xref: /linux-6.15/include/linux/netdevice.h (revision 6fa79bca)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 /* hardware address assignment types */
64 #define NET_ADDR_PERM		0	/* address is permanent (default) */
65 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
66 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
67 
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
70 #define NET_RX_DROP		1	/* packet dropped */
71 
72 /*
73  * Transmit return codes: transmit return codes originate from three different
74  * namespaces:
75  *
76  * - qdisc return codes
77  * - driver transmit return codes
78  * - errno values
79  *
80  * Drivers are allowed to return any one of those in their hard_start_xmit()
81  * function. Real network devices commonly used with qdiscs should only return
82  * the driver transmit return codes though - when qdiscs are used, the actual
83  * transmission happens asynchronously, so the value is not propagated to
84  * higher layers. Virtual network devices transmit synchronously, in this case
85  * the driver transmit return codes are consumed by dev_queue_xmit(), all
86  * others are propagated to higher layers.
87  */
88 
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS	0x00
91 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
92 #define NET_XMIT_CN		0x02	/* congestion notification	*/
93 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
94 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
95 
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97  * indicates that the device will soon be dropping packets, or already drops
98  * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101 
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK		0xf0
104 
105 enum netdev_tx {
106 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
107 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
108 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
109 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112 
113 /*
114  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116  */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 	/*
120 	 * Positive cases with an skb consumed by a driver:
121 	 * - successful transmission (rc == NETDEV_TX_OK)
122 	 * - error while transmitting (rc < 0)
123 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 	 */
125 	if (likely(rc < NET_XMIT_MASK))
126 		return true;
127 
128 	return false;
129 }
130 
131 /*
132  *	Compute the worst case header length according to the protocols
133  *	used.
134  */
135 
136 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
137 # if defined(CONFIG_MAC80211_MESH)
138 #  define LL_MAX_HEADER 128
139 # else
140 #  define LL_MAX_HEADER 96
141 # endif
142 #elif IS_ENABLED(CONFIG_TR)
143 # define LL_MAX_HEADER 48
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147 
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154 
155 /*
156  *	Old network device statistics. Fields are native words
157  *	(unsigned long) so they can be read and written atomically.
158  */
159 
160 struct net_device_stats {
161 	unsigned long	rx_packets;
162 	unsigned long	tx_packets;
163 	unsigned long	rx_bytes;
164 	unsigned long	tx_bytes;
165 	unsigned long	rx_errors;
166 	unsigned long	tx_errors;
167 	unsigned long	rx_dropped;
168 	unsigned long	tx_dropped;
169 	unsigned long	multicast;
170 	unsigned long	collisions;
171 	unsigned long	rx_length_errors;
172 	unsigned long	rx_over_errors;
173 	unsigned long	rx_crc_errors;
174 	unsigned long	rx_frame_errors;
175 	unsigned long	rx_fifo_errors;
176 	unsigned long	rx_missed_errors;
177 	unsigned long	tx_aborted_errors;
178 	unsigned long	tx_carrier_errors;
179 	unsigned long	tx_fifo_errors;
180 	unsigned long	tx_heartbeat_errors;
181 	unsigned long	tx_window_errors;
182 	unsigned long	rx_compressed;
183 	unsigned long	tx_compressed;
184 };
185 
186 
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189 
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194 
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198 
199 struct netdev_hw_addr {
200 	struct list_head	list;
201 	unsigned char		addr[MAX_ADDR_LEN];
202 	unsigned char		type;
203 #define NETDEV_HW_ADDR_T_LAN		1
204 #define NETDEV_HW_ADDR_T_SAN		2
205 #define NETDEV_HW_ADDR_T_SLAVE		3
206 #define NETDEV_HW_ADDR_T_UNICAST	4
207 #define NETDEV_HW_ADDR_T_MULTICAST	5
208 	bool			synced;
209 	bool			global_use;
210 	int			refcount;
211 	struct rcu_head		rcu_head;
212 };
213 
214 struct netdev_hw_addr_list {
215 	struct list_head	list;
216 	int			count;
217 };
218 
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222 	list_for_each_entry(ha, &(l)->list, list)
223 
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228 
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233 
234 struct hh_cache {
235 	u16		hh_len;
236 	u16		__pad;
237 	seqlock_t	hh_lock;
238 
239 	/* cached hardware header; allow for machine alignment needs.        */
240 #define HH_DATA_MOD	16
241 #define HH_DATA_OFF(__len) \
242 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247 
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249  * Alternative is:
250  *   dev->hard_header_len ? (dev->hard_header_len +
251  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252  *
253  * We could use other alignment values, but we must maintain the
254  * relationship HH alignment <= LL alignment.
255  */
256 #define LL_RESERVED_SPACE(dev) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 
261 struct header_ops {
262 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
263 			   unsigned short type, const void *daddr,
264 			   const void *saddr, unsigned int len);
265 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 	int	(*rebuild)(struct sk_buff *skb);
267 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 	void	(*cache_update)(struct hh_cache *hh,
269 				const struct net_device *dev,
270 				const unsigned char *haddr);
271 };
272 
273 /* These flag bits are private to the generic network queueing
274  * layer, they may not be explicitly referenced by any other
275  * code.
276  */
277 
278 enum netdev_state_t {
279 	__LINK_STATE_START,
280 	__LINK_STATE_PRESENT,
281 	__LINK_STATE_NOCARRIER,
282 	__LINK_STATE_LINKWATCH_PENDING,
283 	__LINK_STATE_DORMANT,
284 };
285 
286 
287 /*
288  * This structure holds at boot time configured netdevice settings. They
289  * are then used in the device probing.
290  */
291 struct netdev_boot_setup {
292 	char name[IFNAMSIZ];
293 	struct ifmap map;
294 };
295 #define NETDEV_BOOT_SETUP_MAX 8
296 
297 extern int __init netdev_boot_setup(char *str);
298 
299 /*
300  * Structure for NAPI scheduling similar to tasklet but with weighting
301  */
302 struct napi_struct {
303 	/* The poll_list must only be managed by the entity which
304 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
305 	 * whoever atomically sets that bit can add this napi_struct
306 	 * to the per-cpu poll_list, and whoever clears that bit
307 	 * can remove from the list right before clearing the bit.
