1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 57 struct sfp_bus; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* 802.15.4 specific */ 61 struct wpan_dev; 62 struct mpls_dev; 63 /* UDP Tunnel offloads */ 64 struct udp_tunnel_info; 65 struct bpf_prog; 66 struct xdp_buff; 67 68 void netdev_set_default_ethtool_ops(struct net_device *dev, 69 const struct ethtool_ops *ops); 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 /* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously; in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 89 * others are propagated to higher layers. 90 */ 91 92 /* qdisc ->enqueue() return codes. */ 93 #define NET_XMIT_SUCCESS 0x00 94 #define NET_XMIT_DROP 0x01 /* skb dropped */ 95 #define NET_XMIT_CN 0x02 /* congestion notification */ 96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 97 98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 99 * indicates that the device will soon be dropping packets, or already drops 100 * some packets of the same priority; prompting us to send less aggressively. */ 101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 103 104 /* Driver transmit return codes */ 105 #define NETDEV_TX_MASK 0xf0 106 107 enum netdev_tx { 108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 109 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 111 }; 112 typedef enum netdev_tx netdev_tx_t; 113 114 /* 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 117 */ 118 static inline bool dev_xmit_complete(int rc) 119 { 120 /* 121 * Positive cases with an skb consumed by a driver: 122 * - successful transmission (rc == NETDEV_TX_OK) 123 * - error while transmitting (rc < 0) 124 * - error while queueing to a different device (rc & NET_XMIT_MASK) 125 */ 126 if (likely(rc < NET_XMIT_MASK)) 127 return true; 128 129 return false; 130 } 131 132 /* 133 * Compute the worst-case header length according to the protocols 134 * used. 135 */ 136 137 #if defined(CONFIG_HYPERV_NET) 138 # define LL_MAX_HEADER 128 139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 140 # if defined(CONFIG_MAC80211_MESH) 141 # define LL_MAX_HEADER 128 142 # else 143 # define LL_MAX_HEADER 96 144 # endif 145 #else 146 # define LL_MAX_HEADER 32 147 #endif 148 149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 151 #define MAX_HEADER LL_MAX_HEADER 152 #else 153 #define MAX_HEADER (LL_MAX_HEADER + 48) 154 #endif 155 156 /* 157 * Old network device statistics. Fields are native words 158 * (unsigned long) so they can be read and written atomically. 159 */ 160 161 struct net_device_stats { 162 unsigned long rx_packets; 163 unsigned long tx_packets; 164 unsigned long rx_bytes; 165 unsigned long tx_bytes; 166 unsigned long rx_errors; 167 unsigned long tx_errors; 168 unsigned long rx_dropped; 169 unsigned long tx_dropped; 170 unsigned long multicast; 171 unsigned long collisions; 172 unsigned long rx_length_errors; 173 unsigned long rx_over_errors; 174 unsigned long rx_crc_errors; 175 unsigned long rx_frame_errors; 176 unsigned long rx_fifo_errors; 177 unsigned long rx_missed_errors; 178 unsigned long tx_aborted_errors; 179 unsigned long tx_carrier_errors; 180 unsigned long tx_fifo_errors; 181 unsigned long tx_heartbeat_errors; 182 unsigned long tx_window_errors; 183 unsigned long rx_compressed; 184 unsigned long tx_compressed; 185 }; 186 187 188 #include <linux/cache.h> 189 #include <linux/skbuff.h> 190 191 #ifdef CONFIG_RPS 192 #include <linux/static_key.h> 193 extern struct static_key_false rps_needed; 194 extern struct static_key_false rfs_needed; 195 #endif 196 197 struct neighbour; 198 struct neigh_parms; 199 struct sk_buff; 200 201 struct netdev_hw_addr { 202 struct list_head list; 203 unsigned char addr[MAX_ADDR_LEN]; 204 unsigned char type; 205 #define NETDEV_HW_ADDR_T_LAN 1 206 #define NETDEV_HW_ADDR_T_SAN 2 207 #define NETDEV_HW_ADDR_T_SLAVE 3 208 #define NETDEV_HW_ADDR_T_UNICAST 4 209 #define NETDEV_HW_ADDR_T_MULTICAST 5 210 bool global_use; 211 int sync_cnt; 212 int refcount; 213 int synced; 214 struct rcu_head rcu_head; 215 }; 216 217 struct netdev_hw_addr_list { 218 struct list_head list; 219 int count; 220 }; 221 222 #define netdev_hw_addr_list_count(l) ((l)->count) 223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 224 #define netdev_hw_addr_list_for_each(ha, l) \ 225 list_for_each_entry(ha, &(l)->list, list) 226 227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 229 #define netdev_for_each_uc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 231 232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 234 #define netdev_for_each_mc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 236 237 struct hh_cache { 238 unsigned int hh_len; 239 seqlock_t hh_lock; 240 241 /* cached hardware header; allow for machine alignment needs. */ 242 #define HH_DATA_MOD 16 243 #define HH_DATA_OFF(__len) \ 244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 245 #define HH_DATA_ALIGN(__len) \ 246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 248 }; 249 250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 251 * Alternative is: 252 * dev->hard_header_len ? (dev->hard_header_len + 253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 254 * 255 * We could use other alignment values, but we must maintain the 256 * relationship HH alignment <= LL alignment. 257 */ 258 #define LL_RESERVED_SPACE(dev) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 263 struct header_ops { 264 int (*create) (struct sk_buff *skb, struct net_device *dev, 265 unsigned short type, const void *daddr, 266 const void *saddr, unsigned int len); 267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 269 void (*cache_update)(struct hh_cache *hh, 270 const struct net_device *dev, 271 const unsigned char *haddr); 272 bool (*validate)(const char *ll_header, unsigned int len); 273 __be16 (*parse_protocol)(const struct sk_buff *skb); 274 }; 275 276 /* These flag bits are private to the generic network queueing 277 * layer; they may not be explicitly referenced by any other 278 * code. 279 */ 280 281 enum netdev_state_t { 282 __LINK_STATE_START, 283 __LINK_STATE_PRESENT, 284 __LINK_STATE_NOCARRIER, 285 __LINK_STATE_LINKWATCH_PENDING, 286 __LINK_STATE_DORMANT, 287 }; 288 289 290 /* 291 * This structure holds boot-time configured netdevice settings. They 292 * are then used in the device probing. 293 */ 294 struct netdev_boot_setup { 295 char name[IFNAMSIZ]; 296 struct ifmap map; 297 }; 298 #define NETDEV_BOOT_SETUP_MAX 8 299 300 int __init netdev_boot_setup(char *str); 301 302 struct gro_list { 303 struct list_head list; 304 int count; 305 }; 306 307 /* 308 * size of gro hash buckets, must less than bit number of 309 * napi_struct::gro_bitmask 310 */ 311 #define GRO_HASH_BUCKETS 8 312 313 /* 314 * Structure for NAPI scheduling similar to tasklet but with weighting 315 */ 316 struct napi_struct { 317 /* The poll_list must only be managed by the entity which 318 * changes the state of the NAPI_STATE_SCHED bit. This means 319 * whoever atomically sets that bit can add this napi_struct 320 * to the per-CPU poll_list, and whoever clears that bit 321 * can remove from the list right before clearing the bit. 322 */ 323 struct list_head poll_list; 324 325 unsigned long state; 326 int weight; 327 unsigned long gro_bitmask; 328 int (*poll)(struct napi_struct *, int); 329 #ifdef CONFIG_NETPOLL 330 int poll_owner; 331 #endif 332 struct net_device *dev; 333 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 334 struct sk_buff *skb; 335 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 336 int rx_count; /* length of rx_list */ 337 struct hrtimer timer; 338 struct list_head dev_list; 339 struct hlist_node napi_hash_node; 340 unsigned int napi_id; 341 }; 342 343 enum { 344 NAPI_STATE_SCHED, /* Poll is scheduled */ 345 NAPI_STATE_MISSED, /* reschedule a napi */ 346 NAPI_STATE_DISABLE, /* Disable pending */ 347 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 348 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 349 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 350 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 351 }; 352 353 enum { 354 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 355 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 356 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 357 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 358 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 359 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 360 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 361 }; 362 363 enum gro_result { 364 GRO_MERGED, 365 GRO_MERGED_FREE, 366 GRO_HELD, 367 GRO_NORMAL, 368 GRO_DROP, 369 GRO_CONSUMED, 370 }; 371 typedef enum gro_result gro_result_t; 372 373 /* 374 * enum rx_handler_result - Possible return values for rx_handlers. 375 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 376 * further. 377 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 378 * case skb->dev was changed by rx_handler. 379 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 380 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 381 * 382 * rx_handlers are functions called from inside __netif_receive_skb(), to do 383 * special processing of the skb, prior to delivery to protocol handlers. 384 * 385 * Currently, a net_device can only have a single rx_handler registered. Trying 386 * to register a second rx_handler will return -EBUSY. 387 * 388 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 389 * To unregister a rx_handler on a net_device, use 390 * netdev_rx_handler_unregister(). 391 * 392 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 393 * do with the skb. 394 * 395 * If the rx_handler consumed the skb in some way, it should return 396 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 397 * the skb to be delivered in some other way. 398 * 399 * If the rx_handler changed skb->dev, to divert the skb to another 400 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 401 * new device will be called if it exists. 402 * 403 * If the rx_handler decides the skb should be ignored, it should return 404 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 405 * are registered on exact device (ptype->dev == skb->dev). 406 * 407 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 408 * delivered, it should return RX_HANDLER_PASS. 409 * 410 * A device without a registered rx_handler will behave as if rx_handler 411 * returned RX_HANDLER_PASS. 412 */ 413 414 enum rx_handler_result { 415 RX_HANDLER_CONSUMED, 416 RX_HANDLER_ANOTHER, 417 RX_HANDLER_EXACT, 418 RX_HANDLER_PASS, 419 }; 420 typedef enum rx_handler_result rx_handler_result_t; 421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 422 423 void __napi_schedule(struct napi_struct *n); 424 void __napi_schedule_irqoff(struct napi_struct *n); 425 426 static inline bool napi_disable_pending(struct napi_struct *n) 427 { 428 return test_bit(NAPI_STATE_DISABLE, &n->state); 429 } 430 431 bool napi_schedule_prep(struct napi_struct *n); 432 433 /** 434 * napi_schedule - schedule NAPI poll 435 * @n: NAPI context 436 * 437 * Schedule NAPI poll routine to be called if it is not already 438 * running. 439 */ 440 static inline void napi_schedule(struct napi_struct *n) 441 { 442 if (napi_schedule_prep(n)) 443 __napi_schedule(n); 444 } 445 446 /** 447 * napi_schedule_irqoff - schedule NAPI poll 448 * @n: NAPI context 449 * 450 * Variant of napi_schedule(), assuming hard irqs are masked. 451 */ 452 static inline void napi_schedule_irqoff(struct napi_struct *n) 453 { 454 if (napi_schedule_prep(n)) 455 __napi_schedule_irqoff(n); 456 } 457 458 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 459 static inline bool napi_reschedule(struct napi_struct *napi) 460 { 461 if (napi_schedule_prep(napi)) { 462 __napi_schedule(napi); 463 return true; 464 } 465 return false; 466 } 467 468 bool napi_complete_done(struct napi_struct *n, int work_done); 469 /** 470 * napi_complete - NAPI processing complete 471 * @n: NAPI context 472 * 473 * Mark NAPI processing as complete. 474 * Consider using napi_complete_done() instead. 475 * Return false if device should avoid rearming interrupts. 476 */ 477 static inline bool napi_complete(struct napi_struct *n) 478 { 479 return napi_complete_done(n, 0); 480 } 481 482 /** 483 * napi_hash_del - remove a NAPI from global table 484 * @napi: NAPI context 485 * 486 * Warning: caller must observe RCU grace period 487 * before freeing memory containing @napi, if 488 * this function returns true. 489 * Note: core networking stack automatically calls it 490 * from netif_napi_del(). 491 * Drivers might want to call this helper to combine all 492 * the needed RCU grace periods into a single one. 493 */ 494 bool napi_hash_del(struct napi_struct *napi); 495 496 /** 497 * napi_disable - prevent NAPI from scheduling 498 * @n: NAPI context 499 * 500 * Stop NAPI from being scheduled on this context. 501 * Waits till any outstanding processing completes. 502 */ 503 void napi_disable(struct napi_struct *n); 504 505 /** 506 * napi_enable - enable NAPI scheduling 507 * @n: NAPI context 508 * 509 * Resume NAPI from being scheduled on this context. 510 * Must be paired with napi_disable. 511 */ 512 static inline void napi_enable(struct napi_struct *n) 513 { 514 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 515 smp_mb__before_atomic(); 516 clear_bit(NAPI_STATE_SCHED, &n->state); 517 clear_bit(NAPI_STATE_NPSVC, &n->state); 518 } 519 520 /** 521 * napi_synchronize - wait until NAPI is not running 522 * @n: NAPI context 523 * 524 * Wait until NAPI is done being scheduled on this context. 525 * Waits till any outstanding processing completes but 526 * does not disable future activations. 527 */ 528 static inline void napi_synchronize(const struct napi_struct *n) 529 { 530 if (IS_ENABLED(CONFIG_SMP)) 531 while (test_bit(NAPI_STATE_SCHED, &n->state)) 532 msleep(1); 533 else 534 barrier(); 535 } 536 537 /** 538 * napi_if_scheduled_mark_missed - if napi is running, set the 539 * NAPIF_STATE_MISSED 540 * @n: NAPI context 541 * 542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 543 * NAPI is scheduled. 544 **/ 545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 546 { 547 unsigned long val, new; 548 549 do { 550 val = READ_ONCE(n->state); 551 if (val & NAPIF_STATE_DISABLE) 552 return true; 553 554 if (!(val & NAPIF_STATE_SCHED)) 555 return false; 556 557 new = val | NAPIF_STATE_MISSED; 558 } while (cmpxchg(&n->state, val, new) != val); 559 560 return true; 561 } 562 563 enum netdev_queue_state_t { 564 __QUEUE_STATE_DRV_XOFF, 565 __QUEUE_STATE_STACK_XOFF, 566 __QUEUE_STATE_FROZEN, 567 }; 568 569 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 570 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 571 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 572 573 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 575 QUEUE_STATE_FROZEN) 576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 579 /* 580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 581 * netif_tx_* functions below are used to manipulate this flag. The 582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 583 * queue independently. The netif_xmit_*stopped functions below are called 584 * to check if the queue has been stopped by the driver or stack (either 585 * of the XOFF bits are set in the state). Drivers should not need to call 586 * netif_xmit*stopped functions, they should only be using netif_tx_*. 587 */ 588 589 struct netdev_queue { 590 /* 591 * read-mostly part 592 */ 593 struct net_device *dev; 594 struct Qdisc __rcu *qdisc; 595 struct Qdisc *qdisc_sleeping; 596 #ifdef CONFIG_SYSFS 597 struct kobject kobj; 598 #endif 599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 int numa_node; 601 #endif 602 unsigned long tx_maxrate; 603 /* 604 * Number of TX timeouts for this queue 605 * (/sys/class/net/DEV/Q/trans_timeout) 606 */ 607 unsigned long trans_timeout; 608 609 /* Subordinate device that the queue has been assigned to */ 610 struct net_device *sb_dev; 611 #ifdef CONFIG_XDP_SOCKETS 612 struct xdp_umem *umem; 613 #endif 614 /* 615 * write-mostly part 616 */ 617 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 618 int xmit_lock_owner; 619 /* 620 * Time (in jiffies) of last Tx 621 */ 622 unsigned long trans_start; 623 624 unsigned long state; 625 626 #ifdef CONFIG_BQL 627 struct dql dql; 628 #endif 629 } ____cacheline_aligned_in_smp; 630 631 extern int sysctl_fb_tunnels_only_for_init_net; 632 extern int sysctl_devconf_inherit_init_net; 633 634 static inline bool net_has_fallback_tunnels(const struct net *net) 635 { 636 return net == &init_net || 637 !IS_ENABLED(CONFIG_SYSCTL) || 638 !sysctl_fb_tunnels_only_for_init_net; 639 } 640 641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642 { 643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645 #else 646 return NUMA_NO_NODE; 647 #endif 648 } 649 650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651 { 652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654 #endif 655 } 656 657 #ifdef CONFIG_RPS 658 /* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662 struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[0]; 666 }; 667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669 /* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674 struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678 }; 679 #define RPS_NO_FILTER 0xffff 680 681 /* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684 struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[0]; 688 }; 689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692 /* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702 struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[0] ____cacheline_aligned_in_smp; 706 }; 707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709 #define RPS_NO_CPU 0xffff 710 711 extern u32 rps_cpu_mask; 712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716 { 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 #endif /* CONFIG_RPS */ 734 735 /* This structure contains an instance of an RX queue. */ 736 struct netdev_rx_queue { 737 #ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740 #endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_XDP_SOCKETS 745 struct xdp_umem *umem; 746 #endif 747 } ____cacheline_aligned_in_smp; 748 749 /* 750 * RX queue sysfs structures and functions. 