISATAP: ISATAP interface (RFC4214)
1692  * @IFF_WAN_HDLC: WAN HDLC device
1693  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1694  *	release skb->dst
1695  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1696  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1697  * @IFF_MACVLAN_PORT: device used as macvlan port
1698  * @IFF_BRIDGE_PORT: device used as bridge port
1699  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1700  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1701  * @IFF_UNICAST_FLT: Supports unicast filtering
1702  * @IFF_TEAM_PORT: device used as team port
1703  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1704  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1705  *	change when it's running
1706  * @IFF_MACVLAN: Macvlan device
1707  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1708  *	underlying stacked devices
1709  * @IFF_L3MDEV_MASTER: device is an L3 master device
1710  * @IFF_NO_QUEUE: device can run without qdisc attached
1711  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1712  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1713  * @IFF_TEAM: device is a team device
1714  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1715  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1716  *	entity (i.e. the master device for bridged veth)
1717  * @IFF_MACSEC: device is a MACsec device
1718  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1719  * @IFF_FAILOVER: device is a failover master device
1720  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1721  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1722  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1723  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1724  *	skb_headlen(skb) == 0 (data starts from frag0)
1725  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1726  * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1727  *	ndo_hwtstamp_set() for all timestamp requests regardless of source,
1728  *	even if those aren't HWTSTAMP_SOURCE_NETDEV.
1729  */
1730 enum netdev_priv_flags {
1731 	IFF_802_1Q_VLAN			= 1<<0,
1732 	IFF_EBRIDGE			= 1<<1,
1733 	IFF_BONDING			= 1<<2,
1734 	IFF_ISATAP			= 1<<3,
1735 	IFF_WAN_HDLC			= 1<<4,
1736 	IFF_XMIT_DST_RELEASE		= 1<<5,
1737 	IFF_DONT_BRIDGE			= 1<<6,
1738 	IFF_DISABLE_NETPOLL		= 1<<7,
1739 	IFF_MACVLAN_PORT		= 1<<8,
1740 	IFF_BRIDGE_PORT			= 1<<9,
1741 	IFF_OVS_DATAPATH		= 1<<10,
1742 	IFF_TX_SKB_SHARING		= 1<<11,
1743 	IFF_UNICAST_FLT			= 1<<12,
1744 	IFF_TEAM_PORT			= 1<<13,
1745 	IFF_SUPP_NOFCS			= 1<<14,
1746 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1747 	IFF_MACVLAN			= 1<<16,
1748 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1749 	IFF_L3MDEV_MASTER		= 1<<18,
1750 	IFF_NO_QUEUE			= 1<<19,
1751 	IFF_OPENVSWITCH			= 1<<20,
1752 	IFF_L3MDEV_SLAVE		= 1<<21,
1753 	IFF_TEAM			= 1<<22,
1754 	IFF_RXFH_CONFIGURED		= 1<<23,
1755 	IFF_PHONY_HEADROOM		= 1<<24,
1756 	IFF_MACSEC			= 1<<25,
1757 	IFF_NO_RX_HANDLER		= 1<<26,
1758 	IFF_FAILOVER			= 1<<27,
1759 	IFF_FAILOVER_SLAVE		= 1<<28,
1760 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1761 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1762 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1763 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1764 	IFF_SEE_ALL_HWTSTAMP_REQUESTS	= BIT_ULL(33),
1765 };
1766 
1767 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1768 #define IFF_EBRIDGE			IFF_EBRIDGE
1769 #define IFF_BONDING			IFF_BONDING
1770 #define IFF_ISATAP			IFF_ISATAP
1771 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1772 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1773 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1774 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1775 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1776 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1777 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1778 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1779 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1780 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1781 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1782 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1783 #define IFF_MACVLAN			IFF_MACVLAN
1784 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1785 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1786 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1787 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1788 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1789 #define IFF_TEAM			IFF_TEAM
1790 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1791 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1792 #define IFF_MACSEC			IFF_MACSEC
1793 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1794 #define IFF_FAILOVER			IFF_FAILOVER
1795 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1796 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1797 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1798 
1799 /* Specifies the type of the struct net_device::ml_priv pointer */
1800 enum netdev_ml_priv_type {
1801 	ML_PRIV_NONE,
1802 	ML_PRIV_CAN,
1803 };
1804 
1805 enum netdev_stat_type {
1806 	NETDEV_PCPU_STAT_NONE,
1807 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1808 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1809 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1810 };
1811 
1812 /**
1813  *	struct net_device - The DEVICE structure.
1814  *
1815  *	Actually, this whole structure is a big mistake.  It mixes I/O
1816  *	data with strictly "high-level" data, and it has to know about
1817  *	almost every data structure used in the INET module.
1818  *
1819  *	@name:	This is the first field of the "visible" part of this structure
1820  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1821  *		of the interface.
1822  *
1823  *	@name_node:	Name hashlist node
1824  *	@ifalias:	SNMP alias
1825  *	@mem_end:	Shared memory end
1826  *	@mem_start:	Shared memory start
1827  *	@base_addr:	Device I/O address
1828  *	@irq:		Device IRQ number
1829  *
1830  *	@state:		Generic network queuing layer state, see netdev_state_t
1831  *	@dev_list:	The global list of network devices
1832  *	@napi_list:	List entry used for polling NAPI devices
1833  *	@unreg_list:	List entry  when we are unregistering the
1834  *			device; see the function unregister_netdev
1835  *	@close_list:	List entry used when we are closing the device
1836  *	@ptype_all:     Device-specific packet handlers for all protocols
1837  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1838  *
1839  *	@adj_list:	Directly linked devices, like slaves for bonding
1840  *	@features:	Currently active device features
1841  *	@hw_features:	User-changeable features
1842  *
1843  *	@wanted_features:	User-requested features
1844  *	@vlan_features:		Mask of features inheritable by VLAN devices
1845  *
1846  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1847  *				This field indicates what encapsulation
1848  *				offloads the hardware is capable of doing,
1849  *				and drivers will need to set them appropriately.
1850  *
1851  *	@mpls_features:	Mask of features inheritable by MPLS
1852  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1853  *
1854  *	@ifindex:	interface index
1855  *	@group:		The group the device belongs to
1856  *
1857  *	@stats:		Statistics struct, which was left as a legacy, use
1858  *			rtnl_link_stats64 instead
1859  *
1860  *	@core_stats:	core networking counters,
1861  *			do not use this in drivers
1862  *	@carrier_up_count:	Number of times the carrier has been up
1863  *	@carrier_down_count:	Number of times the carrier has been down
1864  *
1865  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1866  *				instead of ioctl,
1867  *				see <net/iw_handler.h> for details.
1868  *	@wireless_data:	Instance data managed by the core of wireless extensions
1869  *
1870  *	@netdev_ops:	Includes several pointers to callbacks,
1871  *			if one wants to override the ndo_*() functions
1872  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1873  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1874  *	@ethtool_ops:	Management operations
1875  *	@l3mdev_ops:	Layer 3 master device operations
1876  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1877  *			discovery handling. Necessary for e.g. 6LoWPAN.
1878  *	@xfrmdev_ops:	Transformation offload operations
1879  *	@tlsdev_ops:	Transport Layer Security offload operations
1880  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1881  *			of Layer 2 headers.
1882  *
1883  *	@flags:		Interface flags (a la BSD)
1884  *	@xdp_features:	XDP capability supported by the device
1885  *	@priv_flags:	Like 'flags' but invisible to userspace,
1886  *			see if.h for the definitions
1887  *	@gflags:	Global flags ( kept as legacy )
1888  *	@padded:	How much padding added by alloc_netdev()
1889  *	@operstate:	RFC2863 operstate
1890  *	@link_mode:	Mapping policy to operstate
1891  *	@if_port:	Selectable AUI, TP, ...
1892  *	@dma:		DMA channel
1893  *	@mtu:		Interface MTU value
1894  *	@min_mtu:	Interface Minimum MTU value
1895  *	@max_mtu:	Interface Maximum MTU value
1896  *	@type:		Interface hardware type
1897  *	@hard_header_len: Maximum hardware header length.
1898  *	@min_header_len:  Minimum hardware header length
1899  *
1900  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1901  *			  cases can this be guaranteed
1902  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1903  *			  cases can this be guaranteed. Some cases also use
1904  *			  LL_MAX_HEADER instead to allocate the skb
1905  *
1906  *	interface address info:
1907  *
1908  * 	@perm_addr:		Permanent hw address
1909  * 	@addr_assign_type:	Hw address assignment type
1910  * 	@addr_len:		Hardware address length
1911  *	@upper_level:		Maximum depth level of upper devices.
1912  *	@lower_level:		Maximum depth level of lower devices.
1913  *	@neigh_priv_len:	Used in neigh_alloc()
1914  * 	@dev_id:		Used to differentiate devices that share
1915  * 				the same link layer address
1916  * 	@dev_port:		Used to differentiate devices that share
1917  * 				the same function
1918  *	@addr_list_lock:	XXX: need comments on this one
1919  *	@name_assign_type:	network interface name assignment type
1920  *	@uc_promisc:		Counter that indicates promiscuous mode
1921  *				has been enabled due to the need to listen to
1922  *				additional unicast addresses in a device that
1923  *				does not implement ndo_set_rx_mode()
1924  *	@uc:			unicast mac addresses
1925  *	@mc:			multicast mac addresses
1926  *	@dev_addrs:		list of device hw addresses
1927  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1928  *	@promiscuity:		Number of times the NIC is told to work in
1929  *				promiscuous mode; if it becomes 0 the NIC will
1930  *				exit promiscuous mode
1931  *	@allmulti:		Counter, enables or disables allmulticast mode
1932  *
1933  *	@vlan_info:	VLAN info
1934  *	@dsa_ptr:	dsa specific data
1935  *	@tipc_ptr:	TIPC specific data
1936  *	@atalk_ptr:	AppleTalk link
1937  *	@ip_ptr:	IPv4 specific data
1938  *	@ip6_ptr:	IPv6 specific data
1939  *	@ax25_ptr:	AX.25 specific data
1940  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1941  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1942  *			 device struct
1943  *	@mpls_ptr:	mpls_dev struct pointer
1944  *	@mctp_ptr:	MCTP specific data
1945  *
1946  *	@dev_addr:	Hw address (before bcast,
1947  *			because most packets are unicast)
1948  *
1949  *	@_rx:			Array of RX queues
1950  *	@num_rx_queues:		Number of RX queues
1951  *				allocated at register_netdev() time
1952  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1953  *	@xdp_prog:		XDP sockets filter program pointer
1954  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1955  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1956  *				allow to avoid NIC hard IRQ, on busy queues.
1957  *
1958  *	@rx_handler:		handler for received packets
1959  *	@rx_handler_data: 	XXX: need comments on this one
1960  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1961  *	@ingress_queue:		XXX: need comments on this one
1962  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1963  *	@broadcast:		hw bcast address
1964  *
1965  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1966  *			indexed by RX queue number. Assigned by driver.
1967  *			This must only be set if the ndo_rx_flow_steer
1968  *			operation is defined
1969  *	@index_hlist:		Device index hash chain
1970  *
1971  *	@_tx:			Array of TX queues
1972  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1973  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1974  *	@qdisc:			Root qdisc from userspace point of view
1975  *	@tx_queue_len:		Max frames per queue allowed
1976  *	@tx_global_lock: 	XXX: need comments on this one
1977  *	@xdp_bulkq:		XDP device bulk queue
1978  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1979  *
1980  *	@xps_maps:	XXX: need comments on this one
1981  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1982  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1983  *	@qdisc_hash:		qdisc hash table
1984  *	@watchdog_timeo:	Represents the timeout that is used by
1985  *				the watchdog (see dev_watchdog())
1986  *	@watchdog_timer:	List of timers
1987  *
1988  *	@proto_down_reason:	reason a netdev interface is held down
1989  *	@pcpu_refcnt:		Number of references to this device
1990  *	@dev_refcnt:		Number of references to this device
1991  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1992  *	@todo_list:		Delayed register/unregister
1993  *	@link_watch_list:	XXX: need comments on this one
1994  *
1995  *	@reg_state:		Register/unregister state machine
1996  *	@dismantle:		Device is going to be freed
1997  *	@rtnl_link_state:	This enum represents the phases of creating
1998  *				a new link
1999  *
2000  *	@needs_free_netdev:	Should unregister perform free_netdev?
2001  *	@priv_destructor:	Called from unregister
2002  *	@npinfo:		XXX: need comments on this one
2003  * 	@nd_net:		Network namespace this network device is inside
2004  *
2005  * 	@ml_priv:	Mid-layer private
2006  *	@ml_priv_type:  Mid-layer private type
2007  *
2008  *	@pcpu_stat_type:	Type of device statistics which the core should
2009  *				allocate/free: none, lstats, tstats, dstats. none
2010  *				means the driver is handling statistics allocation/
2011  *				freeing internally.
2012  *	@lstats:		Loopback statistics: packets, bytes
2013  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
2014  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
2015  *
2016  *	@garp_port:	GARP
2017  *	@mrp_port:	MRP
2018  *
2019  *	@dm_private:	Drop monitor private
2020  *
2021  *	@dev:		Class/net/name entry
2022  *	@sysfs_groups:	Space for optional device, statistics and wireless
2023  *			sysfs groups
2024  *
2025  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
2026  *	@rtnl_link_ops:	Rtnl_link_ops
2027  *
2028  *	@gso_max_size:	Maximum size of generic segmentation offload
2029  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
2030  *	@gso_max_segs:	Maximum number of segments that can be passed to the
2031  *			NIC for GSO
2032  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2033  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2034  * 				for IPv4.
2035  *
2036  *	@dcbnl_ops:	Data Center Bridging netlink ops
2037  *	@num_tc:	Number of traffic classes in the net device
2038  *	@tc_to_txq:	XXX: need comments on this one
2039  *	@prio_tc_map:	XXX: need comments on this one
2040  *
2041  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2042  *
2043  *	@priomap:	XXX: need comments on this one
2044  *	@phydev:	Physical device may attach itself
2045  *			for hardware timestamping
2046  *	@sfp_bus:	attached &struct sfp_bus structure.
