xref: /linux-6.15/include/linux/netdevice.h (revision 7fe2f639)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41 
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 
55 struct vlan_group;
56 struct netpoll_info;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 					/* source back-compat hooks */
61 #define SET_ETHTOOL_OPS(netdev,ops) \
62 	( (netdev)->ethtool_ops = (ops) )
63 
64 #define HAVE_ALLOC_NETDEV		/* feature macro: alloc_xxxdev
65 					   functions are available. */
66 #define HAVE_FREE_NETDEV		/* free_netdev() */
67 #define HAVE_NETDEV_PRIV		/* netdev_priv() */
68 
69 /* hardware address assignment types */
70 #define NET_ADDR_PERM		0	/* address is permanent (default) */
71 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
72 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
73 
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
76 #define NET_RX_DROP		1	/* packet dropped */
77 
78 /*
79  * Transmit return codes: transmit return codes originate from three different
80  * namespaces:
81  *
82  * - qdisc return codes
83  * - driver transmit return codes
84  * - errno values
85  *
86  * Drivers are allowed to return any one of those in their hard_start_xmit()
87  * function. Real network devices commonly used with qdiscs should only return
88  * the driver transmit return codes though - when qdiscs are used, the actual
89  * transmission happens asynchronously, so the value is not propagated to
90  * higher layers. Virtual network devices transmit synchronously, in this case
91  * the driver transmit return codes are consumed by dev_queue_xmit(), all
92  * others are propagated to higher layers.
93  */
94 
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS	0x00
97 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
98 #define NET_XMIT_CN		0x02	/* congestion notification	*/
99 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
116 };
117 typedef enum netdev_tx netdev_tx_t;
118 
119 /*
120  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122  */
123 static inline bool dev_xmit_complete(int rc)
124 {
125 	/*
126 	 * Positive cases with an skb consumed by a driver:
127 	 * - successful transmission (rc == NETDEV_TX_OK)
128 	 * - error while transmitting (rc < 0)
129 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 	 */
131 	if (likely(rc < NET_XMIT_MASK))
132 		return true;
133 
134 	return false;
135 }
136 
137 #endif
138 
139 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
140 
141 /* Initial net device group. All devices belong to group 0 by default. */
142 #define INIT_NETDEV_GROUP	0
143 
144 #ifdef  __KERNEL__
145 /*
146  *	Compute the worst case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
151 # if defined(CONFIG_MAC80211_MESH)
152 #  define LL_MAX_HEADER 128
153 # else
154 #  define LL_MAX_HEADER 96
155 # endif
156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
157 # define LL_MAX_HEADER 48
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
163     !defined(CONFIG_NET_IPGRE) &&  !defined(CONFIG_NET_IPGRE_MODULE) && \
164     !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
165     !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
166 #define MAX_HEADER LL_MAX_HEADER
167 #else
168 #define MAX_HEADER (LL_MAX_HEADER + 48)
169 #endif
170 
171 /*
172  *	Old network device statistics. Fields are native words
173  *	(unsigned long) so they can be read and written atomically.
174  */
175 
176 struct net_device_stats {
177 	unsigned long	rx_packets;
178 	unsigned long	tx_packets;
179 	unsigned long	rx_bytes;
180 	unsigned long	tx_bytes;
181 	unsigned long	rx_errors;
182 	unsigned long	tx_errors;
183 	unsigned long	rx_dropped;
184 	unsigned long	tx_dropped;
185 	unsigned long	multicast;
186 	unsigned long	collisions;
187 	unsigned long	rx_length_errors;
188 	unsigned long	rx_over_errors;
189 	unsigned long	rx_crc_errors;
190 	unsigned long	rx_frame_errors;
191 	unsigned long	rx_fifo_errors;
192 	unsigned long	rx_missed_errors;
193 	unsigned long	tx_aborted_errors;
194 	unsigned long	tx_carrier_errors;
195 	unsigned long	tx_fifo_errors;
196 	unsigned long	tx_heartbeat_errors;
197 	unsigned long	tx_window_errors;
198 	unsigned long	rx_compressed;
199 	unsigned long	tx_compressed;
200 };
201 
202 #endif  /*  __KERNEL__  */
203 
204 
205 /* Media selection options. */
206 enum {
207         IF_PORT_UNKNOWN = 0,
208         IF_PORT_10BASE2,
209         IF_PORT_10BASET,
210         IF_PORT_AUI,
211         IF_PORT_100BASET,
212         IF_PORT_100BASETX,
213         IF_PORT_100BASEFX
214 };
215 
216 #ifdef __KERNEL__
217 
218 #include <linux/cache.h>
219 #include <linux/skbuff.h>
220 
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224 
225 struct netdev_hw_addr {
226 	struct list_head	list;
227 	unsigned char		addr[MAX_ADDR_LEN];
228 	unsigned char		type;
229 #define NETDEV_HW_ADDR_T_LAN		1
230 #define NETDEV_HW_ADDR_T_SAN		2
231 #define NETDEV_HW_ADDR_T_SLAVE		3
232 #define NETDEV_HW_ADDR_T_UNICAST	4
233 #define NETDEV_HW_ADDR_T_MULTICAST	5
234 	bool			synced;
235 	bool			global_use;
236 	int			refcount;
237 	struct rcu_head		rcu_head;
238 };
239 
240 struct netdev_hw_addr_list {
241 	struct list_head	list;
242 	int			count;
243 };
244 
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 	list_for_each_entry(ha, &(l)->list, list)
249 
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254 
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259 
260 struct hh_cache {
261 	struct hh_cache *hh_next;	/* Next entry			     */
262 	atomic_t	hh_refcnt;	/* number of users                   */
263 /*
264  * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
265  * cache line on SMP.
266  * They are mostly read, but hh_refcnt may be changed quite frequently,
267  * incurring cache line ping pongs.
268  */
269 	__be16		hh_type ____cacheline_aligned_in_smp;
270 					/* protocol identifier, f.e ETH_P_IP
271                                          *  NOTE:  For VLANs, this will be the
272                                          *  encapuslated type. --BLG
273                                          */
274 	u16		hh_len;		/* length of header */
275 	int		(*hh_output)(struct sk_buff *skb);
276 	seqlock_t	hh_lock;
277 
278 	/* cached hardware header; allow for machine alignment needs.        */
279 #define HH_DATA_MOD	16
280 #define HH_DATA_OFF(__len) \
281 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
282 #define HH_DATA_ALIGN(__len) \
283 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
284 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
285 };
286 
287 static inline void hh_cache_put(struct hh_cache *hh)
288 {
289 	if (atomic_dec_and_test(&hh->hh_refcnt))
290 		kfree(hh);
291 }
292 
293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
294  * Alternative is:
295  *   dev->hard_header_len ? (dev->hard_header_len +
296  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
297  *
298  * We could use other alignment values, but we must maintain the
299  * relationship HH alignment <= LL alignment.
300  *
301  * LL_ALLOCATED_SPACE also takes into account the tailroom the device
302  * may need.
303  */
304 #define LL_RESERVED_SPACE(dev) \
305 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
308 #define LL_ALLOCATED_SPACE(dev) \
309 	((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
310 
311 struct header_ops {
312 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
313 			   unsigned short type, const void *daddr,
314 			   const void *saddr, unsigned len);
315 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
316 	int	(*rebuild)(struct sk_buff *skb);
317 #define HAVE_HEADER_CACHE
318 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh);
319 	void	(*cache_update)(struct hh_cache *hh,
320 				const struct net_device *dev,
321 				const unsigned char *haddr);
322 };
323 
324 /* These flag bits are private to the generic network queueing
325  * layer, they may not be explicitly referenced by any other
326  * code.
327  */
328 
329 enum netdev_state_t {
330 	__LINK_STATE_START,
331 	__LINK_STATE_PRESENT,
332 	__LINK_STATE_NOCARRIER,
333 	__LINK_STATE_LINKWATCH_PENDING,
334 	__LINK_STATE_DORMANT,
335 };
336 
337 
338 /*
339  * This structure holds at boot time configured netdevice settings. They
340  * are then used in the device probing.
341  */
342 struct netdev_boot_setup {
343 	char name[IFNAMSIZ];
344 	struct ifmap map;
345 };
346 #define NETDEV_BOOT_SETUP_MAX 8
347 
348 extern int __init netdev_boot_setup(char *str);
349 
350 /*
351  * Structure for NAPI scheduling similar to tasklet but with weighting
352  */
353 struct napi_struct {
354 	/* The poll_list must only be managed by the entity which
355 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
356 	 * whoever atomically sets that bit can add this napi_struct
357 	 * to the per-cpu poll_list, and whoever clears that bit
358 	 * can remove from the list right before clearing the bit.
359 	 */
360 	struct list_head	poll_list;
361 
362 	unsigned long		state;
363 	int			weight;
364 	int			(*poll)(struct napi_struct *, int);
365 #ifdef CONFIG_NETPOLL
366 	spinlock_t		poll_lock;
367 	int			poll_owner;
368 #endif
369 
370 	unsigned int		gro_count;
371 
372 	struct net_device	*dev;
373 	struct list_head	dev_list;
374 	struct sk_buff		*gro_list;
375 	struct sk_buff		*skb;
376 };
377 
378 enum {
379 	NAPI_STATE_SCHED,	/* Poll is scheduled */
380 	NAPI_STATE_DISABLE,	/* Disable pending */
381 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
382 };
383 
384 enum gro_result {
385 	GRO_MERGED,
386 	GRO_MERGED_FREE,
387 	GRO_HELD,
388 	GRO_NORMAL,
389 	GRO_DROP,
390 };
391 typedef enum gro_result gro_result_t;
392 
393 /*
394  * enum rx_handler_result - Possible return values for rx_handlers.
395  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396  * further.
397  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398  * case skb->dev was changed by rx_handler.
399  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
401  *
402  * rx_handlers are functions called from inside __netif_receive_skb(), to do
403  * special processing of the skb, prior to delivery to protocol handlers.
404  *
405  * Currently, a net_device can only have a single rx_handler registered. Trying
406  * to register a second rx_handler will return -EBUSY.
407  *
408  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409  * To unregister a rx_handler on a net_device, use
410  * netdev_rx_handler_unregister().
411  *
412  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413  * do with the skb.
414  *
415  * If the rx_handler consumed to skb in some way, it should return
416  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417  * the skb to be delivered in some other ways.
418  *
419  * If the rx_handler changed skb->dev, to divert the skb to another
420  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421  * new device will be called if it exists.
422  *
423  * If the rx_handler consider the skb should be ignored, it should return
424  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425  * are registred on exact device (ptype->dev == skb->dev).