751 */ 752 struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[0]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777 struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 780 }; 781 782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788 #endif /* CONFIG_XPS */ 789 790 #define TC_MAX_QUEUE 16 791 #define TC_BITMASK 15 792 /* HW offloaded queuing disciplines txq count and offset maps */ 793 struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796 }; 797 798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799 /* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803 struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812 }; 813 #endif 814 815 #define MAX_PHYS_ITEM_ID_LEN 32 816 817 /* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820 struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823 }; 824 825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827 { 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830 } 831 832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836 enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 TC_SETUP_ROOT_QDISC, 849 TC_SETUP_QDISC_GRED, 850 TC_SETUP_QDISC_TAPRIO, 851 TC_SETUP_FT, 852 }; 853 854 /* These structures hold the attributes of bpf state that are being passed 855 * to the netdevice through the bpf op. 856 */ 857 enum bpf_netdev_command { 858 /* Set or clear a bpf program used in the earliest stages of packet 859 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 860 * is responsible for calling bpf_prog_put on any old progs that are 861 * stored. In case of error, the callee need not release the new prog 862 * reference, but on success it takes ownership and must bpf_prog_put 863 * when it is no longer used. 864 */ 865 XDP_SETUP_PROG, 866 XDP_SETUP_PROG_HW, 867 XDP_QUERY_PROG, 868 XDP_QUERY_PROG_HW, 869 /* BPF program for offload callbacks, invoked at program load time. */ 870 BPF_OFFLOAD_MAP_ALLOC, 871 BPF_OFFLOAD_MAP_FREE, 872 XDP_SETUP_XSK_UMEM, 873 }; 874 875 struct bpf_prog_offload_ops; 876 struct netlink_ext_ack; 877 struct xdp_umem; 878 879 struct netdev_bpf { 880 enum bpf_netdev_command command; 881 union { 882 /* XDP_SETUP_PROG */ 883 struct { 884 u32 flags; 885 struct bpf_prog *prog; 886 struct netlink_ext_ack *extack; 887 }; 888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 889 struct { 890 u32 prog_id; 891 /* flags with which program was installed */ 892 u32 prog_flags; 893 }; 894 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 895 struct { 896 struct bpf_offloaded_map *offmap; 897 }; 898 /* XDP_SETUP_XSK_UMEM */ 899 struct { 900 struct xdp_umem *umem; 901 u16 queue_id; 902 } xsk; 903 }; 904 }; 905 906 /* Flags for ndo_xsk_wakeup. */ 907 #define XDP_WAKEUP_RX (1 << 0) 908 #define XDP_WAKEUP_TX (1 << 1) 909 910 #ifdef CONFIG_XFRM_OFFLOAD 911 struct xfrmdev_ops { 912 int (*xdo_dev_state_add) (struct xfrm_state *x); 913 void (*xdo_dev_state_delete) (struct xfrm_state *x); 914 void (*xdo_dev_state_free) (struct xfrm_state *x); 915 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 916 struct xfrm_state *x); 917 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 918 }; 919 #endif 920 921 struct dev_ifalias { 922 struct rcu_head rcuhead; 923 char ifalias[]; 924 }; 925 926 struct devlink; 927 struct tlsdev_ops; 928 929 struct netdev_name_node { 930 struct hlist_node hlist; 931 struct list_head list; 932 struct net_device *dev; 933 const char *name; 934 }; 935 936 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 937 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 938 939 /* 940 * This structure defines the management hooks for network devices. 941 * The following hooks can be defined; unless noted otherwise, they are 942 * optional and can be filled with a null pointer. 943 * 944 * int (*ndo_init)(struct net_device *dev); 945 * This function is called once when a network device is registered. 946 * The network device can use this for any late stage initialization 947 * or semantic validation. It can fail with an error code which will 948 * be propagated back to register_netdev. 949 * 950 * void (*ndo_uninit)(struct net_device *dev); 951 * This function is called when device is unregistered or when registration 952 * fails. It is not called if init fails. 953 * 954 * int (*ndo_open)(struct net_device *dev); 955 * This function is called when a network device transitions to the up 956 * state. 957 * 958 * int (*ndo_stop)(struct net_device *dev); 959 * This function is called when a network device transitions to the down 960 * state. 961 * 962 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 963 * struct net_device *dev); 964 * Called when a packet needs to be transmitted. 965 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 966 * the queue before that can happen; it's for obsolete devices and weird 967 * corner cases, but the stack really does a non-trivial amount 968 * of useless work if you return NETDEV_TX_BUSY. 969 * Required; cannot be NULL. 970 * 971 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 972 * struct net_device *dev 973 * netdev_features_t features); 974 * Called by core transmit path to determine if device is capable of 975 * performing offload operations on a given packet. This is to give 976 * the device an opportunity to implement any restrictions that cannot 977 * be otherwise expressed by feature flags. The check is called with 978 * the set of features that the stack has calculated and it returns 979 * those the driver believes to be appropriate. 980 * 981 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 982 * struct net_device *sb_dev); 983 * Called to decide which queue to use when device supports multiple 984 * transmit queues. 985 * 986 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 987 * This function is called to allow device receiver to make 988 * changes to configuration when multicast or promiscuous is enabled. 989 * 990 * void (*ndo_set_rx_mode)(struct net_device *dev); 991 * This function is called device changes address list filtering. 992 * If driver handles unicast address filtering, it should set 993 * IFF_UNICAST_FLT in its priv_flags. 994 * 995 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 996 * This function is called when the Media Access Control address 997 * needs to be changed. If this interface is not defined, the 998 * MAC address can not be changed. 999 * 1000 * int (*ndo_validate_addr)(struct net_device *dev); 1001 * Test if Media Access Control address is valid for the device. 1002 * 1003 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1004 * Called when a user requests an ioctl which can't be handled by 1005 * the generic interface code. If not defined ioctls return 1006 * not supported error code. 1007 * 1008 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1009 * Used to set network devices bus interface parameters. This interface 1010 * is retained for legacy reasons; new devices should use the bus 1011 * interface (PCI) for low level management. 1012 * 1013 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1014 * Called when a user wants to change the Maximum Transfer Unit 1015 * of a device. 1016 * 1017 * void (*ndo_tx_timeout)(struct net_device *dev); 1018 * Callback used when the transmitter has not made any progress 1019 * for dev->watchdog ticks. 1020 * 1021 * void (*ndo_get_stats64)(struct net_device *dev, 1022 * struct rtnl_link_stats64 *storage); 1023 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1024 * Called when a user wants to get the network device usage 1025 * statistics. Drivers must do one of the following: 1026 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1027 * rtnl_link_stats64 structure passed by the caller. 1028 * 2. Define @ndo_get_stats to update a net_device_stats structure 1029 * (which should normally be dev->stats) and return a pointer to 1030 * it. The structure may be changed asynchronously only if each 1031 * field is written atomically. 1032 * 3. Update dev->stats asynchronously and atomically, and define 1033 * neither operation. 1034 * 1035 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1036 * Return true if this device supports offload stats of this attr_id. 1037 * 1038 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1039 * void *attr_data) 1040 * Get statistics for offload operations by attr_id. Write it into the 1041 * attr_data pointer. 1042 * 1043 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1044 * If device supports VLAN filtering this function is called when a 1045 * VLAN id is registered. 1046 * 1047 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1048 * If device supports VLAN filtering this function is called when a 1049 * VLAN id is unregistered. 1050 * 1051 * void (*ndo_poll_controller)(struct net_device *dev); 1052 * 1053 * SR-IOV management functions. 1054 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1055 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1056 * u8 qos, __be16 proto); 1057 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1058 * int max_tx_rate); 1059 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1060 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1061 * int (*ndo_get_vf_config)(struct net_device *dev, 1062 * int vf, struct ifla_vf_info *ivf); 1063 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1064 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1065 * struct nlattr *port[]); 1066 * 1067 * Enable or disable the VF ability to query its RSS Redirection Table and 1068 * Hash Key. This is needed since on some devices VF share this information 1069 * with PF and querying it may introduce a theoretical security risk. 1070 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1071 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1072 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1073 * void *type_data); 1074 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1075 * This is always called from the stack with the rtnl lock held and netif 1076 * tx queues stopped. This allows the netdevice to perform queue 1077 * management safely. 1078 * 1079 * Fiber Channel over Ethernet (FCoE) offload functions. 1080 * int (*ndo_fcoe_enable)(struct net_device *dev); 1081 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1082 * so the underlying device can perform whatever needed configuration or 1083 * initialization to support acceleration of FCoE traffic. 1084 * 1085 * int (*ndo_fcoe_disable)(struct net_device *dev); 1086 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1087 * so the underlying device can perform whatever needed clean-ups to 1088 * stop supporting acceleration of FCoE traffic. 1089 * 1090 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1091 * struct scatterlist *sgl, unsigned int sgc); 1092 * Called when the FCoE Initiator wants to initialize an I/O that 1093 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1094 * perform necessary setup and returns 1 to indicate the device is set up 1095 * successfully to perform DDP on this I/O, otherwise this returns 0. 1096 * 1097 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1098 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1099 * indicated by the FC exchange id 'xid', so the underlying device can 1100 * clean up and reuse resources for later DDP requests. 1101 * 1102 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1103 * struct scatterlist *sgl, unsigned int sgc); 1104 * Called when the FCoE Target wants to initialize an I/O that 1105 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1106 * perform necessary setup and returns 1 to indicate the device is set up 1107 * successfully to perform DDP on this I/O, otherwise this returns 0. 1108 * 1109 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1110 * struct netdev_fcoe_hbainfo *hbainfo); 1111 * Called when the FCoE Protocol stack wants information on the underlying 1112 * device. This information is utilized by the FCoE protocol stack to 1113 * register attributes with Fiber Channel management service as per the 1114 * FC-GS Fabric Device Management Information(FDMI) specification. 1115 * 1116 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1117 * Called when the underlying device wants to override default World Wide 1118 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1119 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1120 * protocol stack to use. 1121 * 1122 * RFS acceleration. 1123 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1124 * u16 rxq_index, u32 flow_id); 1125 * Set hardware filter for RFS. rxq_index is the target queue index; 1126 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1127 * Return the filter ID on success, or a negative error code. 1128 * 1129 * Slave management functions (for bridge, bonding, etc). 1130 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1131 * Called to make another netdev an underling. 1132 * 1133 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1134 * Called to release previously enslaved netdev. 1135 * 1136 * Feature/offload setting functions. 1137 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1138 * netdev_features_t features); 1139 * Adjusts the requested feature flags according to device-specific 1140 * constraints, and returns the resulting flags. Must not modify 1141 * the device state. 1142 * 1143 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1144 * Called to update device configuration to new features. Passed 1145 * feature set might be less than what was returned by ndo_fix_features()). 1146 * Must return >0 or -errno if it changed dev->features itself. 1147 * 1148 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1149 * struct net_device *dev, 1150 * const unsigned char *addr, u16 vid, u16 flags, 1151 * struct netlink_ext_ack *extack); 1152 * Adds an FDB entry to dev for addr. 1153 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1154 * struct net_device *dev, 1155 * const unsigned char *addr, u16 vid) 1156 * Deletes the FDB entry from dev coresponding to addr. 1157 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1158 * struct net_device *dev, struct net_device *filter_dev, 1159 * int *idx) 1160 * Used to add FDB entries to dump requests. Implementers should add 1161 * entries to skb and update idx with the number of entries. 1162 * 1163 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1164 * u16 flags, struct netlink_ext_ack *extack) 1165 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1166 * struct net_device *dev, u32 filter_mask, 1167 * int nlflags) 1168 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1169 * u16 flags); 1170 * 1171 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1172 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1173 * which do not represent real hardware may define this to allow their 1174 * userspace components to manage their virtual carrier state. Devices 1175 * that determine carrier state from physical hardware properties (eg 1176 * network cables) or protocol-dependent mechanisms (eg 1177 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1178 * 1179 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1180 * struct netdev_phys_item_id *ppid); 1181 * Called to get ID of physical port of this device. If driver does 1182 * not implement this, it is assumed that the hw is not able to have 1183 * multiple net devices on single physical port. 1184 * 1185 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1186 * struct netdev_phys_item_id *ppid) 1187 * Called to get the parent ID of the physical port of this device. 1188 * 1189 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1190 * struct udp_tunnel_info *ti); 1191 * Called by UDP tunnel to notify a driver about the UDP port and socket 1192 * address family that a UDP tunnel is listnening to. It is called only 1193 * when a new port starts listening. The operation is protected by the 1194 * RTNL. 1195 * 1196 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1197 * struct udp_tunnel_info *ti); 1198 * Called by UDP tunnel to notify the driver about a UDP port and socket 1199 * address family that the UDP tunnel is not listening to anymore. The 1200 * operation is protected by the RTNL. 1201 * 1202 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1203 * struct net_device *dev) 1204 * Called by upper layer devices to accelerate switching or other 1205 * station functionality into hardware. 'pdev is the lowerdev 1206 * to use for the offload and 'dev' is the net device that will 1207 * back the offload. Returns a pointer to the private structure 1208 * the upper layer will maintain. 1209 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1210 * Called by upper layer device to delete the station created 1211 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1212 * the station and priv is the structure returned by the add 1213 * operation. 1214 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1215 * int queue_index, u32 maxrate); 1216 * Called when a user wants to set a max-rate limitation of specific 1217 * TX queue. 1218 * int (*ndo_get_iflink)(const struct net_device *dev); 1219 * Called to get the iflink value of this device. 1220 * void (*ndo_change_proto_down)(struct net_device *dev, 1221 * bool proto_down); 1222 * This function is used to pass protocol port error state information 1223 * to the switch driver. The switch driver can react to the proto_down 1224 * by doing a phys down on the associated switch port. 1225 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1226 * This function is used to get egress tunnel information for given skb. 1227 * This is useful for retrieving outer tunnel header parameters while 1228 * sampling packet. 1229 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1230 * This function is used to specify the headroom that the skb must 1231 * consider when allocation skb during packet reception. Setting 1232 * appropriate rx headroom value allows avoiding skb head copy on 1233 * forward. Setting a negative value resets the rx headroom to the 1234 * default value. 1235 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1236 * This function is used to set or query state related to XDP on the 1237 * netdevice and manage BPF offload. See definition of 1238 * enum bpf_netdev_command for details. 1239 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1240 * u32 flags); 1241 * This function is used to submit @n XDP packets for transmit on a 1242 * netdevice. Returns number of frames successfully transmitted, frames 1243 * that got dropped are freed/returned via xdp_return_frame(). 1244 * Returns negative number, means general error invoking ndo, meaning 1245 * no frames were xmit'ed and core-caller will free all frames. 1246 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1247 * This function is used to wake up the softirq, ksoftirqd or kthread 1248 * responsible for sending and/or receiving packets on a specific 1249 * queue id bound to an AF_XDP socket. The flags field specifies if 1250 * only RX, only Tx, or both should be woken up using the flags 1251 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1252 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1253 * Get devlink port instance associated with a given netdev. 