308 	 */
309 	struct list_head	poll_list;
310 
311 	unsigned long		state;
312 	int			weight;
313 	unsigned int		gro_count;
314 	int			(*poll)(struct napi_struct *, int);
315 #ifdef CONFIG_NETPOLL
316 	spinlock_t		poll_lock;
317 	int			poll_owner;
318 #endif
319 	struct net_device	*dev;
320 	struct sk_buff		*gro_list;
321 	struct sk_buff		*skb;
322 	struct list_head	dev_list;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 };
330 
331 enum gro_result {
332 	GRO_MERGED,
333 	GRO_MERGED_FREE,
334 	GRO_HELD,
335 	GRO_NORMAL,
336 	GRO_DROP,
337 };
338 typedef enum gro_result gro_result_t;
339 
340 /*
341  * enum rx_handler_result - Possible return values for rx_handlers.
342  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
343  * further.
344  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
345  * case skb->dev was changed by rx_handler.
346  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
347  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
348  *
349  * rx_handlers are functions called from inside __netif_receive_skb(), to do
350  * special processing of the skb, prior to delivery to protocol handlers.
351  *
352  * Currently, a net_device can only have a single rx_handler registered. Trying
353  * to register a second rx_handler will return -EBUSY.
354  *
355  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
356  * To unregister a rx_handler on a net_device, use
357  * netdev_rx_handler_unregister().
358  *
359  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
360  * do with the skb.
361  *
362  * If the rx_handler consumed to skb in some way, it should return
363  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
364  * the skb to be delivered in some other ways.
365  *
366  * If the rx_handler changed skb->dev, to divert the skb to another
367  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
368  * new device will be called if it exists.
369  *
370  * If the rx_handler consider the skb should be ignored, it should return
371  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
372  * are registred on exact device (ptype->dev == skb->dev).
373  *
374  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
375  * delivered, it should return RX_HANDLER_PASS.
376  *
377  * A device without a registered rx_handler will behave as if rx_handler
378  * returned RX_HANDLER_PASS.
379  */
380 
381 enum rx_handler_result {
382 	RX_HANDLER_CONSUMED,
383 	RX_HANDLER_ANOTHER,
384 	RX_HANDLER_EXACT,
385 	RX_HANDLER_PASS,
386 };
387 typedef enum rx_handler_result rx_handler_result_t;
388 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
389 
390 extern void __napi_schedule(struct napi_struct *n);
391 
392 static inline bool napi_disable_pending(struct napi_struct *n)
393 {
394 	return test_bit(NAPI_STATE_DISABLE, &n->state);
395 }
396 
397 /**
398  *	napi_schedule_prep - check if napi can be scheduled
399  *	@n: napi context
400  *
401  * Test if NAPI routine is already running, and if not mark
402  * it as running.  This is used as a condition variable
403  * insure only one NAPI poll instance runs.  We also make
404  * sure there is no pending NAPI disable.
405  */
406 static inline bool napi_schedule_prep(struct napi_struct *n)
407 {
408 	return !napi_disable_pending(n) &&
409 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
410 }
411 
412 /**
413  *	napi_schedule - schedule NAPI poll
414  *	@n: napi context
415  *
416  * Schedule NAPI poll routine to be called if it is not already
417  * running.
418  */
419 static inline void napi_schedule(struct napi_struct *n)
420 {
421 	if (napi_schedule_prep(n))
422 		__napi_schedule(n);
423 }
424 
425 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
426 static inline bool napi_reschedule(struct napi_struct *napi)
427 {
428 	if (napi_schedule_prep(napi)) {
429 		__napi_schedule(napi);
430 		return true;
431 	}
432 	return false;
433 }
434 
435 /**
436  *	napi_complete - NAPI processing complete
437  *	@n: napi context
438  *
439  * Mark NAPI processing as complete.
440  */
441 extern void __napi_complete(struct napi_struct *n);
442 extern void napi_complete(struct napi_struct *n);
443 
444 /**
445  *	napi_disable - prevent NAPI from scheduling
446  *	@n: napi context
447  *
448  * Stop NAPI from being scheduled on this context.
449  * Waits till any outstanding processing completes.
450  */
451 static inline void napi_disable(struct napi_struct *n)
452 {
453 	set_bit(NAPI_STATE_DISABLE, &n->state);
454 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
455 		msleep(1);
456 	clear_bit(NAPI_STATE_DISABLE, &n->state);
457 }
458 
459 /**
460  *	napi_enable - enable NAPI scheduling
461  *	@n: napi context
462  *
463  * Resume NAPI from being scheduled on this context.
464  * Must be paired with napi_disable.
465  */
466 static inline void napi_enable(struct napi_struct *n)
467 {
468 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
469 	smp_mb__before_clear_bit();
470 	clear_bit(NAPI_STATE_SCHED, &n->state);
471 }
472 
473 #ifdef CONFIG_SMP
474 /**
475  *	napi_synchronize - wait until NAPI is not running
476  *	@n: napi context
477  *
478  * Wait until NAPI is done being scheduled on this context.
479  * Waits till any outstanding processing completes but
480  * does not disable future activations.
481  */
482 static inline void napi_synchronize(const struct napi_struct *n)
483 {
484 	while (test_bit(NAPI_STATE_SCHED, &n->state))
485 		msleep(1);
486 }
487 #else
488 # define napi_synchronize(n)	barrier()
489 #endif
490 
491 enum netdev_queue_state_t {
492 	__QUEUE_STATE_DRV_XOFF,
493 	__QUEUE_STATE_STACK_XOFF,
494 	__QUEUE_STATE_FROZEN,
495 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
496 			      (1 << __QUEUE_STATE_STACK_XOFF))
497 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
498 					(1 << __QUEUE_STATE_FROZEN))
499 };
500 /*
501  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
502  * netif_tx_* functions below are used to manipulate this flag.  The
503  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
504  * queue independently.  The netif_xmit_*stopped functions below are called
505  * to check if the queue has been stopped by the driver or stack (either
506  * of the XOFF bits are set in the state).  Drivers should not need to call
507  * netif_xmit*stopped functions, they should only be using netif_tx_*.