426  *
427  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
428  * delivered, it should return RX_HANDLER_PASS.
429  *
430  * A device without a registered rx_handler will behave as if rx_handler
431  * returned RX_HANDLER_PASS.
432  */
433 
434 enum rx_handler_result {
435 	RX_HANDLER_CONSUMED,
436 	RX_HANDLER_ANOTHER,
437 	RX_HANDLER_EXACT,
438 	RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442 
443 extern void __napi_schedule(struct napi_struct *n);
444 
445 static inline int napi_disable_pending(struct napi_struct *n)
446 {
447 	return test_bit(NAPI_STATE_DISABLE, &n->state);
448 }
449 
450 /**
451  *	napi_schedule_prep - check if napi can be scheduled
452  *	@n: napi context
453  *
454  * Test if NAPI routine is already running, and if not mark
455  * it as running.  This is used as a condition variable
456  * insure only one NAPI poll instance runs.  We also make
457  * sure there is no pending NAPI disable.
458  */
459 static inline int napi_schedule_prep(struct napi_struct *n)
460 {
461 	return !napi_disable_pending(n) &&
462 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
463 }
464 
465 /**
466  *	napi_schedule - schedule NAPI poll
467  *	@n: napi context
468  *
469  * Schedule NAPI poll routine to be called if it is not already
470  * running.
471  */
472 static inline void napi_schedule(struct napi_struct *n)
473 {
474 	if (napi_schedule_prep(n))
475 		__napi_schedule(n);
476 }
477 
478 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
479 static inline int napi_reschedule(struct napi_struct *napi)
480 {
481 	if (napi_schedule_prep(napi)) {
482 		__napi_schedule(napi);
483 		return 1;
484 	}
485 	return 0;
486 }
487 
488 /**
489  *	napi_complete - NAPI processing complete
490  *	@n: napi context
491  *
492  * Mark NAPI processing as complete.
493  */
494 extern void __napi_complete(struct napi_struct *n);
495 extern void napi_complete(struct napi_struct *n);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: napi context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 static inline void napi_disable(struct napi_struct *n)
505 {
506 	set_bit(NAPI_STATE_DISABLE, &n->state);
507 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
508 		msleep(1);
509 	clear_bit(NAPI_STATE_DISABLE, &n->state);
510 }
511 
512 /**
513  *	napi_enable - enable NAPI scheduling
514  *	@n: napi context
515  *
516  * Resume NAPI from being scheduled on this context.
517  * Must be paired with napi_disable.
518  */
519 static inline void napi_enable(struct napi_struct *n)
520 {
521 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
522 	smp_mb__before_clear_bit();
523 	clear_bit(NAPI_STATE_SCHED, &n->state);
524 }
525 
526 #ifdef CONFIG_SMP
527 /**
528  *	napi_synchronize - wait until NAPI is not running
529  *	@n: napi context
530  *
531  * Wait until NAPI is done being scheduled on this context.
532  * Waits till any outstanding processing completes but
533  * does not disable future activations.
534  */
535 static inline void napi_synchronize(const struct napi_struct *n)
536 {
537 	while (test_bit(NAPI_STATE_SCHED, &n->state))
538 		msleep(1);
539 }
540 #else
541 # define napi_synchronize(n)	barrier()
542 #endif
543 
544 enum netdev_queue_state_t {
545 	__QUEUE_STATE_XOFF,
546 	__QUEUE_STATE_FROZEN,
547 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF)		| \
548 				    (1 << __QUEUE_STATE_FROZEN))
549 };
550 
551 struct netdev_queue {
552 /*
553  * read mostly part
554  */
555 	struct net_device	*dev;
556 	struct Qdisc		*qdisc;
557 	unsigned long		state;
558 	struct Qdisc		*qdisc_sleeping;
559 #ifdef CONFIG_RPS
560 	struct kobject		kobj;
561 #endif
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 	int			numa_node;
564 #endif
565 /*
566  * write mostly part
567  */
568 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
569 	int			xmit_lock_owner;
570 	/*
571 	 * please use this field instead of dev->trans_start
572 	 */
573 	unsigned long		trans_start;
574 } ____cacheline_aligned_in_smp;
575 
576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577 {
578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 	return q->numa_node;
580 #else
581 	return NUMA_NO_NODE;
582 #endif
583 }
584 
585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586 {
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 	q->numa_node = node;
589 #endif
590 }
591 
592 #ifdef CONFIG_RPS
593 /*
594  * This structure holds an RPS map which can be of variable length.  The
595  * map is an array of CPUs.
596  */
597 struct rps_map {
598 	unsigned int len;
599 	struct rcu_head rcu;
600 	u16 cpus[0];
601 };
602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
603 
604 /*
605  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606  * tail pointer for that CPU's input queue at the time of last enqueue, and
607  * a hardware filter index.
608  */
609 struct rps_dev_flow {
610 	u16 cpu;
611 	u16 filter;
612 	unsigned int last_qtail;
613 };
614 #define RPS_NO_FILTER 0xffff
615 
616 /*
617  * The rps_dev_flow_table structure contains a table of flow mappings.
618  */
619 struct rps_dev_flow_table {
620 	unsigned int mask;
621 	struct rcu_head rcu;
622 	struct work_struct free_work;
623 	struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626     (_num * sizeof(struct rps_dev_flow)))
627 
628 /*
629  * The rps_sock_flow_table contains mappings of flows to the last CPU
630  * on which they were processed by the application (set in recvmsg).
631  */
632 struct rps_sock_flow_table {
633 	unsigned int mask;
634 	u16 ents[0];
635 };
636 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637     (_num * sizeof(u16)))
638 
639 #define RPS_NO_CPU 0xffff
640 
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 					u32 hash)
643 {
644 	if (table && hash) {
645 		unsigned int cpu, index = hash & table->mask;
646 
647 		/* We only give a hint, preemption can change cpu under us */
648 		cpu = raw_smp_processor_id();
649 
650 		if (table->ents[index] != cpu)
651 			table->ents[index] = cpu;
652 	}
653 }
654 
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 				       u32 hash)
657 {
658 	if (table && hash)
659 		table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661 
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663 
664 #ifdef CONFIG_RFS_ACCEL
665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 				u32 flow_id, u16 filter_id);
667 #endif
668 
669 /* This structure contains an instance of an RX queue. */
670 struct netdev_rx_queue {
671 	struct rps_map __rcu		*rps_map;
672 	struct rps_dev_flow_table __rcu	*rps_flow_table;
673 	struct kobject			kobj;
674 	struct net_device		*dev;
675 } ____cacheline_aligned_in_smp;
676 #endif /* CONFIG_RPS */
677 
678 #ifdef CONFIG_XPS
679 /*
680  * This structure holds an XPS map which can be of variable length.  The
681  * map is an array of queues.
682  */
683 struct xps_map {
684 	unsigned int len;
685 	unsigned int alloc_len;
686 	struct rcu_head rcu;
687 	u16 queues[0];
688 };
689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
691     / sizeof(u16))
692 
693 /*
694  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
695  */
696 struct xps_dev_maps {
697 	struct rcu_head rcu;
698 	struct xps_map __rcu *cpu_map[0];
699 };
700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
701     (nr_cpu_ids * sizeof(struct xps_map *)))
702 #endif /* CONFIG_XPS */
703 
704 #define TC_MAX_QUEUE	16
705 #define TC_BITMASK	15
706 /* HW offloaded queuing disciplines txq count and offset maps */
707 struct netdev_tc_txq {
708 	u16 count;
709 	u16 offset;
710 };
711 
712 /*
713  * This structure defines the management hooks for network devices.
714  * The following hooks can be defined; unless noted otherwise, they are
715  * optional and can be filled with a null pointer.
716  *
717  * int (*ndo_init)(struct net_device *dev);
718  *     This function is called once when network device is registered.
719  *     The network device can use this to any late stage initializaton
720  *     or semantic validattion. It can fail with an error code which will
721  *     be propogated back to register_netdev
722  *
723  * void (*ndo_uninit)(struct net_device *dev);
724  *     This function is called when device is unregistered or when registration
725  *     fails. It is not called if init fails.
726  *
727  * int (*ndo_open)(struct net_device *dev);
728  *     This function is called when network device transistions to the up
729  *     state.
730  *
731  * int (*ndo_stop)(struct net_device *dev);
732  *     This function is called when network device transistions to the down
733  *     state.
734  *
735  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
736  *                               struct net_device *dev);
737  *	Called when a packet needs to be transmitted.
738  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
739  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
740  *	Required can not be NULL.
741  *
742  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
743  *	Called to decide which queue to when device supports multiple
744  *	transmit queues.
745  *
746  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
747  *	This function is called to allow device receiver to make
748  *	changes to configuration when multicast or promiscious is enabled.
749  *
750  * void (*ndo_set_rx_mode)(struct net_device *dev);
751  *	This function is called device changes address list filtering.
752  *
753  * void (*ndo_set_multicast_list)(struct net_device *dev);
754  *	This function is called when the multicast address list changes.
755  *
756  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
757  *	This function  is called when the Media Access Control address
758  *	needs to be changed. If this interface is not defined, the
759  *	mac address can not be changed.
760  *
761  * int (*ndo_validate_addr)(struct net_device *dev);
762  *	Test if Media Access Control address is valid for the device.
763  *
764  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
765  *	Called when a user request an ioctl which can't be handled by
766  *	the generic interface code. If not defined ioctl's return
767  *	not supported error code.
768  *
769  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
770  *	Used to set network devices bus interface parameters. This interface
771  *	is retained for legacy reason, new devices should use the bus
772  *	interface (PCI) for low level management.
773  *
774  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
775  *	Called when a user wants to change the Maximum Transfer Unit
776  *	of a device. If not defined, any request to change MTU will
777  *	will return an error.
778  *
779  * void (*ndo_tx_timeout)(struct net_device *dev);
780  *	Callback uses when the transmitter has not made any progress
781  *	for dev->watchdog ticks.
782  *
783  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
784  *                      struct rtnl_link_stats64 *storage);
785  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
786  *	Called when a user wants to get the network device usage
787  *	statistics. Drivers must do one of the following:
788  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
789  *	   rtnl_link_stats64 structure passed by the caller.
790  *	2. Define @ndo_get_stats to update a net_device_stats structure
791  *	   (which should normally be dev->stats) and return a pointer to
792  *	   it. The structure may be changed asynchronously only if each
793  *	   field is written atomically.
794  *	3. Update dev->stats asynchronously and atomically, and define
795  *	   neither operation.
796  *
797  * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
798  *	If device support VLAN receive acceleration
799  *	(ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
800  *	when vlan groups for the device changes.  Note: grp is NULL
801  *	if no vlan's groups are being used.