2047  *
2048  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2049  *
2050  *	@proto_down:	protocol port state information can be sent to the
2051  *			switch driver and used to set the phys state of the
2052  *			switch port.
2053  *
2054  *	@wol_enabled:	Wake-on-LAN is enabled
2055  *
2056  *	@threaded:	napi threaded mode is enabled
2057  *
2058  *	@net_notifier_list:	List of per-net netdev notifier block
2059  *				that follow this device when it is moved
2060  *				to another network namespace.
2061  *
2062  *	@macsec_ops:    MACsec offloading ops
2063  *
2064  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2065  *				offload capabilities of the device
2066  *	@udp_tunnel_nic:	UDP tunnel offload state
2067  *	@xdp_state:		stores info on attached XDP BPF programs
2068  *
2069  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2070  *			dev->addr_list_lock.
2071  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2072  *			keep a list of interfaces to be deleted.
2073  *	@gro_max_size:	Maximum size of aggregated packet in generic
2074  *			receive offload (GRO)
2075  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2076  * 				receive offload (GRO), for IPv4.
2077  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2078  *				zero copy driver
2079  *
2080  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2081  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2082  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2083  *	@dev_registered_tracker:	tracker for reference held while
2084  *					registered
2085  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2086  *
2087  *	@devlink_port:	Pointer to related devlink port structure.
2088  *			Assigned by a driver before netdev registration using
2089  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2090  *			during the time netdevice is registered.
2091  *
2092  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2093  *		   where the clock is recovered.
2094  *
2095  *	FIXME: cleanup struct net_device such that network protocol info
2096  *	moves out.
2097  */
2098 
2099 struct net_device {
2100 	char			name[IFNAMSIZ];
2101 	struct netdev_name_node	*name_node;
2102 	struct dev_ifalias	__rcu *ifalias;
2103 	/*
2104 	 *	I/O specific fields
2105 	 *	FIXME: Merge these and struct ifmap into one
2106 	 */
2107 	unsigned long		mem_end;
2108 	unsigned long		mem_start;
2109 	unsigned long		base_addr;
2110 
2111 	/*
2112 	 *	Some hardware also needs these fields (state,dev_list,
2113 	 *	napi_list,unreg_list,close_list) but they are not
2114 	 *	part of the usual set specified in Space.c.
2115 	 */
2116 
2117 	unsigned long		state;
2118 
2119 	struct list_head	dev_list;
2120 	struct list_head	napi_list;
2121 	struct list_head	unreg_list;
2122 	struct list_head	close_list;
2123 	struct list_head	ptype_all;
2124 	struct list_head	ptype_specific;
2125 
2126 	struct {
2127 		struct list_head upper;
2128 		struct list_head lower;
2129 	} adj_list;
2130 
2131 	/* Read-mostly cache-line for fast-path access */
2132 	unsigned int		flags;
2133 	xdp_features_t		xdp_features;
2134 	unsigned long long	priv_flags;
2135 	const struct net_device_ops *netdev_ops;
2136 	const struct xdp_metadata_ops *xdp_metadata_ops;
2137 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2138 	int			ifindex;
2139 	unsigned short		gflags;
2140 	unsigned short		hard_header_len;
2141 
2142 	/* Note : dev->mtu is often read without holding a lock.
2143 	 * Writers usually hold RTNL.
2144 	 * It is recommended to use READ_ONCE() to annotate the reads,
2145 	 * and to use WRITE_ONCE() to annotate the writes.
2146 	 */
2147 	unsigned int		mtu;
2148 	unsigned short		needed_headroom;
2149 	unsigned short		needed_tailroom;
2150 
2151 	netdev_features_t	features;
2152 	netdev_features_t	hw_features;
2153 	netdev_features_t	wanted_features;
2154 	netdev_features_t	vlan_features;
2155 	netdev_features_t	hw_enc_features;
2156 	netdev_features_t	mpls_features;
2157 	netdev_features_t	gso_partial_features;
2158 
2159 	unsigned int		min_mtu;
2160 	unsigned int		max_mtu;
2161 	unsigned short		type;
2162 	unsigned char		min_header_len;
2163 	unsigned char		name_assign_type;
2164 
2165 	int			group;
2166 
2167 	struct net_device_stats	stats; /* not used by modern drivers */
2168 
2169 	struct net_device_core_stats __percpu *core_stats;
2170 
2171 	/* Stats to monitor link on/off, flapping */
2172 	atomic_t		carrier_up_count;
2173 	atomic_t		carrier_down_count;
2174 
2175 #ifdef CONFIG_WIRELESS_EXT
2176 	const struct iw_handler_def *wireless_handlers;
2177 	struct iw_public_data	*wireless_data;
2178 #endif
2179 	const struct ethtool_ops *ethtool_ops;
2180 #ifdef CONFIG_NET_L3_MASTER_DEV
2181 	const struct l3mdev_ops	*l3mdev_ops;
2182 #endif
2183 #if IS_ENABLED(CONFIG_IPV6)
2184 	const struct ndisc_ops *ndisc_ops;
2185 #endif
2186 
2187 #ifdef CONFIG_XFRM_OFFLOAD
2188 	const struct xfrmdev_ops *xfrmdev_ops;
2189 #endif
2190 
2191 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2192 	const struct tlsdev_ops *tlsdev_ops;
2193 #endif
2194 
2195 	const struct header_ops *header_ops;
2196 
2197 	unsigned char		operstate;
2198 	unsigned char		link_mode;
2199 
2200 	unsigned char		if_port;
2201 	unsigned char		dma;
2202 
2203 	/* Interface address info. */
2204 	unsigned char		perm_addr[MAX_ADDR_LEN];
2205 	unsigned char		addr_assign_type;
2206 	unsigned char		addr_len;
2207 	unsigned char		upper_level;
2208 	unsigned char		lower_level;
2209 
2210 	unsigned short		neigh_priv_len;
2211 	unsigned short          dev_id;
2212 	unsigned short          dev_port;
2213 	unsigned short		padded;
2214 
2215 	spinlock_t		addr_list_lock;
2216 	int			irq;
2217 
2218 	struct netdev_hw_addr_list	uc;
2219 	struct netdev_hw_addr_list	mc;
2220 	struct netdev_hw_addr_list	dev_addrs;
2221 
2222 #ifdef CONFIG_SYSFS
2223 	struct kset		*queues_kset;
2224 #endif
2225 #ifdef CONFIG_LOCKDEP
2226 	struct list_head	unlink_list;
2227 #endif
2228 	unsigned int		promiscuity;
2229 	unsigned int		allmulti;
2230 	bool			uc_promisc;
2231 #ifdef CONFIG_LOCKDEP
2232 	unsigned char		nested_level;
2233 #endif
2234 
2235 
2236 	/* Protocol-specific pointers */
2237 
2238 	struct in_device __rcu	*ip_ptr;
2239 	struct inet6_dev __rcu	*ip6_ptr;
2240 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2241 	struct vlan_info __rcu	*vlan_info;
2242 #endif
2243 #if IS_ENABLED(CONFIG_NET_DSA)
2244 	struct dsa_port		*dsa_ptr;
2245 #endif
2246 #if IS_ENABLED(CONFIG_TIPC)
2247 	struct tipc_bearer __rcu *tipc_ptr;
2248 #endif
2249 #if IS_ENABLED(CONFIG_ATALK)
2250 	void 			*atalk_ptr;
2251 #endif
2252 #if IS_ENABLED(CONFIG_AX25)
2253 	void			*ax25_ptr;
2254 #endif
2255 #if IS_ENABLED(CONFIG_CFG80211)
2256 	struct wireless_dev	*ieee80211_ptr;
2257 #endif
2258 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2259 	struct wpan_dev		*ieee802154_ptr;
2260 #endif
2261 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2262 	struct mpls_dev __rcu	*mpls_ptr;
2263 #endif
2264 #if IS_ENABLED(CONFIG_MCTP)
2265 	struct mctp_dev __rcu	*mctp_ptr;
2266 #endif
2267 
2268 /*
2269  * Cache lines mostly used on receive path (including eth_type_trans())
2270  */
2271 	/* Interface address info used in eth_type_trans() */
2272 	const unsigned char	*dev_addr;
2273 
2274 	struct netdev_rx_queue	*_rx;
2275 	unsigned int		num_rx_queues;
2276 	unsigned int		real_num_rx_queues;
2277 
2278 	struct bpf_prog __rcu	*xdp_prog;
2279 	unsigned long		gro_flush_timeout;
2280 	int			napi_defer_hard_irqs;
2281 #define GRO_LEGACY_MAX_SIZE	65536u
2282 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2283  * and shinfo->gso_segs is a 16bit field.
2284  */
2285 #define GRO_MAX_SIZE		(8 * 65535u)
2286 	unsigned int		gro_max_size;
2287 	unsigned int		gro_ipv4_max_size;
2288 	unsigned int		xdp_zc_max_segs;
2289 	rx_handler_func_t __rcu	*rx_handler;
2290 	void __rcu		*rx_handler_data;
2291 #ifdef CONFIG_NET_XGRESS
2292 	struct bpf_mprog_entry __rcu *tcx_ingress;
2293 #endif
2294 	struct netdev_queue __rcu *ingress_queue;
2295 #ifdef CONFIG_NETFILTER_INGRESS
2296 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2297 #endif
2298 
2299 	unsigned char		broadcast[MAX_ADDR_LEN];
2300 #ifdef CONFIG_RFS_ACCEL
2301 	struct cpu_rmap		*rx_cpu_rmap;
2302 #endif
2303 	struct hlist_node	index_hlist;
2304 
2305 /*
2306  * Cache lines mostly used on transmit path
2307  */
2308 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2309 	unsigned int		num_tx_queues;
2310 	unsigned int		real_num_tx_queues;
2311 	struct Qdisc __rcu	*qdisc;
2312 	unsigned int		tx_queue_len;
2313 	spinlock_t		tx_global_lock;
2314 
2315 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2316 
2317 #ifdef CONFIG_XPS
2318 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2319 #endif
2320 #ifdef CONFIG_NET_XGRESS
2321 	struct bpf_mprog_entry __rcu *tcx_egress;
2322 #endif
2323 #ifdef CONFIG_NETFILTER_EGRESS
2324 	struct nf_hook_entries __rcu *nf_hooks_egress;
2325 #endif
2326 
2327 #ifdef CONFIG_NET_SCHED
2328 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2329 #endif
2330 	/* These may be needed for future network-power-down code. */
2331 	struct timer_list	watchdog_timer;
2332 	int			watchdog_timeo;
2333 
2334 	u32                     proto_down_reason;
2335 
2336 	struct list_head	todo_list;
2337 
2338 #ifdef CONFIG_PCPU_DEV_REFCNT
2339 	int __percpu		*pcpu_refcnt;
2340 #else
2341 	refcount_t		dev_refcnt;
2342 #endif
2343 	struct ref_tracker_dir	refcnt_tracker;
2344 
2345 	struct list_head	link_watch_list;
2346 
2347 	enum { NETREG_UNINITIALIZED=0,
2348 	       NETREG_REGISTERED,	/* completed register_netdevice */
2349 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2350 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2351 	       NETREG_RELEASED,		/* called free_netdev */
2352 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2353 	} reg_state:8;
2354 
2355 	bool dismantle;
2356 
2357 	enum {
2358 		RTNL_LINK_INITIALIZED,
2359 		RTNL_LINK_INITIALIZING,
2360 	} rtnl_link_state:16;
2361 
2362 	bool needs_free_netdev;
2363 	void (*priv_destructor)(struct net_device *dev);
2364 
2365 #ifdef CONFIG_NETPOLL
2366 	struct netpoll_info __rcu	*npinfo;
2367 #endif
2368 
2369 	possible_net_t			nd_net;
2370 
2371 	/* mid-layer private */
2372 	void				*ml_priv;
2373 	enum netdev_ml_priv_type	ml_priv_type;
2374 
2375 	enum netdev_stat_type		pcpu_stat_type:8;
2376 	union {
2377 		struct pcpu_lstats __percpu		*lstats;
2378 		struct pcpu_sw_netstats __percpu	*tstats;
2379 		struct pcpu_dstats __percpu		*dstats;
2380 	};
2381 
2382 #if IS_ENABLED(CONFIG_GARP)
2383 	struct garp_port __rcu	*garp_port;
2384 #endif
2385 #if IS_ENABLED(CONFIG_MRP)
2386 	struct mrp_port __rcu	*mrp_port;
2387 #endif
2388 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2389 	struct dm_hw_stat_delta __rcu *dm_private;
2390 #endif
2391 	struct device		dev;
2392 	const struct attribute_group *sysfs_groups[4];
2393 	const struct attribute_group *sysfs_rx_queue_group;
2394 
2395 	const struct rtnl_link_ops *rtnl_link_ops;
2396 
2397 	/* for setting kernel sock attribute on TCP connection setup */
2398 #define GSO_MAX_SEGS		65535u
2399 #define GSO_LEGACY_MAX_SIZE	65536u
2400 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2401  * and shinfo->gso_segs is a 16bit field.
