xref: /linux-6.15/include/linux/netdevice.h (revision 7f3f8640)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 #include <net/dropreason.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_md;
80 
81 void synchronize_net(void);
82 void netdev_set_default_ethtool_ops(struct net_device *dev,
83 				    const struct ethtool_ops *ops);
84 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
85 
86 /* Backlog congestion levels */
87 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
88 #define NET_RX_DROP		1	/* packet dropped */
89 
90 #define MAX_NEST_DEV 8
91 
92 /*
93  * Transmit return codes: transmit return codes originate from three different
94  * namespaces:
95  *
96  * - qdisc return codes
97  * - driver transmit return codes
98  * - errno values
99  *
100  * Drivers are allowed to return any one of those in their hard_start_xmit()
101  * function. Real network devices commonly used with qdiscs should only return
102  * the driver transmit return codes though - when qdiscs are used, the actual
103  * transmission happens asynchronously, so the value is not propagated to
104  * higher layers. Virtual network devices transmit synchronously; in this case
105  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
106  * others are propagated to higher layers.
107  */
108 
109 /* qdisc ->enqueue() return codes. */
110 #define NET_XMIT_SUCCESS	0x00
111 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
112 #define NET_XMIT_CN		0x02	/* congestion notification	*/
113 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
114 
115 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
116  * indicates that the device will soon be dropping packets, or already drops
117  * some packets of the same priority; prompting us to send less aggressively. */
118 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
119 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
120 
121 /* Driver transmit return codes */
122 #define NETDEV_TX_MASK		0xf0
123 
124 enum netdev_tx {
125 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
126 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
127 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
128 };
129 typedef enum netdev_tx netdev_tx_t;
130 
131 /*
132  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
133  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
134  */
135 static inline bool dev_xmit_complete(int rc)
136 {
137 	/*
138 	 * Positive cases with an skb consumed by a driver:
139 	 * - successful transmission (rc == NETDEV_TX_OK)
140 	 * - error while transmitting (rc < 0)
141 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
142 	 */
143 	if (likely(rc < NET_XMIT_MASK))
144 		return true;
145 
146 	return false;
147 }
148 
149 /*
150  *	Compute the worst-case header length according to the protocols
151  *	used.
152  */
153 
154 #if defined(CONFIG_HYPERV_NET)
155 # define LL_MAX_HEADER 128
156 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
157 # if defined(CONFIG_MAC80211_MESH)
158 #  define LL_MAX_HEADER 128
159 # else
160 #  define LL_MAX_HEADER 96
161 # endif
162 #else
163 # define LL_MAX_HEADER 32
164 #endif
165 
166 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
167     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
168 #define MAX_HEADER LL_MAX_HEADER
169 #else
170 #define MAX_HEADER (LL_MAX_HEADER + 48)
171 #endif
172 
173 /*
174  *	Old network device statistics. Fields are native words
175  *	(unsigned long) so they can be read and written atomically.
176  */
177 
178 #define NET_DEV_STAT(FIELD)			\
179 	union {					\
180 		unsigned long FIELD;		\
181 		atomic_long_t __##FIELD;	\
182 	}
183 
184 struct net_device_stats {
185 	NET_DEV_STAT(rx_packets);
186 	NET_DEV_STAT(tx_packets);
187 	NET_DEV_STAT(rx_bytes);
188 	NET_DEV_STAT(tx_bytes);
189 	NET_DEV_STAT(rx_errors);
190 	NET_DEV_STAT(tx_errors);
191 	NET_DEV_STAT(rx_dropped);
192 	NET_DEV_STAT(tx_dropped);
193 	NET_DEV_STAT(multicast);
194 	NET_DEV_STAT(collisions);
195 	NET_DEV_STAT(rx_length_errors);
196 	NET_DEV_STAT(rx_over_errors);
197 	NET_DEV_STAT(rx_crc_errors);
198 	NET_DEV_STAT(rx_frame_errors);
199 	NET_DEV_STAT(rx_fifo_errors);
200 	NET_DEV_STAT(rx_missed_errors);
201 	NET_DEV_STAT(tx_aborted_errors);
202 	NET_DEV_STAT(tx_carrier_errors);
203 	NET_DEV_STAT(tx_fifo_errors);
204 	NET_DEV_STAT(tx_heartbeat_errors);
205 	NET_DEV_STAT(tx_window_errors);
206 	NET_DEV_STAT(rx_compressed);
207 	NET_DEV_STAT(tx_compressed);
208 };
209 #undef NET_DEV_STAT
210 
211 /* per-cpu stats, allocated on demand.
212  * Try to fit them in a single cache line, for dev_get_stats() sake.
213  */
214 struct net_device_core_stats {
215 	unsigned long	rx_dropped;
216 	unsigned long	tx_dropped;
217 	unsigned long	rx_nohandler;
218 	unsigned long	rx_otherhost_dropped;
219 } __aligned(4 * sizeof(unsigned long));
220 
221 #include <linux/cache.h>
222 #include <linux/skbuff.h>
223 
224 #ifdef CONFIG_RPS
225 #include <linux/static_key.h>
226 extern struct static_key_false rps_needed;
227 extern struct static_key_false rfs_needed;
228 #endif
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	int			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	int			poll_owner;
364 #endif
365 	struct net_device	*dev;
366 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
367 	struct sk_buff		*skb;
368 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
369 	int			rx_count; /* length of rx_list */
370 	struct hrtimer		timer;
371 	struct list_head	dev_list;
372 	struct hlist_node	napi_hash_node;
373 	unsigned int		napi_id;
374 	struct task_struct	*thread;
375 };
376 
377 enum {
378 	NAPI_STATE_SCHED,		/* Poll is scheduled */
379 	NAPI_STATE_MISSED,		/* reschedule a napi */
380 	NAPI_STATE_DISABLE,		/* Disable pending */
381 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
382 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
383 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
384 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
385 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
386 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
387 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
388 };
389 
390 enum {
391 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
392 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
393 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
394 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
395 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
396 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
397 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
398 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
399 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
400 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
401 };
402 
403 enum gro_result {
404 	GRO_MERGED,
405 	GRO_MERGED_FREE,
406 	GRO_HELD,
407 	GRO_NORMAL,
408 	GRO_CONSUMED,
409 };
410 typedef enum gro_result gro_result_t;
411 
412 /*
413  * enum rx_handler_result - Possible return values for rx_handlers.
414  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
415  * further.
416  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
417  * case skb->dev was changed by rx_handler.
418  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
419  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
420  *
421  * rx_handlers are functions called from inside __netif_receive_skb(), to do
422  * special processing of the skb, prior to delivery to protocol handlers.
423  *
424  * Currently, a net_device can only have a single rx_handler registered. Trying
425  * to register a second rx_handler will return -EBUSY.
426  *
427  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
428  * To unregister a rx_handler on a net_device, use
429  * netdev_rx_handler_unregister().
430  *
431  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
432  * do with the skb.
433  *
434  * If the rx_handler consumed the skb in some way, it should return
435  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
436  * the skb to be delivered in some other way.
437  *
438  * If the rx_handler changed skb->dev, to divert the skb to another
439  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
440  * new device will be called if it exists.
441  *
442  * If the rx_handler decides the skb should be ignored, it should return
443  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
444  * are registered on exact device (ptype->dev == skb->dev).
445  *
446  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
447  * delivered, it should return RX_HANDLER_PASS.
448  *
449  * A device without a registered rx_handler will behave as if rx_handler
450  * returned RX_HANDLER_PASS.
451  */
452 
453 enum rx_handler_result {
454 	RX_HANDLER_CONSUMED,
455 	RX_HANDLER_ANOTHER,
456 	RX_HANDLER_EXACT,
457 	RX_HANDLER_PASS,
458 };
459 typedef enum rx_handler_result rx_handler_result_t;
460 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
461 
462 void __napi_schedule(struct napi_struct *n);
463 void __napi_schedule_irqoff(struct napi_struct *n);
464 
465 static inline bool napi_disable_pending(struct napi_struct *n)
466 {
467 	return test_bit(NAPI_STATE_DISABLE, &n->state);
468 }
469 
470 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
471 {
472 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
473 }
474 
475 bool napi_schedule_prep(struct napi_struct *n);
476 
477 /**
478  *	napi_schedule - schedule NAPI poll
479  *	@n: NAPI context
480  *
481  * Schedule NAPI poll routine to be called if it is not already
482  * running.
483  */
484 static inline void napi_schedule(struct napi_struct *n)
485 {
486 	if (napi_schedule_prep(n))
487 		__napi_schedule(n);
488 }
489 
490 /**
491  *	napi_schedule_irqoff - schedule NAPI poll
492  *	@n: NAPI context
493  *
494  * Variant of napi_schedule(), assuming hard irqs are masked.
495  */
496 static inline void napi_schedule_irqoff(struct napi_struct *n)
497 {
498 	if (napi_schedule_prep(n))
499 		__napi_schedule_irqoff(n);
500 }
501 
502 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
503 static inline bool napi_reschedule(struct napi_struct *napi)
504 {
505 	if (napi_schedule_prep(napi)) {
506 		__napi_schedule(napi);
507 		return true;
508 	}
509 	return false;
510 }
511 
512 /**
513  * napi_complete_done - NAPI processing complete
514  * @n: NAPI context
515  * @work_done: number of packets processed
516  *
517  * Mark NAPI processing as complete. Should only be called if poll budget
518  * has not been completely consumed.
519  * Prefer over napi_complete().
520  * Return false if device should avoid rearming interrupts.
521  */
522 bool napi_complete_done(struct napi_struct *n, int work_done);
523 
524 static inline bool napi_complete(struct napi_struct *n)
525 {
526 	return napi_complete_done(n, 0);
527 }
528 
529 int dev_set_threaded(struct net_device *dev, bool threaded);
530 
531 /**
532  *	napi_disable - prevent NAPI from scheduling
533  *	@n: NAPI context
534  *
535  * Stop NAPI from being scheduled on this context.
536  * Waits till any outstanding processing completes.
537  */
538 void napi_disable(struct napi_struct *n);
539 
540 void napi_enable(struct napi_struct *n);
541 
542 /**
543  *	napi_synchronize - wait until NAPI is not running
544  *	@n: NAPI context
545  *
546  * Wait until NAPI is done being scheduled on this context.
547  * Waits till any outstanding processing completes but
548  * does not disable future activations.
549  */
550 static inline void napi_synchronize(const struct napi_struct *n)
551 {
552 	if (IS_ENABLED(CONFIG_SMP))
553 		while (test_bit(NAPI_STATE_SCHED, &n->state))
554 			msleep(1);
555 	else
556 		barrier();
557 }
558 
559 /**
560  *	napi_if_scheduled_mark_missed - if napi is running, set the
561  *	NAPIF_STATE_MISSED
562  *	@n: NAPI context
563  *
564  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
565  * NAPI is scheduled.
566  **/
567 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
568 {
569 	unsigned long val, new;
570 
571 	val = READ_ONCE(n->state);
572 	do {
573 		if (val & NAPIF_STATE_DISABLE)
574 			return true;
575 
576 		if (!(val & NAPIF_STATE_SCHED))
577 			return false;
578 
579 		new = val | NAPIF_STATE_MISSED;
580 	} while (!try_cmpxchg(&n->state, &val, new));
581 
582 	return true;
583 }
584 
585 enum netdev_queue_state_t {
586 	__QUEUE_STATE_DRV_XOFF,
587 	__QUEUE_STATE_STACK_XOFF,
588 	__QUEUE_STATE_FROZEN,
589 };
590 
591 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
592 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
593 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
594 
595 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
596 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
597 					QUEUE_STATE_FROZEN)
598 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
599 					QUEUE_STATE_FROZEN)
600 
601 /*
602  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
603  * netif_tx_* functions below are used to manipulate this flag.  The
604  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
605  * queue independently.  The netif_xmit_*stopped functions below are called
606  * to check if the queue has been stopped by the driver or stack (either
607  * of the XOFF bits are set in the state).  Drivers should not need to call
608  * netif_xmit*stopped functions, they should only be using netif_tx_*.
609  */
610 
611 struct netdev_queue {
612 /*
613  * read-mostly part
614  */
615 	struct net_device	*dev;
616 	netdevice_tracker	dev_tracker;
617 
618 	struct Qdisc __rcu	*qdisc;
619 	struct Qdisc		*qdisc_sleeping;
620 #ifdef CONFIG_SYSFS
621 	struct kobject		kobj;
622 #endif
623 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
624 	int			numa_node;
625 #endif
626 	unsigned long		tx_maxrate;
627 	/*
628 	 * Number of TX timeouts for this queue
629 	 * (/sys/class/net/DEV/Q/trans_timeout)
630 	 */
631 	atomic_long_t		trans_timeout;
632 
633 	/* Subordinate device that the queue has been assigned to */
634 	struct net_device	*sb_dev;
635 #ifdef CONFIG_XDP_SOCKETS
636 	struct xsk_buff_pool    *pool;
637 #endif
638 /*
639  * write-mostly part
640  */
641 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
642 	int			xmit_lock_owner;
643 	/*
644 	 * Time (in jiffies) of last Tx
645 	 */
646 	unsigned long		trans_start;
647 
648 	unsigned long		state;
649 
650 #ifdef CONFIG_BQL
651 	struct dql		dql;
652 #endif
653 } ____cacheline_aligned_in_smp;
654 
655 extern int sysctl_fb_tunnels_only_for_init_net;
656 extern int sysctl_devconf_inherit_init_net;
657 
658 /*
659  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
660  *                                     == 1 : For initns only
661  *                                     == 2 : For none.
662  */
663 static inline bool net_has_fallback_tunnels(const struct net *net)
664 {
665 #if IS_ENABLED(CONFIG_SYSCTL)
666 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
667 
668 	return !fb_tunnels_only_for_init_net ||
669 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
670 #else
671 	return true;
672 #endif
673 }
674 
675 static inline int net_inherit_devconf(void)
676 {
677 #if IS_ENABLED(CONFIG_SYSCTL)
678 	return READ_ONCE(sysctl_devconf_inherit_init_net);
679 #else
680 	return 0;
681 #endif
682 }
683 
684 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
685 {
686 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
687 	return q->numa_node;
688 #else
689 	return NUMA_NO_NODE;
690 #endif
691 }
692 
693 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
694 {
695 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
696 	q->numa_node = node;
697 #endif
698 }
699 
700 #ifdef CONFIG_RPS
701 /*
702  * This structure holds an RPS map which can be of variable length.  The
703  * map is an array of CPUs.
704  */
705 struct rps_map {
706 	unsigned int len;
707 	struct rcu_head rcu;
708 	u16 cpus[];
709 };
710 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
711 
712 /*
713  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
714  * tail pointer for that CPU's input queue at the time of last enqueue, and
715  * a hardware filter index.
716  */
717 struct rps_dev_flow {
718 	u16 cpu;
719 	u16 filter;
720 	unsigned int last_qtail;
721 };
722 #define RPS_NO_FILTER 0xffff
723 
724 /*
725  * The rps_dev_flow_table structure contains a table of flow mappings.
726  */
727 struct rps_dev_flow_table {
728 	unsigned int mask;
729 	struct rcu_head rcu;
730 	struct rps_dev_flow flows[];
731 };
732 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
733     ((_num) * sizeof(struct rps_dev_flow)))
734 
735 /*
736  * The rps_sock_flow_table contains mappings of flows to the last CPU
737  * on which they were processed by the application (set in recvmsg).
738  * Each entry is a 32bit value. Upper part is the high-order bits
739  * of flow hash, lower part is CPU number.
740  * rps_cpu_mask is used to partition the space, depending on number of
741  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
742  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
743  * meaning we use 32-6=26 bits for the hash.
744  */
745 struct rps_sock_flow_table {
746 	u32	mask;
747 
748 	u32	ents[] ____cacheline_aligned_in_smp;
749 };
750 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
751 
752 #define RPS_NO_CPU 0xffff
753 
754 extern u32 rps_cpu_mask;
755 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
756 
757 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
758 					u32 hash)
759 {
760 	if (table && hash) {
761 		unsigned int index = hash & table->mask;
762 		u32 val = hash & ~rps_cpu_mask;
763 
764 		/* We only give a hint, preemption can change CPU under us */
765 		val |= raw_smp_processor_id();
766 
767 		if (table->ents[index] != val)
768 			table->ents[index] = val;
769 	}
770 }
771 
772 #ifdef CONFIG_RFS_ACCEL
773 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
774 			 u16 filter_id);
775 #endif
776 #endif /* CONFIG_RPS */
777 
778 /* This structure contains an instance of an RX queue. */
779 struct netdev_rx_queue {
780 	struct xdp_rxq_info		xdp_rxq;
781 #ifdef CONFIG_RPS
782 	struct rps_map __rcu		*rps_map;
783 	struct rps_dev_flow_table __rcu	*rps_flow_table;
784 #endif
785 	struct kobject			kobj;
786 	struct net_device		*dev;
787 	netdevice_tracker		dev_tracker;
788 
789 #ifdef CONFIG_XDP_SOCKETS
790 	struct xsk_buff_pool            *pool;
791 #endif
792 } ____cacheline_aligned_in_smp;
793 
794 /*
795  * RX queue sysfs structures and functions.
796  */
797 struct rx_queue_attribute {
798 	struct attribute attr;
799 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
800 	ssize_t (*store)(struct netdev_rx_queue *queue,
801 			 const char *buf, size_t len);
802 };
803 
804 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
805 enum xps_map_type {
806 	XPS_CPUS = 0,
807 	XPS_RXQS,
808 	XPS_MAPS_MAX,
809 };
810 
811 #ifdef CONFIG_XPS
812 /*
813  * This structure holds an XPS map which can be of variable length.  The
814  * map is an array of queues.
815  */
816 struct xps_map {
817 	unsigned int len;
818 	unsigned int alloc_len;
819 	struct rcu_head rcu;
820 	u16 queues[];
821 };
822 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
823 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
824        - sizeof(struct xps_map)) / sizeof(u16))
825 
826 /*
827  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
828  *
829  * We keep track of the number of cpus/rxqs used when the struct is allocated,
830  * in nr_ids. This will help not accessing out-of-bound memory.
831  *
832  * We keep track of the number of traffic classes used when the struct is
833  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
834  * not crossing its upper bound, as the original dev->num_tc can be updated in
835  * the meantime.
836  */
837 struct xps_dev_maps {
838 	struct rcu_head rcu;
839 	unsigned int nr_ids;
840 	s16 num_tc;
841 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
842 };
843 
844 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
845 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
846 
847 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
848 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
849 
850 #endif /* CONFIG_XPS */
851 
852 #define TC_MAX_QUEUE	16
853 #define TC_BITMASK	15
854 /* HW offloaded queuing disciplines txq count and offset maps */
855 struct netdev_tc_txq {
856 	u16 count;
857 	u16 offset;
858 };
859 
860 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
861 /*
862  * This structure is to hold information about the device
863  * configured to run FCoE protocol stack.
864  */
865 struct netdev_fcoe_hbainfo {
866 	char	manufacturer[64];
867 	char	serial_number[64];
868 	char	hardware_version[64];
869 	char	driver_version[64];
870 	char	optionrom_version[64];
871 	char	firmware_version[64];
872 	char	model[256];
873 	char	model_description[256];
874 };
875 #endif
876 
877 #define MAX_PHYS_ITEM_ID_LEN 32
878 
879 /* This structure holds a unique identifier to identify some
880  * physical item (port for example) used by a netdevice.