802  *
803  * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
804  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
805  *	this function is called when a VLAN id is registered.
806  *
807  * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
808  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
809  *	this function is called when a VLAN id is unregistered.
810  *
811  * void (*ndo_poll_controller)(struct net_device *dev);
812  *
813  *	SR-IOV management functions.
814  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
815  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
816  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
817  * int (*ndo_get_vf_config)(struct net_device *dev,
818  *			    int vf, struct ifla_vf_info *ivf);
819  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
820  *			  struct nlattr *port[]);
821  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
822  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
823  * 	Called to setup 'tc' number of traffic classes in the net device. This
824  * 	is always called from the stack with the rtnl lock held and netif tx
825  * 	queues stopped. This allows the netdevice to perform queue management
826  * 	safely.
827  *
828  *	Fiber Channel over Ethernet (FCoE) offload functions.
829  * int (*ndo_fcoe_enable)(struct net_device *dev);
830  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
831  *	so the underlying device can perform whatever needed configuration or
832  *	initialization to support acceleration of FCoE traffic.
833  *
834  * int (*ndo_fcoe_disable)(struct net_device *dev);
835  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
836  *	so the underlying device can perform whatever needed clean-ups to
837  *	stop supporting acceleration of FCoE traffic.
838  *
839  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
840  *			     struct scatterlist *sgl, unsigned int sgc);
841  *	Called when the FCoE Initiator wants to initialize an I/O that
842  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
843  *	perform necessary setup and returns 1 to indicate the device is set up
844  *	successfully to perform DDP on this I/O, otherwise this returns 0.
845  *
846  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
847  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
848  *	indicated by the FC exchange id 'xid', so the underlying device can
849  *	clean up and reuse resources for later DDP requests.
850  *
851  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
852  *			      struct scatterlist *sgl, unsigned int sgc);
853  *	Called when the FCoE Target wants to initialize an I/O that
854  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
855  *	perform necessary setup and returns 1 to indicate the device is set up
856  *	successfully to perform DDP on this I/O, otherwise this returns 0.
857  *
858  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
859  *	Called when the underlying device wants to override default World Wide
860  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
861  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
862  *	protocol stack to use.
863  *
864  *	RFS acceleration.
865  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
866  *			    u16 rxq_index, u32 flow_id);
867  *	Set hardware filter for RFS.  rxq_index is the target queue index;
868  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
869  *	Return the filter ID on success, or a negative error code.
870  *
871  *	Slave management functions (for bridge, bonding, etc). User should
872  *	call netdev_set_master() to set dev->master properly.
873  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
874  *	Called to make another netdev an underling.
875  *
876  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
877  *	Called to release previously enslaved netdev.
878  *
879  *      Feature/offload setting functions.
880  * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
881  *	Adjusts the requested feature flags according to device-specific
882  *	constraints, and returns the resulting flags. Must not modify
883  *	the device state.
884  *
885  * int (*ndo_set_features)(struct net_device *dev, u32 features);
886  *	Called to update device configuration to new features. Passed
887  *	feature set might be less than what was returned by ndo_fix_features()).
888  *	Must return >0 or -errno if it changed dev->features itself.
889  *
890  */
891 #define HAVE_NET_DEVICE_OPS
892 struct net_device_ops {
893 	int			(*ndo_init)(struct net_device *dev);
894 	void			(*ndo_uninit)(struct net_device *dev);
895 	int			(*ndo_open)(struct net_device *dev);
896 	int			(*ndo_stop)(struct net_device *dev);
897 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
898 						   struct net_device *dev);
899 	u16			(*ndo_select_queue)(struct net_device *dev,
900 						    struct sk_buff *skb);
901 	void			(*ndo_change_rx_flags)(struct net_device *dev,
902 						       int flags);
903 	void			(*ndo_set_rx_mode)(struct net_device *dev);
904 	void			(*ndo_set_multicast_list)(struct net_device *dev);
905 	int			(*ndo_set_mac_address)(struct net_device *dev,
906 						       void *addr);
907 	int			(*ndo_validate_addr)(struct net_device *dev);
908 	int			(*ndo_do_ioctl)(struct net_device *dev,
909 					        struct ifreq *ifr, int cmd);
910 	int			(*ndo_set_config)(struct net_device *dev,
911 					          struct ifmap *map);
912 	int			(*ndo_change_mtu)(struct net_device *dev,
913 						  int new_mtu);
914 	int			(*ndo_neigh_setup)(struct net_device *dev,
915 						   struct neigh_parms *);
916 	void			(*ndo_tx_timeout) (struct net_device *dev);
917 
918 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
919 						     struct rtnl_link_stats64 *storage);
920 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
921 
922 	void			(*ndo_vlan_rx_register)(struct net_device *dev,
923 						        struct vlan_group *grp);
924 	void			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
925 						       unsigned short vid);
926 	void			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
927 						        unsigned short vid);
928 #ifdef CONFIG_NET_POLL_CONTROLLER
929 	void                    (*ndo_poll_controller)(struct net_device *dev);
930 	int			(*ndo_netpoll_setup)(struct net_device *dev,
931 						     struct netpoll_info *info);
932 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
933 #endif
934 	int			(*ndo_set_vf_mac)(struct net_device *dev,
935 						  int queue, u8 *mac);
936 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
937 						   int queue, u16 vlan, u8 qos);
938 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
939 						      int vf, int rate);
940 	int			(*ndo_get_vf_config)(struct net_device *dev,
941 						     int vf,
942 						     struct ifla_vf_info *ivf);
943 	int			(*ndo_set_vf_port)(struct net_device *dev,
944 						   int vf,
945 						   struct nlattr *port[]);
946 	int			(*ndo_get_vf_port)(struct net_device *dev,
947 						   int vf, struct sk_buff *skb);
948 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
949 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
950 	int			(*ndo_fcoe_enable)(struct net_device *dev);
951 	int			(*ndo_fcoe_disable)(struct net_device *dev);
952 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
953 						      u16 xid,
954 						      struct scatterlist *sgl,
955 						      unsigned int sgc);
956 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
957 						     u16 xid);
958 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
959 						       u16 xid,
960 						       struct scatterlist *sgl,
961 						       unsigned int sgc);
962 #define NETDEV_FCOE_WWNN 0
963 #define NETDEV_FCOE_WWPN 1
964 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
965 						    u64 *wwn, int type);
966 #endif
967 #ifdef CONFIG_RFS_ACCEL
968 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
969 						     const struct sk_buff *skb,
970 						     u16 rxq_index,
971 						     u32 flow_id);
972 #endif
973 	int			(*ndo_add_slave)(struct net_device *dev,
974 						 struct net_device *slave_dev);
975 	int			(*ndo_del_slave)(struct net_device *dev,
976 						 struct net_device *slave_dev);
977 	u32			(*ndo_fix_features)(struct net_device *dev,
978 						    u32 features);
979 	int			(*ndo_set_features)(struct net_device *dev,
980 						    u32 features);
981 };
982 
983 /*
984  *	The DEVICE structure.
985  *	Actually, this whole structure is a big mistake.  It mixes I/O
986  *	data with strictly "high-level" data, and it has to know about
987  *	almost every data structure used in the INET module.
988  *
989  *	FIXME: cleanup struct net_device such that network protocol info
990  *	moves out.
991  */
992 
993 struct net_device {
994 
995 	/*
996 	 * This is the first field of the "visible" part of this structure
997 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
998 	 * of the interface.
999 	 */
1000 	char			name[IFNAMSIZ];
1001 
1002 	struct pm_qos_request_list pm_qos_req;
1003 
1004 	/* device name hash chain */
1005 	struct hlist_node	name_hlist;
1006 	/* snmp alias */
1007 	char 			*ifalias;
1008 
1009 	/*
1010 	 *	I/O specific fields
1011 	 *	FIXME: Merge these and struct ifmap into one
1012 	 */
1013 	unsigned long		mem_end;	/* shared mem end	*/
1014 	unsigned long		mem_start;	/* shared mem start	*/
1015 	unsigned long		base_addr;	/* device I/O address	*/
1016 	unsigned int		irq;		/* device IRQ number	*/
1017 
1018 	/*
1019 	 *	Some hardware also needs these fields, but they are not
1020 	 *	part of the usual set specified in Space.c.