2402  */
2403 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2404 
2405 	unsigned int		gso_max_size;
2406 #define TSO_LEGACY_MAX_SIZE	65536
2407 #define TSO_MAX_SIZE		UINT_MAX
2408 	unsigned int		tso_max_size;
2409 	u16			gso_max_segs;
2410 #define TSO_MAX_SEGS		U16_MAX
2411 	u16			tso_max_segs;
2412 	unsigned int		gso_ipv4_max_size;
2413 
2414 #ifdef CONFIG_DCB
2415 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2416 #endif
2417 	s16			num_tc;
2418 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2419 	u8			prio_tc_map[TC_BITMASK + 1];
2420 
2421 #if IS_ENABLED(CONFIG_FCOE)
2422 	unsigned int		fcoe_ddp_xid;
2423 #endif
2424 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2425 	struct netprio_map __rcu *priomap;
2426 #endif
2427 	struct phy_device	*phydev;
2428 	struct sfp_bus		*sfp_bus;
2429 	struct lock_class_key	*qdisc_tx_busylock;
2430 	bool			proto_down;
2431 	unsigned		wol_enabled:1;
2432 	unsigned		threaded:1;
2433 
2434 	struct list_head	net_notifier_list;
2435 
2436 #if IS_ENABLED(CONFIG_MACSEC)
2437 	/* MACsec management functions */
2438 	const struct macsec_ops *macsec_ops;
2439 #endif
2440 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2441 	struct udp_tunnel_nic	*udp_tunnel_nic;
2442 
2443 	/* protected by rtnl_lock */
2444 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2445 
2446 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2447 	netdevice_tracker	linkwatch_dev_tracker;
2448 	netdevice_tracker	watchdog_dev_tracker;
2449 	netdevice_tracker	dev_registered_tracker;
2450 	struct rtnl_hw_stats64	*offload_xstats_l3;
2451 
2452 	struct devlink_port	*devlink_port;
2453 
2454 #if IS_ENABLED(CONFIG_DPLL)
2455 	struct dpll_pin		*dpll_pin;
2456 #endif
2457 #if IS_ENABLED(CONFIG_PAGE_POOL)
2458 	/** @page_pools: page pools created for this netdevice */
2459 	struct hlist_head	page_pools;
2460 #endif
2461 };
2462 #define to_net_dev(d) container_of(d, struct net_device, dev)
2463 
2464 /*
2465  * Driver should use this to assign devlink port instance to a netdevice
2466  * before it registers the netdevice. Therefore devlink_port is static
2467  * during the netdev lifetime after it is registered.
2468  */
2469 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2470 ({								\
2471 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2472 	((dev)->devlink_port = (port));				\
2473 })
2474 
2475 static inline bool netif_elide_gro(const struct net_device *dev)
2476 {
2477 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2478 		return true;
2479 	return false;
2480 }
2481 
2482 #define	NETDEV_ALIGN		32
2483 
2484 static inline
2485 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2486 {
2487 	return dev->prio_tc_map[prio & TC_BITMASK];
2488 }
2489 
2490 static inline
2491 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2492 {
2493 	if (tc >= dev->num_tc)
2494 		return -EINVAL;
2495 
2496 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2497 	return 0;
2498 }
2499 
2500 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2501 void netdev_reset_tc(struct net_device *dev);
2502 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2503 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2504 
2505 static inline
2506 int netdev_get_num_tc(struct net_device *dev)
2507 {
2508 	return dev->num_tc;
2509 }
2510 
2511 static inline void net_prefetch(void *p)
2512 {
2513 	prefetch(p);
2514 #if L1_CACHE_BYTES < 128
2515 	prefetch((u8 *)p + L1_CACHE_BYTES);
2516 #endif
2517 }
2518 
2519 static inline void net_prefetchw(void *p)
2520 {
2521 	prefetchw(p);
2522 #if L1_CACHE_BYTES < 128
2523 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2524 #endif
2525 }
2526 
2527 void netdev_unbind_sb_channel(struct net_device *dev,
2528 			      struct net_device *sb_dev);
2529 int netdev_bind_sb_channel_queue(struct net_device *dev,
2530 				 struct net_device *sb_dev,
2531 				 u8 tc, u16 count, u16 offset);
2532 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2533 static inline int netdev_get_sb_channel(struct net_device *dev)
2534 {
2535 	return max_t(int, -dev->num_tc, 0);
2536 }
2537 
2538 static inline
2539 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2540 					 unsigned int index)
2541 {
2542 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2543 	return &dev->_tx[index];
2544 }
2545 
2546 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2547 						    const struct sk_buff *skb)
2548 {
2549 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2550 }
2551 
2552 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2553 					    void (*f)(struct net_device *,
2554 						      struct netdev_queue *,
2555 						      void *),
2556 					    void *arg)
2557 {
2558 	unsigned int i;
2559 
2560 	for (i = 0; i < dev->num_tx_queues; i++)
2561 		f(dev, &dev->_tx[i], arg);
2562 }
2563 
2564 #define netdev_lockdep_set_classes(dev)				\
2565 {								\
2566 	static struct lock_class_key qdisc_tx_busylock_key;	\
2567 	static struct lock_class_key qdisc_xmit_lock_key;	\
2568 	static struct lock_class_key dev_addr_list_lock_key;	\
2569 	unsigned int i;						\
2570 								\
2571 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2572 	lockdep_set_class(&(dev)->addr_list_lock,		\
2573 			  &dev_addr_list_lock_key);		\
2574 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2575 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2576 				  &qdisc_xmit_lock_key);	\
2577 }
2578 
2579 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2580 		     struct net_device *sb_dev);
2581 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2582 					 struct sk_buff *skb,
2583 					 struct net_device *sb_dev);
2584 
2585 /* returns the headroom that the master device needs to take in account
2586  * when forwarding to this dev
2587  */
2588 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2589 {
2590 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2591 }
2592 
2593 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2594 {
2595 	if (dev->netdev_ops->ndo_set_rx_headroom)
2596 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2597 }
2598 
2599 /* set the device rx headroom to the dev's default */
2600 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2601 {
2602 	netdev_set_rx_headroom(dev, -1);
2603 }
2604 
2605 static inline void *netdev_get_ml_priv(struct net_device *dev,
2606 				       enum netdev_ml_priv_type type)
2607 {
2608 	if (dev->ml_priv_type != type)
2609 		return NULL;
2610 
2611 	return dev->ml_priv;
2612 }
2613 
2614 static inline void netdev_set_ml_priv(struct net_device *dev,
2615 				      void *ml_priv,
2616 				      enum netdev_ml_priv_type type)
2617 {
2618 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2619 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2620 	     dev->ml_priv_type, type);
2621 	WARN(!dev->ml_priv_type && dev->ml_priv,
2622 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2623 
2624 	dev->ml_priv = ml_priv;
2625 	dev->ml_priv_type = type;
2626 }
2627 
2628 /*
2629  * Net namespace inlines
2630  */
2631 static inline
2632 struct net *dev_net(const struct net_device *dev)
2633 {
2634 	return read_pnet(&dev->nd_net);
2635 }
2636 
2637 static inline
2638 void dev_net_set(struct net_device *dev, struct net *net)
2639 {
2640 	write_pnet(&dev->nd_net, net);
2641 }
2642 
2643 /**
2644  *	netdev_priv - access network device private data
2645  *	@dev: network device
2646  *
2647  * Get network device private data
2648  */
2649 static inline void *netdev_priv(const struct net_device *dev)
2650 {
2651 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2652 }
2653 
2654 /* Set the sysfs physical device reference for the network logical device
2655  * if set prior to registration will cause a symlink during initialization.
2656  */
2657 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2658 
2659 /* Set the sysfs device type for the network logical device to allow
2660  * fine-grained identification of different network device types. For
2661  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2662  */
2663 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2664 
2665 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2666 			  enum netdev_queue_type type,
2667 			  struct napi_struct *napi);
2668 
2669 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2670 {
2671 	napi->irq = irq;
2672 }
2673 
2674 /* Default NAPI poll() weight
2675  * Device drivers are strongly advised to not use bigger value
2676  */
2677 #define NAPI_POLL_WEIGHT 64
2678 
2679 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2680 			   int (*poll)(struct napi_struct *, int), int weight);
2681 
2682 /**
2683  * netif_napi_add() - initialize a NAPI context
2684  * @dev:  network device
2685  * @napi: NAPI context
2686  * @poll: polling function
2687  *
2688  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2689  * *any* of the other NAPI-related functions.
2690  */
2691 static inline void
2692 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2693 	       int (*poll)(struct napi_struct *, int))
2694 {
2695 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2696 }
2697 
2698 static inline void
2699 netif_napi_add_tx_weight(struct net_device *dev,
2700 			 struct napi_struct *napi,
2701 			 int (*poll)(struct napi_struct *, int),
2702 			 int weight)
2703 {
2704 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2705 	netif_napi_add_weight(dev, napi, poll, weight);
2706 }
2707 
2708 /**
2709  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2710  * @dev:  network device
2711  * @napi: NAPI context
2712  * @poll: polling function
2713  *
2714  * This variant of netif_napi_add() should be used from drivers using NAPI
2715  * to exclusively poll a TX queue.
2716  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2717  */
2718 static inline void netif_napi_add_tx(struct net_device *dev,
2719 				     struct napi_struct *napi,
2720 				     int (*poll)(struct napi_struct *, int))
2721 {
2722 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2723 }
2724 
2725 /**
2726  *  __netif_napi_del - remove a NAPI context
2727  *  @napi: NAPI context
2728  *
2729  * Warning: caller must observe RCU grace period before freeing memory
2730  * containing @napi. Drivers might want to call this helper to combine
2731  * all the needed RCU grace periods into a single one.
2732  */
2733 void __netif_napi_del(struct napi_struct *napi);
2734 
2735 /**
2736  *  netif_napi_del - remove a NAPI context
2737  *  @napi: NAPI context
2738  *
2739  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2740  */
2741 static inline void netif_napi_del(struct napi_struct *napi)
2742 {
2743 	__netif_napi_del(napi);
2744 	synchronize_net();
2745 }
2746 
2747 struct packet_type {
2748 	__be16			type;	/* This is really htons(ether_type). */
2749 	bool			ignore_outgoing;
2750 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2751 	netdevice_tracker	dev_tracker;
2752 	int			(*func) (struct sk_buff *,
2753 					 struct net_device *,
2754 					 struct packet_type *,
2755 					 struct net_device *);
2756 	void			(*list_func) (struct list_head *,
2757 					      struct packet_type *,
2758 					      struct net_device *);
2759 	bool			(*id_match)(struct packet_type *ptype,
2760 					    struct sock *sk);
2761 	struct net		*af_packet_net;
2762 	void			*af_packet_priv;
2763 	struct list_head	list;
2764 };
2765 
2766 struct offload_callbacks {
2767 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2768 						netdev_features_t features);
2769 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2770 						struct sk_buff *skb);
2771 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2772 };
2773 
2774 struct packet_offload {
2775 	__be16			 type;	/* This is really htons(ether_type). */
2776 	u16			 priority;
2777 	struct offload_callbacks callbacks;
2778 	struct list_head	 list;
2779 };
2780 
2781 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2782 struct pcpu_sw_netstats {
2783 	u64_stats_t		rx_packets;
2784 	u64_stats_t		rx_bytes;
2785 	u64_stats_t		tx_packets;
2786 	u64_stats_t		tx_bytes;
2787 	struct u64_stats_sync   syncp;
2788 } __aligned(4 * sizeof(u64));
2789 
2790 struct pcpu_dstats {
2791 	u64			rx_packets;
2792 	u64			rx_bytes;
2793 	u64			rx_drops;
2794 	u64			tx_packets;
2795 	u64			tx_bytes;
2796 	u64			tx_drops;
2797 	struct u64_stats_sync	syncp;
2798 } __aligned(8 * sizeof(u64));
2799 
2800 struct pcpu_lstats {
2801 	u64_stats_t packets;
2802 	u64_stats_t bytes;
2803 	struct u64_stats_sync syncp;
2804 } __aligned(2 * sizeof(u64));
2805 
2806 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2807 
2808 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2809 {
2810 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2811 
2812 	u64_stats_update_begin(&tstats->syncp);
2813 	u64_stats_add(&tstats->rx_bytes, len);
2814 	u64_stats_inc(&tstats->rx_packets);
2815 	u64_stats_update_end(&tstats->syncp);
2816 }
2817 
2818 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2819 					  unsigned int packets,
2820 					  unsigned int len)
2821 {
2822 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2823 
2824 	u64_stats_update_begin(&tstats->syncp);
2825 	u64_stats_add(&tstats->tx_bytes, len);
2826 	u64_stats_add(&tstats->tx_packets, packets);
2827 	u64_stats_update_end(&tstats->syncp);
2828 }
2829 
2830 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2831 {
2832 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2833 
2834 	u64_stats_update_begin(&lstats->syncp);
2835 	u64_stats_add(&lstats->bytes, len);
2836 	u64_stats_inc(&lstats->packets);
2837 	u64_stats_update_end(&lstats->syncp);
2838 }
2839 
2840 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2841 ({									\
2842 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2843 	if (pcpu_stats)	{						\
2844 		int __cpu;						\
2845 		for_each_possible_cpu(__cpu) {				\
2846 			typeof(type) *stat;				\
2847 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2848 			u64_stats_init(&stat->syncp);			\
2849 		}							\
2850 	}								\
2851 	pcpu_stats;							\
2852 })
2853 
2854 #define netdev_alloc_pcpu_stats(type)					\
2855 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2856 
2857 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2858 ({									\
2859 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2860 	if (pcpu_stats) {						\
2861 		int __cpu;						\
2862 		for_each_possible_cpu(__cpu) {				\
2863 			typeof(type) *stat;				\
2864 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2865 			u64_stats_init(&stat->syncp);			\
2866 		}							\
2867 	}								\
2868 	pcpu_stats;							\
2869 })
2870 
2871 enum netdev_lag_tx_type {
2872 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2873 	NETDEV_LAG_TX_TYPE_RANDOM,
2874 	NETDEV_LAG_TX_TYPE_BROADCAST,
2875 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2876 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2877 	NETDEV_LAG_TX_TYPE_HASH,
2878 };
2879 
2880 enum netdev_lag_hash {
2881 	NETDEV_LAG_HASH_NONE,
2882 	NETDEV_LAG_HASH_L2,
2883 	NETDEV_LAG_HASH_L34,
2884 	NETDEV_LAG_HASH_L23,
2885 	NETDEV_LAG_HASH_E23,
2886 	NETDEV_LAG_HASH_E34,
2887 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2888 	NETDEV_LAG_HASH_UNKNOWN,
2889 };
2890 
2891 struct netdev_lag_upper_info {
2892 	enum netdev_lag_tx_type tx_type;
2893 	enum netdev_lag_hash hash_type;
2894 };
2895 
2896 struct netdev_lag_lower_state_info {
2897 	u8 link_up : 1,
2898 	   tx_enabled : 1;
2899 };
2900 
2901 #include <linux/notifier.h>
2902 
2903 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2904  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2905  * adding new types.