1254 * Called with a reference on the netdevice and devlink locks only, 1255 * rtnl_lock is not held. 1256 */ 1257 struct net_device_ops { 1258 int (*ndo_init)(struct net_device *dev); 1259 void (*ndo_uninit)(struct net_device *dev); 1260 int (*ndo_open)(struct net_device *dev); 1261 int (*ndo_stop)(struct net_device *dev); 1262 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1263 struct net_device *dev); 1264 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1265 struct net_device *dev, 1266 netdev_features_t features); 1267 u16 (*ndo_select_queue)(struct net_device *dev, 1268 struct sk_buff *skb, 1269 struct net_device *sb_dev); 1270 void (*ndo_change_rx_flags)(struct net_device *dev, 1271 int flags); 1272 void (*ndo_set_rx_mode)(struct net_device *dev); 1273 int (*ndo_set_mac_address)(struct net_device *dev, 1274 void *addr); 1275 int (*ndo_validate_addr)(struct net_device *dev); 1276 int (*ndo_do_ioctl)(struct net_device *dev, 1277 struct ifreq *ifr, int cmd); 1278 int (*ndo_set_config)(struct net_device *dev, 1279 struct ifmap *map); 1280 int (*ndo_change_mtu)(struct net_device *dev, 1281 int new_mtu); 1282 int (*ndo_neigh_setup)(struct net_device *dev, 1283 struct neigh_parms *); 1284 void (*ndo_tx_timeout) (struct net_device *dev); 1285 1286 void (*ndo_get_stats64)(struct net_device *dev, 1287 struct rtnl_link_stats64 *storage); 1288 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1289 int (*ndo_get_offload_stats)(int attr_id, 1290 const struct net_device *dev, 1291 void *attr_data); 1292 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1293 1294 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1295 __be16 proto, u16 vid); 1296 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1297 __be16 proto, u16 vid); 1298 #ifdef CONFIG_NET_POLL_CONTROLLER 1299 void (*ndo_poll_controller)(struct net_device *dev); 1300 int (*ndo_netpoll_setup)(struct net_device *dev, 1301 struct netpoll_info *info); 1302 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1303 #endif 1304 int (*ndo_set_vf_mac)(struct net_device *dev, 1305 int queue, u8 *mac); 1306 int (*ndo_set_vf_vlan)(struct net_device *dev, 1307 int queue, u16 vlan, 1308 u8 qos, __be16 proto); 1309 int (*ndo_set_vf_rate)(struct net_device *dev, 1310 int vf, int min_tx_rate, 1311 int max_tx_rate); 1312 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1313 int vf, bool setting); 1314 int (*ndo_set_vf_trust)(struct net_device *dev, 1315 int vf, bool setting); 1316 int (*ndo_get_vf_config)(struct net_device *dev, 1317 int vf, 1318 struct ifla_vf_info *ivf); 1319 int (*ndo_set_vf_link_state)(struct net_device *dev, 1320 int vf, int link_state); 1321 int (*ndo_get_vf_stats)(struct net_device *dev, 1322 int vf, 1323 struct ifla_vf_stats 1324 *vf_stats); 1325 int (*ndo_set_vf_port)(struct net_device *dev, 1326 int vf, 1327 struct nlattr *port[]); 1328 int (*ndo_get_vf_port)(struct net_device *dev, 1329 int vf, struct sk_buff *skb); 1330 int (*ndo_set_vf_guid)(struct net_device *dev, 1331 int vf, u64 guid, 1332 int guid_type); 1333 int (*ndo_set_vf_rss_query_en)( 1334 struct net_device *dev, 1335 int vf, bool setting); 1336 int (*ndo_setup_tc)(struct net_device *dev, 1337 enum tc_setup_type type, 1338 void *type_data); 1339 #if IS_ENABLED(CONFIG_FCOE) 1340 int (*ndo_fcoe_enable)(struct net_device *dev); 1341 int (*ndo_fcoe_disable)(struct net_device *dev); 1342 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1343 u16 xid, 1344 struct scatterlist *sgl, 1345 unsigned int sgc); 1346 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1347 u16 xid); 1348 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1349 u16 xid, 1350 struct scatterlist *sgl, 1351 unsigned int sgc); 1352 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1353 struct netdev_fcoe_hbainfo *hbainfo); 1354 #endif 1355 1356 #if IS_ENABLED(CONFIG_LIBFCOE) 1357 #define NETDEV_FCOE_WWNN 0 1358 #define NETDEV_FCOE_WWPN 1 1359 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1360 u64 *wwn, int type); 1361 #endif 1362 1363 #ifdef CONFIG_RFS_ACCEL 1364 int (*ndo_rx_flow_steer)(struct net_device *dev, 1365 const struct sk_buff *skb, 1366 u16 rxq_index, 1367 u32 flow_id); 1368 #endif 1369 int (*ndo_add_slave)(struct net_device *dev, 1370 struct net_device *slave_dev, 1371 struct netlink_ext_ack *extack); 1372 int (*ndo_del_slave)(struct net_device *dev, 1373 struct net_device *slave_dev); 1374 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1375 netdev_features_t features); 1376 int (*ndo_set_features)(struct net_device *dev, 1377 netdev_features_t features); 1378 int (*ndo_neigh_construct)(struct net_device *dev, 1379 struct neighbour *n); 1380 void (*ndo_neigh_destroy)(struct net_device *dev, 1381 struct neighbour *n); 1382 1383 int (*ndo_fdb_add)(struct ndmsg *ndm, 1384 struct nlattr *tb[], 1385 struct net_device *dev, 1386 const unsigned char *addr, 1387 u16 vid, 1388 u16 flags, 1389 struct netlink_ext_ack *extack); 1390 int (*ndo_fdb_del)(struct ndmsg *ndm, 1391 struct nlattr *tb[], 1392 struct net_device *dev, 1393 const unsigned char *addr, 1394 u16 vid); 1395 int (*ndo_fdb_dump)(struct sk_buff *skb, 1396 struct netlink_callback *cb, 1397 struct net_device *dev, 1398 struct net_device *filter_dev, 1399 int *idx); 1400 int (*ndo_fdb_get)(struct sk_buff *skb, 1401 struct nlattr *tb[], 1402 struct net_device *dev, 1403 const unsigned char *addr, 1404 u16 vid, u32 portid, u32 seq, 1405 struct netlink_ext_ack *extack); 1406 int (*ndo_bridge_setlink)(struct net_device *dev, 1407 struct nlmsghdr *nlh, 1408 u16 flags, 1409 struct netlink_ext_ack *extack); 1410 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1411 u32 pid, u32 seq, 1412 struct net_device *dev, 1413 u32 filter_mask, 1414 int nlflags); 1415 int (*ndo_bridge_dellink)(struct net_device *dev, 1416 struct nlmsghdr *nlh, 1417 u16 flags); 1418 int (*ndo_change_carrier)(struct net_device *dev, 1419 bool new_carrier); 1420 int (*ndo_get_phys_port_id)(struct net_device *dev, 1421 struct netdev_phys_item_id *ppid); 1422 int (*ndo_get_port_parent_id)(struct net_device *dev, 1423 struct netdev_phys_item_id *ppid); 1424 int (*ndo_get_phys_port_name)(struct net_device *dev, 1425 char *name, size_t len); 1426 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1427 struct udp_tunnel_info *ti); 1428 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1429 struct udp_tunnel_info *ti); 1430 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1431 struct net_device *dev); 1432 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1433 void *priv); 1434 1435 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1436 int queue_index, 1437 u32 maxrate); 1438 int (*ndo_get_iflink)(const struct net_device *dev); 1439 int (*ndo_change_proto_down)(struct net_device *dev, 1440 bool proto_down); 1441 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1442 struct sk_buff *skb); 1443 void (*ndo_set_rx_headroom)(struct net_device *dev, 1444 int needed_headroom); 1445 int (*ndo_bpf)(struct net_device *dev, 1446 struct netdev_bpf *bpf); 1447 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1448 struct xdp_frame **xdp, 1449 u32 flags); 1450 int (*ndo_xsk_wakeup)(struct net_device *dev, 1451 u32 queue_id, u32 flags); 1452 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1453 }; 1454 1455 /** 1456 * enum net_device_priv_flags - &struct net_device priv_flags 1457 * 1458 * These are the &struct net_device, they are only set internally 1459 * by drivers and used in the kernel. These flags are invisible to 1460 * userspace; this means that the order of these flags can change 1461 * during any kernel release. 1462 * 1463 * You should have a pretty good reason to be extending these flags. 1464 * 1465 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1466 * @IFF_EBRIDGE: Ethernet bridging device 1467 * @IFF_BONDING: bonding master or slave 1468 * @IFF_ISATAP: ISATAP interface (RFC4214) 1469 * @IFF_WAN_HDLC: WAN HDLC device 1470 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1471 * release skb->dst 1472 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1473 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1474 * @IFF_MACVLAN_PORT: device used as macvlan port 1475 * @IFF_BRIDGE_PORT: device used as bridge port 1476 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1477 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1478 * @IFF_UNICAST_FLT: Supports unicast filtering 1479 * @IFF_TEAM_PORT: device used as team port 1480 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1481 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1482 * change when it's running 1483 * @IFF_MACVLAN: Macvlan device 1484 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1485 * underlying stacked devices 1486 * @IFF_L3MDEV_MASTER: device is an L3 master device 1487 * @IFF_NO_QUEUE: device can run without qdisc attached 1488 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1489 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1490 * @IFF_TEAM: device is a team device 1491 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1492 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1493 * entity (i.e. the master device for bridged veth) 1494 * @IFF_MACSEC: device is a MACsec device 1495 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1496 * @IFF_FAILOVER: device is a failover master device 1497 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1498 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1499 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1500 */ 1501 enum netdev_priv_flags { 1502 IFF_802_1Q_VLAN = 1<<0, 1503 IFF_EBRIDGE = 1<<1, 1504 IFF_BONDING = 1<<2, 1505 IFF_ISATAP = 1<<3, 1506 IFF_WAN_HDLC = 1<<4, 1507 IFF_XMIT_DST_RELEASE = 1<<5, 1508 IFF_DONT_BRIDGE = 1<<6, 1509 IFF_DISABLE_NETPOLL = 1<<7, 1510 IFF_MACVLAN_PORT = 1<<8, 1511 IFF_BRIDGE_PORT = 1<<9, 1512 IFF_OVS_DATAPATH = 1<<10, 1513 IFF_TX_SKB_SHARING = 1<<11, 1514 IFF_UNICAST_FLT = 1<<12, 1515 IFF_TEAM_PORT = 1<<13, 1516 IFF_SUPP_NOFCS = 1<<14, 1517 IFF_LIVE_ADDR_CHANGE = 1<<15, 1518 IFF_MACVLAN = 1<<16, 1519 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1520 IFF_L3MDEV_MASTER = 1<<18, 1521 IFF_NO_QUEUE = 1<<19, 1522 IFF_OPENVSWITCH = 1<<20, 1523 IFF_L3MDEV_SLAVE = 1<<21, 1524 IFF_TEAM = 1<<22, 1525 IFF_RXFH_CONFIGURED = 1<<23, 1526 IFF_PHONY_HEADROOM = 1<<24, 1527 IFF_MACSEC = 1<<25, 1528 IFF_NO_RX_HANDLER = 1<<26, 1529 IFF_FAILOVER = 1<<27, 1530 IFF_FAILOVER_SLAVE = 1<<28, 1531 IFF_L3MDEV_RX_HANDLER = 1<<29, 1532 IFF_LIVE_RENAME_OK = 1<<30, 1533 }; 1534 1535 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1536 #define IFF_EBRIDGE IFF_EBRIDGE 1537 #define IFF_BONDING IFF_BONDING 1538 #define IFF_ISATAP IFF_ISATAP 1539 #define IFF_WAN_HDLC IFF_WAN_HDLC 1540 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1541 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1542 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1543 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1544 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1545 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1546 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1547 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1548 #define IFF_TEAM_PORT IFF_TEAM_PORT 1549 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1550 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1551 #define IFF_MACVLAN IFF_MACVLAN 1552 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1553 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1554 #define IFF_NO_QUEUE IFF_NO_QUEUE 1555 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1556 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1557 #define IFF_TEAM IFF_TEAM 1558 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1559 #define IFF_MACSEC IFF_MACSEC 1560 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1561 #define IFF_FAILOVER IFF_FAILOVER 1562 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1563 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1564 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1565 1566 /** 1567 * struct net_device - The DEVICE structure. 1568 * 1569 * Actually, this whole structure is a big mistake. It mixes I/O 1570 * data with strictly "high-level" data, and it has to know about 1571 * almost every data structure used in the INET module. 1572 * 1573 * @name: This is the first field of the "visible" part of this structure 1574 * (i.e. as seen by users in the "Space.c" file). It is the name 1575 * of the interface. 1576 * 1577 * @name_node: Name hashlist node 1578 * @ifalias: SNMP alias 1579 * @mem_end: Shared memory end 1580 * @mem_start: Shared memory start 1581 * @base_addr: Device I/O address 1582 * @irq: Device IRQ number 1583 * 1584 * @state: Generic network queuing layer state, see netdev_state_t 1585 * @dev_list: The global list of network devices 1586 * @napi_list: List entry used for polling NAPI devices 1587 * @unreg_list: List entry when we are unregistering the 1588 * device; see the function unregister_netdev 1589 * @close_list: List entry used when we are closing the device 1590 * @ptype_all: Device-specific packet handlers for all protocols 1591 * @ptype_specific: Device-specific, protocol-specific packet handlers 1592 * 1593 * @adj_list: Directly linked devices, like slaves for bonding 1594 * @features: Currently active device features 1595 * @hw_features: User-changeable features 1596 * 1597 * @wanted_features: User-requested features 1598 * @vlan_features: Mask of features inheritable by VLAN devices 1599 * 1600 * @hw_enc_features: Mask of features inherited by encapsulating devices 1601 * This field indicates what encapsulation 1602 * offloads the hardware is capable of doing, 1603 * and drivers will need to set them appropriately. 1604 * 1605 * @mpls_features: Mask of features inheritable by MPLS 1606 * 1607 * @ifindex: interface index 1608 * @group: The group the device belongs to 1609 * 1610 * @stats: Statistics struct, which was left as a legacy, use 1611 * rtnl_link_stats64 instead 1612 * 1613 * @rx_dropped: Dropped packets by core network, 1614 * do not use this in drivers 1615 * @tx_dropped: Dropped packets by core network, 1616 * do not use this in drivers 1617 * @rx_nohandler: nohandler dropped packets by core network on 1618 * inactive devices, do not use this in drivers 1619 * @carrier_up_count: Number of times the carrier has been up 1620 * @carrier_down_count: Number of times the carrier has been down 1621 * 1622 * @wireless_handlers: List of functions to handle Wireless Extensions, 1623 * instead of ioctl, 1624 * see <net/iw_handler.h> for details. 1625 * @wireless_data: Instance data managed by the core of wireless extensions 1626 * 1627 * @netdev_ops: Includes several pointers to callbacks, 1628 * if one wants to override the ndo_*() functions 1629 * @ethtool_ops: Management operations 1630 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1631 * discovery handling. Necessary for e.g. 6LoWPAN. 1632 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1633 * of Layer 2 headers. 1634 * 1635 * @flags: Interface flags (a la BSD) 1636 * @priv_flags: Like 'flags' but invisible to userspace, 1637 * see if.h for the definitions 1638 * @gflags: Global flags ( kept as legacy ) 1639 * @padded: How much padding added by alloc_netdev() 1640 * @operstate: RFC2863 operstate 1641 * @link_mode: Mapping policy to operstate 1642 * @if_port: Selectable AUI, TP, ... 1643 * @dma: DMA channel 1644 * @mtu: Interface MTU value 1645 * @min_mtu: Interface Minimum MTU value 1646 * @max_mtu: Interface Maximum MTU value 1647 * @type: Interface hardware type 1648 * @hard_header_len: Maximum hardware header length. 1649 * @min_header_len: Minimum hardware header length 1650 * 1651 * @needed_headroom: Extra headroom the hardware may need, but not in all 1652 * cases can this be guaranteed 1653 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1654 * cases can this be guaranteed. Some cases also use 1655 * LL_MAX_HEADER instead to allocate the skb 1656 * 1657 * interface address info: 1658 * 1659 * @perm_addr: Permanent hw address 1660 * @addr_assign_type: Hw address assignment type 1661 * @addr_len: Hardware address length 1662 * @upper_level: Maximum depth level of upper devices. 1663 * @lower_level: Maximum depth level of lower devices. 1664 * @neigh_priv_len: Used in neigh_alloc() 1665 * @dev_id: Used to differentiate devices that share 1666 * the same link layer address 1667 * @dev_port: Used to differentiate devices that share 1668 * the same function 1669 * @addr_list_lock: XXX: need comments on this one 1670 * @uc_promisc: Counter that indicates promiscuous mode 1671 * has been enabled due to the need to listen to 1672 * additional unicast addresses in a device that 1673 * does not implement ndo_set_rx_mode() 1674 * @uc: unicast mac addresses 1675 * @mc: multicast mac addresses 1676 * @dev_addrs: list of device hw addresses 1677 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1678 * @promiscuity: Number of times the NIC is told to work in 1679 * promiscuous mode; if it becomes 0 the NIC will 1680 * exit promiscuous mode 1681 * @allmulti: Counter, enables or disables allmulticast mode 1682 * 1683 * @vlan_info: VLAN info 1684 * @dsa_ptr: dsa specific data 1685 * @tipc_ptr: TIPC specific data 1686 * @atalk_ptr: AppleTalk link 1687 * @ip_ptr: IPv4 specific data 1688 * @dn_ptr: DECnet specific data 1689 * @ip6_ptr: IPv6 specific data 1690 * @ax25_ptr: AX.25 specific data 1691 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1692 * 1693 * @dev_addr: Hw address (before bcast, 1694 * because most packets are unicast) 1695 * 1696 * @_rx: Array of RX queues 1697 * @num_rx_queues: Number of RX queues 1698 * allocated at register_netdev() time 1699 * @real_num_rx_queues: Number of RX queues currently active in device 1700 * 1701 * @rx_handler: handler for received packets 1702 * @rx_handler_data: XXX: need comments on this one 1703 * @miniq_ingress: ingress/clsact qdisc specific data for 1704 * ingress processing 1705 * @ingress_queue: XXX: need comments on this one 1706 * @broadcast: hw bcast address 1707 * 1708 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1709 * indexed by RX queue number. Assigned by driver. 1710 * This must only be set if the ndo_rx_flow_steer 1711 * operation is defined 1712 * @index_hlist: Device index hash chain 1713 * 1714 * @_tx: Array of TX queues 1715 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1716 * @real_num_tx_queues: Number of TX queues currently active in device 1717 * @qdisc: Root qdisc from userspace point of view 1718 * @tx_queue_len: Max frames per queue allowed 1719 * @tx_global_lock: XXX: need comments on this one 1720 * 1721 * @xps_maps: XXX: need comments on this one 1722 * @miniq_egress: clsact qdisc specific data for 1723 * egress processing 1724 * @watchdog_timeo: Represents the timeout that is used by 1725 * the watchdog (see dev_watchdog()) 1726 * @watchdog_timer: List of timers 1727 * 1728 * @pcpu_refcnt: Number of references to this device 1729 * @todo_list: Delayed register/unregister 1730 * @link_watch_list: XXX: need comments on this one 1731 * 1732 * @reg_state: Register/unregister state machine 1733 * @dismantle: Device is going to be freed 1734 * @rtnl_link_state: This enum represents the phases of creating 1735 * a new link 1736 * 1737 * @needs_free_netdev: Should unregister perform free_netdev? 1738 * @priv_destructor: Called from unregister 1739 * @npinfo: XXX: need comments on this one 1740 * @nd_net: Network namespace this network device is inside 1741 * 1742 * @ml_priv: Mid-layer private 1743 * @lstats: Loopback statistics 1744 * @tstats: Tunnel statistics 1745 * @dstats: Dummy statistics 1746 * @vstats: Virtual ethernet statistics 1747 * 1748 * @garp_port: GARP 1749 * @mrp_port: MRP 1750 * 1751 * @dev: Class/net/name entry 1752 * @sysfs_groups: Space for optional device, statistics and wireless 1753 * sysfs groups 1754 * 1755 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1756 * @rtnl_link_ops: Rtnl_link_ops 1757 * 1758 * @gso_max_size: Maximum size of generic segmentation offload 1759 * @gso_max_segs: Maximum number of segments that can be passed to the 1760 * NIC for GSO 1761 * 1762 * @dcbnl_ops: Data Center Bridging netlink ops 1763 * @num_tc: Number of traffic classes in the net device 1764 * @tc_to_txq: XXX: need comments on this one 1765 * @prio_tc_map: XXX: need comments on this one 1766 * 1767 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1768 * 1769 * @priomap: XXX: need comments on this one 1770 * @phydev: Physical device may attach itself 1771 * for hardware timestamping 1772 * @sfp_bus: attached &struct sfp_bus structure. 