1021 	 */
1022 
1023 	unsigned long		state;
1024 
1025 	struct list_head	dev_list;
1026 	struct list_head	napi_list;
1027 	struct list_head	unreg_list;
1028 
1029 	/* currently active device features */
1030 	u32			features;
1031 	/* user-changeable features */
1032 	u32			hw_features;
1033 	/* user-requested features */
1034 	u32			wanted_features;
1035 	/* mask of features inheritable by VLAN devices */
1036 	u32			vlan_features;
1037 
1038 	/* Net device feature bits; if you change something,
1039 	 * also update netdev_features_strings[] in ethtool.c */
1040 
1041 #define NETIF_F_SG		1	/* Scatter/gather IO. */
1042 #define NETIF_F_IP_CSUM		2	/* Can checksum TCP/UDP over IPv4. */
1043 #define NETIF_F_NO_CSUM		4	/* Does not require checksum. F.e. loopack. */
1044 #define NETIF_F_HW_CSUM		8	/* Can checksum all the packets. */
1045 #define NETIF_F_IPV6_CSUM	16	/* Can checksum TCP/UDP over IPV6 */
1046 #define NETIF_F_HIGHDMA		32	/* Can DMA to high memory. */
1047 #define NETIF_F_FRAGLIST	64	/* Scatter/gather IO. */
1048 #define NETIF_F_HW_VLAN_TX	128	/* Transmit VLAN hw acceleration */
1049 #define NETIF_F_HW_VLAN_RX	256	/* Receive VLAN hw acceleration */
1050 #define NETIF_F_HW_VLAN_FILTER	512	/* Receive filtering on VLAN */
1051 #define NETIF_F_VLAN_CHALLENGED	1024	/* Device cannot handle VLAN packets */
1052 #define NETIF_F_GSO		2048	/* Enable software GSO. */
1053 #define NETIF_F_LLTX		4096	/* LockLess TX - deprecated. Please */
1054 					/* do not use LLTX in new drivers */
1055 #define NETIF_F_NETNS_LOCAL	8192	/* Does not change network namespaces */
1056 #define NETIF_F_GRO		16384	/* Generic receive offload */
1057 #define NETIF_F_LRO		32768	/* large receive offload */
1058 
1059 /* the GSO_MASK reserves bits 16 through 23 */
1060 #define NETIF_F_FCOE_CRC	(1 << 24) /* FCoE CRC32 */
1061 #define NETIF_F_SCTP_CSUM	(1 << 25) /* SCTP checksum offload */
1062 #define NETIF_F_FCOE_MTU	(1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1063 #define NETIF_F_NTUPLE		(1 << 27) /* N-tuple filters supported */
1064 #define NETIF_F_RXHASH		(1 << 28) /* Receive hashing offload */
1065 #define NETIF_F_RXCSUM		(1 << 29) /* Receive checksumming offload */
1066 #define NETIF_F_NOCACHE_COPY	(1 << 30) /* Use no-cache copyfromuser */
1067 #define NETIF_F_LOOPBACK	(1 << 31) /* Enable loopback */
1068 
1069 	/* Segmentation offload features */
1070 #define NETIF_F_GSO_SHIFT	16
1071 #define NETIF_F_GSO_MASK	0x00ff0000
1072 #define NETIF_F_TSO		(SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1073 #define NETIF_F_UFO		(SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1074 #define NETIF_F_GSO_ROBUST	(SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1075 #define NETIF_F_TSO_ECN		(SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1076 #define NETIF_F_TSO6		(SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1077 #define NETIF_F_FSO		(SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1078 
1079 	/* Features valid for ethtool to change */
1080 	/* = all defined minus driver/device-class-related */
1081 #define NETIF_F_NEVER_CHANGE	(NETIF_F_VLAN_CHALLENGED | \
1082 				  NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1083 #define NETIF_F_ETHTOOL_BITS	(0xff3fffff & ~NETIF_F_NEVER_CHANGE)
1084 
1085 	/* List of features with software fallbacks. */
1086 #define NETIF_F_GSO_SOFTWARE	(NETIF_F_TSO | NETIF_F_TSO_ECN | \
1087 				 NETIF_F_TSO6 | NETIF_F_UFO)
1088 
1089 
1090 #define NETIF_F_GEN_CSUM	(NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1091 #define NETIF_F_V4_CSUM		(NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1092 #define NETIF_F_V6_CSUM		(NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1093 #define NETIF_F_ALL_CSUM	(NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1094 
1095 #define NETIF_F_ALL_TSO 	(NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1096 
1097 #define NETIF_F_ALL_FCOE	(NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \
1098 				 NETIF_F_FSO)
1099 
1100 	/*
1101 	 * If one device supports one of these features, then enable them
1102 	 * for all in netdev_increment_features.
1103 	 */
1104 #define NETIF_F_ONE_FOR_ALL	(NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1105 				 NETIF_F_SG | NETIF_F_HIGHDMA |		\
1106 				 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED)
1107 	/*
1108 	 * If one device doesn't support one of these features, then disable it
1109 	 * for all in netdev_increment_features.
1110 	 */
1111 #define NETIF_F_ALL_FOR_ALL	(NETIF_F_NOCACHE_COPY | NETIF_F_FSO)
1112 
1113 	/* changeable features with no special hardware requirements */
1114 #define NETIF_F_SOFT_FEATURES	(NETIF_F_GSO | NETIF_F_GRO)
1115 
1116 	/* Interface index. Unique device identifier	*/
1117 	int			ifindex;
1118 	int			iflink;
1119 
1120 	struct net_device_stats	stats;
1121 	atomic_long_t		rx_dropped; /* dropped packets by core network
1122 					     * Do not use this in drivers.
1123 					     */
1124 
1125 #ifdef CONFIG_WIRELESS_EXT
1126 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1127 	 * See <net/iw_handler.h> for details. Jean II */
1128 	const struct iw_handler_def *	wireless_handlers;
1129 	/* Instance data managed by the core of Wireless Extensions. */
1130 	struct iw_public_data *	wireless_data;
1131 #endif
1132 	/* Management operations */
1133 	const struct net_device_ops *netdev_ops;
1134 	const struct ethtool_ops *ethtool_ops;
1135 
1136 	/* Hardware header description */
1137 	const struct header_ops *header_ops;
1138 
1139 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1140 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace. */
1141 	unsigned short		gflags;
1142 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1143 
1144 	unsigned char		operstate; /* RFC2863 operstate */
1145 	unsigned char		link_mode; /* mapping policy to operstate */
1146 
1147 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1148 	unsigned char		dma;		/* DMA channel		*/
1149 
1150 	unsigned int		mtu;	/* interface MTU value		*/
1151 	unsigned short		type;	/* interface hardware type	*/
1152 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1153 
1154 	/* extra head- and tailroom the hardware may need, but not in all cases
1155 	 * can this be guaranteed, especially tailroom. Some cases also use
1156 	 * LL_MAX_HEADER instead to allocate the skb.
1157 	 */
1158 	unsigned short		needed_headroom;
1159 	unsigned short		needed_tailroom;
1160 
1161 	/* Interface address info. */
1162 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1163 	unsigned char		addr_assign_type; /* hw address assignment type */
1164 	unsigned char		addr_len;	/* hardware address length	*/
1165 	unsigned short          dev_id;		/* for shared network cards */
1166 
1167 	spinlock_t		addr_list_lock;
1168 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1169 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1170 	int			uc_promisc;
1171 	unsigned int		promiscuity;
1172 	unsigned int		allmulti;
1173 
1174 
1175 	/* Protocol specific pointers */
1176 
1177 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1178 	struct vlan_group __rcu	*vlgrp;		/* VLAN group */
1179 #endif
1180 #ifdef CONFIG_NET_DSA
1181 	void			*dsa_ptr;	/* dsa specific data */
1182 #endif
1183 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1184 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1185 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1186 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1187 	void			*ec_ptr;	/* Econet specific data	*/
1188 	void			*ax25_ptr;	/* AX.25 specific data */
1189 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1190 						   assign before registering */
1191 
1192 /*
1193  * Cache lines mostly used on receive path (including eth_type_trans())
1194  */
1195 	unsigned long		last_rx;	/* Time of last Rx
1196 						 * This should not be set in
1197 						 * drivers, unless really needed,
1198 						 * because network stack (bonding)
1199 						 * use it if/when necessary, to
1200 						 * avoid dirtying this cache line.
1201 						 */
1202 
1203 	struct net_device	*master; /* Pointer to master device of a group,
1204 					  * which this device is member of.
1205 					  */
1206 
1207 	/* Interface address info used in eth_type_trans() */
1208 	unsigned char		*dev_addr;	/* hw address, (before bcast
1209 						   because most packets are
1210 						   unicast) */
1211 
1212 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1213 						      hw addresses */
1214 
1215 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1216 
1217 #ifdef CONFIG_RPS
1218 	struct kset		*queues_kset;
1219 
1220 	struct netdev_rx_queue	*_rx;
1221 
1222 	/* Number of RX queues allocated at register_netdev() time */
1223 	unsigned int		num_rx_queues;
1224 
1225 	/* Number of RX queues currently active in device */
1226 	unsigned int		real_num_rx_queues;
1227 
1228 #ifdef CONFIG_RFS_ACCEL
1229 	/* CPU reverse-mapping for RX completion interrupts, indexed
1230 	 * by RX queue number.  Assigned by driver.  This must only be
1231 	 * set if the ndo_rx_flow_steer operation is defined. */
1232 	struct cpu_rmap		*rx_cpu_rmap;
1233 #endif
1234 #endif
1235 
1236 	rx_handler_func_t __rcu	*rx_handler;
1237 	void __rcu		*rx_handler_data;
1238 
1239 	struct netdev_queue __rcu *ingress_queue;
1240 
1241 /*
1242  * Cache lines mostly used on transmit path
1243  */
1244 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1245 
1246 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1247 	unsigned int		num_tx_queues;
1248 
1249 	/* Number of TX queues currently active in device  */
1250 	unsigned int		real_num_tx_queues;
1251 
1252 	/* root qdisc from userspace point of view */
1253 	struct Qdisc		*qdisc;
1254 
1255 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1256 	spinlock_t		tx_global_lock;
1257 
1258 #ifdef CONFIG_XPS
1259 	struct xps_dev_maps __rcu *xps_maps;
1260 #endif
1261 
1262 	/* These may be needed for future network-power-down code. */
1263 
1264 	/*
1265 	 * trans_start here is expensive for high speed devices on SMP,
1266 	 * please use netdev_queue->trans_start instead.
