xref: /linux-6.15/include/linux/netdevice.h (revision 7b620e15)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 struct net_device_stats {
175 	unsigned long	rx_packets;
176 	unsigned long	tx_packets;
177 	unsigned long	rx_bytes;
178 	unsigned long	tx_bytes;
179 	unsigned long	rx_errors;
180 	unsigned long	tx_errors;
181 	unsigned long	rx_dropped;
182 	unsigned long	tx_dropped;
183 	unsigned long	multicast;
184 	unsigned long	collisions;
185 	unsigned long	rx_length_errors;
186 	unsigned long	rx_over_errors;
187 	unsigned long	rx_crc_errors;
188 	unsigned long	rx_frame_errors;
189 	unsigned long	rx_fifo_errors;
190 	unsigned long	rx_missed_errors;
191 	unsigned long	tx_aborted_errors;
192 	unsigned long	tx_carrier_errors;
193 	unsigned long	tx_fifo_errors;
194 	unsigned long	tx_heartbeat_errors;
195 	unsigned long	tx_window_errors;
196 	unsigned long	rx_compressed;
197 	unsigned long	tx_compressed;
198 };
199 
200 /* per-cpu stats, allocated on demand.
201  * Try to fit them in a single cache line, for dev_get_stats() sake.
202  */
203 struct net_device_core_stats {
204 	unsigned long	rx_dropped;
205 	unsigned long	tx_dropped;
206 	unsigned long	rx_nohandler;
207 	unsigned long	rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209 
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212 
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218 
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222 
223 struct netdev_hw_addr {
224 	struct list_head	list;
225 	struct rb_node		node;
226 	unsigned char		addr[MAX_ADDR_LEN];
227 	unsigned char		type;
228 #define NETDEV_HW_ADDR_T_LAN		1
229 #define NETDEV_HW_ADDR_T_SAN		2
230 #define NETDEV_HW_ADDR_T_UNICAST	3
231 #define NETDEV_HW_ADDR_T_MULTICAST	4
232 	bool			global_use;
233 	int			sync_cnt;
234 	int			refcount;
235 	int			synced;
236 	struct rcu_head		rcu_head;
237 };
238 
239 struct netdev_hw_addr_list {
240 	struct list_head	list;
241 	int			count;
242 
243 	/* Auxiliary tree for faster lookup on addition and deletion */
244 	struct rb_root		tree;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261 
262 struct hh_cache {
263 	unsigned int	hh_len;
264 	seqlock_t	hh_lock;
265 
266 	/* cached hardware header; allow for machine alignment needs.        */
267 #define HH_DATA_MOD	16
268 #define HH_DATA_OFF(__len) \
269 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270 #define HH_DATA_ALIGN(__len) \
271 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273 };
274 
275 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
276  * Alternative is:
277  *   dev->hard_header_len ? (dev->hard_header_len +
278  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279  *
280  * We could use other alignment values, but we must maintain the
281  * relationship HH alignment <= LL alignment.
282  */
283 #define LL_RESERVED_SPACE(dev) \
284 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287 
288 struct header_ops {
289 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
290 			   unsigned short type, const void *daddr,
291 			   const void *saddr, unsigned int len);
292 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 	void	(*cache_update)(struct hh_cache *hh,
295 				const struct net_device *dev,
296 				const unsigned char *haddr);
297 	bool	(*validate)(const char *ll_header, unsigned int len);
298 	__be16	(*parse_protocol)(const struct sk_buff *skb);
299 };
300 
301 /* These flag bits are private to the generic network queueing
302  * layer; they may not be explicitly referenced by any other
303  * code.
304  */
305 
306 enum netdev_state_t {
307 	__LINK_STATE_START,
308 	__LINK_STATE_PRESENT,
309 	__LINK_STATE_NOCARRIER,
310 	__LINK_STATE_LINKWATCH_PENDING,
311 	__LINK_STATE_DORMANT,
312 	__LINK_STATE_TESTING,
313 };
314 
315 struct gro_list {
316 	struct list_head	list;
317 	int			count;
318 };
319 
320 /*
321  * size of gro hash buckets, must less than bit number of
322  * napi_struct::gro_bitmask
323  */
324 #define GRO_HASH_BUCKETS	8
325 
326 /*
327  * Structure for NAPI scheduling similar to tasklet but with weighting
328  */
329 struct napi_struct {
330 	/* The poll_list must only be managed by the entity which
331 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
332 	 * whoever atomically sets that bit can add this napi_struct
333 	 * to the per-CPU poll_list, and whoever clears that bit
334 	 * can remove from the list right before clearing the bit.
335 	 */
336 	struct list_head	poll_list;
337 
338 	unsigned long		state;
339 	int			weight;
340 	int			defer_hard_irqs_count;
341 	unsigned long		gro_bitmask;
342 	int			(*poll)(struct napi_struct *, int);
343 #ifdef CONFIG_NETPOLL
344 	int			poll_owner;
345 #endif
346 	struct net_device	*dev;
347 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
348 	struct sk_buff		*skb;
349 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
350 	int			rx_count; /* length of rx_list */
351 	struct hrtimer		timer;
352 	struct list_head	dev_list;
353 	struct hlist_node	napi_hash_node;
354 	unsigned int		napi_id;
355 	struct task_struct	*thread;
356 };
357 
358 enum {
359 	NAPI_STATE_SCHED,		/* Poll is scheduled */
360 	NAPI_STATE_MISSED,		/* reschedule a napi */
361 	NAPI_STATE_DISABLE,		/* Disable pending */
362 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
363 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
364 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
365 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
366 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
367 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
368 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
369 };
370 
371 enum {
372 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
373 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
374 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
375 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
376 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
377 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
378 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
379 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
380 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
381 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
382 };
383 
384 enum gro_result {
385 	GRO_MERGED,
386 	GRO_MERGED_FREE,
387 	GRO_HELD,
388 	GRO_NORMAL,
389 	GRO_CONSUMED,
390 };
391 typedef enum gro_result gro_result_t;
392 
393 /*
394  * enum rx_handler_result - Possible return values for rx_handlers.
395  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396  * further.
397  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398  * case skb->dev was changed by rx_handler.
399  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
401  *
402  * rx_handlers are functions called from inside __netif_receive_skb(), to do
403  * special processing of the skb, prior to delivery to protocol handlers.
404  *
405  * Currently, a net_device can only have a single rx_handler registered. Trying
406  * to register a second rx_handler will return -EBUSY.
407  *
408  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409  * To unregister a rx_handler on a net_device, use
410  * netdev_rx_handler_unregister().
411  *
412  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413  * do with the skb.
414  *
415  * If the rx_handler consumed the skb in some way, it should return
416  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417  * the skb to be delivered in some other way.
418  *
419  * If the rx_handler changed skb->dev, to divert the skb to another
420  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421  * new device will be called if it exists.
422  *
423  * If the rx_handler decides the skb should be ignored, it should return
424  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425  * are registered on exact device (ptype->dev == skb->dev).
426  *
427  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
428  * delivered, it should return RX_HANDLER_PASS.
429  *
430  * A device without a registered rx_handler will behave as if rx_handler
431  * returned RX_HANDLER_PASS.
432  */
433 
434 enum rx_handler_result {
435 	RX_HANDLER_CONSUMED,
436 	RX_HANDLER_ANOTHER,
437 	RX_HANDLER_EXACT,
438 	RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442 
443 void __napi_schedule(struct napi_struct *n);
444 void __napi_schedule_irqoff(struct napi_struct *n);
445 
446 static inline bool napi_disable_pending(struct napi_struct *n)
447 {
448 	return test_bit(NAPI_STATE_DISABLE, &n->state);
449 }
450 
451 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
452 {
453 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
454 }
455 
456 bool napi_schedule_prep(struct napi_struct *n);
457 
458 /**
459  *	napi_schedule - schedule NAPI poll
460  *	@n: NAPI context
461  *
462  * Schedule NAPI poll routine to be called if it is not already
463  * running.
464  */
465 static inline void napi_schedule(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule(n);
469 }
470 
471 /**
472  *	napi_schedule_irqoff - schedule NAPI poll
473  *	@n: NAPI context
474  *
475  * Variant of napi_schedule(), assuming hard irqs are masked.
476  */
477 static inline void napi_schedule_irqoff(struct napi_struct *n)
478 {
479 	if (napi_schedule_prep(n))
480 		__napi_schedule_irqoff(n);
481 }
482 
483 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
484 static inline bool napi_reschedule(struct napi_struct *napi)
485 {
486 	if (napi_schedule_prep(napi)) {
487 		__napi_schedule(napi);
488 		return true;
489 	}
490 	return false;
491 }
492 
493 bool napi_complete_done(struct napi_struct *n, int work_done);
494 /**
495  *	napi_complete - NAPI processing complete
496  *	@n: NAPI context
497  *
498  * Mark NAPI processing as complete.
499  * Consider using napi_complete_done() instead.
500  * Return false if device should avoid rearming interrupts.
501  */
502 static inline bool napi_complete(struct napi_struct *n)
503 {
504 	return napi_complete_done(n, 0);
505 }
506 
507 int dev_set_threaded(struct net_device *dev, bool threaded);
508 
509 /**
510  *	napi_disable - prevent NAPI from scheduling
511  *	@n: NAPI context
512  *
513  * Stop NAPI from being scheduled on this context.
514  * Waits till any outstanding processing completes.
515  */
516 void napi_disable(struct napi_struct *n);
517 
518 void napi_enable(struct napi_struct *n);
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	val = READ_ONCE(n->state);
550 	do {
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (!try_cmpxchg(&n->state, &val, new));
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	netdevice_tracker	dev_tracker;
595 
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	atomic_long_t		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xsk_buff_pool    *pool;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 /*
637  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638  *                                     == 1 : For initns only
639  *                                     == 2 : For none.
640  */
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 #if IS_ENABLED(CONFIG_SYSCTL)
644 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
645 
646 	return !fb_tunnels_only_for_init_net ||
647 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
648 #else
649 	return true;
650 #endif
651 }
652 
653 static inline int net_inherit_devconf(void)
654 {
655 #if IS_ENABLED(CONFIG_SYSCTL)
656 	return READ_ONCE(sysctl_devconf_inherit_init_net);
657 #else
658 	return 0;
659 #endif
660 }
661 
662 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
663 {
664 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
665 	return q->numa_node;
666 #else
667 	return NUMA_NO_NODE;
668 #endif
669 }
670 
671 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
672 {
673 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
674 	q->numa_node = node;
675 #endif
676 }
677 
678 #ifdef CONFIG_RPS
679 /*
680  * This structure holds an RPS map which can be of variable length.  The
681  * map is an array of CPUs.
682  */
683 struct rps_map {
684 	unsigned int len;
685 	struct rcu_head rcu;
686 	u16 cpus[];
687 };
688 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
689 
690 /*
691  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
692  * tail pointer for that CPU's input queue at the time of last enqueue, and
693  * a hardware filter index.
694  */
695 struct rps_dev_flow {
696 	u16 cpu;
697 	u16 filter;
698 	unsigned int last_qtail;
699 };
700 #define RPS_NO_FILTER 0xffff
701 
702 /*
703  * The rps_dev_flow_table structure contains a table of flow mappings.
704  */
705 struct rps_dev_flow_table {
706 	unsigned int mask;
707 	struct rcu_head rcu;
708 	struct rps_dev_flow flows[];
709 };
710 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
711     ((_num) * sizeof(struct rps_dev_flow)))
712 
713 /*
714  * The rps_sock_flow_table contains mappings of flows to the last CPU
715  * on which they were processed by the application (set in recvmsg).
716  * Each entry is a 32bit value. Upper part is the high-order bits
717  * of flow hash, lower part is CPU number.
718  * rps_cpu_mask is used to partition the space, depending on number of
719  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
720  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
721  * meaning we use 32-6=26 bits for the hash.
722  */
723 struct rps_sock_flow_table {
724 	u32	mask;
725 
726 	u32	ents[] ____cacheline_aligned_in_smp;
727 };
728 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
729 
730 #define RPS_NO_CPU 0xffff
731 
732 extern u32 rps_cpu_mask;
733 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
734 
735 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
736 					u32 hash)
737 {
738 	if (table && hash) {
739 		unsigned int index = hash & table->mask;
740 		u32 val = hash & ~rps_cpu_mask;
741 
742 		/* We only give a hint, preemption can change CPU under us */
743 		val |= raw_smp_processor_id();
744 
745 		if (table->ents[index] != val)
746 			table->ents[index] = val;
747 	}
748 }
749 
750 #ifdef CONFIG_RFS_ACCEL
751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
752 			 u16 filter_id);
753 #endif
754 #endif /* CONFIG_RPS */
755 
756 /* This structure contains an instance of an RX queue. */
757 struct netdev_rx_queue {
758 	struct xdp_rxq_info		xdp_rxq;
759 #ifdef CONFIG_RPS
760 	struct rps_map __rcu		*rps_map;
761 	struct rps_dev_flow_table __rcu	*rps_flow_table;
762 #endif
763 	struct kobject			kobj;
764 	struct net_device		*dev;
765 	netdevice_tracker		dev_tracker;
766 
767 #ifdef CONFIG_XDP_SOCKETS
768 	struct xsk_buff_pool            *pool;
769 #endif
770 } ____cacheline_aligned_in_smp;
771 
772 /*
773  * RX queue sysfs structures and functions.
774  */
775 struct rx_queue_attribute {
776 	struct attribute attr;
777 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
778 	ssize_t (*store)(struct netdev_rx_queue *queue,
779 			 const char *buf, size_t len);
780 };
781 
782 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
783 enum xps_map_type {
784 	XPS_CPUS = 0,
785 	XPS_RXQS,
786 	XPS_MAPS_MAX,
787 };
788 
789 #ifdef CONFIG_XPS
790 /*
791  * This structure holds an XPS map which can be of variable length.  The
792  * map is an array of queues.
793  */
794 struct xps_map {
795 	unsigned int len;
796 	unsigned int alloc_len;
797 	struct rcu_head rcu;
798 	u16 queues[];
799 };
800 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
801 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
802        - sizeof(struct xps_map)) / sizeof(u16))
803 
804 /*
805  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
806  *
807  * We keep track of the number of cpus/rxqs used when the struct is allocated,
808  * in nr_ids. This will help not accessing out-of-bound memory.
809  *
810  * We keep track of the number of traffic classes used when the struct is
811  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
812  * not crossing its upper bound, as the original dev->num_tc can be updated in
813  * the meantime.
814  */
815 struct xps_dev_maps {
816 	struct rcu_head rcu;
817 	unsigned int nr_ids;
818 	s16 num_tc;
819 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
820 };
821 
822 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
823 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
824 
825 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
826 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
827 
828 #endif /* CONFIG_XPS */
829 
830 #define TC_MAX_QUEUE	16
831 #define TC_BITMASK	15
832 /* HW offloaded queuing disciplines txq count and offset maps */
833 struct netdev_tc_txq {
834 	u16 count;
835 	u16 offset;
836 };
837 
838 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
839 /*
840  * This structure is to hold information about the device
841  * configured to run FCoE protocol stack.
842  */
843 struct netdev_fcoe_hbainfo {
844 	char	manufacturer[64];
845 	char	serial_number[64];
846 	char	hardware_version[64];
847 	char	driver_version[64];
848 	char	optionrom_version[64];
849 	char	firmware_version[64];
850 	char	model[256];
851 	char	model_description[256];
852 };
853 #endif
854 
855 #define MAX_PHYS_ITEM_ID_LEN 32
856 
857 /* This structure holds a unique identifier to identify some
858  * physical item (port for example) used by a netdevice.
859  */
860 struct netdev_phys_item_id {
861 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
862 	unsigned char id_len;
863 };
864 
865 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
866 					    struct netdev_phys_item_id *b)
867 {
868 	return a->id_len == b->id_len &&
869 	       memcmp(a->id, b->id, a->id_len) == 0;
870 }
871 
872 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
873 				       struct sk_buff *skb,
874 				       struct net_device *sb_dev);
875 
876 enum net_device_path_type {
877 	DEV_PATH_ETHERNET = 0,
878 	DEV_PATH_VLAN,
879 	DEV_PATH_BRIDGE,
880 	DEV_PATH_PPPOE,
881 	DEV_PATH_DSA,
882 	DEV_PATH_MTK_WDMA,
883 };
884 
885 struct net_device_path {
886 	enum net_device_path_type	type;
887 	const struct net_device		*dev;
888 	union {
889 		struct {
890 			u16		id;
891 			__be16		proto;
892 			u8		h_dest[ETH_ALEN];
893 		} encap;
894 		struct {
895 			enum {
896 				DEV_PATH_BR_VLAN_KEEP,
897 				DEV_PATH_BR_VLAN_TAG,
898 				DEV_PATH_BR_VLAN_UNTAG,
899 				DEV_PATH_BR_VLAN_UNTAG_HW,
900 			}		vlan_mode;
901 			u16		vlan_id;
902 			__be16		vlan_proto;
903 		} bridge;
904 		struct {
905 			int port;
906 			u16 proto;
907 		} dsa;
908 		struct {
909 			u8 wdma_idx;
910 			u8 queue;
911 			u16 wcid;
912 			u8 bss;
913 		} mtk_wdma;
914 	};
915 };
916 
917 #define NET_DEVICE_PATH_STACK_MAX	5
918 #define NET_DEVICE_PATH_VLAN_MAX	2
919 
920 struct net_device_path_stack {
921 	int			num_paths;
922 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
923 };
924 
925 struct net_device_path_ctx {
926 	const struct net_device *dev;
927 	u8			daddr[ETH_ALEN];
928 
929 	int			num_vlans;
930 	struct {
931 		u16		id;
932 		__be16		proto;
933 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
934 };
935 
936 enum tc_setup_type {
937 	TC_SETUP_QDISC_MQPRIO,
938 	TC_SETUP_CLSU32,
939 	TC_SETUP_CLSFLOWER,
940 	TC_SETUP_CLSMATCHALL,
941 	TC_SETUP_CLSBPF,
942 	TC_SETUP_BLOCK,
943 	TC_SETUP_QDISC_CBS,
944 	TC_SETUP_QDISC_RED,
945 	TC_SETUP_QDISC_PRIO,
946 	TC_SETUP_QDISC_MQ,
947 	TC_SETUP_QDISC_ETF,
948 	TC_SETUP_ROOT_QDISC,
949 	TC_SETUP_QDISC_GRED,
950 	TC_SETUP_QDISC_TAPRIO,
951 	TC_SETUP_FT,
952 	TC_SETUP_QDISC_ETS,
953 	TC_SETUP_QDISC_TBF,
954 	TC_SETUP_QDISC_FIFO,
955 	TC_SETUP_QDISC_HTB,
956 	TC_SETUP_ACT,
957 };
958 
959 /* These structures hold the attributes of bpf state that are being passed
960  * to the netdevice through the bpf op.