2906  */
2907 enum netdev_cmd {
2908 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2909 	NETDEV_DOWN,
2910 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2911 				   detected a hardware crash and restarted
2912 				   - we can use this eg to kick tcp sessions
2913 				   once done */
2914 	NETDEV_CHANGE,		/* Notify device state change */
2915 	NETDEV_REGISTER,
2916 	NETDEV_UNREGISTER,
2917 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2918 	NETDEV_CHANGEADDR,	/* notify after the address change */
2919 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2920 	NETDEV_GOING_DOWN,
2921 	NETDEV_CHANGENAME,
2922 	NETDEV_FEAT_CHANGE,
2923 	NETDEV_BONDING_FAILOVER,
2924 	NETDEV_PRE_UP,
2925 	NETDEV_PRE_TYPE_CHANGE,
2926 	NETDEV_POST_TYPE_CHANGE,
2927 	NETDEV_POST_INIT,
2928 	NETDEV_PRE_UNINIT,
2929 	NETDEV_RELEASE,
2930 	NETDEV_NOTIFY_PEERS,
2931 	NETDEV_JOIN,
2932 	NETDEV_CHANGEUPPER,
2933 	NETDEV_RESEND_IGMP,
2934 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2935 	NETDEV_CHANGEINFODATA,
2936 	NETDEV_BONDING_INFO,
2937 	NETDEV_PRECHANGEUPPER,
2938 	NETDEV_CHANGELOWERSTATE,
2939 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2940 	NETDEV_UDP_TUNNEL_DROP_INFO,
2941 	NETDEV_CHANGE_TX_QUEUE_LEN,
2942 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2943 	NETDEV_CVLAN_FILTER_DROP_INFO,
2944 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2945 	NETDEV_SVLAN_FILTER_DROP_INFO,
2946 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2947 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2948 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2949 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2950 	NETDEV_XDP_FEAT_CHANGE,
2951 };
2952 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2953 
2954 int register_netdevice_notifier(struct notifier_block *nb);
2955 int unregister_netdevice_notifier(struct notifier_block *nb);
2956 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2957 int unregister_netdevice_notifier_net(struct net *net,
2958 				      struct notifier_block *nb);
2959 int register_netdevice_notifier_dev_net(struct net_device *dev,
2960 					struct notifier_block *nb,
2961 					struct netdev_net_notifier *nn);
2962 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2963 					  struct notifier_block *nb,
2964 					  struct netdev_net_notifier *nn);
2965 
2966 struct netdev_notifier_info {
2967 	struct net_device	*dev;
2968 	struct netlink_ext_ack	*extack;
2969 };
2970 
2971 struct netdev_notifier_info_ext {
2972 	struct netdev_notifier_info info; /* must be first */
2973 	union {
2974 		u32 mtu;
2975 	} ext;
2976 };
2977 
2978 struct netdev_notifier_change_info {
2979 	struct netdev_notifier_info info; /* must be first */
2980 	unsigned int flags_changed;
2981 };
2982 
2983 struct netdev_notifier_changeupper_info {
2984 	struct netdev_notifier_info info; /* must be first */
2985 	struct net_device *upper_dev; /* new upper dev */
2986 	bool master; /* is upper dev master */
2987 	bool linking; /* is the notification for link or unlink */
2988 	void *upper_info; /* upper dev info */
2989 };
2990 
2991 struct netdev_notifier_changelowerstate_info {
2992 	struct netdev_notifier_info info; /* must be first */
2993 	void *lower_state_info; /* is lower dev state */
2994 };
2995 
2996 struct netdev_notifier_pre_changeaddr_info {
2997 	struct netdev_notifier_info info; /* must be first */
2998 	const unsigned char *dev_addr;
2999 };
3000 
3001 enum netdev_offload_xstats_type {
3002 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3003 };
3004 
3005 struct netdev_notifier_offload_xstats_info {
3006 	struct netdev_notifier_info info; /* must be first */
3007 	enum netdev_offload_xstats_type type;
3008 
3009 	union {
3010 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3011 		struct netdev_notifier_offload_xstats_rd *report_delta;
3012 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3013 		struct netdev_notifier_offload_xstats_ru *report_used;
3014 	};
3015 };
3016 
3017 int netdev_offload_xstats_enable(struct net_device *dev,
3018 				 enum netdev_offload_xstats_type type,
3019 				 struct netlink_ext_ack *extack);
3020 int netdev_offload_xstats_disable(struct net_device *dev,
3021 				  enum netdev_offload_xstats_type type);
3022 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3023 				   enum netdev_offload_xstats_type type);
3024 int netdev_offload_xstats_get(struct net_device *dev,
3025 			      enum netdev_offload_xstats_type type,
3026 			      struct rtnl_hw_stats64 *stats, bool *used,
3027 			      struct netlink_ext_ack *extack);
3028 void
3029 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3030 				   const struct rtnl_hw_stats64 *stats);
3031 void
3032 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3033 void netdev_offload_xstats_push_delta(struct net_device *dev,
3034 				      enum netdev_offload_xstats_type type,
3035 				      const struct rtnl_hw_stats64 *stats);
3036 
3037 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3038 					     struct net_device *dev)
3039 {
3040 	info->dev = dev;
3041 	info->extack = NULL;
3042 }
3043 
3044 static inline struct net_device *
3045 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3046 {
3047 	return info->dev;
3048 }
3049 
3050 static inline struct netlink_ext_ack *
3051 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3052 {
3053 	return info->extack;
3054 }
3055 
3056 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3057 int call_netdevice_notifiers_info(unsigned long val,
3058 				  struct netdev_notifier_info *info);
3059 
3060 extern rwlock_t				dev_base_lock;		/* Device list lock */
3061 
3062 #define for_each_netdev(net, d)		\
3063 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3064 #define for_each_netdev_reverse(net, d)	\
3065 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3066 #define for_each_netdev_rcu(net, d)		\
3067 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3068 #define for_each_netdev_safe(net, d, n)	\
3069 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3070 #define for_each_netdev_continue(net, d)		\
3071 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3072 #define for_each_netdev_continue_reverse(net, d)		\
3073 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3074 						     dev_list)
3075 #define for_each_netdev_continue_rcu(net, d)		\
3076 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3077 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3078 		for_each_netdev_rcu(&init_net, slave)	\
3079 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3080 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3081 
3082 #define for_each_netdev_dump(net, d, ifindex)				\
3083 	xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3084 
3085 static inline struct net_device *next_net_device(struct net_device *dev)
3086 {
3087 	struct list_head *lh;
3088 	struct net *net;
3089 
3090 	net = dev_net(dev);
3091 	lh = dev->dev_list.next;
3092 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3093 }
3094 
3095 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3096 {
3097 	struct list_head *lh;
3098 	struct net *net;
3099 
3100 	net = dev_net(dev);
3101 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3102 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3103 }
3104 
3105 static inline struct net_device *first_net_device(struct net *net)
3106 {
3107 	return list_empty(&net->dev_base_head) ? NULL :
3108 		net_device_entry(net->dev_base_head.next);
3109 }
3110 
3111 static inline struct net_device *first_net_device_rcu(struct net *net)
3112 {
3113 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3114 
3115 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3116 }
3117 
3118 int netdev_boot_setup_check(struct net_device *dev);
3119 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3120 				       const char *hwaddr);
3121 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3122 void dev_add_pack(struct packet_type *pt);
3123 void dev_remove_pack(struct packet_type *pt);
3124 void __dev_remove_pack(struct packet_type *pt);
3125 void dev_add_offload(struct packet_offload *po);
3126 void dev_remove_offload(struct packet_offload *po);
3127 
3128 int dev_get_iflink(const struct net_device *dev);
3129 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3130 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3131 			  struct net_device_path_stack *stack);
3132 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3133 				      unsigned short mask);
3134 struct net_device *dev_get_by_name(struct net *net, const char *name);
3135 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3136 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3137 bool netdev_name_in_use(struct net *net, const char *name);
3138 int dev_alloc_name(struct net_device *dev, const char *name);
3139 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3140 void dev_close(struct net_device *dev);
3141 void dev_close_many(struct list_head *head, bool unlink);
3142 void dev_disable_lro(struct net_device *dev);
3143 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3144 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3145 		     struct net_device *sb_dev);
3146 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3147 		       struct net_device *sb_dev);
3148 
3149 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3150 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3151 
3152 static inline int dev_queue_xmit(struct sk_buff *skb)
3153 {
3154 	return __dev_queue_xmit(skb, NULL);
3155 }
3156 
3157 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3158 				       struct net_device *sb_dev)
3159 {
3160 	return __dev_queue_xmit(skb, sb_dev);
3161 }
3162 
3163 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3164 {
3165 	int ret;
3166 
3167 	ret = __dev_direct_xmit(skb, queue_id);
3168 	if (!dev_xmit_complete(ret))
3169 		kfree_skb(skb);
3170 	return ret;
3171 }
3172 
3173 int register_netdevice(struct net_device *dev);
3174 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3175 void unregister_netdevice_many(struct list_head *head);
3176 static inline void unregister_netdevice(struct net_device *dev)
3177 {
3178 	unregister_netdevice_queue(dev, NULL);
3179 }
3180 
3181 int netdev_refcnt_read(const struct net_device *dev);
3182 void free_netdev(struct net_device *dev);
3183 void netdev_freemem(struct net_device *dev);
3184 int init_dummy_netdev(struct net_device *dev);
3185 
3186 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3187 					 struct sk_buff *skb,
3188 					 bool all_slaves);
3189 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3190 					    struct sock *sk);
3191 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3192 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3193 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3194 				       netdevice_tracker *tracker, gfp_t gfp);
3195 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3196 				      netdevice_tracker *tracker, gfp_t gfp);
3197 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3198 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3199 
3200 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3201 				  unsigned short type,
3202 				  const void *daddr, const void *saddr,
3203 				  unsigned int len)
3204 {
3205 	if (!dev->header_ops || !dev->header_ops->create)
3206 		return 0;
3207 
3208 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3209 }
3210 
3211 static inline int dev_parse_header(const struct sk_buff *skb,
3212 				   unsigned char *haddr)
3213 {
3214 	const struct net_device *dev = skb->dev;
3215 
3216 	if (!dev->header_ops || !dev->header_ops->parse)
3217 		return 0;
3218 	return dev->header_ops->parse(skb, haddr);
3219 }
3220 
3221 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3222 {
3223 	const struct net_device *dev = skb->dev;
3224 
3225 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3226 		return 0;
3227 	return dev->header_ops->parse_protocol(skb);
3228 }
3229 
3230 /* ll_header must have at least hard_header_len allocated */
3231 static inline bool dev_validate_header(const struct net_device *dev,
3232 				       char *ll_header, int len)
3233 {
3234 	if (likely(len >= dev->hard_header_len))
3235 		return true;
3236 	if (len < dev->min_header_len)
3237 		return false;
3238 
3239 	if (capable(CAP_SYS_RAWIO)) {
3240 		memset(ll_header + len, 0, dev->hard_header_len - len);
3241 		return true;
3242 	}
3243 
3244 	if (dev->header_ops && dev->header_ops->validate)
3245 		return dev->header_ops->validate(ll_header, len);
3246 
3247 	return false;
3248 }
3249 
3250 static inline bool dev_has_header(const struct net_device *dev)
3251 {
3252 	return dev->header_ops && dev->header_ops->create;
3253 }
3254 
3255 /*
3256  * Incoming packets are placed on per-CPU queues
3257  */
3258 struct softnet_data {
3259 	struct list_head	poll_list;
3260 	struct sk_buff_head	process_queue;
3261 
3262 	/* stats */
3263 	unsigned int		processed;
3264 	unsigned int		time_squeeze;
3265 #ifdef CONFIG_RPS
3266 	struct softnet_data	*rps_ipi_list;
3267 #endif
3268 
3269 	bool			in_net_rx_action;
3270 	bool			in_napi_threaded_poll;
3271 
3272 #ifdef CONFIG_NET_FLOW_LIMIT
3273 	struct sd_flow_limit __rcu *flow_limit;
3274 #endif
3275 	struct Qdisc		*output_queue;
3276 	struct Qdisc		**output_queue_tailp;
3277 	struct sk_buff		*completion_queue;
3278 #ifdef CONFIG_XFRM_OFFLOAD
3279 	struct sk_buff_head	xfrm_backlog;
3280 #endif
3281 	/* written and read only by owning cpu: */
3282 	struct {
3283 		u16 recursion;
3284 		u8  more;
3285 #ifdef CONFIG_NET_EGRESS
3286 		u8  skip_txqueue;
3287 #endif
3288 	} xmit;
3289 #ifdef CONFIG_RPS
3290 	/* input_queue_head should be written by cpu owning this struct,
3291 	 * and only read by other cpus. Worth using a cache line.
3292 	 */
3293 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3294 
3295 	/* Elements below can be accessed between CPUs for RPS/RFS */
3296 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3297 	struct softnet_data	*rps_ipi_next;
3298 	unsigned int		cpu;
3299 	unsigned int		input_queue_tail;
3300 #endif
3301 	unsigned int		received_rps;
3302 	unsigned int		dropped;
3303 	struct sk_buff_head	input_pkt_queue;
3304 	struct napi_struct	backlog;
3305 
3306 	/* Another possibly contended cache line */
3307 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3308 	int			defer_count;
3309 	int			defer_ipi_scheduled;
3310 	struct sk_buff		*defer_list;
3311 	call_single_data_t	defer_csd;
3312 };
3313 
3314 static inline void input_queue_head_incr(struct softnet_data *sd)
3315 {
3316 #ifdef CONFIG_RPS
3317 	sd->input_queue_head++;
3318 #endif
3319 }
3320 
3321 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3322 					      unsigned int *qtail)
3323 {
3324 #ifdef CONFIG_RPS
3325 	*qtail = ++sd->input_queue_tail;
3326 #endif
3327 }
3328 
3329 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3330 
3331 static inline int dev_recursion_level(void)
3332 {
3333 	return this_cpu_read(softnet_data.xmit.recursion);
3334 }
3335 
3336 #define XMIT_RECURSION_LIMIT	8
3337 static inline bool dev_xmit_recursion(void)
3338 {
3339 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3340 			XMIT_RECURSION_LIMIT);
3341 }
3342 
3343 static inline void dev_xmit_recursion_inc(void)
3344 {
3345 	__this_cpu_inc(softnet_data.xmit.recursion);
3346 }
3347 
3348 static inline void dev_xmit_recursion_dec(void)
3349 {
3350 	__this_cpu_dec(softnet_data.xmit.recursion);
3351 }
3352 
3353 void __netif_schedule(struct Qdisc *q);
3354 void netif_schedule_queue(struct netdev_queue *txq);
3355 
3356 static inline void netif_tx_schedule_all(struct net_device *dev)
3357 {
3358 	unsigned int i;
3359 
3360 	for (i = 0; i < dev->num_tx_queues; i++)
3361 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3362 }
3363 
3364 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3365 {
3366 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3367 }
3368 
3369 /**
3370  *	netif_start_queue - allow transmit
3371  *	@dev: network device
3372  *
3373  *	Allow upper layers to call the device hard_start_xmit routine.