508  */
509 
510 struct netdev_queue {
511 /*
512  * read mostly part
513  */
514 	struct net_device	*dev;
515 	struct Qdisc		*qdisc;
516 	struct Qdisc		*qdisc_sleeping;
517 #ifdef CONFIG_SYSFS
518 	struct kobject		kobj;
519 #endif
520 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
521 	int			numa_node;
522 #endif
523 /*
524  * write mostly part
525  */
526 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
527 	int			xmit_lock_owner;
528 	/*
529 	 * please use this field instead of dev->trans_start
530 	 */
531 	unsigned long		trans_start;
532 
533 	/*
534 	 * Number of TX timeouts for this queue
535 	 * (/sys/class/net/DEV/Q/trans_timeout)
536 	 */
537 	unsigned long		trans_timeout;
538 
539 	unsigned long		state;
540 
541 #ifdef CONFIG_BQL
542 	struct dql		dql;
543 #endif
544 } ____cacheline_aligned_in_smp;
545 
546 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
547 {
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 	return q->numa_node;
550 #else
551 	return NUMA_NO_NODE;
552 #endif
553 }
554 
555 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
556 {
557 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
558 	q->numa_node = node;
559 #endif
560 }
561 
562 #ifdef CONFIG_RPS
563 /*
564  * This structure holds an RPS map which can be of variable length.  The
565  * map is an array of CPUs.
566  */
567 struct rps_map {
568 	unsigned int len;
569 	struct rcu_head rcu;
570 	u16 cpus[0];
571 };
572 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
573 
574 /*
575  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
576  * tail pointer for that CPU's input queue at the time of last enqueue, and
577  * a hardware filter index.
578  */
579 struct rps_dev_flow {
580 	u16 cpu;
581 	u16 filter;
582 	unsigned int last_qtail;
583 };
584 #define RPS_NO_FILTER 0xffff
585 
586 /*
587  * The rps_dev_flow_table structure contains a table of flow mappings.
588  */
589 struct rps_dev_flow_table {
590 	unsigned int mask;
591 	struct rcu_head rcu;
592 	struct work_struct free_work;
593 	struct rps_dev_flow flows[0];
594 };
595 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
596     ((_num) * sizeof(struct rps_dev_flow)))
597 
598 /*
599  * The rps_sock_flow_table contains mappings of flows to the last CPU
600  * on which they were processed by the application (set in recvmsg).
601  */
602 struct rps_sock_flow_table {
603 	unsigned int mask;
604 	u16 ents[0];
605 };
606 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
607     ((_num) * sizeof(u16)))
608 
609 #define RPS_NO_CPU 0xffff
610 
611 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
612 					u32 hash)
613 {
614 	if (table && hash) {
615 		unsigned int cpu, index = hash & table->mask;
616 
617 		/* We only give a hint, preemption can change cpu under us */
618 		cpu = raw_smp_processor_id();
619 
620 		if (table->ents[index] != cpu)
621 			table->ents[index] = cpu;
622 	}
623 }
624 
625 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
626 				       u32 hash)
627 {
628 	if (table && hash)
629 		table->ents[hash & table->mask] = RPS_NO_CPU;
630 }
631 
632 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
633 
634 #ifdef CONFIG_RFS_ACCEL
635 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
636 				u32 flow_id, u16 filter_id);
637 #endif
638 
639 /* This structure contains an instance of an RX queue. */
640 struct netdev_rx_queue {
641 	struct rps_map __rcu		*rps_map;
642 	struct rps_dev_flow_table __rcu	*rps_flow_table;
643 	struct kobject			kobj;
644 	struct net_device		*dev;
645 } ____cacheline_aligned_in_smp;
646 #endif /* CONFIG_RPS */
647 
648 #ifdef CONFIG_XPS
649 /*
650  * This structure holds an XPS map which can be of variable length.  The
651  * map is an array of queues.
652  */
653 struct xps_map {
654 	unsigned int len;
655 	unsigned int alloc_len;
656 	struct rcu_head rcu;
657 	u16 queues[0];
658 };
659 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
660 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
661     / sizeof(u16))
662 
663 /*
664  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
665  */
666 struct xps_dev_maps {
667 	struct rcu_head rcu;
668 	struct xps_map __rcu *cpu_map[0];
669 };
670 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
671     (nr_cpu_ids * sizeof(struct xps_map *)))
672 #endif /* CONFIG_XPS */
673 
674 #define TC_MAX_QUEUE	16
675 #define TC_BITMASK	15
676 /* HW offloaded queuing disciplines txq count and offset maps */
677 struct netdev_tc_txq {
678 	u16 count;
679 	u16 offset;
680 };
681 
682 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
683 /*
684  * This structure is to hold information about the device
685  * configured to run FCoE protocol stack.
686  */
687 struct netdev_fcoe_hbainfo {
688 	char	manufacturer[64];
689 	char	serial_number[64];
690 	char	hardware_version[64];
691 	char	driver_version[64];
692 	char	optionrom_version[64];
693 	char	firmware_version[64];
694 	char	model[256];
695 	char	model_description[256];
696 };
697 #endif
698 
699 /*
700  * This structure defines the management hooks for network devices.
701  * The following hooks can be defined; unless noted otherwise, they are
702  * optional and can be filled with a null pointer.
703  *
704  * int (*ndo_init)(struct net_device *dev);
705  *     This function is called once when network device is registered.
706  *     The network device can use this to any late stage initializaton
707  *     or semantic validattion. It can fail with an error code which will
708  *     be propogated back to register_netdev
709  *
710  * void (*ndo_uninit)(struct net_device *dev);
711  *     This function is called when device is unregistered or when registration
712  *     fails. It is not called if init fails.
713  *
714  * int (*ndo_open)(struct net_device *dev);
715  *     This function is called when network device transistions to the up
716  *     state.
717  *
718  * int (*ndo_stop)(struct net_device *dev);
719  *     This function is called when network device transistions to the down
720  *     state.