1773 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock 1774 spinlock 1775 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1776 * @qdisc_xmit_lock_key: lockdep class annotating 1777 * netdev_queue->_xmit_lock spinlock 1778 * @addr_list_lock_key: lockdep class annotating 1779 * net_device->addr_list_lock spinlock 1780 * 1781 * @proto_down: protocol port state information can be sent to the 1782 * switch driver and used to set the phys state of the 1783 * switch port. 1784 * 1785 * @wol_enabled: Wake-on-LAN is enabled 1786 * 1787 * FIXME: cleanup struct net_device such that network protocol info 1788 * moves out. 1789 */ 1790 1791 struct net_device { 1792 char name[IFNAMSIZ]; 1793 struct netdev_name_node *name_node; 1794 struct dev_ifalias __rcu *ifalias; 1795 /* 1796 * I/O specific fields 1797 * FIXME: Merge these and struct ifmap into one 1798 */ 1799 unsigned long mem_end; 1800 unsigned long mem_start; 1801 unsigned long base_addr; 1802 int irq; 1803 1804 /* 1805 * Some hardware also needs these fields (state,dev_list, 1806 * napi_list,unreg_list,close_list) but they are not 1807 * part of the usual set specified in Space.c. 1808 */ 1809 1810 unsigned long state; 1811 1812 struct list_head dev_list; 1813 struct list_head napi_list; 1814 struct list_head unreg_list; 1815 struct list_head close_list; 1816 struct list_head ptype_all; 1817 struct list_head ptype_specific; 1818 1819 struct { 1820 struct list_head upper; 1821 struct list_head lower; 1822 } adj_list; 1823 1824 netdev_features_t features; 1825 netdev_features_t hw_features; 1826 netdev_features_t wanted_features; 1827 netdev_features_t vlan_features; 1828 netdev_features_t hw_enc_features; 1829 netdev_features_t mpls_features; 1830 netdev_features_t gso_partial_features; 1831 1832 int ifindex; 1833 int group; 1834 1835 struct net_device_stats stats; 1836 1837 atomic_long_t rx_dropped; 1838 atomic_long_t tx_dropped; 1839 atomic_long_t rx_nohandler; 1840 1841 /* Stats to monitor link on/off, flapping */ 1842 atomic_t carrier_up_count; 1843 atomic_t carrier_down_count; 1844 1845 #ifdef CONFIG_WIRELESS_EXT 1846 const struct iw_handler_def *wireless_handlers; 1847 struct iw_public_data *wireless_data; 1848 #endif 1849 const struct net_device_ops *netdev_ops; 1850 const struct ethtool_ops *ethtool_ops; 1851 #ifdef CONFIG_NET_L3_MASTER_DEV 1852 const struct l3mdev_ops *l3mdev_ops; 1853 #endif 1854 #if IS_ENABLED(CONFIG_IPV6) 1855 const struct ndisc_ops *ndisc_ops; 1856 #endif 1857 1858 #ifdef CONFIG_XFRM_OFFLOAD 1859 const struct xfrmdev_ops *xfrmdev_ops; 1860 #endif 1861 1862 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1863 const struct tlsdev_ops *tlsdev_ops; 1864 #endif 1865 1866 const struct header_ops *header_ops; 1867 1868 unsigned int flags; 1869 unsigned int priv_flags; 1870 1871 unsigned short gflags; 1872 unsigned short padded; 1873 1874 unsigned char operstate; 1875 unsigned char link_mode; 1876 1877 unsigned char if_port; 1878 unsigned char dma; 1879 1880 unsigned int mtu; 1881 unsigned int min_mtu; 1882 unsigned int max_mtu; 1883 unsigned short type; 1884 unsigned short hard_header_len; 1885 unsigned char min_header_len; 1886 1887 unsigned short needed_headroom; 1888 unsigned short needed_tailroom; 1889 1890 /* Interface address info. */ 1891 unsigned char perm_addr[MAX_ADDR_LEN]; 1892 unsigned char addr_assign_type; 1893 unsigned char addr_len; 1894 unsigned char upper_level; 1895 unsigned char lower_level; 1896 unsigned short neigh_priv_len; 1897 unsigned short dev_id; 1898 unsigned short dev_port; 1899 spinlock_t addr_list_lock; 1900 unsigned char name_assign_type; 1901 bool uc_promisc; 1902 struct netdev_hw_addr_list uc; 1903 struct netdev_hw_addr_list mc; 1904 struct netdev_hw_addr_list dev_addrs; 1905 1906 #ifdef CONFIG_SYSFS 1907 struct kset *queues_kset; 1908 #endif 1909 unsigned int promiscuity; 1910 unsigned int allmulti; 1911 1912 1913 /* Protocol-specific pointers */ 1914 1915 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1916 struct vlan_info __rcu *vlan_info; 1917 #endif 1918 #if IS_ENABLED(CONFIG_NET_DSA) 1919 struct dsa_port *dsa_ptr; 1920 #endif 1921 #if IS_ENABLED(CONFIG_TIPC) 1922 struct tipc_bearer __rcu *tipc_ptr; 1923 #endif 1924 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1925 void *atalk_ptr; 1926 #endif 1927 struct in_device __rcu *ip_ptr; 1928 #if IS_ENABLED(CONFIG_DECNET) 1929 struct dn_dev __rcu *dn_ptr; 1930 #endif 1931 struct inet6_dev __rcu *ip6_ptr; 1932 #if IS_ENABLED(CONFIG_AX25) 1933 void *ax25_ptr; 1934 #endif 1935 struct wireless_dev *ieee80211_ptr; 1936 struct wpan_dev *ieee802154_ptr; 1937 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1938 struct mpls_dev __rcu *mpls_ptr; 1939 #endif 1940 1941 /* 1942 * Cache lines mostly used on receive path (including eth_type_trans()) 1943 */ 1944 /* Interface address info used in eth_type_trans() */ 1945 unsigned char *dev_addr; 1946 1947 struct netdev_rx_queue *_rx; 1948 unsigned int num_rx_queues; 1949 unsigned int real_num_rx_queues; 1950 1951 struct bpf_prog __rcu *xdp_prog; 1952 unsigned long gro_flush_timeout; 1953 rx_handler_func_t __rcu *rx_handler; 1954 void __rcu *rx_handler_data; 1955 1956 #ifdef CONFIG_NET_CLS_ACT 1957 struct mini_Qdisc __rcu *miniq_ingress; 1958 #endif 1959 struct netdev_queue __rcu *ingress_queue; 1960 #ifdef CONFIG_NETFILTER_INGRESS 1961 struct nf_hook_entries __rcu *nf_hooks_ingress; 1962 #endif 1963 1964 unsigned char broadcast[MAX_ADDR_LEN]; 1965 #ifdef CONFIG_RFS_ACCEL 1966 struct cpu_rmap *rx_cpu_rmap; 1967 #endif 1968 struct hlist_node index_hlist; 1969 1970 /* 1971 * Cache lines mostly used on transmit path 1972 */ 1973 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1974 unsigned int num_tx_queues; 1975 unsigned int real_num_tx_queues; 1976 struct Qdisc *qdisc; 1977 #ifdef CONFIG_NET_SCHED 1978 DECLARE_HASHTABLE (qdisc_hash, 4); 1979 #endif 1980 unsigned int tx_queue_len; 1981 spinlock_t tx_global_lock; 1982 int watchdog_timeo; 1983 1984 #ifdef CONFIG_XPS 1985 struct xps_dev_maps __rcu *xps_cpus_map; 1986 struct xps_dev_maps __rcu *xps_rxqs_map; 1987 #endif 1988 #ifdef CONFIG_NET_CLS_ACT 1989 struct mini_Qdisc __rcu *miniq_egress; 1990 #endif 1991 1992 /* These may be needed for future network-power-down code. */ 1993 struct timer_list watchdog_timer; 1994 1995 int __percpu *pcpu_refcnt; 1996 struct list_head todo_list; 1997 1998 struct list_head link_watch_list; 1999 2000 enum { NETREG_UNINITIALIZED=0, 2001 NETREG_REGISTERED, /* completed register_netdevice */ 2002 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2003 NETREG_UNREGISTERED, /* completed unregister todo */ 2004 NETREG_RELEASED, /* called free_netdev */ 2005 NETREG_DUMMY, /* dummy device for NAPI poll */ 2006 } reg_state:8; 2007 2008 bool dismantle; 2009 2010 enum { 2011 RTNL_LINK_INITIALIZED, 2012 RTNL_LINK_INITIALIZING, 2013 } rtnl_link_state:16; 2014 2015 bool needs_free_netdev; 2016 void (*priv_destructor)(struct net_device *dev); 2017 2018 #ifdef CONFIG_NETPOLL 2019 struct netpoll_info __rcu *npinfo; 2020 #endif 2021 2022 possible_net_t nd_net; 2023 2024 /* mid-layer private */ 2025 union { 2026 void *ml_priv; 2027 struct pcpu_lstats __percpu *lstats; 2028 struct pcpu_sw_netstats __percpu *tstats; 2029 struct pcpu_dstats __percpu *dstats; 2030 }; 2031 2032 #if IS_ENABLED(CONFIG_GARP) 2033 struct garp_port __rcu *garp_port; 2034 #endif 2035 #if IS_ENABLED(CONFIG_MRP) 2036 struct mrp_port __rcu *mrp_port; 2037 #endif 2038 2039 struct device dev; 2040 const struct attribute_group *sysfs_groups[4]; 2041 const struct attribute_group *sysfs_rx_queue_group; 2042 2043 const struct rtnl_link_ops *rtnl_link_ops; 2044 2045 /* for setting kernel sock attribute on TCP connection setup */ 2046 #define GSO_MAX_SIZE 65536 2047 unsigned int gso_max_size; 2048 #define GSO_MAX_SEGS 65535 2049 u16 gso_max_segs; 2050 2051 #ifdef CONFIG_DCB 2052 const struct dcbnl_rtnl_ops *dcbnl_ops; 2053 #endif 2054 s16 num_tc; 2055 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2056 u8 prio_tc_map[TC_BITMASK + 1]; 2057 2058 #if IS_ENABLED(CONFIG_FCOE) 2059 unsigned int fcoe_ddp_xid; 2060 #endif 2061 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2062 struct netprio_map __rcu *priomap; 2063 #endif 2064 struct phy_device *phydev; 2065 struct sfp_bus *sfp_bus; 2066 struct lock_class_key qdisc_tx_busylock_key; 2067 struct lock_class_key qdisc_running_key; 2068 struct lock_class_key qdisc_xmit_lock_key; 2069 struct lock_class_key addr_list_lock_key; 2070 bool proto_down; 2071 unsigned wol_enabled:1; 2072 }; 2073 #define to_net_dev(d) container_of(d, struct net_device, dev) 2074 2075 static inline bool netif_elide_gro(const struct net_device *dev) 2076 { 2077 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2078 return true; 2079 return false; 2080 } 2081 2082 #define NETDEV_ALIGN 32 2083 2084 static inline 2085 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2086 { 2087 return dev->prio_tc_map[prio & TC_BITMASK]; 2088 } 2089 2090 static inline 2091 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2092 { 2093 if (tc >= dev->num_tc) 2094 return -EINVAL; 2095 2096 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2097 return 0; 2098 } 2099 2100 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2101 void netdev_reset_tc(struct net_device *dev); 2102 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2103 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2104 2105 static inline 2106 int netdev_get_num_tc(struct net_device *dev) 2107 { 2108 return dev->num_tc; 2109 } 2110 2111 void netdev_unbind_sb_channel(struct net_device *dev, 2112 struct net_device *sb_dev); 2113 int netdev_bind_sb_channel_queue(struct net_device *dev, 2114 struct net_device *sb_dev, 2115 u8 tc, u16 count, u16 offset); 2116 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2117 static inline int netdev_get_sb_channel(struct net_device *dev) 2118 { 2119 return max_t(int, -dev->num_tc, 0); 2120 } 2121 2122 static inline 2123 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2124 unsigned int index) 2125 { 2126 return &dev->_tx[index]; 2127 } 2128 2129 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2130 const struct sk_buff *skb) 2131 { 2132 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2133 } 2134 2135 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2136 void (*f)(struct net_device *, 2137 struct netdev_queue *, 2138 void *), 2139 void *arg) 2140 { 2141 unsigned int i; 2142 2143 for (i = 0; i < dev->num_tx_queues; i++) 2144 f(dev, &dev->_tx[i], arg); 2145 } 2146 2147 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2148 struct net_device *sb_dev); 2149 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2150 struct sk_buff *skb, 2151 struct net_device *sb_dev); 2152 2153 /* returns the headroom that the master device needs to take in account 2154 * when forwarding to this dev 2155 */ 2156 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2157 { 2158 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2159 } 2160 2161 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2162 { 2163 if (dev->netdev_ops->ndo_set_rx_headroom) 2164 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2165 } 2166 2167 /* set the device rx headroom to the dev's default */ 2168 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2169 { 2170 netdev_set_rx_headroom(dev, -1); 2171 } 2172 2173 /* 2174 * Net namespace inlines 2175 */ 2176 static inline 2177 struct net *dev_net(const struct net_device *dev) 2178 { 2179 return read_pnet(&dev->nd_net); 2180 } 2181 2182 static inline 2183 void dev_net_set(struct net_device *dev, struct net *net) 2184 { 2185 write_pnet(&dev->nd_net, net); 2186 } 2187 2188 /** 2189 * netdev_priv - access network device private data 2190 * @dev: network device 2191 * 2192 * Get network device private data 2193 */ 2194 static inline void *netdev_priv(const struct net_device *dev) 2195 { 2196 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2197 } 2198 2199 /* Set the sysfs physical device reference for the network logical device 2200 * if set prior to registration will cause a symlink during initialization. 2201 */ 2202 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2203 2204 /* Set the sysfs device type for the network logical device to allow 2205 * fine-grained identification of different network device types. For 2206 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2207 */ 2208 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2209 2210 /* Default NAPI poll() weight 2211 * Device drivers are strongly advised to not use bigger value 2212 */ 2213 #define NAPI_POLL_WEIGHT 64 2214 2215 /** 2216 * netif_napi_add - initialize a NAPI context 2217 * @dev: network device 2218 * @napi: NAPI context 2219 * @poll: polling function 2220 * @weight: default weight 2221 * 2222 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2223 * *any* of the other NAPI-related functions. 2224 */ 2225 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2226 int (*poll)(struct napi_struct *, int), int weight); 2227 2228 /** 2229 * netif_tx_napi_add - initialize a NAPI context 2230 * @dev: network device 2231 * @napi: NAPI context 2232 * @poll: polling function 2233 * @weight: default weight 2234 * 2235 * This variant of netif_napi_add() should be used from drivers using NAPI 2236 * to exclusively poll a TX queue. 2237 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2238 */ 2239 static inline void netif_tx_napi_add(struct net_device *dev, 2240 struct napi_struct *napi, 2241 int (*poll)(struct napi_struct *, int), 2242 int weight) 2243 { 2244 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2245 netif_napi_add(dev, napi, poll, weight); 2246 } 2247 2248 /** 2249 * netif_napi_del - remove a NAPI context 2250 * @napi: NAPI context 2251 * 2252 * netif_napi_del() removes a NAPI context from the network device NAPI list 2253 */ 2254 void netif_napi_del(struct napi_struct *napi); 2255 2256 struct napi_gro_cb { 2257 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2258 void *frag0; 2259 2260 /* Length of frag0. */ 2261 unsigned int frag0_len; 2262 2263 /* This indicates where we are processing relative to skb->data. */ 2264 int data_offset; 2265 2266 /* This is non-zero if the packet cannot be merged with the new skb. */ 2267 u16 flush; 2268 2269 /* Save the IP ID here and check when we get to the transport layer */ 2270 u16 flush_id; 2271 2272 /* Number of segments aggregated. */ 2273 u16 count; 2274 2275 /* Start offset for remote checksum offload */ 2276 u16 gro_remcsum_start; 2277 2278 /* jiffies when first packet was created/queued */ 2279 unsigned long age; 2280 2281 /* Used in ipv6_gro_receive() and foo-over-udp */ 2282 u16 proto; 2283 2284 /* This is non-zero if the packet may be of the same flow. */ 2285 u8 same_flow:1; 2286 2287 /* Used in tunnel GRO receive */ 2288 u8 encap_mark:1; 2289 2290 /* GRO checksum is valid */ 2291 u8 csum_valid:1; 2292 2293 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2294 u8 csum_cnt:3; 2295 2296 /* Free the skb? */ 2297 u8 free:2; 2298 #define NAPI_GRO_FREE 1 2299 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2300 2301 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2302 u8 is_ipv6:1; 2303 2304 /* Used in GRE, set in fou/gue_gro_receive */ 2305 u8 is_fou:1; 2306 2307 /* Used to determine if flush_id can be ignored */ 2308 u8 is_atomic:1; 2309 2310 /* Number of gro_receive callbacks this packet already went through */ 2311 u8 recursion_counter:4; 2312 2313 /* 1 bit hole */ 2314 2315 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2316 __wsum csum; 2317 2318 /* used in skb_gro_receive() slow path */ 2319 struct sk_buff *last; 2320 }; 2321 2322 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2323 2324 #define GRO_RECURSION_LIMIT 15 2325 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2326 { 2327 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2328 } 2329 2330 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2331 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2332 struct list_head *head, 2333 struct sk_buff *skb) 2334 { 2335 if (unlikely(gro_recursion_inc_test(skb))) { 2336 NAPI_GRO_CB(skb)->flush |= 1; 2337 return NULL; 2338 } 2339 2340 return cb(head, skb); 2341 } 2342 2343 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2344 struct sk_buff *); 2345 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2346 struct sock *sk, 2347 struct list_head *head, 2348 struct sk_buff *skb) 2349 { 2350 if (unlikely(gro_recursion_inc_test(skb))) { 2351 NAPI_GRO_CB(skb)->flush |= 1; 2352 return NULL; 2353 } 2354 2355 return cb(sk, head, skb); 2356 } 2357 2358 struct packet_type { 2359 __be16 type; /* This is really htons(ether_type). */ 2360 bool ignore_outgoing; 2361 struct net_device *dev; /* NULL is wildcarded here */ 2362 int (*func) (struct sk_buff *, 2363 struct net_device *, 2364 struct packet_type *, 2365 struct net_device *); 2366 void (*list_func) (struct list_head *, 2367 struct packet_type *, 2368 struct net_device *); 2369 bool (*id_match)(struct packet_type *ptype, 2370 struct sock *sk); 2371 void *af_packet_priv; 2372 struct list_head list; 2373 }; 2374 2375 struct offload_callbacks { 2376 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2377 netdev_features_t features); 2378 struct sk_buff *(*gro_receive)(struct list_head *head, 2379 struct sk_buff *skb); 2380 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2381 }; 2382 2383 struct packet_offload { 2384 __be16 type; /* This is really htons(ether_type). */ 2385 u16 priority; 2386 struct offload_callbacks callbacks; 2387 struct list_head list; 2388 }; 2389 2390 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2391 struct pcpu_sw_netstats { 2392 u64 rx_packets; 2393 u64 rx_bytes; 2394 u64 tx_packets; 2395 u64 tx_bytes; 2396 struct u64_stats_sync syncp; 2397 } __aligned(4 * sizeof(u64)); 2398 2399 struct pcpu_lstats { 2400 u64_stats_t packets; 2401 u64_stats_t bytes; 2402 struct u64_stats_sync syncp; 2403 } __aligned(2 * sizeof(u64)); 2404 2405 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2406 2407 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2408 { 2409 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2410 2411 u64_stats_update_begin(&lstats->syncp); 2412 u64_stats_add(&lstats->bytes, len); 2413 u64_stats_inc(&lstats->packets); 2414 u64_stats_update_end(&lstats->syncp); 2415 } 2416 2417 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2418 ({ \ 2419 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2420 if (pcpu_stats) { \ 2421 int __cpu; \ 2422 for_each_possible_cpu(__cpu) { \ 2423 typeof(type) *stat; \ 2424 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2425 u64_stats_init(&stat->syncp); \ 2426 } \ 2427 } \ 2428 pcpu_stats; \ 2429 }) 2430 2431 #define netdev_alloc_pcpu_stats(type) \ 2432 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2433 2434 enum netdev_lag_tx_type { 2435 NETDEV_LAG_TX_TYPE_UNKNOWN, 2436 NETDEV_LAG_TX_TYPE_RANDOM, 2437 NETDEV_LAG_TX_TYPE_BROADCAST, 2438 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2439 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2440 NETDEV_LAG_TX_TYPE_HASH, 2441 }; 2442 2443 enum netdev_lag_hash { 2444 NETDEV_LAG_HASH_NONE, 2445 NETDEV_LAG_HASH_L2, 2446 NETDEV_LAG_HASH_L34, 2447 NETDEV_LAG_HASH_L23, 2448 NETDEV_LAG_HASH_E23, 2449 NETDEV_LAG_HASH_E34, 2450 NETDEV_LAG_HASH_UNKNOWN, 2451 }; 2452 2453 struct netdev_lag_upper_info { 2454 enum netdev_lag_tx_type tx_type; 2455 enum netdev_lag_hash hash_type; 2456 }; 2457 2458 struct netdev_lag_lower_state_info { 2459 u8 link_up : 1, 2460 tx_enabled : 1; 2461 }; 2462 2463 #include <linux/notifier.h> 2464 2465 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2466 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2467 * adding new types. 