3374  */
3375 static inline void netif_start_queue(struct net_device *dev)
3376 {
3377 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3378 }
3379 
3380 static inline void netif_tx_start_all_queues(struct net_device *dev)
3381 {
3382 	unsigned int i;
3383 
3384 	for (i = 0; i < dev->num_tx_queues; i++) {
3385 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3386 		netif_tx_start_queue(txq);
3387 	}
3388 }
3389 
3390 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3391 
3392 /**
3393  *	netif_wake_queue - restart transmit
3394  *	@dev: network device
3395  *
3396  *	Allow upper layers to call the device hard_start_xmit routine.
3397  *	Used for flow control when transmit resources are available.
3398  */
3399 static inline void netif_wake_queue(struct net_device *dev)
3400 {
3401 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3402 }
3403 
3404 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3405 {
3406 	unsigned int i;
3407 
3408 	for (i = 0; i < dev->num_tx_queues; i++) {
3409 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3410 		netif_tx_wake_queue(txq);
3411 	}
3412 }
3413 
3414 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3415 {
3416 	/* Must be an atomic op see netif_txq_try_stop() */
3417 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3418 }
3419 
3420 /**
3421  *	netif_stop_queue - stop transmitted packets
3422  *	@dev: network device
3423  *
3424  *	Stop upper layers calling the device hard_start_xmit routine.
3425  *	Used for flow control when transmit resources are unavailable.
3426  */
3427 static inline void netif_stop_queue(struct net_device *dev)
3428 {
3429 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3430 }
3431 
3432 void netif_tx_stop_all_queues(struct net_device *dev);
3433 
3434 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3435 {
3436 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3437 }
3438 
3439 /**
3440  *	netif_queue_stopped - test if transmit queue is flowblocked
3441  *	@dev: network device
3442  *
3443  *	Test if transmit queue on device is currently unable to send.
3444  */
3445 static inline bool netif_queue_stopped(const struct net_device *dev)
3446 {
3447 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3448 }
3449 
3450 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3451 {
3452 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3453 }
3454 
3455 static inline bool
3456 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3457 {
3458 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3459 }
3460 
3461 static inline bool
3462 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3463 {
3464 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3465 }
3466 
3467 /**
3468  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3469  *	@dev_queue: pointer to transmit queue
3470  *	@min_limit: dql minimum limit
3471  *
3472  * Forces xmit_more() to return true until the minimum threshold
3473  * defined by @min_limit is reached (or until the tx queue is
3474  * empty). Warning: to be use with care, misuse will impact the
3475  * latency.
3476  */
3477 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3478 						  unsigned int min_limit)
3479 {
3480 #ifdef CONFIG_BQL
3481 	dev_queue->dql.min_limit = min_limit;
3482 #endif
3483 }
3484 
3485 /**
3486  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3487  *	@dev_queue: pointer to transmit queue
3488  *
3489  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3490  * to give appropriate hint to the CPU.
3491  */
3492 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3493 {
3494 #ifdef CONFIG_BQL
3495 	prefetchw(&dev_queue->dql.num_queued);
3496 #endif
3497 }
3498 
3499 /**
3500  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3501  *	@dev_queue: pointer to transmit queue
3502  *
3503  * BQL enabled drivers might use this helper in their TX completion path,
3504  * to give appropriate hint to the CPU.
3505  */
3506 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3507 {
3508 #ifdef CONFIG_BQL
3509 	prefetchw(&dev_queue->dql.limit);
3510 #endif
3511 }
3512 
3513 /**
3514  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3515  *	@dev_queue: network device queue
3516  *	@bytes: number of bytes queued to the device queue
3517  *
3518  *	Report the number of bytes queued for sending/completion to the network
3519  *	device hardware queue. @bytes should be a good approximation and should
3520  *	exactly match netdev_completed_queue() @bytes.
3521  *	This is typically called once per packet, from ndo_start_xmit().
3522  */
3523 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3524 					unsigned int bytes)
3525 {
3526 #ifdef CONFIG_BQL
3527 	dql_queued(&dev_queue->dql, bytes);
3528 
3529 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3530 		return;
3531 
3532 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3533 
3534 	/*
3535 	 * The XOFF flag must be set before checking the dql_avail below,
3536 	 * because in netdev_tx_completed_queue we update the dql_completed
3537 	 * before checking the XOFF flag.
3538 	 */
3539 	smp_mb();
3540 
3541 	/* check again in case another CPU has just made room avail */
3542 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3543 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3544 #endif
3545 }
3546 
3547 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3548  * that they should not test BQL status themselves.
3549  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3550  * skb of a batch.
3551  * Returns true if the doorbell must be used to kick the NIC.
3552  */
3553 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3554 					  unsigned int bytes,
3555 					  bool xmit_more)
3556 {
3557 	if (xmit_more) {
3558 #ifdef CONFIG_BQL
3559 		dql_queued(&dev_queue->dql, bytes);
3560 #endif
3561 		return netif_tx_queue_stopped(dev_queue);
3562 	}
3563 	netdev_tx_sent_queue(dev_queue, bytes);
3564 	return true;
3565 }
3566 
3567 /**
3568  *	netdev_sent_queue - report the number of bytes queued to hardware
3569  *	@dev: network device
3570  *	@bytes: number of bytes queued to the hardware device queue
3571  *
3572  *	Report the number of bytes queued for sending/completion to the network
3573  *	device hardware queue#0. @bytes should be a good approximation and should
3574  *	exactly match netdev_completed_queue() @bytes.
3575  *	This is typically called once per packet, from ndo_start_xmit().
3576  */
3577 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3578 {
3579 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3580 }
3581 
3582 static inline bool __netdev_sent_queue(struct net_device *dev,
3583 				       unsigned int bytes,
3584 				       bool xmit_more)
3585 {
3586 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3587 				      xmit_more);
3588 }
3589 
3590 /**
3591  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3592  *	@dev_queue: network device queue
3593  *	@pkts: number of packets (currently ignored)
3594  *	@bytes: number of bytes dequeued from the device queue
3595  *
3596  *	Must be called at most once per TX completion round (and not per
3597  *	individual packet), so that BQL can adjust its limits appropriately.
3598  */
3599 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3600 					     unsigned int pkts, unsigned int bytes)
3601 {
3602 #ifdef CONFIG_BQL
3603 	if (unlikely(!bytes))
3604 		return;
3605 
3606 	dql_completed(&dev_queue->dql, bytes);
3607 
3608 	/*
3609 	 * Without the memory barrier there is a small possiblity that
3610 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3611 	 * be stopped forever
3612 	 */
3613 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3614 
3615 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3616 		return;
3617 
3618 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3619 		netif_schedule_queue(dev_queue);
3620 #endif
3621 }
3622 
3623 /**
3624  * 	netdev_completed_queue - report bytes and packets completed by device
3625  * 	@dev: network device
3626  * 	@pkts: actual number of packets sent over the medium
3627  * 	@bytes: actual number of bytes sent over the medium
3628  *
3629  * 	Report the number of bytes and packets transmitted by the network device
3630  * 	hardware queue over the physical medium, @bytes must exactly match the
3631  * 	@bytes amount passed to netdev_sent_queue()
3632  */
3633 static inline void netdev_completed_queue(struct net_device *dev,
3634 					  unsigned int pkts, unsigned int bytes)
3635 {
3636 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3637 }
3638 
3639 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3640 {
3641 #ifdef CONFIG_BQL
3642 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3643 	dql_reset(&q->dql);
3644 #endif
3645 }
3646 
3647 /**
3648  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3649  * 	@dev_queue: network device
3650  *
3651  * 	Reset the bytes and packet count of a network device and clear the
3652  * 	software flow control OFF bit for this network device
3653  */
3654 static inline void netdev_reset_queue(struct net_device *dev_queue)
3655 {
3656 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3657 }
3658 
3659 /**
3660  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3661  * 	@dev: network device
3662  * 	@queue_index: given tx queue index
3663  *
3664  * 	Returns 0 if given tx queue index >= number of device tx queues,
3665  * 	otherwise returns the originally passed tx queue index.
3666  */
3667 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3668 {
3669 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3670 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3671 				     dev->name, queue_index,
3672 				     dev->real_num_tx_queues);
3673 		return 0;
3674 	}
3675 
3676 	return queue_index;
3677 }
3678 
3679 /**
3680  *	netif_running - test if up
3681  *	@dev: network device
3682  *
3683  *	Test if the device has been brought up.
3684  */
3685 static inline bool netif_running(const struct net_device *dev)
3686 {
3687 	return test_bit(__LINK_STATE_START, &dev->state);
3688 }
3689 
3690 /*
3691  * Routines to manage the subqueues on a device.  We only need start,
3692  * stop, and a check if it's stopped.  All other device management is
3693  * done at the overall netdevice level.
3694  * Also test the device if we're multiqueue.
3695  */
3696 
3697 /**
3698  *	netif_start_subqueue - allow sending packets on subqueue
3699  *	@dev: network device
3700  *	@queue_index: sub queue index
3701  *
3702  * Start individual transmit queue of a device with multiple transmit queues.
3703  */
3704 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3705 {
3706 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3707 
3708 	netif_tx_start_queue(txq);
3709 }
3710 
3711 /**
3712  *	netif_stop_subqueue - stop sending packets on subqueue
3713  *	@dev: network device
3714  *	@queue_index: sub queue index
3715  *
3716  * Stop individual transmit queue of a device with multiple transmit queues.
3717  */
3718 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3719 {
3720 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3721 	netif_tx_stop_queue(txq);
3722 }
3723 
3724 /**
3725  *	__netif_subqueue_stopped - test status of subqueue
3726  *	@dev: network device
3727  *	@queue_index: sub queue index
3728  *
3729  * Check individual transmit queue of a device with multiple transmit queues.
3730  */
3731 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3732 					    u16 queue_index)
3733 {
3734 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3735 
3736 	return netif_tx_queue_stopped(txq);
3737 }
3738 
3739 /**
3740  *	netif_subqueue_stopped - test status of subqueue
3741  *	@dev: network device
3742  *	@skb: sub queue buffer pointer
3743  *
3744  * Check individual transmit queue of a device with multiple transmit queues.
3745  */
3746 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3747 					  struct sk_buff *skb)
3748 {
3749 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3750 }
3751 
3752 /**
3753  *	netif_wake_subqueue - allow sending packets on subqueue
3754  *	@dev: network device
3755  *	@queue_index: sub queue index
3756  *
3757  * Resume individual transmit queue of a device with multiple transmit queues.
3758  */
3759 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3760 {
3761 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3762 
3763 	netif_tx_wake_queue(txq);
3764 }
3765 
3766 #ifdef CONFIG_XPS
3767 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3768 			u16 index);
3769 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3770 			  u16 index, enum xps_map_type type);
3771 
3772 /**
3773  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3774  *	@j: CPU/Rx queue index
3775  *	@mask: bitmask of all cpus/rx queues
3776  *	@nr_bits: number of bits in the bitmask
3777  *
3778  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3779  */
3780 static inline bool netif_attr_test_mask(unsigned long j,
3781 					const unsigned long *mask,
3782 					unsigned int nr_bits)
3783 {
3784 	cpu_max_bits_warn(j, nr_bits);
3785 	return test_bit(j, mask);
3786 }
3787 
3788 /**
3789  *	netif_attr_test_online - Test for online CPU/Rx queue
3790  *	@j: CPU/Rx queue index
3791  *	@online_mask: bitmask for CPUs/Rx queues that are online
3792  *	@nr_bits: number of bits in the bitmask
3793  *
3794  * Returns true if a CPU/Rx queue is online.
3795  */
3796 static inline bool netif_attr_test_online(unsigned long j,
3797 					  const unsigned long *online_mask,
3798 					  unsigned int nr_bits)
3799 {
3800 	cpu_max_bits_warn(j, nr_bits);
3801 
3802 	if (online_mask)
3803 		return test_bit(j, online_mask);
3804 
3805 	return (j < nr_bits);
3806 }
3807 
3808 /**
3809  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3810  *	@n: CPU/Rx queue index
3811  *	@srcp: the cpumask/Rx queue mask pointer
3812  *	@nr_bits: number of bits in the bitmask
3813  *
3814  * Returns >= nr_bits if no further CPUs/Rx queues set.