961  */
962 enum bpf_netdev_command {
963 	/* Set or clear a bpf program used in the earliest stages of packet
964 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
965 	 * is responsible for calling bpf_prog_put on any old progs that are
966 	 * stored. In case of error, the callee need not release the new prog
967 	 * reference, but on success it takes ownership and must bpf_prog_put
968 	 * when it is no longer used.
969 	 */
970 	XDP_SETUP_PROG,
971 	XDP_SETUP_PROG_HW,
972 	/* BPF program for offload callbacks, invoked at program load time. */
973 	BPF_OFFLOAD_MAP_ALLOC,
974 	BPF_OFFLOAD_MAP_FREE,
975 	XDP_SETUP_XSK_POOL,
976 };
977 
978 struct bpf_prog_offload_ops;
979 struct netlink_ext_ack;
980 struct xdp_umem;
981 struct xdp_dev_bulk_queue;
982 struct bpf_xdp_link;
983 
984 enum bpf_xdp_mode {
985 	XDP_MODE_SKB = 0,
986 	XDP_MODE_DRV = 1,
987 	XDP_MODE_HW = 2,
988 	__MAX_XDP_MODE
989 };
990 
991 struct bpf_xdp_entity {
992 	struct bpf_prog *prog;
993 	struct bpf_xdp_link *link;
994 };
995 
996 struct netdev_bpf {
997 	enum bpf_netdev_command command;
998 	union {
999 		/* XDP_SETUP_PROG */
1000 		struct {
1001 			u32 flags;
1002 			struct bpf_prog *prog;
1003 			struct netlink_ext_ack *extack;
1004 		};
1005 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1006 		struct {
1007 			struct bpf_offloaded_map *offmap;
1008 		};
1009 		/* XDP_SETUP_XSK_POOL */
1010 		struct {
1011 			struct xsk_buff_pool *pool;
1012 			u16 queue_id;
1013 		} xsk;
1014 	};
1015 };
1016 
1017 /* Flags for ndo_xsk_wakeup. */
1018 #define XDP_WAKEUP_RX (1 << 0)
1019 #define XDP_WAKEUP_TX (1 << 1)
1020 
1021 #ifdef CONFIG_XFRM_OFFLOAD
1022 struct xfrmdev_ops {
1023 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1024 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1025 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1026 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1027 				       struct xfrm_state *x);
1028 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1029 };
1030 #endif
1031 
1032 struct dev_ifalias {
1033 	struct rcu_head rcuhead;
1034 	char ifalias[];
1035 };
1036 
1037 struct devlink;
1038 struct tlsdev_ops;
1039 
1040 struct netdev_net_notifier {
1041 	struct list_head list;
1042 	struct notifier_block *nb;
1043 };
1044 
1045 /*
1046  * This structure defines the management hooks for network devices.
1047  * The following hooks can be defined; unless noted otherwise, they are
1048  * optional and can be filled with a null pointer.
1049  *
1050  * int (*ndo_init)(struct net_device *dev);
1051  *     This function is called once when a network device is registered.
1052  *     The network device can use this for any late stage initialization
1053  *     or semantic validation. It can fail with an error code which will
1054  *     be propagated back to register_netdev.
1055  *
1056  * void (*ndo_uninit)(struct net_device *dev);
1057  *     This function is called when device is unregistered or when registration
1058  *     fails. It is not called if init fails.
1059  *
1060  * int (*ndo_open)(struct net_device *dev);
1061  *     This function is called when a network device transitions to the up
1062  *     state.
1063  *
1064  * int (*ndo_stop)(struct net_device *dev);
1065  *     This function is called when a network device transitions to the down
1066  *     state.
1067  *
1068  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1069  *                               struct net_device *dev);
1070  *	Called when a packet needs to be transmitted.
1071  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1072  *	the queue before that can happen; it's for obsolete devices and weird
1073  *	corner cases, but the stack really does a non-trivial amount
1074  *	of useless work if you return NETDEV_TX_BUSY.
1075  *	Required; cannot be NULL.
1076  *
1077  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1078  *					   struct net_device *dev
1079  *					   netdev_features_t features);
1080  *	Called by core transmit path to determine if device is capable of
1081  *	performing offload operations on a given packet. This is to give
1082  *	the device an opportunity to implement any restrictions that cannot
1083  *	be otherwise expressed by feature flags. The check is called with
1084  *	the set of features that the stack has calculated and it returns
1085  *	those the driver believes to be appropriate.
1086  *
1087  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1088  *                         struct net_device *sb_dev);
1089  *	Called to decide which queue to use when device supports multiple
1090  *	transmit queues.
1091  *
1092  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1093  *	This function is called to allow device receiver to make
1094  *	changes to configuration when multicast or promiscuous is enabled.
1095  *
1096  * void (*ndo_set_rx_mode)(struct net_device *dev);
1097  *	This function is called device changes address list filtering.
1098  *	If driver handles unicast address filtering, it should set
1099  *	IFF_UNICAST_FLT in its priv_flags.
1100  *
1101  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1102  *	This function  is called when the Media Access Control address
1103  *	needs to be changed. If this interface is not defined, the
1104  *	MAC address can not be changed.
1105  *
1106  * int (*ndo_validate_addr)(struct net_device *dev);
1107  *	Test if Media Access Control address is valid for the device.
1108  *
1109  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1110  *	Old-style ioctl entry point. This is used internally by the
1111  *	appletalk and ieee802154 subsystems but is no longer called by
1112  *	the device ioctl handler.
1113  *
1114  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1115  *	Used by the bonding driver for its device specific ioctls:
1116  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1117  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1118  *
1119  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1120  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1121  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1122  *
1123  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1124  *	Used to set network devices bus interface parameters. This interface
1125  *	is retained for legacy reasons; new devices should use the bus
1126  *	interface (PCI) for low level management.
1127  *
1128  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1129  *	Called when a user wants to change the Maximum Transfer Unit
1130  *	of a device.
1131  *
1132  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1133  *	Callback used when the transmitter has not made any progress
1134  *	for dev->watchdog ticks.
1135  *
1136  * void (*ndo_get_stats64)(struct net_device *dev,
1137  *                         struct rtnl_link_stats64 *storage);
1138  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1139  *	Called when a user wants to get the network device usage
1140  *	statistics. Drivers must do one of the following:
1141  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1142  *	   rtnl_link_stats64 structure passed by the caller.
1143  *	2. Define @ndo_get_stats to update a net_device_stats structure
1144  *	   (which should normally be dev->stats) and return a pointer to
1145  *	   it. The structure may be changed asynchronously only if each
1146  *	   field is written atomically.
1147  *	3. Update dev->stats asynchronously and atomically, and define
1148  *	   neither operation.
1149  *
1150  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1151  *	Return true if this device supports offload stats of this attr_id.
1152  *
1153  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1154  *	void *attr_data)
1155  *	Get statistics for offload operations by attr_id. Write it into the
1156  *	attr_data pointer.
1157  *
1158  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1159  *	If device supports VLAN filtering this function is called when a
1160  *	VLAN id is registered.
1161  *
1162  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1163  *	If device supports VLAN filtering this function is called when a
1164  *	VLAN id is unregistered.
1165  *
1166  * void (*ndo_poll_controller)(struct net_device *dev);
1167  *
1168  *	SR-IOV management functions.
1169  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1170  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1171  *			  u8 qos, __be16 proto);
1172  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1173  *			  int max_tx_rate);
1174  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1175  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1176  * int (*ndo_get_vf_config)(struct net_device *dev,
1177  *			    int vf, struct ifla_vf_info *ivf);
1178  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1179  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1180  *			  struct nlattr *port[]);
1181  *
1182  *      Enable or disable the VF ability to query its RSS Redirection Table and
1183  *      Hash Key. This is needed since on some devices VF share this information
1184  *      with PF and querying it may introduce a theoretical security risk.
1185  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1186  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1187  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1188  *		       void *type_data);
1189  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1190  *	This is always called from the stack with the rtnl lock held and netif
1191  *	tx queues stopped. This allows the netdevice to perform queue
1192  *	management safely.
1193  *
1194  *	Fiber Channel over Ethernet (FCoE) offload functions.
1195  * int (*ndo_fcoe_enable)(struct net_device *dev);
1196  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1197  *	so the underlying device can perform whatever needed configuration or
1198  *	initialization to support acceleration of FCoE traffic.
1199  *
1200  * int (*ndo_fcoe_disable)(struct net_device *dev);
1201  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1202  *	so the underlying device can perform whatever needed clean-ups to
1203  *	stop supporting acceleration of FCoE traffic.
1204  *
1205  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1206  *			     struct scatterlist *sgl, unsigned int sgc);
1207  *	Called when the FCoE Initiator wants to initialize an I/O that
1208  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1209  *	perform necessary setup and returns 1 to indicate the device is set up
1210  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1211  *
1212  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1213  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1214  *	indicated by the FC exchange id 'xid', so the underlying device can
1215  *	clean up and reuse resources for later DDP requests.
1216  *
1217  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1218  *			      struct scatterlist *sgl, unsigned int sgc);
1219  *	Called when the FCoE Target wants to initialize an I/O that
1220  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1221  *	perform necessary setup and returns 1 to indicate the device is set up
1222  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1223  *
1224  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1225  *			       struct netdev_fcoe_hbainfo *hbainfo);
1226  *	Called when the FCoE Protocol stack wants information on the underlying
1227  *	device. This information is utilized by the FCoE protocol stack to
1228  *	register attributes with Fiber Channel management service as per the
1229  *	FC-GS Fabric Device Management Information(FDMI) specification.
1230  *
1231  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1232  *	Called when the underlying device wants to override default World Wide
1233  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1234  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1235  *	protocol stack to use.
1236  *
1237  *	RFS acceleration.
1238  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1239  *			    u16 rxq_index, u32 flow_id);
1240  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1241  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1242  *	Return the filter ID on success, or a negative error code.
1243  *
1244  *	Slave management functions (for bridge, bonding, etc).
1245  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1246  *	Called to make another netdev an underling.
1247  *
1248  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1249  *	Called to release previously enslaved netdev.
1250  *
1251  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1252  *					    struct sk_buff *skb,
1253  *					    bool all_slaves);
1254  *	Get the xmit slave of master device. If all_slaves is true, function
1255  *	assume all the slaves can transmit.
1256  *
1257  *      Feature/offload setting functions.
1258  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1259  *		netdev_features_t features);
1260  *	Adjusts the requested feature flags according to device-specific
1261  *	constraints, and returns the resulting flags. Must not modify
1262  *	the device state.
1263  *
1264  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1265  *	Called to update device configuration to new features. Passed
1266  *	feature set might be less than what was returned by ndo_fix_features()).
1267  *	Must return >0 or -errno if it changed dev->features itself.
1268  *
1269  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1270  *		      struct net_device *dev,
1271  *		      const unsigned char *addr, u16 vid, u16 flags,
1272  *		      struct netlink_ext_ack *extack);
1273  *	Adds an FDB entry to dev for addr.
1274  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1275  *		      struct net_device *dev,
1276  *		      const unsigned char *addr, u16 vid)
1277  *	Deletes the FDB entry from dev coresponding to addr.
1278  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1279  *			   struct net_device *dev,
1280  *			   u16 vid,
1281  *			   struct netlink_ext_ack *extack);
1282  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1283  *		       struct net_device *dev, struct net_device *filter_dev,
1284  *		       int *idx)
1285  *	Used to add FDB entries to dump requests. Implementers should add
1286  *	entries to skb and update idx with the number of entries.
1287  *
1288  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1289  *			     u16 flags, struct netlink_ext_ack *extack)
1290  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1291  *			     struct net_device *dev, u32 filter_mask,
1292  *			     int nlflags)
1293  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1294  *			     u16 flags);
1295  *
1296  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1297  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1298  *	which do not represent real hardware may define this to allow their
1299  *	userspace components to manage their virtual carrier state. Devices
1300  *	that determine carrier state from physical hardware properties (eg
1301  *	network cables) or protocol-dependent mechanisms (eg
1302  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1303  *
1304  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1305  *			       struct netdev_phys_item_id *ppid);
1306  *	Called to get ID of physical port of this device. If driver does
1307  *	not implement this, it is assumed that the hw is not able to have
1308  *	multiple net devices on single physical port.
1309  *
1310  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1311  *				 struct netdev_phys_item_id *ppid)
1312  *	Called to get the parent ID of the physical port of this device.
1313  *
1314  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1315  *				 struct net_device *dev)
1316  *	Called by upper layer devices to accelerate switching or other
1317  *	station functionality into hardware. 'pdev is the lowerdev
1318  *	to use for the offload and 'dev' is the net device that will
1319  *	back the offload. Returns a pointer to the private structure
1320  *	the upper layer will maintain.
1321  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1322  *	Called by upper layer device to delete the station created
1323  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1324  *	the station and priv is the structure returned by the add
1325  *	operation.
1326  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1327  *			     int queue_index, u32 maxrate);
1328  *	Called when a user wants to set a max-rate limitation of specific
1329  *	TX queue.
1330  * int (*ndo_get_iflink)(const struct net_device *dev);
1331  *	Called to get the iflink value of this device.
1332  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1333  *	This function is used to get egress tunnel information for given skb.
1334  *	This is useful for retrieving outer tunnel header parameters while
1335  *	sampling packet.
1336  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1337  *	This function is used to specify the headroom that the skb must
1338  *	consider when allocation skb during packet reception. Setting
1339  *	appropriate rx headroom value allows avoiding skb head copy on
1340  *	forward. Setting a negative value resets the rx headroom to the
1341  *	default value.
1342  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1343  *	This function is used to set or query state related to XDP on the
1344  *	netdevice and manage BPF offload. See definition of
1345  *	enum bpf_netdev_command for details.
1346  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1347  *			u32 flags);
1348  *	This function is used to submit @n XDP packets for transmit on a
1349  *	netdevice. Returns number of frames successfully transmitted, frames
1350  *	that got dropped are freed/returned via xdp_return_frame().
1351  *	Returns negative number, means general error invoking ndo, meaning
1352  *	no frames were xmit'ed and core-caller will free all frames.
1353  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1354  *					        struct xdp_buff *xdp);
1355  *      Get the xmit slave of master device based on the xdp_buff.
1356  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1357  *      This function is used to wake up the softirq, ksoftirqd or kthread
1358  *	responsible for sending and/or receiving packets on a specific
1359  *	queue id bound to an AF_XDP socket. The flags field specifies if
1360  *	only RX, only Tx, or both should be woken up using the flags
1361  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1362  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1363  *	Get devlink port instance associated with a given netdev.
1364  *	Called with a reference on the netdevice and devlink locks only,
1365  *	rtnl_lock is not held.
1366  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1367  *			 int cmd);
1368  *	Add, change, delete or get information on an IPv4 tunnel.
1369  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1370  *	If a device is paired with a peer device, return the peer instance.
1371  *	The caller must be under RCU read context.
1372  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1373  *     Get the forwarding path to reach the real device from the HW destination address
1374  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1375  *			     const struct skb_shared_hwtstamps *hwtstamps,
1376  *			     bool cycles);
1377  *	Get hardware timestamp based on normal/adjustable time or free running
1378  *	cycle counter. This function is required if physical clock supports a
1379  *	free running cycle counter.