881  */
882 struct netdev_phys_item_id {
883 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
884 	unsigned char id_len;
885 };
886 
887 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
888 					    struct netdev_phys_item_id *b)
889 {
890 	return a->id_len == b->id_len &&
891 	       memcmp(a->id, b->id, a->id_len) == 0;
892 }
893 
894 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
895 				       struct sk_buff *skb,
896 				       struct net_device *sb_dev);
897 
898 enum net_device_path_type {
899 	DEV_PATH_ETHERNET = 0,
900 	DEV_PATH_VLAN,
901 	DEV_PATH_BRIDGE,
902 	DEV_PATH_PPPOE,
903 	DEV_PATH_DSA,
904 	DEV_PATH_MTK_WDMA,
905 };
906 
907 struct net_device_path {
908 	enum net_device_path_type	type;
909 	const struct net_device		*dev;
910 	union {
911 		struct {
912 			u16		id;
913 			__be16		proto;
914 			u8		h_dest[ETH_ALEN];
915 		} encap;
916 		struct {
917 			enum {
918 				DEV_PATH_BR_VLAN_KEEP,
919 				DEV_PATH_BR_VLAN_TAG,
920 				DEV_PATH_BR_VLAN_UNTAG,
921 				DEV_PATH_BR_VLAN_UNTAG_HW,
922 			}		vlan_mode;
923 			u16		vlan_id;
924 			__be16		vlan_proto;
925 		} bridge;
926 		struct {
927 			int port;
928 			u16 proto;
929 		} dsa;
930 		struct {
931 			u8 wdma_idx;
932 			u8 queue;
933 			u16 wcid;
934 			u8 bss;
935 		} mtk_wdma;
936 	};
937 };
938 
939 #define NET_DEVICE_PATH_STACK_MAX	5
940 #define NET_DEVICE_PATH_VLAN_MAX	2
941 
942 struct net_device_path_stack {
943 	int			num_paths;
944 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
945 };
946 
947 struct net_device_path_ctx {
948 	const struct net_device *dev;
949 	u8			daddr[ETH_ALEN];
950 
951 	int			num_vlans;
952 	struct {
953 		u16		id;
954 		__be16		proto;
955 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
956 };
957 
958 enum tc_setup_type {
959 	TC_QUERY_CAPS,
960 	TC_SETUP_QDISC_MQPRIO,
961 	TC_SETUP_CLSU32,
962 	TC_SETUP_CLSFLOWER,
963 	TC_SETUP_CLSMATCHALL,
964 	TC_SETUP_CLSBPF,
965 	TC_SETUP_BLOCK,
966 	TC_SETUP_QDISC_CBS,
967 	TC_SETUP_QDISC_RED,
968 	TC_SETUP_QDISC_PRIO,
969 	TC_SETUP_QDISC_MQ,
970 	TC_SETUP_QDISC_ETF,
971 	TC_SETUP_ROOT_QDISC,
972 	TC_SETUP_QDISC_GRED,
973 	TC_SETUP_QDISC_TAPRIO,
974 	TC_SETUP_FT,
975 	TC_SETUP_QDISC_ETS,
976 	TC_SETUP_QDISC_TBF,
977 	TC_SETUP_QDISC_FIFO,
978 	TC_SETUP_QDISC_HTB,
979 	TC_SETUP_ACT,
980 };
981 
982 /* These structures hold the attributes of bpf state that are being passed
983  * to the netdevice through the bpf op.
984  */
985 enum bpf_netdev_command {
986 	/* Set or clear a bpf program used in the earliest stages of packet
987 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
988 	 * is responsible for calling bpf_prog_put on any old progs that are
989 	 * stored. In case of error, the callee need not release the new prog
990 	 * reference, but on success it takes ownership and must bpf_prog_put
991 	 * when it is no longer used.
992 	 */
993 	XDP_SETUP_PROG,
994 	XDP_SETUP_PROG_HW,
995 	/* BPF program for offload callbacks, invoked at program load time. */
996 	BPF_OFFLOAD_MAP_ALLOC,
997 	BPF_OFFLOAD_MAP_FREE,
998 	XDP_SETUP_XSK_POOL,
999 };
1000 
1001 struct bpf_prog_offload_ops;
1002 struct netlink_ext_ack;
1003 struct xdp_umem;
1004 struct xdp_dev_bulk_queue;
1005 struct bpf_xdp_link;
1006 
1007 enum bpf_xdp_mode {
1008 	XDP_MODE_SKB = 0,
1009 	XDP_MODE_DRV = 1,
1010 	XDP_MODE_HW = 2,
1011 	__MAX_XDP_MODE
1012 };
1013 
1014 struct bpf_xdp_entity {
1015 	struct bpf_prog *prog;
1016 	struct bpf_xdp_link *link;
1017 };
1018 
1019 struct netdev_bpf {
1020 	enum bpf_netdev_command command;
1021 	union {
1022 		/* XDP_SETUP_PROG */
1023 		struct {
1024 			u32 flags;
1025 			struct bpf_prog *prog;
1026 			struct netlink_ext_ack *extack;
1027 		};
1028 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1029 		struct {
1030 			struct bpf_offloaded_map *offmap;
1031 		};
1032 		/* XDP_SETUP_XSK_POOL */
1033 		struct {
1034 			struct xsk_buff_pool *pool;
1035 			u16 queue_id;
1036 		} xsk;
1037 	};
1038 };
1039 
1040 /* Flags for ndo_xsk_wakeup. */
1041 #define XDP_WAKEUP_RX (1 << 0)
1042 #define XDP_WAKEUP_TX (1 << 1)
1043 
1044 #ifdef CONFIG_XFRM_OFFLOAD
1045 struct xfrmdev_ops {
1046 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1047 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1048 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1049 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1050 				       struct xfrm_state *x);
1051 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1052 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1053 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1054 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1055 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1056 };
1057 #endif
1058 
1059 struct dev_ifalias {
1060 	struct rcu_head rcuhead;
1061 	char ifalias[];
1062 };
1063 
1064 struct devlink;
1065 struct tlsdev_ops;
1066 
1067 struct netdev_net_notifier {
1068 	struct list_head list;
1069 	struct notifier_block *nb;
1070 };
1071 
1072 /*
1073  * This structure defines the management hooks for network devices.
1074  * The following hooks can be defined; unless noted otherwise, they are
1075  * optional and can be filled with a null pointer.
1076  *
1077  * int (*ndo_init)(struct net_device *dev);
1078  *     This function is called once when a network device is registered.
1079  *     The network device can use this for any late stage initialization
1080  *     or semantic validation. It can fail with an error code which will
1081  *     be propagated back to register_netdev.
1082  *
1083  * void (*ndo_uninit)(struct net_device *dev);
1084  *     This function is called when device is unregistered or when registration
1085  *     fails. It is not called if init fails.
1086  *
1087  * int (*ndo_open)(struct net_device *dev);
1088  *     This function is called when a network device transitions to the up
1089  *     state.
1090  *
1091  * int (*ndo_stop)(struct net_device *dev);
1092  *     This function is called when a network device transitions to the down
1093  *     state.
1094  *
1095  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1096  *                               struct net_device *dev);
1097  *	Called when a packet needs to be transmitted.
1098  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1099  *	the queue before that can happen; it's for obsolete devices and weird
1100  *	corner cases, but the stack really does a non-trivial amount
1101  *	of useless work if you return NETDEV_TX_BUSY.
1102  *	Required; cannot be NULL.
1103  *
1104  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1105  *					   struct net_device *dev
1106  *					   netdev_features_t features);
1107  *	Called by core transmit path to determine if device is capable of
1108  *	performing offload operations on a given packet. This is to give
1109  *	the device an opportunity to implement any restrictions that cannot
1110  *	be otherwise expressed by feature flags. The check is called with
1111  *	the set of features that the stack has calculated and it returns
1112  *	those the driver believes to be appropriate.
1113  *
1114  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1115  *                         struct net_device *sb_dev);
1116  *	Called to decide which queue to use when device supports multiple
1117  *	transmit queues.
1118  *
1119  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1120  *	This function is called to allow device receiver to make
1121  *	changes to configuration when multicast or promiscuous is enabled.
1122  *
1123  * void (*ndo_set_rx_mode)(struct net_device *dev);
1124  *	This function is called device changes address list filtering.
1125  *	If driver handles unicast address filtering, it should set
1126  *	IFF_UNICAST_FLT in its priv_flags.
1127  *
1128  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1129  *	This function  is called when the Media Access Control address
1130  *	needs to be changed. If this interface is not defined, the
1131  *	MAC address can not be changed.
1132  *
1133  * int (*ndo_validate_addr)(struct net_device *dev);
1134  *	Test if Media Access Control address is valid for the device.
1135  *
1136  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1137  *	Old-style ioctl entry point. This is used internally by the
1138  *	appletalk and ieee802154 subsystems but is no longer called by
1139  *	the device ioctl handler.
1140  *
1141  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1142  *	Used by the bonding driver for its device specific ioctls:
1143  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1144  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1145  *
1146  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1147  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1148  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1149  *
1150  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1151  *	Used to set network devices bus interface parameters. This interface
1152  *	is retained for legacy reasons; new devices should use the bus
1153  *	interface (PCI) for low level management.
1154  *
1155  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1156  *	Called when a user wants to change the Maximum Transfer Unit
1157  *	of a device.
1158  *
1159  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1160  *	Callback used when the transmitter has not made any progress
1161  *	for dev->watchdog ticks.
1162  *
1163  * void (*ndo_get_stats64)(struct net_device *dev,
1164  *                         struct rtnl_link_stats64 *storage);
1165  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1166  *	Called when a user wants to get the network device usage
1167  *	statistics. Drivers must do one of the following:
1168  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1169  *	   rtnl_link_stats64 structure passed by the caller.
1170  *	2. Define @ndo_get_stats to update a net_device_stats structure
1171  *	   (which should normally be dev->stats) and return a pointer to
1172  *	   it. The structure may be changed asynchronously only if each
1173  *	   field is written atomically.
1174  *	3. Update dev->stats asynchronously and atomically, and define
1175  *	   neither operation.
1176  *
1177  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1178  *	Return true if this device supports offload stats of this attr_id.
1179  *
1180  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1181  *	void *attr_data)
1182  *	Get statistics for offload operations by attr_id. Write it into the
1183  *	attr_data pointer.
1184  *
1185  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1186  *	If device supports VLAN filtering this function is called when a
1187  *	VLAN id is registered.
1188  *
1189  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1190  *	If device supports VLAN filtering this function is called when a
1191  *	VLAN id is unregistered.
1192  *
1193  * void (*ndo_poll_controller)(struct net_device *dev);
1194  *
1195  *	SR-IOV management functions.
1196  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1197  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1198  *			  u8 qos, __be16 proto);
1199  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1200  *			  int max_tx_rate);
1201  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1202  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1203  * int (*ndo_get_vf_config)(struct net_device *dev,
1204  *			    int vf, struct ifla_vf_info *ivf);
1205  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1206  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1207  *			  struct nlattr *port[]);
1208  *
1209  *      Enable or disable the VF ability to query its RSS Redirection Table and
1210  *      Hash Key. This is needed since on some devices VF share this information
1211  *      with PF and querying it may introduce a theoretical security risk.
1212  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1213  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1214  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1215  *		       void *type_data);
1216  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1217  *	This is always called from the stack with the rtnl lock held and netif
1218  *	tx queues stopped. This allows the netdevice to perform queue
1219  *	management safely.
1220  *
1221  *	Fiber Channel over Ethernet (FCoE) offload functions.
1222  * int (*ndo_fcoe_enable)(struct net_device *dev);
1223  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1224  *	so the underlying device can perform whatever needed configuration or
1225  *	initialization to support acceleration of FCoE traffic.
1226  *
1227  * int (*ndo_fcoe_disable)(struct net_device *dev);
1228  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1229  *	so the underlying device can perform whatever needed clean-ups to
1230  *	stop supporting acceleration of FCoE traffic.
1231  *
1232  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1233  *			     struct scatterlist *sgl, unsigned int sgc);
1234  *	Called when the FCoE Initiator wants to initialize an I/O that
1235  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1236  *	perform necessary setup and returns 1 to indicate the device is set up
1237  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1238  *
1239  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1240  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1241  *	indicated by the FC exchange id 'xid', so the underlying device can
1242  *	clean up and reuse resources for later DDP requests.
1243  *
1244  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1245  *			      struct scatterlist *sgl, unsigned int sgc);
1246  *	Called when the FCoE Target wants to initialize an I/O that
1247  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1248  *	perform necessary setup and returns 1 to indicate the device is set up
1249  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1250  *
1251  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1252  *			       struct netdev_fcoe_hbainfo *hbainfo);
1253  *	Called when the FCoE Protocol stack wants information on the underlying
1254  *	device. This information is utilized by the FCoE protocol stack to
1255  *	register attributes with Fiber Channel management service as per the
1256  *	FC-GS Fabric Device Management Information(FDMI) specification.
1257  *
1258  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1259  *	Called when the underlying device wants to override default World Wide
1260  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1261  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1262  *	protocol stack to use.
1263  *
1264  *	RFS acceleration.
1265  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1266  *			    u16 rxq_index, u32 flow_id);
1267  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1268  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1269  *	Return the filter ID on success, or a negative error code.
1270  *
1271  *	Slave management functions (for bridge, bonding, etc).
1272  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1273  *	Called to make another netdev an underling.
1274  *
1275  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1276  *	Called to release previously enslaved netdev.
1277  *
1278  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1279  *					    struct sk_buff *skb,
1280  *					    bool all_slaves);
1281  *	Get the xmit slave of master device. If all_slaves is true, function
1282  *	assume all the slaves can transmit.
1283  *
1284  *      Feature/offload setting functions.
1285  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1286  *		netdev_features_t features);
1287  *	Adjusts the requested feature flags according to device-specific
1288  *	constraints, and returns the resulting flags. Must not modify
1289  *	the device state.
1290  *
1291  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1292  *	Called to update device configuration to new features. Passed
1293  *	feature set might be less than what was returned by ndo_fix_features()).
1294  *	Must return >0 or -errno if it changed dev->features itself.
1295  *
1296  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1297  *		      struct net_device *dev,
1298  *		      const unsigned char *addr, u16 vid, u16 flags,
1299  *		      struct netlink_ext_ack *extack);
1300  *	Adds an FDB entry to dev for addr.
1301  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1302  *		      struct net_device *dev,
1303  *		      const unsigned char *addr, u16 vid)
1304  *	Deletes the FDB entry from dev coresponding to addr.
1305  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1306  *			   struct net_device *dev,
1307  *			   u16 vid,
1308  *			   struct netlink_ext_ack *extack);
1309  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1310  *		       struct net_device *dev, struct net_device *filter_dev,
1311  *		       int *idx)
1312  *	Used to add FDB entries to dump requests. Implementers should add
1313  *	entries to skb and update idx with the number of entries.
1314  *
1315  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1316  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1317  *	Adds an MDB entry to dev.
1318  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1319  *		      struct netlink_ext_ack *extack);
1320  *	Deletes the MDB entry from dev.
1321  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1322  *		       struct netlink_callback *cb);
1323  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1324  *	callback is used by core rtnetlink code.
1325  *
1326  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1327  *			     u16 flags, struct netlink_ext_ack *extack)
1328  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1329  *			     struct net_device *dev, u32 filter_mask,
1330  *			     int nlflags)
1331  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1332  *			     u16 flags);
1333  *
1334  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1335  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1336  *	which do not represent real hardware may define this to allow their
1337  *	userspace components to manage their virtual carrier state. Devices
1338  *	that determine carrier state from physical hardware properties (eg
1339  *	network cables) or protocol-dependent mechanisms (eg
1340  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1341  *
1342  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1343  *			       struct netdev_phys_item_id *ppid);
1344  *	Called to get ID of physical port of this device. If driver does
1345  *	not implement this, it is assumed that the hw is not able to have
1346  *	multiple net devices on single physical port.
1347  *
1348  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1349  *				 struct netdev_phys_item_id *ppid)
1350  *	Called to get the parent ID of the physical port of this device.
1351  *
1352  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1353  *				 struct net_device *dev)
1354  *	Called by upper layer devices to accelerate switching or other
1355  *	station functionality into hardware. 'pdev is the lowerdev
1356  *	to use for the offload and 'dev' is the net device that will
1357  *	back the offload. Returns a pointer to the private structure
1358  *	the upper layer will maintain.
1359  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1360  *	Called by upper layer device to delete the station created
1361  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1362  *	the station and priv is the structure returned by the add
1363  *	operation.
1364  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1365  *			     int queue_index, u32 maxrate);
1366  *	Called when a user wants to set a max-rate limitation of specific
1367  *	TX queue.
1368  * int (*ndo_get_iflink)(const struct net_device *dev);
1369  *	Called to get the iflink value of this device.
1370  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1371  *	This function is used to get egress tunnel information for given skb.
1372  *	This is useful for retrieving outer tunnel header parameters while
1373  *	sampling packet.
1374  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1375  *	This function is used to specify the headroom that the skb must
1376  *	consider when allocation skb during packet reception. Setting
1377  *	appropriate rx headroom value allows avoiding skb head copy on
1378  *	forward. Setting a negative value resets the rx headroom to the
1379  *	default value.
1380  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1381  *	This function is used to set or query state related to XDP on the
1382  *	netdevice and manage BPF offload. See definition of
1383  *	enum bpf_netdev_command for details.
1384  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1385  *			u32 flags);
1386  *	This function is used to submit @n XDP packets for transmit on a
1387  *	netdevice. Returns number of frames successfully transmitted, frames
1388  *	that got dropped are freed/returned via xdp_return_frame().
1389  *	Returns negative number, means general error invoking ndo, meaning
1390  *	no frames were xmit'ed and core-caller will free all frames.
1391  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1392  *					        struct xdp_buff *xdp);
1393  *      Get the xmit slave of master device based on the xdp_buff.
1394  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1395  *      This function is used to wake up the softirq, ksoftirqd or kthread
1396  *	responsible for sending and/or receiving packets on a specific
1397  *	queue id bound to an AF_XDP socket. The flags field specifies if
1398  *	only RX, only Tx, or both should be woken up using the flags
1399  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1400  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1401  *			 int cmd);
1402  *	Add, change, delete or get information on an IPv4 tunnel.
1403  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1404  *	If a device is paired with a peer device, return the peer instance.
1405  *	The caller must be under RCU read context.
1406  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1407  *     Get the forwarding path to reach the real device from the HW destination address
1408  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1409  *			     const struct skb_shared_hwtstamps *hwtstamps,
1410  *			     bool cycles);
1411  *	Get hardware timestamp based on normal/adjustable time or free running
1412  *	cycle counter. This function is required if physical clock supports a
1413  *	free running cycle counter.