1267 	 */
1268 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1269 
1270 	int			watchdog_timeo; /* used by dev_watchdog() */
1271 	struct timer_list	watchdog_timer;
1272 
1273 	/* Number of references to this device */
1274 	int __percpu		*pcpu_refcnt;
1275 
1276 	/* delayed register/unregister */
1277 	struct list_head	todo_list;
1278 	/* device index hash chain */
1279 	struct hlist_node	index_hlist;
1280 
1281 	struct list_head	link_watch_list;
1282 
1283 	/* register/unregister state machine */
1284 	enum { NETREG_UNINITIALIZED=0,
1285 	       NETREG_REGISTERED,	/* completed register_netdevice */
1286 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1287 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1288 	       NETREG_RELEASED,		/* called free_netdev */
1289 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1290 	} reg_state:8;
1291 
1292 	bool dismantle; /* device is going do be freed */
1293 
1294 	enum {
1295 		RTNL_LINK_INITIALIZED,
1296 		RTNL_LINK_INITIALIZING,
1297 	} rtnl_link_state:16;
1298 
1299 	/* Called from unregister, can be used to call free_netdev */
1300 	void (*destructor)(struct net_device *dev);
1301 
1302 #ifdef CONFIG_NETPOLL
1303 	struct netpoll_info	*npinfo;
1304 #endif
1305 
1306 #ifdef CONFIG_NET_NS
1307 	/* Network namespace this network device is inside */
1308 	struct net		*nd_net;
1309 #endif
1310 
1311 	/* mid-layer private */
1312 	union {
1313 		void				*ml_priv;
1314 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1315 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1316 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1317 	};
1318 	/* GARP */
1319 	struct garp_port __rcu	*garp_port;
1320 
1321 	/* class/net/name entry */
1322 	struct device		dev;
1323 	/* space for optional device, statistics, and wireless sysfs groups */
1324 	const struct attribute_group *sysfs_groups[4];
1325 
1326 	/* rtnetlink link ops */
1327 	const struct rtnl_link_ops *rtnl_link_ops;
1328 
1329 	/* for setting kernel sock attribute on TCP connection setup */
1330 #define GSO_MAX_SIZE		65536
1331 	unsigned int		gso_max_size;
1332 
1333 #ifdef CONFIG_DCB
1334 	/* Data Center Bridging netlink ops */
1335 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1336 #endif
1337 	u8 num_tc;
1338 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1339 	u8 prio_tc_map[TC_BITMASK + 1];
1340 
1341 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1342 	/* max exchange id for FCoE LRO by ddp */
1343 	unsigned int		fcoe_ddp_xid;
1344 #endif
1345 	/* n-tuple filter list attached to this device */
1346 	struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1347 
1348 	/* phy device may attach itself for hardware timestamping */
1349 	struct phy_device *phydev;
1350 
1351 	/* group the device belongs to */
1352 	int group;
1353 };
1354 #define to_net_dev(d) container_of(d, struct net_device, dev)
1355 
1356 #define	NETDEV_ALIGN		32
1357 
1358 static inline
1359 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1360 {
1361 	return dev->prio_tc_map[prio & TC_BITMASK];
1362 }
1363 
1364 static inline
1365 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1366 {
1367 	if (tc >= dev->num_tc)
1368 		return -EINVAL;
1369 
1370 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1371 	return 0;
1372 }
1373 
1374 static inline
1375 void netdev_reset_tc(struct net_device *dev)
1376 {
1377 	dev->num_tc = 0;
1378 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1379 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1380 }
1381 
1382 static inline
1383 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1384 {
1385 	if (tc >= dev->num_tc)
1386 		return -EINVAL;
1387 
1388 	dev->tc_to_txq[tc].count = count;
1389 	dev->tc_to_txq[tc].offset = offset;
1390 	return 0;
1391 }
1392 
1393 static inline
1394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1395 {
1396 	if (num_tc > TC_MAX_QUEUE)
1397 		return -EINVAL;
1398 
1399 	dev->num_tc = num_tc;
1400 	return 0;
1401 }
1402 
1403 static inline
1404 int netdev_get_num_tc(struct net_device *dev)
1405 {
1406 	return dev->num_tc;
1407 }
1408 
1409 static inline
1410 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1411 					 unsigned int index)
1412 {
1413 	return &dev->_tx[index];
1414 }
1415 
1416 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1417 					    void (*f)(struct net_device *,
1418 						      struct netdev_queue *,
1419 						      void *),
1420 					    void *arg)
1421 {
1422 	unsigned int i;
1423 
1424 	for (i = 0; i < dev->num_tx_queues; i++)
1425 		f(dev, &dev->_tx[i], arg);
1426 }
1427 
1428 /*
1429  * Net namespace inlines
1430  */
1431 static inline
1432 struct net *dev_net(const struct net_device *dev)
1433 {
1434 	return read_pnet(&dev->nd_net);
1435 }
1436 
1437 static inline
1438 void dev_net_set(struct net_device *dev, struct net *net)
1439 {
1440 #ifdef CONFIG_NET_NS
1441 	release_net(dev->nd_net);
1442 	dev->nd_net = hold_net(net);
1443 #endif
1444 }
1445 
1446 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1447 {
1448 #ifdef CONFIG_NET_DSA_TAG_DSA
1449 	if (dev->dsa_ptr != NULL)
1450 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1451 #endif
1452 
1453 	return 0;
1454 }
1455 
1456 #ifndef CONFIG_NET_NS
1457 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1458 {
1459 	skb->dev = dev;
1460 }
1461 #else /* CONFIG_NET_NS */
1462 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1463 #endif
1464 
1465 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1466 {
1467 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1468 	if (dev->dsa_ptr != NULL)
1469 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1470 #endif
1471 
1472 	return 0;
1473 }
1474 
1475 /**
1476  *	netdev_priv - access network device private data
1477  *	@dev: network device
1478  *
1479  * Get network device private data
1480  */
1481 static inline void *netdev_priv(const struct net_device *dev)
1482 {
1483 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1484 }
1485 
1486 /* Set the sysfs physical device reference for the network logical device
1487  * if set prior to registration will cause a symlink during initialization.
1488  */
1489 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1490 
1491 /* Set the sysfs device type for the network logical device to allow
1492  * fin grained indentification of different network device types. For
1493  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1494  */
1495 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1496 
1497 /**
1498  *	netif_napi_add - initialize a napi context
1499  *	@dev:  network device
1500  *	@napi: napi context
1501  *	@poll: polling function
1502  *	@weight: default weight
1503  *
1504  * netif_napi_add() must be used to initialize a napi context prior to calling
1505  * *any* of the other napi related functions.
1506  */
1507 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1508 		    int (*poll)(struct napi_struct *, int), int weight);
1509 
1510 /**
1511  *  netif_napi_del - remove a napi context
1512  *  @napi: napi context
1513  *
1514  *  netif_napi_del() removes a napi context from the network device napi list
1515  */
1516 void netif_napi_del(struct napi_struct *napi);
1517 
1518 struct napi_gro_cb {
1519 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1520 	void *frag0;
1521 
1522 	/* Length of frag0. */
1523 	unsigned int frag0_len;
1524 
1525 	/* This indicates where we are processing relative to skb->data. */
1526 	int data_offset;
1527 
1528 	/* This is non-zero if the packet may be of the same flow. */
1529 	int same_flow;
1530 
1531 	/* This is non-zero if the packet cannot be merged with the new skb. */
1532 	int flush;
1533 
1534 	/* Number of segments aggregated. */
1535 	int count;
1536 
1537 	/* Free the skb? */
1538 	int free;
1539 };
1540 
1541 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1542 
1543 struct packet_type {
1544 	__be16			type;	/* This is really htons(ether_type). */
1545 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1546 	int			(*func) (struct sk_buff *,
1547 					 struct net_device *,
1548 					 struct packet_type *,
1549 					 struct net_device *);
1550 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1551 						u32 features);
1552 	int			(*gso_send_check)(struct sk_buff *skb);
1553 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1554 					       struct sk_buff *skb);
1555 	int			(*gro_complete)(struct sk_buff *skb);
1556 	void			*af_packet_priv;
1557 	struct list_head	list;
1558 };
1559 
1560 #include <linux/interrupt.h>
1561 #include <linux/notifier.h>
1562 
1563 extern rwlock_t				dev_base_lock;		/* Device list lock */
1564 
1565 
1566 #define for_each_netdev(net, d)		\
1567 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1568 #define for_each_netdev_reverse(net, d)	\
1569 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1570 #define for_each_netdev_rcu(net, d)		\
1571 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1572 #define for_each_netdev_safe(net, d, n)	\
1573 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1574 #define for_each_netdev_continue(net, d)		\
1575 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1576 #define for_each_netdev_continue_rcu(net, d)		\
1577 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1578 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1579 
1580 static inline struct net_device *next_net_device(struct net_device *dev)
1581 {
1582 	struct list_head *lh;
1583 	struct net *net;
1584 
1585 	net = dev_net(dev);
1586 	lh = dev->dev_list.next;
1587 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1588 }
1589 
1590 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1591 {
1592 	struct list_head *lh;
1593 	struct net *net;
1594 
1595 	net = dev_net(dev);
1596 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1597 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1598 }
1599 
1600 static inline struct net_device *first_net_device(struct net *net)
1601 {
1602 	return list_empty(&net->dev_base_head) ? NULL :
1603 		net_device_entry(net->dev_base_head.next);
1604 }
1605 
1606 static inline struct net_device *first_net_device_rcu(struct net *net)
1607 {
1608 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1609 
1610 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1611 }
1612 
1613 extern int 			netdev_boot_setup_check(struct net_device *dev);
1614 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1615 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1616 					      const char *hwaddr);
1617 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1618 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1619 extern void		dev_add_pack(struct packet_type *pt);
1620 extern void		dev_remove_pack(struct packet_type *pt);
1621 extern void		__dev_remove_pack(struct packet_type *pt);
1622 
1623 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1624 						      unsigned short mask);
1625 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1626 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1627 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1628 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1629 extern int		dev_open(struct net_device *dev);
1630 extern int		dev_close(struct net_device *dev);
1631 extern void		dev_disable_lro(struct net_device *dev);
1632 extern int		dev_queue_xmit(struct sk_buff *skb);
1633 extern int		register_netdevice(struct net_device *dev);
1634 extern void		unregister_netdevice_queue(struct net_device *dev,
1635 						   struct list_head *head);
1636 extern void		unregister_netdevice_many(struct list_head *head);
1637 static inline void unregister_netdevice(struct net_device *dev)
1638 {
1639 	unregister_netdevice_queue(dev, NULL);
1640 }
1641 
1642 extern int 		netdev_refcnt_read(const struct net_device *dev);
1643 extern void		free_netdev(struct net_device *dev);
1644 extern void		synchronize_net(void);
1645 extern int 		register_netdevice_notifier(struct notifier_block *nb);
1646 extern int		unregister_netdevice_notifier(struct notifier_block *nb);
1647 extern int		init_dummy_netdev(struct net_device *dev);
1648 extern void		netdev_resync_ops(struct net_device *dev);
1649 
1650 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1651 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1652 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1653 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1654 extern int		dev_restart(struct net_device *dev);
1655 #ifdef CONFIG_NETPOLL_TRAP
1656 extern int		netpoll_trap(void);
1657 #endif
1658 extern int	       skb_gro_receive(struct sk_buff **head,
1659 				       struct sk_buff *skb);
1660 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1661 
1662 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1663 {
1664 	return NAPI_GRO_CB(skb)->data_offset;
1665 }
1666 
1667 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1668 {
1669 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1670 }
1671 
1672 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1673 {
1674 	NAPI_GRO_CB(skb)->data_offset += len;
1675 }
1676 
1677 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1678 					unsigned int offset)
1679 {
1680 	return NAPI_GRO_CB(skb)->frag0 + offset;
1681 }
1682 
1683 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1684 {
1685 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1686 }
1687 
1688 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1689 					unsigned int offset)
1690 {
1691 	NAPI_GRO_CB(skb)->frag0 = NULL;
1692 	NAPI_GRO_CB(skb)->frag0_len = 0;
1693 	return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1694 }
1695 
1696 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1697 {
1698 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1699 }
1700 
1701 static inline void *skb_gro_network_header(struct sk_buff *skb)
1702 {
1703 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1704 	       skb_network_offset(skb);
1705 }
1706 
1707 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1708 				  unsigned short type,
1709 				  const void *daddr, const void *saddr,
1710 				  unsigned len)
1711 {
1712 	if (!dev->header_ops || !dev->header_ops->create)
1713 		return 0;
1714 
1715 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1716 }
1717 
1718 static inline int dev_parse_header(const struct sk_buff *skb,
1719 				   unsigned char *haddr)
1720 {
1721 	const struct net_device *dev = skb->dev;
1722 
1723 	if (!dev->header_ops || !dev->header_ops->parse)
1724 		return 0;
1725 	return dev->header_ops->parse(skb, haddr);
1726 }
1727 
1728 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1729 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1730 static inline int unregister_gifconf(unsigned int family)
1731 {
1732 	return register_gifconf(family, NULL);
1733 }
1734 
1735 /*
1736  * Incoming packets are placed on per-cpu queues
1737  */
1738 struct softnet_data {
1739 	struct Qdisc		*output_queue;
1740 	struct Qdisc		**output_queue_tailp;
1741 	struct list_head	poll_list;
1742 	struct sk_buff		*completion_queue;
1743 	struct sk_buff_head	process_queue;
1744 
1745 	/* stats */
1746 	unsigned int		processed;
1747 	unsigned int		time_squeeze;
1748 	unsigned int		cpu_collision;
1749 	unsigned int		received_rps;
1750 
1751 #ifdef CONFIG_RPS
1752 	struct softnet_data	*rps_ipi_list;
1753 
1754 	/* Elements below can be accessed between CPUs for RPS */
1755 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1756 	struct softnet_data	*rps_ipi_next;
1757 	unsigned int		cpu;
1758 	unsigned int		input_queue_head;
1759 	unsigned int		input_queue_tail;
1760 #endif
1761 	unsigned		dropped;
1762 	struct sk_buff_head	input_pkt_queue;
1763 	struct napi_struct	backlog;
1764 };
1765 
1766 static inline void input_queue_head_incr(struct softnet_data *sd)
1767 {
1768 #ifdef CONFIG_RPS
1769 	sd->input_queue_head++;
1770 #endif
1771 }
1772 
1773 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1774 					      unsigned int *qtail)
1775 {
1776 #ifdef CONFIG_RPS
1777 	*qtail = ++sd->input_queue_tail;
1778 #endif
1779 }
1780 
1781 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1782 
1783 #define HAVE_NETIF_QUEUE
1784 
1785 extern void __netif_schedule(struct Qdisc *q);
1786 
1787 static inline void netif_schedule_queue(struct netdev_queue *txq)
1788 {
1789 	if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1790 		__netif_schedule(txq->qdisc);
1791 }
1792 
1793 static inline void netif_tx_schedule_all(struct net_device *dev)
1794 {
1795 	unsigned int i;
1796 
1797 	for (i = 0; i < dev->num_tx_queues; i++)
1798 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1799 }
1800 
1801 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1802 {
1803 	clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1804 }
1805 
1806 /**
1807  *	netif_start_queue - allow transmit
1808  *	@dev: network device
1809  *
1810  *	Allow upper layers to call the device hard_start_xmit routine.