721  *
722  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
723  *                               struct net_device *dev);
724  *	Called when a packet needs to be transmitted.
725  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
726  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
727  *	Required can not be NULL.
728  *
729  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
730  *	Called to decide which queue to when device supports multiple
731  *	transmit queues.
732  *
733  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
734  *	This function is called to allow device receiver to make
735  *	changes to configuration when multicast or promiscious is enabled.
736  *
737  * void (*ndo_set_rx_mode)(struct net_device *dev);
738  *	This function is called device changes address list filtering.
739  *	If driver handles unicast address filtering, it should set
740  *	IFF_UNICAST_FLT to its priv_flags.
741  *
742  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
743  *	This function  is called when the Media Access Control address
744  *	needs to be changed. If this interface is not defined, the
745  *	mac address can not be changed.
746  *
747  * int (*ndo_validate_addr)(struct net_device *dev);
748  *	Test if Media Access Control address is valid for the device.
749  *
750  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
751  *	Called when a user request an ioctl which can't be handled by
752  *	the generic interface code. If not defined ioctl's return
753  *	not supported error code.
754  *
755  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
756  *	Used to set network devices bus interface parameters. This interface
757  *	is retained for legacy reason, new devices should use the bus
758  *	interface (PCI) for low level management.
759  *
760  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
761  *	Called when a user wants to change the Maximum Transfer Unit
762  *	of a device. If not defined, any request to change MTU will
763  *	will return an error.
764  *
765  * void (*ndo_tx_timeout)(struct net_device *dev);
766  *	Callback uses when the transmitter has not made any progress
767  *	for dev->watchdog ticks.
768  *
769  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
770  *                      struct rtnl_link_stats64 *storage);
771  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
772  *	Called when a user wants to get the network device usage
773  *	statistics. Drivers must do one of the following:
774  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
775  *	   rtnl_link_stats64 structure passed by the caller.
776  *	2. Define @ndo_get_stats to update a net_device_stats structure
777  *	   (which should normally be dev->stats) and return a pointer to
778  *	   it. The structure may be changed asynchronously only if each
779  *	   field is written atomically.
780  *	3. Update dev->stats asynchronously and atomically, and define
781  *	   neither operation.
782  *
783  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
784  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
785  *	this function is called when a VLAN id is registered.
786  *
787  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
788  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
789  *	this function is called when a VLAN id is unregistered.
790  *
791  * void (*ndo_poll_controller)(struct net_device *dev);
792  *
793  *	SR-IOV management functions.
794  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
795  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
796  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
797  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
798  * int (*ndo_get_vf_config)(struct net_device *dev,
799  *			    int vf, struct ifla_vf_info *ivf);
800  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
801  *			  struct nlattr *port[]);
802  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
803  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
804  * 	Called to setup 'tc' number of traffic classes in the net device. This
805  * 	is always called from the stack with the rtnl lock held and netif tx
806  * 	queues stopped. This allows the netdevice to perform queue management
807  * 	safely.
808  *
809  *	Fiber Channel over Ethernet (FCoE) offload functions.
810  * int (*ndo_fcoe_enable)(struct net_device *dev);
811  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
812  *	so the underlying device can perform whatever needed configuration or
813  *	initialization to support acceleration of FCoE traffic.
814  *
815  * int (*ndo_fcoe_disable)(struct net_device *dev);
816  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
817  *	so the underlying device can perform whatever needed clean-ups to
818  *	stop supporting acceleration of FCoE traffic.
819  *
820  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
821  *			     struct scatterlist *sgl, unsigned int sgc);
822  *	Called when the FCoE Initiator wants to initialize an I/O that
823  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
824  *	perform necessary setup and returns 1 to indicate the device is set up
825  *	successfully to perform DDP on this I/O, otherwise this returns 0.
826  *
827  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
828  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
829  *	indicated by the FC exchange id 'xid', so the underlying device can
830  *	clean up and reuse resources for later DDP requests.
831  *
832  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
833  *			      struct scatterlist *sgl, unsigned int sgc);
834  *	Called when the FCoE Target wants to initialize an I/O that
835  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
836  *	perform necessary setup and returns 1 to indicate the device is set up
837  *	successfully to perform DDP on this I/O, otherwise this returns 0.
838  *
839  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
840  *			       struct netdev_fcoe_hbainfo *hbainfo);
841  *	Called when the FCoE Protocol stack wants information on the underlying
842  *	device. This information is utilized by the FCoE protocol stack to
843  *	register attributes with Fiber Channel management service as per the
844  *	FC-GS Fabric Device Management Information(FDMI) specification.
845  *
846  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
847  *	Called when the underlying device wants to override default World Wide
848  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
849  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
850  *	protocol stack to use.
851  *
852  *	RFS acceleration.
853  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
854  *			    u16 rxq_index, u32 flow_id);
855  *	Set hardware filter for RFS.  rxq_index is the target queue index;
856  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
857  *	Return the filter ID on success, or a negative error code.
858  *
859  *	Slave management functions (for bridge, bonding, etc). User should
860  *	call netdev_set_master() to set dev->master properly.
861  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
862  *	Called to make another netdev an underling.
863  *
864  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
865  *	Called to release previously enslaved netdev.
866  *
867  *      Feature/offload setting functions.
868  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
869  *		netdev_features_t features);
870  *	Adjusts the requested feature flags according to device-specific
871  *	constraints, and returns the resulting flags. Must not modify
872  *	the device state.
873  *
874  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
875  *	Called to update device configuration to new features. Passed
876  *	feature set might be less than what was returned by ndo_fix_features()).
877  *	Must return >0 or -errno if it changed dev->features itself.
878  *
879  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
880  *		      struct net_device *dev,
881  *		      const unsigned char *addr, u16 flags)
882  *	Adds an FDB entry to dev for addr.
883  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
884  *		      const unsigned char *addr)
885  *	Deletes the FDB entry from dev coresponding to addr.
886  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
887  *		       struct net_device *dev, int idx)
888  *	Used to add FDB entries to dump requests. Implementers should add
889  *	entries to skb and update idx with the number of entries.