1414  */
1415 struct net_device_ops {
1416 	int			(*ndo_init)(struct net_device *dev);
1417 	void			(*ndo_uninit)(struct net_device *dev);
1418 	int			(*ndo_open)(struct net_device *dev);
1419 	int			(*ndo_stop)(struct net_device *dev);
1420 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1421 						  struct net_device *dev);
1422 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1423 						      struct net_device *dev,
1424 						      netdev_features_t features);
1425 	u16			(*ndo_select_queue)(struct net_device *dev,
1426 						    struct sk_buff *skb,
1427 						    struct net_device *sb_dev);
1428 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1429 						       int flags);
1430 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1431 	int			(*ndo_set_mac_address)(struct net_device *dev,
1432 						       void *addr);
1433 	int			(*ndo_validate_addr)(struct net_device *dev);
1434 	int			(*ndo_do_ioctl)(struct net_device *dev,
1435 					        struct ifreq *ifr, int cmd);
1436 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1437 						 struct ifreq *ifr, int cmd);
1438 	int			(*ndo_siocbond)(struct net_device *dev,
1439 						struct ifreq *ifr, int cmd);
1440 	int			(*ndo_siocwandev)(struct net_device *dev,
1441 						  struct if_settings *ifs);
1442 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1443 						      struct ifreq *ifr,
1444 						      void __user *data, int cmd);
1445 	int			(*ndo_set_config)(struct net_device *dev,
1446 					          struct ifmap *map);
1447 	int			(*ndo_change_mtu)(struct net_device *dev,
1448 						  int new_mtu);
1449 	int			(*ndo_neigh_setup)(struct net_device *dev,
1450 						   struct neigh_parms *);
1451 	void			(*ndo_tx_timeout) (struct net_device *dev,
1452 						   unsigned int txqueue);
1453 
1454 	void			(*ndo_get_stats64)(struct net_device *dev,
1455 						   struct rtnl_link_stats64 *storage);
1456 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1457 	int			(*ndo_get_offload_stats)(int attr_id,
1458 							 const struct net_device *dev,
1459 							 void *attr_data);
1460 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1461 
1462 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1463 						       __be16 proto, u16 vid);
1464 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1465 						        __be16 proto, u16 vid);
1466 #ifdef CONFIG_NET_POLL_CONTROLLER
1467 	void                    (*ndo_poll_controller)(struct net_device *dev);
1468 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1469 						     struct netpoll_info *info);
1470 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1471 #endif
1472 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1473 						  int queue, u8 *mac);
1474 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1475 						   int queue, u16 vlan,
1476 						   u8 qos, __be16 proto);
1477 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1478 						   int vf, int min_tx_rate,
1479 						   int max_tx_rate);
1480 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1481 						       int vf, bool setting);
1482 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1483 						    int vf, bool setting);
1484 	int			(*ndo_get_vf_config)(struct net_device *dev,
1485 						     int vf,
1486 						     struct ifla_vf_info *ivf);
1487 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1488 							 int vf, int link_state);
1489 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1490 						    int vf,
1491 						    struct ifla_vf_stats
1492 						    *vf_stats);
1493 	int			(*ndo_set_vf_port)(struct net_device *dev,
1494 						   int vf,
1495 						   struct nlattr *port[]);
1496 	int			(*ndo_get_vf_port)(struct net_device *dev,
1497 						   int vf, struct sk_buff *skb);
1498 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1499 						   int vf,
1500 						   struct ifla_vf_guid *node_guid,
1501 						   struct ifla_vf_guid *port_guid);
1502 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1503 						   int vf, u64 guid,
1504 						   int guid_type);
1505 	int			(*ndo_set_vf_rss_query_en)(
1506 						   struct net_device *dev,
1507 						   int vf, bool setting);
1508 	int			(*ndo_setup_tc)(struct net_device *dev,
1509 						enum tc_setup_type type,
1510 						void *type_data);
1511 #if IS_ENABLED(CONFIG_FCOE)
1512 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1513 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1514 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1515 						      u16 xid,
1516 						      struct scatterlist *sgl,
1517 						      unsigned int sgc);
1518 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1519 						     u16 xid);
1520 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1521 						       u16 xid,
1522 						       struct scatterlist *sgl,
1523 						       unsigned int sgc);
1524 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1525 							struct netdev_fcoe_hbainfo *hbainfo);
1526 #endif
1527 
1528 #if IS_ENABLED(CONFIG_LIBFCOE)
1529 #define NETDEV_FCOE_WWNN 0
1530 #define NETDEV_FCOE_WWPN 1
1531 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1532 						    u64 *wwn, int type);
1533 #endif
1534 
1535 #ifdef CONFIG_RFS_ACCEL
1536 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1537 						     const struct sk_buff *skb,
1538 						     u16 rxq_index,
1539 						     u32 flow_id);
1540 #endif
1541 	int			(*ndo_add_slave)(struct net_device *dev,
1542 						 struct net_device *slave_dev,
1543 						 struct netlink_ext_ack *extack);
1544 	int			(*ndo_del_slave)(struct net_device *dev,
1545 						 struct net_device *slave_dev);
1546 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1547 						      struct sk_buff *skb,
1548 						      bool all_slaves);
1549 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1550 							struct sock *sk);
1551 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1552 						    netdev_features_t features);
1553 	int			(*ndo_set_features)(struct net_device *dev,
1554 						    netdev_features_t features);
1555 	int			(*ndo_neigh_construct)(struct net_device *dev,
1556 						       struct neighbour *n);
1557 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1558 						     struct neighbour *n);
1559 
1560 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1561 					       struct nlattr *tb[],
1562 					       struct net_device *dev,
1563 					       const unsigned char *addr,
1564 					       u16 vid,
1565 					       u16 flags,
1566 					       struct netlink_ext_ack *extack);
1567 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1568 					       struct nlattr *tb[],
1569 					       struct net_device *dev,
1570 					       const unsigned char *addr,
1571 					       u16 vid, struct netlink_ext_ack *extack);
1572 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1573 						    struct nlattr *tb[],
1574 						    struct net_device *dev,
1575 						    u16 vid,
1576 						    struct netlink_ext_ack *extack);
1577 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1578 						struct netlink_callback *cb,
1579 						struct net_device *dev,
1580 						struct net_device *filter_dev,
1581 						int *idx);
1582 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1583 					       struct nlattr *tb[],
1584 					       struct net_device *dev,
1585 					       const unsigned char *addr,
1586 					       u16 vid, u32 portid, u32 seq,
1587 					       struct netlink_ext_ack *extack);
1588 	int			(*ndo_mdb_add)(struct net_device *dev,
1589 					       struct nlattr *tb[],
1590 					       u16 nlmsg_flags,
1591 					       struct netlink_ext_ack *extack);
1592 	int			(*ndo_mdb_del)(struct net_device *dev,
1593 					       struct nlattr *tb[],
1594 					       struct netlink_ext_ack *extack);
1595 	int			(*ndo_mdb_dump)(struct net_device *dev,
1596 						struct sk_buff *skb,
1597 						struct netlink_callback *cb);
1598 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1599 						      struct nlmsghdr *nlh,
1600 						      u16 flags,
1601 						      struct netlink_ext_ack *extack);
1602 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1603 						      u32 pid, u32 seq,
1604 						      struct net_device *dev,
1605 						      u32 filter_mask,
1606 						      int nlflags);
1607 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1608 						      struct nlmsghdr *nlh,
1609 						      u16 flags);
1610 	int			(*ndo_change_carrier)(struct net_device *dev,
1611 						      bool new_carrier);
1612 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1613 							struct netdev_phys_item_id *ppid);
1614 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1615 							  struct netdev_phys_item_id *ppid);
1616 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1617 							  char *name, size_t len);
1618 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1619 							struct net_device *dev);
1620 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1621 							void *priv);
1622 
1623 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1624 						      int queue_index,
1625 						      u32 maxrate);
1626 	int			(*ndo_get_iflink)(const struct net_device *dev);
1627 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1628 						       struct sk_buff *skb);
1629 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1630 						       int needed_headroom);
1631 	int			(*ndo_bpf)(struct net_device *dev,
1632 					   struct netdev_bpf *bpf);
1633 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1634 						struct xdp_frame **xdp,
1635 						u32 flags);
1636 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1637 							  struct xdp_buff *xdp);
1638 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1639 						  u32 queue_id, u32 flags);
1640 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1641 						  struct ip_tunnel_parm *p, int cmd);
1642 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1643 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1644                                                          struct net_device_path *path);
1645 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1646 						  const struct skb_shared_hwtstamps *hwtstamps,
1647 						  bool cycles);
1648 };
1649 
1650 struct xdp_metadata_ops {
1651 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1652 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash);
1653 };
1654 
1655 /**
1656  * enum netdev_priv_flags - &struct net_device priv_flags
1657  *
1658  * These are the &struct net_device, they are only set internally
1659  * by drivers and used in the kernel. These flags are invisible to
1660  * userspace; this means that the order of these flags can change
1661  * during any kernel release.
1662  *
1663  * You should have a pretty good reason to be extending these flags.
1664  *
1665  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1666  * @IFF_EBRIDGE: Ethernet bridging device
1667  * @IFF_BONDING: bonding master or slave
1668  * @IFF_ISATAP: ISATAP interface (RFC4214)
1669  * @IFF_WAN_HDLC: WAN HDLC device
1670  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1671  *	release skb->dst
1672  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1673  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1674  * @IFF_MACVLAN_PORT: device used as macvlan port
1675  * @IFF_BRIDGE_PORT: device used as bridge port
1676  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1677  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1678  * @IFF_UNICAST_FLT: Supports unicast filtering
1679  * @IFF_TEAM_PORT: device used as team port
1680  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1681  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1682  *	change when it's running
1683  * @IFF_MACVLAN: Macvlan device
1684  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1685  *	underlying stacked devices
1686  * @IFF_L3MDEV_MASTER: device is an L3 master device
1687  * @IFF_NO_QUEUE: device can run without qdisc attached
1688  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1689  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1690  * @IFF_TEAM: device is a team device
1691  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1692  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1693  *	entity (i.e. the master device for bridged veth)
1694  * @IFF_MACSEC: device is a MACsec device
1695  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1696  * @IFF_FAILOVER: device is a failover master device
1697  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1698  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1699  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1700  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1701  *	skb_headlen(skb) == 0 (data starts from frag0)
1702  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1703  */
1704 enum netdev_priv_flags {
1705 	IFF_802_1Q_VLAN			= 1<<0,
1706 	IFF_EBRIDGE			= 1<<1,
1707 	IFF_BONDING			= 1<<2,
1708 	IFF_ISATAP			= 1<<3,
1709 	IFF_WAN_HDLC			= 1<<4,
1710 	IFF_XMIT_DST_RELEASE		= 1<<5,
1711 	IFF_DONT_BRIDGE			= 1<<6,
1712 	IFF_DISABLE_NETPOLL		= 1<<7,
1713 	IFF_MACVLAN_PORT		= 1<<8,
1714 	IFF_BRIDGE_PORT			= 1<<9,
1715 	IFF_OVS_DATAPATH		= 1<<10,
1716 	IFF_TX_SKB_SHARING		= 1<<11,
1717 	IFF_UNICAST_FLT			= 1<<12,
1718 	IFF_TEAM_PORT			= 1<<13,
1719 	IFF_SUPP_NOFCS			= 1<<14,
1720 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1721 	IFF_MACVLAN			= 1<<16,
1722 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1723 	IFF_L3MDEV_MASTER		= 1<<18,
1724 	IFF_NO_QUEUE			= 1<<19,
1725 	IFF_OPENVSWITCH			= 1<<20,
1726 	IFF_L3MDEV_SLAVE		= 1<<21,
1727 	IFF_TEAM			= 1<<22,
1728 	IFF_RXFH_CONFIGURED		= 1<<23,
1729 	IFF_PHONY_HEADROOM		= 1<<24,
1730 	IFF_MACSEC			= 1<<25,
1731 	IFF_NO_RX_HANDLER		= 1<<26,
1732 	IFF_FAILOVER			= 1<<27,
1733 	IFF_FAILOVER_SLAVE		= 1<<28,
1734 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1735 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1736 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1737 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1738 };
1739 
1740 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1741 #define IFF_EBRIDGE			IFF_EBRIDGE
1742 #define IFF_BONDING			IFF_BONDING
1743 #define IFF_ISATAP			IFF_ISATAP
1744 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1745 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1746 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1747 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1748 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1749 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1750 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1751 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1752 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1753 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1754 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1755 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1756 #define IFF_MACVLAN			IFF_MACVLAN
1757 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1758 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1759 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1760 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1761 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1762 #define IFF_TEAM			IFF_TEAM
1763 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1764 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1765 #define IFF_MACSEC			IFF_MACSEC
1766 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1767 #define IFF_FAILOVER			IFF_FAILOVER
1768 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1769 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1770 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1771 
1772 /* Specifies the type of the struct net_device::ml_priv pointer */
1773 enum netdev_ml_priv_type {
1774 	ML_PRIV_NONE,
1775 	ML_PRIV_CAN,
1776 };
1777 
1778 /**
1779  *	struct net_device - The DEVICE structure.
1780  *
1781  *	Actually, this whole structure is a big mistake.  It mixes I/O
1782  *	data with strictly "high-level" data, and it has to know about
1783  *	almost every data structure used in the INET module.
1784  *
1785  *	@name:	This is the first field of the "visible" part of this structure
1786  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1787  *		of the interface.
1788  *
1789  *	@name_node:	Name hashlist node
1790  *	@ifalias:	SNMP alias
1791  *	@mem_end:	Shared memory end
1792  *	@mem_start:	Shared memory start
1793  *	@base_addr:	Device I/O address
1794  *	@irq:		Device IRQ number
1795  *
1796  *	@state:		Generic network queuing layer state, see netdev_state_t
1797  *	@dev_list:	The global list of network devices
1798  *	@napi_list:	List entry used for polling NAPI devices
1799  *	@unreg_list:	List entry  when we are unregistering the
1800  *			device; see the function unregister_netdev
1801  *	@close_list:	List entry used when we are closing the device
1802  *	@ptype_all:     Device-specific packet handlers for all protocols
1803  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1804  *
1805  *	@adj_list:	Directly linked devices, like slaves for bonding
1806  *	@features:	Currently active device features
1807  *	@hw_features:	User-changeable features
1808  *
1809  *	@wanted_features:	User-requested features
1810  *	@vlan_features:		Mask of features inheritable by VLAN devices
1811  *
1812  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1813  *				This field indicates what encapsulation
1814  *				offloads the hardware is capable of doing,
1815  *				and drivers will need to set them appropriately.
1816  *
1817  *	@mpls_features:	Mask of features inheritable by MPLS
1818  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1819  *
1820  *	@ifindex:	interface index
1821  *	@group:		The group the device belongs to
1822  *
1823  *	@stats:		Statistics struct, which was left as a legacy, use
1824  *			rtnl_link_stats64 instead
1825  *
1826  *	@core_stats:	core networking counters,
1827  *			do not use this in drivers
1828  *	@carrier_up_count:	Number of times the carrier has been up
1829  *	@carrier_down_count:	Number of times the carrier has been down
1830  *
1831  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1832  *				instead of ioctl,
1833  *				see <net/iw_handler.h> for details.
1834  *	@wireless_data:	Instance data managed by the core of wireless extensions
1835  *
1836  *	@netdev_ops:	Includes several pointers to callbacks,
1837  *			if one wants to override the ndo_*() functions
1838  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1839  *	@ethtool_ops:	Management operations
1840  *	@l3mdev_ops:	Layer 3 master device operations
1841  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1842  *			discovery handling. Necessary for e.g. 6LoWPAN.
1843  *	@xfrmdev_ops:	Transformation offload operations
1844  *	@tlsdev_ops:	Transport Layer Security offload operations
1845  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1846  *			of Layer 2 headers.
1847  *
1848  *	@flags:		Interface flags (a la BSD)
1849  *	@xdp_features:	XDP capability supported by the device
1850  *	@priv_flags:	Like 'flags' but invisible to userspace,
1851  *			see if.h for the definitions
1852  *	@gflags:	Global flags ( kept as legacy )
1853  *	@padded:	How much padding added by alloc_netdev()
1854  *	@operstate:	RFC2863 operstate
1855  *	@link_mode:	Mapping policy to operstate
1856  *	@if_port:	Selectable AUI, TP, ...
1857  *	@dma:		DMA channel
1858  *	@mtu:		Interface MTU value
1859  *	@min_mtu:	Interface Minimum MTU value
1860  *	@max_mtu:	Interface Maximum MTU value
1861  *	@type:		Interface hardware type
1862  *	@hard_header_len: Maximum hardware header length.
1863  *	@min_header_len:  Minimum hardware header length
1864  *
1865  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1866  *			  cases can this be guaranteed
1867  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1868  *			  cases can this be guaranteed. Some cases also use
1869  *			  LL_MAX_HEADER instead to allocate the skb
1870  *
1871  *	interface address info:
1872  *
1873  * 	@perm_addr:		Permanent hw address
1874  * 	@addr_assign_type:	Hw address assignment type
1875  * 	@addr_len:		Hardware address length
1876  *	@upper_level:		Maximum depth level of upper devices.
1877  *	@lower_level:		Maximum depth level of lower devices.
1878  *	@neigh_priv_len:	Used in neigh_alloc()
1879  * 	@dev_id:		Used to differentiate devices that share
1880  * 				the same link layer address
1881  * 	@dev_port:		Used to differentiate devices that share
1882  * 				the same function
1883  *	@addr_list_lock:	XXX: need comments on this one
1884  *	@name_assign_type:	network interface name assignment type
1885  *	@uc_promisc:		Counter that indicates promiscuous mode
1886  *				has been enabled due to the need to listen to
1887  *				additional unicast addresses in a device that
1888  *				does not implement ndo_set_rx_mode()
1889  *	@uc:			unicast mac addresses
1890  *	@mc:			multicast mac addresses
1891  *	@dev_addrs:		list of device hw addresses
1892  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1893  *	@promiscuity:		Number of times the NIC is told to work in
1894  *				promiscuous mode; if it becomes 0 the NIC will
1895  *				exit promiscuous mode
1896  *	@allmulti:		Counter, enables or disables allmulticast mode
1897  *
1898  *	@vlan_info:	VLAN info
1899  *	@dsa_ptr:	dsa specific data
1900  *	@tipc_ptr:	TIPC specific data
1901  *	@atalk_ptr:	AppleTalk link
1902  *	@ip_ptr:	IPv4 specific data
1903  *	@ip6_ptr:	IPv6 specific data
1904  *	@ax25_ptr:	AX.25 specific data
1905  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1906  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1907  *			 device struct
1908  *	@mpls_ptr:	mpls_dev struct pointer
1909  *	@mctp_ptr:	MCTP specific data
1910  *
1911  *	@dev_addr:	Hw address (before bcast,
1912  *			because most packets are unicast)
1913  *
1914  *	@_rx:			Array of RX queues
1915  *	@num_rx_queues:		Number of RX queues
1916  *				allocated at register_netdev() time
1917  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1918  *	@xdp_prog:		XDP sockets filter program pointer
1919  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1920  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1921  *				allow to avoid NIC hard IRQ, on busy queues.
1922  *
1923  *	@rx_handler:		handler for received packets
1924  *	@rx_handler_data: 	XXX: need comments on this one
1925  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1926  *				ingress processing
1927  *	@ingress_queue:		XXX: need comments on this one
1928  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1929  *	@broadcast:		hw bcast address
1930  *
1931  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1932  *			indexed by RX queue number. Assigned by driver.
1933  *			This must only be set if the ndo_rx_flow_steer
1934  *			operation is defined
1935  *	@index_hlist:		Device index hash chain
1936  *
1937  *	@_tx:			Array of TX queues
1938  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1939  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1940  *	@qdisc:			Root qdisc from userspace point of view
1941  *	@tx_queue_len:		Max frames per queue allowed
1942  *	@tx_global_lock: 	XXX: need comments on this one
1943  *	@xdp_bulkq:		XDP device bulk queue
1944  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1945  *
1946  *	@xps_maps:	XXX: need comments on this one
1947  *	@miniq_egress:		clsact qdisc specific data for
1948  *				egress processing
1949  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1950  *	@qdisc_hash:		qdisc hash table
1951  *	@watchdog_timeo:	Represents the timeout that is used by
1952  *				the watchdog (see dev_watchdog())
1953  *	@watchdog_timer:	List of timers
1954  *
1955  *	@proto_down_reason:	reason a netdev interface is held down
1956  *	@pcpu_refcnt:		Number of references to this device
1957  *	@dev_refcnt:		Number of references to this device
1958  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1959  *	@todo_list:		Delayed register/unregister
1960  *	@link_watch_list:	XXX: need comments on this one
1961  *
1962  *	@reg_state:		Register/unregister state machine
1963  *	@dismantle:		Device is going to be freed
1964  *	@rtnl_link_state:	This enum represents the phases of creating
1965  *				a new link
1966  *
1967  *	@needs_free_netdev:	Should unregister perform free_netdev?