1380  */
1381 struct net_device_ops {
1382 	int			(*ndo_init)(struct net_device *dev);
1383 	void			(*ndo_uninit)(struct net_device *dev);
1384 	int			(*ndo_open)(struct net_device *dev);
1385 	int			(*ndo_stop)(struct net_device *dev);
1386 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1387 						  struct net_device *dev);
1388 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1389 						      struct net_device *dev,
1390 						      netdev_features_t features);
1391 	u16			(*ndo_select_queue)(struct net_device *dev,
1392 						    struct sk_buff *skb,
1393 						    struct net_device *sb_dev);
1394 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1395 						       int flags);
1396 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1397 	int			(*ndo_set_mac_address)(struct net_device *dev,
1398 						       void *addr);
1399 	int			(*ndo_validate_addr)(struct net_device *dev);
1400 	int			(*ndo_do_ioctl)(struct net_device *dev,
1401 					        struct ifreq *ifr, int cmd);
1402 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1403 						 struct ifreq *ifr, int cmd);
1404 	int			(*ndo_siocbond)(struct net_device *dev,
1405 						struct ifreq *ifr, int cmd);
1406 	int			(*ndo_siocwandev)(struct net_device *dev,
1407 						  struct if_settings *ifs);
1408 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1409 						      struct ifreq *ifr,
1410 						      void __user *data, int cmd);
1411 	int			(*ndo_set_config)(struct net_device *dev,
1412 					          struct ifmap *map);
1413 	int			(*ndo_change_mtu)(struct net_device *dev,
1414 						  int new_mtu);
1415 	int			(*ndo_neigh_setup)(struct net_device *dev,
1416 						   struct neigh_parms *);
1417 	void			(*ndo_tx_timeout) (struct net_device *dev,
1418 						   unsigned int txqueue);
1419 
1420 	void			(*ndo_get_stats64)(struct net_device *dev,
1421 						   struct rtnl_link_stats64 *storage);
1422 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1423 	int			(*ndo_get_offload_stats)(int attr_id,
1424 							 const struct net_device *dev,
1425 							 void *attr_data);
1426 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1427 
1428 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1429 						       __be16 proto, u16 vid);
1430 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1431 						        __be16 proto, u16 vid);
1432 #ifdef CONFIG_NET_POLL_CONTROLLER
1433 	void                    (*ndo_poll_controller)(struct net_device *dev);
1434 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1435 						     struct netpoll_info *info);
1436 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1437 #endif
1438 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1439 						  int queue, u8 *mac);
1440 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1441 						   int queue, u16 vlan,
1442 						   u8 qos, __be16 proto);
1443 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1444 						   int vf, int min_tx_rate,
1445 						   int max_tx_rate);
1446 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1447 						       int vf, bool setting);
1448 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1449 						    int vf, bool setting);
1450 	int			(*ndo_get_vf_config)(struct net_device *dev,
1451 						     int vf,
1452 						     struct ifla_vf_info *ivf);
1453 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1454 							 int vf, int link_state);
1455 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1456 						    int vf,
1457 						    struct ifla_vf_stats
1458 						    *vf_stats);
1459 	int			(*ndo_set_vf_port)(struct net_device *dev,
1460 						   int vf,
1461 						   struct nlattr *port[]);
1462 	int			(*ndo_get_vf_port)(struct net_device *dev,
1463 						   int vf, struct sk_buff *skb);
1464 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1465 						   int vf,
1466 						   struct ifla_vf_guid *node_guid,
1467 						   struct ifla_vf_guid *port_guid);
1468 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1469 						   int vf, u64 guid,
1470 						   int guid_type);
1471 	int			(*ndo_set_vf_rss_query_en)(
1472 						   struct net_device *dev,
1473 						   int vf, bool setting);
1474 	int			(*ndo_setup_tc)(struct net_device *dev,
1475 						enum tc_setup_type type,
1476 						void *type_data);
1477 #if IS_ENABLED(CONFIG_FCOE)
1478 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1479 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1480 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1481 						      u16 xid,
1482 						      struct scatterlist *sgl,
1483 						      unsigned int sgc);
1484 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1485 						     u16 xid);
1486 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1487 						       u16 xid,
1488 						       struct scatterlist *sgl,
1489 						       unsigned int sgc);
1490 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1491 							struct netdev_fcoe_hbainfo *hbainfo);
1492 #endif
1493 
1494 #if IS_ENABLED(CONFIG_LIBFCOE)
1495 #define NETDEV_FCOE_WWNN 0
1496 #define NETDEV_FCOE_WWPN 1
1497 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1498 						    u64 *wwn, int type);
1499 #endif
1500 
1501 #ifdef CONFIG_RFS_ACCEL
1502 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1503 						     const struct sk_buff *skb,
1504 						     u16 rxq_index,
1505 						     u32 flow_id);
1506 #endif
1507 	int			(*ndo_add_slave)(struct net_device *dev,
1508 						 struct net_device *slave_dev,
1509 						 struct netlink_ext_ack *extack);
1510 	int			(*ndo_del_slave)(struct net_device *dev,
1511 						 struct net_device *slave_dev);
1512 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1513 						      struct sk_buff *skb,
1514 						      bool all_slaves);
1515 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1516 							struct sock *sk);
1517 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1518 						    netdev_features_t features);
1519 	int			(*ndo_set_features)(struct net_device *dev,
1520 						    netdev_features_t features);
1521 	int			(*ndo_neigh_construct)(struct net_device *dev,
1522 						       struct neighbour *n);
1523 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1524 						     struct neighbour *n);
1525 
1526 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1527 					       struct nlattr *tb[],
1528 					       struct net_device *dev,
1529 					       const unsigned char *addr,
1530 					       u16 vid,
1531 					       u16 flags,
1532 					       struct netlink_ext_ack *extack);
1533 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1534 					       struct nlattr *tb[],
1535 					       struct net_device *dev,
1536 					       const unsigned char *addr,
1537 					       u16 vid, struct netlink_ext_ack *extack);
1538 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1539 						    struct nlattr *tb[],
1540 						    struct net_device *dev,
1541 						    u16 vid,
1542 						    struct netlink_ext_ack *extack);
1543 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1544 						struct netlink_callback *cb,
1545 						struct net_device *dev,
1546 						struct net_device *filter_dev,
1547 						int *idx);
1548 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1549 					       struct nlattr *tb[],
1550 					       struct net_device *dev,
1551 					       const unsigned char *addr,
1552 					       u16 vid, u32 portid, u32 seq,
1553 					       struct netlink_ext_ack *extack);
1554 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1555 						      struct nlmsghdr *nlh,
1556 						      u16 flags,
1557 						      struct netlink_ext_ack *extack);
1558 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1559 						      u32 pid, u32 seq,
1560 						      struct net_device *dev,
1561 						      u32 filter_mask,
1562 						      int nlflags);
1563 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1564 						      struct nlmsghdr *nlh,
1565 						      u16 flags);
1566 	int			(*ndo_change_carrier)(struct net_device *dev,
1567 						      bool new_carrier);
1568 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1569 							struct netdev_phys_item_id *ppid);
1570 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1571 							  struct netdev_phys_item_id *ppid);
1572 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1573 							  char *name, size_t len);
1574 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1575 							struct net_device *dev);
1576 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1577 							void *priv);
1578 
1579 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1580 						      int queue_index,
1581 						      u32 maxrate);
1582 	int			(*ndo_get_iflink)(const struct net_device *dev);
1583 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1584 						       struct sk_buff *skb);
1585 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1586 						       int needed_headroom);
1587 	int			(*ndo_bpf)(struct net_device *dev,
1588 					   struct netdev_bpf *bpf);
1589 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1590 						struct xdp_frame **xdp,
1591 						u32 flags);
1592 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1593 							  struct xdp_buff *xdp);
1594 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1595 						  u32 queue_id, u32 flags);
1596 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1597 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1598 						  struct ip_tunnel_parm *p, int cmd);
1599 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1600 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1601                                                          struct net_device_path *path);
1602 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1603 						  const struct skb_shared_hwtstamps *hwtstamps,
1604 						  bool cycles);
1605 };
1606 
1607 /**
1608  * enum netdev_priv_flags - &struct net_device priv_flags
1609  *
1610  * These are the &struct net_device, they are only set internally
1611  * by drivers and used in the kernel. These flags are invisible to
1612  * userspace; this means that the order of these flags can change
1613  * during any kernel release.
1614  *
1615  * You should have a pretty good reason to be extending these flags.
1616  *
1617  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1618  * @IFF_EBRIDGE: Ethernet bridging device
1619  * @IFF_BONDING: bonding master or slave
1620  * @IFF_ISATAP: ISATAP interface (RFC4214)
1621  * @IFF_WAN_HDLC: WAN HDLC device
1622  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1623  *	release skb->dst
1624  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1625  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1626  * @IFF_MACVLAN_PORT: device used as macvlan port
1627  * @IFF_BRIDGE_PORT: device used as bridge port
1628  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1629  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1630  * @IFF_UNICAST_FLT: Supports unicast filtering
1631  * @IFF_TEAM_PORT: device used as team port
1632  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1633  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1634  *	change when it's running
1635  * @IFF_MACVLAN: Macvlan device
1636  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1637  *	underlying stacked devices
1638  * @IFF_L3MDEV_MASTER: device is an L3 master device
1639  * @IFF_NO_QUEUE: device can run without qdisc attached
1640  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1641  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1642  * @IFF_TEAM: device is a team device
1643  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1644  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1645  *	entity (i.e. the master device for bridged veth)
1646  * @IFF_MACSEC: device is a MACsec device
1647  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1648  * @IFF_FAILOVER: device is a failover master device
1649  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1650  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1651  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1652  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1653  *	skb_headlen(skb) == 0 (data starts from frag0)
1654  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1655  */
1656 enum netdev_priv_flags {
1657 	IFF_802_1Q_VLAN			= 1<<0,
1658 	IFF_EBRIDGE			= 1<<1,
1659 	IFF_BONDING			= 1<<2,
1660 	IFF_ISATAP			= 1<<3,
1661 	IFF_WAN_HDLC			= 1<<4,
1662 	IFF_XMIT_DST_RELEASE		= 1<<5,
1663 	IFF_DONT_BRIDGE			= 1<<6,
1664 	IFF_DISABLE_NETPOLL		= 1<<7,
1665 	IFF_MACVLAN_PORT		= 1<<8,
1666 	IFF_BRIDGE_PORT			= 1<<9,
1667 	IFF_OVS_DATAPATH		= 1<<10,
1668 	IFF_TX_SKB_SHARING		= 1<<11,
1669 	IFF_UNICAST_FLT			= 1<<12,
1670 	IFF_TEAM_PORT			= 1<<13,
1671 	IFF_SUPP_NOFCS			= 1<<14,
1672 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1673 	IFF_MACVLAN			= 1<<16,
1674 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1675 	IFF_L3MDEV_MASTER		= 1<<18,
1676 	IFF_NO_QUEUE			= 1<<19,
1677 	IFF_OPENVSWITCH			= 1<<20,
1678 	IFF_L3MDEV_SLAVE		= 1<<21,
1679 	IFF_TEAM			= 1<<22,
1680 	IFF_RXFH_CONFIGURED		= 1<<23,
1681 	IFF_PHONY_HEADROOM		= 1<<24,
1682 	IFF_MACSEC			= 1<<25,
1683 	IFF_NO_RX_HANDLER		= 1<<26,
1684 	IFF_FAILOVER			= 1<<27,
1685 	IFF_FAILOVER_SLAVE		= 1<<28,
1686 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1687 	IFF_LIVE_RENAME_OK		= 1<<30,
1688 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1689 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1690 };
1691 
1692 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1693 #define IFF_EBRIDGE			IFF_EBRIDGE
1694 #define IFF_BONDING			IFF_BONDING
1695 #define IFF_ISATAP			IFF_ISATAP
1696 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1697 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1698 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1699 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1700 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1701 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1702 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1703 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1704 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1705 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1706 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1707 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1708 #define IFF_MACVLAN			IFF_MACVLAN
1709 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1710 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1711 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1712 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1713 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1714 #define IFF_TEAM			IFF_TEAM
1715 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1716 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1717 #define IFF_MACSEC			IFF_MACSEC
1718 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1719 #define IFF_FAILOVER			IFF_FAILOVER
1720 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1721 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1722 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1723 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1724 
1725 /* Specifies the type of the struct net_device::ml_priv pointer */
1726 enum netdev_ml_priv_type {
1727 	ML_PRIV_NONE,
1728 	ML_PRIV_CAN,
1729 };
1730 
1731 /**
1732  *	struct net_device - The DEVICE structure.
1733  *
1734  *	Actually, this whole structure is a big mistake.  It mixes I/O
1735  *	data with strictly "high-level" data, and it has to know about
1736  *	almost every data structure used in the INET module.
1737  *
1738  *	@name:	This is the first field of the "visible" part of this structure
1739  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1740  *		of the interface.
1741  *
1742  *	@name_node:	Name hashlist node
1743  *	@ifalias:	SNMP alias
1744  *	@mem_end:	Shared memory end
1745  *	@mem_start:	Shared memory start
1746  *	@base_addr:	Device I/O address
1747  *	@irq:		Device IRQ number
1748  *
1749  *	@state:		Generic network queuing layer state, see netdev_state_t
1750  *	@dev_list:	The global list of network devices
1751  *	@napi_list:	List entry used for polling NAPI devices
1752  *	@unreg_list:	List entry  when we are unregistering the
1753  *			device; see the function unregister_netdev
1754  *	@close_list:	List entry used when we are closing the device
1755  *	@ptype_all:     Device-specific packet handlers for all protocols
1756  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1757  *
1758  *	@adj_list:	Directly linked devices, like slaves for bonding
1759  *	@features:	Currently active device features
1760  *	@hw_features:	User-changeable features
1761  *
1762  *	@wanted_features:	User-requested features
1763  *	@vlan_features:		Mask of features inheritable by VLAN devices
1764  *
1765  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1766  *				This field indicates what encapsulation
1767  *				offloads the hardware is capable of doing,
1768  *				and drivers will need to set them appropriately.
1769  *
1770  *	@mpls_features:	Mask of features inheritable by MPLS
1771  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1772  *
1773  *	@ifindex:	interface index
1774  *	@group:		The group the device belongs to
1775  *
1776  *	@stats:		Statistics struct, which was left as a legacy, use
1777  *			rtnl_link_stats64 instead
1778  *
1779  *	@core_stats:	core networking counters,
1780  *			do not use this in drivers
1781  *	@carrier_up_count:	Number of times the carrier has been up
1782  *	@carrier_down_count:	Number of times the carrier has been down
1783  *
1784  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1785  *				instead of ioctl,
1786  *				see <net/iw_handler.h> for details.
1787  *	@wireless_data:	Instance data managed by the core of wireless extensions
1788  *
1789  *	@netdev_ops:	Includes several pointers to callbacks,
1790  *			if one wants to override the ndo_*() functions
1791  *	@ethtool_ops:	Management operations
1792  *	@l3mdev_ops:	Layer 3 master device operations
1793  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1794  *			discovery handling. Necessary for e.g. 6LoWPAN.
1795  *	@xfrmdev_ops:	Transformation offload operations
1796  *	@tlsdev_ops:	Transport Layer Security offload operations
1797  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1798  *			of Layer 2 headers.
1799  *
1800  *	@flags:		Interface flags (a la BSD)
1801  *	@priv_flags:	Like 'flags' but invisible to userspace,
1802  *			see if.h for the definitions
1803  *	@gflags:	Global flags ( kept as legacy )
1804  *	@padded:	How much padding added by alloc_netdev()
1805  *	@operstate:	RFC2863 operstate
1806  *	@link_mode:	Mapping policy to operstate
1807  *	@if_port:	Selectable AUI, TP, ...
1808  *	@dma:		DMA channel
1809  *	@mtu:		Interface MTU value
1810  *	@min_mtu:	Interface Minimum MTU value
1811  *	@max_mtu:	Interface Maximum MTU value
1812  *	@type:		Interface hardware type
1813  *	@hard_header_len: Maximum hardware header length.
1814  *	@min_header_len:  Minimum hardware header length
1815  *
1816  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1817  *			  cases can this be guaranteed
1818  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1819  *			  cases can this be guaranteed. Some cases also use
1820  *			  LL_MAX_HEADER instead to allocate the skb
1821  *
1822  *	interface address info:
1823  *
1824  * 	@perm_addr:		Permanent hw address
1825  * 	@addr_assign_type:	Hw address assignment type
1826  * 	@addr_len:		Hardware address length
1827  *	@upper_level:		Maximum depth level of upper devices.
1828  *	@lower_level:		Maximum depth level of lower devices.
1829  *	@neigh_priv_len:	Used in neigh_alloc()
1830  * 	@dev_id:		Used to differentiate devices that share
1831  * 				the same link layer address
1832  * 	@dev_port:		Used to differentiate devices that share
1833  * 				the same function
1834  *	@addr_list_lock:	XXX: need comments on this one
1835  *	@name_assign_type:	network interface name assignment type
1836  *	@uc_promisc:		Counter that indicates promiscuous mode
1837  *				has been enabled due to the need to listen to
1838  *				additional unicast addresses in a device that
1839  *				does not implement ndo_set_rx_mode()
1840  *	@uc:			unicast mac addresses
1841  *	@mc:			multicast mac addresses
1842  *	@dev_addrs:		list of device hw addresses
1843  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1844  *	@promiscuity:		Number of times the NIC is told to work in
1845  *				promiscuous mode; if it becomes 0 the NIC will
1846  *				exit promiscuous mode
1847  *	@allmulti:		Counter, enables or disables allmulticast mode
1848  *
1849  *	@vlan_info:	VLAN info
1850  *	@dsa_ptr:	dsa specific data
1851  *	@tipc_ptr:	TIPC specific data
1852  *	@atalk_ptr:	AppleTalk link
1853  *	@ip_ptr:	IPv4 specific data
1854  *	@ip6_ptr:	IPv6 specific data
1855  *	@ax25_ptr:	AX.25 specific data
1856  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1857  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1858  *			 device struct
1859  *	@mpls_ptr:	mpls_dev struct pointer
1860  *	@mctp_ptr:	MCTP specific data
1861  *
1862  *	@dev_addr:	Hw address (before bcast,
1863  *			because most packets are unicast)
1864  *
1865  *	@_rx:			Array of RX queues
1866  *	@num_rx_queues:		Number of RX queues
1867  *				allocated at register_netdev() time
1868  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1869  *	@xdp_prog:		XDP sockets filter program pointer
1870  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1871  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1872  *				allow to avoid NIC hard IRQ, on busy queues.
1873  *
1874  *	@rx_handler:		handler for received packets
1875  *	@rx_handler_data: 	XXX: need comments on this one
1876  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1877  *				ingress processing
1878  *	@ingress_queue:		XXX: need comments on this one
1879  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1880  *	@broadcast:		hw bcast address
1881  *
1882  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1883  *			indexed by RX queue number. Assigned by driver.
1884  *			This must only be set if the ndo_rx_flow_steer
1885  *			operation is defined
1886  *	@index_hlist:		Device index hash chain
1887  *
1888  *	@_tx:			Array of TX queues
1889  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1890  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1891  *	@qdisc:			Root qdisc from userspace point of view
1892  *	@tx_queue_len:		Max frames per queue allowed
1893  *	@tx_global_lock: 	XXX: need comments on this one
1894  *	@xdp_bulkq:		XDP device bulk queue
1895  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1896  *
1897  *	@xps_maps:	XXX: need comments on this one
1898  *	@miniq_egress:		clsact qdisc specific data for
1899  *				egress processing
1900  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1901  *	@qdisc_hash:		qdisc hash table
1902  *	@watchdog_timeo:	Represents the timeout that is used by
1903  *				the watchdog (see dev_watchdog())
1904  *	@watchdog_timer:	List of timers
1905  *
1906  *	@proto_down_reason:	reason a netdev interface is held down
1907  *	@pcpu_refcnt:		Number of references to this device
1908  *	@dev_refcnt:		Number of references to this device
1909  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1910  *	@todo_list:		Delayed register/unregister
1911  *	@link_watch_list:	XXX: need comments on this one
1912  *
1913  *	@reg_state:		Register/unregister state machine
1914  *	@dismantle:		Device is going to be freed
1915  *	@rtnl_link_state:	This enum represents the phases of creating
1916  *				a new link
1917  *
1918  *	@needs_free_netdev:	Should unregister perform free_netdev?
1919  *	@priv_destructor:	Called from unregister
1920  *	@npinfo:		XXX: need comments on this one
1921  * 	@nd_net:		Network namespace this network device is inside
1922  *
1923  * 	@ml_priv:	Mid-layer private
1924  *	@ml_priv_type:  Mid-layer private type
1925  * 	@lstats:	Loopback statistics
1926  * 	@tstats:	Tunnel statistics
1927  * 	@dstats:	Dummy statistics
1928  * 	@vstats:	Virtual ethernet statistics
1929  *
1930  *	@garp_port:	GARP
1931  *	@mrp_port:	MRP
1932  *
1933  *	@dm_private:	Drop monitor private
1934  *
1935  *	@dev:		Class/net/name entry
1936  *	@sysfs_groups:	Space for optional device, statistics and wireless
1937  *			sysfs groups
1938  *
1939  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1940  *	@rtnl_link_ops:	Rtnl_link_ops
1941  *
1942  *	@gso_max_size:	Maximum size of generic segmentation offload
1943  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1944  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1945  *			NIC for GSO
1946  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1947  *
1948  *	@dcbnl_ops:	Data Center Bridging netlink ops
1949  *	@num_tc:	Number of traffic classes in the net device
1950  *	@tc_to_txq:	XXX: need comments on this one
1951  *	@prio_tc_map:	XXX: need comments on this one
1952  *
1953  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1954  *
1955  *	@priomap:	XXX: need comments on this one
1956  *	@phydev:	Physical device may attach itself
1957  *			for hardware timestamping
1958  *	@sfp_bus:	attached &struct sfp_bus structure.
1959  *
1960  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1961  *
1962  *	@proto_down:	protocol port state information can be sent to the
1963  *			switch driver and used to set the phys state of the
1964  *			switch port.
1965  *
1966  *	@wol_enabled:	Wake-on-LAN is enabled
1967  *
1968  *	@threaded:	napi threaded mode is enabled
1969  *
1970  *	@net_notifier_list:	List of per-net netdev notifier block
1971  *				that follow this device when it is moved
1972  *				to another network namespace.
1973  *
1974  *	@macsec_ops:    MACsec offloading ops
1975  *
1976  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1977  *				offload capabilities of the device
1978  *	@udp_tunnel_nic:	UDP tunnel offload state
1979  *	@xdp_state:		stores info on attached XDP BPF programs
1980  *
1981  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1982  *			dev->addr_list_lock.
1983  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1984  *			keep a list of interfaces to be deleted.