890  */
891 struct net_device_ops {
892 	int			(*ndo_init)(struct net_device *dev);
893 	void			(*ndo_uninit)(struct net_device *dev);
894 	int			(*ndo_open)(struct net_device *dev);
895 	int			(*ndo_stop)(struct net_device *dev);
896 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
897 						   struct net_device *dev);
898 	u16			(*ndo_select_queue)(struct net_device *dev,
899 						    struct sk_buff *skb);
900 	void			(*ndo_change_rx_flags)(struct net_device *dev,
901 						       int flags);
902 	void			(*ndo_set_rx_mode)(struct net_device *dev);
903 	int			(*ndo_set_mac_address)(struct net_device *dev,
904 						       void *addr);
905 	int			(*ndo_validate_addr)(struct net_device *dev);
906 	int			(*ndo_do_ioctl)(struct net_device *dev,
907 					        struct ifreq *ifr, int cmd);
908 	int			(*ndo_set_config)(struct net_device *dev,
909 					          struct ifmap *map);
910 	int			(*ndo_change_mtu)(struct net_device *dev,
911 						  int new_mtu);
912 	int			(*ndo_neigh_setup)(struct net_device *dev,
913 						   struct neigh_parms *);
914 	void			(*ndo_tx_timeout) (struct net_device *dev);
915 
916 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
917 						     struct rtnl_link_stats64 *storage);
918 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
919 
920 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
921 						       unsigned short vid);
922 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
923 						        unsigned short vid);
924 #ifdef CONFIG_NET_POLL_CONTROLLER
925 	void                    (*ndo_poll_controller)(struct net_device *dev);
926 	int			(*ndo_netpoll_setup)(struct net_device *dev,
927 						     struct netpoll_info *info,
928 						     gfp_t gfp);
929 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
930 #endif
931 	int			(*ndo_set_vf_mac)(struct net_device *dev,
932 						  int queue, u8 *mac);
933 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
934 						   int queue, u16 vlan, u8 qos);
935 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
936 						      int vf, int rate);
937 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
938 						       int vf, bool setting);
939 	int			(*ndo_get_vf_config)(struct net_device *dev,
940 						     int vf,
941 						     struct ifla_vf_info *ivf);
942 	int			(*ndo_set_vf_port)(struct net_device *dev,
943 						   int vf,
944 						   struct nlattr *port[]);
945 	int			(*ndo_get_vf_port)(struct net_device *dev,
946 						   int vf, struct sk_buff *skb);
947 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
948 #if IS_ENABLED(CONFIG_FCOE)
949 	int			(*ndo_fcoe_enable)(struct net_device *dev);
950 	int			(*ndo_fcoe_disable)(struct net_device *dev);
951 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
952 						      u16 xid,
953 						      struct scatterlist *sgl,
954 						      unsigned int sgc);
955 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
956 						     u16 xid);
957 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
958 						       u16 xid,
959 						       struct scatterlist *sgl,
960 						       unsigned int sgc);
961 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
962 							struct netdev_fcoe_hbainfo *hbainfo);
963 #endif
964 
965 #if IS_ENABLED(CONFIG_LIBFCOE)
966 #define NETDEV_FCOE_WWNN 0
967 #define NETDEV_FCOE_WWPN 1
968 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
969 						    u64 *wwn, int type);
970 #endif
971 
972 #ifdef CONFIG_RFS_ACCEL
973 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
974 						     const struct sk_buff *skb,
975 						     u16 rxq_index,
976 						     u32 flow_id);
977 #endif
978 	int			(*ndo_add_slave)(struct net_device *dev,
979 						 struct net_device *slave_dev);
980 	int			(*ndo_del_slave)(struct net_device *dev,
981 						 struct net_device *slave_dev);
982 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
983 						    netdev_features_t features);
984 	int			(*ndo_set_features)(struct net_device *dev,
985 						    netdev_features_t features);
986 	int			(*ndo_neigh_construct)(struct neighbour *n);
987 	void			(*ndo_neigh_destroy)(struct neighbour *n);
988 
989 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
990 					       struct nlattr *tb[],
991 					       struct net_device *dev,
992 					       const unsigned char *addr,
993 					       u16 flags);
994 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
995 					       struct net_device *dev,
996 					       const unsigned char *addr);
997 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
998 						struct netlink_callback *cb,
999 						struct net_device *dev,
1000 						int idx);
1001 };
1002 
1003 /*
1004  *	The DEVICE structure.
1005  *	Actually, this whole structure is a big mistake.  It mixes I/O
1006  *	data with strictly "high-level" data, and it has to know about
1007  *	almost every data structure used in the INET module.
1008  *
1009  *	FIXME: cleanup struct net_device such that network protocol info
1010  *	moves out.
1011  */
1012 
1013 struct net_device {
1014 
1015 	/*
1016 	 * This is the first field of the "visible" part of this structure
1017 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1018 	 * of the interface.
1019 	 */
1020 	char			name[IFNAMSIZ];
1021 
1022 	/* device name hash chain, please keep it close to name[] */
1023 	struct hlist_node	name_hlist;
1024 
1025 	/* snmp alias */
1026 	char 			*ifalias;
1027 
1028 	/*
1029 	 *	I/O specific fields
1030 	 *	FIXME: Merge these and struct ifmap into one
1031 	 */
1032 	unsigned long		mem_end;	/* shared mem end	*/
1033 	unsigned long		mem_start;	/* shared mem start	*/
1034 	unsigned long		base_addr;	/* device I/O address	*/
1035 	unsigned int		irq;		/* device IRQ number	*/
1036 
1037 	/*
1038 	 *	Some hardware also needs these fields, but they are not
1039 	 *	part of the usual set specified in Space.c.
1040 	 */
1041 
1042 	unsigned long		state;
1043 
1044 	struct list_head	dev_list;
1045 	struct list_head	napi_list;
1046 	struct list_head	unreg_list;
1047 
1048 	/* currently active device features */
1049 	netdev_features_t	features;
1050 	/* user-changeable features */
1051 	netdev_features_t	hw_features;
1052 	/* user-requested features */
1053 	netdev_features_t	wanted_features;
1054 	/* mask of features inheritable by VLAN devices */
1055 	netdev_features_t	vlan_features;
1056 
1057 	/* Interface index. Unique device identifier	*/
1058 	int			ifindex;
1059 	int			iflink;
1060 
1061 	struct net_device_stats	stats;
1062 	atomic_long_t		rx_dropped; /* dropped packets by core network
1063 					     * Do not use this in drivers.