1968  *	@priv_destructor:	Called from unregister
1969  *	@npinfo:		XXX: need comments on this one
1970  * 	@nd_net:		Network namespace this network device is inside
1971  *
1972  * 	@ml_priv:	Mid-layer private
1973  *	@ml_priv_type:  Mid-layer private type
1974  * 	@lstats:	Loopback statistics
1975  * 	@tstats:	Tunnel statistics
1976  * 	@dstats:	Dummy statistics
1977  * 	@vstats:	Virtual ethernet statistics
1978  *
1979  *	@garp_port:	GARP
1980  *	@mrp_port:	MRP
1981  *
1982  *	@dm_private:	Drop monitor private
1983  *
1984  *	@dev:		Class/net/name entry
1985  *	@sysfs_groups:	Space for optional device, statistics and wireless
1986  *			sysfs groups
1987  *
1988  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1989  *	@rtnl_link_ops:	Rtnl_link_ops
1990  *
1991  *	@gso_max_size:	Maximum size of generic segmentation offload
1992  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1993  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1994  *			NIC for GSO
1995  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1996  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1997  * 				for IPv4.
1998  *
1999  *	@dcbnl_ops:	Data Center Bridging netlink ops
2000  *	@num_tc:	Number of traffic classes in the net device
2001  *	@tc_to_txq:	XXX: need comments on this one
2002  *	@prio_tc_map:	XXX: need comments on this one
2003  *
2004  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2005  *
2006  *	@priomap:	XXX: need comments on this one
2007  *	@phydev:	Physical device may attach itself
2008  *			for hardware timestamping
2009  *	@sfp_bus:	attached &struct sfp_bus structure.
2010  *
2011  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2012  *
2013  *	@proto_down:	protocol port state information can be sent to the
2014  *			switch driver and used to set the phys state of the
2015  *			switch port.
2016  *
2017  *	@wol_enabled:	Wake-on-LAN is enabled
2018  *
2019  *	@threaded:	napi threaded mode is enabled
2020  *
2021  *	@net_notifier_list:	List of per-net netdev notifier block
2022  *				that follow this device when it is moved
2023  *				to another network namespace.
2024  *
2025  *	@macsec_ops:    MACsec offloading ops
2026  *
2027  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2028  *				offload capabilities of the device
2029  *	@udp_tunnel_nic:	UDP tunnel offload state
2030  *	@xdp_state:		stores info on attached XDP BPF programs
2031  *
2032  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2033  *			dev->addr_list_lock.
2034  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2035  *			keep a list of interfaces to be deleted.
2036  *	@gro_max_size:	Maximum size of aggregated packet in generic
2037  *			receive offload (GRO)
2038  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2039  * 				receive offload (GRO), for IPv4.
2040  *
2041  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2042  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2043  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2044  *	@dev_registered_tracker:	tracker for reference held while
2045  *					registered
2046  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2047  *
2048  *	@devlink_port:	Pointer to related devlink port structure.
2049  *			Assigned by a driver before netdev registration using
2050  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2051  *			during the time netdevice is registered.
2052  *
2053  *	FIXME: cleanup struct net_device such that network protocol info
2054  *	moves out.
2055  */
2056 
2057 struct net_device {
2058 	char			name[IFNAMSIZ];
2059 	struct netdev_name_node	*name_node;
2060 	struct dev_ifalias	__rcu *ifalias;
2061 	/*
2062 	 *	I/O specific fields
2063 	 *	FIXME: Merge these and struct ifmap into one
2064 	 */
2065 	unsigned long		mem_end;
2066 	unsigned long		mem_start;
2067 	unsigned long		base_addr;
2068 
2069 	/*
2070 	 *	Some hardware also needs these fields (state,dev_list,
2071 	 *	napi_list,unreg_list,close_list) but they are not
2072 	 *	part of the usual set specified in Space.c.
2073 	 */
2074 
2075 	unsigned long		state;
2076 
2077 	struct list_head	dev_list;
2078 	struct list_head	napi_list;
2079 	struct list_head	unreg_list;
2080 	struct list_head	close_list;
2081 	struct list_head	ptype_all;
2082 	struct list_head	ptype_specific;
2083 
2084 	struct {
2085 		struct list_head upper;
2086 		struct list_head lower;
2087 	} adj_list;
2088 
2089 	/* Read-mostly cache-line for fast-path access */
2090 	unsigned int		flags;
2091 	xdp_features_t		xdp_features;
2092 	unsigned long long	priv_flags;
2093 	const struct net_device_ops *netdev_ops;
2094 	const struct xdp_metadata_ops *xdp_metadata_ops;
2095 	int			ifindex;
2096 	unsigned short		gflags;
2097 	unsigned short		hard_header_len;
2098 
2099 	/* Note : dev->mtu is often read without holding a lock.
2100 	 * Writers usually hold RTNL.
2101 	 * It is recommended to use READ_ONCE() to annotate the reads,
2102 	 * and to use WRITE_ONCE() to annotate the writes.
2103 	 */
2104 	unsigned int		mtu;
2105 	unsigned short		needed_headroom;
2106 	unsigned short		needed_tailroom;
2107 
2108 	netdev_features_t	features;
2109 	netdev_features_t	hw_features;
2110 	netdev_features_t	wanted_features;
2111 	netdev_features_t	vlan_features;
2112 	netdev_features_t	hw_enc_features;
2113 	netdev_features_t	mpls_features;
2114 	netdev_features_t	gso_partial_features;
2115 
2116 	unsigned int		min_mtu;
2117 	unsigned int		max_mtu;
2118 	unsigned short		type;
2119 	unsigned char		min_header_len;
2120 	unsigned char		name_assign_type;
2121 
2122 	int			group;
2123 
2124 	struct net_device_stats	stats; /* not used by modern drivers */
2125 
2126 	struct net_device_core_stats __percpu *core_stats;
2127 
2128 	/* Stats to monitor link on/off, flapping */
2129 	atomic_t		carrier_up_count;
2130 	atomic_t		carrier_down_count;
2131 
2132 #ifdef CONFIG_WIRELESS_EXT
2133 	const struct iw_handler_def *wireless_handlers;
2134 	struct iw_public_data	*wireless_data;
2135 #endif
2136 	const struct ethtool_ops *ethtool_ops;
2137 #ifdef CONFIG_NET_L3_MASTER_DEV
2138 	const struct l3mdev_ops	*l3mdev_ops;
2139 #endif
2140 #if IS_ENABLED(CONFIG_IPV6)
2141 	const struct ndisc_ops *ndisc_ops;
2142 #endif
2143 
2144 #ifdef CONFIG_XFRM_OFFLOAD
2145 	const struct xfrmdev_ops *xfrmdev_ops;
2146 #endif
2147 
2148 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2149 	const struct tlsdev_ops *tlsdev_ops;
2150 #endif
2151 
2152 	const struct header_ops *header_ops;
2153 
2154 	unsigned char		operstate;
2155 	unsigned char		link_mode;
2156 
2157 	unsigned char		if_port;
2158 	unsigned char		dma;
2159 
2160 	/* Interface address info. */
2161 	unsigned char		perm_addr[MAX_ADDR_LEN];
2162 	unsigned char		addr_assign_type;
2163 	unsigned char		addr_len;
2164 	unsigned char		upper_level;
2165 	unsigned char		lower_level;
2166 
2167 	unsigned short		neigh_priv_len;
2168 	unsigned short          dev_id;
2169 	unsigned short          dev_port;
2170 	unsigned short		padded;
2171 
2172 	spinlock_t		addr_list_lock;
2173 	int			irq;
2174 
2175 	struct netdev_hw_addr_list	uc;
2176 	struct netdev_hw_addr_list	mc;
2177 	struct netdev_hw_addr_list	dev_addrs;
2178 
2179 #ifdef CONFIG_SYSFS
2180 	struct kset		*queues_kset;
2181 #endif
2182 #ifdef CONFIG_LOCKDEP
2183 	struct list_head	unlink_list;
2184 #endif
2185 	unsigned int		promiscuity;
2186 	unsigned int		allmulti;
2187 	bool			uc_promisc;
2188 #ifdef CONFIG_LOCKDEP
2189 	unsigned char		nested_level;
2190 #endif
2191 
2192 
2193 	/* Protocol-specific pointers */
2194 
2195 	struct in_device __rcu	*ip_ptr;
2196 	struct inet6_dev __rcu	*ip6_ptr;
2197 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2198 	struct vlan_info __rcu	*vlan_info;
2199 #endif
2200 #if IS_ENABLED(CONFIG_NET_DSA)
2201 	struct dsa_port		*dsa_ptr;
2202 #endif
2203 #if IS_ENABLED(CONFIG_TIPC)
2204 	struct tipc_bearer __rcu *tipc_ptr;
2205 #endif
2206 #if IS_ENABLED(CONFIG_ATALK)
2207 	void 			*atalk_ptr;
2208 #endif
2209 #if IS_ENABLED(CONFIG_AX25)
2210 	void			*ax25_ptr;
2211 #endif
2212 #if IS_ENABLED(CONFIG_CFG80211)
2213 	struct wireless_dev	*ieee80211_ptr;
2214 #endif
2215 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2216 	struct wpan_dev		*ieee802154_ptr;
2217 #endif
2218 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2219 	struct mpls_dev __rcu	*mpls_ptr;
2220 #endif
2221 #if IS_ENABLED(CONFIG_MCTP)
2222 	struct mctp_dev __rcu	*mctp_ptr;
2223 #endif
2224 
2225 /*
2226  * Cache lines mostly used on receive path (including eth_type_trans())
2227  */
2228 	/* Interface address info used in eth_type_trans() */
2229 	const unsigned char	*dev_addr;
2230 
2231 	struct netdev_rx_queue	*_rx;
2232 	unsigned int		num_rx_queues;
2233 	unsigned int		real_num_rx_queues;
2234 
2235 	struct bpf_prog __rcu	*xdp_prog;
2236 	unsigned long		gro_flush_timeout;
2237 	int			napi_defer_hard_irqs;
2238 #define GRO_LEGACY_MAX_SIZE	65536u
2239 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2240  * and shinfo->gso_segs is a 16bit field.
2241  */
2242 #define GRO_MAX_SIZE		(8 * 65535u)
2243 	unsigned int		gro_max_size;
2244 	unsigned int		gro_ipv4_max_size;
2245 	rx_handler_func_t __rcu	*rx_handler;
2246 	void __rcu		*rx_handler_data;
2247 
2248 #ifdef CONFIG_NET_CLS_ACT
2249 	struct mini_Qdisc __rcu	*miniq_ingress;
2250 #endif
2251 	struct netdev_queue __rcu *ingress_queue;
2252 #ifdef CONFIG_NETFILTER_INGRESS
2253 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2254 #endif
2255 
2256 	unsigned char		broadcast[MAX_ADDR_LEN];
2257 #ifdef CONFIG_RFS_ACCEL
2258 	struct cpu_rmap		*rx_cpu_rmap;
2259 #endif
2260 	struct hlist_node	index_hlist;
2261 
2262 /*
2263  * Cache lines mostly used on transmit path
2264  */
2265 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2266 	unsigned int		num_tx_queues;
2267 	unsigned int		real_num_tx_queues;
2268 	struct Qdisc __rcu	*qdisc;
2269 	unsigned int		tx_queue_len;
2270 	spinlock_t		tx_global_lock;
2271 
2272 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2273 
2274 #ifdef CONFIG_XPS
2275 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2276 #endif
2277 #ifdef CONFIG_NET_CLS_ACT
2278 	struct mini_Qdisc __rcu	*miniq_egress;
2279 #endif
2280 #ifdef CONFIG_NETFILTER_EGRESS
2281 	struct nf_hook_entries __rcu *nf_hooks_egress;
2282 #endif
2283 
2284 #ifdef CONFIG_NET_SCHED
2285 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2286 #endif
2287 	/* These may be needed for future network-power-down code. */
2288 	struct timer_list	watchdog_timer;
2289 	int			watchdog_timeo;
2290 
2291 	u32                     proto_down_reason;
2292 
2293 	struct list_head	todo_list;
2294 
2295 #ifdef CONFIG_PCPU_DEV_REFCNT
2296 	int __percpu		*pcpu_refcnt;
2297 #else
2298 	refcount_t		dev_refcnt;
2299 #endif
2300 	struct ref_tracker_dir	refcnt_tracker;
2301 
2302 	struct list_head	link_watch_list;
2303 
2304 	enum { NETREG_UNINITIALIZED=0,
2305 	       NETREG_REGISTERED,	/* completed register_netdevice */
2306 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2307 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2308 	       NETREG_RELEASED,		/* called free_netdev */
2309 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2310 	} reg_state:8;
2311 
2312 	bool dismantle;
2313 
2314 	enum {
2315 		RTNL_LINK_INITIALIZED,
2316 		RTNL_LINK_INITIALIZING,
2317 	} rtnl_link_state:16;
2318 
2319 	bool needs_free_netdev;
2320 	void (*priv_destructor)(struct net_device *dev);
2321 
2322 #ifdef CONFIG_NETPOLL
2323 	struct netpoll_info __rcu	*npinfo;
2324 #endif
2325 
2326 	possible_net_t			nd_net;
2327 
2328 	/* mid-layer private */
2329 	void				*ml_priv;
2330 	enum netdev_ml_priv_type	ml_priv_type;
2331 
2332 	union {
2333 		struct pcpu_lstats __percpu		*lstats;
2334 		struct pcpu_sw_netstats __percpu	*tstats;
2335 		struct pcpu_dstats __percpu		*dstats;
2336 	};
2337 
2338 #if IS_ENABLED(CONFIG_GARP)
2339 	struct garp_port __rcu	*garp_port;
2340 #endif
2341 #if IS_ENABLED(CONFIG_MRP)
2342 	struct mrp_port __rcu	*mrp_port;
2343 #endif
2344 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2345 	struct dm_hw_stat_delta __rcu *dm_private;
2346 #endif
2347 	struct device		dev;
2348 	const struct attribute_group *sysfs_groups[4];
2349 	const struct attribute_group *sysfs_rx_queue_group;
2350 
2351 	const struct rtnl_link_ops *rtnl_link_ops;
2352 
2353 	/* for setting kernel sock attribute on TCP connection setup */
2354 #define GSO_MAX_SEGS		65535u
2355 #define GSO_LEGACY_MAX_SIZE	65536u
2356 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2357  * and shinfo->gso_segs is a 16bit field.
2358  */
2359 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2360 
2361 	unsigned int		gso_max_size;
2362 #define TSO_LEGACY_MAX_SIZE	65536
2363 #define TSO_MAX_SIZE		UINT_MAX
2364 	unsigned int		tso_max_size;
2365 	u16			gso_max_segs;
2366 #define TSO_MAX_SEGS		U16_MAX
2367 	u16			tso_max_segs;
2368 	unsigned int		gso_ipv4_max_size;
2369 
2370 #ifdef CONFIG_DCB
2371 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2372 #endif
2373 	s16			num_tc;
2374 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2375 	u8			prio_tc_map[TC_BITMASK + 1];
2376 
2377 #if IS_ENABLED(CONFIG_FCOE)
2378 	unsigned int		fcoe_ddp_xid;
2379 #endif
2380 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2381 	struct netprio_map __rcu *priomap;
2382 #endif
2383 	struct phy_device	*phydev;
2384 	struct sfp_bus		*sfp_bus;
2385 	struct lock_class_key	*qdisc_tx_busylock;
2386 	bool			proto_down;
2387 	unsigned		wol_enabled:1;
2388 	unsigned		threaded:1;
2389 
2390 	struct list_head	net_notifier_list;
2391 
2392 #if IS_ENABLED(CONFIG_MACSEC)
2393 	/* MACsec management functions */
2394 	const struct macsec_ops *macsec_ops;
2395 #endif
2396 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2397 	struct udp_tunnel_nic	*udp_tunnel_nic;
2398 
2399 	/* protected by rtnl_lock */
2400 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2401 
2402 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2403 	netdevice_tracker	linkwatch_dev_tracker;
2404 	netdevice_tracker	watchdog_dev_tracker;
2405 	netdevice_tracker	dev_registered_tracker;
2406 	struct rtnl_hw_stats64	*offload_xstats_l3;
2407 
2408 	struct devlink_port	*devlink_port;
2409 };
2410 #define to_net_dev(d) container_of(d, struct net_device, dev)
2411 
2412 /*
2413  * Driver should use this to assign devlink port instance to a netdevice
2414  * before it registers the netdevice. Therefore devlink_port is static
2415  * during the netdev lifetime after it is registered.
2416  */
2417 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2418 ({								\
2419 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2420 	((dev)->devlink_port = (port));				\
2421 })
2422 
2423 static inline bool netif_elide_gro(const struct net_device *dev)
2424 {
2425 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2426 		return true;
2427 	return false;
2428 }
2429 
2430 #define	NETDEV_ALIGN		32
2431 
2432 static inline
2433 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2434 {
2435 	return dev->prio_tc_map[prio & TC_BITMASK];
2436 }
2437 
2438 static inline
2439 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2440 {
2441 	if (tc >= dev->num_tc)
2442 		return -EINVAL;
2443 
2444 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2445 	return 0;
2446 }
2447 
2448 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2449 void netdev_reset_tc(struct net_device *dev);
2450 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2451 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2452 
2453 static inline
2454 int netdev_get_num_tc(struct net_device *dev)
2455 {
2456 	return dev->num_tc;
2457 }
2458 
2459 static inline void net_prefetch(void *p)
2460 {
2461 	prefetch(p);
2462 #if L1_CACHE_BYTES < 128
2463 	prefetch((u8 *)p + L1_CACHE_BYTES);
2464 #endif
2465 }
2466 
2467 static inline void net_prefetchw(void *p)
2468 {
2469 	prefetchw(p);
2470 #if L1_CACHE_BYTES < 128
2471 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2472 #endif
2473 }
2474 
2475 void netdev_unbind_sb_channel(struct net_device *dev,
2476 			      struct net_device *sb_dev);
2477 int netdev_bind_sb_channel_queue(struct net_device *dev,
2478 				 struct net_device *sb_dev,
2479 				 u8 tc, u16 count, u16 offset);
2480 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2481 static inline int netdev_get_sb_channel(struct net_device *dev)
2482 {
2483 	return max_t(int, -dev->num_tc, 0);
2484 }
2485 
2486 static inline
2487 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2488 					 unsigned int index)
2489 {
2490 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2491 	return &dev->_tx[index];
2492 }
2493 
2494 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2495 						    const struct sk_buff *skb)
2496 {
2497 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2498 }
2499 
2500 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2501 					    void (*f)(struct net_device *,
2502 						      struct netdev_queue *,
2503 						      void *),
2504 					    void *arg)
2505 {
2506 	unsigned int i;
2507 
2508 	for (i = 0; i < dev->num_tx_queues; i++)
2509 		f(dev, &dev->_tx[i], arg);
2510 }
2511 
2512 #define netdev_lockdep_set_classes(dev)				\
2513 {								\
2514 	static struct lock_class_key qdisc_tx_busylock_key;	\
2515 	static struct lock_class_key qdisc_xmit_lock_key;	\
2516 	static struct lock_class_key dev_addr_list_lock_key;	\
2517 	unsigned int i;						\
2518 								\
2519 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2520 	lockdep_set_class(&(dev)->addr_list_lock,		\
2521 			  &dev_addr_list_lock_key);		\
2522 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2523 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2524 				  &qdisc_xmit_lock_key);	\
2525 }
2526 
2527 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2528 		     struct net_device *sb_dev);
2529 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2530 					 struct sk_buff *skb,
2531 					 struct net_device *sb_dev);
2532 
2533 /* returns the headroom that the master device needs to take in account
2534  * when forwarding to this dev
2535  */
2536 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2537 {
2538 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2539 }
2540 
2541 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2542 {
2543 	if (dev->netdev_ops->ndo_set_rx_headroom)
2544 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2545 }
2546 
2547 /* set the device rx headroom to the dev's default */
2548 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2549 {
2550 	netdev_set_rx_headroom(dev, -1);
2551 }
2552 
2553 static inline void *netdev_get_ml_priv(struct net_device *dev,
2554 				       enum netdev_ml_priv_type type)
2555 {
2556 	if (dev->ml_priv_type != type)
2557 		return NULL;
2558 
2559 	return dev->ml_priv;
2560 }
2561 
2562 static inline void netdev_set_ml_priv(struct net_device *dev,
2563 				      void *ml_priv,
2564 				      enum netdev_ml_priv_type type)
2565 {
2566 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2567 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2568 	     dev->ml_priv_type, type);
2569 	WARN(!dev->ml_priv_type && dev->ml_priv,
2570 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2571 
2572 	dev->ml_priv = ml_priv;
2573 	dev->ml_priv_type = type;
2574 }
2575 
2576 /*
2577  * Net namespace inlines
2578  */
2579 static inline
2580 struct net *dev_net(const struct net_device *dev)
2581 {
2582 	return read_pnet(&dev->nd_net);
2583 }
2584 
2585 static inline
2586 void dev_net_set(struct net_device *dev, struct net *net)
2587 {
2588 	write_pnet(&dev->nd_net, net);
2589 }
2590 
2591 /**
2592  *	netdev_priv - access network device private data
2593  *	@dev: network device
2594  *
2595  * Get network device private data
2596  */
2597 static inline void *netdev_priv(const struct net_device *dev)
2598 {
2599 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2600 }
2601 
2602 /* Set the sysfs physical device reference for the network logical device
2603  * if set prior to registration will cause a symlink during initialization.