2468 */ 2469 enum netdev_cmd { 2470 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2471 NETDEV_DOWN, 2472 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2473 detected a hardware crash and restarted 2474 - we can use this eg to kick tcp sessions 2475 once done */ 2476 NETDEV_CHANGE, /* Notify device state change */ 2477 NETDEV_REGISTER, 2478 NETDEV_UNREGISTER, 2479 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2480 NETDEV_CHANGEADDR, /* notify after the address change */ 2481 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2482 NETDEV_GOING_DOWN, 2483 NETDEV_CHANGENAME, 2484 NETDEV_FEAT_CHANGE, 2485 NETDEV_BONDING_FAILOVER, 2486 NETDEV_PRE_UP, 2487 NETDEV_PRE_TYPE_CHANGE, 2488 NETDEV_POST_TYPE_CHANGE, 2489 NETDEV_POST_INIT, 2490 NETDEV_RELEASE, 2491 NETDEV_NOTIFY_PEERS, 2492 NETDEV_JOIN, 2493 NETDEV_CHANGEUPPER, 2494 NETDEV_RESEND_IGMP, 2495 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2496 NETDEV_CHANGEINFODATA, 2497 NETDEV_BONDING_INFO, 2498 NETDEV_PRECHANGEUPPER, 2499 NETDEV_CHANGELOWERSTATE, 2500 NETDEV_UDP_TUNNEL_PUSH_INFO, 2501 NETDEV_UDP_TUNNEL_DROP_INFO, 2502 NETDEV_CHANGE_TX_QUEUE_LEN, 2503 NETDEV_CVLAN_FILTER_PUSH_INFO, 2504 NETDEV_CVLAN_FILTER_DROP_INFO, 2505 NETDEV_SVLAN_FILTER_PUSH_INFO, 2506 NETDEV_SVLAN_FILTER_DROP_INFO, 2507 }; 2508 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2509 2510 int register_netdevice_notifier(struct notifier_block *nb); 2511 int unregister_netdevice_notifier(struct notifier_block *nb); 2512 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2513 int unregister_netdevice_notifier_net(struct net *net, 2514 struct notifier_block *nb); 2515 2516 struct netdev_notifier_info { 2517 struct net_device *dev; 2518 struct netlink_ext_ack *extack; 2519 }; 2520 2521 struct netdev_notifier_info_ext { 2522 struct netdev_notifier_info info; /* must be first */ 2523 union { 2524 u32 mtu; 2525 } ext; 2526 }; 2527 2528 struct netdev_notifier_change_info { 2529 struct netdev_notifier_info info; /* must be first */ 2530 unsigned int flags_changed; 2531 }; 2532 2533 struct netdev_notifier_changeupper_info { 2534 struct netdev_notifier_info info; /* must be first */ 2535 struct net_device *upper_dev; /* new upper dev */ 2536 bool master; /* is upper dev master */ 2537 bool linking; /* is the notification for link or unlink */ 2538 void *upper_info; /* upper dev info */ 2539 }; 2540 2541 struct netdev_notifier_changelowerstate_info { 2542 struct netdev_notifier_info info; /* must be first */ 2543 void *lower_state_info; /* is lower dev state */ 2544 }; 2545 2546 struct netdev_notifier_pre_changeaddr_info { 2547 struct netdev_notifier_info info; /* must be first */ 2548 const unsigned char *dev_addr; 2549 }; 2550 2551 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2552 struct net_device *dev) 2553 { 2554 info->dev = dev; 2555 info->extack = NULL; 2556 } 2557 2558 static inline struct net_device * 2559 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2560 { 2561 return info->dev; 2562 } 2563 2564 static inline struct netlink_ext_ack * 2565 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2566 { 2567 return info->extack; 2568 } 2569 2570 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2571 2572 2573 extern rwlock_t dev_base_lock; /* Device list lock */ 2574 2575 #define for_each_netdev(net, d) \ 2576 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2577 #define for_each_netdev_reverse(net, d) \ 2578 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2579 #define for_each_netdev_rcu(net, d) \ 2580 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2581 #define for_each_netdev_safe(net, d, n) \ 2582 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2583 #define for_each_netdev_continue(net, d) \ 2584 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2585 #define for_each_netdev_continue_reverse(net, d) \ 2586 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2587 dev_list) 2588 #define for_each_netdev_continue_rcu(net, d) \ 2589 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2590 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2591 for_each_netdev_rcu(&init_net, slave) \ 2592 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2593 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2594 2595 static inline struct net_device *next_net_device(struct net_device *dev) 2596 { 2597 struct list_head *lh; 2598 struct net *net; 2599 2600 net = dev_net(dev); 2601 lh = dev->dev_list.next; 2602 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2603 } 2604 2605 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2606 { 2607 struct list_head *lh; 2608 struct net *net; 2609 2610 net = dev_net(dev); 2611 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2612 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2613 } 2614 2615 static inline struct net_device *first_net_device(struct net *net) 2616 { 2617 return list_empty(&net->dev_base_head) ? NULL : 2618 net_device_entry(net->dev_base_head.next); 2619 } 2620 2621 static inline struct net_device *first_net_device_rcu(struct net *net) 2622 { 2623 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2624 2625 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2626 } 2627 2628 int netdev_boot_setup_check(struct net_device *dev); 2629 unsigned long netdev_boot_base(const char *prefix, int unit); 2630 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2631 const char *hwaddr); 2632 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2633 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2634 void dev_add_pack(struct packet_type *pt); 2635 void dev_remove_pack(struct packet_type *pt); 2636 void __dev_remove_pack(struct packet_type *pt); 2637 void dev_add_offload(struct packet_offload *po); 2638 void dev_remove_offload(struct packet_offload *po); 2639 2640 int dev_get_iflink(const struct net_device *dev); 2641 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2642 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2643 unsigned short mask); 2644 struct net_device *dev_get_by_name(struct net *net, const char *name); 2645 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2646 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2647 int dev_alloc_name(struct net_device *dev, const char *name); 2648 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2649 void dev_close(struct net_device *dev); 2650 void dev_close_many(struct list_head *head, bool unlink); 2651 void dev_disable_lro(struct net_device *dev); 2652 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2653 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2654 struct net_device *sb_dev); 2655 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2656 struct net_device *sb_dev); 2657 int dev_queue_xmit(struct sk_buff *skb); 2658 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2659 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2660 int register_netdevice(struct net_device *dev); 2661 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2662 void unregister_netdevice_many(struct list_head *head); 2663 static inline void unregister_netdevice(struct net_device *dev) 2664 { 2665 unregister_netdevice_queue(dev, NULL); 2666 } 2667 2668 int netdev_refcnt_read(const struct net_device *dev); 2669 void free_netdev(struct net_device *dev); 2670 void netdev_freemem(struct net_device *dev); 2671 void synchronize_net(void); 2672 int init_dummy_netdev(struct net_device *dev); 2673 2674 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2675 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2676 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2677 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2678 int netdev_get_name(struct net *net, char *name, int ifindex); 2679 int dev_restart(struct net_device *dev); 2680 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2681 2682 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2683 { 2684 return NAPI_GRO_CB(skb)->data_offset; 2685 } 2686 2687 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2688 { 2689 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2690 } 2691 2692 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2693 { 2694 NAPI_GRO_CB(skb)->data_offset += len; 2695 } 2696 2697 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2698 unsigned int offset) 2699 { 2700 return NAPI_GRO_CB(skb)->frag0 + offset; 2701 } 2702 2703 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2704 { 2705 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2706 } 2707 2708 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2709 { 2710 NAPI_GRO_CB(skb)->frag0 = NULL; 2711 NAPI_GRO_CB(skb)->frag0_len = 0; 2712 } 2713 2714 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2715 unsigned int offset) 2716 { 2717 if (!pskb_may_pull(skb, hlen)) 2718 return NULL; 2719 2720 skb_gro_frag0_invalidate(skb); 2721 return skb->data + offset; 2722 } 2723 2724 static inline void *skb_gro_network_header(struct sk_buff *skb) 2725 { 2726 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2727 skb_network_offset(skb); 2728 } 2729 2730 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2731 const void *start, unsigned int len) 2732 { 2733 if (NAPI_GRO_CB(skb)->csum_valid) 2734 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2735 csum_partial(start, len, 0)); 2736 } 2737 2738 /* GRO checksum functions. These are logical equivalents of the normal 2739 * checksum functions (in skbuff.h) except that they operate on the GRO 2740 * offsets and fields in sk_buff. 2741 */ 2742 2743 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2744 2745 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2746 { 2747 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2748 } 2749 2750 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2751 bool zero_okay, 2752 __sum16 check) 2753 { 2754 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2755 skb_checksum_start_offset(skb) < 2756 skb_gro_offset(skb)) && 2757 !skb_at_gro_remcsum_start(skb) && 2758 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2759 (!zero_okay || check)); 2760 } 2761 2762 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2763 __wsum psum) 2764 { 2765 if (NAPI_GRO_CB(skb)->csum_valid && 2766 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2767 return 0; 2768 2769 NAPI_GRO_CB(skb)->csum = psum; 2770 2771 return __skb_gro_checksum_complete(skb); 2772 } 2773 2774 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2775 { 2776 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2777 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2778 NAPI_GRO_CB(skb)->csum_cnt--; 2779 } else { 2780 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2781 * verified a new top level checksum or an encapsulated one 2782 * during GRO. This saves work if we fallback to normal path. 2783 */ 2784 __skb_incr_checksum_unnecessary(skb); 2785 } 2786 } 2787 2788 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2789 compute_pseudo) \ 2790 ({ \ 2791 __sum16 __ret = 0; \ 2792 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2793 __ret = __skb_gro_checksum_validate_complete(skb, \ 2794 compute_pseudo(skb, proto)); \ 2795 if (!__ret) \ 2796 skb_gro_incr_csum_unnecessary(skb); \ 2797 __ret; \ 2798 }) 2799 2800 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2801 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2802 2803 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2804 compute_pseudo) \ 2805 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2806 2807 #define skb_gro_checksum_simple_validate(skb) \ 2808 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2809 2810 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2811 { 2812 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2813 !NAPI_GRO_CB(skb)->csum_valid); 2814 } 2815 2816 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2817 __sum16 check, __wsum pseudo) 2818 { 2819 NAPI_GRO_CB(skb)->csum = ~pseudo; 2820 NAPI_GRO_CB(skb)->csum_valid = 1; 2821 } 2822 2823 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2824 do { \ 2825 if (__skb_gro_checksum_convert_check(skb)) \ 2826 __skb_gro_checksum_convert(skb, check, \ 2827 compute_pseudo(skb, proto)); \ 2828 } while (0) 2829 2830 struct gro_remcsum { 2831 int offset; 2832 __wsum delta; 2833 }; 2834 2835 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2836 { 2837 grc->offset = 0; 2838 grc->delta = 0; 2839 } 2840 2841 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2842 unsigned int off, size_t hdrlen, 2843 int start, int offset, 2844 struct gro_remcsum *grc, 2845 bool nopartial) 2846 { 2847 __wsum delta; 2848 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2849 2850 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2851 2852 if (!nopartial) { 2853 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2854 return ptr; 2855 } 2856 2857 ptr = skb_gro_header_fast(skb, off); 2858 if (skb_gro_header_hard(skb, off + plen)) { 2859 ptr = skb_gro_header_slow(skb, off + plen, off); 2860 if (!ptr) 2861 return NULL; 2862 } 2863 2864 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2865 start, offset); 2866 2867 /* Adjust skb->csum since we changed the packet */ 2868 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2869 2870 grc->offset = off + hdrlen + offset; 2871 grc->delta = delta; 2872 2873 return ptr; 2874 } 2875 2876 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2877 struct gro_remcsum *grc) 2878 { 2879 void *ptr; 2880 size_t plen = grc->offset + sizeof(u16); 2881 2882 if (!grc->delta) 2883 return; 2884 2885 ptr = skb_gro_header_fast(skb, grc->offset); 2886 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2887 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2888 if (!ptr) 2889 return; 2890 } 2891 2892 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2893 } 2894 2895 #ifdef CONFIG_XFRM_OFFLOAD 2896 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2897 { 2898 if (PTR_ERR(pp) != -EINPROGRESS) 2899 NAPI_GRO_CB(skb)->flush |= flush; 2900 } 2901 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2902 struct sk_buff *pp, 2903 int flush, 2904 struct gro_remcsum *grc) 2905 { 2906 if (PTR_ERR(pp) != -EINPROGRESS) { 2907 NAPI_GRO_CB(skb)->flush |= flush; 2908 skb_gro_remcsum_cleanup(skb, grc); 2909 skb->remcsum_offload = 0; 2910 } 2911 } 2912 #else 2913 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2914 { 2915 NAPI_GRO_CB(skb)->flush |= flush; 2916 } 2917 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2918 struct sk_buff *pp, 2919 int flush, 2920 struct gro_remcsum *grc) 2921 { 2922 NAPI_GRO_CB(skb)->flush |= flush; 2923 skb_gro_remcsum_cleanup(skb, grc); 2924 skb->remcsum_offload = 0; 2925 } 2926 #endif 2927 2928 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2929 unsigned short type, 2930 const void *daddr, const void *saddr, 2931 unsigned int len) 2932 { 2933 if (!dev->header_ops || !dev->header_ops->create) 2934 return 0; 2935 2936 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2937 } 2938 2939 static inline int dev_parse_header(const struct sk_buff *skb, 2940 unsigned char *haddr) 2941 { 2942 const struct net_device *dev = skb->dev; 2943 2944 if (!dev->header_ops || !dev->header_ops->parse) 2945 return 0; 2946 return dev->header_ops->parse(skb, haddr); 2947 } 2948 2949 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2950 { 2951 const struct net_device *dev = skb->dev; 2952 2953 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2954 return 0; 2955 return dev->header_ops->parse_protocol(skb); 2956 } 2957 2958 /* ll_header must have at least hard_header_len allocated */ 2959 static inline bool dev_validate_header(const struct net_device *dev, 2960 char *ll_header, int len) 2961 { 2962 if (likely(len >= dev->hard_header_len)) 2963 return true; 2964 if (len < dev->min_header_len) 2965 return false; 2966 2967 if (capable(CAP_SYS_RAWIO)) { 2968 memset(ll_header + len, 0, dev->hard_header_len - len); 2969 return true; 2970 } 2971 2972 if (dev->header_ops && dev->header_ops->validate) 2973 return dev->header_ops->validate(ll_header, len); 2974 2975 return false; 2976 } 2977 2978 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2979 int len, int size); 2980 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2981 static inline int unregister_gifconf(unsigned int family) 2982 { 2983 return register_gifconf(family, NULL); 2984 } 2985 2986 #ifdef CONFIG_NET_FLOW_LIMIT 2987 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2988 struct sd_flow_limit { 2989 u64 count; 2990 unsigned int num_buckets; 2991 unsigned int history_head; 2992 u16 history[FLOW_LIMIT_HISTORY]; 2993 u8 buckets[]; 2994 }; 2995 2996 extern int netdev_flow_limit_table_len; 2997 #endif /* CONFIG_NET_FLOW_LIMIT */ 2998 2999 /* 3000 * Incoming packets are placed on per-CPU queues 3001 */ 3002 struct softnet_data { 3003 struct list_head poll_list; 3004 struct sk_buff_head process_queue; 3005 3006 /* stats */ 3007 unsigned int processed; 3008 unsigned int time_squeeze; 3009 unsigned int received_rps; 3010 #ifdef CONFIG_RPS 3011 struct softnet_data *rps_ipi_list; 3012 #endif 3013 #ifdef CONFIG_NET_FLOW_LIMIT 3014 struct sd_flow_limit __rcu *flow_limit; 3015 #endif 3016 struct Qdisc *output_queue; 3017 struct Qdisc **output_queue_tailp; 3018 struct sk_buff *completion_queue; 3019 #ifdef CONFIG_XFRM_OFFLOAD 3020 struct sk_buff_head xfrm_backlog; 3021 #endif 3022 /* written and read only by owning cpu: */ 3023 struct { 3024 u16 recursion; 3025 u8 more; 3026 } xmit; 3027 #ifdef CONFIG_RPS 3028 /* input_queue_head should be written by cpu owning this struct, 3029 * and only read by other cpus. Worth using a cache line. 3030 */ 3031 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3032 3033 /* Elements below can be accessed between CPUs for RPS/RFS */ 3034 call_single_data_t csd ____cacheline_aligned_in_smp; 3035 struct softnet_data *rps_ipi_next; 3036 unsigned int cpu; 3037 unsigned int input_queue_tail; 3038 #endif 3039 unsigned int dropped; 3040 struct sk_buff_head input_pkt_queue; 3041 struct napi_struct backlog; 3042 3043 }; 3044 3045 static inline void input_queue_head_incr(struct softnet_data *sd) 3046 { 3047 #ifdef CONFIG_RPS 3048 sd->input_queue_head++; 3049 #endif 3050 } 3051 3052 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3053 unsigned int *qtail) 3054 { 3055 #ifdef CONFIG_RPS 3056 *qtail = ++sd->input_queue_tail; 3057 #endif 3058 } 3059 3060 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3061 3062 static inline int dev_recursion_level(void) 3063 { 3064 return this_cpu_read(softnet_data.xmit.recursion); 3065 } 3066 3067 #define XMIT_RECURSION_LIMIT 10 3068 static inline bool dev_xmit_recursion(void) 3069 { 3070 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3071 XMIT_RECURSION_LIMIT); 3072 } 3073 3074 static inline void dev_xmit_recursion_inc(void) 3075 { 3076 __this_cpu_inc(softnet_data.xmit.recursion); 3077 } 3078 3079 static inline void dev_xmit_recursion_dec(void) 3080 { 3081 __this_cpu_dec(softnet_data.xmit.recursion); 3082 } 3083 3084 void __netif_schedule(struct Qdisc *q); 3085 void netif_schedule_queue(struct netdev_queue *txq); 3086 3087 static inline void netif_tx_schedule_all(struct net_device *dev) 3088 { 3089 unsigned int i; 3090 3091 for (i = 0; i < dev->num_tx_queues; i++) 3092 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3093 } 3094 3095 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3096 { 3097 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3098 } 3099 3100 /** 3101 * netif_start_queue - allow transmit 3102 * @dev: network device 3103 * 3104 * Allow upper layers to call the device hard_start_xmit routine. 