3815  */
3816 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3817 					       unsigned int nr_bits)
3818 {
3819 	/* -1 is a legal arg here. */
3820 	if (n != -1)
3821 		cpu_max_bits_warn(n, nr_bits);
3822 
3823 	if (srcp)
3824 		return find_next_bit(srcp, nr_bits, n + 1);
3825 
3826 	return n + 1;
3827 }
3828 
3829 /**
3830  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3831  *	@n: CPU/Rx queue index
3832  *	@src1p: the first CPUs/Rx queues mask pointer
3833  *	@src2p: the second CPUs/Rx queues mask pointer
3834  *	@nr_bits: number of bits in the bitmask
3835  *
3836  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3837  */
3838 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3839 					  const unsigned long *src2p,
3840 					  unsigned int nr_bits)
3841 {
3842 	/* -1 is a legal arg here. */
3843 	if (n != -1)
3844 		cpu_max_bits_warn(n, nr_bits);
3845 
3846 	if (src1p && src2p)
3847 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3848 	else if (src1p)
3849 		return find_next_bit(src1p, nr_bits, n + 1);
3850 	else if (src2p)
3851 		return find_next_bit(src2p, nr_bits, n + 1);
3852 
3853 	return n + 1;
3854 }
3855 #else
3856 static inline int netif_set_xps_queue(struct net_device *dev,
3857 				      const struct cpumask *mask,
3858 				      u16 index)
3859 {
3860 	return 0;
3861 }
3862 
3863 static inline int __netif_set_xps_queue(struct net_device *dev,
3864 					const unsigned long *mask,
3865 					u16 index, enum xps_map_type type)
3866 {
3867 	return 0;
3868 }
3869 #endif
3870 
3871 /**
3872  *	netif_is_multiqueue - test if device has multiple transmit queues
3873  *	@dev: network device
3874  *
3875  * Check if device has multiple transmit queues
3876  */
3877 static inline bool netif_is_multiqueue(const struct net_device *dev)
3878 {
3879 	return dev->num_tx_queues > 1;
3880 }
3881 
3882 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3883 
3884 #ifdef CONFIG_SYSFS
3885 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3886 #else
3887 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3888 						unsigned int rxqs)
3889 {
3890 	dev->real_num_rx_queues = rxqs;
3891 	return 0;
3892 }
3893 #endif
3894 int netif_set_real_num_queues(struct net_device *dev,
3895 			      unsigned int txq, unsigned int rxq);
3896 
3897 int netif_get_num_default_rss_queues(void);
3898 
3899 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3900 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3901 
3902 /*
3903  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3904  * interrupt context or with hardware interrupts being disabled.
3905  * (in_hardirq() || irqs_disabled())
3906  *
3907  * We provide four helpers that can be used in following contexts :
3908  *
3909  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3910  *  replacing kfree_skb(skb)
3911  *
3912  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3913  *  Typically used in place of consume_skb(skb) in TX completion path
3914  *
3915  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3916  *  replacing kfree_skb(skb)
3917  *
3918  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3919  *  and consumed a packet. Used in place of consume_skb(skb)
3920  */
3921 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3922 {
3923 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3924 }
3925 
3926 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3927 {
3928 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3929 }
3930 
3931 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3932 {
3933 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3934 }
3935 
3936 static inline void dev_consume_skb_any(struct sk_buff *skb)
3937 {
3938 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3939 }
3940 
3941 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3942 			     struct bpf_prog *xdp_prog);
3943 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3944 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3945 int netif_rx(struct sk_buff *skb);
3946 int __netif_rx(struct sk_buff *skb);
3947 
3948 int netif_receive_skb(struct sk_buff *skb);
3949 int netif_receive_skb_core(struct sk_buff *skb);
3950 void netif_receive_skb_list_internal(struct list_head *head);
3951 void netif_receive_skb_list(struct list_head *head);
3952 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3953 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3954 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3955 void napi_get_frags_check(struct napi_struct *napi);
3956 gro_result_t napi_gro_frags(struct napi_struct *napi);
3957 struct packet_offload *gro_find_receive_by_type(__be16 type);
3958 struct packet_offload *gro_find_complete_by_type(__be16 type);
3959 
3960 static inline void napi_free_frags(struct napi_struct *napi)
3961 {
3962 	kfree_skb(napi->skb);
3963 	napi->skb = NULL;
3964 }
3965 
3966 bool netdev_is_rx_handler_busy(struct net_device *dev);
3967 int netdev_rx_handler_register(struct net_device *dev,
3968 			       rx_handler_func_t *rx_handler,
3969 			       void *rx_handler_data);
3970 void netdev_rx_handler_unregister(struct net_device *dev);
3971 
3972 bool dev_valid_name(const char *name);
3973 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3974 {
3975 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3976 }
3977 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3978 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3979 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3980 		void __user *data, bool *need_copyout);
3981 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3982 int generic_hwtstamp_get_lower(struct net_device *dev,
3983 			       struct kernel_hwtstamp_config *kernel_cfg);
3984 int generic_hwtstamp_set_lower(struct net_device *dev,
3985 			       struct kernel_hwtstamp_config *kernel_cfg,
3986 			       struct netlink_ext_ack *extack);
3987 int dev_set_hwtstamp_phylib(struct net_device *dev,
3988 			    struct kernel_hwtstamp_config *cfg,
3989 			    struct netlink_ext_ack *extack);
3990 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3991 unsigned int dev_get_flags(const struct net_device *);
3992 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3993 		       struct netlink_ext_ack *extack);
3994 int dev_change_flags(struct net_device *dev, unsigned int flags,
3995 		     struct netlink_ext_ack *extack);
3996 int dev_set_alias(struct net_device *, const char *, size_t);
3997 int dev_get_alias(const struct net_device *, char *, size_t);
3998 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3999 			       const char *pat, int new_ifindex);
4000 static inline
4001 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4002 			     const char *pat)
4003 {
4004 	return __dev_change_net_namespace(dev, net, pat, 0);
4005 }
4006 int __dev_set_mtu(struct net_device *, int);
4007 int dev_set_mtu(struct net_device *, int);
4008 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4009 			      struct netlink_ext_ack *extack);
4010 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4011 			struct netlink_ext_ack *extack);
4012 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4013 			     struct netlink_ext_ack *extack);
4014 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4015 int dev_get_port_parent_id(struct net_device *dev,
4016 			   struct netdev_phys_item_id *ppid, bool recurse);
4017 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4018 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin);
4019 void netdev_dpll_pin_clear(struct net_device *dev);
4020 
4021 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev)
4022 {
4023 #if IS_ENABLED(CONFIG_DPLL)
4024 	return dev->dpll_pin;
4025 #else
4026 	return NULL;
4027 #endif
4028 }
4029 
4030 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4031 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4032 				    struct netdev_queue *txq, int *ret);
4033 
4034 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4035 u8 dev_xdp_prog_count(struct net_device *dev);
4036 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4037 
4038 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4039 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4040 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4041 bool is_skb_forwardable(const struct net_device *dev,
4042 			const struct sk_buff *skb);
4043 
4044 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4045 						 const struct sk_buff *skb,
4046 						 const bool check_mtu)
4047 {
4048 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4049 	unsigned int len;
4050 
4051 	if (!(dev->flags & IFF_UP))
4052 		return false;
4053 
4054 	if (!check_mtu)
4055 		return true;
4056 
4057 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4058 	if (skb->len <= len)
4059 		return true;
4060 
4061 	/* if TSO is enabled, we don't care about the length as the packet
4062 	 * could be forwarded without being segmented before
4063 	 */
4064 	if (skb_is_gso(skb))
4065 		return true;
4066 
4067 	return false;
4068 }
4069 
4070 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4071 
4072 #define DEV_CORE_STATS_INC(FIELD)						\
4073 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4074 {										\
4075 	netdev_core_stats_inc(dev,						\
4076 			offsetof(struct net_device_core_stats, FIELD));		\
4077 }
4078 DEV_CORE_STATS_INC(rx_dropped)
4079 DEV_CORE_STATS_INC(tx_dropped)
4080 DEV_CORE_STATS_INC(rx_nohandler)
4081 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4082 #undef DEV_CORE_STATS_INC
4083 
4084 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4085 					       struct sk_buff *skb,
4086 					       const bool check_mtu)
4087 {
4088 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4089 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4090 		dev_core_stats_rx_dropped_inc(dev);
4091 		kfree_skb(skb);
4092 		return NET_RX_DROP;
4093 	}
4094 
4095 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4096 	skb->priority = 0;
4097 	return 0;
4098 }
4099 
4100 bool dev_nit_active(struct net_device *dev);
4101 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4102 
4103 static inline void __dev_put(struct net_device *dev)
4104 {
4105 	if (dev) {
4106 #ifdef CONFIG_PCPU_DEV_REFCNT
4107 		this_cpu_dec(*dev->pcpu_refcnt);
4108 #else
4109 		refcount_dec(&dev->dev_refcnt);
4110 #endif
4111 	}
4112 }
4113 
4114 static inline void __dev_hold(struct net_device *dev)
4115 {
4116 	if (dev) {
4117 #ifdef CONFIG_PCPU_DEV_REFCNT
4118 		this_cpu_inc(*dev->pcpu_refcnt);
4119 #else
4120 		refcount_inc(&dev->dev_refcnt);
4121 #endif
4122 	}
4123 }
4124 
4125 static inline void __netdev_tracker_alloc(struct net_device *dev,
4126 					  netdevice_tracker *tracker,
4127 					  gfp_t gfp)
4128 {
4129 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4130 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4131 #endif
4132 }
4133 
4134 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4135  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4136  */
4137 static inline void netdev_tracker_alloc(struct net_device *dev,
4138 					netdevice_tracker *tracker, gfp_t gfp)
4139 {
4140 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4141 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4142 	__netdev_tracker_alloc(dev, tracker, gfp);
4143 #endif
4144 }
4145 
4146 static inline void netdev_tracker_free(struct net_device *dev,
4147 				       netdevice_tracker *tracker)
4148 {
4149 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4150 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4151 #endif
4152 }
4153 
4154 static inline void netdev_hold(struct net_device *dev,
4155 			       netdevice_tracker *tracker, gfp_t gfp)
4156 {
4157 	if (dev) {
4158 		__dev_hold(dev);
4159 		__netdev_tracker_alloc(dev, tracker, gfp);
4160 	}
4161 }
4162 
4163 static inline void netdev_put(struct net_device *dev,
4164 			      netdevice_tracker *tracker)
4165 {
4166 	if (dev) {
4167 		netdev_tracker_free(dev, tracker);
4168 		__dev_put(dev);
4169 	}
4170 }
4171 
4172 /**
4173  *	dev_hold - get reference to device
4174  *	@dev: network device
4175  *
4176  * Hold reference to device to keep it from being freed.
4177  * Try using netdev_hold() instead.
4178  */
4179 static inline void dev_hold(struct net_device *dev)
4180 {
4181 	netdev_hold(dev, NULL, GFP_ATOMIC);
4182 }
4183 
4184 /**
4185  *	dev_put - release reference to device
4186  *	@dev: network device
4187  *
4188  * Release reference to device to allow it to be freed.
4189  * Try using netdev_put() instead.
4190  */
4191 static inline void dev_put(struct net_device *dev)
4192 {
4193 	netdev_put(dev, NULL);
4194 }
4195 
4196 static inline void netdev_ref_replace(struct net_device *odev,
4197 				      struct net_device *ndev,
4198 				      netdevice_tracker *tracker,
4199 				      gfp_t gfp)
4200 {
4201 	if (odev)
4202 		netdev_tracker_free(odev, tracker);
4203 
4204 	__dev_hold(ndev);
4205 	__dev_put(odev);
4206 
4207 	if (ndev)
4208 		__netdev_tracker_alloc(ndev, tracker, gfp);
4209 }
4210 
4211 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4212  * and _off may be called from IRQ context, but it is caller
4213  * who is responsible for serialization of these calls.
4214  *
4215  * The name carrier is inappropriate, these functions should really be
4216  * called netif_lowerlayer_*() because they represent the state of any
4217  * kind of lower layer not just hardware media.
4218  */
4219 void linkwatch_fire_event(struct net_device *dev);
4220 
4221 /**
4222  *	netif_carrier_ok - test if carrier present
4223  *	@dev: network device
4224  *
4225  * Check if carrier is present on device
4226  */
4227 static inline bool netif_carrier_ok(const struct net_device *dev)
4228 {
4229 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4230 }
4231 
4232 unsigned long dev_trans_start(struct net_device *dev);
4233 
4234 void __netdev_watchdog_up(struct net_device *dev);
4235 
4236 void netif_carrier_on(struct net_device *dev);
4237 void netif_carrier_off(struct net_device *dev);
4238 void netif_carrier_event(struct net_device *dev);
4239 
4240 /**
4241  *	netif_dormant_on - mark device as dormant.
4242  *	@dev: network device
4243  *
4244  * Mark device as dormant (as per RFC2863).
4245  *
4246  * The dormant state indicates that the relevant interface is not
4247  * actually in a condition to pass packets (i.e., it is not 'up') but is
4248  * in a "pending" state, waiting for some external event.  For "on-
4249  * demand" interfaces, this new state identifies the situation where the
4250  * interface is waiting for events to place it in the up state.
4251  */
4252 static inline void netif_dormant_on(struct net_device *dev)
4253 {
4254 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4255 		linkwatch_fire_event(dev);
4256 }
4257 
4258 /**
4259  *	netif_dormant_off - set device as not dormant.
4260  *	@dev: network device
4261  *
4262  * Device is not in dormant state.
4263  */
4264 static inline void netif_dormant_off(struct net_device *dev)
4265 {
4266 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4267 		linkwatch_fire_event(dev);
4268 }
4269 
4270 /**
4271  *	netif_dormant - test if device is dormant
4272  *	@dev: network device
4273  *
4274  * Check if device is dormant.
4275  */
4276 static inline bool netif_dormant(const struct net_device *dev)
4277 {
4278 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4279 }
4280 
4281 
4282 /**
4283  *	netif_testing_on - mark device as under test.
4284  *	@dev: network device
4285  *
4286  * Mark device as under test (as per RFC2863).
4287  *
4288  * The testing state indicates that some test(s) must be performed on
4289  * the interface. After completion, of the test, the interface state
4290  * will change to up, dormant, or down, as appropriate.
4291  */
4292 static inline void netif_testing_on(struct net_device *dev)
4293 {
4294 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4295 		linkwatch_fire_event(dev);
4296 }
4297 
4298 /**
4299  *	netif_testing_off - set device as not under test.
4300  *	@dev: network device
4301  *
4302  * Device is not in testing state.