1811  */
1812 static inline void netif_start_queue(struct net_device *dev)
1813 {
1814 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1815 }
1816 
1817 static inline void netif_tx_start_all_queues(struct net_device *dev)
1818 {
1819 	unsigned int i;
1820 
1821 	for (i = 0; i < dev->num_tx_queues; i++) {
1822 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1823 		netif_tx_start_queue(txq);
1824 	}
1825 }
1826 
1827 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1828 {
1829 #ifdef CONFIG_NETPOLL_TRAP
1830 	if (netpoll_trap()) {
1831 		netif_tx_start_queue(dev_queue);
1832 		return;
1833 	}
1834 #endif
1835 	if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1836 		__netif_schedule(dev_queue->qdisc);
1837 }
1838 
1839 /**
1840  *	netif_wake_queue - restart transmit
1841  *	@dev: network device
1842  *
1843  *	Allow upper layers to call the device hard_start_xmit routine.
1844  *	Used for flow control when transmit resources are available.
1845  */
1846 static inline void netif_wake_queue(struct net_device *dev)
1847 {
1848 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1849 }
1850 
1851 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1852 {
1853 	unsigned int i;
1854 
1855 	for (i = 0; i < dev->num_tx_queues; i++) {
1856 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1857 		netif_tx_wake_queue(txq);
1858 	}
1859 }
1860 
1861 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1862 {
1863 	if (WARN_ON(!dev_queue)) {
1864 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1865 		return;
1866 	}
1867 	set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1868 }
1869 
1870 /**
1871  *	netif_stop_queue - stop transmitted packets
1872  *	@dev: network device
1873  *
1874  *	Stop upper layers calling the device hard_start_xmit routine.
1875  *	Used for flow control when transmit resources are unavailable.
1876  */
1877 static inline void netif_stop_queue(struct net_device *dev)
1878 {
1879 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1880 }
1881 
1882 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1883 {
1884 	unsigned int i;
1885 
1886 	for (i = 0; i < dev->num_tx_queues; i++) {
1887 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1888 		netif_tx_stop_queue(txq);
1889 	}
1890 }
1891 
1892 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1893 {
1894 	return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1895 }
1896 
1897 /**
1898  *	netif_queue_stopped - test if transmit queue is flowblocked
1899  *	@dev: network device
1900  *
1901  *	Test if transmit queue on device is currently unable to send.
1902  */
1903 static inline int netif_queue_stopped(const struct net_device *dev)
1904 {
1905 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1906 }
1907 
1908 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1909 {
1910 	return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1911 }
1912 
1913 /**
1914  *	netif_running - test if up
1915  *	@dev: network device
1916  *
1917  *	Test if the device has been brought up.
1918  */
1919 static inline int netif_running(const struct net_device *dev)
1920 {
1921 	return test_bit(__LINK_STATE_START, &dev->state);
1922 }
1923 
1924 /*
1925  * Routines to manage the subqueues on a device.  We only need start
1926  * stop, and a check if it's stopped.  All other device management is
1927  * done at the overall netdevice level.
1928  * Also test the device if we're multiqueue.
1929  */
1930 
1931 /**
1932  *	netif_start_subqueue - allow sending packets on subqueue
1933  *	@dev: network device
1934  *	@queue_index: sub queue index
1935  *
1936  * Start individual transmit queue of a device with multiple transmit queues.
1937  */
1938 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1939 {
1940 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1941 
1942 	netif_tx_start_queue(txq);
1943 }
1944 
1945 /**
1946  *	netif_stop_subqueue - stop sending packets on subqueue
1947  *	@dev: network device
1948  *	@queue_index: sub queue index
1949  *
1950  * Stop individual transmit queue of a device with multiple transmit queues.
1951  */
1952 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1953 {
1954 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1955 #ifdef CONFIG_NETPOLL_TRAP
1956 	if (netpoll_trap())
1957 		return;
1958 #endif
1959 	netif_tx_stop_queue(txq);
1960 }
1961 
1962 /**
1963  *	netif_subqueue_stopped - test status of subqueue
1964  *	@dev: network device
1965  *	@queue_index: sub queue index
1966  *
1967  * Check individual transmit queue of a device with multiple transmit queues.
1968  */
1969 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1970 					 u16 queue_index)
1971 {
1972 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1973 
1974 	return netif_tx_queue_stopped(txq);
1975 }
1976 
1977 static inline int netif_subqueue_stopped(const struct net_device *dev,
1978 					 struct sk_buff *skb)
1979 {
1980 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1981 }
1982 
1983 /**
1984  *	netif_wake_subqueue - allow sending packets on subqueue
1985  *	@dev: network device
1986  *	@queue_index: sub queue index
1987  *
1988  * Resume individual transmit queue of a device with multiple transmit queues.
1989  */
1990 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1991 {
1992 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1993 #ifdef CONFIG_NETPOLL_TRAP
1994 	if (netpoll_trap())
1995 		return;
1996 #endif
1997 	if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1998 		__netif_schedule(txq->qdisc);
1999 }
2000 
2001 /*
2002  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2003  * as a distribution range limit for the returned value.
2004  */
2005 static inline u16 skb_tx_hash(const struct net_device *dev,
2006 			      const struct sk_buff *skb)
2007 {
2008 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2009 }
2010 
2011 /**
2012  *	netif_is_multiqueue - test if device has multiple transmit queues
2013  *	@dev: network device
2014  *
2015  * Check if device has multiple transmit queues
2016  */
2017 static inline int netif_is_multiqueue(const struct net_device *dev)
2018 {
2019 	return dev->num_tx_queues > 1;
2020 }
2021 
2022 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2023 					unsigned int txq);
2024 
2025 #ifdef CONFIG_RPS
2026 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2027 					unsigned int rxq);
2028 #else
2029 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2030 						unsigned int rxq)
2031 {
2032 	return 0;
2033 }
2034 #endif
2035 
2036 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2037 					     const struct net_device *from_dev)
2038 {
2039 	netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2040 #ifdef CONFIG_RPS
2041 	return netif_set_real_num_rx_queues(to_dev,
2042 					    from_dev->real_num_rx_queues);
2043 #else
2044 	return 0;
2045 #endif
2046 }
2047 
2048 /* Use this variant when it is known for sure that it
2049  * is executing from hardware interrupt context or with hardware interrupts
2050  * disabled.
2051  */
2052 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2053 
2054 /* Use this variant in places where it could be invoked
2055  * from either hardware interrupt or other context, with hardware interrupts
2056  * either disabled or enabled.
2057  */
2058 extern void dev_kfree_skb_any(struct sk_buff *skb);
2059 
2060 #define HAVE_NETIF_RX 1
2061 extern int		netif_rx(struct sk_buff *skb);
2062 extern int		netif_rx_ni(struct sk_buff *skb);
2063 #define HAVE_NETIF_RECEIVE_SKB 1
2064 extern int		netif_receive_skb(struct sk_buff *skb);
2065 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2066 					struct sk_buff *skb);
2067 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2068 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2069 					 struct sk_buff *skb);
2070 extern void		napi_gro_flush(struct napi_struct *napi);
2071 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2072 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2073 					  struct sk_buff *skb,
2074 					  gro_result_t ret);
2075 extern struct sk_buff *	napi_frags_skb(struct napi_struct *napi);
2076 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2077 
2078 static inline void napi_free_frags(struct napi_struct *napi)
2079 {
2080 	kfree_skb(napi->skb);
2081 	napi->skb = NULL;
2082 }
2083 
2084 extern int netdev_rx_handler_register(struct net_device *dev,
2085 				      rx_handler_func_t *rx_handler,
2086 				      void *rx_handler_data);
2087 extern void netdev_rx_handler_unregister(struct net_device *dev);
2088 
2089 extern int		dev_valid_name(const char *name);
2090 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2091 extern int		dev_ethtool(struct net *net, struct ifreq *);
2092 extern unsigned		dev_get_flags(const struct net_device *);
2093 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2094 extern int		dev_change_flags(struct net_device *, unsigned);
2095 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2096 extern int		dev_change_name(struct net_device *, const char *);
2097 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2098 extern int		dev_change_net_namespace(struct net_device *,
2099 						 struct net *, const char *);
2100 extern int		dev_set_mtu(struct net_device *, int);
2101 extern void		dev_set_group(struct net_device *, int);
2102 extern int		dev_set_mac_address(struct net_device *,
2103 					    struct sockaddr *);
2104 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2105 					    struct net_device *dev,
2106 					    struct netdev_queue *txq);
2107 extern int		dev_forward_skb(struct net_device *dev,
2108 					struct sk_buff *skb);
2109 
2110 extern int		netdev_budget;
2111 
2112 /* Called by rtnetlink.c:rtnl_unlock() */
2113 extern void netdev_run_todo(void);
2114 
2115 /**
2116  *	dev_put - release reference to device
2117  *	@dev: network device
2118  *
2119  * Release reference to device to allow it to be freed.