3105 */ 3106 static inline void netif_start_queue(struct net_device *dev) 3107 { 3108 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3109 } 3110 3111 static inline void netif_tx_start_all_queues(struct net_device *dev) 3112 { 3113 unsigned int i; 3114 3115 for (i = 0; i < dev->num_tx_queues; i++) { 3116 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3117 netif_tx_start_queue(txq); 3118 } 3119 } 3120 3121 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3122 3123 /** 3124 * netif_wake_queue - restart transmit 3125 * @dev: network device 3126 * 3127 * Allow upper layers to call the device hard_start_xmit routine. 3128 * Used for flow control when transmit resources are available. 3129 */ 3130 static inline void netif_wake_queue(struct net_device *dev) 3131 { 3132 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3133 } 3134 3135 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3136 { 3137 unsigned int i; 3138 3139 for (i = 0; i < dev->num_tx_queues; i++) { 3140 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3141 netif_tx_wake_queue(txq); 3142 } 3143 } 3144 3145 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3146 { 3147 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3148 } 3149 3150 /** 3151 * netif_stop_queue - stop transmitted packets 3152 * @dev: network device 3153 * 3154 * Stop upper layers calling the device hard_start_xmit routine. 3155 * Used for flow control when transmit resources are unavailable. 3156 */ 3157 static inline void netif_stop_queue(struct net_device *dev) 3158 { 3159 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3160 } 3161 3162 void netif_tx_stop_all_queues(struct net_device *dev); 3163 void netdev_update_lockdep_key(struct net_device *dev); 3164 3165 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3166 { 3167 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3168 } 3169 3170 /** 3171 * netif_queue_stopped - test if transmit queue is flowblocked 3172 * @dev: network device 3173 * 3174 * Test if transmit queue on device is currently unable to send. 3175 */ 3176 static inline bool netif_queue_stopped(const struct net_device *dev) 3177 { 3178 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3179 } 3180 3181 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3182 { 3183 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3184 } 3185 3186 static inline bool 3187 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3188 { 3189 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3190 } 3191 3192 static inline bool 3193 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3194 { 3195 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3196 } 3197 3198 /** 3199 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3200 * @dev_queue: pointer to transmit queue 3201 * 3202 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3203 * to give appropriate hint to the CPU. 3204 */ 3205 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3206 { 3207 #ifdef CONFIG_BQL 3208 prefetchw(&dev_queue->dql.num_queued); 3209 #endif 3210 } 3211 3212 /** 3213 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3214 * @dev_queue: pointer to transmit queue 3215 * 3216 * BQL enabled drivers might use this helper in their TX completion path, 3217 * to give appropriate hint to the CPU. 3218 */ 3219 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3220 { 3221 #ifdef CONFIG_BQL 3222 prefetchw(&dev_queue->dql.limit); 3223 #endif 3224 } 3225 3226 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3227 unsigned int bytes) 3228 { 3229 #ifdef CONFIG_BQL 3230 dql_queued(&dev_queue->dql, bytes); 3231 3232 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3233 return; 3234 3235 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3236 3237 /* 3238 * The XOFF flag must be set before checking the dql_avail below, 3239 * because in netdev_tx_completed_queue we update the dql_completed 3240 * before checking the XOFF flag. 3241 */ 3242 smp_mb(); 3243 3244 /* check again in case another CPU has just made room avail */ 3245 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3246 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3247 #endif 3248 } 3249 3250 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3251 * that they should not test BQL status themselves. 3252 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3253 * skb of a batch. 3254 * Returns true if the doorbell must be used to kick the NIC. 3255 */ 3256 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3257 unsigned int bytes, 3258 bool xmit_more) 3259 { 3260 if (xmit_more) { 3261 #ifdef CONFIG_BQL 3262 dql_queued(&dev_queue->dql, bytes); 3263 #endif 3264 return netif_tx_queue_stopped(dev_queue); 3265 } 3266 netdev_tx_sent_queue(dev_queue, bytes); 3267 return true; 3268 } 3269 3270 /** 3271 * netdev_sent_queue - report the number of bytes queued to hardware 3272 * @dev: network device 3273 * @bytes: number of bytes queued to the hardware device queue 3274 * 3275 * Report the number of bytes queued for sending/completion to the network 3276 * device hardware queue. @bytes should be a good approximation and should 3277 * exactly match netdev_completed_queue() @bytes 3278 */ 3279 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3280 { 3281 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3282 } 3283 3284 static inline bool __netdev_sent_queue(struct net_device *dev, 3285 unsigned int bytes, 3286 bool xmit_more) 3287 { 3288 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3289 xmit_more); 3290 } 3291 3292 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3293 unsigned int pkts, unsigned int bytes) 3294 { 3295 #ifdef CONFIG_BQL 3296 if (unlikely(!bytes)) 3297 return; 3298 3299 dql_completed(&dev_queue->dql, bytes); 3300 3301 /* 3302 * Without the memory barrier there is a small possiblity that 3303 * netdev_tx_sent_queue will miss the update and cause the queue to 3304 * be stopped forever 3305 */ 3306 smp_mb(); 3307 3308 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3309 return; 3310 3311 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3312 netif_schedule_queue(dev_queue); 3313 #endif 3314 } 3315 3316 /** 3317 * netdev_completed_queue - report bytes and packets completed by device 3318 * @dev: network device 3319 * @pkts: actual number of packets sent over the medium 3320 * @bytes: actual number of bytes sent over the medium 3321 * 3322 * Report the number of bytes and packets transmitted by the network device 3323 * hardware queue over the physical medium, @bytes must exactly match the 3324 * @bytes amount passed to netdev_sent_queue() 3325 */ 3326 static inline void netdev_completed_queue(struct net_device *dev, 3327 unsigned int pkts, unsigned int bytes) 3328 { 3329 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3330 } 3331 3332 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3333 { 3334 #ifdef CONFIG_BQL 3335 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3336 dql_reset(&q->dql); 3337 #endif 3338 } 3339 3340 /** 3341 * netdev_reset_queue - reset the packets and bytes count of a network device 3342 * @dev_queue: network device 3343 * 3344 * Reset the bytes and packet count of a network device and clear the 3345 * software flow control OFF bit for this network device 3346 */ 3347 static inline void netdev_reset_queue(struct net_device *dev_queue) 3348 { 3349 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3350 } 3351 3352 /** 3353 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3354 * @dev: network device 3355 * @queue_index: given tx queue index 3356 * 3357 * Returns 0 if given tx queue index >= number of device tx queues, 3358 * otherwise returns the originally passed tx queue index. 3359 */ 3360 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3361 { 3362 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3363 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3364 dev->name, queue_index, 3365 dev->real_num_tx_queues); 3366 return 0; 3367 } 3368 3369 return queue_index; 3370 } 3371 3372 /** 3373 * netif_running - test if up 3374 * @dev: network device 3375 * 3376 * Test if the device has been brought up. 3377 */ 3378 static inline bool netif_running(const struct net_device *dev) 3379 { 3380 return test_bit(__LINK_STATE_START, &dev->state); 3381 } 3382 3383 /* 3384 * Routines to manage the subqueues on a device. We only need start, 3385 * stop, and a check if it's stopped. All other device management is 3386 * done at the overall netdevice level. 3387 * Also test the device if we're multiqueue. 3388 */ 3389 3390 /** 3391 * netif_start_subqueue - allow sending packets on subqueue 3392 * @dev: network device 3393 * @queue_index: sub queue index 3394 * 3395 * Start individual transmit queue of a device with multiple transmit queues. 3396 */ 3397 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3398 { 3399 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3400 3401 netif_tx_start_queue(txq); 3402 } 3403 3404 /** 3405 * netif_stop_subqueue - stop sending packets on subqueue 3406 * @dev: network device 3407 * @queue_index: sub queue index 3408 * 3409 * Stop individual transmit queue of a device with multiple transmit queues. 3410 */ 3411 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3412 { 3413 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3414 netif_tx_stop_queue(txq); 3415 } 3416 3417 /** 3418 * netif_subqueue_stopped - test status of subqueue 3419 * @dev: network device 3420 * @queue_index: sub queue index 3421 * 3422 * Check individual transmit queue of a device with multiple transmit queues. 3423 */ 3424 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3425 u16 queue_index) 3426 { 3427 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3428 3429 return netif_tx_queue_stopped(txq); 3430 } 3431 3432 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3433 struct sk_buff *skb) 3434 { 3435 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3436 } 3437 3438 /** 3439 * netif_wake_subqueue - allow sending packets on subqueue 3440 * @dev: network device 3441 * @queue_index: sub queue index 3442 * 3443 * Resume individual transmit queue of a device with multiple transmit queues. 3444 */ 3445 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3446 { 3447 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3448 3449 netif_tx_wake_queue(txq); 3450 } 3451 3452 #ifdef CONFIG_XPS 3453 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3454 u16 index); 3455 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3456 u16 index, bool is_rxqs_map); 3457 3458 /** 3459 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3460 * @j: CPU/Rx queue index 3461 * @mask: bitmask of all cpus/rx queues 3462 * @nr_bits: number of bits in the bitmask 3463 * 3464 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3465 */ 3466 static inline bool netif_attr_test_mask(unsigned long j, 3467 const unsigned long *mask, 3468 unsigned int nr_bits) 3469 { 3470 cpu_max_bits_warn(j, nr_bits); 3471 return test_bit(j, mask); 3472 } 3473 3474 /** 3475 * netif_attr_test_online - Test for online CPU/Rx queue 3476 * @j: CPU/Rx queue index 3477 * @online_mask: bitmask for CPUs/Rx queues that are online 3478 * @nr_bits: number of bits in the bitmask 3479 * 3480 * Returns true if a CPU/Rx queue is online. 3481 */ 3482 static inline bool netif_attr_test_online(unsigned long j, 3483 const unsigned long *online_mask, 3484 unsigned int nr_bits) 3485 { 3486 cpu_max_bits_warn(j, nr_bits); 3487 3488 if (online_mask) 3489 return test_bit(j, online_mask); 3490 3491 return (j < nr_bits); 3492 } 3493 3494 /** 3495 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3496 * @n: CPU/Rx queue index 3497 * @srcp: the cpumask/Rx queue mask pointer 3498 * @nr_bits: number of bits in the bitmask 3499 * 3500 * Returns >= nr_bits if no further CPUs/Rx queues set. 3501 */ 3502 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3503 unsigned int nr_bits) 3504 { 3505 /* -1 is a legal arg here. */ 3506 if (n != -1) 3507 cpu_max_bits_warn(n, nr_bits); 3508 3509 if (srcp) 3510 return find_next_bit(srcp, nr_bits, n + 1); 3511 3512 return n + 1; 3513 } 3514 3515 /** 3516 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3517 * @n: CPU/Rx queue index 3518 * @src1p: the first CPUs/Rx queues mask pointer 3519 * @src2p: the second CPUs/Rx queues mask pointer 3520 * @nr_bits: number of bits in the bitmask 3521 * 3522 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3523 */ 3524 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3525 const unsigned long *src2p, 3526 unsigned int nr_bits) 3527 { 3528 /* -1 is a legal arg here. */ 3529 if (n != -1) 3530 cpu_max_bits_warn(n, nr_bits); 3531 3532 if (src1p && src2p) 3533 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3534 else if (src1p) 3535 return find_next_bit(src1p, nr_bits, n + 1); 3536 else if (src2p) 3537 return find_next_bit(src2p, nr_bits, n + 1); 3538 3539 return n + 1; 3540 } 3541 #else 3542 static inline int netif_set_xps_queue(struct net_device *dev, 3543 const struct cpumask *mask, 3544 u16 index) 3545 { 3546 return 0; 3547 } 3548 3549 static inline int __netif_set_xps_queue(struct net_device *dev, 3550 const unsigned long *mask, 3551 u16 index, bool is_rxqs_map) 3552 { 3553 return 0; 3554 } 3555 #endif 3556 3557 /** 3558 * netif_is_multiqueue - test if device has multiple transmit queues 3559 * @dev: network device 3560 * 3561 * Check if device has multiple transmit queues 3562 */ 3563 static inline bool netif_is_multiqueue(const struct net_device *dev) 3564 { 3565 return dev->num_tx_queues > 1; 3566 } 3567 3568 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3569 3570 #ifdef CONFIG_SYSFS 3571 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3572 #else 3573 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3574 unsigned int rxqs) 3575 { 3576 dev->real_num_rx_queues = rxqs; 3577 return 0; 3578 } 3579 #endif 3580 3581 static inline struct netdev_rx_queue * 3582 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3583 { 3584 return dev->_rx + rxq; 3585 } 3586 3587 #ifdef CONFIG_SYSFS 3588 static inline unsigned int get_netdev_rx_queue_index( 3589 struct netdev_rx_queue *queue) 3590 { 3591 struct net_device *dev = queue->dev; 3592 int index = queue - dev->_rx; 3593 3594 BUG_ON(index >= dev->num_rx_queues); 3595 return index; 3596 } 3597 #endif 3598 3599 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3600 int netif_get_num_default_rss_queues(void); 3601 3602 enum skb_free_reason { 3603 SKB_REASON_CONSUMED, 3604 SKB_REASON_DROPPED, 3605 }; 3606 3607 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3608 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3609 3610 /* 3611 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3612 * interrupt context or with hardware interrupts being disabled. 3613 * (in_irq() || irqs_disabled()) 3614 * 3615 * We provide four helpers that can be used in following contexts : 3616 * 3617 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3618 * replacing kfree_skb(skb) 3619 * 3620 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3621 * Typically used in place of consume_skb(skb) in TX completion path 3622 * 3623 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3624 * replacing kfree_skb(skb) 3625 * 3626 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3627 * and consumed a packet. Used in place of consume_skb(skb) 3628 */ 3629 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3630 { 3631 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3632 } 3633 3634 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3635 { 3636 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3637 } 3638 3639 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3640 { 3641 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3642 } 3643 3644 static inline void dev_consume_skb_any(struct sk_buff *skb) 3645 { 3646 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3647 } 3648 3649 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3650 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3651 int netif_rx(struct sk_buff *skb); 3652 int netif_rx_ni(struct sk_buff *skb); 3653 int netif_receive_skb(struct sk_buff *skb); 3654 int netif_receive_skb_core(struct sk_buff *skb); 3655 void netif_receive_skb_list(struct list_head *head); 3656 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3657 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3658 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3659 gro_result_t napi_gro_frags(struct napi_struct *napi); 3660 struct packet_offload *gro_find_receive_by_type(__be16 type); 3661 struct packet_offload *gro_find_complete_by_type(__be16 type); 3662 3663 static inline void napi_free_frags(struct napi_struct *napi) 3664 { 3665 kfree_skb(napi->skb); 3666 napi->skb = NULL; 3667 } 3668 3669 bool netdev_is_rx_handler_busy(struct net_device *dev); 3670 int netdev_rx_handler_register(struct net_device *dev, 3671 rx_handler_func_t *rx_handler, 3672 void *rx_handler_data); 3673 void netdev_rx_handler_unregister(struct net_device *dev); 3674 3675 bool dev_valid_name(const char *name); 3676 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3677 bool *need_copyout); 3678 int dev_ifconf(struct net *net, struct ifconf *, int); 3679 int dev_ethtool(struct net *net, struct ifreq *); 3680 unsigned int dev_get_flags(const struct net_device *); 3681 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3682 struct netlink_ext_ack *extack); 3683 int dev_change_flags(struct net_device *dev, unsigned int flags, 3684 struct netlink_ext_ack *extack); 3685 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3686 unsigned int gchanges); 3687 int dev_change_name(struct net_device *, const char *); 3688 int dev_set_alias(struct net_device *, const char *, size_t); 3689 int dev_get_alias(const struct net_device *, char *, size_t); 3690 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3691 int __dev_set_mtu(struct net_device *, int); 3692 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3693 struct netlink_ext_ack *extack); 3694 int dev_set_mtu(struct net_device *, int); 3695 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3696 void dev_set_group(struct net_device *, int); 3697 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3698 struct netlink_ext_ack *extack); 3699 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3700 struct netlink_ext_ack *extack); 3701 int dev_change_carrier(struct net_device *, bool new_carrier); 3702 int dev_get_phys_port_id(struct net_device *dev, 3703 struct netdev_phys_item_id *ppid); 3704 int dev_get_phys_port_name(struct net_device *dev, 3705 char *name, size_t len); 3706 int dev_get_port_parent_id(struct net_device *dev, 3707 struct netdev_phys_item_id *ppid, bool recurse); 3708 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3709 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3710 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3711 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3712 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3713 struct netdev_queue *txq, int *ret); 3714 3715 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3716 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3717 int fd, u32 flags); 3718 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3719 enum bpf_netdev_command cmd); 3720 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3721 3722 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3724 bool is_skb_forwardable(const struct net_device *dev, 3725 const struct sk_buff *skb); 3726 3727 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3728 struct sk_buff *skb) 3729 { 3730 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3731 unlikely(!is_skb_forwardable(dev, skb))) { 3732 atomic_long_inc(&dev->rx_dropped); 3733 kfree_skb(skb); 3734 return NET_RX_DROP; 3735 } 3736 3737 skb_scrub_packet(skb, true); 3738 skb->priority = 0; 3739 return 0; 3740 } 3741 3742 bool dev_nit_active(struct net_device *dev); 3743 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3744 3745 extern int netdev_budget; 3746 extern unsigned int netdev_budget_usecs; 3747 3748 /* Called by rtnetlink.c:rtnl_unlock() */ 3749 void netdev_run_todo(void); 3750 3751 /** 3752 * dev_put - release reference to device 3753 * @dev: network device 3754 * 3755 * Release reference to device to allow it to be freed. 