1064 					     */
1065 
1066 #ifdef CONFIG_WIRELESS_EXT
1067 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1068 	 * See <net/iw_handler.h> for details. Jean II */
1069 	const struct iw_handler_def *	wireless_handlers;
1070 	/* Instance data managed by the core of Wireless Extensions. */
1071 	struct iw_public_data *	wireless_data;
1072 #endif
1073 	/* Management operations */
1074 	const struct net_device_ops *netdev_ops;
1075 	const struct ethtool_ops *ethtool_ops;
1076 
1077 	/* Hardware header description */
1078 	const struct header_ops *header_ops;
1079 
1080 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1081 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1082 					     * See if.h for definitions. */
1083 	unsigned short		gflags;
1084 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1085 
1086 	unsigned char		operstate; /* RFC2863 operstate */
1087 	unsigned char		link_mode; /* mapping policy to operstate */
1088 
1089 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1090 	unsigned char		dma;		/* DMA channel		*/
1091 
1092 	unsigned int		mtu;	/* interface MTU value		*/
1093 	unsigned short		type;	/* interface hardware type	*/
1094 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1095 
1096 	/* extra head- and tailroom the hardware may need, but not in all cases
1097 	 * can this be guaranteed, especially tailroom. Some cases also use
1098 	 * LL_MAX_HEADER instead to allocate the skb.
1099 	 */
1100 	unsigned short		needed_headroom;
1101 	unsigned short		needed_tailroom;
1102 
1103 	/* Interface address info. */
1104 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1105 	unsigned char		addr_assign_type; /* hw address assignment type */
1106 	unsigned char		addr_len;	/* hardware address length	*/
1107 	unsigned char		neigh_priv_len;
1108 	unsigned short          dev_id;		/* for shared network cards */
1109 
1110 	spinlock_t		addr_list_lock;
1111 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1112 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1113 	bool			uc_promisc;
1114 	unsigned int		promiscuity;
1115 	unsigned int		allmulti;
1116 
1117 
1118 	/* Protocol specific pointers */
1119 
1120 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1121 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1122 #endif
1123 #if IS_ENABLED(CONFIG_NET_DSA)
1124 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1125 #endif
1126 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1127 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1128 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1129 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1130 	void			*ax25_ptr;	/* AX.25 specific data */
1131 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1132 						   assign before registering */
1133 
1134 /*
1135  * Cache lines mostly used on receive path (including eth_type_trans())
1136  */
1137 	unsigned long		last_rx;	/* Time of last Rx
1138 						 * This should not be set in
1139 						 * drivers, unless really needed,
1140 						 * because network stack (bonding)
1141 						 * use it if/when necessary, to
1142 						 * avoid dirtying this cache line.
1143 						 */
1144 
1145 	struct net_device	*master; /* Pointer to master device of a group,
1146 					  * which this device is member of.
1147 					  */
1148 
1149 	/* Interface address info used in eth_type_trans() */
1150 	unsigned char		*dev_addr;	/* hw address, (before bcast
1151 						   because most packets are
1152 						   unicast) */
1153 
1154 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1155 						      hw addresses */
1156 
1157 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1158 
1159 #ifdef CONFIG_SYSFS
1160 	struct kset		*queues_kset;
1161 #endif
1162 
1163 #ifdef CONFIG_RPS
1164 	struct netdev_rx_queue	*_rx;
1165 
1166 	/* Number of RX queues allocated at register_netdev() time */
1167 	unsigned int		num_rx_queues;
1168 
1169 	/* Number of RX queues currently active in device */
1170 	unsigned int		real_num_rx_queues;
1171 
1172 #ifdef CONFIG_RFS_ACCEL
1173 	/* CPU reverse-mapping for RX completion interrupts, indexed
1174 	 * by RX queue number.  Assigned by driver.  This must only be
1175 	 * set if the ndo_rx_flow_steer operation is defined. */
1176 	struct cpu_rmap		*rx_cpu_rmap;
1177 #endif
1178 #endif
1179 
1180 	rx_handler_func_t __rcu	*rx_handler;
1181 	void __rcu		*rx_handler_data;
1182 
1183 	struct netdev_queue __rcu *ingress_queue;
1184 
1185 /*
1186  * Cache lines mostly used on transmit path
1187  */
1188 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1189 
1190 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1191 	unsigned int		num_tx_queues;
1192 
1193 	/* Number of TX queues currently active in device  */
1194 	unsigned int		real_num_tx_queues;
1195 
1196 	/* root qdisc from userspace point of view */
1197 	struct Qdisc		*qdisc;
1198 
1199 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1200 	spinlock_t		tx_global_lock;
1201 
1202 #ifdef CONFIG_XPS
1203 	struct xps_dev_maps __rcu *xps_maps;
1204 #endif
1205 
1206 	/* These may be needed for future network-power-down code. */
1207 
1208 	/*
1209 	 * trans_start here is expensive for high speed devices on SMP,
1210 	 * please use netdev_queue->trans_start instead.