2604  */
2605 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2606 
2607 /* Set the sysfs device type for the network logical device to allow
2608  * fine-grained identification of different network device types. For
2609  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2610  */
2611 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2612 
2613 /* Default NAPI poll() weight
2614  * Device drivers are strongly advised to not use bigger value
2615  */
2616 #define NAPI_POLL_WEIGHT 64
2617 
2618 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2619 			   int (*poll)(struct napi_struct *, int), int weight);
2620 
2621 /**
2622  * netif_napi_add() - initialize a NAPI context
2623  * @dev:  network device
2624  * @napi: NAPI context
2625  * @poll: polling function
2626  *
2627  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2628  * *any* of the other NAPI-related functions.
2629  */
2630 static inline void
2631 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2632 	       int (*poll)(struct napi_struct *, int))
2633 {
2634 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2635 }
2636 
2637 static inline void
2638 netif_napi_add_tx_weight(struct net_device *dev,
2639 			 struct napi_struct *napi,
2640 			 int (*poll)(struct napi_struct *, int),
2641 			 int weight)
2642 {
2643 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2644 	netif_napi_add_weight(dev, napi, poll, weight);
2645 }
2646 
2647 /**
2648  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2649  * @dev:  network device
2650  * @napi: NAPI context
2651  * @poll: polling function
2652  *
2653  * This variant of netif_napi_add() should be used from drivers using NAPI
2654  * to exclusively poll a TX queue.
2655  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2656  */
2657 static inline void netif_napi_add_tx(struct net_device *dev,
2658 				     struct napi_struct *napi,
2659 				     int (*poll)(struct napi_struct *, int))
2660 {
2661 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2662 }
2663 
2664 /**
2665  *  __netif_napi_del - remove a NAPI context
2666  *  @napi: NAPI context
2667  *
2668  * Warning: caller must observe RCU grace period before freeing memory
2669  * containing @napi. Drivers might want to call this helper to combine
2670  * all the needed RCU grace periods into a single one.
2671  */
2672 void __netif_napi_del(struct napi_struct *napi);
2673 
2674 /**
2675  *  netif_napi_del - remove a NAPI context
2676  *  @napi: NAPI context
2677  *
2678  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2679  */
2680 static inline void netif_napi_del(struct napi_struct *napi)
2681 {
2682 	__netif_napi_del(napi);
2683 	synchronize_net();
2684 }
2685 
2686 struct packet_type {
2687 	__be16			type;	/* This is really htons(ether_type). */
2688 	bool			ignore_outgoing;
2689 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2690 	netdevice_tracker	dev_tracker;
2691 	int			(*func) (struct sk_buff *,
2692 					 struct net_device *,
2693 					 struct packet_type *,
2694 					 struct net_device *);
2695 	void			(*list_func) (struct list_head *,
2696 					      struct packet_type *,
2697 					      struct net_device *);
2698 	bool			(*id_match)(struct packet_type *ptype,
2699 					    struct sock *sk);
2700 	struct net		*af_packet_net;
2701 	void			*af_packet_priv;
2702 	struct list_head	list;
2703 };
2704 
2705 struct offload_callbacks {
2706 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2707 						netdev_features_t features);
2708 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2709 						struct sk_buff *skb);
2710 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2711 };
2712 
2713 struct packet_offload {
2714 	__be16			 type;	/* This is really htons(ether_type). */
2715 	u16			 priority;
2716 	struct offload_callbacks callbacks;
2717 	struct list_head	 list;
2718 };
2719 
2720 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2721 struct pcpu_sw_netstats {
2722 	u64_stats_t		rx_packets;
2723 	u64_stats_t		rx_bytes;
2724 	u64_stats_t		tx_packets;
2725 	u64_stats_t		tx_bytes;
2726 	struct u64_stats_sync   syncp;
2727 } __aligned(4 * sizeof(u64));
2728 
2729 struct pcpu_lstats {
2730 	u64_stats_t packets;
2731 	u64_stats_t bytes;
2732 	struct u64_stats_sync syncp;
2733 } __aligned(2 * sizeof(u64));
2734 
2735 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2736 
2737 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2738 {
2739 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2740 
2741 	u64_stats_update_begin(&tstats->syncp);
2742 	u64_stats_add(&tstats->rx_bytes, len);
2743 	u64_stats_inc(&tstats->rx_packets);
2744 	u64_stats_update_end(&tstats->syncp);
2745 }
2746 
2747 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2748 					  unsigned int packets,
2749 					  unsigned int len)
2750 {
2751 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2752 
2753 	u64_stats_update_begin(&tstats->syncp);
2754 	u64_stats_add(&tstats->tx_bytes, len);
2755 	u64_stats_add(&tstats->tx_packets, packets);
2756 	u64_stats_update_end(&tstats->syncp);
2757 }
2758 
2759 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2760 {
2761 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2762 
2763 	u64_stats_update_begin(&lstats->syncp);
2764 	u64_stats_add(&lstats->bytes, len);
2765 	u64_stats_inc(&lstats->packets);
2766 	u64_stats_update_end(&lstats->syncp);
2767 }
2768 
2769 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2770 ({									\
2771 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2772 	if (pcpu_stats)	{						\
2773 		int __cpu;						\
2774 		for_each_possible_cpu(__cpu) {				\
2775 			typeof(type) *stat;				\
2776 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2777 			u64_stats_init(&stat->syncp);			\
2778 		}							\
2779 	}								\
2780 	pcpu_stats;							\
2781 })
2782 
2783 #define netdev_alloc_pcpu_stats(type)					\
2784 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2785 
2786 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2787 ({									\
2788 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2789 	if (pcpu_stats) {						\
2790 		int __cpu;						\
2791 		for_each_possible_cpu(__cpu) {				\
2792 			typeof(type) *stat;				\
2793 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2794 			u64_stats_init(&stat->syncp);			\
2795 		}							\
2796 	}								\
2797 	pcpu_stats;							\
2798 })
2799 
2800 enum netdev_lag_tx_type {
2801 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2802 	NETDEV_LAG_TX_TYPE_RANDOM,
2803 	NETDEV_LAG_TX_TYPE_BROADCAST,
2804 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2805 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2806 	NETDEV_LAG_TX_TYPE_HASH,
2807 };
2808 
2809 enum netdev_lag_hash {
2810 	NETDEV_LAG_HASH_NONE,
2811 	NETDEV_LAG_HASH_L2,
2812 	NETDEV_LAG_HASH_L34,
2813 	NETDEV_LAG_HASH_L23,
2814 	NETDEV_LAG_HASH_E23,
2815 	NETDEV_LAG_HASH_E34,
2816 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2817 	NETDEV_LAG_HASH_UNKNOWN,
2818 };
2819 
2820 struct netdev_lag_upper_info {
2821 	enum netdev_lag_tx_type tx_type;
2822 	enum netdev_lag_hash hash_type;
2823 };
2824 
2825 struct netdev_lag_lower_state_info {
2826 	u8 link_up : 1,
2827 	   tx_enabled : 1;
2828 };
2829 
2830 #include <linux/notifier.h>
2831 
2832 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2833  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2834  * adding new types.
2835  */
2836 enum netdev_cmd {
2837 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2838 	NETDEV_DOWN,
2839 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2840 				   detected a hardware crash and restarted
2841 				   - we can use this eg to kick tcp sessions
2842 				   once done */
2843 	NETDEV_CHANGE,		/* Notify device state change */
2844 	NETDEV_REGISTER,
2845 	NETDEV_UNREGISTER,
2846 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2847 	NETDEV_CHANGEADDR,	/* notify after the address change */
2848 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2849 	NETDEV_GOING_DOWN,
2850 	NETDEV_CHANGENAME,
2851 	NETDEV_FEAT_CHANGE,
2852 	NETDEV_BONDING_FAILOVER,
2853 	NETDEV_PRE_UP,
2854 	NETDEV_PRE_TYPE_CHANGE,
2855 	NETDEV_POST_TYPE_CHANGE,
2856 	NETDEV_POST_INIT,
2857 	NETDEV_PRE_UNINIT,
2858 	NETDEV_RELEASE,
2859 	NETDEV_NOTIFY_PEERS,
2860 	NETDEV_JOIN,
2861 	NETDEV_CHANGEUPPER,
2862 	NETDEV_RESEND_IGMP,
2863 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2864 	NETDEV_CHANGEINFODATA,
2865 	NETDEV_BONDING_INFO,
2866 	NETDEV_PRECHANGEUPPER,
2867 	NETDEV_CHANGELOWERSTATE,
2868 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2869 	NETDEV_UDP_TUNNEL_DROP_INFO,
2870 	NETDEV_CHANGE_TX_QUEUE_LEN,
2871 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2872 	NETDEV_CVLAN_FILTER_DROP_INFO,
2873 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2874 	NETDEV_SVLAN_FILTER_DROP_INFO,
2875 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2876 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2877 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2878 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2879 	NETDEV_XDP_FEAT_CHANGE,
2880 };
2881 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2882 
2883 int register_netdevice_notifier(struct notifier_block *nb);
2884 int unregister_netdevice_notifier(struct notifier_block *nb);
2885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2886 int unregister_netdevice_notifier_net(struct net *net,
2887 				      struct notifier_block *nb);
2888 int register_netdevice_notifier_dev_net(struct net_device *dev,
2889 					struct notifier_block *nb,
2890 					struct netdev_net_notifier *nn);
2891 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2892 					  struct notifier_block *nb,
2893 					  struct netdev_net_notifier *nn);
2894 
2895 struct netdev_notifier_info {
2896 	struct net_device	*dev;
2897 	struct netlink_ext_ack	*extack;
2898 };
2899 
2900 struct netdev_notifier_info_ext {
2901 	struct netdev_notifier_info info; /* must be first */
2902 	union {
2903 		u32 mtu;
2904 	} ext;
2905 };
2906 
2907 struct netdev_notifier_change_info {
2908 	struct netdev_notifier_info info; /* must be first */
2909 	unsigned int flags_changed;
2910 };
2911 
2912 struct netdev_notifier_changeupper_info {
2913 	struct netdev_notifier_info info; /* must be first */
2914 	struct net_device *upper_dev; /* new upper dev */
2915 	bool master; /* is upper dev master */
2916 	bool linking; /* is the notification for link or unlink */
2917 	void *upper_info; /* upper dev info */
2918 };
2919 
2920 struct netdev_notifier_changelowerstate_info {
2921 	struct netdev_notifier_info info; /* must be first */
2922 	void *lower_state_info; /* is lower dev state */
2923 };
2924 
2925 struct netdev_notifier_pre_changeaddr_info {
2926 	struct netdev_notifier_info info; /* must be first */
2927 	const unsigned char *dev_addr;
2928 };
2929 
2930 enum netdev_offload_xstats_type {
2931 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2932 };
2933 
2934 struct netdev_notifier_offload_xstats_info {
2935 	struct netdev_notifier_info info; /* must be first */
2936 	enum netdev_offload_xstats_type type;
2937 
2938 	union {
2939 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2940 		struct netdev_notifier_offload_xstats_rd *report_delta;
2941 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2942 		struct netdev_notifier_offload_xstats_ru *report_used;
2943 	};
2944 };
2945 
2946 int netdev_offload_xstats_enable(struct net_device *dev,
2947 				 enum netdev_offload_xstats_type type,
2948 				 struct netlink_ext_ack *extack);
2949 int netdev_offload_xstats_disable(struct net_device *dev,
2950 				  enum netdev_offload_xstats_type type);
2951 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2952 				   enum netdev_offload_xstats_type type);
2953 int netdev_offload_xstats_get(struct net_device *dev,
2954 			      enum netdev_offload_xstats_type type,
2955 			      struct rtnl_hw_stats64 *stats, bool *used,
2956 			      struct netlink_ext_ack *extack);
2957 void
2958 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2959 				   const struct rtnl_hw_stats64 *stats);
2960 void
2961 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2962 void netdev_offload_xstats_push_delta(struct net_device *dev,
2963 				      enum netdev_offload_xstats_type type,
2964 				      const struct rtnl_hw_stats64 *stats);
2965 
2966 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2967 					     struct net_device *dev)
2968 {
2969 	info->dev = dev;
2970 	info->extack = NULL;
2971 }
2972 
2973 static inline struct net_device *
2974 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2975 {
2976 	return info->dev;
2977 }
2978 
2979 static inline struct netlink_ext_ack *
2980 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2981 {
2982 	return info->extack;
2983 }
2984 
2985 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2986 
2987 
2988 extern rwlock_t				dev_base_lock;		/* Device list lock */
2989 
2990 #define for_each_netdev(net, d)		\
2991 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2992 #define for_each_netdev_reverse(net, d)	\
2993 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2994 #define for_each_netdev_rcu(net, d)		\
2995 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2996 #define for_each_netdev_safe(net, d, n)	\
2997 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2998 #define for_each_netdev_continue(net, d)		\
2999 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3000 #define for_each_netdev_continue_reverse(net, d)		\
3001 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3002 						     dev_list)
3003 #define for_each_netdev_continue_rcu(net, d)		\
3004 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3005 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3006 		for_each_netdev_rcu(&init_net, slave)	\
3007 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3008 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3009 
3010 static inline struct net_device *next_net_device(struct net_device *dev)
3011 {
3012 	struct list_head *lh;
3013 	struct net *net;
3014 
3015 	net = dev_net(dev);
3016 	lh = dev->dev_list.next;
3017 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3018 }
3019 
3020 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3021 {
3022 	struct list_head *lh;
3023 	struct net *net;
3024 
3025 	net = dev_net(dev);
3026 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3027 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3028 }
3029 
3030 static inline struct net_device *first_net_device(struct net *net)
3031 {
3032 	return list_empty(&net->dev_base_head) ? NULL :
3033 		net_device_entry(net->dev_base_head.next);
3034 }
3035 
3036 static inline struct net_device *first_net_device_rcu(struct net *net)
3037 {
3038 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3039 
3040 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3041 }
3042 
3043 int netdev_boot_setup_check(struct net_device *dev);
3044 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3045 				       const char *hwaddr);
3046 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3047 void dev_add_pack(struct packet_type *pt);
3048 void dev_remove_pack(struct packet_type *pt);
3049 void __dev_remove_pack(struct packet_type *pt);
3050 void dev_add_offload(struct packet_offload *po);
3051 void dev_remove_offload(struct packet_offload *po);
3052 
3053 int dev_get_iflink(const struct net_device *dev);
3054 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3055 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3056 			  struct net_device_path_stack *stack);
3057 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3058 				      unsigned short mask);
3059 struct net_device *dev_get_by_name(struct net *net, const char *name);
3060 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3061 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3062 bool netdev_name_in_use(struct net *net, const char *name);
3063 int dev_alloc_name(struct net_device *dev, const char *name);
3064 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3065 void dev_close(struct net_device *dev);
3066 void dev_close_many(struct list_head *head, bool unlink);
3067 void dev_disable_lro(struct net_device *dev);
3068 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3069 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3070 		     struct net_device *sb_dev);
3071 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3072 		       struct net_device *sb_dev);
3073 
3074 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3075 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3076 
3077 static inline int dev_queue_xmit(struct sk_buff *skb)
3078 {
3079 	return __dev_queue_xmit(skb, NULL);
3080 }
3081 
3082 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3083 				       struct net_device *sb_dev)
3084 {
3085 	return __dev_queue_xmit(skb, sb_dev);
3086 }
3087 
3088 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3089 {
3090 	int ret;
3091 
3092 	ret = __dev_direct_xmit(skb, queue_id);
3093 	if (!dev_xmit_complete(ret))
3094 		kfree_skb(skb);
3095 	return ret;
3096 }
3097 
3098 int register_netdevice(struct net_device *dev);
3099 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3100 void unregister_netdevice_many(struct list_head *head);
3101 static inline void unregister_netdevice(struct net_device *dev)
3102 {
3103 	unregister_netdevice_queue(dev, NULL);
3104 }
3105 
3106 int netdev_refcnt_read(const struct net_device *dev);
3107 void free_netdev(struct net_device *dev);
3108 void netdev_freemem(struct net_device *dev);
3109 int init_dummy_netdev(struct net_device *dev);
3110 
3111 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3112 					 struct sk_buff *skb,
3113 					 bool all_slaves);
3114 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3115 					    struct sock *sk);
3116 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3117 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3118 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3119 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3120 int dev_restart(struct net_device *dev);
3121 
3122 
3123 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3124 				  unsigned short type,
3125 				  const void *daddr, const void *saddr,
3126 				  unsigned int len)
3127 {
3128 	if (!dev->header_ops || !dev->header_ops->create)
3129 		return 0;
3130 
3131 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3132 }
3133 
3134 static inline int dev_parse_header(const struct sk_buff *skb,
3135 				   unsigned char *haddr)
3136 {
3137 	const struct net_device *dev = skb->dev;
3138 
3139 	if (!dev->header_ops || !dev->header_ops->parse)
3140 		return 0;
3141 	return dev->header_ops->parse(skb, haddr);
3142 }
3143 
3144 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3145 {
3146 	const struct net_device *dev = skb->dev;
3147 
3148 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3149 		return 0;
3150 	return dev->header_ops->parse_protocol(skb);
3151 }
3152 
3153 /* ll_header must have at least hard_header_len allocated */
3154 static inline bool dev_validate_header(const struct net_device *dev,
3155 				       char *ll_header, int len)
3156 {
3157 	if (likely(len >= dev->hard_header_len))
3158 		return true;
3159 	if (len < dev->min_header_len)
3160 		return false;
3161 
3162 	if (capable(CAP_SYS_RAWIO)) {
3163 		memset(ll_header + len, 0, dev->hard_header_len - len);
3164 		return true;
3165 	}
3166 
3167 	if (dev->header_ops && dev->header_ops->validate)
3168 		return dev->header_ops->validate(ll_header, len);
3169 
3170 	return false;
3171 }
3172 
3173 static inline bool dev_has_header(const struct net_device *dev)
3174 {
3175 	return dev->header_ops && dev->header_ops->create;
3176 }
3177 
3178 /*
3179  * Incoming packets are placed on per-CPU queues
3180  */
3181 struct softnet_data {
3182 	struct list_head	poll_list;
3183 	struct sk_buff_head	process_queue;
3184 
3185 	/* stats */
3186 	unsigned int		processed;
3187 	unsigned int		time_squeeze;
3188 #ifdef CONFIG_RPS
3189 	struct softnet_data	*rps_ipi_list;
3190 #endif
3191 	bool			in_net_rx_action;
3192 #ifdef CONFIG_NET_FLOW_LIMIT
3193 	struct sd_flow_limit __rcu *flow_limit;
3194 #endif
3195 	struct Qdisc		*output_queue;
3196 	struct Qdisc		**output_queue_tailp;
3197 	struct sk_buff		*completion_queue;
3198 #ifdef CONFIG_XFRM_OFFLOAD
3199 	struct sk_buff_head	xfrm_backlog;
3200 #endif
3201 	/* written and read only by owning cpu: */
3202 	struct {
3203 		u16 recursion;
3204 		u8  more;
3205 #ifdef CONFIG_NET_EGRESS
3206 		u8  skip_txqueue;
3207 #endif
3208 	} xmit;
3209 #ifdef CONFIG_RPS
3210 	/* input_queue_head should be written by cpu owning this struct,
3211 	 * and only read by other cpus. Worth using a cache line.