4303  */
4304 static inline void netif_testing_off(struct net_device *dev)
4305 {
4306 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4307 		linkwatch_fire_event(dev);
4308 }
4309 
4310 /**
4311  *	netif_testing - test if device is under test
4312  *	@dev: network device
4313  *
4314  * Check if device is under test
4315  */
4316 static inline bool netif_testing(const struct net_device *dev)
4317 {
4318 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4319 }
4320 
4321 
4322 /**
4323  *	netif_oper_up - test if device is operational
4324  *	@dev: network device
4325  *
4326  * Check if carrier is operational
4327  */
4328 static inline bool netif_oper_up(const struct net_device *dev)
4329 {
4330 	return (dev->operstate == IF_OPER_UP ||
4331 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4332 }
4333 
4334 /**
4335  *	netif_device_present - is device available or removed
4336  *	@dev: network device
4337  *
4338  * Check if device has not been removed from system.
4339  */
4340 static inline bool netif_device_present(const struct net_device *dev)
4341 {
4342 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4343 }
4344 
4345 void netif_device_detach(struct net_device *dev);
4346 
4347 void netif_device_attach(struct net_device *dev);
4348 
4349 /*
4350  * Network interface message level settings
4351  */
4352 
4353 enum {
4354 	NETIF_MSG_DRV_BIT,
4355 	NETIF_MSG_PROBE_BIT,
4356 	NETIF_MSG_LINK_BIT,
4357 	NETIF_MSG_TIMER_BIT,
4358 	NETIF_MSG_IFDOWN_BIT,
4359 	NETIF_MSG_IFUP_BIT,
4360 	NETIF_MSG_RX_ERR_BIT,
4361 	NETIF_MSG_TX_ERR_BIT,
4362 	NETIF_MSG_TX_QUEUED_BIT,
4363 	NETIF_MSG_INTR_BIT,
4364 	NETIF_MSG_TX_DONE_BIT,
4365 	NETIF_MSG_RX_STATUS_BIT,
4366 	NETIF_MSG_PKTDATA_BIT,
4367 	NETIF_MSG_HW_BIT,
4368 	NETIF_MSG_WOL_BIT,
4369 
4370 	/* When you add a new bit above, update netif_msg_class_names array
4371 	 * in net/ethtool/common.c
4372 	 */
4373 	NETIF_MSG_CLASS_COUNT,
4374 };
4375 /* Both ethtool_ops interface and internal driver implementation use u32 */
4376 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4377 
4378 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4379 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4380 
4381 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4382 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4383 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4384 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4385 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4386 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4387 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4388 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4389 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4390 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4391 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4392 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4393 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4394 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4395 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4396 
4397 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4398 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4399 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4400 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4401 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4402 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4403 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4404 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4405 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4406 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4407 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4408 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4409 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4410 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4411 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4412 
4413 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4414 {
4415 	/* use default */
4416 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4417 		return default_msg_enable_bits;
4418 	if (debug_value == 0)	/* no output */
4419 		return 0;
4420 	/* set low N bits */
4421 	return (1U << debug_value) - 1;
4422 }
4423 
4424 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4425 {
4426 	spin_lock(&txq->_xmit_lock);
4427 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4428 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4429 }
4430 
4431 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4432 {
4433 	__acquire(&txq->_xmit_lock);
4434 	return true;
4435 }
4436 
4437 static inline void __netif_tx_release(struct netdev_queue *txq)
4438 {
4439 	__release(&txq->_xmit_lock);
4440 }
4441 
4442 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4443 {
4444 	spin_lock_bh(&txq->_xmit_lock);
4445 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4446 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4447 }
4448 
4449 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4450 {
4451 	bool ok = spin_trylock(&txq->_xmit_lock);
4452 
4453 	if (likely(ok)) {
4454 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4455 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4456 	}
4457 	return ok;
4458 }
4459 
4460 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4461 {
4462 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4463 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4464 	spin_unlock(&txq->_xmit_lock);
4465 }
4466 
4467 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4468 {
4469 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4470 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4471 	spin_unlock_bh(&txq->_xmit_lock);
4472 }
4473 
4474 /*
4475  * txq->trans_start can be read locklessly from dev_watchdog()
4476  */
4477 static inline void txq_trans_update(struct netdev_queue *txq)
4478 {
4479 	if (txq->xmit_lock_owner != -1)
4480 		WRITE_ONCE(txq->trans_start, jiffies);
4481 }
4482 
4483 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4484 {
4485 	unsigned long now = jiffies;
4486 
4487 	if (READ_ONCE(txq->trans_start) != now)
4488 		WRITE_ONCE(txq->trans_start, now);
4489 }
4490 
4491 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4492 static inline void netif_trans_update(struct net_device *dev)
4493 {
4494 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4495 
4496 	txq_trans_cond_update(txq);
4497 }
4498 
4499 /**
4500  *	netif_tx_lock - grab network device transmit lock
4501  *	@dev: network device
4502  *
4503  * Get network device transmit lock
4504  */
4505 void netif_tx_lock(struct net_device *dev);
4506 
4507 static inline void netif_tx_lock_bh(struct net_device *dev)
4508 {
4509 	local_bh_disable();
4510 	netif_tx_lock(dev);
4511 }
4512 
4513 void netif_tx_unlock(struct net_device *dev);
4514 
4515 static inline void netif_tx_unlock_bh(struct net_device *dev)
4516 {
4517 	netif_tx_unlock(dev);
4518 	local_bh_enable();
4519 }
4520 
4521 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4522 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4523 		__netif_tx_lock(txq, cpu);		\
4524 	} else {					\
4525 		__netif_tx_acquire(txq);		\
4526 	}						\
4527 }
4528 
4529 #define HARD_TX_TRYLOCK(dev, txq)			\
4530 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4531 		__netif_tx_trylock(txq) :		\
4532 		__netif_tx_acquire(txq))
4533 
4534 #define HARD_TX_UNLOCK(dev, txq) {			\
4535 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4536 		__netif_tx_unlock(txq);			\
4537 	} else {					\
4538 		__netif_tx_release(txq);		\
4539 	}						\
4540 }
4541 
4542 static inline void netif_tx_disable(struct net_device *dev)
4543 {
4544 	unsigned int i;
4545 	int cpu;
4546 
4547 	local_bh_disable();
4548 	cpu = smp_processor_id();
4549 	spin_lock(&dev->tx_global_lock);
4550 	for (i = 0; i < dev->num_tx_queues; i++) {
4551 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4552 
4553 		__netif_tx_lock(txq, cpu);
4554 		netif_tx_stop_queue(txq);
4555 		__netif_tx_unlock(txq);
4556 	}
4557 	spin_unlock(&dev->tx_global_lock);
4558 	local_bh_enable();
4559 }
4560 
4561 static inline void netif_addr_lock(struct net_device *dev)
4562 {
4563 	unsigned char nest_level = 0;
4564 
4565 #ifdef CONFIG_LOCKDEP
4566 	nest_level = dev->nested_level;
4567 #endif
4568 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4569 }
4570 
4571 static inline void netif_addr_lock_bh(struct net_device *dev)
4572 {
4573 	unsigned char nest_level = 0;
4574 
4575 #ifdef CONFIG_LOCKDEP
4576 	nest_level = dev->nested_level;
4577 #endif
4578 	local_bh_disable();
4579 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4580 }
4581 
4582 static inline void netif_addr_unlock(struct net_device *dev)
4583 {
4584 	spin_unlock(&dev->addr_list_lock);
4585 }
4586 
4587 static inline void netif_addr_unlock_bh(struct net_device *dev)
4588 {
4589 	spin_unlock_bh(&dev->addr_list_lock);
4590 }
4591 
4592 /*
4593  * dev_addrs walker. Should be used only for read access. Call with
4594  * rcu_read_lock held.
4595  */
4596 #define for_each_dev_addr(dev, ha) \
4597 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4598 
4599 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4600 
4601 void ether_setup(struct net_device *dev);
4602 
4603 /* Support for loadable net-drivers */
4604 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4605 				    unsigned char name_assign_type,
4606 				    void (*setup)(struct net_device *),
4607 				    unsigned int txqs, unsigned int rxqs);
4608 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4609 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4610 
4611 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4612 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4613 			 count)
4614 
4615 int register_netdev(struct net_device *dev);
4616 void unregister_netdev(struct net_device *dev);
4617 
4618 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4619 
4620 /* General hardware address lists handling functions */
4621 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4622 		   struct netdev_hw_addr_list *from_list, int addr_len);
4623 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4624 		      struct netdev_hw_addr_list *from_list, int addr_len);
4625 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4626 		       struct net_device *dev,
4627 		       int (*sync)(struct net_device *, const unsigned char *),
4628 		       int (*unsync)(struct net_device *,
4629 				     const unsigned char *));
4630 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4631 			   struct net_device *dev,
4632 			   int (*sync)(struct net_device *,
4633 				       const unsigned char *, int),
4634 			   int (*unsync)(struct net_device *,
4635 					 const unsigned char *, int));
4636 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4637 			      struct net_device *dev,
4638 			      int (*unsync)(struct net_device *,
4639 					    const unsigned char *, int));
4640 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4641 			  struct net_device *dev,
4642 			  int (*unsync)(struct net_device *,
4643 					const unsigned char *));
4644 void __hw_addr_init(struct netdev_hw_addr_list *list);
4645 
4646 /* Functions used for device addresses handling */
4647 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4648 		  const void *addr, size_t len);
4649 
4650 static inline void
4651 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4652 {
4653 	dev_addr_mod(dev, 0, addr, len);
4654 }
4655 
4656 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4657 {
4658 	__dev_addr_set(dev, addr, dev->addr_len);
4659 }
4660 
4661 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4662 		 unsigned char addr_type);
4663 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4664 		 unsigned char addr_type);
4665 
4666 /* Functions used for unicast addresses handling */
4667 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4668 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4669 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4670 int dev_uc_sync(struct net_device *to, struct net_device *from);
4671 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4672 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4673 void dev_uc_flush(struct net_device *dev);
4674 void dev_uc_init(struct net_device *dev);
4675 
4676 /**
4677  *  __dev_uc_sync - Synchonize device's unicast list
4678  *  @dev:  device to sync
4679  *  @sync: function to call if address should be added
4680  *  @unsync: function to call if address should be removed
4681  *
4682  *  Add newly added addresses to the interface, and release
4683  *  addresses that have been deleted.
4684  */
4685 static inline int __dev_uc_sync(struct net_device *dev,
4686 				int (*sync)(struct net_device *,
4687 					    const unsigned char *),
4688 				int (*unsync)(struct net_device *,
4689 					      const unsigned char *))
4690 {
4691 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4692 }
4693 
4694 /**
4695  *  __dev_uc_unsync - Remove synchronized addresses from device
4696  *  @dev:  device to sync
4697  *  @unsync: function to call if address should be removed
4698  *
4699  *  Remove all addresses that were added to the device by dev_uc_sync().
4700  */
4701 static inline void __dev_uc_unsync(struct net_device *dev,
4702 				   int (*unsync)(struct net_device *,
4703 						 const unsigned char *))
4704 {
4705 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4706 }
4707 
4708 /* Functions used for multicast addresses handling */
4709 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4710 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4711 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4712 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4713 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4714 int dev_mc_sync(struct net_device *to, struct net_device *from);
4715 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4716 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4717 void dev_mc_flush(struct net_device *dev);
4718 void dev_mc_init(struct net_device *dev);
4719 
4720 /**
4721  *  __dev_mc_sync - Synchonize device's multicast list
4722  *  @dev:  device to sync
4723  *  @sync: function to call if address should be added
4724  *  @unsync: function to call if address should be removed
4725  *
4726  *  Add newly added addresses to the interface, and release
4727  *  addresses that have been deleted.
4728  */
4729 static inline int __dev_mc_sync(struct net_device *dev,
4730 				int (*sync)(struct net_device *,
4731 					    const unsigned char *),
4732 				int (*unsync)(struct net_device *,
4733 					      const unsigned char *))
4734 {
4735 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4736 }
4737 
4738 /**
4739  *  __dev_mc_unsync - Remove synchronized addresses from device
4740  *  @dev:  device to sync
4741  *  @unsync: function to call if address should be removed
4742  *
4743  *  Remove all addresses that were added to the device by dev_mc_sync().