1985  *	@gro_max_size:	Maximum size of aggregated packet in generic
1986  *			receive offload (GRO)
1987  *
1988  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1989  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1990  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1991  *	@dev_registered_tracker:	tracker for reference held while
1992  *					registered
1993  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1994  *
1995  *	FIXME: cleanup struct net_device such that network protocol info
1996  *	moves out.
1997  */
1998 
1999 struct net_device {
2000 	char			name[IFNAMSIZ];
2001 	struct netdev_name_node	*name_node;
2002 	struct dev_ifalias	__rcu *ifalias;
2003 	/*
2004 	 *	I/O specific fields
2005 	 *	FIXME: Merge these and struct ifmap into one
2006 	 */
2007 	unsigned long		mem_end;
2008 	unsigned long		mem_start;
2009 	unsigned long		base_addr;
2010 
2011 	/*
2012 	 *	Some hardware also needs these fields (state,dev_list,
2013 	 *	napi_list,unreg_list,close_list) but they are not
2014 	 *	part of the usual set specified in Space.c.
2015 	 */
2016 
2017 	unsigned long		state;
2018 
2019 	struct list_head	dev_list;
2020 	struct list_head	napi_list;
2021 	struct list_head	unreg_list;
2022 	struct list_head	close_list;
2023 	struct list_head	ptype_all;
2024 	struct list_head	ptype_specific;
2025 
2026 	struct {
2027 		struct list_head upper;
2028 		struct list_head lower;
2029 	} adj_list;
2030 
2031 	/* Read-mostly cache-line for fast-path access */
2032 	unsigned int		flags;
2033 	unsigned long long	priv_flags;
2034 	const struct net_device_ops *netdev_ops;
2035 	int			ifindex;
2036 	unsigned short		gflags;
2037 	unsigned short		hard_header_len;
2038 
2039 	/* Note : dev->mtu is often read without holding a lock.
2040 	 * Writers usually hold RTNL.
2041 	 * It is recommended to use READ_ONCE() to annotate the reads,
2042 	 * and to use WRITE_ONCE() to annotate the writes.
2043 	 */
2044 	unsigned int		mtu;
2045 	unsigned short		needed_headroom;
2046 	unsigned short		needed_tailroom;
2047 
2048 	netdev_features_t	features;
2049 	netdev_features_t	hw_features;
2050 	netdev_features_t	wanted_features;
2051 	netdev_features_t	vlan_features;
2052 	netdev_features_t	hw_enc_features;
2053 	netdev_features_t	mpls_features;
2054 	netdev_features_t	gso_partial_features;
2055 
2056 	unsigned int		min_mtu;
2057 	unsigned int		max_mtu;
2058 	unsigned short		type;
2059 	unsigned char		min_header_len;
2060 	unsigned char		name_assign_type;
2061 
2062 	int			group;
2063 
2064 	struct net_device_stats	stats; /* not used by modern drivers */
2065 
2066 	struct net_device_core_stats __percpu *core_stats;
2067 
2068 	/* Stats to monitor link on/off, flapping */
2069 	atomic_t		carrier_up_count;
2070 	atomic_t		carrier_down_count;
2071 
2072 #ifdef CONFIG_WIRELESS_EXT
2073 	const struct iw_handler_def *wireless_handlers;
2074 	struct iw_public_data	*wireless_data;
2075 #endif
2076 	const struct ethtool_ops *ethtool_ops;
2077 #ifdef CONFIG_NET_L3_MASTER_DEV
2078 	const struct l3mdev_ops	*l3mdev_ops;
2079 #endif
2080 #if IS_ENABLED(CONFIG_IPV6)
2081 	const struct ndisc_ops *ndisc_ops;
2082 #endif
2083 
2084 #ifdef CONFIG_XFRM_OFFLOAD
2085 	const struct xfrmdev_ops *xfrmdev_ops;
2086 #endif
2087 
2088 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2089 	const struct tlsdev_ops *tlsdev_ops;
2090 #endif
2091 
2092 	const struct header_ops *header_ops;
2093 
2094 	unsigned char		operstate;
2095 	unsigned char		link_mode;
2096 
2097 	unsigned char		if_port;
2098 	unsigned char		dma;
2099 
2100 	/* Interface address info. */
2101 	unsigned char		perm_addr[MAX_ADDR_LEN];
2102 	unsigned char		addr_assign_type;
2103 	unsigned char		addr_len;
2104 	unsigned char		upper_level;
2105 	unsigned char		lower_level;
2106 
2107 	unsigned short		neigh_priv_len;
2108 	unsigned short          dev_id;
2109 	unsigned short          dev_port;
2110 	unsigned short		padded;
2111 
2112 	spinlock_t		addr_list_lock;
2113 	int			irq;
2114 
2115 	struct netdev_hw_addr_list	uc;
2116 	struct netdev_hw_addr_list	mc;
2117 	struct netdev_hw_addr_list	dev_addrs;
2118 
2119 #ifdef CONFIG_SYSFS
2120 	struct kset		*queues_kset;
2121 #endif
2122 #ifdef CONFIG_LOCKDEP
2123 	struct list_head	unlink_list;
2124 #endif
2125 	unsigned int		promiscuity;
2126 	unsigned int		allmulti;
2127 	bool			uc_promisc;
2128 #ifdef CONFIG_LOCKDEP
2129 	unsigned char		nested_level;
2130 #endif
2131 
2132 
2133 	/* Protocol-specific pointers */
2134 
2135 	struct in_device __rcu	*ip_ptr;
2136 	struct inet6_dev __rcu	*ip6_ptr;
2137 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2138 	struct vlan_info __rcu	*vlan_info;
2139 #endif
2140 #if IS_ENABLED(CONFIG_NET_DSA)
2141 	struct dsa_port		*dsa_ptr;
2142 #endif
2143 #if IS_ENABLED(CONFIG_TIPC)
2144 	struct tipc_bearer __rcu *tipc_ptr;
2145 #endif
2146 #if IS_ENABLED(CONFIG_ATALK)
2147 	void 			*atalk_ptr;
2148 #endif
2149 #if IS_ENABLED(CONFIG_AX25)
2150 	void			*ax25_ptr;
2151 #endif
2152 #if IS_ENABLED(CONFIG_CFG80211)
2153 	struct wireless_dev	*ieee80211_ptr;
2154 #endif
2155 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2156 	struct wpan_dev		*ieee802154_ptr;
2157 #endif
2158 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2159 	struct mpls_dev __rcu	*mpls_ptr;
2160 #endif
2161 #if IS_ENABLED(CONFIG_MCTP)
2162 	struct mctp_dev __rcu	*mctp_ptr;
2163 #endif
2164 
2165 /*
2166  * Cache lines mostly used on receive path (including eth_type_trans())
2167  */
2168 	/* Interface address info used in eth_type_trans() */
2169 	const unsigned char	*dev_addr;
2170 
2171 	struct netdev_rx_queue	*_rx;
2172 	unsigned int		num_rx_queues;
2173 	unsigned int		real_num_rx_queues;
2174 
2175 	struct bpf_prog __rcu	*xdp_prog;
2176 	unsigned long		gro_flush_timeout;
2177 	int			napi_defer_hard_irqs;
2178 #define GRO_LEGACY_MAX_SIZE	65536u
2179 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2180  * and shinfo->gso_segs is a 16bit field.
2181  */
2182 #define GRO_MAX_SIZE		(8 * 65535u)
2183 	unsigned int		gro_max_size;
2184 	rx_handler_func_t __rcu	*rx_handler;
2185 	void __rcu		*rx_handler_data;
2186 
2187 #ifdef CONFIG_NET_CLS_ACT
2188 	struct mini_Qdisc __rcu	*miniq_ingress;
2189 #endif
2190 	struct netdev_queue __rcu *ingress_queue;
2191 #ifdef CONFIG_NETFILTER_INGRESS
2192 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2193 #endif
2194 
2195 	unsigned char		broadcast[MAX_ADDR_LEN];
2196 #ifdef CONFIG_RFS_ACCEL
2197 	struct cpu_rmap		*rx_cpu_rmap;
2198 #endif
2199 	struct hlist_node	index_hlist;
2200 
2201 /*
2202  * Cache lines mostly used on transmit path
2203  */
2204 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2205 	unsigned int		num_tx_queues;
2206 	unsigned int		real_num_tx_queues;
2207 	struct Qdisc __rcu	*qdisc;
2208 	unsigned int		tx_queue_len;
2209 	spinlock_t		tx_global_lock;
2210 
2211 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2212 
2213 #ifdef CONFIG_XPS
2214 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2215 #endif
2216 #ifdef CONFIG_NET_CLS_ACT
2217 	struct mini_Qdisc __rcu	*miniq_egress;
2218 #endif
2219 #ifdef CONFIG_NETFILTER_EGRESS
2220 	struct nf_hook_entries __rcu *nf_hooks_egress;
2221 #endif
2222 
2223 #ifdef CONFIG_NET_SCHED
2224 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2225 #endif
2226 	/* These may be needed for future network-power-down code. */
2227 	struct timer_list	watchdog_timer;
2228 	int			watchdog_timeo;
2229 
2230 	u32                     proto_down_reason;
2231 
2232 	struct list_head	todo_list;
2233 
2234 #ifdef CONFIG_PCPU_DEV_REFCNT
2235 	int __percpu		*pcpu_refcnt;
2236 #else
2237 	refcount_t		dev_refcnt;
2238 #endif
2239 	struct ref_tracker_dir	refcnt_tracker;
2240 
2241 	struct list_head	link_watch_list;
2242 
2243 	enum { NETREG_UNINITIALIZED=0,
2244 	       NETREG_REGISTERED,	/* completed register_netdevice */
2245 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2246 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2247 	       NETREG_RELEASED,		/* called free_netdev */
2248 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2249 	} reg_state:8;
2250 
2251 	bool dismantle;
2252 
2253 	enum {
2254 		RTNL_LINK_INITIALIZED,
2255 		RTNL_LINK_INITIALIZING,
2256 	} rtnl_link_state:16;
2257 
2258 	bool needs_free_netdev;
2259 	void (*priv_destructor)(struct net_device *dev);
2260 
2261 #ifdef CONFIG_NETPOLL
2262 	struct netpoll_info __rcu	*npinfo;
2263 #endif
2264 
2265 	possible_net_t			nd_net;
2266 
2267 	/* mid-layer private */
2268 	void				*ml_priv;
2269 	enum netdev_ml_priv_type	ml_priv_type;
2270 
2271 	union {
2272 		struct pcpu_lstats __percpu		*lstats;
2273 		struct pcpu_sw_netstats __percpu	*tstats;
2274 		struct pcpu_dstats __percpu		*dstats;
2275 	};
2276 
2277 #if IS_ENABLED(CONFIG_GARP)
2278 	struct garp_port __rcu	*garp_port;
2279 #endif
2280 #if IS_ENABLED(CONFIG_MRP)
2281 	struct mrp_port __rcu	*mrp_port;
2282 #endif
2283 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2284 	struct dm_hw_stat_delta __rcu *dm_private;
2285 #endif
2286 	struct device		dev;
2287 	const struct attribute_group *sysfs_groups[4];
2288 	const struct attribute_group *sysfs_rx_queue_group;
2289 
2290 	const struct rtnl_link_ops *rtnl_link_ops;
2291 
2292 	/* for setting kernel sock attribute on TCP connection setup */
2293 #define GSO_MAX_SEGS		65535u
2294 #define GSO_LEGACY_MAX_SIZE	65536u
2295 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2296  * and shinfo->gso_segs is a 16bit field.
2297  */
2298 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2299 
2300 	unsigned int		gso_max_size;
2301 #define TSO_LEGACY_MAX_SIZE	65536
2302 #define TSO_MAX_SIZE		UINT_MAX
2303 	unsigned int		tso_max_size;
2304 	u16			gso_max_segs;
2305 #define TSO_MAX_SEGS		U16_MAX
2306 	u16			tso_max_segs;
2307 
2308 #ifdef CONFIG_DCB
2309 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2310 #endif
2311 	s16			num_tc;
2312 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2313 	u8			prio_tc_map[TC_BITMASK + 1];
2314 
2315 #if IS_ENABLED(CONFIG_FCOE)
2316 	unsigned int		fcoe_ddp_xid;
2317 #endif
2318 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2319 	struct netprio_map __rcu *priomap;
2320 #endif
2321 	struct phy_device	*phydev;
2322 	struct sfp_bus		*sfp_bus;
2323 	struct lock_class_key	*qdisc_tx_busylock;
2324 	bool			proto_down;
2325 	unsigned		wol_enabled:1;
2326 	unsigned		threaded:1;
2327 
2328 	struct list_head	net_notifier_list;
2329 
2330 #if IS_ENABLED(CONFIG_MACSEC)
2331 	/* MACsec management functions */
2332 	const struct macsec_ops *macsec_ops;
2333 #endif
2334 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2335 	struct udp_tunnel_nic	*udp_tunnel_nic;
2336 
2337 	/* protected by rtnl_lock */
2338 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2339 
2340 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2341 	netdevice_tracker	linkwatch_dev_tracker;
2342 	netdevice_tracker	watchdog_dev_tracker;
2343 	netdevice_tracker	dev_registered_tracker;
2344 	struct rtnl_hw_stats64	*offload_xstats_l3;
2345 };
2346 #define to_net_dev(d) container_of(d, struct net_device, dev)
2347 
2348 static inline bool netif_elide_gro(const struct net_device *dev)
2349 {
2350 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2351 		return true;
2352 	return false;
2353 }
2354 
2355 #define	NETDEV_ALIGN		32
2356 
2357 static inline
2358 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2359 {
2360 	return dev->prio_tc_map[prio & TC_BITMASK];
2361 }
2362 
2363 static inline
2364 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2365 {
2366 	if (tc >= dev->num_tc)
2367 		return -EINVAL;
2368 
2369 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2370 	return 0;
2371 }
2372 
2373 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2374 void netdev_reset_tc(struct net_device *dev);
2375 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2376 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2377 
2378 static inline
2379 int netdev_get_num_tc(struct net_device *dev)
2380 {
2381 	return dev->num_tc;
2382 }
2383 
2384 static inline void net_prefetch(void *p)
2385 {
2386 	prefetch(p);
2387 #if L1_CACHE_BYTES < 128
2388 	prefetch((u8 *)p + L1_CACHE_BYTES);
2389 #endif
2390 }
2391 
2392 static inline void net_prefetchw(void *p)
2393 {
2394 	prefetchw(p);
2395 #if L1_CACHE_BYTES < 128
2396 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2397 #endif
2398 }
2399 
2400 void netdev_unbind_sb_channel(struct net_device *dev,
2401 			      struct net_device *sb_dev);
2402 int netdev_bind_sb_channel_queue(struct net_device *dev,
2403 				 struct net_device *sb_dev,
2404 				 u8 tc, u16 count, u16 offset);
2405 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2406 static inline int netdev_get_sb_channel(struct net_device *dev)
2407 {
2408 	return max_t(int, -dev->num_tc, 0);
2409 }
2410 
2411 static inline
2412 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2413 					 unsigned int index)
2414 {
2415 	return &dev->_tx[index];
2416 }
2417 
2418 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2419 						    const struct sk_buff *skb)
2420 {
2421 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2422 }
2423 
2424 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2425 					    void (*f)(struct net_device *,
2426 						      struct netdev_queue *,
2427 						      void *),
2428 					    void *arg)
2429 {
2430 	unsigned int i;
2431 
2432 	for (i = 0; i < dev->num_tx_queues; i++)
2433 		f(dev, &dev->_tx[i], arg);
2434 }
2435 
2436 #define netdev_lockdep_set_classes(dev)				\
2437 {								\
2438 	static struct lock_class_key qdisc_tx_busylock_key;	\
2439 	static struct lock_class_key qdisc_xmit_lock_key;	\
2440 	static struct lock_class_key dev_addr_list_lock_key;	\
2441 	unsigned int i;						\
2442 								\
2443 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2444 	lockdep_set_class(&(dev)->addr_list_lock,		\
2445 			  &dev_addr_list_lock_key);		\
2446 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2447 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2448 				  &qdisc_xmit_lock_key);	\
2449 }
2450 
2451 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2452 		     struct net_device *sb_dev);
2453 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2454 					 struct sk_buff *skb,
2455 					 struct net_device *sb_dev);
2456 
2457 /* returns the headroom that the master device needs to take in account
2458  * when forwarding to this dev
2459  */
2460 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2461 {
2462 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2463 }
2464 
2465 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2466 {
2467 	if (dev->netdev_ops->ndo_set_rx_headroom)
2468 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2469 }
2470 
2471 /* set the device rx headroom to the dev's default */
2472 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2473 {
2474 	netdev_set_rx_headroom(dev, -1);
2475 }
2476 
2477 static inline void *netdev_get_ml_priv(struct net_device *dev,
2478 				       enum netdev_ml_priv_type type)
2479 {
2480 	if (dev->ml_priv_type != type)
2481 		return NULL;
2482 
2483 	return dev->ml_priv;
2484 }
2485 
2486 static inline void netdev_set_ml_priv(struct net_device *dev,
2487 				      void *ml_priv,
2488 				      enum netdev_ml_priv_type type)
2489 {
2490 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2491 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2492 	     dev->ml_priv_type, type);
2493 	WARN(!dev->ml_priv_type && dev->ml_priv,
2494 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2495 
2496 	dev->ml_priv = ml_priv;
2497 	dev->ml_priv_type = type;
2498 }
2499 
2500 /*
2501  * Net namespace inlines
2502  */
2503 static inline
2504 struct net *dev_net(const struct net_device *dev)
2505 {
2506 	return read_pnet(&dev->nd_net);
2507 }
2508 
2509 static inline
2510 void dev_net_set(struct net_device *dev, struct net *net)
2511 {
2512 	write_pnet(&dev->nd_net, net);
2513 }
2514 
2515 /**
2516  *	netdev_priv - access network device private data
2517  *	@dev: network device
2518  *
2519  * Get network device private data
2520  */
2521 static inline void *netdev_priv(const struct net_device *dev)
2522 {
2523 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2524 }
2525 
2526 /* Set the sysfs physical device reference for the network logical device
2527  * if set prior to registration will cause a symlink during initialization.
2528  */
2529 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2530 
2531 /* Set the sysfs device type for the network logical device to allow
2532  * fine-grained identification of different network device types. For
2533  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2534  */
2535 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2536 
2537 /* Default NAPI poll() weight
2538  * Device drivers are strongly advised to not use bigger value
2539  */
2540 #define NAPI_POLL_WEIGHT 64
2541 
2542 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2543 			   int (*poll)(struct napi_struct *, int), int weight);
2544 
2545 /**
2546  * netif_napi_add() - initialize a NAPI context
2547  * @dev:  network device
2548  * @napi: NAPI context
2549  * @poll: polling function
2550  * @weight: default weight
2551  *
2552  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2553  * *any* of the other NAPI-related functions.