3212 	 */
3213 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3214 
3215 	/* Elements below can be accessed between CPUs for RPS/RFS */
3216 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3217 	struct softnet_data	*rps_ipi_next;
3218 	unsigned int		cpu;
3219 	unsigned int		input_queue_tail;
3220 #endif
3221 	unsigned int		received_rps;
3222 	unsigned int		dropped;
3223 	struct sk_buff_head	input_pkt_queue;
3224 	struct napi_struct	backlog;
3225 
3226 	/* Another possibly contended cache line */
3227 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3228 	int			defer_count;
3229 	int			defer_ipi_scheduled;
3230 	struct sk_buff		*defer_list;
3231 	call_single_data_t	defer_csd;
3232 };
3233 
3234 static inline void input_queue_head_incr(struct softnet_data *sd)
3235 {
3236 #ifdef CONFIG_RPS
3237 	sd->input_queue_head++;
3238 #endif
3239 }
3240 
3241 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3242 					      unsigned int *qtail)
3243 {
3244 #ifdef CONFIG_RPS
3245 	*qtail = ++sd->input_queue_tail;
3246 #endif
3247 }
3248 
3249 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3250 
3251 static inline int dev_recursion_level(void)
3252 {
3253 	return this_cpu_read(softnet_data.xmit.recursion);
3254 }
3255 
3256 #define XMIT_RECURSION_LIMIT	8
3257 static inline bool dev_xmit_recursion(void)
3258 {
3259 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3260 			XMIT_RECURSION_LIMIT);
3261 }
3262 
3263 static inline void dev_xmit_recursion_inc(void)
3264 {
3265 	__this_cpu_inc(softnet_data.xmit.recursion);
3266 }
3267 
3268 static inline void dev_xmit_recursion_dec(void)
3269 {
3270 	__this_cpu_dec(softnet_data.xmit.recursion);
3271 }
3272 
3273 void __netif_schedule(struct Qdisc *q);
3274 void netif_schedule_queue(struct netdev_queue *txq);
3275 
3276 static inline void netif_tx_schedule_all(struct net_device *dev)
3277 {
3278 	unsigned int i;
3279 
3280 	for (i = 0; i < dev->num_tx_queues; i++)
3281 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3282 }
3283 
3284 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3285 {
3286 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3287 }
3288 
3289 /**
3290  *	netif_start_queue - allow transmit
3291  *	@dev: network device
3292  *
3293  *	Allow upper layers to call the device hard_start_xmit routine.
3294  */
3295 static inline void netif_start_queue(struct net_device *dev)
3296 {
3297 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3298 }
3299 
3300 static inline void netif_tx_start_all_queues(struct net_device *dev)
3301 {
3302 	unsigned int i;
3303 
3304 	for (i = 0; i < dev->num_tx_queues; i++) {
3305 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3306 		netif_tx_start_queue(txq);
3307 	}
3308 }
3309 
3310 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3311 
3312 /**
3313  *	netif_wake_queue - restart transmit
3314  *	@dev: network device
3315  *
3316  *	Allow upper layers to call the device hard_start_xmit routine.
3317  *	Used for flow control when transmit resources are available.
3318  */
3319 static inline void netif_wake_queue(struct net_device *dev)
3320 {
3321 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3322 }
3323 
3324 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3325 {
3326 	unsigned int i;
3327 
3328 	for (i = 0; i < dev->num_tx_queues; i++) {
3329 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3330 		netif_tx_wake_queue(txq);
3331 	}
3332 }
3333 
3334 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3335 {
3336 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3337 }
3338 
3339 /**
3340  *	netif_stop_queue - stop transmitted packets
3341  *	@dev: network device
3342  *
3343  *	Stop upper layers calling the device hard_start_xmit routine.
3344  *	Used for flow control when transmit resources are unavailable.
3345  */
3346 static inline void netif_stop_queue(struct net_device *dev)
3347 {
3348 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3349 }
3350 
3351 void netif_tx_stop_all_queues(struct net_device *dev);
3352 
3353 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3354 {
3355 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3356 }
3357 
3358 /**
3359  *	netif_queue_stopped - test if transmit queue is flowblocked
3360  *	@dev: network device
3361  *
3362  *	Test if transmit queue on device is currently unable to send.
3363  */
3364 static inline bool netif_queue_stopped(const struct net_device *dev)
3365 {
3366 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3367 }
3368 
3369 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3370 {
3371 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3372 }
3373 
3374 static inline bool
3375 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3376 {
3377 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3378 }
3379 
3380 static inline bool
3381 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3382 {
3383 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3384 }
3385 
3386 /**
3387  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3388  *	@dev_queue: pointer to transmit queue
3389  *	@min_limit: dql minimum limit
3390  *
3391  * Forces xmit_more() to return true until the minimum threshold
3392  * defined by @min_limit is reached (or until the tx queue is
3393  * empty). Warning: to be use with care, misuse will impact the
3394  * latency.
3395  */
3396 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3397 						  unsigned int min_limit)
3398 {
3399 #ifdef CONFIG_BQL
3400 	dev_queue->dql.min_limit = min_limit;
3401 #endif
3402 }
3403 
3404 /**
3405  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3406  *	@dev_queue: pointer to transmit queue
3407  *
3408  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3409  * to give appropriate hint to the CPU.
3410  */
3411 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3412 {
3413 #ifdef CONFIG_BQL
3414 	prefetchw(&dev_queue->dql.num_queued);
3415 #endif
3416 }
3417 
3418 /**
3419  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3420  *	@dev_queue: pointer to transmit queue
3421  *
3422  * BQL enabled drivers might use this helper in their TX completion path,
3423  * to give appropriate hint to the CPU.
3424  */
3425 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3426 {
3427 #ifdef CONFIG_BQL
3428 	prefetchw(&dev_queue->dql.limit);
3429 #endif
3430 }
3431 
3432 /**
3433  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3434  *	@dev_queue: network device queue
3435  *	@bytes: number of bytes queued to the device queue
3436  *
3437  *	Report the number of bytes queued for sending/completion to the network
3438  *	device hardware queue. @bytes should be a good approximation and should
3439  *	exactly match netdev_completed_queue() @bytes.
3440  *	This is typically called once per packet, from ndo_start_xmit().
3441  */
3442 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3443 					unsigned int bytes)
3444 {
3445 #ifdef CONFIG_BQL
3446 	dql_queued(&dev_queue->dql, bytes);
3447 
3448 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3449 		return;
3450 
3451 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3452 
3453 	/*
3454 	 * The XOFF flag must be set before checking the dql_avail below,
3455 	 * because in netdev_tx_completed_queue we update the dql_completed
3456 	 * before checking the XOFF flag.
3457 	 */
3458 	smp_mb();
3459 
3460 	/* check again in case another CPU has just made room avail */
3461 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3462 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3463 #endif
3464 }
3465 
3466 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3467  * that they should not test BQL status themselves.
3468  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3469  * skb of a batch.
3470  * Returns true if the doorbell must be used to kick the NIC.
3471  */
3472 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3473 					  unsigned int bytes,
3474 					  bool xmit_more)
3475 {
3476 	if (xmit_more) {
3477 #ifdef CONFIG_BQL
3478 		dql_queued(&dev_queue->dql, bytes);
3479 #endif
3480 		return netif_tx_queue_stopped(dev_queue);
3481 	}
3482 	netdev_tx_sent_queue(dev_queue, bytes);
3483 	return true;
3484 }
3485 
3486 /**
3487  *	netdev_sent_queue - report the number of bytes queued to hardware
3488  *	@dev: network device
3489  *	@bytes: number of bytes queued to the hardware device queue
3490  *
3491  *	Report the number of bytes queued for sending/completion to the network
3492  *	device hardware queue#0. @bytes should be a good approximation and should
3493  *	exactly match netdev_completed_queue() @bytes.
3494  *	This is typically called once per packet, from ndo_start_xmit().
3495  */
3496 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3497 {
3498 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3499 }
3500 
3501 static inline bool __netdev_sent_queue(struct net_device *dev,
3502 				       unsigned int bytes,
3503 				       bool xmit_more)
3504 {
3505 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3506 				      xmit_more);
3507 }
3508 
3509 /**
3510  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3511  *	@dev_queue: network device queue
3512  *	@pkts: number of packets (currently ignored)
3513  *	@bytes: number of bytes dequeued from the device queue
3514  *
3515  *	Must be called at most once per TX completion round (and not per
3516  *	individual packet), so that BQL can adjust its limits appropriately.
3517  */
3518 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3519 					     unsigned int pkts, unsigned int bytes)
3520 {
3521 #ifdef CONFIG_BQL
3522 	if (unlikely(!bytes))
3523 		return;
3524 
3525 	dql_completed(&dev_queue->dql, bytes);
3526 
3527 	/*
3528 	 * Without the memory barrier there is a small possiblity that
3529 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3530 	 * be stopped forever
3531 	 */
3532 	smp_mb();
3533 
3534 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3535 		return;
3536 
3537 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3538 		netif_schedule_queue(dev_queue);
3539 #endif
3540 }
3541 
3542 /**
3543  * 	netdev_completed_queue - report bytes and packets completed by device
3544  * 	@dev: network device
3545  * 	@pkts: actual number of packets sent over the medium
3546  * 	@bytes: actual number of bytes sent over the medium
3547  *
3548  * 	Report the number of bytes and packets transmitted by the network device
3549  * 	hardware queue over the physical medium, @bytes must exactly match the
3550  * 	@bytes amount passed to netdev_sent_queue()
3551  */
3552 static inline void netdev_completed_queue(struct net_device *dev,
3553 					  unsigned int pkts, unsigned int bytes)
3554 {
3555 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3556 }
3557 
3558 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3559 {
3560 #ifdef CONFIG_BQL
3561 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3562 	dql_reset(&q->dql);
3563 #endif
3564 }
3565 
3566 /**
3567  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3568  * 	@dev_queue: network device
3569  *
3570  * 	Reset the bytes and packet count of a network device and clear the
3571  * 	software flow control OFF bit for this network device
3572  */
3573 static inline void netdev_reset_queue(struct net_device *dev_queue)
3574 {
3575 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3576 }
3577 
3578 /**
3579  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3580  * 	@dev: network device
3581  * 	@queue_index: given tx queue index
3582  *
3583  * 	Returns 0 if given tx queue index >= number of device tx queues,
3584  * 	otherwise returns the originally passed tx queue index.
3585  */
3586 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3587 {
3588 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3589 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3590 				     dev->name, queue_index,
3591 				     dev->real_num_tx_queues);
3592 		return 0;
3593 	}
3594 
3595 	return queue_index;
3596 }
3597 
3598 /**
3599  *	netif_running - test if up
3600  *	@dev: network device
3601  *
3602  *	Test if the device has been brought up.
3603  */
3604 static inline bool netif_running(const struct net_device *dev)
3605 {
3606 	return test_bit(__LINK_STATE_START, &dev->state);
3607 }
3608 
3609 /*
3610  * Routines to manage the subqueues on a device.  We only need start,
3611  * stop, and a check if it's stopped.  All other device management is
3612  * done at the overall netdevice level.
3613  * Also test the device if we're multiqueue.
3614  */
3615 
3616 /**
3617  *	netif_start_subqueue - allow sending packets on subqueue
3618  *	@dev: network device
3619  *	@queue_index: sub queue index
3620  *
3621  * Start individual transmit queue of a device with multiple transmit queues.
3622  */
3623 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3624 {
3625 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3626 
3627 	netif_tx_start_queue(txq);
3628 }
3629 
3630 /**
3631  *	netif_stop_subqueue - stop sending packets on subqueue
3632  *	@dev: network device
3633  *	@queue_index: sub queue index
3634  *
3635  * Stop individual transmit queue of a device with multiple transmit queues.
3636  */
3637 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3638 {
3639 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3640 	netif_tx_stop_queue(txq);
3641 }
3642 
3643 /**
3644  *	__netif_subqueue_stopped - test status of subqueue
3645  *	@dev: network device
3646  *	@queue_index: sub queue index
3647  *
3648  * Check individual transmit queue of a device with multiple transmit queues.
3649  */
3650 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3651 					    u16 queue_index)
3652 {
3653 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3654 
3655 	return netif_tx_queue_stopped(txq);
3656 }
3657 
3658 /**
3659  *	netif_subqueue_stopped - test status of subqueue
3660  *	@dev: network device
3661  *	@skb: sub queue buffer pointer
3662  *
3663  * Check individual transmit queue of a device with multiple transmit queues.
3664  */
3665 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3666 					  struct sk_buff *skb)
3667 {
3668 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3669 }
3670 
3671 /**
3672  *	netif_wake_subqueue - allow sending packets on subqueue
3673  *	@dev: network device
3674  *	@queue_index: sub queue index
3675  *
3676  * Resume individual transmit queue of a device with multiple transmit queues.
3677  */
3678 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3679 {
3680 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3681 
3682 	netif_tx_wake_queue(txq);
3683 }
3684 
3685 #ifdef CONFIG_XPS
3686 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3687 			u16 index);
3688 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3689 			  u16 index, enum xps_map_type type);
3690 
3691 /**
3692  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3693  *	@j: CPU/Rx queue index
3694  *	@mask: bitmask of all cpus/rx queues
3695  *	@nr_bits: number of bits in the bitmask
3696  *
3697  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3698  */
3699 static inline bool netif_attr_test_mask(unsigned long j,
3700 					const unsigned long *mask,
3701 					unsigned int nr_bits)
3702 {
3703 	cpu_max_bits_warn(j, nr_bits);
3704 	return test_bit(j, mask);
3705 }
3706 
3707 /**
3708  *	netif_attr_test_online - Test for online CPU/Rx queue
3709  *	@j: CPU/Rx queue index
3710  *	@online_mask: bitmask for CPUs/Rx queues that are online
3711  *	@nr_bits: number of bits in the bitmask
3712  *
3713  * Returns true if a CPU/Rx queue is online.
3714  */
3715 static inline bool netif_attr_test_online(unsigned long j,
3716 					  const unsigned long *online_mask,
3717 					  unsigned int nr_bits)
3718 {
3719 	cpu_max_bits_warn(j, nr_bits);
3720 
3721 	if (online_mask)
3722 		return test_bit(j, online_mask);
3723 
3724 	return (j < nr_bits);
3725 }
3726 
3727 /**
3728  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3729  *	@n: CPU/Rx queue index
3730  *	@srcp: the cpumask/Rx queue mask pointer
3731  *	@nr_bits: number of bits in the bitmask
3732  *
3733  * Returns >= nr_bits if no further CPUs/Rx queues set.
3734  */
3735 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3736 					       unsigned int nr_bits)
3737 {
3738 	/* -1 is a legal arg here. */
3739 	if (n != -1)
3740 		cpu_max_bits_warn(n, nr_bits);
3741 
3742 	if (srcp)
3743 		return find_next_bit(srcp, nr_bits, n + 1);
3744 
3745 	return n + 1;
3746 }
3747 
3748 /**
3749  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3750  *	@n: CPU/Rx queue index
3751  *	@src1p: the first CPUs/Rx queues mask pointer
3752  *	@src2p: the second CPUs/Rx queues mask pointer
3753  *	@nr_bits: number of bits in the bitmask
3754  *
3755  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3756  */
3757 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3758 					  const unsigned long *src2p,
3759 					  unsigned int nr_bits)
3760 {
3761 	/* -1 is a legal arg here. */
3762 	if (n != -1)
3763 		cpu_max_bits_warn(n, nr_bits);
3764 
3765 	if (src1p && src2p)
3766 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3767 	else if (src1p)
3768 		return find_next_bit(src1p, nr_bits, n + 1);
3769 	else if (src2p)
3770 		return find_next_bit(src2p, nr_bits, n + 1);
3771 
3772 	return n + 1;
3773 }
3774 #else
3775 static inline int netif_set_xps_queue(struct net_device *dev,
3776 				      const struct cpumask *mask,
3777 				      u16 index)
3778 {
3779 	return 0;
3780 }
3781 
3782 static inline int __netif_set_xps_queue(struct net_device *dev,
3783 					const unsigned long *mask,
3784 					u16 index, enum xps_map_type type)
3785 {
3786 	return 0;
3787 }
3788 #endif
3789 
3790 /**
3791  *	netif_is_multiqueue - test if device has multiple transmit queues
3792  *	@dev: network device
3793  *
3794  * Check if device has multiple transmit queues
3795  */
3796 static inline bool netif_is_multiqueue(const struct net_device *dev)
3797 {
3798 	return dev->num_tx_queues > 1;
3799 }
3800 
3801 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3802 
3803 #ifdef CONFIG_SYSFS
3804 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3805 #else
3806 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3807 						unsigned int rxqs)
3808 {
3809 	dev->real_num_rx_queues = rxqs;
3810 	return 0;
3811 }
3812 #endif
3813 int netif_set_real_num_queues(struct net_device *dev,
3814 			      unsigned int txq, unsigned int rxq);
3815 
3816 static inline struct netdev_rx_queue *
3817 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3818 {
3819 	return dev->_rx + rxq;
3820 }
3821 
3822 #ifdef CONFIG_SYSFS
3823 static inline unsigned int get_netdev_rx_queue_index(
3824 		struct netdev_rx_queue *queue)
3825 {
3826 	struct net_device *dev = queue->dev;
3827 	int index = queue - dev->_rx;
3828 
3829 	BUG_ON(index >= dev->num_rx_queues);
3830 	return index;
3831 }
3832 #endif
3833 
3834 int netif_get_num_default_rss_queues(void);
3835 
3836 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3837 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3838 
3839 /*
3840  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3841  * interrupt context or with hardware interrupts being disabled.