1211 	 */
1212 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1213 
1214 	int			watchdog_timeo; /* used by dev_watchdog() */
1215 	struct timer_list	watchdog_timer;
1216 
1217 	/* Number of references to this device */
1218 	int __percpu		*pcpu_refcnt;
1219 
1220 	/* delayed register/unregister */
1221 	struct list_head	todo_list;
1222 	/* device index hash chain */
1223 	struct hlist_node	index_hlist;
1224 
1225 	struct list_head	link_watch_list;
1226 
1227 	/* register/unregister state machine */
1228 	enum { NETREG_UNINITIALIZED=0,
1229 	       NETREG_REGISTERED,	/* completed register_netdevice */
1230 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1231 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1232 	       NETREG_RELEASED,		/* called free_netdev */
1233 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1234 	} reg_state:8;
1235 
1236 	bool dismantle; /* device is going do be freed */
1237 
1238 	enum {
1239 		RTNL_LINK_INITIALIZED,
1240 		RTNL_LINK_INITIALIZING,
1241 	} rtnl_link_state:16;
1242 
1243 	/* Called from unregister, can be used to call free_netdev */
1244 	void (*destructor)(struct net_device *dev);
1245 
1246 #ifdef CONFIG_NETPOLL
1247 	struct netpoll_info	*npinfo;
1248 #endif
1249 
1250 #ifdef CONFIG_NET_NS
1251 	/* Network namespace this network device is inside */
1252 	struct net		*nd_net;
1253 #endif
1254 
1255 	/* mid-layer private */
1256 	union {
1257 		void				*ml_priv;
1258 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1259 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1260 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1261 	};
1262 	/* GARP */
1263 	struct garp_port __rcu	*garp_port;
1264 
1265 	/* class/net/name entry */
1266 	struct device		dev;
1267 	/* space for optional device, statistics, and wireless sysfs groups */
1268 	const struct attribute_group *sysfs_groups[4];
1269 
1270 	/* rtnetlink link ops */
1271 	const struct rtnl_link_ops *rtnl_link_ops;
1272 
1273 	/* for setting kernel sock attribute on TCP connection setup */
1274 #define GSO_MAX_SIZE		65536
1275 	unsigned int		gso_max_size;
1276 #define GSO_MAX_SEGS		65535
1277 	u16			gso_max_segs;
1278 
1279 #ifdef CONFIG_DCB
1280 	/* Data Center Bridging netlink ops */
1281 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1282 #endif
1283 	u8 num_tc;
1284 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1285 	u8 prio_tc_map[TC_BITMASK + 1];
1286 
1287 #if IS_ENABLED(CONFIG_FCOE)
1288 	/* max exchange id for FCoE LRO by ddp */
1289 	unsigned int		fcoe_ddp_xid;
1290 #endif
1291 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1292 	struct netprio_map __rcu *priomap;
1293 #endif
1294 	/* phy device may attach itself for hardware timestamping */
1295 	struct phy_device *phydev;
1296 
1297 	struct lock_class_key *qdisc_tx_busylock;
1298 
1299 	/* group the device belongs to */
1300 	int group;
1301 
1302 	struct pm_qos_request	pm_qos_req;
1303 };
1304 #define to_net_dev(d) container_of(d, struct net_device, dev)
1305 
1306 #define	NETDEV_ALIGN		32
1307 
1308 static inline
1309 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1310 {
1311 	return dev->prio_tc_map[prio & TC_BITMASK];
1312 }
1313 
1314 static inline
1315 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1316 {
1317 	if (tc >= dev->num_tc)
1318 		return -EINVAL;
1319 
1320 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1321 	return 0;
1322 }
1323 
1324 static inline
1325 void netdev_reset_tc(struct net_device *dev)
1326 {
1327 	dev->num_tc = 0;
1328 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1329 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1330 }
1331 
1332 static inline
1333 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1334 {
1335 	if (tc >= dev->num_tc)
1336 		return -EINVAL;
1337 
1338 	dev->tc_to_txq[tc].count = count;
1339 	dev->tc_to_txq[tc].offset = offset;
1340 	return 0;
1341 }
1342 
1343 static inline
1344 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1345 {
1346 	if (num_tc > TC_MAX_QUEUE)
1347 		return -EINVAL;
1348 
1349 	dev->num_tc = num_tc;
1350 	return 0;
1351 }
1352 
1353 static inline
1354 int netdev_get_num_tc(struct net_device *dev)
1355 {
1356 	return dev->num_tc;
1357 }
1358 
1359 static inline
1360 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1361 					 unsigned int index)
1362 {
1363 	return &dev->_tx[index];
1364 }
1365 
1366 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1367 					    void (*f)(struct net_device *,
1368 						      struct netdev_queue *,
1369 						      void *),
1370 					    void *arg)
1371 {
1372 	unsigned int i;
1373 
1374 	for (i = 0; i < dev->num_tx_queues; i++)
1375 		f(dev, &dev->_tx[i], arg);
1376 }
1377 
1378 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1379 					   struct sk_buff *skb);
1380 
1381 /*
1382  * Net namespace inlines
1383  */
1384 static inline
1385 struct net *dev_net(const struct net_device *dev)
1386 {
1387 	return read_pnet(&dev->nd_net);
1388 }
1389 
1390 static inline
1391 void dev_net_set(struct net_device *dev, struct net *net)
1392 {
1393 #ifdef CONFIG_NET_NS
1394 	release_net(dev->nd_net);
1395 	dev->nd_net = hold_net(net);
1396 #endif
1397 }
1398 
1399 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1400 {
1401 #ifdef CONFIG_NET_DSA_TAG_DSA
1402 	if (dev->dsa_ptr != NULL)
1403 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1404 #endif
1405 
1406 	return 0;
1407 }
1408 
1409 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1410 {
1411 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1412 	if (dev->dsa_ptr != NULL)
1413 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1414 #endif
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  *	netdev_priv - access network device private data
1421  *	@dev: network device
1422  *
1423  * Get network device private data
1424  */
1425 static inline void *netdev_priv(const struct net_device *dev)
1426 {
1427 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1428 }
1429 
1430 /* Set the sysfs physical device reference for the network logical device
1431  * if set prior to registration will cause a symlink during initialization.
1432  */
1433 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1434 
1435 /* Set the sysfs device type for the network logical device to allow
1436  * fin grained indentification of different network device types. For
1437  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1438  */
1439 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1440 
1441 /**
1442  *	netif_napi_add - initialize a napi context
1443  *	@dev:  network device
1444  *	@napi: napi context
1445  *	@poll: polling function
1446  *	@weight: default weight
1447  *
1448  * netif_napi_add() must be used to initialize a napi context prior to calling
1449  * *any* of the other napi related functions.