4744  */
4745 static inline void __dev_mc_unsync(struct net_device *dev,
4746 				   int (*unsync)(struct net_device *,
4747 						 const unsigned char *))
4748 {
4749 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4750 }
4751 
4752 /* Functions used for secondary unicast and multicast support */
4753 void dev_set_rx_mode(struct net_device *dev);
4754 int dev_set_promiscuity(struct net_device *dev, int inc);
4755 int dev_set_allmulti(struct net_device *dev, int inc);
4756 void netdev_state_change(struct net_device *dev);
4757 void __netdev_notify_peers(struct net_device *dev);
4758 void netdev_notify_peers(struct net_device *dev);
4759 void netdev_features_change(struct net_device *dev);
4760 /* Load a device via the kmod */
4761 void dev_load(struct net *net, const char *name);
4762 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4763 					struct rtnl_link_stats64 *storage);
4764 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4765 			     const struct net_device_stats *netdev_stats);
4766 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4767 			   const struct pcpu_sw_netstats __percpu *netstats);
4768 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4769 
4770 extern int		netdev_max_backlog;
4771 extern int		dev_rx_weight;
4772 extern int		dev_tx_weight;
4773 extern int		gro_normal_batch;
4774 
4775 enum {
4776 	NESTED_SYNC_IMM_BIT,
4777 	NESTED_SYNC_TODO_BIT,
4778 };
4779 
4780 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4781 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4782 
4783 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4784 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4785 
4786 struct netdev_nested_priv {
4787 	unsigned char flags;
4788 	void *data;
4789 };
4790 
4791 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4792 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4793 						     struct list_head **iter);
4794 
4795 /* iterate through upper list, must be called under RCU read lock */
4796 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4797 	for (iter = &(dev)->adj_list.upper, \
4798 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4799 	     updev; \
4800 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4801 
4802 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4803 				  int (*fn)(struct net_device *upper_dev,
4804 					    struct netdev_nested_priv *priv),
4805 				  struct netdev_nested_priv *priv);
4806 
4807 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4808 				  struct net_device *upper_dev);
4809 
4810 bool netdev_has_any_upper_dev(struct net_device *dev);
4811 
4812 void *netdev_lower_get_next_private(struct net_device *dev,
4813 				    struct list_head **iter);
4814 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4815 					struct list_head **iter);
4816 
4817 #define netdev_for_each_lower_private(dev, priv, iter) \
4818 	for (iter = (dev)->adj_list.lower.next, \
4819 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4820 	     priv; \
4821 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4822 
4823 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4824 	for (iter = &(dev)->adj_list.lower, \
4825 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4826 	     priv; \
4827 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4828 
4829 void *netdev_lower_get_next(struct net_device *dev,
4830 				struct list_head **iter);
4831 
4832 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4833 	for (iter = (dev)->adj_list.lower.next, \
4834 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4835 	     ldev; \
4836 	     ldev = netdev_lower_get_next(dev, &(iter)))
4837 
4838 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4839 					     struct list_head **iter);
4840 int netdev_walk_all_lower_dev(struct net_device *dev,
4841 			      int (*fn)(struct net_device *lower_dev,
4842 					struct netdev_nested_priv *priv),
4843 			      struct netdev_nested_priv *priv);
4844 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4845 				  int (*fn)(struct net_device *lower_dev,
4846 					    struct netdev_nested_priv *priv),
4847 				  struct netdev_nested_priv *priv);
4848 
4849 void *netdev_adjacent_get_private(struct list_head *adj_list);
4850 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4851 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4852 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4853 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4854 			  struct netlink_ext_ack *extack);
4855 int netdev_master_upper_dev_link(struct net_device *dev,
4856 				 struct net_device *upper_dev,
4857 				 void *upper_priv, void *upper_info,
4858 				 struct netlink_ext_ack *extack);
4859 void netdev_upper_dev_unlink(struct net_device *dev,
4860 			     struct net_device *upper_dev);
4861 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4862 				   struct net_device *new_dev,
4863 				   struct net_device *dev,
4864 				   struct netlink_ext_ack *extack);
4865 void netdev_adjacent_change_commit(struct net_device *old_dev,
4866 				   struct net_device *new_dev,
4867 				   struct net_device *dev);
4868 void netdev_adjacent_change_abort(struct net_device *old_dev,
4869 				  struct net_device *new_dev,
4870 				  struct net_device *dev);
4871 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4872 void *netdev_lower_dev_get_private(struct net_device *dev,
4873 				   struct net_device *lower_dev);
4874 void netdev_lower_state_changed(struct net_device *lower_dev,
4875 				void *lower_state_info);
4876 
4877 /* RSS keys are 40 or 52 bytes long */
4878 #define NETDEV_RSS_KEY_LEN 52
4879 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4880 void netdev_rss_key_fill(void *buffer, size_t len);
4881 
4882 int skb_checksum_help(struct sk_buff *skb);
4883 int skb_crc32c_csum_help(struct sk_buff *skb);
4884 int skb_csum_hwoffload_help(struct sk_buff *skb,
4885 			    const netdev_features_t features);
4886 
4887 struct netdev_bonding_info {
4888 	ifslave	slave;
4889 	ifbond	master;
4890 };
4891 
4892 struct netdev_notifier_bonding_info {
4893 	struct netdev_notifier_info info; /* must be first */
4894 	struct netdev_bonding_info  bonding_info;
4895 };
4896 
4897 void netdev_bonding_info_change(struct net_device *dev,
4898 				struct netdev_bonding_info *bonding_info);
4899 
4900 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4901 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4902 #else
4903 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4904 				  const void *data)
4905 {
4906 }
4907 #endif
4908 
4909 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4910 
4911 static inline bool can_checksum_protocol(netdev_features_t features,
4912 					 __be16 protocol)
4913 {
4914 	if (protocol == htons(ETH_P_FCOE))
4915 		return !!(features & NETIF_F_FCOE_CRC);
4916 
4917 	/* Assume this is an IP checksum (not SCTP CRC) */
4918 
4919 	if (features & NETIF_F_HW_CSUM) {
4920 		/* Can checksum everything */
4921 		return true;
4922 	}
4923 
4924 	switch (protocol) {
4925 	case htons(ETH_P_IP):
4926 		return !!(features & NETIF_F_IP_CSUM);
4927 	case htons(ETH_P_IPV6):
4928 		return !!(features & NETIF_F_IPV6_CSUM);
4929 	default:
4930 		return false;
4931 	}
4932 }
4933 
4934 #ifdef CONFIG_BUG
4935 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4936 #else
4937 static inline void netdev_rx_csum_fault(struct net_device *dev,
4938 					struct sk_buff *skb)
4939 {
4940 }
4941 #endif
4942 /* rx skb timestamps */
4943 void net_enable_timestamp(void);
4944 void net_disable_timestamp(void);
4945 
4946 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4947 					const struct skb_shared_hwtstamps *hwtstamps,
4948 					bool cycles)
4949 {
4950 	const struct net_device_ops *ops = dev->netdev_ops;
4951 
4952 	if (ops->ndo_get_tstamp)
4953 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4954 
4955 	return hwtstamps->hwtstamp;
4956 }
4957 
4958 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4959 					      struct sk_buff *skb, struct net_device *dev,
4960 					      bool more)
4961 {
4962 	__this_cpu_write(softnet_data.xmit.more, more);
4963 	return ops->ndo_start_xmit(skb, dev);
4964 }
4965 
4966 static inline bool netdev_xmit_more(void)
4967 {
4968 	return __this_cpu_read(softnet_data.xmit.more);
4969 }
4970 
4971 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4972 					    struct netdev_queue *txq, bool more)
4973 {
4974 	const struct net_device_ops *ops = dev->netdev_ops;
4975 	netdev_tx_t rc;
4976 
4977 	rc = __netdev_start_xmit(ops, skb, dev, more);
4978 	if (rc == NETDEV_TX_OK)
4979 		txq_trans_update(txq);
4980 
4981 	return rc;
4982 }
4983 
4984 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4985 				const void *ns);
4986 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4987 				 const void *ns);
4988 
4989 extern const struct kobj_ns_type_operations net_ns_type_operations;
4990 
4991 const char *netdev_drivername(const struct net_device *dev);
4992 
4993 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4994 							  netdev_features_t f2)
4995 {
4996 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4997 		if (f1 & NETIF_F_HW_CSUM)
4998 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4999 		else
5000 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5001 	}
5002 
5003 	return f1 & f2;
5004 }
5005 
5006 static inline netdev_features_t netdev_get_wanted_features(
5007 	struct net_device *dev)
5008 {
5009 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5010 }
5011 netdev_features_t netdev_increment_features(netdev_features_t all,
5012 	netdev_features_t one, netdev_features_t mask);
5013 
5014 /* Allow TSO being used on stacked device :
5015  * Performing the GSO segmentation before last device
5016  * is a performance improvement.
5017  */
5018 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5019 							netdev_features_t mask)
5020 {
5021 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5022 }
5023 
5024 int __netdev_update_features(struct net_device *dev);
5025 void netdev_update_features(struct net_device *dev);
5026 void netdev_change_features(struct net_device *dev);
5027 
5028 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5029 					struct net_device *dev);
5030 
5031 netdev_features_t passthru_features_check(struct sk_buff *skb,
5032 					  struct net_device *dev,
5033 					  netdev_features_t features);
5034 netdev_features_t netif_skb_features(struct sk_buff *skb);
5035 void skb_warn_bad_offload(const struct sk_buff *skb);
5036 
5037 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5038 {
5039 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5040 
5041 	/* check flags correspondence */
5042 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5043 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5044 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5045 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5046 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5047 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5048 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5049 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5050 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5051 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5052 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5053 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5054 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5055 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5056 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5057 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5058 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5059 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5060 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5061 
5062 	return (features & feature) == feature;
5063 }
5064 
5065 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5066 {
5067 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5068 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5069 }
5070 
5071 static inline bool netif_needs_gso(struct sk_buff *skb,
5072 				   netdev_features_t features)
5073 {
5074 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5075 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5076 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5077 }
5078 
5079 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5080 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5081 void netif_inherit_tso_max(struct net_device *to,
5082 			   const struct net_device *from);
5083 
5084 static inline bool netif_is_macsec(const struct net_device *dev)
5085 {
5086 	return dev->priv_flags & IFF_MACSEC;
5087 }
5088 
5089 static inline bool netif_is_macvlan(const struct net_device *dev)
5090 {
5091 	return dev->priv_flags & IFF_MACVLAN;
5092 }
5093 
5094 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5095 {
5096 	return dev->priv_flags & IFF_MACVLAN_PORT;
5097 }
5098 
5099 static inline bool netif_is_bond_master(const struct net_device *dev)
5100 {
5101 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5102 }
5103 
5104 static inline bool netif_is_bond_slave(const struct net_device *dev)
5105 {
5106 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5107 }
5108 
5109 static inline bool netif_supports_nofcs(struct net_device *dev)
5110 {
5111 	return dev->priv_flags & IFF_SUPP_NOFCS;
5112 }
5113 
5114 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5115 {
5116 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5117 }
5118 
5119 static inline bool netif_is_l3_master(const struct net_device *dev)
5120 {
5121 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5122 }
5123 
5124 static inline bool netif_is_l3_slave(const struct net_device *dev)
5125 {
5126 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5127 }
5128 
5129 static inline int dev_sdif(const struct net_device *dev)
5130 {
5131 #ifdef CONFIG_NET_L3_MASTER_DEV
5132 	if (netif_is_l3_slave(dev))
5133 		return dev->ifindex;
5134 #endif
5135 	return 0;
5136 }
5137 
5138 static inline bool netif_is_bridge_master(const struct net_device *dev)
5139 {
5140 	return dev->priv_flags & IFF_EBRIDGE;
5141 }
5142 
5143 static inline bool netif_is_bridge_port(const struct net_device *dev)
5144 {
5145 	return dev->priv_flags & IFF_BRIDGE_PORT;
5146 }
5147 
5148 static inline bool netif_is_ovs_master(const struct net_device *dev)
5149 {
5150 	return dev->priv_flags & IFF_OPENVSWITCH;
5151 }
5152 
5153 static inline bool netif_is_ovs_port(const struct net_device *dev)
5154 {
5155 	return dev->priv_flags & IFF_OVS_DATAPATH;
5156 }
5157 
5158 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5159 {
5160 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5161 }
5162 
5163 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5164 {
5165 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5166 }
5167 
5168 static inline bool netif_is_team_master(const struct net_device *dev)
5169 {
5170 	return dev->priv_flags & IFF_TEAM;
5171 }
5172 
5173 static inline bool netif_is_team_port(const struct net_device *dev)
5174 {
5175 	return dev->priv_flags & IFF_TEAM_PORT;
5176 }
5177 
5178 static inline bool netif_is_lag_master(const struct net_device *dev)
5179 {
5180 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5181 }
5182 
5183 static inline bool netif_is_lag_port(const struct net_device *dev)
5184 {
5185 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5186 }
5187 
5188 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5189 {
5190 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5191 }
5192 
5193 static inline bool netif_is_failover(const struct net_device *dev)
5194 {
5195 	return dev->priv_flags & IFF_FAILOVER;
5196 }
5197 
5198 static inline bool netif_is_failover_slave(const struct net_device *dev)
5199 {
5200 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5201 }
5202 
5203 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5204 static inline void netif_keep_dst(struct net_device *dev)
5205 {
5206 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5207 }
5208 
5209 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5210 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5211 {
5212 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5213 	return netif_is_macsec(dev);
5214 }
5215 
5216 extern struct pernet_operations __net_initdata loopback_net_ops;
5217 
5218 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5219 
5220 /* netdev_printk helpers, similar to dev_printk */
5221 
5222 static inline const char *netdev_name(const struct net_device *dev)
5223 {
5224 	if (!dev->name[0] || strchr(dev->name, '%'))
5225 		return "(unnamed net_device)";
5226 	return dev->name;
5227 }
5228 
5229 static inline const char *netdev_reg_state(const struct net_device *dev)
5230 {
5231 	switch (dev->reg_state) {
5232 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5233 	case NETREG_REGISTERED: return "";
5234 	case NETREG_UNREGISTERING: return " (unregistering)";
5235 	case NETREG_UNREGISTERED: return " (unregistered)";
5236 	case NETREG_RELEASED: return " (released)";
5237 	case NETREG_DUMMY: return " (dummy)";
5238 	}
5239 
5240 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5241 	return " (unknown)";
5242 }
5243 
5244 #define MODULE_ALIAS_NETDEV(device) \
5245 	MODULE_ALIAS("netdev-" device)
5246 
5247 /*
5248  * netdev_WARN() acts like dev_printk(), but with the key difference
5249  * of using a WARN/WARN_ON to get the message out, including the
5250  * file/line information and a backtrace.
5251  */
5252 #define netdev_WARN(dev, format, args...)			\
5253 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5254 	     netdev_reg_state(dev), ##args)
5255 
5256 #define netdev_WARN_ONCE(dev, format, args...)				\
5257 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5258 		  netdev_reg_state(dev), ##args)
5259 
5260 /*
5261  *	The list of packet types we will receive (as opposed to discard)
5262  *	and the routines to invoke.
5263  *
5264  *	Why 16. Because with 16 the only overlap we get on a hash of the
5265  *	low nibble of the protocol value is RARP/SNAP/X.25.
5266  *
5267  *		0800	IP
5268  *		0001	802.3
5269  *		0002	AX.25
5270  *		0004	802.2
5271  *		8035	RARP
5272  *		0005	SNAP
5273  *		0805	X.25
5274  *		0806	ARP
5275  *		8137	IPX
5276  *		0009	Localtalk
5277  *		86DD	IPv6
5278  */
5279 #define PTYPE_HASH_SIZE	(16)
5280 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5281 
5282 extern struct list_head ptype_all __read_mostly;
5283 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5284 
5285 extern struct net_device *blackhole_netdev;
5286 
5287 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5288 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5289 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5290 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5291 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5292 
5293 #endif	/* _LINUX_NETDEVICE_H */
5294