3842  * (in_hardirq() || irqs_disabled())
3843  *
3844  * We provide four helpers that can be used in following contexts :
3845  *
3846  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3847  *  replacing kfree_skb(skb)
3848  *
3849  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3850  *  Typically used in place of consume_skb(skb) in TX completion path
3851  *
3852  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3853  *  replacing kfree_skb(skb)
3854  *
3855  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3856  *  and consumed a packet. Used in place of consume_skb(skb)
3857  */
3858 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3859 {
3860 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3861 }
3862 
3863 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3864 {
3865 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3866 }
3867 
3868 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3869 {
3870 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3871 }
3872 
3873 static inline void dev_consume_skb_any(struct sk_buff *skb)
3874 {
3875 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3876 }
3877 
3878 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3879 			     struct bpf_prog *xdp_prog);
3880 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3881 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3882 int netif_rx(struct sk_buff *skb);
3883 int __netif_rx(struct sk_buff *skb);
3884 
3885 int netif_receive_skb(struct sk_buff *skb);
3886 int netif_receive_skb_core(struct sk_buff *skb);
3887 void netif_receive_skb_list_internal(struct list_head *head);
3888 void netif_receive_skb_list(struct list_head *head);
3889 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3890 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3891 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3892 void napi_get_frags_check(struct napi_struct *napi);
3893 gro_result_t napi_gro_frags(struct napi_struct *napi);
3894 struct packet_offload *gro_find_receive_by_type(__be16 type);
3895 struct packet_offload *gro_find_complete_by_type(__be16 type);
3896 
3897 static inline void napi_free_frags(struct napi_struct *napi)
3898 {
3899 	kfree_skb(napi->skb);
3900 	napi->skb = NULL;
3901 }
3902 
3903 bool netdev_is_rx_handler_busy(struct net_device *dev);
3904 int netdev_rx_handler_register(struct net_device *dev,
3905 			       rx_handler_func_t *rx_handler,
3906 			       void *rx_handler_data);
3907 void netdev_rx_handler_unregister(struct net_device *dev);
3908 
3909 bool dev_valid_name(const char *name);
3910 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3911 {
3912 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3913 }
3914 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3915 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3916 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3917 		void __user *data, bool *need_copyout);
3918 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3919 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3920 unsigned int dev_get_flags(const struct net_device *);
3921 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3922 		       struct netlink_ext_ack *extack);
3923 int dev_change_flags(struct net_device *dev, unsigned int flags,
3924 		     struct netlink_ext_ack *extack);
3925 int dev_set_alias(struct net_device *, const char *, size_t);
3926 int dev_get_alias(const struct net_device *, char *, size_t);
3927 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3928 			       const char *pat, int new_ifindex);
3929 static inline
3930 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3931 			     const char *pat)
3932 {
3933 	return __dev_change_net_namespace(dev, net, pat, 0);
3934 }
3935 int __dev_set_mtu(struct net_device *, int);
3936 int dev_set_mtu(struct net_device *, int);
3937 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3938 			      struct netlink_ext_ack *extack);
3939 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3940 			struct netlink_ext_ack *extack);
3941 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3942 			     struct netlink_ext_ack *extack);
3943 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3944 int dev_get_port_parent_id(struct net_device *dev,
3945 			   struct netdev_phys_item_id *ppid, bool recurse);
3946 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3947 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3948 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3949 				    struct netdev_queue *txq, int *ret);
3950 
3951 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3952 u8 dev_xdp_prog_count(struct net_device *dev);
3953 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3954 
3955 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3957 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3958 bool is_skb_forwardable(const struct net_device *dev,
3959 			const struct sk_buff *skb);
3960 
3961 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3962 						 const struct sk_buff *skb,
3963 						 const bool check_mtu)
3964 {
3965 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3966 	unsigned int len;
3967 
3968 	if (!(dev->flags & IFF_UP))
3969 		return false;
3970 
3971 	if (!check_mtu)
3972 		return true;
3973 
3974 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3975 	if (skb->len <= len)
3976 		return true;
3977 
3978 	/* if TSO is enabled, we don't care about the length as the packet
3979 	 * could be forwarded without being segmented before
3980 	 */
3981 	if (skb_is_gso(skb))
3982 		return true;
3983 
3984 	return false;
3985 }
3986 
3987 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3988 
3989 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3990 {
3991 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3992 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3993 
3994 	if (likely(p))
3995 		return p;
3996 
3997 	return netdev_core_stats_alloc(dev);
3998 }
3999 
4000 #define DEV_CORE_STATS_INC(FIELD)						\
4001 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4002 {										\
4003 	struct net_device_core_stats __percpu *p;				\
4004 										\
4005 	p = dev_core_stats(dev);						\
4006 	if (p)									\
4007 		this_cpu_inc(p->FIELD);						\
4008 }
4009 DEV_CORE_STATS_INC(rx_dropped)
4010 DEV_CORE_STATS_INC(tx_dropped)
4011 DEV_CORE_STATS_INC(rx_nohandler)
4012 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4013 
4014 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4015 					       struct sk_buff *skb,
4016 					       const bool check_mtu)
4017 {
4018 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4019 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4020 		dev_core_stats_rx_dropped_inc(dev);
4021 		kfree_skb(skb);
4022 		return NET_RX_DROP;
4023 	}
4024 
4025 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4026 	skb->priority = 0;
4027 	return 0;
4028 }
4029 
4030 bool dev_nit_active(struct net_device *dev);
4031 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4032 
4033 static inline void __dev_put(struct net_device *dev)
4034 {
4035 	if (dev) {
4036 #ifdef CONFIG_PCPU_DEV_REFCNT
4037 		this_cpu_dec(*dev->pcpu_refcnt);
4038 #else
4039 		refcount_dec(&dev->dev_refcnt);
4040 #endif
4041 	}
4042 }
4043 
4044 static inline void __dev_hold(struct net_device *dev)
4045 {
4046 	if (dev) {
4047 #ifdef CONFIG_PCPU_DEV_REFCNT
4048 		this_cpu_inc(*dev->pcpu_refcnt);
4049 #else
4050 		refcount_inc(&dev->dev_refcnt);
4051 #endif
4052 	}
4053 }
4054 
4055 static inline void __netdev_tracker_alloc(struct net_device *dev,
4056 					  netdevice_tracker *tracker,
4057 					  gfp_t gfp)
4058 {
4059 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4060 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4061 #endif
4062 }
4063 
4064 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4065  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4066  */
4067 static inline void netdev_tracker_alloc(struct net_device *dev,
4068 					netdevice_tracker *tracker, gfp_t gfp)
4069 {
4070 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4071 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4072 	__netdev_tracker_alloc(dev, tracker, gfp);
4073 #endif
4074 }
4075 
4076 static inline void netdev_tracker_free(struct net_device *dev,
4077 				       netdevice_tracker *tracker)
4078 {
4079 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4080 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4081 #endif
4082 }
4083 
4084 static inline void netdev_hold(struct net_device *dev,
4085 			       netdevice_tracker *tracker, gfp_t gfp)
4086 {
4087 	if (dev) {
4088 		__dev_hold(dev);
4089 		__netdev_tracker_alloc(dev, tracker, gfp);
4090 	}
4091 }
4092 
4093 static inline void netdev_put(struct net_device *dev,
4094 			      netdevice_tracker *tracker)
4095 {
4096 	if (dev) {
4097 		netdev_tracker_free(dev, tracker);
4098 		__dev_put(dev);
4099 	}
4100 }
4101 
4102 /**
4103  *	dev_hold - get reference to device
4104  *	@dev: network device
4105  *
4106  * Hold reference to device to keep it from being freed.
4107  * Try using netdev_hold() instead.
4108  */
4109 static inline void dev_hold(struct net_device *dev)
4110 {
4111 	netdev_hold(dev, NULL, GFP_ATOMIC);
4112 }
4113 
4114 /**
4115  *	dev_put - release reference to device
4116  *	@dev: network device
4117  *
4118  * Release reference to device to allow it to be freed.
4119  * Try using netdev_put() instead.
4120  */
4121 static inline void dev_put(struct net_device *dev)
4122 {
4123 	netdev_put(dev, NULL);
4124 }
4125 
4126 static inline void netdev_ref_replace(struct net_device *odev,
4127 				      struct net_device *ndev,
4128 				      netdevice_tracker *tracker,
4129 				      gfp_t gfp)
4130 {
4131 	if (odev)
4132 		netdev_tracker_free(odev, tracker);
4133 
4134 	__dev_hold(ndev);
4135 	__dev_put(odev);
4136 
4137 	if (ndev)
4138 		__netdev_tracker_alloc(ndev, tracker, gfp);
4139 }
4140 
4141 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4142  * and _off may be called from IRQ context, but it is caller
4143  * who is responsible for serialization of these calls.
4144  *
4145  * The name carrier is inappropriate, these functions should really be
4146  * called netif_lowerlayer_*() because they represent the state of any
4147  * kind of lower layer not just hardware media.
4148  */
4149 void linkwatch_fire_event(struct net_device *dev);
4150 
4151 /**
4152  *	netif_carrier_ok - test if carrier present
4153  *	@dev: network device
4154  *
4155  * Check if carrier is present on device
4156  */
4157 static inline bool netif_carrier_ok(const struct net_device *dev)
4158 {
4159 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4160 }
4161 
4162 unsigned long dev_trans_start(struct net_device *dev);
4163 
4164 void __netdev_watchdog_up(struct net_device *dev);
4165 
4166 void netif_carrier_on(struct net_device *dev);
4167 void netif_carrier_off(struct net_device *dev);
4168 void netif_carrier_event(struct net_device *dev);
4169 
4170 /**
4171  *	netif_dormant_on - mark device as dormant.
4172  *	@dev: network device
4173  *
4174  * Mark device as dormant (as per RFC2863).
4175  *
4176  * The dormant state indicates that the relevant interface is not
4177  * actually in a condition to pass packets (i.e., it is not 'up') but is
4178  * in a "pending" state, waiting for some external event.  For "on-
4179  * demand" interfaces, this new state identifies the situation where the
4180  * interface is waiting for events to place it in the up state.
4181  */
4182 static inline void netif_dormant_on(struct net_device *dev)
4183 {
4184 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4185 		linkwatch_fire_event(dev);
4186 }
4187 
4188 /**
4189  *	netif_dormant_off - set device as not dormant.
4190  *	@dev: network device
4191  *
4192  * Device is not in dormant state.
4193  */
4194 static inline void netif_dormant_off(struct net_device *dev)
4195 {
4196 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4197 		linkwatch_fire_event(dev);
4198 }
4199 
4200 /**
4201  *	netif_dormant - test if device is dormant
4202  *	@dev: network device
4203  *
4204  * Check if device is dormant.
4205  */
4206 static inline bool netif_dormant(const struct net_device *dev)
4207 {
4208 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4209 }
4210 
4211 
4212 /**
4213  *	netif_testing_on - mark device as under test.
4214  *	@dev: network device
4215  *
4216  * Mark device as under test (as per RFC2863).
4217  *
4218  * The testing state indicates that some test(s) must be performed on
4219  * the interface. After completion, of the test, the interface state
4220  * will change to up, dormant, or down, as appropriate.
4221  */
4222 static inline void netif_testing_on(struct net_device *dev)
4223 {
4224 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4225 		linkwatch_fire_event(dev);
4226 }
4227 
4228 /**
4229  *	netif_testing_off - set device as not under test.
4230  *	@dev: network device
4231  *
4232  * Device is not in testing state.
4233  */
4234 static inline void netif_testing_off(struct net_device *dev)
4235 {
4236 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4237 		linkwatch_fire_event(dev);
4238 }
4239 
4240 /**
4241  *	netif_testing - test if device is under test
4242  *	@dev: network device
4243  *
4244  * Check if device is under test
4245  */
4246 static inline bool netif_testing(const struct net_device *dev)
4247 {
4248 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4249 }
4250 
4251 
4252 /**
4253  *	netif_oper_up - test if device is operational
4254  *	@dev: network device
4255  *
4256  * Check if carrier is operational
4257  */
4258 static inline bool netif_oper_up(const struct net_device *dev)
4259 {
4260 	return (dev->operstate == IF_OPER_UP ||
4261 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4262 }
4263 
4264 /**
4265  *	netif_device_present - is device available or removed
4266  *	@dev: network device
4267  *
4268  * Check if device has not been removed from system.
4269  */
4270 static inline bool netif_device_present(const struct net_device *dev)
4271 {
4272 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4273 }
4274 
4275 void netif_device_detach(struct net_device *dev);
4276 
4277 void netif_device_attach(struct net_device *dev);
4278 
4279 /*
4280  * Network interface message level settings
4281  */
4282 
4283 enum {
4284 	NETIF_MSG_DRV_BIT,
4285 	NETIF_MSG_PROBE_BIT,
4286 	NETIF_MSG_LINK_BIT,
4287 	NETIF_MSG_TIMER_BIT,
4288 	NETIF_MSG_IFDOWN_BIT,
4289 	NETIF_MSG_IFUP_BIT,
4290 	NETIF_MSG_RX_ERR_BIT,
4291 	NETIF_MSG_TX_ERR_BIT,
4292 	NETIF_MSG_TX_QUEUED_BIT,
4293 	NETIF_MSG_INTR_BIT,
4294 	NETIF_MSG_TX_DONE_BIT,
4295 	NETIF_MSG_RX_STATUS_BIT,
4296 	NETIF_MSG_PKTDATA_BIT,
4297 	NETIF_MSG_HW_BIT,
4298 	NETIF_MSG_WOL_BIT,
4299 
4300 	/* When you add a new bit above, update netif_msg_class_names array
4301 	 * in net/ethtool/common.c
4302 	 */
4303 	NETIF_MSG_CLASS_COUNT,
4304 };
4305 /* Both ethtool_ops interface and internal driver implementation use u32 */
4306 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4307 
4308 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4309 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4310 
4311 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4312 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4313 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4314 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4315 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4316 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4317 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4318 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4319 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4320 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4321 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4322 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4323 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4324 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4325 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4326 
4327 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4328 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4329 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4330 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4331 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4332 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4333 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4334 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4335 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4336 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4337 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4338 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4339 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4340 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4341 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4342 
4343 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4344 {
4345 	/* use default */
4346 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4347 		return default_msg_enable_bits;
4348 	if (debug_value == 0)	/* no output */
4349 		return 0;
4350 	/* set low N bits */
4351 	return (1U << debug_value) - 1;
4352 }
4353 
4354 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4355 {
4356 	spin_lock(&txq->_xmit_lock);
4357 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4358 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4359 }
4360 
4361 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4362 {
4363 	__acquire(&txq->_xmit_lock);
4364 	return true;
4365 }
4366 
4367 static inline void __netif_tx_release(struct netdev_queue *txq)
4368 {
4369 	__release(&txq->_xmit_lock);
4370 }
4371 
4372 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4373 {
4374 	spin_lock_bh(&txq->_xmit_lock);
4375 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4376 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4377 }
4378 
4379 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4380 {
4381 	bool ok = spin_trylock(&txq->_xmit_lock);
4382 
4383 	if (likely(ok)) {
4384 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4385 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4386 	}
4387 	return ok;
4388 }
4389 
4390 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4391 {
4392 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4393 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4394 	spin_unlock(&txq->_xmit_lock);
4395 }
4396 
4397 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4398 {
4399 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4400 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4401 	spin_unlock_bh(&txq->_xmit_lock);
4402 }
4403 
4404 /*
4405  * txq->trans_start can be read locklessly from dev_watchdog()
4406  */
4407 static inline void txq_trans_update(struct netdev_queue *txq)
4408 {
4409 	if (txq->xmit_lock_owner != -1)
4410 		WRITE_ONCE(txq->trans_start, jiffies);
4411 }
4412 
4413 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4414 {
4415 	unsigned long now = jiffies;
4416 
4417 	if (READ_ONCE(txq->trans_start) != now)
4418 		WRITE_ONCE(txq->trans_start, now);
4419 }
4420 
4421 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4422 static inline void netif_trans_update(struct net_device *dev)
4423 {
4424 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4425 
4426 	txq_trans_cond_update(txq);
4427 }
4428 
4429 /**
4430  *	netif_tx_lock - grab network device transmit lock
4431  *	@dev: network device
4432  *
4433  * Get network device transmit lock
4434  */
4435 void netif_tx_lock(struct net_device *dev);
4436 
4437 static inline void netif_tx_lock_bh(struct net_device *dev)
4438 {
4439 	local_bh_disable();
4440 	netif_tx_lock(dev);
4441 }
4442 
4443 void netif_tx_unlock(struct net_device *dev);
4444 
4445 static inline void netif_tx_unlock_bh(struct net_device *dev)
4446 {
4447 	netif_tx_unlock(dev);
4448 	local_bh_enable();
4449 }
4450 
4451 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4452 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4453 		__netif_tx_lock(txq, cpu);		\
4454 	} else {					\
4455 		__netif_tx_acquire(txq);		\
4456 	}						\
4457 }
4458 
4459 #define HARD_TX_TRYLOCK(dev, txq)			\
4460 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4461 		__netif_tx_trylock(txq) :		\
4462 		__netif_tx_acquire(txq))
4463 
4464 #define HARD_TX_UNLOCK(dev, txq) {			\
4465 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4466 		__netif_tx_unlock(txq);			\
4467 	} else {					\
4468 		__netif_tx_release(txq);		\
4469 	}						\
4470 }
4471 
4472 static inline void netif_tx_disable(struct net_device *dev)
4473 {
4474 	unsigned int i;
4475 	int cpu;
4476 
4477 	local_bh_disable();
4478 	cpu = smp_processor_id();
4479 	spin_lock(&dev->tx_global_lock);
4480 	for (i = 0; i < dev->num_tx_queues; i++) {
4481 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4482 
4483 		__netif_tx_lock(txq, cpu);
4484 		netif_tx_stop_queue(txq);
4485 		__netif_tx_unlock(txq);
4486 	}
4487 	spin_unlock(&dev->tx_global_lock);
4488 	local_bh_enable();
4489 }
4490 
4491 static inline void netif_addr_lock(struct net_device *dev)
4492 {
4493 	unsigned char nest_level = 0;
4494 
4495 #ifdef CONFIG_LOCKDEP
4496 	nest_level = dev->nested_level;
4497 #endif
4498 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4499 }
4500 
4501 static inline void netif_addr_lock_bh(struct net_device *dev)
4502 {
4503 	unsigned char nest_level = 0;
4504 
4505 #ifdef CONFIG_LOCKDEP
4506 	nest_level = dev->nested_level;
4507 #endif
4508 	local_bh_disable();
4509 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4510 }
4511 
4512 static inline void netif_addr_unlock(struct net_device *dev)
4513 {
4514 	spin_unlock(&dev->addr_list_lock);
4515 }
4516 
4517 static inline void netif_addr_unlock_bh(struct net_device *dev)
4518 {
4519 	spin_unlock_bh(&dev->addr_list_lock);
4520 }
4521 
4522 /*
4523  * dev_addrs walker. Should be used only for read access. Call with
4524  * rcu_read_lock held.