2554  */
2555 static inline void
2556 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2557 	       int (*poll)(struct napi_struct *, int), int weight)
2558 {
2559 	netif_napi_add_weight(dev, napi, poll, weight);
2560 }
2561 
2562 static inline void
2563 netif_napi_add_tx_weight(struct net_device *dev,
2564 			 struct napi_struct *napi,
2565 			 int (*poll)(struct napi_struct *, int),
2566 			 int weight)
2567 {
2568 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2569 	netif_napi_add_weight(dev, napi, poll, weight);
2570 }
2571 
2572 /**
2573  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2574  * @dev:  network device
2575  * @napi: NAPI context
2576  * @poll: polling function
2577  *
2578  * This variant of netif_napi_add() should be used from drivers using NAPI
2579  * to exclusively poll a TX queue.
2580  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2581  */
2582 static inline void netif_napi_add_tx(struct net_device *dev,
2583 				     struct napi_struct *napi,
2584 				     int (*poll)(struct napi_struct *, int))
2585 {
2586 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2587 }
2588 
2589 /**
2590  *  __netif_napi_del - remove a NAPI context
2591  *  @napi: NAPI context
2592  *
2593  * Warning: caller must observe RCU grace period before freeing memory
2594  * containing @napi. Drivers might want to call this helper to combine
2595  * all the needed RCU grace periods into a single one.
2596  */
2597 void __netif_napi_del(struct napi_struct *napi);
2598 
2599 /**
2600  *  netif_napi_del - remove a NAPI context
2601  *  @napi: NAPI context
2602  *
2603  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2604  */
2605 static inline void netif_napi_del(struct napi_struct *napi)
2606 {
2607 	__netif_napi_del(napi);
2608 	synchronize_net();
2609 }
2610 
2611 struct packet_type {
2612 	__be16			type;	/* This is really htons(ether_type). */
2613 	bool			ignore_outgoing;
2614 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2615 	netdevice_tracker	dev_tracker;
2616 	int			(*func) (struct sk_buff *,
2617 					 struct net_device *,
2618 					 struct packet_type *,
2619 					 struct net_device *);
2620 	void			(*list_func) (struct list_head *,
2621 					      struct packet_type *,
2622 					      struct net_device *);
2623 	bool			(*id_match)(struct packet_type *ptype,
2624 					    struct sock *sk);
2625 	struct net		*af_packet_net;
2626 	void			*af_packet_priv;
2627 	struct list_head	list;
2628 };
2629 
2630 struct offload_callbacks {
2631 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2632 						netdev_features_t features);
2633 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2634 						struct sk_buff *skb);
2635 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2636 };
2637 
2638 struct packet_offload {
2639 	__be16			 type;	/* This is really htons(ether_type). */
2640 	u16			 priority;
2641 	struct offload_callbacks callbacks;
2642 	struct list_head	 list;
2643 };
2644 
2645 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2646 struct pcpu_sw_netstats {
2647 	u64_stats_t		rx_packets;
2648 	u64_stats_t		rx_bytes;
2649 	u64_stats_t		tx_packets;
2650 	u64_stats_t		tx_bytes;
2651 	struct u64_stats_sync   syncp;
2652 } __aligned(4 * sizeof(u64));
2653 
2654 struct pcpu_lstats {
2655 	u64_stats_t packets;
2656 	u64_stats_t bytes;
2657 	struct u64_stats_sync syncp;
2658 } __aligned(2 * sizeof(u64));
2659 
2660 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2661 
2662 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2663 {
2664 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2665 
2666 	u64_stats_update_begin(&tstats->syncp);
2667 	u64_stats_add(&tstats->rx_bytes, len);
2668 	u64_stats_inc(&tstats->rx_packets);
2669 	u64_stats_update_end(&tstats->syncp);
2670 }
2671 
2672 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2673 					  unsigned int packets,
2674 					  unsigned int len)
2675 {
2676 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2677 
2678 	u64_stats_update_begin(&tstats->syncp);
2679 	u64_stats_add(&tstats->tx_bytes, len);
2680 	u64_stats_add(&tstats->tx_packets, packets);
2681 	u64_stats_update_end(&tstats->syncp);
2682 }
2683 
2684 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2685 {
2686 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2687 
2688 	u64_stats_update_begin(&lstats->syncp);
2689 	u64_stats_add(&lstats->bytes, len);
2690 	u64_stats_inc(&lstats->packets);
2691 	u64_stats_update_end(&lstats->syncp);
2692 }
2693 
2694 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2695 ({									\
2696 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2697 	if (pcpu_stats)	{						\
2698 		int __cpu;						\
2699 		for_each_possible_cpu(__cpu) {				\
2700 			typeof(type) *stat;				\
2701 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2702 			u64_stats_init(&stat->syncp);			\
2703 		}							\
2704 	}								\
2705 	pcpu_stats;							\
2706 })
2707 
2708 #define netdev_alloc_pcpu_stats(type)					\
2709 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2710 
2711 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2712 ({									\
2713 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2714 	if (pcpu_stats) {						\
2715 		int __cpu;						\
2716 		for_each_possible_cpu(__cpu) {				\
2717 			typeof(type) *stat;				\
2718 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2719 			u64_stats_init(&stat->syncp);			\
2720 		}							\
2721 	}								\
2722 	pcpu_stats;							\
2723 })
2724 
2725 enum netdev_lag_tx_type {
2726 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2727 	NETDEV_LAG_TX_TYPE_RANDOM,
2728 	NETDEV_LAG_TX_TYPE_BROADCAST,
2729 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2730 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2731 	NETDEV_LAG_TX_TYPE_HASH,
2732 };
2733 
2734 enum netdev_lag_hash {
2735 	NETDEV_LAG_HASH_NONE,
2736 	NETDEV_LAG_HASH_L2,
2737 	NETDEV_LAG_HASH_L34,
2738 	NETDEV_LAG_HASH_L23,
2739 	NETDEV_LAG_HASH_E23,
2740 	NETDEV_LAG_HASH_E34,
2741 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2742 	NETDEV_LAG_HASH_UNKNOWN,
2743 };
2744 
2745 struct netdev_lag_upper_info {
2746 	enum netdev_lag_tx_type tx_type;
2747 	enum netdev_lag_hash hash_type;
2748 };
2749 
2750 struct netdev_lag_lower_state_info {
2751 	u8 link_up : 1,
2752 	   tx_enabled : 1;
2753 };
2754 
2755 #include <linux/notifier.h>
2756 
2757 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2758  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2759  * adding new types.
2760  */
2761 enum netdev_cmd {
2762 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2763 	NETDEV_DOWN,
2764 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2765 				   detected a hardware crash and restarted
2766 				   - we can use this eg to kick tcp sessions
2767 				   once done */
2768 	NETDEV_CHANGE,		/* Notify device state change */
2769 	NETDEV_REGISTER,
2770 	NETDEV_UNREGISTER,
2771 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2772 	NETDEV_CHANGEADDR,	/* notify after the address change */
2773 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2774 	NETDEV_GOING_DOWN,
2775 	NETDEV_CHANGENAME,
2776 	NETDEV_FEAT_CHANGE,
2777 	NETDEV_BONDING_FAILOVER,
2778 	NETDEV_PRE_UP,
2779 	NETDEV_PRE_TYPE_CHANGE,
2780 	NETDEV_POST_TYPE_CHANGE,
2781 	NETDEV_POST_INIT,
2782 	NETDEV_RELEASE,
2783 	NETDEV_NOTIFY_PEERS,
2784 	NETDEV_JOIN,
2785 	NETDEV_CHANGEUPPER,
2786 	NETDEV_RESEND_IGMP,
2787 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2788 	NETDEV_CHANGEINFODATA,
2789 	NETDEV_BONDING_INFO,
2790 	NETDEV_PRECHANGEUPPER,
2791 	NETDEV_CHANGELOWERSTATE,
2792 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2793 	NETDEV_UDP_TUNNEL_DROP_INFO,
2794 	NETDEV_CHANGE_TX_QUEUE_LEN,
2795 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2796 	NETDEV_CVLAN_FILTER_DROP_INFO,
2797 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2798 	NETDEV_SVLAN_FILTER_DROP_INFO,
2799 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2800 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2801 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2802 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2803 };
2804 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2805 
2806 int register_netdevice_notifier(struct notifier_block *nb);
2807 int unregister_netdevice_notifier(struct notifier_block *nb);
2808 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2809 int unregister_netdevice_notifier_net(struct net *net,
2810 				      struct notifier_block *nb);
2811 int register_netdevice_notifier_dev_net(struct net_device *dev,
2812 					struct notifier_block *nb,
2813 					struct netdev_net_notifier *nn);
2814 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2815 					  struct notifier_block *nb,
2816 					  struct netdev_net_notifier *nn);
2817 
2818 struct netdev_notifier_info {
2819 	struct net_device	*dev;
2820 	struct netlink_ext_ack	*extack;
2821 };
2822 
2823 struct netdev_notifier_info_ext {
2824 	struct netdev_notifier_info info; /* must be first */
2825 	union {
2826 		u32 mtu;
2827 	} ext;
2828 };
2829 
2830 struct netdev_notifier_change_info {
2831 	struct netdev_notifier_info info; /* must be first */
2832 	unsigned int flags_changed;
2833 };
2834 
2835 struct netdev_notifier_changeupper_info {
2836 	struct netdev_notifier_info info; /* must be first */
2837 	struct net_device *upper_dev; /* new upper dev */
2838 	bool master; /* is upper dev master */
2839 	bool linking; /* is the notification for link or unlink */
2840 	void *upper_info; /* upper dev info */
2841 };
2842 
2843 struct netdev_notifier_changelowerstate_info {
2844 	struct netdev_notifier_info info; /* must be first */
2845 	void *lower_state_info; /* is lower dev state */
2846 };
2847 
2848 struct netdev_notifier_pre_changeaddr_info {
2849 	struct netdev_notifier_info info; /* must be first */
2850 	const unsigned char *dev_addr;
2851 };
2852 
2853 enum netdev_offload_xstats_type {
2854 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2855 };
2856 
2857 struct netdev_notifier_offload_xstats_info {
2858 	struct netdev_notifier_info info; /* must be first */
2859 	enum netdev_offload_xstats_type type;
2860 
2861 	union {
2862 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2863 		struct netdev_notifier_offload_xstats_rd *report_delta;
2864 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2865 		struct netdev_notifier_offload_xstats_ru *report_used;
2866 	};
2867 };
2868 
2869 int netdev_offload_xstats_enable(struct net_device *dev,
2870 				 enum netdev_offload_xstats_type type,
2871 				 struct netlink_ext_ack *extack);
2872 int netdev_offload_xstats_disable(struct net_device *dev,
2873 				  enum netdev_offload_xstats_type type);
2874 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2875 				   enum netdev_offload_xstats_type type);
2876 int netdev_offload_xstats_get(struct net_device *dev,
2877 			      enum netdev_offload_xstats_type type,
2878 			      struct rtnl_hw_stats64 *stats, bool *used,
2879 			      struct netlink_ext_ack *extack);
2880 void
2881 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2882 				   const struct rtnl_hw_stats64 *stats);
2883 void
2884 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2885 void netdev_offload_xstats_push_delta(struct net_device *dev,
2886 				      enum netdev_offload_xstats_type type,
2887 				      const struct rtnl_hw_stats64 *stats);
2888 
2889 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2890 					     struct net_device *dev)
2891 {
2892 	info->dev = dev;
2893 	info->extack = NULL;
2894 }
2895 
2896 static inline struct net_device *
2897 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2898 {
2899 	return info->dev;
2900 }
2901 
2902 static inline struct netlink_ext_ack *
2903 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2904 {
2905 	return info->extack;
2906 }
2907 
2908 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2909 
2910 
2911 extern rwlock_t				dev_base_lock;		/* Device list lock */
2912 
2913 #define for_each_netdev(net, d)		\
2914 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2915 #define for_each_netdev_reverse(net, d)	\
2916 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2917 #define for_each_netdev_rcu(net, d)		\
2918 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2919 #define for_each_netdev_safe(net, d, n)	\
2920 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2921 #define for_each_netdev_continue(net, d)		\
2922 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2923 #define for_each_netdev_continue_reverse(net, d)		\
2924 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2925 						     dev_list)
2926 #define for_each_netdev_continue_rcu(net, d)		\
2927 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2928 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2929 		for_each_netdev_rcu(&init_net, slave)	\
2930 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2931 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2932 
2933 static inline struct net_device *next_net_device(struct net_device *dev)
2934 {
2935 	struct list_head *lh;
2936 	struct net *net;
2937 
2938 	net = dev_net(dev);
2939 	lh = dev->dev_list.next;
2940 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2941 }
2942 
2943 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2944 {
2945 	struct list_head *lh;
2946 	struct net *net;
2947 
2948 	net = dev_net(dev);
2949 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2950 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2951 }
2952 
2953 static inline struct net_device *first_net_device(struct net *net)
2954 {
2955 	return list_empty(&net->dev_base_head) ? NULL :
2956 		net_device_entry(net->dev_base_head.next);
2957 }
2958 
2959 static inline struct net_device *first_net_device_rcu(struct net *net)
2960 {
2961 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2962 
2963 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2964 }
2965 
2966 int netdev_boot_setup_check(struct net_device *dev);
2967 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2968 				       const char *hwaddr);
2969 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2970 void dev_add_pack(struct packet_type *pt);
2971 void dev_remove_pack(struct packet_type *pt);
2972 void __dev_remove_pack(struct packet_type *pt);
2973 void dev_add_offload(struct packet_offload *po);
2974 void dev_remove_offload(struct packet_offload *po);
2975 
2976 int dev_get_iflink(const struct net_device *dev);
2977 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2978 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2979 			  struct net_device_path_stack *stack);
2980 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2981 				      unsigned short mask);
2982 struct net_device *dev_get_by_name(struct net *net, const char *name);
2983 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2984 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2985 bool netdev_name_in_use(struct net *net, const char *name);
2986 int dev_alloc_name(struct net_device *dev, const char *name);
2987 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2988 void dev_close(struct net_device *dev);
2989 void dev_close_many(struct list_head *head, bool unlink);
2990 void dev_disable_lro(struct net_device *dev);
2991 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2992 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2993 		     struct net_device *sb_dev);
2994 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2995 		       struct net_device *sb_dev);
2996 
2997 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
2998 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2999 
3000 static inline int dev_queue_xmit(struct sk_buff *skb)
3001 {
3002 	return __dev_queue_xmit(skb, NULL);
3003 }
3004 
3005 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3006 				       struct net_device *sb_dev)
3007 {
3008 	return __dev_queue_xmit(skb, sb_dev);
3009 }
3010 
3011 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3012 {
3013 	int ret;
3014 
3015 	ret = __dev_direct_xmit(skb, queue_id);
3016 	if (!dev_xmit_complete(ret))
3017 		kfree_skb(skb);
3018 	return ret;
3019 }
3020 
3021 int register_netdevice(struct net_device *dev);
3022 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3023 void unregister_netdevice_many(struct list_head *head);
3024 static inline void unregister_netdevice(struct net_device *dev)
3025 {
3026 	unregister_netdevice_queue(dev, NULL);
3027 }
3028 
3029 int netdev_refcnt_read(const struct net_device *dev);
3030 void free_netdev(struct net_device *dev);
3031 void netdev_freemem(struct net_device *dev);
3032 int init_dummy_netdev(struct net_device *dev);
3033 
3034 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3035 					 struct sk_buff *skb,
3036 					 bool all_slaves);
3037 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3038 					    struct sock *sk);
3039 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3040 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3041 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3042 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3043 int dev_restart(struct net_device *dev);
3044 
3045 
3046 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3047 				  unsigned short type,
3048 				  const void *daddr, const void *saddr,
3049 				  unsigned int len)
3050 {
3051 	if (!dev->header_ops || !dev->header_ops->create)
3052 		return 0;
3053 
3054 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3055 }
3056 
3057 static inline int dev_parse_header(const struct sk_buff *skb,
3058 				   unsigned char *haddr)
3059 {
3060 	const struct net_device *dev = skb->dev;
3061 
3062 	if (!dev->header_ops || !dev->header_ops->parse)
3063 		return 0;
3064 	return dev->header_ops->parse(skb, haddr);
3065 }
3066 
3067 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3068 {
3069 	const struct net_device *dev = skb->dev;
3070 
3071 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3072 		return 0;
3073 	return dev->header_ops->parse_protocol(skb);
3074 }
3075 
3076 /* ll_header must have at least hard_header_len allocated */
3077 static inline bool dev_validate_header(const struct net_device *dev,
3078 				       char *ll_header, int len)
3079 {
3080 	if (likely(len >= dev->hard_header_len))
3081 		return true;
3082 	if (len < dev->min_header_len)
3083 		return false;
3084 
3085 	if (capable(CAP_SYS_RAWIO)) {
3086 		memset(ll_header + len, 0, dev->hard_header_len - len);
3087 		return true;
3088 	}
3089 
3090 	if (dev->header_ops && dev->header_ops->validate)
3091 		return dev->header_ops->validate(ll_header, len);
3092 
3093 	return false;
3094 }
3095 
3096 static inline bool dev_has_header(const struct net_device *dev)
3097 {
3098 	return dev->header_ops && dev->header_ops->create;
3099 }
3100 
3101 /*
3102  * Incoming packets are placed on per-CPU queues
3103  */
3104 struct softnet_data {
3105 	struct list_head	poll_list;
3106 	struct sk_buff_head	process_queue;
3107 
3108 	/* stats */
3109 	unsigned int		processed;
3110 	unsigned int		time_squeeze;
3111 	unsigned int		received_rps;
3112 #ifdef CONFIG_RPS
3113 	struct softnet_data	*rps_ipi_list;
3114 #endif
3115 #ifdef CONFIG_NET_FLOW_LIMIT
3116 	struct sd_flow_limit __rcu *flow_limit;
3117 #endif
3118 	struct Qdisc		*output_queue;
3119 	struct Qdisc		**output_queue_tailp;
3120 	struct sk_buff		*completion_queue;
3121 #ifdef CONFIG_XFRM_OFFLOAD
3122 	struct sk_buff_head	xfrm_backlog;
3123 #endif
3124 	/* written and read only by owning cpu: */
3125 	struct {
3126 		u16 recursion;
3127 		u8  more;
3128 #ifdef CONFIG_NET_EGRESS
3129 		u8  skip_txqueue;
3130 #endif
3131 	} xmit;
3132 #ifdef CONFIG_RPS
3133 	/* input_queue_head should be written by cpu owning this struct,
3134 	 * and only read by other cpus. Worth using a cache line.