3756 */ 3757 static inline void dev_put(struct net_device *dev) 3758 { 3759 this_cpu_dec(*dev->pcpu_refcnt); 3760 } 3761 3762 /** 3763 * dev_hold - get reference to device 3764 * @dev: network device 3765 * 3766 * Hold reference to device to keep it from being freed. 3767 */ 3768 static inline void dev_hold(struct net_device *dev) 3769 { 3770 this_cpu_inc(*dev->pcpu_refcnt); 3771 } 3772 3773 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3774 * and _off may be called from IRQ context, but it is caller 3775 * who is responsible for serialization of these calls. 3776 * 3777 * The name carrier is inappropriate, these functions should really be 3778 * called netif_lowerlayer_*() because they represent the state of any 3779 * kind of lower layer not just hardware media. 3780 */ 3781 3782 void linkwatch_init_dev(struct net_device *dev); 3783 void linkwatch_fire_event(struct net_device *dev); 3784 void linkwatch_forget_dev(struct net_device *dev); 3785 3786 /** 3787 * netif_carrier_ok - test if carrier present 3788 * @dev: network device 3789 * 3790 * Check if carrier is present on device 3791 */ 3792 static inline bool netif_carrier_ok(const struct net_device *dev) 3793 { 3794 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3795 } 3796 3797 unsigned long dev_trans_start(struct net_device *dev); 3798 3799 void __netdev_watchdog_up(struct net_device *dev); 3800 3801 void netif_carrier_on(struct net_device *dev); 3802 3803 void netif_carrier_off(struct net_device *dev); 3804 3805 /** 3806 * netif_dormant_on - mark device as dormant. 3807 * @dev: network device 3808 * 3809 * Mark device as dormant (as per RFC2863). 3810 * 3811 * The dormant state indicates that the relevant interface is not 3812 * actually in a condition to pass packets (i.e., it is not 'up') but is 3813 * in a "pending" state, waiting for some external event. For "on- 3814 * demand" interfaces, this new state identifies the situation where the 3815 * interface is waiting for events to place it in the up state. 3816 */ 3817 static inline void netif_dormant_on(struct net_device *dev) 3818 { 3819 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3820 linkwatch_fire_event(dev); 3821 } 3822 3823 /** 3824 * netif_dormant_off - set device as not dormant. 3825 * @dev: network device 3826 * 3827 * Device is not in dormant state. 3828 */ 3829 static inline void netif_dormant_off(struct net_device *dev) 3830 { 3831 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3832 linkwatch_fire_event(dev); 3833 } 3834 3835 /** 3836 * netif_dormant - test if device is dormant 3837 * @dev: network device 3838 * 3839 * Check if device is dormant. 3840 */ 3841 static inline bool netif_dormant(const struct net_device *dev) 3842 { 3843 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3844 } 3845 3846 3847 /** 3848 * netif_oper_up - test if device is operational 3849 * @dev: network device 3850 * 3851 * Check if carrier is operational 3852 */ 3853 static inline bool netif_oper_up(const struct net_device *dev) 3854 { 3855 return (dev->operstate == IF_OPER_UP || 3856 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3857 } 3858 3859 /** 3860 * netif_device_present - is device available or removed 3861 * @dev: network device 3862 * 3863 * Check if device has not been removed from system. 3864 */ 3865 static inline bool netif_device_present(struct net_device *dev) 3866 { 3867 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3868 } 3869 3870 void netif_device_detach(struct net_device *dev); 3871 3872 void netif_device_attach(struct net_device *dev); 3873 3874 /* 3875 * Network interface message level settings 3876 */ 3877 3878 enum { 3879 NETIF_MSG_DRV = 0x0001, 3880 NETIF_MSG_PROBE = 0x0002, 3881 NETIF_MSG_LINK = 0x0004, 3882 NETIF_MSG_TIMER = 0x0008, 3883 NETIF_MSG_IFDOWN = 0x0010, 3884 NETIF_MSG_IFUP = 0x0020, 3885 NETIF_MSG_RX_ERR = 0x0040, 3886 NETIF_MSG_TX_ERR = 0x0080, 3887 NETIF_MSG_TX_QUEUED = 0x0100, 3888 NETIF_MSG_INTR = 0x0200, 3889 NETIF_MSG_TX_DONE = 0x0400, 3890 NETIF_MSG_RX_STATUS = 0x0800, 3891 NETIF_MSG_PKTDATA = 0x1000, 3892 NETIF_MSG_HW = 0x2000, 3893 NETIF_MSG_WOL = 0x4000, 3894 }; 3895 3896 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3897 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3898 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3899 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3900 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3901 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3902 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3903 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3904 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3905 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3906 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3907 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3908 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3909 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3910 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3911 3912 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3913 { 3914 /* use default */ 3915 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3916 return default_msg_enable_bits; 3917 if (debug_value == 0) /* no output */ 3918 return 0; 3919 /* set low N bits */ 3920 return (1U << debug_value) - 1; 3921 } 3922 3923 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3924 { 3925 spin_lock(&txq->_xmit_lock); 3926 txq->xmit_lock_owner = cpu; 3927 } 3928 3929 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3930 { 3931 __acquire(&txq->_xmit_lock); 3932 return true; 3933 } 3934 3935 static inline void __netif_tx_release(struct netdev_queue *txq) 3936 { 3937 __release(&txq->_xmit_lock); 3938 } 3939 3940 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3941 { 3942 spin_lock_bh(&txq->_xmit_lock); 3943 txq->xmit_lock_owner = smp_processor_id(); 3944 } 3945 3946 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3947 { 3948 bool ok = spin_trylock(&txq->_xmit_lock); 3949 if (likely(ok)) 3950 txq->xmit_lock_owner = smp_processor_id(); 3951 return ok; 3952 } 3953 3954 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3955 { 3956 txq->xmit_lock_owner = -1; 3957 spin_unlock(&txq->_xmit_lock); 3958 } 3959 3960 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3961 { 3962 txq->xmit_lock_owner = -1; 3963 spin_unlock_bh(&txq->_xmit_lock); 3964 } 3965 3966 static inline void txq_trans_update(struct netdev_queue *txq) 3967 { 3968 if (txq->xmit_lock_owner != -1) 3969 txq->trans_start = jiffies; 3970 } 3971 3972 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3973 static inline void netif_trans_update(struct net_device *dev) 3974 { 3975 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3976 3977 if (txq->trans_start != jiffies) 3978 txq->trans_start = jiffies; 3979 } 3980 3981 /** 3982 * netif_tx_lock - grab network device transmit lock 3983 * @dev: network device 3984 * 3985 * Get network device transmit lock 3986 */ 3987 static inline void netif_tx_lock(struct net_device *dev) 3988 { 3989 unsigned int i; 3990 int cpu; 3991 3992 spin_lock(&dev->tx_global_lock); 3993 cpu = smp_processor_id(); 3994 for (i = 0; i < dev->num_tx_queues; i++) { 3995 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3996 3997 /* We are the only thread of execution doing a 3998 * freeze, but we have to grab the _xmit_lock in 3999 * order to synchronize with threads which are in 4000 * the ->hard_start_xmit() handler and already 4001 * checked the frozen bit. 4002 */ 4003 __netif_tx_lock(txq, cpu); 4004 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4005 __netif_tx_unlock(txq); 4006 } 4007 } 4008 4009 static inline void netif_tx_lock_bh(struct net_device *dev) 4010 { 4011 local_bh_disable(); 4012 netif_tx_lock(dev); 4013 } 4014 4015 static inline void netif_tx_unlock(struct net_device *dev) 4016 { 4017 unsigned int i; 4018 4019 for (i = 0; i < dev->num_tx_queues; i++) { 4020 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4021 4022 /* No need to grab the _xmit_lock here. If the 4023 * queue is not stopped for another reason, we 4024 * force a schedule. 4025 */ 4026 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4027 netif_schedule_queue(txq); 4028 } 4029 spin_unlock(&dev->tx_global_lock); 4030 } 4031 4032 static inline void netif_tx_unlock_bh(struct net_device *dev) 4033 { 4034 netif_tx_unlock(dev); 4035 local_bh_enable(); 4036 } 4037 4038 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4039 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4040 __netif_tx_lock(txq, cpu); \ 4041 } else { \ 4042 __netif_tx_acquire(txq); \ 4043 } \ 4044 } 4045 4046 #define HARD_TX_TRYLOCK(dev, txq) \ 4047 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4048 __netif_tx_trylock(txq) : \ 4049 __netif_tx_acquire(txq)) 4050 4051 #define HARD_TX_UNLOCK(dev, txq) { \ 4052 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4053 __netif_tx_unlock(txq); \ 4054 } else { \ 4055 __netif_tx_release(txq); \ 4056 } \ 4057 } 4058 4059 static inline void netif_tx_disable(struct net_device *dev) 4060 { 4061 unsigned int i; 4062 int cpu; 4063 4064 local_bh_disable(); 4065 cpu = smp_processor_id(); 4066 for (i = 0; i < dev->num_tx_queues; i++) { 4067 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4068 4069 __netif_tx_lock(txq, cpu); 4070 netif_tx_stop_queue(txq); 4071 __netif_tx_unlock(txq); 4072 } 4073 local_bh_enable(); 4074 } 4075 4076 static inline void netif_addr_lock(struct net_device *dev) 4077 { 4078 spin_lock(&dev->addr_list_lock); 4079 } 4080 4081 static inline void netif_addr_lock_bh(struct net_device *dev) 4082 { 4083 spin_lock_bh(&dev->addr_list_lock); 4084 } 4085 4086 static inline void netif_addr_unlock(struct net_device *dev) 4087 { 4088 spin_unlock(&dev->addr_list_lock); 4089 } 4090 4091 static inline void netif_addr_unlock_bh(struct net_device *dev) 4092 { 4093 spin_unlock_bh(&dev->addr_list_lock); 4094 } 4095 4096 /* 4097 * dev_addrs walker. Should be used only for read access. Call with 4098 * rcu_read_lock held. 4099 */ 4100 #define for_each_dev_addr(dev, ha) \ 4101 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4102 4103 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4104 4105 void ether_setup(struct net_device *dev); 4106 4107 /* Support for loadable net-drivers */ 4108 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4109 unsigned char name_assign_type, 4110 void (*setup)(struct net_device *), 4111 unsigned int txqs, unsigned int rxqs); 4112 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4113 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4114 4115 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4116 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4117 count) 4118 4119 int register_netdev(struct net_device *dev); 4120 void unregister_netdev(struct net_device *dev); 4121 4122 /* General hardware address lists handling functions */ 4123 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4124 struct netdev_hw_addr_list *from_list, int addr_len); 4125 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4126 struct netdev_hw_addr_list *from_list, int addr_len); 4127 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4128 struct net_device *dev, 4129 int (*sync)(struct net_device *, const unsigned char *), 4130 int (*unsync)(struct net_device *, 4131 const unsigned char *)); 4132 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4133 struct net_device *dev, 4134 int (*sync)(struct net_device *, 4135 const unsigned char *, int), 4136 int (*unsync)(struct net_device *, 4137 const unsigned char *, int)); 4138 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4139 struct net_device *dev, 4140 int (*unsync)(struct net_device *, 4141 const unsigned char *, int)); 4142 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4143 struct net_device *dev, 4144 int (*unsync)(struct net_device *, 4145 const unsigned char *)); 4146 void __hw_addr_init(struct netdev_hw_addr_list *list); 4147 4148 /* Functions used for device addresses handling */ 4149 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4150 unsigned char addr_type); 4151 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4152 unsigned char addr_type); 4153 void dev_addr_flush(struct net_device *dev); 4154 int dev_addr_init(struct net_device *dev); 4155 4156 /* Functions used for unicast addresses handling */ 4157 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4158 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4159 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4160 int dev_uc_sync(struct net_device *to, struct net_device *from); 4161 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4162 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4163 void dev_uc_flush(struct net_device *dev); 4164 void dev_uc_init(struct net_device *dev); 4165 4166 /** 4167 * __dev_uc_sync - Synchonize device's unicast list 4168 * @dev: device to sync 4169 * @sync: function to call if address should be added 4170 * @unsync: function to call if address should be removed 4171 * 4172 * Add newly added addresses to the interface, and release 4173 * addresses that have been deleted. 4174 */ 4175 static inline int __dev_uc_sync(struct net_device *dev, 4176 int (*sync)(struct net_device *, 4177 const unsigned char *), 4178 int (*unsync)(struct net_device *, 4179 const unsigned char *)) 4180 { 4181 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4182 } 4183 4184 /** 4185 * __dev_uc_unsync - Remove synchronized addresses from device 4186 * @dev: device to sync 4187 * @unsync: function to call if address should be removed 4188 * 4189 * Remove all addresses that were added to the device by dev_uc_sync(). 4190 */ 4191 static inline void __dev_uc_unsync(struct net_device *dev, 4192 int (*unsync)(struct net_device *, 4193 const unsigned char *)) 4194 { 4195 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4196 } 4197 4198 /* Functions used for multicast addresses handling */ 4199 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4200 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4201 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4202 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4203 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4204 int dev_mc_sync(struct net_device *to, struct net_device *from); 4205 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4206 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4207 void dev_mc_flush(struct net_device *dev); 4208 void dev_mc_init(struct net_device *dev); 4209 4210 /** 4211 * __dev_mc_sync - Synchonize device's multicast list 4212 * @dev: device to sync 4213 * @sync: function to call if address should be added 4214 * @unsync: function to call if address should be removed 4215 * 4216 * Add newly added addresses to the interface, and release 4217 * addresses that have been deleted. 4218 */ 4219 static inline int __dev_mc_sync(struct net_device *dev, 4220 int (*sync)(struct net_device *, 4221 const unsigned char *), 4222 int (*unsync)(struct net_device *, 4223 const unsigned char *)) 4224 { 4225 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4226 } 4227 4228 /** 4229 * __dev_mc_unsync - Remove synchronized addresses from device 4230 * @dev: device to sync 4231 * @unsync: function to call if address should be removed 4232 * 4233 * Remove all addresses that were added to the device by dev_mc_sync(). 4234 */ 4235 static inline void __dev_mc_unsync(struct net_device *dev, 4236 int (*unsync)(struct net_device *, 4237 const unsigned char *)) 4238 { 4239 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4240 } 4241 4242 /* Functions used for secondary unicast and multicast support */ 4243 void dev_set_rx_mode(struct net_device *dev); 4244 void __dev_set_rx_mode(struct net_device *dev); 4245 int dev_set_promiscuity(struct net_device *dev, int inc); 4246 int dev_set_allmulti(struct net_device *dev, int inc); 4247 void netdev_state_change(struct net_device *dev); 4248 void netdev_notify_peers(struct net_device *dev); 4249 void netdev_features_change(struct net_device *dev); 4250 /* Load a device via the kmod */ 4251 void dev_load(struct net *net, const char *name); 4252 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4253 struct rtnl_link_stats64 *storage); 4254 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4255 const struct net_device_stats *netdev_stats); 4256 4257 extern int netdev_max_backlog; 4258 extern int netdev_tstamp_prequeue; 4259 extern int weight_p; 4260 extern int dev_weight_rx_bias; 4261 extern int dev_weight_tx_bias; 4262 extern int dev_rx_weight; 4263 extern int dev_tx_weight; 4264 extern int gro_normal_batch; 4265 4266 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4267 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4268 struct list_head **iter); 4269 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4270 struct list_head **iter); 4271 4272 /* iterate through upper list, must be called under RCU read lock */ 4273 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4274 for (iter = &(dev)->adj_list.upper, \ 4275 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4276 updev; \ 4277 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4278 4279 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4280 int (*fn)(struct net_device *upper_dev, 4281 void *data), 4282 void *data); 4283 4284 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4285 struct net_device *upper_dev); 4286 4287 bool netdev_has_any_upper_dev(struct net_device *dev); 4288 4289 void *netdev_lower_get_next_private(struct net_device *dev, 4290 struct list_head **iter); 4291 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4292 struct list_head **iter); 4293 4294 #define netdev_for_each_lower_private(dev, priv, iter) \ 4295 for (iter = (dev)->adj_list.lower.next, \ 4296 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4297 priv; \ 4298 priv = netdev_lower_get_next_private(dev, &(iter))) 4299 4300 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4301 for (iter = &(dev)->adj_list.lower, \ 4302 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4303 priv; \ 4304 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4305 4306 void *netdev_lower_get_next(struct net_device *dev, 4307 struct list_head **iter); 4308 4309 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4310 for (iter = (dev)->adj_list.lower.next, \ 4311 ldev = netdev_lower_get_next(dev, &(iter)); \ 4312 ldev; \ 4313 ldev = netdev_lower_get_next(dev, &(iter))) 4314 4315 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4316 struct list_head **iter); 4317 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4318 struct list_head **iter); 4319 4320 int netdev_walk_all_lower_dev(struct net_device *dev, 4321 int (*fn)(struct net_device *lower_dev, 4322 void *data), 4323 void *data); 4324 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4325 int (*fn)(struct net_device *lower_dev, 4326 void *data), 4327 void *data); 4328 4329 void *netdev_adjacent_get_private(struct list_head *adj_list); 4330 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4331 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4332 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4333 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4334 struct netlink_ext_ack *extack); 4335 int netdev_master_upper_dev_link(struct net_device *dev, 4336 struct net_device *upper_dev, 4337 void *upper_priv, void *upper_info, 4338 struct netlink_ext_ack *extack); 4339 void netdev_upper_dev_unlink(struct net_device *dev, 4340 struct net_device *upper_dev); 4341 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4342 struct net_device *new_dev, 4343 struct net_device *dev, 4344 struct netlink_ext_ack *extack); 4345 void netdev_adjacent_change_commit(struct net_device *old_dev, 4346 struct net_device *new_dev, 4347 struct net_device *dev); 4348 void netdev_adjacent_change_abort(struct net_device *old_dev, 4349 struct net_device *new_dev, 4350 struct net_device *dev); 4351 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4352 void *netdev_lower_dev_get_private(struct net_device *dev, 4353 struct net_device *lower_dev); 4354 void netdev_lower_state_changed(struct net_device *lower_dev, 4355 void *lower_state_info); 4356 4357 /* RSS keys are 40 or 52 bytes long */ 4358 #define NETDEV_RSS_KEY_LEN 52 4359 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4360 void netdev_rss_key_fill(void *buffer, size_t len); 4361 4362 int skb_checksum_help(struct sk_buff *skb); 4363 int skb_crc32c_csum_help(struct sk_buff *skb); 4364 int skb_csum_hwoffload_help(struct sk_buff *skb, 4365 const netdev_features_t features); 4366 4367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4368 netdev_features_t features, bool tx_path); 4369 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4370 netdev_features_t features); 4371 4372 struct netdev_bonding_info { 4373 ifslave slave; 4374 ifbond master; 4375 }; 4376 4377 struct netdev_notifier_bonding_info { 4378 struct netdev_notifier_info info; /* must be first */ 4379 struct netdev_bonding_info bonding_info; 4380 }; 4381 4382 void netdev_bonding_info_change(struct net_device *dev, 4383 struct netdev_bonding_info *bonding_info); 4384 4385 static inline 4386 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4387 { 4388 return __skb_gso_segment(skb, features, true); 4389 } 4390 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4391 4392 static inline bool can_checksum_protocol(netdev_features_t features, 4393 __be16 protocol) 4394 { 4395 if (protocol == htons(ETH_P_FCOE)) 4396 return !!(features & NETIF_F_FCOE_CRC); 4397 4398 /* Assume this is an IP checksum (not SCTP CRC) */ 4399 4400 if (features & NETIF_F_HW_CSUM) { 4401 /* Can checksum everything */ 4402 return true; 4403 } 4404 4405 switch (protocol) { 4406 case htons(ETH_P_IP): 4407 return !!(features & NETIF_F_IP_CSUM); 4408 case htons(ETH_P_IPV6): 4409 return !!(features & NETIF_F_IPV6_CSUM); 4410 default: 4411 return false; 4412 } 4413 } 4414 4415 #ifdef CONFIG_BUG 4416 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4417 #else 4418 static inline void netdev_rx_csum_fault(struct net_device *dev, 4419 struct sk_buff *skb) 4420 { 4421 } 4422 #endif 4423 /* rx skb timestamps */ 4424 void net_enable_timestamp(void); 4425 void net_disable_timestamp(void); 4426 4427 #ifdef CONFIG_PROC_FS 4428 int __init dev_proc_init(void); 4429 #else 4430 #define dev_proc_init() 0 4431 #endif 4432 4433 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4434 struct sk_buff *skb, struct net_device *dev, 4435 bool more) 4436 { 4437 __this_cpu_write(softnet_data.xmit.more, more); 4438 return ops->ndo_start_xmit(skb, dev); 4439 } 4440 4441 static inline bool netdev_xmit_more(void) 4442 { 4443 return __this_cpu_read(softnet_data.xmit.more); 4444 } 4445 4446 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4447 struct netdev_queue *txq, bool more) 4448 { 4449 const struct net_device_ops *ops = dev->netdev_ops; 4450 netdev_tx_t rc; 4451 4452 rc = __netdev_start_xmit(ops, skb, dev, more); 4453 if (rc == NETDEV_TX_OK) 4454 txq_trans_update(txq); 4455 4456 return rc; 4457 } 4458 4459 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4460 const void *ns); 4461 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4462 const void *ns); 4463 4464 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4465 { 4466 return netdev_class_create_file_ns(class_attr, NULL); 4467 } 4468 4469 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4470 { 4471 netdev_class_remove_file_ns(class_attr, NULL); 4472 } 4473 4474 extern const struct kobj_ns_type_operations net_ns_type_operations; 4475 4476 const char *netdev_drivername(const struct net_device *dev); 4477 4478 void linkwatch_run_queue(void); 4479 4480 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4481 netdev_features_t f2) 4482 { 4483 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4484 if (f1 & NETIF_F_HW_CSUM) 4485 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4486 else 4487 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4488 } 4489 4490 return f1 & f2; 4491 } 4492 4493 static inline netdev_features_t netdev_get_wanted_features( 4494 struct net_device *dev) 4495 { 4496 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4497 } 4498 netdev_features_t netdev_increment_features(netdev_features_t all, 4499 netdev_features_t one, netdev_features_t mask); 4500 4501 /* Allow TSO being used on stacked device : 4502 * Performing the GSO segmentation before last device 4503 * is a performance improvement. 4504 */ 4505 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4506 netdev_features_t mask) 4507 { 4508 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4509 } 4510 4511 int __netdev_update_features(struct net_device *dev); 4512 void netdev_update_features(struct net_device *dev); 4513 void netdev_change_features(struct net_device *dev); 4514 4515 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4516 struct net_device *dev); 4517 4518 netdev_features_t passthru_features_check(struct sk_buff *skb, 4519 struct net_device *dev, 4520 netdev_features_t features); 4521 netdev_features_t netif_skb_features(struct sk_buff *skb); 4522 4523 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4524 { 4525 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4526 4527 /* check flags correspondence */ 4528 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4529 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4530 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4531 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4532 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4533 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4534 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4535 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4536 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4537 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4538 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4539 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4540 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4541 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4542 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4543 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4544 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4545 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4546 4547 return (features & feature) == feature; 4548 } 4549 4550 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4551 { 4552 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4553 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4554 } 4555 4556 static inline bool netif_needs_gso(struct sk_buff *skb, 4557 netdev_features_t features) 4558 { 4559 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4560 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4561 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4562 } 4563 4564 static inline void netif_set_gso_max_size(struct net_device *dev, 4565 unsigned int size) 4566 { 4567 dev->gso_max_size = size; 4568 } 4569 4570 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4571 int pulled_hlen, u16 mac_offset, 4572 int mac_len) 4573 { 4574 skb->protocol = protocol; 4575 skb->encapsulation = 1; 4576 skb_push(skb, pulled_hlen); 4577 skb_reset_transport_header(skb); 4578 skb->mac_header = mac_offset; 4579 skb->network_header = skb->mac_header + mac_len; 4580 skb->mac_len = mac_len; 4581 } 4582 4583 static inline bool netif_is_macsec(const struct net_device *dev) 4584 { 4585 return dev->priv_flags & IFF_MACSEC; 4586 } 4587 4588 static inline bool netif_is_macvlan(const struct net_device *dev) 4589 { 4590 return dev->priv_flags & IFF_MACVLAN; 4591 } 4592 4593 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4594 { 4595 return dev->priv_flags & IFF_MACVLAN_PORT; 4596 } 4597 4598 static inline bool netif_is_bond_master(const struct net_device *dev) 4599 { 4600 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4601 } 4602 4603 static inline bool netif_is_bond_slave(const struct net_device *dev) 4604 { 4605 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4606 } 4607 4608 static inline bool netif_supports_nofcs(struct net_device *dev) 4609 { 4610 return dev->priv_flags & IFF_SUPP_NOFCS; 4611 } 4612 4613 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4614 { 4615 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4616 } 4617 4618 static inline bool netif_is_l3_master(const struct net_device *dev) 4619 { 4620 return dev->priv_flags & IFF_L3MDEV_MASTER; 4621 } 4622 4623 static inline bool netif_is_l3_slave(const struct net_device *dev) 4624 { 4625 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4626 } 4627 4628 static inline bool netif_is_bridge_master(const struct net_device *dev) 4629 { 4630 return dev->priv_flags & IFF_EBRIDGE; 4631 } 4632 4633 static inline bool netif_is_bridge_port(const struct net_device *dev) 4634 { 4635 return dev->priv_flags & IFF_BRIDGE_PORT; 4636 } 4637 4638 static inline bool netif_is_ovs_master(const struct net_device *dev) 4639 { 4640 return dev->priv_flags & IFF_OPENVSWITCH; 4641 } 4642 4643 static inline bool netif_is_ovs_port(const struct net_device *dev) 4644 { 4645 return dev->priv_flags & IFF_OVS_DATAPATH; 4646 } 4647 4648 static inline bool netif_is_team_master(const struct net_device *dev) 4649 { 4650 return dev->priv_flags & IFF_TEAM; 4651 } 4652 4653 static inline bool netif_is_team_port(const struct net_device *dev) 4654 { 4655 return dev->priv_flags & IFF_TEAM_PORT; 4656 } 4657 4658 static inline bool netif_is_lag_master(const struct net_device *dev) 4659 { 4660 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4661 } 4662 4663 static inline bool netif_is_lag_port(const struct net_device *dev) 4664 { 4665 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4666 } 4667 4668 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4669 { 4670 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4671 } 4672 4673 static inline bool netif_is_failover(const struct net_device *dev) 4674 { 4675 return dev->priv_flags & IFF_FAILOVER; 4676 } 4677 4678 static inline bool netif_is_failover_slave(const struct net_device *dev) 4679 { 4680 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4681 } 4682 4683 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4684 static inline void netif_keep_dst(struct net_device *dev) 4685 { 4686 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4687 } 4688 4689 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4690 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4691 { 4692 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4693 return dev->priv_flags & IFF_MACSEC; 4694 } 4695 4696 extern struct pernet_operations __net_initdata loopback_net_ops; 4697 4698 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4699 4700 /* netdev_printk helpers, similar to dev_printk */ 4701 4702 static inline const char *netdev_name(const struct net_device *dev) 4703 { 4704 if (!dev->name[0] || strchr(dev->name, '%')) 4705 return "(unnamed net_device)"; 4706 return dev->name; 4707 } 4708 4709 static inline bool netdev_unregistering(const struct net_device *dev) 4710 { 4711 return dev->reg_state == NETREG_UNREGISTERING; 4712 } 4713 4714 static inline const char *netdev_reg_state(const struct net_device *dev) 4715 { 4716 switch (dev->reg_state) { 4717 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4718 case NETREG_REGISTERED: return ""; 4719 case NETREG_UNREGISTERING: return " (unregistering)"; 4720 case NETREG_UNREGISTERED: return " (unregistered)"; 4721 case NETREG_RELEASED: return " (released)"; 4722 case NETREG_DUMMY: return " (dummy)"; 4723 } 4724 4725 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4726 return " (unknown)"; 4727 } 4728 4729 __printf(3, 4) __cold 4730 void netdev_printk(const char *level, const struct net_device *dev, 4731 const char *format, ...); 4732 __printf(2, 3) __cold 4733 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4734 __printf(2, 3) __cold 4735 void netdev_alert(const struct net_device *dev, const char *format, ...); 4736 __printf(2, 3) __cold 4737 void netdev_crit(const struct net_device *dev, const char *format, ...); 4738 __printf(2, 3) __cold 4739 void netdev_err(const struct net_device *dev, const char *format, ...); 4740 __printf(2, 3) __cold 4741 void netdev_warn(const struct net_device *dev, const char *format, ...); 4742 __printf(2, 3) __cold 4743 void netdev_notice(const struct net_device *dev, const char *format, ...); 4744 __printf(2, 3) __cold 4745 void netdev_info(const struct net_device *dev, const char *format, ...); 4746 4747 #define netdev_level_once(level, dev, fmt, ...) \ 4748 do { \ 4749 static bool __print_once __read_mostly; \ 4750 \ 4751 if (!__print_once) { \ 4752 __print_once = true; \ 4753 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4754 } \ 4755 } while (0) 4756 4757 #define netdev_emerg_once(dev, fmt, ...) \ 4758 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4759 #define netdev_alert_once(dev, fmt, ...) \ 4760 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4761 #define netdev_crit_once(dev, fmt, ...) \ 4762 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4763 #define netdev_err_once(dev, fmt, ...) \ 4764 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4765 #define netdev_warn_once(dev, fmt, ...) \ 4766 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4767 #define netdev_notice_once(dev, fmt, ...) \ 4768 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4769 #define netdev_info_once(dev, fmt, ...) \ 4770 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4771 4772 #define MODULE_ALIAS_NETDEV(device) \ 4773 MODULE_ALIAS("netdev-" device) 4774 4775 #if defined(CONFIG_DYNAMIC_DEBUG) 4776 #define netdev_dbg(__dev, format, args...) \ 4777 do { \ 4778 dynamic_netdev_dbg(__dev, format, ##args); \ 4779 } while (0) 4780 #elif defined(DEBUG) 4781 #define netdev_dbg(__dev, format, args...) \ 4782 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4783 #else 4784 #define netdev_dbg(__dev, format, args...) \ 4785 ({ \ 4786 if (0) \ 4787 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4788 }) 4789 #endif 4790 4791 #if defined(VERBOSE_DEBUG) 4792 #define netdev_vdbg netdev_dbg 4793 #else 4794 4795 #define netdev_vdbg(dev, format, args...) \ 4796 ({ \ 4797 if (0) \ 4798 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4799 0; \ 4800 }) 4801 #endif 4802 4803 /* 4804 * netdev_WARN() acts like dev_printk(), but with the key difference 4805 * of using a WARN/WARN_ON to get the message out, including the 4806 * file/line information and a backtrace. 4807 */ 4808 #define netdev_WARN(dev, format, args...) \ 4809 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4810 netdev_reg_state(dev), ##args) 4811 4812 #define netdev_WARN_ONCE(dev, format, args...) \ 4813 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4814 netdev_reg_state(dev), ##args) 4815 4816 /* netif printk helpers, similar to netdev_printk */ 4817 4818 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4819 do { \ 4820 if (netif_msg_##type(priv)) \ 4821 netdev_printk(level, (dev), fmt, ##args); \ 4822 } while (0) 4823 4824 #define netif_level(level, priv, type, dev, fmt, args...) \ 4825 do { \ 4826 if (netif_msg_##type(priv)) \ 4827 netdev_##level(dev, fmt, ##args); \ 4828 } while (0) 4829 4830 #define netif_emerg(priv, type, dev, fmt, args...) \ 4831 netif_level(emerg, priv, type, dev, fmt, ##args) 4832 #define netif_alert(priv, type, dev, fmt, args...) \ 4833 netif_level(alert, priv, type, dev, fmt, ##args) 4834 #define netif_crit(priv, type, dev, fmt, args...) \ 4835 netif_level(crit, priv, type, dev, fmt, ##args) 4836 #define netif_err(priv, type, dev, fmt, args...) \ 4837 netif_level(err, priv, type, dev, fmt, ##args) 4838 #define netif_warn(priv, type, dev, fmt, args...) \ 4839 netif_level(warn, priv, type, dev, fmt, ##args) 4840 #define netif_notice(priv, type, dev, fmt, args...) \ 4841 netif_level(notice, priv, type, dev, fmt, ##args) 4842 #define netif_info(priv, type, dev, fmt, args...) \ 4843 netif_level(info, priv, type, dev, fmt, ##args) 4844 4845 #if defined(CONFIG_DYNAMIC_DEBUG) 4846 #define netif_dbg(priv, type, netdev, format, args...) \ 4847 do { \ 4848 if (netif_msg_##type(priv)) \ 4849 dynamic_netdev_dbg(netdev, format, ##args); \ 4850 } while (0) 4851 #elif defined(DEBUG) 4852 #define netif_dbg(priv, type, dev, format, args...) \ 4853 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4854 #else 4855 #define netif_dbg(priv, type, dev, format, args...) \ 4856 ({ \ 4857 if (0) \ 4858 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4859 0; \ 4860 }) 4861 #endif 4862 4863 /* if @cond then downgrade to debug, else print at @level */ 4864 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4865 do { \ 4866 if (cond) \ 4867 netif_dbg(priv, type, netdev, fmt, ##args); \ 4868 else \ 4869 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4870 } while (0) 4871 4872 #if defined(VERBOSE_DEBUG) 4873 #define netif_vdbg netif_dbg 4874 #else 4875 #define netif_vdbg(priv, type, dev, format, args...) \ 4876 ({ \ 4877 if (0) \ 4878 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4879 0; \ 4880 }) 4881 #endif 4882 4883 /* 4884 * The list of packet types we will receive (as opposed to discard) 4885 * and the routines to invoke. 4886 * 4887 * Why 16. Because with 16 the only overlap we get on a hash of the 4888 * low nibble of the protocol value is RARP/SNAP/X.25. 4889 * 4890 * 0800 IP 4891 * 0001 802.3 4892 * 0002 AX.25 4893 * 0004 802.2 4894 * 8035 RARP 4895 * 0005 SNAP 4896 * 0805 X.25 4897 * 0806 ARP 4898 * 8137 IPX 4899 * 0009 Localtalk 4900 * 86DD IPv6 4901 */ 4902 #define PTYPE_HASH_SIZE (16) 4903 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4904 4905 extern struct net_device *blackhole_netdev; 4906 4907 #endif /* _LINUX_NETDEVICE_H */ 4908