2120  */
2121 static inline void dev_put(struct net_device *dev)
2122 {
2123 	irqsafe_cpu_dec(*dev->pcpu_refcnt);
2124 }
2125 
2126 /**
2127  *	dev_hold - get reference to device
2128  *	@dev: network device
2129  *
2130  * Hold reference to device to keep it from being freed.
2131  */
2132 static inline void dev_hold(struct net_device *dev)
2133 {
2134 	irqsafe_cpu_inc(*dev->pcpu_refcnt);
2135 }
2136 
2137 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2138  * and _off may be called from IRQ context, but it is caller
2139  * who is responsible for serialization of these calls.
2140  *
2141  * The name carrier is inappropriate, these functions should really be
2142  * called netif_lowerlayer_*() because they represent the state of any
2143  * kind of lower layer not just hardware media.
2144  */
2145 
2146 extern void linkwatch_fire_event(struct net_device *dev);
2147 extern void linkwatch_forget_dev(struct net_device *dev);
2148 
2149 /**
2150  *	netif_carrier_ok - test if carrier present
2151  *	@dev: network device
2152  *
2153  * Check if carrier is present on device
2154  */
2155 static inline int netif_carrier_ok(const struct net_device *dev)
2156 {
2157 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2158 }
2159 
2160 extern unsigned long dev_trans_start(struct net_device *dev);
2161 
2162 extern void __netdev_watchdog_up(struct net_device *dev);
2163 
2164 extern void netif_carrier_on(struct net_device *dev);
2165 
2166 extern void netif_carrier_off(struct net_device *dev);
2167 
2168 extern void netif_notify_peers(struct net_device *dev);
2169 
2170 /**
2171  *	netif_dormant_on - mark device as dormant.
2172  *	@dev: network device
2173  *
2174  * Mark device as dormant (as per RFC2863).
2175  *
2176  * The dormant state indicates that the relevant interface is not
2177  * actually in a condition to pass packets (i.e., it is not 'up') but is
2178  * in a "pending" state, waiting for some external event.  For "on-
2179  * demand" interfaces, this new state identifies the situation where the
2180  * interface is waiting for events to place it in the up state.
2181  *
2182  */
2183 static inline void netif_dormant_on(struct net_device *dev)
2184 {
2185 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2186 		linkwatch_fire_event(dev);
2187 }
2188 
2189 /**
2190  *	netif_dormant_off - set device as not dormant.
2191  *	@dev: network device
2192  *
2193  * Device is not in dormant state.
2194  */
2195 static inline void netif_dormant_off(struct net_device *dev)
2196 {
2197 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2198 		linkwatch_fire_event(dev);
2199 }
2200 
2201 /**
2202  *	netif_dormant - test if carrier present
2203  *	@dev: network device
2204  *
2205  * Check if carrier is present on device
2206  */
2207 static inline int netif_dormant(const struct net_device *dev)
2208 {
2209 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2210 }
2211 
2212 
2213 /**
2214  *	netif_oper_up - test if device is operational
2215  *	@dev: network device
2216  *
2217  * Check if carrier is operational
2218  */
2219 static inline int netif_oper_up(const struct net_device *dev)
2220 {
2221 	return (dev->operstate == IF_OPER_UP ||
2222 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2223 }
2224 
2225 /**
2226  *	netif_device_present - is device available or removed
2227  *	@dev: network device
2228  *
2229  * Check if device has not been removed from system.
2230  */
2231 static inline int netif_device_present(struct net_device *dev)
2232 {
2233 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2234 }
2235 
2236 extern void netif_device_detach(struct net_device *dev);
2237 
2238 extern void netif_device_attach(struct net_device *dev);
2239 
2240 /*
2241  * Network interface message level settings
2242  */
2243 #define HAVE_NETIF_MSG 1
2244 
2245 enum {
2246 	NETIF_MSG_DRV		= 0x0001,
2247 	NETIF_MSG_PROBE		= 0x0002,
2248 	NETIF_MSG_LINK		= 0x0004,
2249 	NETIF_MSG_TIMER		= 0x0008,
2250 	NETIF_MSG_IFDOWN	= 0x0010,
2251 	NETIF_MSG_IFUP		= 0x0020,
2252 	NETIF_MSG_RX_ERR	= 0x0040,
2253 	NETIF_MSG_TX_ERR	= 0x0080,
2254 	NETIF_MSG_TX_QUEUED	= 0x0100,
2255 	NETIF_MSG_INTR		= 0x0200,
2256 	NETIF_MSG_TX_DONE	= 0x0400,
2257 	NETIF_MSG_RX_STATUS	= 0x0800,
2258 	NETIF_MSG_PKTDATA	= 0x1000,
2259 	NETIF_MSG_HW		= 0x2000,
2260 	NETIF_MSG_WOL		= 0x4000,
2261 };
2262 
2263 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2264 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2265 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2266 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2267 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2268 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2269 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2270 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2271 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2272 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2273 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2274 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2275 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2276 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2277 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2278 
2279 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2280 {
2281 	/* use default */
2282 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2283 		return default_msg_enable_bits;
2284 	if (debug_value == 0)	/* no output */
2285 		return 0;
2286 	/* set low N bits */
2287 	return (1 << debug_value) - 1;
2288 }
2289 
2290 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2291 {
2292 	spin_lock(&txq->_xmit_lock);
2293 	txq->xmit_lock_owner = cpu;
2294 }
2295 
2296 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2297 {
2298 	spin_lock_bh(&txq->_xmit_lock);
2299 	txq->xmit_lock_owner = smp_processor_id();
2300 }
2301 
2302 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2303 {
2304 	int ok = spin_trylock(&txq->_xmit_lock);
2305 	if (likely(ok))
2306 		txq->xmit_lock_owner = smp_processor_id();
2307 	return ok;
2308 }
2309 
2310 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2311 {
2312 	txq->xmit_lock_owner = -1;
2313 	spin_unlock(&txq->_xmit_lock);
2314 }
2315 
2316 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2317 {
2318 	txq->xmit_lock_owner = -1;
2319 	spin_unlock_bh(&txq->_xmit_lock);
2320 }
2321 
2322 static inline void txq_trans_update(struct netdev_queue *txq)
2323 {
2324 	if (txq->xmit_lock_owner != -1)
2325 		txq->trans_start = jiffies;
2326 }
2327 
2328 /**
2329  *	netif_tx_lock - grab network device transmit lock
2330  *	@dev: network device
2331  *
2332  * Get network device transmit lock
2333  */
2334 static inline void netif_tx_lock(struct net_device *dev)
2335 {
2336 	unsigned int i;
2337 	int cpu;
2338 
2339 	spin_lock(&dev->tx_global_lock);
2340 	cpu = smp_processor_id();
2341 	for (i = 0; i < dev->num_tx_queues; i++) {
2342 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2343 
2344 		/* We are the only thread of execution doing a
2345 		 * freeze, but we have to grab the _xmit_lock in
2346 		 * order to synchronize with threads which are in
2347 		 * the ->hard_start_xmit() handler and already
2348 		 * checked the frozen bit.
2349 		 */
2350 		__netif_tx_lock(txq, cpu);
2351 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2352 		__netif_tx_unlock(txq);
2353 	}
2354 }
2355 
2356 static inline void netif_tx_lock_bh(struct net_device *dev)
2357 {
2358 	local_bh_disable();
2359 	netif_tx_lock(dev);
2360 }
2361 
2362 static inline void netif_tx_unlock(struct net_device *dev)
2363 {
2364 	unsigned int i;
2365 
2366 	for (i = 0; i < dev->num_tx_queues; i++) {
2367 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2368 
2369 		/* No need to grab the _xmit_lock here.  If the
2370 		 * queue is not stopped for another reason, we
2371 		 * force a schedule.
2372 		 */
2373 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2374 		netif_schedule_queue(txq);
2375 	}
2376 	spin_unlock(&dev->tx_global_lock);
2377 }
2378 
2379 static inline void netif_tx_unlock_bh(struct net_device *dev)
2380 {
2381 	netif_tx_unlock(dev);
2382 	local_bh_enable();
2383 }
2384 
2385 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2386 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2387 		__netif_tx_lock(txq, cpu);		\
2388 	}						\
2389 }
2390 
2391 #define HARD_TX_UNLOCK(dev, txq) {			\
2392 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2393 		__netif_tx_unlock(txq);			\
2394 	}						\
2395 }
2396 
2397 static inline void netif_tx_disable(struct net_device *dev)
2398 {
2399 	unsigned int i;
2400 	int cpu;
2401 
2402 	local_bh_disable();
2403 	cpu = smp_processor_id();
2404 	for (i = 0; i < dev->num_tx_queues; i++) {
2405 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2406 
2407 		__netif_tx_lock(txq, cpu);
2408 		netif_tx_stop_queue(txq);
2409 		__netif_tx_unlock(txq);
2410 	}
2411 	local_bh_enable();
2412 }
2413 
2414 static inline void netif_addr_lock(struct net_device *dev)
2415 {
2416 	spin_lock(&dev->addr_list_lock);
2417 }
2418 
2419 static inline void netif_addr_lock_bh(struct net_device *dev)
2420 {
2421 	spin_lock_bh(&dev->addr_list_lock);
2422 }
2423 
2424 static inline void netif_addr_unlock(struct net_device *dev)
2425 {
2426 	spin_unlock(&dev->addr_list_lock);
2427 }
2428 
2429 static inline void netif_addr_unlock_bh(struct net_device *dev)
2430 {
2431 	spin_unlock_bh(&dev->addr_list_lock);
2432 }
2433 
2434 /*
2435  * dev_addrs walker. Should be used only for read access. Call with
2436  * rcu_read_lock held.