3135 	 */
3136 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3137 
3138 	/* Elements below can be accessed between CPUs for RPS/RFS */
3139 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3140 	struct softnet_data	*rps_ipi_next;
3141 	unsigned int		cpu;
3142 	unsigned int		input_queue_tail;
3143 #endif
3144 	unsigned int		dropped;
3145 	struct sk_buff_head	input_pkt_queue;
3146 	struct napi_struct	backlog;
3147 
3148 	/* Another possibly contended cache line */
3149 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3150 	int			defer_count;
3151 	int			defer_ipi_scheduled;
3152 	struct sk_buff		*defer_list;
3153 	call_single_data_t	defer_csd;
3154 };
3155 
3156 static inline void input_queue_head_incr(struct softnet_data *sd)
3157 {
3158 #ifdef CONFIG_RPS
3159 	sd->input_queue_head++;
3160 #endif
3161 }
3162 
3163 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3164 					      unsigned int *qtail)
3165 {
3166 #ifdef CONFIG_RPS
3167 	*qtail = ++sd->input_queue_tail;
3168 #endif
3169 }
3170 
3171 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3172 
3173 static inline int dev_recursion_level(void)
3174 {
3175 	return this_cpu_read(softnet_data.xmit.recursion);
3176 }
3177 
3178 #define XMIT_RECURSION_LIMIT	8
3179 static inline bool dev_xmit_recursion(void)
3180 {
3181 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3182 			XMIT_RECURSION_LIMIT);
3183 }
3184 
3185 static inline void dev_xmit_recursion_inc(void)
3186 {
3187 	__this_cpu_inc(softnet_data.xmit.recursion);
3188 }
3189 
3190 static inline void dev_xmit_recursion_dec(void)
3191 {
3192 	__this_cpu_dec(softnet_data.xmit.recursion);
3193 }
3194 
3195 void __netif_schedule(struct Qdisc *q);
3196 void netif_schedule_queue(struct netdev_queue *txq);
3197 
3198 static inline void netif_tx_schedule_all(struct net_device *dev)
3199 {
3200 	unsigned int i;
3201 
3202 	for (i = 0; i < dev->num_tx_queues; i++)
3203 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3204 }
3205 
3206 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3207 {
3208 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3209 }
3210 
3211 /**
3212  *	netif_start_queue - allow transmit
3213  *	@dev: network device
3214  *
3215  *	Allow upper layers to call the device hard_start_xmit routine.
3216  */
3217 static inline void netif_start_queue(struct net_device *dev)
3218 {
3219 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3220 }
3221 
3222 static inline void netif_tx_start_all_queues(struct net_device *dev)
3223 {
3224 	unsigned int i;
3225 
3226 	for (i = 0; i < dev->num_tx_queues; i++) {
3227 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3228 		netif_tx_start_queue(txq);
3229 	}
3230 }
3231 
3232 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3233 
3234 /**
3235  *	netif_wake_queue - restart transmit
3236  *	@dev: network device
3237  *
3238  *	Allow upper layers to call the device hard_start_xmit routine.
3239  *	Used for flow control when transmit resources are available.
3240  */
3241 static inline void netif_wake_queue(struct net_device *dev)
3242 {
3243 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3244 }
3245 
3246 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3247 {
3248 	unsigned int i;
3249 
3250 	for (i = 0; i < dev->num_tx_queues; i++) {
3251 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3252 		netif_tx_wake_queue(txq);
3253 	}
3254 }
3255 
3256 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3257 {
3258 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3259 }
3260 
3261 /**
3262  *	netif_stop_queue - stop transmitted packets
3263  *	@dev: network device
3264  *
3265  *	Stop upper layers calling the device hard_start_xmit routine.
3266  *	Used for flow control when transmit resources are unavailable.
3267  */
3268 static inline void netif_stop_queue(struct net_device *dev)
3269 {
3270 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3271 }
3272 
3273 void netif_tx_stop_all_queues(struct net_device *dev);
3274 
3275 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3276 {
3277 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3278 }
3279 
3280 /**
3281  *	netif_queue_stopped - test if transmit queue is flowblocked
3282  *	@dev: network device
3283  *
3284  *	Test if transmit queue on device is currently unable to send.
3285  */
3286 static inline bool netif_queue_stopped(const struct net_device *dev)
3287 {
3288 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3289 }
3290 
3291 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3292 {
3293 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3294 }
3295 
3296 static inline bool
3297 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3298 {
3299 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3300 }
3301 
3302 static inline bool
3303 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3304 {
3305 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3306 }
3307 
3308 /**
3309  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3310  *	@dev_queue: pointer to transmit queue
3311  *	@min_limit: dql minimum limit
3312  *
3313  * Forces xmit_more() to return true until the minimum threshold
3314  * defined by @min_limit is reached (or until the tx queue is
3315  * empty). Warning: to be use with care, misuse will impact the
3316  * latency.
3317  */
3318 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3319 						  unsigned int min_limit)
3320 {
3321 #ifdef CONFIG_BQL
3322 	dev_queue->dql.min_limit = min_limit;
3323 #endif
3324 }
3325 
3326 /**
3327  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3328  *	@dev_queue: pointer to transmit queue
3329  *
3330  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3331  * to give appropriate hint to the CPU.
3332  */
3333 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3334 {
3335 #ifdef CONFIG_BQL
3336 	prefetchw(&dev_queue->dql.num_queued);
3337 #endif
3338 }
3339 
3340 /**
3341  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3342  *	@dev_queue: pointer to transmit queue
3343  *
3344  * BQL enabled drivers might use this helper in their TX completion path,
3345  * to give appropriate hint to the CPU.
3346  */
3347 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3348 {
3349 #ifdef CONFIG_BQL
3350 	prefetchw(&dev_queue->dql.limit);
3351 #endif
3352 }
3353 
3354 /**
3355  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3356  *	@dev_queue: network device queue
3357  *	@bytes: number of bytes queued to the device queue
3358  *
3359  *	Report the number of bytes queued for sending/completion to the network
3360  *	device hardware queue. @bytes should be a good approximation and should
3361  *	exactly match netdev_completed_queue() @bytes.
3362  *	This is typically called once per packet, from ndo_start_xmit().
3363  */
3364 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3365 					unsigned int bytes)
3366 {
3367 #ifdef CONFIG_BQL
3368 	dql_queued(&dev_queue->dql, bytes);
3369 
3370 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3371 		return;
3372 
3373 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3374 
3375 	/*
3376 	 * The XOFF flag must be set before checking the dql_avail below,
3377 	 * because in netdev_tx_completed_queue we update the dql_completed
3378 	 * before checking the XOFF flag.
3379 	 */
3380 	smp_mb();
3381 
3382 	/* check again in case another CPU has just made room avail */
3383 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3384 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3385 #endif
3386 }
3387 
3388 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3389  * that they should not test BQL status themselves.
3390  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3391  * skb of a batch.
3392  * Returns true if the doorbell must be used to kick the NIC.
3393  */
3394 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3395 					  unsigned int bytes,
3396 					  bool xmit_more)
3397 {
3398 	if (xmit_more) {
3399 #ifdef CONFIG_BQL
3400 		dql_queued(&dev_queue->dql, bytes);
3401 #endif
3402 		return netif_tx_queue_stopped(dev_queue);
3403 	}
3404 	netdev_tx_sent_queue(dev_queue, bytes);
3405 	return true;
3406 }
3407 
3408 /**
3409  *	netdev_sent_queue - report the number of bytes queued to hardware
3410  *	@dev: network device
3411  *	@bytes: number of bytes queued to the hardware device queue
3412  *
3413  *	Report the number of bytes queued for sending/completion to the network
3414  *	device hardware queue#0. @bytes should be a good approximation and should
3415  *	exactly match netdev_completed_queue() @bytes.
3416  *	This is typically called once per packet, from ndo_start_xmit().
3417  */
3418 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3419 {
3420 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3421 }
3422 
3423 static inline bool __netdev_sent_queue(struct net_device *dev,
3424 				       unsigned int bytes,
3425 				       bool xmit_more)
3426 {
3427 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3428 				      xmit_more);
3429 }
3430 
3431 /**
3432  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3433  *	@dev_queue: network device queue
3434  *	@pkts: number of packets (currently ignored)
3435  *	@bytes: number of bytes dequeued from the device queue
3436  *
3437  *	Must be called at most once per TX completion round (and not per
3438  *	individual packet), so that BQL can adjust its limits appropriately.
3439  */
3440 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3441 					     unsigned int pkts, unsigned int bytes)
3442 {
3443 #ifdef CONFIG_BQL
3444 	if (unlikely(!bytes))
3445 		return;
3446 
3447 	dql_completed(&dev_queue->dql, bytes);
3448 
3449 	/*
3450 	 * Without the memory barrier there is a small possiblity that
3451 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3452 	 * be stopped forever
3453 	 */
3454 	smp_mb();
3455 
3456 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3457 		return;
3458 
3459 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3460 		netif_schedule_queue(dev_queue);
3461 #endif
3462 }
3463 
3464 /**
3465  * 	netdev_completed_queue - report bytes and packets completed by device
3466  * 	@dev: network device
3467  * 	@pkts: actual number of packets sent over the medium
3468  * 	@bytes: actual number of bytes sent over the medium
3469  *
3470  * 	Report the number of bytes and packets transmitted by the network device
3471  * 	hardware queue over the physical medium, @bytes must exactly match the
3472  * 	@bytes amount passed to netdev_sent_queue()
3473  */
3474 static inline void netdev_completed_queue(struct net_device *dev,
3475 					  unsigned int pkts, unsigned int bytes)
3476 {
3477 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3478 }
3479 
3480 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3481 {
3482 #ifdef CONFIG_BQL
3483 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3484 	dql_reset(&q->dql);
3485 #endif
3486 }
3487 
3488 /**
3489  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3490  * 	@dev_queue: network device
3491  *
3492  * 	Reset the bytes and packet count of a network device and clear the
3493  * 	software flow control OFF bit for this network device
3494  */
3495 static inline void netdev_reset_queue(struct net_device *dev_queue)
3496 {
3497 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3498 }
3499 
3500 /**
3501  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3502  * 	@dev: network device
3503  * 	@queue_index: given tx queue index
3504  *
3505  * 	Returns 0 if given tx queue index >= number of device tx queues,
3506  * 	otherwise returns the originally passed tx queue index.
3507  */
3508 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3509 {
3510 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3511 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3512 				     dev->name, queue_index,
3513 				     dev->real_num_tx_queues);
3514 		return 0;
3515 	}
3516 
3517 	return queue_index;
3518 }
3519 
3520 /**
3521  *	netif_running - test if up
3522  *	@dev: network device
3523  *
3524  *	Test if the device has been brought up.
3525  */
3526 static inline bool netif_running(const struct net_device *dev)
3527 {
3528 	return test_bit(__LINK_STATE_START, &dev->state);
3529 }
3530 
3531 /*
3532  * Routines to manage the subqueues on a device.  We only need start,
3533  * stop, and a check if it's stopped.  All other device management is
3534  * done at the overall netdevice level.
3535  * Also test the device if we're multiqueue.
3536  */
3537 
3538 /**
3539  *	netif_start_subqueue - allow sending packets on subqueue
3540  *	@dev: network device
3541  *	@queue_index: sub queue index
3542  *
3543  * Start individual transmit queue of a device with multiple transmit queues.
3544  */
3545 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3546 {
3547 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3548 
3549 	netif_tx_start_queue(txq);
3550 }
3551 
3552 /**
3553  *	netif_stop_subqueue - stop sending packets on subqueue
3554  *	@dev: network device
3555  *	@queue_index: sub queue index
3556  *
3557  * Stop individual transmit queue of a device with multiple transmit queues.
3558  */
3559 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3560 {
3561 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3562 	netif_tx_stop_queue(txq);
3563 }
3564 
3565 /**
3566  *	__netif_subqueue_stopped - test status of subqueue
3567  *	@dev: network device
3568  *	@queue_index: sub queue index
3569  *
3570  * Check individual transmit queue of a device with multiple transmit queues.
3571  */
3572 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3573 					    u16 queue_index)
3574 {
3575 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3576 
3577 	return netif_tx_queue_stopped(txq);
3578 }
3579 
3580 /**
3581  *	netif_subqueue_stopped - test status of subqueue
3582  *	@dev: network device
3583  *	@skb: sub queue buffer pointer
3584  *
3585  * Check individual transmit queue of a device with multiple transmit queues.
3586  */
3587 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3588 					  struct sk_buff *skb)
3589 {
3590 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3591 }
3592 
3593 /**
3594  *	netif_wake_subqueue - allow sending packets on subqueue
3595  *	@dev: network device
3596  *	@queue_index: sub queue index
3597  *
3598  * Resume individual transmit queue of a device with multiple transmit queues.
3599  */
3600 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3601 {
3602 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3603 
3604 	netif_tx_wake_queue(txq);
3605 }
3606 
3607 #ifdef CONFIG_XPS
3608 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3609 			u16 index);
3610 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3611 			  u16 index, enum xps_map_type type);
3612 
3613 /**
3614  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3615  *	@j: CPU/Rx queue index
3616  *	@mask: bitmask of all cpus/rx queues
3617  *	@nr_bits: number of bits in the bitmask
3618  *
3619  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3620  */
3621 static inline bool netif_attr_test_mask(unsigned long j,
3622 					const unsigned long *mask,
3623 					unsigned int nr_bits)
3624 {
3625 	cpu_max_bits_warn(j, nr_bits);
3626 	return test_bit(j, mask);
3627 }
3628 
3629 /**
3630  *	netif_attr_test_online - Test for online CPU/Rx queue
3631  *	@j: CPU/Rx queue index
3632  *	@online_mask: bitmask for CPUs/Rx queues that are online
3633  *	@nr_bits: number of bits in the bitmask
3634  *
3635  * Returns true if a CPU/Rx queue is online.
3636  */
3637 static inline bool netif_attr_test_online(unsigned long j,
3638 					  const unsigned long *online_mask,
3639 					  unsigned int nr_bits)
3640 {
3641 	cpu_max_bits_warn(j, nr_bits);
3642 
3643 	if (online_mask)
3644 		return test_bit(j, online_mask);
3645 
3646 	return (j < nr_bits);
3647 }
3648 
3649 /**
3650  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3651  *	@n: CPU/Rx queue index
3652  *	@srcp: the cpumask/Rx queue mask pointer
3653  *	@nr_bits: number of bits in the bitmask
3654  *
3655  * Returns >= nr_bits if no further CPUs/Rx queues set.
3656  */
3657 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3658 					       unsigned int nr_bits)
3659 {
3660 	/* -1 is a legal arg here. */
3661 	if (n != -1)
3662 		cpu_max_bits_warn(n, nr_bits);
3663 
3664 	if (srcp)
3665 		return find_next_bit(srcp, nr_bits, n + 1);
3666 
3667 	return n + 1;
3668 }
3669 
3670 /**
3671  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3672  *	@n: CPU/Rx queue index
3673  *	@src1p: the first CPUs/Rx queues mask pointer
3674  *	@src2p: the second CPUs/Rx queues mask pointer
3675  *	@nr_bits: number of bits in the bitmask
3676  *
3677  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3678  */
3679 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3680 					  const unsigned long *src2p,
3681 					  unsigned int nr_bits)
3682 {
3683 	/* -1 is a legal arg here. */
3684 	if (n != -1)
3685 		cpu_max_bits_warn(n, nr_bits);
3686 
3687 	if (src1p && src2p)
3688 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3689 	else if (src1p)
3690 		return find_next_bit(src1p, nr_bits, n + 1);
3691 	else if (src2p)
3692 		return find_next_bit(src2p, nr_bits, n + 1);
3693 
3694 	return n + 1;
3695 }
3696 #else
3697 static inline int netif_set_xps_queue(struct net_device *dev,
3698 				      const struct cpumask *mask,
3699 				      u16 index)
3700 {
3701 	return 0;
3702 }
3703 
3704 static inline int __netif_set_xps_queue(struct net_device *dev,
3705 					const unsigned long *mask,
3706 					u16 index, enum xps_map_type type)
3707 {
3708 	return 0;
3709 }
3710 #endif
3711 
3712 /**
3713  *	netif_is_multiqueue - test if device has multiple transmit queues
3714  *	@dev: network device
3715  *
3716  * Check if device has multiple transmit queues
3717  */
3718 static inline bool netif_is_multiqueue(const struct net_device *dev)
3719 {
3720 	return dev->num_tx_queues > 1;
3721 }
3722 
3723 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3724 
3725 #ifdef CONFIG_SYSFS
3726 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3727 #else
3728 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3729 						unsigned int rxqs)
3730 {
3731 	dev->real_num_rx_queues = rxqs;
3732 	return 0;
3733 }
3734 #endif
3735 int netif_set_real_num_queues(struct net_device *dev,
3736 			      unsigned int txq, unsigned int rxq);
3737 
3738 static inline struct netdev_rx_queue *
3739 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3740 {
3741 	return dev->_rx + rxq;
3742 }
3743 
3744 #ifdef CONFIG_SYSFS
3745 static inline unsigned int get_netdev_rx_queue_index(
3746 		struct netdev_rx_queue *queue)
3747 {
3748 	struct net_device *dev = queue->dev;
3749 	int index = queue - dev->_rx;
3750 
3751 	BUG_ON(index >= dev->num_rx_queues);
3752 	return index;
3753 }
3754 #endif
3755 
3756 int netif_get_num_default_rss_queues(void);
3757 
3758 enum skb_free_reason {
3759 	SKB_REASON_CONSUMED,
3760 	SKB_REASON_DROPPED,
3761 };
3762 
3763 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3764 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3765 
3766 /*
3767  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3768  * interrupt context or with hardware interrupts being disabled.