4525  */
4526 #define for_each_dev_addr(dev, ha) \
4527 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4528 
4529 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4530 
4531 void ether_setup(struct net_device *dev);
4532 
4533 /* Support for loadable net-drivers */
4534 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4535 				    unsigned char name_assign_type,
4536 				    void (*setup)(struct net_device *),
4537 				    unsigned int txqs, unsigned int rxqs);
4538 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4539 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4540 
4541 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4542 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4543 			 count)
4544 
4545 int register_netdev(struct net_device *dev);
4546 void unregister_netdev(struct net_device *dev);
4547 
4548 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4549 
4550 /* General hardware address lists handling functions */
4551 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4552 		   struct netdev_hw_addr_list *from_list, int addr_len);
4553 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4554 		      struct netdev_hw_addr_list *from_list, int addr_len);
4555 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4556 		       struct net_device *dev,
4557 		       int (*sync)(struct net_device *, const unsigned char *),
4558 		       int (*unsync)(struct net_device *,
4559 				     const unsigned char *));
4560 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4561 			   struct net_device *dev,
4562 			   int (*sync)(struct net_device *,
4563 				       const unsigned char *, int),
4564 			   int (*unsync)(struct net_device *,
4565 					 const unsigned char *, int));
4566 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4567 			      struct net_device *dev,
4568 			      int (*unsync)(struct net_device *,
4569 					    const unsigned char *, int));
4570 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4571 			  struct net_device *dev,
4572 			  int (*unsync)(struct net_device *,
4573 					const unsigned char *));
4574 void __hw_addr_init(struct netdev_hw_addr_list *list);
4575 
4576 /* Functions used for device addresses handling */
4577 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4578 		  const void *addr, size_t len);
4579 
4580 static inline void
4581 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4582 {
4583 	dev_addr_mod(dev, 0, addr, len);
4584 }
4585 
4586 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4587 {
4588 	__dev_addr_set(dev, addr, dev->addr_len);
4589 }
4590 
4591 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4592 		 unsigned char addr_type);
4593 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4594 		 unsigned char addr_type);
4595 
4596 /* Functions used for unicast addresses handling */
4597 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4598 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4599 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4600 int dev_uc_sync(struct net_device *to, struct net_device *from);
4601 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4602 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4603 void dev_uc_flush(struct net_device *dev);
4604 void dev_uc_init(struct net_device *dev);
4605 
4606 /**
4607  *  __dev_uc_sync - Synchonize device's unicast list
4608  *  @dev:  device to sync
4609  *  @sync: function to call if address should be added
4610  *  @unsync: function to call if address should be removed
4611  *
4612  *  Add newly added addresses to the interface, and release
4613  *  addresses that have been deleted.
4614  */
4615 static inline int __dev_uc_sync(struct net_device *dev,
4616 				int (*sync)(struct net_device *,
4617 					    const unsigned char *),
4618 				int (*unsync)(struct net_device *,
4619 					      const unsigned char *))
4620 {
4621 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4622 }
4623 
4624 /**
4625  *  __dev_uc_unsync - Remove synchronized addresses from device
4626  *  @dev:  device to sync
4627  *  @unsync: function to call if address should be removed
4628  *
4629  *  Remove all addresses that were added to the device by dev_uc_sync().
4630  */
4631 static inline void __dev_uc_unsync(struct net_device *dev,
4632 				   int (*unsync)(struct net_device *,
4633 						 const unsigned char *))
4634 {
4635 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4636 }
4637 
4638 /* Functions used for multicast addresses handling */
4639 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4640 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4641 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4642 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4643 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4644 int dev_mc_sync(struct net_device *to, struct net_device *from);
4645 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4646 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4647 void dev_mc_flush(struct net_device *dev);
4648 void dev_mc_init(struct net_device *dev);
4649 
4650 /**
4651  *  __dev_mc_sync - Synchonize device's multicast list
4652  *  @dev:  device to sync
4653  *  @sync: function to call if address should be added
4654  *  @unsync: function to call if address should be removed
4655  *
4656  *  Add newly added addresses to the interface, and release
4657  *  addresses that have been deleted.
4658  */
4659 static inline int __dev_mc_sync(struct net_device *dev,
4660 				int (*sync)(struct net_device *,
4661 					    const unsigned char *),
4662 				int (*unsync)(struct net_device *,
4663 					      const unsigned char *))
4664 {
4665 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4666 }
4667 
4668 /**
4669  *  __dev_mc_unsync - Remove synchronized addresses from device
4670  *  @dev:  device to sync
4671  *  @unsync: function to call if address should be removed
4672  *
4673  *  Remove all addresses that were added to the device by dev_mc_sync().
4674  */
4675 static inline void __dev_mc_unsync(struct net_device *dev,
4676 				   int (*unsync)(struct net_device *,
4677 						 const unsigned char *))
4678 {
4679 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4680 }
4681 
4682 /* Functions used for secondary unicast and multicast support */
4683 void dev_set_rx_mode(struct net_device *dev);
4684 int dev_set_promiscuity(struct net_device *dev, int inc);
4685 int dev_set_allmulti(struct net_device *dev, int inc);
4686 void netdev_state_change(struct net_device *dev);
4687 void __netdev_notify_peers(struct net_device *dev);
4688 void netdev_notify_peers(struct net_device *dev);
4689 void netdev_features_change(struct net_device *dev);
4690 /* Load a device via the kmod */
4691 void dev_load(struct net *net, const char *name);
4692 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4693 					struct rtnl_link_stats64 *storage);
4694 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4695 			     const struct net_device_stats *netdev_stats);
4696 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4697 			   const struct pcpu_sw_netstats __percpu *netstats);
4698 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4699 
4700 extern int		netdev_max_backlog;
4701 extern int		dev_rx_weight;
4702 extern int		dev_tx_weight;
4703 extern int		gro_normal_batch;
4704 
4705 enum {
4706 	NESTED_SYNC_IMM_BIT,
4707 	NESTED_SYNC_TODO_BIT,
4708 };
4709 
4710 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4711 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4712 
4713 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4714 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4715 
4716 struct netdev_nested_priv {
4717 	unsigned char flags;
4718 	void *data;
4719 };
4720 
4721 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4722 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4723 						     struct list_head **iter);
4724 
4725 /* iterate through upper list, must be called under RCU read lock */
4726 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4727 	for (iter = &(dev)->adj_list.upper, \
4728 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4729 	     updev; \
4730 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4731 
4732 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4733 				  int (*fn)(struct net_device *upper_dev,
4734 					    struct netdev_nested_priv *priv),
4735 				  struct netdev_nested_priv *priv);
4736 
4737 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4738 				  struct net_device *upper_dev);
4739 
4740 bool netdev_has_any_upper_dev(struct net_device *dev);
4741 
4742 void *netdev_lower_get_next_private(struct net_device *dev,
4743 				    struct list_head **iter);
4744 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4745 					struct list_head **iter);
4746 
4747 #define netdev_for_each_lower_private(dev, priv, iter) \
4748 	for (iter = (dev)->adj_list.lower.next, \
4749 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4750 	     priv; \
4751 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4752 
4753 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4754 	for (iter = &(dev)->adj_list.lower, \
4755 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4756 	     priv; \
4757 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4758 
4759 void *netdev_lower_get_next(struct net_device *dev,
4760 				struct list_head **iter);
4761 
4762 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4763 	for (iter = (dev)->adj_list.lower.next, \
4764 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4765 	     ldev; \
4766 	     ldev = netdev_lower_get_next(dev, &(iter)))
4767 
4768 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4769 					     struct list_head **iter);
4770 int netdev_walk_all_lower_dev(struct net_device *dev,
4771 			      int (*fn)(struct net_device *lower_dev,
4772 					struct netdev_nested_priv *priv),
4773 			      struct netdev_nested_priv *priv);
4774 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4775 				  int (*fn)(struct net_device *lower_dev,
4776 					    struct netdev_nested_priv *priv),
4777 				  struct netdev_nested_priv *priv);
4778 
4779 void *netdev_adjacent_get_private(struct list_head *adj_list);
4780 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4781 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4782 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4783 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4784 			  struct netlink_ext_ack *extack);
4785 int netdev_master_upper_dev_link(struct net_device *dev,
4786 				 struct net_device *upper_dev,
4787 				 void *upper_priv, void *upper_info,
4788 				 struct netlink_ext_ack *extack);
4789 void netdev_upper_dev_unlink(struct net_device *dev,
4790 			     struct net_device *upper_dev);
4791 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4792 				   struct net_device *new_dev,
4793 				   struct net_device *dev,
4794 				   struct netlink_ext_ack *extack);
4795 void netdev_adjacent_change_commit(struct net_device *old_dev,
4796 				   struct net_device *new_dev,
4797 				   struct net_device *dev);
4798 void netdev_adjacent_change_abort(struct net_device *old_dev,
4799 				  struct net_device *new_dev,
4800 				  struct net_device *dev);
4801 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4802 void *netdev_lower_dev_get_private(struct net_device *dev,
4803 				   struct net_device *lower_dev);
4804 void netdev_lower_state_changed(struct net_device *lower_dev,
4805 				void *lower_state_info);
4806 
4807 /* RSS keys are 40 or 52 bytes long */
4808 #define NETDEV_RSS_KEY_LEN 52
4809 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4810 void netdev_rss_key_fill(void *buffer, size_t len);
4811 
4812 int skb_checksum_help(struct sk_buff *skb);
4813 int skb_crc32c_csum_help(struct sk_buff *skb);
4814 int skb_csum_hwoffload_help(struct sk_buff *skb,
4815 			    const netdev_features_t features);
4816 
4817 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4818 				  netdev_features_t features, bool tx_path);
4819 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4820 				    netdev_features_t features, __be16 type);
4821 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4822 				    netdev_features_t features);
4823 
4824 struct netdev_bonding_info {
4825 	ifslave	slave;
4826 	ifbond	master;
4827 };
4828 
4829 struct netdev_notifier_bonding_info {
4830 	struct netdev_notifier_info info; /* must be first */
4831 	struct netdev_bonding_info  bonding_info;
4832 };
4833 
4834 void netdev_bonding_info_change(struct net_device *dev,
4835 				struct netdev_bonding_info *bonding_info);
4836 
4837 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4838 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4839 #else
4840 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4841 				  const void *data)
4842 {
4843 }
4844 #endif
4845 
4846 static inline
4847 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4848 {
4849 	return __skb_gso_segment(skb, features, true);
4850 }
4851 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4852 
4853 static inline bool can_checksum_protocol(netdev_features_t features,
4854 					 __be16 protocol)
4855 {
4856 	if (protocol == htons(ETH_P_FCOE))
4857 		return !!(features & NETIF_F_FCOE_CRC);
4858 
4859 	/* Assume this is an IP checksum (not SCTP CRC) */
4860 
4861 	if (features & NETIF_F_HW_CSUM) {
4862 		/* Can checksum everything */
4863 		return true;
4864 	}
4865 
4866 	switch (protocol) {
4867 	case htons(ETH_P_IP):
4868 		return !!(features & NETIF_F_IP_CSUM);
4869 	case htons(ETH_P_IPV6):
4870 		return !!(features & NETIF_F_IPV6_CSUM);
4871 	default:
4872 		return false;
4873 	}
4874 }
4875 
4876 #ifdef CONFIG_BUG
4877 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4878 #else
4879 static inline void netdev_rx_csum_fault(struct net_device *dev,
4880 					struct sk_buff *skb)
4881 {
4882 }
4883 #endif
4884 /* rx skb timestamps */
4885 void net_enable_timestamp(void);
4886 void net_disable_timestamp(void);
4887 
4888 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4889 					const struct skb_shared_hwtstamps *hwtstamps,
4890 					bool cycles)
4891 {
4892 	const struct net_device_ops *ops = dev->netdev_ops;
4893 
4894 	if (ops->ndo_get_tstamp)
4895 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4896 
4897 	return hwtstamps->hwtstamp;
4898 }
4899 
4900 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4901 					      struct sk_buff *skb, struct net_device *dev,
4902 					      bool more)
4903 {
4904 	__this_cpu_write(softnet_data.xmit.more, more);
4905 	return ops->ndo_start_xmit(skb, dev);
4906 }
4907 
4908 static inline bool netdev_xmit_more(void)
4909 {
4910 	return __this_cpu_read(softnet_data.xmit.more);
4911 }
4912 
4913 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4914 					    struct netdev_queue *txq, bool more)
4915 {
4916 	const struct net_device_ops *ops = dev->netdev_ops;
4917 	netdev_tx_t rc;
4918 
4919 	rc = __netdev_start_xmit(ops, skb, dev, more);
4920 	if (rc == NETDEV_TX_OK)
4921 		txq_trans_update(txq);
4922 
4923 	return rc;
4924 }
4925 
4926 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4927 				const void *ns);
4928 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4929 				 const void *ns);
4930 
4931 extern const struct kobj_ns_type_operations net_ns_type_operations;
4932 
4933 const char *netdev_drivername(const struct net_device *dev);
4934 
4935 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4936 							  netdev_features_t f2)
4937 {
4938 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4939 		if (f1 & NETIF_F_HW_CSUM)
4940 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4941 		else
4942 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4943 	}
4944 
4945 	return f1 & f2;
4946 }
4947 
4948 static inline netdev_features_t netdev_get_wanted_features(
4949 	struct net_device *dev)
4950 {
4951 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4952 }
4953 netdev_features_t netdev_increment_features(netdev_features_t all,
4954 	netdev_features_t one, netdev_features_t mask);
4955 
4956 /* Allow TSO being used on stacked device :
4957  * Performing the GSO segmentation before last device
4958  * is a performance improvement.
4959  */
4960 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4961 							netdev_features_t mask)
4962 {
4963 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4964 }
4965 
4966 int __netdev_update_features(struct net_device *dev);
4967 void netdev_update_features(struct net_device *dev);
4968 void netdev_change_features(struct net_device *dev);
4969 
4970 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4971 					struct net_device *dev);
4972 
4973 netdev_features_t passthru_features_check(struct sk_buff *skb,
4974 					  struct net_device *dev,
4975 					  netdev_features_t features);
4976 netdev_features_t netif_skb_features(struct sk_buff *skb);
4977 
4978 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4979 {
4980 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4981 
4982 	/* check flags correspondence */
4983 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4984 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4985 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4986 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4987 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4988 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4989 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4990 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4991 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4992 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4993 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4994 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4995 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4996 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5002 
5003 	return (features & feature) == feature;
5004 }
5005 
5006 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5007 {
5008 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5009 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5010 }
5011 
5012 static inline bool netif_needs_gso(struct sk_buff *skb,
5013 				   netdev_features_t features)
5014 {
5015 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5016 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5017 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5018 }
5019 
5020 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5021 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5022 void netif_inherit_tso_max(struct net_device *to,
5023 			   const struct net_device *from);
5024 
5025 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5026 					int pulled_hlen, u16 mac_offset,
5027 					int mac_len)
5028 {
5029 	skb->protocol = protocol;
5030 	skb->encapsulation = 1;
5031 	skb_push(skb, pulled_hlen);
5032 	skb_reset_transport_header(skb);
5033 	skb->mac_header = mac_offset;
5034 	skb->network_header = skb->mac_header + mac_len;
5035 	skb->mac_len = mac_len;
5036 }
5037 
5038 static inline bool netif_is_macsec(const struct net_device *dev)
5039 {
5040 	return dev->priv_flags & IFF_MACSEC;
5041 }
5042 
5043 static inline bool netif_is_macvlan(const struct net_device *dev)
5044 {
5045 	return dev->priv_flags & IFF_MACVLAN;
5046 }
5047 
5048 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5049 {
5050 	return dev->priv_flags & IFF_MACVLAN_PORT;
5051 }
5052 
5053 static inline bool netif_is_bond_master(const struct net_device *dev)
5054 {
5055 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5056 }
5057 
5058 static inline bool netif_is_bond_slave(const struct net_device *dev)
5059 {
5060 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5061 }
5062 
5063 static inline bool netif_supports_nofcs(struct net_device *dev)
5064 {
5065 	return dev->priv_flags & IFF_SUPP_NOFCS;
5066 }
5067 
5068 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5069 {
5070 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5071 }
5072 
5073 static inline bool netif_is_l3_master(const struct net_device *dev)
5074 {
5075 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5076 }
5077 
5078 static inline bool netif_is_l3_slave(const struct net_device *dev)
5079 {
5080 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5081 }
5082 
5083 static inline bool netif_is_bridge_master(const struct net_device *dev)
5084 {
5085 	return dev->priv_flags & IFF_EBRIDGE;
5086 }
5087 
5088 static inline bool netif_is_bridge_port(const struct net_device *dev)
5089 {
5090 	return dev->priv_flags & IFF_BRIDGE_PORT;
5091 }
5092 
5093 static inline bool netif_is_ovs_master(const struct net_device *dev)
5094 {
5095 	return dev->priv_flags & IFF_OPENVSWITCH;
5096 }
5097 
5098 static inline bool netif_is_ovs_port(const struct net_device *dev)
5099 {
5100 	return dev->priv_flags & IFF_OVS_DATAPATH;
5101 }
5102 
5103 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5104 {
5105 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5106 }
5107 
5108 static inline bool netif_is_team_master(const struct net_device *dev)
5109 {
5110 	return dev->priv_flags & IFF_TEAM;
5111 }
5112 
5113 static inline bool netif_is_team_port(const struct net_device *dev)
5114 {
5115 	return dev->priv_flags & IFF_TEAM_PORT;
5116 }
5117 
5118 static inline bool netif_is_lag_master(const struct net_device *dev)
5119 {
5120 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5121 }
5122 
5123 static inline bool netif_is_lag_port(const struct net_device *dev)
5124 {
5125 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5126 }
5127 
5128 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5129 {
5130 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5131 }
5132 
5133 static inline bool netif_is_failover(const struct net_device *dev)
5134 {
5135 	return dev->priv_flags & IFF_FAILOVER;
5136 }
5137 
5138 static inline bool netif_is_failover_slave(const struct net_device *dev)
5139 {
5140 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5141 }
5142 
5143 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5144 static inline void netif_keep_dst(struct net_device *dev)
5145 {
5146 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5147 }
5148 
5149 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5150 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5151 {
5152 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5153 	return netif_is_macsec(dev);
5154 }
5155 
5156 extern struct pernet_operations __net_initdata loopback_net_ops;
5157 
5158 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5159 
5160 /* netdev_printk helpers, similar to dev_printk */
5161 
5162 static inline const char *netdev_name(const struct net_device *dev)
5163 {
5164 	if (!dev->name[0] || strchr(dev->name, '%'))
5165 		return "(unnamed net_device)";
5166 	return dev->name;
5167 }
5168 
5169 static inline const char *netdev_reg_state(const struct net_device *dev)
5170 {
5171 	switch (dev->reg_state) {
5172 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5173 	case NETREG_REGISTERED: return "";
5174 	case NETREG_UNREGISTERING: return " (unregistering)";
5175 	case NETREG_UNREGISTERED: return " (unregistered)";
5176 	case NETREG_RELEASED: return " (released)";
5177 	case NETREG_DUMMY: return " (dummy)";
5178 	}
5179 
5180 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5181 	return " (unknown)";
5182 }
5183 
5184 #define MODULE_ALIAS_NETDEV(device) \
5185 	MODULE_ALIAS("netdev-" device)
5186 
5187 /*
5188  * netdev_WARN() acts like dev_printk(), but with the key difference
5189  * of using a WARN/WARN_ON to get the message out, including the
5190  * file/line information and a backtrace.
5191  */
5192 #define netdev_WARN(dev, format, args...)			\
5193 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5194 	     netdev_reg_state(dev), ##args)
5195 
5196 #define netdev_WARN_ONCE(dev, format, args...)				\
5197 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5198 		  netdev_reg_state(dev), ##args)
5199 
5200 /*
5201  *	The list of packet types we will receive (as opposed to discard)
5202  *	and the routines to invoke.
5203  *
5204  *	Why 16. Because with 16 the only overlap we get on a hash of the
5205  *	low nibble of the protocol value is RARP/SNAP/X.25.
5206  *
5207  *		0800	IP
5208  *		0001	802.3
5209  *		0002	AX.25
5210  *		0004	802.2
5211  *		8035	RARP
5212  *		0005	SNAP
5213  *		0805	X.25
5214  *		0806	ARP
5215  *		8137	IPX
5216  *		0009	Localtalk
5217  *		86DD	IPv6
5218  */
5219 #define PTYPE_HASH_SIZE	(16)
5220 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5221 
5222 extern struct list_head ptype_all __read_mostly;
5223 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5224 
5225 extern struct net_device *blackhole_netdev;
5226 
5227 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5228 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5229 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5230 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5231 
5232 #endif	/* _LINUX_NETDEVICE_H */
5233