2437  */
2438 #define for_each_dev_addr(dev, ha) \
2439 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2440 
2441 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2442 
2443 extern void		ether_setup(struct net_device *dev);
2444 
2445 /* Support for loadable net-drivers */
2446 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2447 				       void (*setup)(struct net_device *),
2448 				       unsigned int txqs, unsigned int rxqs);
2449 #define alloc_netdev(sizeof_priv, name, setup) \
2450 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2451 
2452 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2453 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2454 
2455 extern int		register_netdev(struct net_device *dev);
2456 extern void		unregister_netdev(struct net_device *dev);
2457 
2458 /* General hardware address lists handling functions */
2459 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2460 				  struct netdev_hw_addr_list *from_list,
2461 				  int addr_len, unsigned char addr_type);
2462 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2463 				   struct netdev_hw_addr_list *from_list,
2464 				   int addr_len, unsigned char addr_type);
2465 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2466 			  struct netdev_hw_addr_list *from_list,
2467 			  int addr_len);
2468 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2469 			     struct netdev_hw_addr_list *from_list,
2470 			     int addr_len);
2471 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2472 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2473 
2474 /* Functions used for device addresses handling */
2475 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2476 			unsigned char addr_type);
2477 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2478 			unsigned char addr_type);
2479 extern int dev_addr_add_multiple(struct net_device *to_dev,
2480 				 struct net_device *from_dev,
2481 				 unsigned char addr_type);
2482 extern int dev_addr_del_multiple(struct net_device *to_dev,
2483 				 struct net_device *from_dev,
2484 				 unsigned char addr_type);
2485 extern void dev_addr_flush(struct net_device *dev);
2486 extern int dev_addr_init(struct net_device *dev);
2487 
2488 /* Functions used for unicast addresses handling */
2489 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2490 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2491 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2492 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2493 extern void dev_uc_flush(struct net_device *dev);
2494 extern void dev_uc_init(struct net_device *dev);
2495 
2496 /* Functions used for multicast addresses handling */
2497 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2498 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2499 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2500 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2501 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2502 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2503 extern void dev_mc_flush(struct net_device *dev);
2504 extern void dev_mc_init(struct net_device *dev);
2505 
2506 /* Functions used for secondary unicast and multicast support */
2507 extern void		dev_set_rx_mode(struct net_device *dev);
2508 extern void		__dev_set_rx_mode(struct net_device *dev);
2509 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2510 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2511 extern void		netdev_state_change(struct net_device *dev);
2512 extern int		netdev_bonding_change(struct net_device *dev,
2513 					      unsigned long event);
2514 extern void		netdev_features_change(struct net_device *dev);
2515 /* Load a device via the kmod */
2516 extern void		dev_load(struct net *net, const char *name);
2517 extern void		dev_mcast_init(void);
2518 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2519 					       struct rtnl_link_stats64 *storage);
2520 
2521 extern int		netdev_max_backlog;
2522 extern int		netdev_tstamp_prequeue;
2523 extern int		weight_p;
2524 extern int		bpf_jit_enable;
2525 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2526 extern int netdev_set_bond_master(struct net_device *dev,
2527 				  struct net_device *master);
2528 extern int skb_checksum_help(struct sk_buff *skb);
2529 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2530 #ifdef CONFIG_BUG
2531 extern void netdev_rx_csum_fault(struct net_device *dev);
2532 #else
2533 static inline void netdev_rx_csum_fault(struct net_device *dev)
2534 {
2535 }
2536 #endif
2537 /* rx skb timestamps */
2538 extern void		net_enable_timestamp(void);
2539 extern void		net_disable_timestamp(void);
2540 
2541 #ifdef CONFIG_PROC_FS
2542 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2543 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2544 extern void dev_seq_stop(struct seq_file *seq, void *v);
2545 #endif
2546 
2547 extern int netdev_class_create_file(struct class_attribute *class_attr);
2548 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2549 
2550 extern struct kobj_ns_type_operations net_ns_type_operations;
2551 
2552 extern const char *netdev_drivername(const struct net_device *dev);
2553 
2554 extern void linkwatch_run_queue(void);
2555 
2556 static inline u32 netdev_get_wanted_features(struct net_device *dev)
2557 {
2558 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2559 }
2560 u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2561 u32 netdev_fix_features(struct net_device *dev, u32 features);
2562 int __netdev_update_features(struct net_device *dev);
2563 void netdev_update_features(struct net_device *dev);
2564 void netdev_change_features(struct net_device *dev);
2565 
2566 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2567 					struct net_device *dev);
2568 
2569 u32 netif_skb_features(struct sk_buff *skb);
2570 
2571 static inline int net_gso_ok(u32 features, int gso_type)
2572 {
2573 	int feature = gso_type << NETIF_F_GSO_SHIFT;
2574 	return (features & feature) == feature;
2575 }
2576 
2577 static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2578 {
2579 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2580 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2581 }
2582 
2583 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2584 {
2585 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2586 		unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2587 }
2588 
2589 static inline void netif_set_gso_max_size(struct net_device *dev,
2590 					  unsigned int size)
2591 {
2592 	dev->gso_max_size = size;
2593 }
2594 
2595 static inline int netif_is_bond_slave(struct net_device *dev)
2596 {
2597 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2598 }
2599 
2600 extern struct pernet_operations __net_initdata loopback_net_ops;
2601 
2602 int dev_ethtool_get_settings(struct net_device *dev,
2603 			     struct ethtool_cmd *cmd);
2604 
2605 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2606 {
2607 	if (dev->features & NETIF_F_RXCSUM)
2608 		return 1;
2609 	if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2610 		return 0;
2611 	return dev->ethtool_ops->get_rx_csum(dev);
2612 }
2613 
2614 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2615 {
2616 	if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2617 		return 0;
2618 	return dev->ethtool_ops->get_flags(dev);
2619 }
2620 
2621 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2622 
2623 /* netdev_printk helpers, similar to dev_printk */
2624 
2625 static inline const char *netdev_name(const struct net_device *dev)
2626 {
2627 	if (dev->reg_state != NETREG_REGISTERED)
2628 		return "(unregistered net_device)";
2629 	return dev->name;
2630 }
2631 
2632 extern int netdev_printk(const char *level, const struct net_device *dev,
2633 			 const char *format, ...)
2634 	__attribute__ ((format (printf, 3, 4)));
2635 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2636 	__attribute__ ((format (printf, 2, 3)));
2637 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2638 	__attribute__ ((format (printf, 2, 3)));
2639 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2640 	__attribute__ ((format (printf, 2, 3)));
2641 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2642 	__attribute__ ((format (printf, 2, 3)));
2643 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2644 	__attribute__ ((format (printf, 2, 3)));
2645 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2646 	__attribute__ ((format (printf, 2, 3)));
2647 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2648 	__attribute__ ((format (printf, 2, 3)));
2649 
2650 #define MODULE_ALIAS_NETDEV(device) \
2651 	MODULE_ALIAS("netdev-" device)
2652 
2653 #if defined(DEBUG)
2654 #define netdev_dbg(__dev, format, args...)			\
2655 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2656 #elif defined(CONFIG_DYNAMIC_DEBUG)
2657 #define netdev_dbg(__dev, format, args...)			\
2658 do {								\
2659 	dynamic_dev_dbg((__dev)->dev.parent, "%s: " format,	\
2660 			netdev_name(__dev), ##args);		\
2661 } while (0)
2662 #else
2663 #define netdev_dbg(__dev, format, args...)			\
2664 ({								\
2665 	if (0)							\
2666 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2667 	0;							\
2668 })
2669 #endif
2670 
2671 #if defined(VERBOSE_DEBUG)
2672 #define netdev_vdbg	netdev_dbg
2673 #else
2674 
2675 #define netdev_vdbg(dev, format, args...)			\
2676 ({								\
2677 	if (0)							\
2678 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2679 	0;							\
2680 })
2681 #endif
2682 
2683 /*
2684  * netdev_WARN() acts like dev_printk(), but with the key difference
2685  * of using a WARN/WARN_ON to get the message out, including the
2686  * file/line information and a backtrace.
2687  */
2688 #define netdev_WARN(dev, format, args...)			\
2689 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2690 
2691 /* netif printk helpers, similar to netdev_printk */
2692 
2693 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2694 do {					  			\
2695 	if (netif_msg_##type(priv))				\
2696 		netdev_printk(level, (dev), fmt, ##args);	\
2697 } while (0)
2698 
2699 #define netif_level(level, priv, type, dev, fmt, args...)	\
2700 do {								\
2701 	if (netif_msg_##type(priv))				\
2702 		netdev_##level(dev, fmt, ##args);		\
2703 } while (0)
2704 
2705 #define netif_emerg(priv, type, dev, fmt, args...)		\
2706 	netif_level(emerg, priv, type, dev, fmt, ##args)
2707 #define netif_alert(priv, type, dev, fmt, args...)		\
2708 	netif_level(alert, priv, type, dev, fmt, ##args)
2709 #define netif_crit(priv, type, dev, fmt, args...)		\
2710 	netif_level(crit, priv, type, dev, fmt, ##args)
2711 #define netif_err(priv, type, dev, fmt, args...)		\
2712 	netif_level(err, priv, type, dev, fmt, ##args)
2713 #define netif_warn(priv, type, dev, fmt, args...)		\
2714 	netif_level(warn, priv, type, dev, fmt, ##args)
2715 #define netif_notice(priv, type, dev, fmt, args...)		\
2716 	netif_level(notice, priv, type, dev, fmt, ##args)
2717 #define netif_info(priv, type, dev, fmt, args...)		\
2718 	netif_level(info, priv, type, dev, fmt, ##args)
2719 
2720 #if defined(DEBUG)
2721 #define netif_dbg(priv, type, dev, format, args...)		\
2722 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2723 #elif defined(CONFIG_DYNAMIC_DEBUG)
2724 #define netif_dbg(priv, type, netdev, format, args...)		\
2725 do {								\
2726 	if (netif_msg_##type(priv))				\
2727 		dynamic_dev_dbg((netdev)->dev.parent,		\
2728 				"%s: " format,			\
2729 				netdev_name(netdev), ##args);	\
2730 } while (0)
2731 #else
2732 #define netif_dbg(priv, type, dev, format, args...)			\
2733 ({									\
2734 	if (0)								\
2735 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2736 	0;								\
2737 })
2738 #endif
2739 
2740 #if defined(VERBOSE_DEBUG)
2741 #define netif_vdbg	netif_dbg
2742 #else
2743 #define netif_vdbg(priv, type, dev, format, args...)		\
2744 ({								\
2745 	if (0)							\
2746 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2747 	0;							\
2748 })
2749 #endif
2750 
2751 #endif /* __KERNEL__ */
2752 
2753 #endif	/* _LINUX_NETDEVICE_H */
2754