3769  * (in_hardirq() || irqs_disabled())
3770  *
3771  * We provide four helpers that can be used in following contexts :
3772  *
3773  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3774  *  replacing kfree_skb(skb)
3775  *
3776  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3777  *  Typically used in place of consume_skb(skb) in TX completion path
3778  *
3779  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3780  *  replacing kfree_skb(skb)
3781  *
3782  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3783  *  and consumed a packet. Used in place of consume_skb(skb)
3784  */
3785 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3786 {
3787 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3788 }
3789 
3790 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3791 {
3792 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3793 }
3794 
3795 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3796 {
3797 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3798 }
3799 
3800 static inline void dev_consume_skb_any(struct sk_buff *skb)
3801 {
3802 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3803 }
3804 
3805 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3806 			     struct bpf_prog *xdp_prog);
3807 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3808 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3809 int netif_rx(struct sk_buff *skb);
3810 int __netif_rx(struct sk_buff *skb);
3811 
3812 int netif_receive_skb(struct sk_buff *skb);
3813 int netif_receive_skb_core(struct sk_buff *skb);
3814 void netif_receive_skb_list_internal(struct list_head *head);
3815 void netif_receive_skb_list(struct list_head *head);
3816 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3817 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3818 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3819 gro_result_t napi_gro_frags(struct napi_struct *napi);
3820 struct packet_offload *gro_find_receive_by_type(__be16 type);
3821 struct packet_offload *gro_find_complete_by_type(__be16 type);
3822 
3823 static inline void napi_free_frags(struct napi_struct *napi)
3824 {
3825 	kfree_skb(napi->skb);
3826 	napi->skb = NULL;
3827 }
3828 
3829 bool netdev_is_rx_handler_busy(struct net_device *dev);
3830 int netdev_rx_handler_register(struct net_device *dev,
3831 			       rx_handler_func_t *rx_handler,
3832 			       void *rx_handler_data);
3833 void netdev_rx_handler_unregister(struct net_device *dev);
3834 
3835 bool dev_valid_name(const char *name);
3836 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3837 {
3838 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3839 }
3840 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3841 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3842 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3843 		void __user *data, bool *need_copyout);
3844 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3845 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3846 unsigned int dev_get_flags(const struct net_device *);
3847 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3848 		       struct netlink_ext_ack *extack);
3849 int dev_change_flags(struct net_device *dev, unsigned int flags,
3850 		     struct netlink_ext_ack *extack);
3851 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3852 			unsigned int gchanges);
3853 int dev_set_alias(struct net_device *, const char *, size_t);
3854 int dev_get_alias(const struct net_device *, char *, size_t);
3855 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3856 			       const char *pat, int new_ifindex);
3857 static inline
3858 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3859 			     const char *pat)
3860 {
3861 	return __dev_change_net_namespace(dev, net, pat, 0);
3862 }
3863 int __dev_set_mtu(struct net_device *, int);
3864 int dev_set_mtu(struct net_device *, int);
3865 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3866 			      struct netlink_ext_ack *extack);
3867 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3868 			struct netlink_ext_ack *extack);
3869 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3870 			     struct netlink_ext_ack *extack);
3871 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3872 int dev_get_port_parent_id(struct net_device *dev,
3873 			   struct netdev_phys_item_id *ppid, bool recurse);
3874 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3875 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3876 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3877 				    struct netdev_queue *txq, int *ret);
3878 
3879 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3880 u8 dev_xdp_prog_count(struct net_device *dev);
3881 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3882 
3883 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3885 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3886 bool is_skb_forwardable(const struct net_device *dev,
3887 			const struct sk_buff *skb);
3888 
3889 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3890 						 const struct sk_buff *skb,
3891 						 const bool check_mtu)
3892 {
3893 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3894 	unsigned int len;
3895 
3896 	if (!(dev->flags & IFF_UP))
3897 		return false;
3898 
3899 	if (!check_mtu)
3900 		return true;
3901 
3902 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3903 	if (skb->len <= len)
3904 		return true;
3905 
3906 	/* if TSO is enabled, we don't care about the length as the packet
3907 	 * could be forwarded without being segmented before
3908 	 */
3909 	if (skb_is_gso(skb))
3910 		return true;
3911 
3912 	return false;
3913 }
3914 
3915 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3916 
3917 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3918 {
3919 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3920 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3921 
3922 	if (likely(p))
3923 		return p;
3924 
3925 	return netdev_core_stats_alloc(dev);
3926 }
3927 
3928 #define DEV_CORE_STATS_INC(FIELD)						\
3929 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3930 {										\
3931 	struct net_device_core_stats __percpu *p;				\
3932 										\
3933 	p = dev_core_stats(dev);						\
3934 	if (p)									\
3935 		this_cpu_inc(p->FIELD);						\
3936 }
3937 DEV_CORE_STATS_INC(rx_dropped)
3938 DEV_CORE_STATS_INC(tx_dropped)
3939 DEV_CORE_STATS_INC(rx_nohandler)
3940 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3941 
3942 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3943 					       struct sk_buff *skb,
3944 					       const bool check_mtu)
3945 {
3946 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3947 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3948 		dev_core_stats_rx_dropped_inc(dev);
3949 		kfree_skb(skb);
3950 		return NET_RX_DROP;
3951 	}
3952 
3953 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3954 	skb->priority = 0;
3955 	return 0;
3956 }
3957 
3958 bool dev_nit_active(struct net_device *dev);
3959 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3960 
3961 static inline void __dev_put(struct net_device *dev)
3962 {
3963 	if (dev) {
3964 #ifdef CONFIG_PCPU_DEV_REFCNT
3965 		this_cpu_dec(*dev->pcpu_refcnt);
3966 #else
3967 		refcount_dec(&dev->dev_refcnt);
3968 #endif
3969 	}
3970 }
3971 
3972 static inline void __dev_hold(struct net_device *dev)
3973 {
3974 	if (dev) {
3975 #ifdef CONFIG_PCPU_DEV_REFCNT
3976 		this_cpu_inc(*dev->pcpu_refcnt);
3977 #else
3978 		refcount_inc(&dev->dev_refcnt);
3979 #endif
3980 	}
3981 }
3982 
3983 static inline void __netdev_tracker_alloc(struct net_device *dev,
3984 					  netdevice_tracker *tracker,
3985 					  gfp_t gfp)
3986 {
3987 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3988 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3989 #endif
3990 }
3991 
3992 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3993  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3994  */
3995 static inline void netdev_tracker_alloc(struct net_device *dev,
3996 					netdevice_tracker *tracker, gfp_t gfp)
3997 {
3998 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3999 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4000 	__netdev_tracker_alloc(dev, tracker, gfp);
4001 #endif
4002 }
4003 
4004 static inline void netdev_tracker_free(struct net_device *dev,
4005 				       netdevice_tracker *tracker)
4006 {
4007 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4008 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4009 #endif
4010 }
4011 
4012 static inline void netdev_hold(struct net_device *dev,
4013 			       netdevice_tracker *tracker, gfp_t gfp)
4014 {
4015 	if (dev) {
4016 		__dev_hold(dev);
4017 		__netdev_tracker_alloc(dev, tracker, gfp);
4018 	}
4019 }
4020 
4021 static inline void netdev_put(struct net_device *dev,
4022 			      netdevice_tracker *tracker)
4023 {
4024 	if (dev) {
4025 		netdev_tracker_free(dev, tracker);
4026 		__dev_put(dev);
4027 	}
4028 }
4029 
4030 /**
4031  *	dev_hold - get reference to device
4032  *	@dev: network device
4033  *
4034  * Hold reference to device to keep it from being freed.
4035  * Try using netdev_hold() instead.
4036  */
4037 static inline void dev_hold(struct net_device *dev)
4038 {
4039 	netdev_hold(dev, NULL, GFP_ATOMIC);
4040 }
4041 
4042 /**
4043  *	dev_put - release reference to device
4044  *	@dev: network device
4045  *
4046  * Release reference to device to allow it to be freed.
4047  * Try using netdev_put() instead.
4048  */
4049 static inline void dev_put(struct net_device *dev)
4050 {
4051 	netdev_put(dev, NULL);
4052 }
4053 
4054 static inline void netdev_ref_replace(struct net_device *odev,
4055 				      struct net_device *ndev,
4056 				      netdevice_tracker *tracker,
4057 				      gfp_t gfp)
4058 {
4059 	if (odev)
4060 		netdev_tracker_free(odev, tracker);
4061 
4062 	__dev_hold(ndev);
4063 	__dev_put(odev);
4064 
4065 	if (ndev)
4066 		__netdev_tracker_alloc(ndev, tracker, gfp);
4067 }
4068 
4069 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4070  * and _off may be called from IRQ context, but it is caller
4071  * who is responsible for serialization of these calls.
4072  *
4073  * The name carrier is inappropriate, these functions should really be
4074  * called netif_lowerlayer_*() because they represent the state of any
4075  * kind of lower layer not just hardware media.
4076  */
4077 void linkwatch_fire_event(struct net_device *dev);
4078 
4079 /**
4080  *	netif_carrier_ok - test if carrier present
4081  *	@dev: network device
4082  *
4083  * Check if carrier is present on device
4084  */
4085 static inline bool netif_carrier_ok(const struct net_device *dev)
4086 {
4087 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4088 }
4089 
4090 unsigned long dev_trans_start(struct net_device *dev);
4091 
4092 void __netdev_watchdog_up(struct net_device *dev);
4093 
4094 void netif_carrier_on(struct net_device *dev);
4095 void netif_carrier_off(struct net_device *dev);
4096 void netif_carrier_event(struct net_device *dev);
4097 
4098 /**
4099  *	netif_dormant_on - mark device as dormant.
4100  *	@dev: network device
4101  *
4102  * Mark device as dormant (as per RFC2863).
4103  *
4104  * The dormant state indicates that the relevant interface is not
4105  * actually in a condition to pass packets (i.e., it is not 'up') but is
4106  * in a "pending" state, waiting for some external event.  For "on-
4107  * demand" interfaces, this new state identifies the situation where the
4108  * interface is waiting for events to place it in the up state.
4109  */
4110 static inline void netif_dormant_on(struct net_device *dev)
4111 {
4112 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4113 		linkwatch_fire_event(dev);
4114 }
4115 
4116 /**
4117  *	netif_dormant_off - set device as not dormant.
4118  *	@dev: network device
4119  *
4120  * Device is not in dormant state.
4121  */
4122 static inline void netif_dormant_off(struct net_device *dev)
4123 {
4124 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4125 		linkwatch_fire_event(dev);
4126 }
4127 
4128 /**
4129  *	netif_dormant - test if device is dormant
4130  *	@dev: network device
4131  *
4132  * Check if device is dormant.
4133  */
4134 static inline bool netif_dormant(const struct net_device *dev)
4135 {
4136 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4137 }
4138 
4139 
4140 /**
4141  *	netif_testing_on - mark device as under test.
4142  *	@dev: network device
4143  *
4144  * Mark device as under test (as per RFC2863).
4145  *
4146  * The testing state indicates that some test(s) must be performed on
4147  * the interface. After completion, of the test, the interface state
4148  * will change to up, dormant, or down, as appropriate.
4149  */
4150 static inline void netif_testing_on(struct net_device *dev)
4151 {
4152 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4153 		linkwatch_fire_event(dev);
4154 }
4155 
4156 /**
4157  *	netif_testing_off - set device as not under test.
4158  *	@dev: network device
4159  *
4160  * Device is not in testing state.
4161  */
4162 static inline void netif_testing_off(struct net_device *dev)
4163 {
4164 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4165 		linkwatch_fire_event(dev);
4166 }
4167 
4168 /**
4169  *	netif_testing - test if device is under test
4170  *	@dev: network device
4171  *
4172  * Check if device is under test
4173  */
4174 static inline bool netif_testing(const struct net_device *dev)
4175 {
4176 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4177 }
4178 
4179 
4180 /**
4181  *	netif_oper_up - test if device is operational
4182  *	@dev: network device
4183  *
4184  * Check if carrier is operational
4185  */
4186 static inline bool netif_oper_up(const struct net_device *dev)
4187 {
4188 	return (dev->operstate == IF_OPER_UP ||
4189 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4190 }
4191 
4192 /**
4193  *	netif_device_present - is device available or removed
4194  *	@dev: network device
4195  *
4196  * Check if device has not been removed from system.
4197  */
4198 static inline bool netif_device_present(const struct net_device *dev)
4199 {
4200 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4201 }
4202 
4203 void netif_device_detach(struct net_device *dev);
4204 
4205 void netif_device_attach(struct net_device *dev);
4206 
4207 /*
4208  * Network interface message level settings
4209  */
4210 
4211 enum {
4212 	NETIF_MSG_DRV_BIT,
4213 	NETIF_MSG_PROBE_BIT,
4214 	NETIF_MSG_LINK_BIT,
4215 	NETIF_MSG_TIMER_BIT,
4216 	NETIF_MSG_IFDOWN_BIT,
4217 	NETIF_MSG_IFUP_BIT,
4218 	NETIF_MSG_RX_ERR_BIT,
4219 	NETIF_MSG_TX_ERR_BIT,
4220 	NETIF_MSG_TX_QUEUED_BIT,
4221 	NETIF_MSG_INTR_BIT,
4222 	NETIF_MSG_TX_DONE_BIT,
4223 	NETIF_MSG_RX_STATUS_BIT,
4224 	NETIF_MSG_PKTDATA_BIT,
4225 	NETIF_MSG_HW_BIT,
4226 	NETIF_MSG_WOL_BIT,
4227 
4228 	/* When you add a new bit above, update netif_msg_class_names array
4229 	 * in net/ethtool/common.c
4230 	 */
4231 	NETIF_MSG_CLASS_COUNT,
4232 };
4233 /* Both ethtool_ops interface and internal driver implementation use u32 */
4234 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4235 
4236 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4237 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4238 
4239 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4240 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4241 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4242 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4243 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4244 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4245 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4246 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4247 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4248 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4249 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4250 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4251 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4252 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4253 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4254 
4255 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4256 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4257 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4258 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4259 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4260 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4261 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4262 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4263 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4264 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4265 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4266 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4267 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4268 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4269 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4270 
4271 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4272 {
4273 	/* use default */
4274 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4275 		return default_msg_enable_bits;
4276 	if (debug_value == 0)	/* no output */
4277 		return 0;
4278 	/* set low N bits */
4279 	return (1U << debug_value) - 1;
4280 }
4281 
4282 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4283 {
4284 	spin_lock(&txq->_xmit_lock);
4285 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4286 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4287 }
4288 
4289 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4290 {
4291 	__acquire(&txq->_xmit_lock);
4292 	return true;
4293 }
4294 
4295 static inline void __netif_tx_release(struct netdev_queue *txq)
4296 {
4297 	__release(&txq->_xmit_lock);
4298 }
4299 
4300 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4301 {
4302 	spin_lock_bh(&txq->_xmit_lock);
4303 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4304 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4305 }
4306 
4307 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4308 {
4309 	bool ok = spin_trylock(&txq->_xmit_lock);
4310 
4311 	if (likely(ok)) {
4312 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4313 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4314 	}
4315 	return ok;
4316 }
4317 
4318 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4319 {
4320 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4321 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4322 	spin_unlock(&txq->_xmit_lock);
4323 }
4324 
4325 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4326 {
4327 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4328 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4329 	spin_unlock_bh(&txq->_xmit_lock);
4330 }
4331 
4332 /*
4333  * txq->trans_start can be read locklessly from dev_watchdog()
4334  */
4335 static inline void txq_trans_update(struct netdev_queue *txq)
4336 {
4337 	if (txq->xmit_lock_owner != -1)
4338 		WRITE_ONCE(txq->trans_start, jiffies);
4339 }
4340 
4341 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4342 {
4343 	unsigned long now = jiffies;
4344 
4345 	if (READ_ONCE(txq->trans_start) != now)
4346 		WRITE_ONCE(txq->trans_start, now);
4347 }
4348 
4349 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4350 static inline void netif_trans_update(struct net_device *dev)
4351 {
4352 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4353 
4354 	txq_trans_cond_update(txq);
4355 }
4356 
4357 /**
4358  *	netif_tx_lock - grab network device transmit lock
4359  *	@dev: network device
4360  *
4361  * Get network device transmit lock
4362  */
4363 void netif_tx_lock(struct net_device *dev);
4364 
4365 static inline void netif_tx_lock_bh(struct net_device *dev)
4366 {
4367 	local_bh_disable();
4368 	netif_tx_lock(dev);
4369 }
4370 
4371 void netif_tx_unlock(struct net_device *dev);
4372 
4373 static inline void netif_tx_unlock_bh(struct net_device *dev)
4374 {
4375 	netif_tx_unlock(dev);
4376 	local_bh_enable();
4377 }
4378 
4379 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4380 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4381 		__netif_tx_lock(txq, cpu);		\
4382 	} else {					\
4383 		__netif_tx_acquire(txq);		\
4384 	}						\
4385 }
4386 
4387 #define HARD_TX_TRYLOCK(dev, txq)			\
4388 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4389 		__netif_tx_trylock(txq) :		\
4390 		__netif_tx_acquire(txq))
4391 
4392 #define HARD_TX_UNLOCK(dev, txq) {			\
4393 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4394 		__netif_tx_unlock(txq);			\
4395 	} else {					\
4396 		__netif_tx_release(txq);		\
4397 	}						\
4398 }
4399 
4400 static inline void netif_tx_disable(struct net_device *dev)
4401 {
4402 	unsigned int i;
4403 	int cpu;
4404 
4405 	local_bh_disable();
4406 	cpu = smp_processor_id();
4407 	spin_lock(&dev->tx_global_lock);
4408 	for (i = 0; i < dev->num_tx_queues; i++) {
4409 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4410 
4411 		__netif_tx_lock(txq, cpu);
4412 		netif_tx_stop_queue(txq);
4413 		__netif_tx_unlock(txq);
4414 	}
4415 	spin_unlock(&dev->tx_global_lock);
4416 	local_bh_enable();
4417 }
4418 
4419 static inline void netif_addr_lock(struct net_device *dev)
4420 {
4421 	unsigned char nest_level = 0;
4422 
4423 #ifdef CONFIG_LOCKDEP
4424 	nest_level = dev->nested_level;
4425 #endif
4426 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4427 }
4428 
4429 static inline void netif_addr_lock_bh(struct net_device *dev)
4430 {
4431 	unsigned char nest_level = 0;
4432 
4433 #ifdef CONFIG_LOCKDEP
4434 	nest_level = dev->nested_level;
4435 #endif
4436 	local_bh_disable();
4437 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4438 }
4439 
4440 static inline void netif_addr_unlock(struct net_device *dev)
4441 {
4442 	spin_unlock(&dev->addr_list_lock);
4443 }
4444 
4445 static inline void netif_addr_unlock_bh(struct net_device *dev)
4446 {
4447 	spin_unlock_bh(&dev->addr_list_lock);
4448 }
4449 
4450 /*
4451  * dev_addrs walker. Should be used only for read access. Call with
4452  * rcu_read_lock held.
4453  */
4454 #define for_each_dev_addr(dev, ha) \
4455 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4456 
4457 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4458 
4459 void ether_setup(struct net_device *dev);
4460 
4461 /* Support for loadable net-drivers */
4462 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4463 				    unsigned char name_assign_type,
4464 				    void (*setup)(struct net_device *),
4465 				    unsigned int txqs, unsigned int rxqs);
4466 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4467 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4468 
4469 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4470 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4471 			 count)
4472 
4473 int register_netdev(struct net_device *dev);
4474 void unregister_netdev(struct net_device *dev);
4475 
4476 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4477 
4478 /* General hardware address lists handling functions */
4479 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4480 		   struct netdev_hw_addr_list *from_list, int addr_len);
4481 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4482 		      struct netdev_hw_addr_list *from_list, int addr_len);
4483 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4484 		       struct net_device *dev,
4485 		       int (*sync)(struct net_device *, const unsigned char *),
4486 		       int (*unsync)(struct net_device *,
4487 				     const unsigned char *));
4488 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4489 			   struct net_device *dev,
4490 			   int (*sync)(struct net_device *,
4491 				       const unsigned char *, int),
4492 			   int (*unsync)(struct net_device *,
4493 					 const unsigned char *, int));
4494 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4495 			      struct net_device *dev,
4496 			      int (*unsync)(struct net_device *,
4497 					    const unsigned char *, int));
4498 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4499 			  struct net_device *dev,
4500 			  int (*unsync)(struct net_device *,
4501 					const unsigned char *));
4502 void __hw_addr_init(struct netdev_hw_addr_list *list);
4503 
4504 /* Functions used for device addresses handling */
4505 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4506 		  const void *addr, size_t len);
4507 
4508 static inline void
4509 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4510 {
4511 	dev_addr_mod(dev, 0, addr, len);
4512 }
4513 
4514 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4515 {
4516 	__dev_addr_set(dev, addr, dev->addr_len);
4517 }
4518 
4519 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4520 		 unsigned char addr_type);
4521 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4522 		 unsigned char addr_type);
4523 
4524 /* Functions used for unicast addresses handling */
4525 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4526 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4527 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4528 int dev_uc_sync(struct net_device *to, struct net_device *from);
4529 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4530 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4531 void dev_uc_flush(struct net_device *dev);
4532 void dev_uc_init(struct net_device *dev);
4533 
4534 /**
4535  *  __dev_uc_sync - Synchonize device's unicast list
4536  *  @dev:  device to sync
4537  *  @sync: function to call if address should be added
4538  *  @unsync: function to call if address should be removed
4539  *
4540  *  Add newly added addresses to the interface, and release
4541  *  addresses that have been deleted.
4542  */
4543 static inline int __dev_uc_sync(struct net_device *dev,
4544 				int (*sync)(struct net_device *,
4545 					    const unsigned char *),
4546 				int (*unsync)(struct net_device *,
4547 					      const unsigned char *))
4548 {
4549 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4550 }
4551 
4552 /**
4553  *  __dev_uc_unsync - Remove synchronized addresses from device
4554  *  @dev:  device to sync
4555  *  @unsync: function to call if address should be removed
4556  *
4557  *  Remove all addresses that were added to the device by dev_uc_sync().
4558  */
4559 static inline void __dev_uc_unsync(struct net_device *dev,
4560 				   int (*unsync)(struct net_device *,
4561 						 const unsigned char *))
4562 {
4563 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4564 }
4565 
4566 /* Functions used for multicast addresses handling */
4567 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4568 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4569 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4570 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4571 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4572 int dev_mc_sync(struct net_device *to, struct net_device *from);
4573 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4574 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4575 void dev_mc_flush(struct net_device *dev);
4576 void dev_mc_init(struct net_device *dev);
4577 
4578 /**
4579  *  __dev_mc_sync - Synchonize device's multicast list
4580  *  @dev:  device to sync
4581  *  @sync: function to call if address should be added
4582  *  @unsync: function to call if address should be removed
4583  *
4584  *  Add newly added addresses to the interface, and release
4585  *  addresses that have been deleted.
4586  */
4587 static inline int __dev_mc_sync(struct net_device *dev,
4588 				int (*sync)(struct net_device *,
4589 					    const unsigned char *),
4590 				int (*unsync)(struct net_device *,
4591 					      const unsigned char *))
4592 {
4593 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4594 }
4595 
4596 /**
4597  *  __dev_mc_unsync - Remove synchronized addresses from device
4598  *  @dev:  device to sync
4599  *  @unsync: function to call if address should be removed
4600  *
4601  *  Remove all addresses that were added to the device by dev_mc_sync().
4602  */
4603 static inline void __dev_mc_unsync(struct net_device *dev,
4604 				   int (*unsync)(struct net_device *,
4605 						 const unsigned char *))
4606 {
4607 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4608 }
4609 
4610 /* Functions used for secondary unicast and multicast support */
4611 void dev_set_rx_mode(struct net_device *dev);
4612 int dev_set_promiscuity(struct net_device *dev, int inc);
4613 int dev_set_allmulti(struct net_device *dev, int inc);
4614 void netdev_state_change(struct net_device *dev);
4615 void __netdev_notify_peers(struct net_device *dev);
4616 void netdev_notify_peers(struct net_device *dev);
4617 void netdev_features_change(struct net_device *dev);
4618 /* Load a device via the kmod */
4619 void dev_load(struct net *net, const char *name);
4620 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4621 					struct rtnl_link_stats64 *storage);
4622 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4623 			     const struct net_device_stats *netdev_stats);
4624 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4625 			   const struct pcpu_sw_netstats __percpu *netstats);
4626 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4627 
4628 extern int		netdev_max_backlog;
4629 extern int		dev_rx_weight;
4630 extern int		dev_tx_weight;
4631 extern int		gro_normal_batch;
4632 
4633 enum {
4634 	NESTED_SYNC_IMM_BIT,
4635 	NESTED_SYNC_TODO_BIT,
4636 };
4637 
4638 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4639 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4640 
4641 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4642 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4643 
4644 struct netdev_nested_priv {
4645 	unsigned char flags;
4646 	void *data;
4647 };
4648 
4649 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4650 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4651 						     struct list_head **iter);
4652 
4653 /* iterate through upper list, must be called under RCU read lock */
4654 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4655 	for (iter = &(dev)->adj_list.upper, \
4656 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4657 	     updev; \
4658 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4659 
4660 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4661 				  int (*fn)(struct net_device *upper_dev,
4662 					    struct netdev_nested_priv *priv),
4663 				  struct netdev_nested_priv *priv);
4664 
4665 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4666 				  struct net_device *upper_dev);
4667 
4668 bool netdev_has_any_upper_dev(struct net_device *dev);
4669 
4670 void *netdev_lower_get_next_private(struct net_device *dev,
4671 				    struct list_head **iter);
4672 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4673 					struct list_head **iter);
4674 
4675 #define netdev_for_each_lower_private(dev, priv, iter) \
4676 	for (iter = (dev)->adj_list.lower.next, \
4677 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4678 	     priv; \
4679 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4680 
4681 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4682 	for (iter = &(dev)->adj_list.lower, \
4683 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4684 	     priv; \
4685 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4686 
4687 void *netdev_lower_get_next(struct net_device *dev,
4688 				struct list_head **iter);
4689 
4690 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4691 	for (iter = (dev)->adj_list.lower.next, \
4692 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4693 	     ldev; \
4694 	     ldev = netdev_lower_get_next(dev, &(iter)))
4695 
4696 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4697 					     struct list_head **iter);
4698 int netdev_walk_all_lower_dev(struct net_device *dev,
4699 			      int (*fn)(struct net_device *lower_dev,
4700 					struct netdev_nested_priv *priv),
4701 			      struct netdev_nested_priv *priv);
4702 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4703 				  int (*fn)(struct net_device *lower_dev,
4704 					    struct netdev_nested_priv *priv),
4705 				  struct netdev_nested_priv *priv);
4706 
4707 void *netdev_adjacent_get_private(struct list_head *adj_list);
4708 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4709 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4710 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4711 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4712 			  struct netlink_ext_ack *extack);
4713 int netdev_master_upper_dev_link(struct net_device *dev,
4714 				 struct net_device *upper_dev,
4715 				 void *upper_priv, void *upper_info,
4716 				 struct netlink_ext_ack *extack);
4717 void netdev_upper_dev_unlink(struct net_device *dev,
4718 			     struct net_device *upper_dev);
4719 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4720 				   struct net_device *new_dev,
4721 				   struct net_device *dev,
4722 				   struct netlink_ext_ack *extack);
4723 void netdev_adjacent_change_commit(struct net_device *old_dev,
4724 				   struct net_device *new_dev,
4725 				   struct net_device *dev);
4726 void netdev_adjacent_change_abort(struct net_device *old_dev,
4727 				  struct net_device *new_dev,
4728 				  struct net_device *dev);
4729 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4730 void *netdev_lower_dev_get_private(struct net_device *dev,
4731 				   struct net_device *lower_dev);
4732 void netdev_lower_state_changed(struct net_device *lower_dev,
4733 				void *lower_state_info);
4734 
4735 /* RSS keys are 40 or 52 bytes long */
4736 #define NETDEV_RSS_KEY_LEN 52
4737 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4738 void netdev_rss_key_fill(void *buffer, size_t len);
4739 
4740 int skb_checksum_help(struct sk_buff *skb);
4741 int skb_crc32c_csum_help(struct sk_buff *skb);
4742 int skb_csum_hwoffload_help(struct sk_buff *skb,
4743 			    const netdev_features_t features);
4744 
4745 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4746 				  netdev_features_t features, bool tx_path);
4747 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4748 				    netdev_features_t features, __be16 type);
4749 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4750 				    netdev_features_t features);
4751 
4752 struct netdev_bonding_info {
4753 	ifslave	slave;
4754 	ifbond	master;
4755 };
4756 
4757 struct netdev_notifier_bonding_info {
4758 	struct netdev_notifier_info info; /* must be first */
4759 	struct netdev_bonding_info  bonding_info;
4760 };
4761 
4762 void netdev_bonding_info_change(struct net_device *dev,
4763 				struct netdev_bonding_info *bonding_info);
4764 
4765 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4766 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4767 #else
4768 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4769 				  const void *data)
4770 {
4771 }
4772 #endif
4773 
4774 static inline
4775 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4776 {
4777 	return __skb_gso_segment(skb, features, true);
4778 }
4779 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4780 
4781 static inline bool can_checksum_protocol(netdev_features_t features,
4782 					 __be16 protocol)
4783 {
4784 	if (protocol == htons(ETH_P_FCOE))
4785 		return !!(features & NETIF_F_FCOE_CRC);
4786 
4787 	/* Assume this is an IP checksum (not SCTP CRC) */
4788 
4789 	if (features & NETIF_F_HW_CSUM) {
4790 		/* Can checksum everything */
4791 		return true;
4792 	}
4793 
4794 	switch (protocol) {
4795 	case htons(ETH_P_IP):
4796 		return !!(features & NETIF_F_IP_CSUM);
4797 	case htons(ETH_P_IPV6):
4798 		return !!(features & NETIF_F_IPV6_CSUM);
4799 	default:
4800 		return false;
4801 	}
4802 }
4803 
4804 #ifdef CONFIG_BUG
4805 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4806 #else
4807 static inline void netdev_rx_csum_fault(struct net_device *dev,
4808 					struct sk_buff *skb)
4809 {
4810 }
4811 #endif
4812 /* rx skb timestamps */
4813 void net_enable_timestamp(void);
4814 void net_disable_timestamp(void);
4815 
4816 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4817 					const struct skb_shared_hwtstamps *hwtstamps,
4818 					bool cycles)
4819 {
4820 	const struct net_device_ops *ops = dev->netdev_ops;
4821 
4822 	if (ops->ndo_get_tstamp)
4823 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4824 
4825 	return hwtstamps->hwtstamp;
4826 }
4827 
4828 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4829 					      struct sk_buff *skb, struct net_device *dev,
4830 					      bool more)
4831 {
4832 	__this_cpu_write(softnet_data.xmit.more, more);
4833 	return ops->ndo_start_xmit(skb, dev);
4834 }
4835 
4836 static inline bool netdev_xmit_more(void)
4837 {
4838 	return __this_cpu_read(softnet_data.xmit.more);
4839 }
4840 
4841 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4842 					    struct netdev_queue *txq, bool more)
4843 {
4844 	const struct net_device_ops *ops = dev->netdev_ops;
4845 	netdev_tx_t rc;
4846 
4847 	rc = __netdev_start_xmit(ops, skb, dev, more);
4848 	if (rc == NETDEV_TX_OK)
4849 		txq_trans_update(txq);
4850 
4851 	return rc;
4852 }
4853 
4854 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4855 				const void *ns);
4856 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4857 				 const void *ns);
4858 
4859 extern const struct kobj_ns_type_operations net_ns_type_operations;
4860 
4861 const char *netdev_drivername(const struct net_device *dev);
4862 
4863 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4864 							  netdev_features_t f2)
4865 {
4866 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4867 		if (f1 & NETIF_F_HW_CSUM)
4868 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4869 		else
4870 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4871 	}
4872 
4873 	return f1 & f2;
4874 }
4875 
4876 static inline netdev_features_t netdev_get_wanted_features(
4877 	struct net_device *dev)
4878 {
4879 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4880 }
4881 netdev_features_t netdev_increment_features(netdev_features_t all,
4882 	netdev_features_t one, netdev_features_t mask);
4883 
4884 /* Allow TSO being used on stacked device :
4885  * Performing the GSO segmentation before last device
4886  * is a performance improvement.
4887  */
4888 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4889 							netdev_features_t mask)
4890 {
4891 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4892 }
4893 
4894 int __netdev_update_features(struct net_device *dev);
4895 void netdev_update_features(struct net_device *dev);
4896 void netdev_change_features(struct net_device *dev);
4897 
4898 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4899 					struct net_device *dev);
4900 
4901 netdev_features_t passthru_features_check(struct sk_buff *skb,
4902 					  struct net_device *dev,
4903 					  netdev_features_t features);
4904 netdev_features_t netif_skb_features(struct sk_buff *skb);
4905 
4906 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4907 {
4908 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4909 
4910 	/* check flags correspondence */
4911 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4912 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4913 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4914 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4915 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4916 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4917 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4918 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4919 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4920 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4921 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4922 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4923 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4924 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4925 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4926 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4927 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4928 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4929 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4930 
4931 	return (features & feature) == feature;
4932 }
4933 
4934 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4935 {
4936 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4937 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4938 }
4939 
4940 static inline bool netif_needs_gso(struct sk_buff *skb,
4941 				   netdev_features_t features)
4942 {
4943 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4944 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4945 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4946 }
4947 
4948 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4949 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4950 void netif_inherit_tso_max(struct net_device *to,
4951 			   const struct net_device *from);
4952 
4953 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4954 					int pulled_hlen, u16 mac_offset,
4955 					int mac_len)
4956 {
4957 	skb->protocol = protocol;
4958 	skb->encapsulation = 1;
4959 	skb_push(skb, pulled_hlen);
4960 	skb_reset_transport_header(skb);
4961 	skb->mac_header = mac_offset;
4962 	skb->network_header = skb->mac_header + mac_len;
4963 	skb->mac_len = mac_len;
4964 }
4965 
4966 static inline bool netif_is_macsec(const struct net_device *dev)
4967 {
4968 	return dev->priv_flags & IFF_MACSEC;
4969 }
4970 
4971 static inline bool netif_is_macvlan(const struct net_device *dev)
4972 {
4973 	return dev->priv_flags & IFF_MACVLAN;
4974 }
4975 
4976 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4977 {
4978 	return dev->priv_flags & IFF_MACVLAN_PORT;
4979 }
4980 
4981 static inline bool netif_is_bond_master(const struct net_device *dev)
4982 {
4983 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4984 }
4985 
4986 static inline bool netif_is_bond_slave(const struct net_device *dev)
4987 {
4988 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4989 }
4990 
4991 static inline bool netif_supports_nofcs(struct net_device *dev)
4992 {
4993 	return dev->priv_flags & IFF_SUPP_NOFCS;
4994 }
4995 
4996 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4997 {
4998 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4999 }
5000 
5001 static inline bool netif_is_l3_master(const struct net_device *dev)
5002 {
5003 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5004 }
5005 
5006 static inline bool netif_is_l3_slave(const struct net_device *dev)
5007 {
5008 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5009 }
5010 
5011 static inline bool netif_is_bridge_master(const struct net_device *dev)
5012 {
5013 	return dev->priv_flags & IFF_EBRIDGE;
5014 }
5015 
5016 static inline bool netif_is_bridge_port(const struct net_device *dev)
5017 {
5018 	return dev->priv_flags & IFF_BRIDGE_PORT;
5019 }
5020 
5021 static inline bool netif_is_ovs_master(const struct net_device *dev)
5022 {
5023 	return dev->priv_flags & IFF_OPENVSWITCH;
5024 }
5025 
5026 static inline bool netif_is_ovs_port(const struct net_device *dev)
5027 {
5028 	return dev->priv_flags & IFF_OVS_DATAPATH;
5029 }
5030 
5031 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5032 {
5033 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5034 }
5035 
5036 static inline bool netif_is_team_master(const struct net_device *dev)
5037 {
5038 	return dev->priv_flags & IFF_TEAM;
5039 }
5040 
5041 static inline bool netif_is_team_port(const struct net_device *dev)
5042 {
5043 	return dev->priv_flags & IFF_TEAM_PORT;
5044 }
5045 
5046 static inline bool netif_is_lag_master(const struct net_device *dev)
5047 {
5048 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5049 }
5050 
5051 static inline bool netif_is_lag_port(const struct net_device *dev)
5052 {
5053 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5054 }
5055 
5056 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5057 {
5058 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5059 }
5060 
5061 static inline bool netif_is_failover(const struct net_device *dev)
5062 {
5063 	return dev->priv_flags & IFF_FAILOVER;
5064 }
5065 
5066 static inline bool netif_is_failover_slave(const struct net_device *dev)
5067 {
5068 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5069 }
5070 
5071 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5072 static inline void netif_keep_dst(struct net_device *dev)
5073 {
5074 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5075 }
5076 
5077 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5078 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5079 {
5080 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5081 	return netif_is_macsec(dev);
5082 }
5083 
5084 extern struct pernet_operations __net_initdata loopback_net_ops;
5085 
5086 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5087 
5088 /* netdev_printk helpers, similar to dev_printk */
5089 
5090 static inline const char *netdev_name(const struct net_device *dev)
5091 {
5092 	if (!dev->name[0] || strchr(dev->name, '%'))
5093 		return "(unnamed net_device)";
5094 	return dev->name;
5095 }
5096 
5097 static inline bool netdev_unregistering(const struct net_device *dev)
5098 {
5099 	return dev->reg_state == NETREG_UNREGISTERING;
5100 }
5101 
5102 static inline const char *netdev_reg_state(const struct net_device *dev)
5103 {
5104 	switch (dev->reg_state) {
5105 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5106 	case NETREG_REGISTERED: return "";
5107 	case NETREG_UNREGISTERING: return " (unregistering)";
5108 	case NETREG_UNREGISTERED: return " (unregistered)";
5109 	case NETREG_RELEASED: return " (released)";
5110 	case NETREG_DUMMY: return " (dummy)";
5111 	}
5112 
5113 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5114 	return " (unknown)";
5115 }
5116 
5117 #define MODULE_ALIAS_NETDEV(device) \
5118 	MODULE_ALIAS("netdev-" device)
5119 
5120 /*
5121  * netdev_WARN() acts like dev_printk(), but with the key difference
5122  * of using a WARN/WARN_ON to get the message out, including the
5123  * file/line information and a backtrace.
5124  */
5125 #define netdev_WARN(dev, format, args...)			\
5126 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5127 	     netdev_reg_state(dev), ##args)
5128 
5129 #define netdev_WARN_ONCE(dev, format, args...)				\
5130 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5131 		  netdev_reg_state(dev), ##args)
5132 
5133 /*
5134  *	The list of packet types we will receive (as opposed to discard)
5135  *	and the routines to invoke.
5136  *
5137  *	Why 16. Because with 16 the only overlap we get on a hash of the
5138  *	low nibble of the protocol value is RARP/SNAP/X.25.
5139  *
5140  *		0800	IP
5141  *		0001	802.3
5142  *		0002	AX.25
5143  *		0004	802.2
5144  *		8035	RARP
5145  *		0005	SNAP
5146  *		0805	X.25
5147  *		0806	ARP
5148  *		8137	IPX
5149  *		0009	Localtalk
5150  *		86DD	IPv6
5151  */
5152 #define PTYPE_HASH_SIZE	(16)
5153 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5154 
5155 extern struct list_head ptype_all __read_mostly;
5156 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5157 
5158 extern struct net_device *blackhole_netdev;
5159 
5160 #endif	/* _LINUX_NETDEVICE_H */
5161