1450  */
1451 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1452 		    int (*poll)(struct napi_struct *, int), int weight);
1453 
1454 /**
1455  *  netif_napi_del - remove a napi context
1456  *  @napi: napi context
1457  *
1458  *  netif_napi_del() removes a napi context from the network device napi list
1459  */
1460 void netif_napi_del(struct napi_struct *napi);
1461 
1462 struct napi_gro_cb {
1463 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1464 	void *frag0;
1465 
1466 	/* Length of frag0. */
1467 	unsigned int frag0_len;
1468 
1469 	/* This indicates where we are processing relative to skb->data. */
1470 	int data_offset;
1471 
1472 	/* This is non-zero if the packet cannot be merged with the new skb. */
1473 	int flush;
1474 
1475 	/* Number of segments aggregated. */
1476 	u16	count;
1477 
1478 	/* This is non-zero if the packet may be of the same flow. */
1479 	u8	same_flow;
1480 
1481 	/* Free the skb? */
1482 	u8	free;
1483 #define NAPI_GRO_FREE		  1
1484 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1485 
1486 	/* jiffies when first packet was created/queued */
1487 	unsigned long age;
1488 
1489 	/* Used in ipv6_gro_receive() */
1490 	int	proto;
1491 };
1492 
1493 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1494 
1495 struct packet_type {
1496 	__be16			type;	/* This is really htons(ether_type). */
1497 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1498 	int			(*func) (struct sk_buff *,
1499 					 struct net_device *,
1500 					 struct packet_type *,
1501 					 struct net_device *);
1502 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1503 						netdev_features_t features);
1504 	int			(*gso_send_check)(struct sk_buff *skb);
1505 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1506 					       struct sk_buff *skb);
1507 	int			(*gro_complete)(struct sk_buff *skb);
1508 	bool			(*id_match)(struct packet_type *ptype,
1509 					    struct sock *sk);
1510 	void			*af_packet_priv;
1511 	struct list_head	list;
1512 };
1513 
1514 #include <linux/notifier.h>
1515 
1516 /* netdevice notifier chain. Please remember to update the rtnetlink
1517  * notification exclusion list in rtnetlink_event() when adding new
1518  * types.
1519  */
1520 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1521 #define NETDEV_DOWN	0x0002
1522 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1523 				   detected a hardware crash and restarted
1524 				   - we can use this eg to kick tcp sessions
1525 				   once done */
1526 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1527 #define NETDEV_REGISTER 0x0005
1528 #define NETDEV_UNREGISTER	0x0006
1529 #define NETDEV_CHANGEMTU	0x0007
1530 #define NETDEV_CHANGEADDR	0x0008
1531 #define NETDEV_GOING_DOWN	0x0009
1532 #define NETDEV_CHANGENAME	0x000A
1533 #define NETDEV_FEAT_CHANGE	0x000B
1534 #define NETDEV_BONDING_FAILOVER 0x000C
1535 #define NETDEV_PRE_UP		0x000D
1536 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1537 #define NETDEV_POST_TYPE_CHANGE	0x000F
1538 #define NETDEV_POST_INIT	0x0010
1539 #define NETDEV_UNREGISTER_FINAL 0x0011
1540 #define NETDEV_RELEASE		0x0012
1541 #define NETDEV_NOTIFY_PEERS	0x0013
1542 #define NETDEV_JOIN		0x0014
1543 
1544 extern int register_netdevice_notifier(struct notifier_block *nb);
1545 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1546 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1547 
1548 
1549 extern rwlock_t				dev_base_lock;		/* Device list lock */
1550 
1551 
1552 #define for_each_netdev(net, d)		\
1553 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1554 #define for_each_netdev_reverse(net, d)	\
1555 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1556 #define for_each_netdev_rcu(net, d)		\
1557 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1558 #define for_each_netdev_safe(net, d, n)	\
1559 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1560 #define for_each_netdev_continue(net, d)		\
1561 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1562 #define for_each_netdev_continue_rcu(net, d)		\
1563 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1564 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1565 
1566 static inline struct net_device *next_net_device(struct net_device *dev)
1567 {
1568 	struct list_head *lh;
1569 	struct net *net;
1570 
1571 	net = dev_net(dev);
1572 	lh = dev->dev_list.next;
1573 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1574 }
1575 
1576 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1577 {
1578 	struct list_head *lh;
1579 	struct net *net;
1580 
1581 	net = dev_net(dev);
1582 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1583 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1584 }
1585 
1586 static inline struct net_device *first_net_device(struct net *net)
1587 {
1588 	return list_empty(&net->dev_base_head) ? NULL :
1589 		net_device_entry(net->dev_base_head.next);
1590 }
1591 
1592 static inline struct net_device *first_net_device_rcu(struct net *net)
1593 {
1594 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1595 
1596 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1597 }
1598 
1599 extern int 			netdev_boot_setup_check(struct net_device *dev);
1600 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1601 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1602 					      const char *hwaddr);
1603 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1604 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1605 extern void		dev_add_pack(struct packet_type *pt);
1606 extern void		dev_remove_pack(struct packet_type *pt);
1607 extern void		__dev_remove_pack(struct packet_type *pt);
1608 
1609 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1610 						      unsigned short mask);
1611 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1612 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1613 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1614 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1615 extern int		dev_open(struct net_device *dev);
1616 extern int		dev_close(struct net_device *dev);
1617 extern void		dev_disable_lro(struct net_device *dev);
1618 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1619 extern int		dev_queue_xmit(struct sk_buff *skb);
1620 extern int		register_netdevice(struct net_device *dev);
1621 extern void		unregister_netdevice_queue(struct net_device *dev,
1622 						   struct list_head *head);
1623 extern void		unregister_netdevice_many(struct list_head *head);
1624 static inline void unregister_netdevice(struct net_device *dev)
1625 {
1626 	unregister_netdevice_queue(dev, NULL);
1627 }
1628 
1629 extern int 		netdev_refcnt_read(const struct net_device *dev);
1630 extern void		free_netdev(struct net_device *dev);
1631 extern void		synchronize_net(void);
1632 extern int		init_dummy_netdev(struct net_device *dev);
1633 extern void		netdev_resync_ops(struct net_device *dev);
1634 
1635 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1636 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1637 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1638 extern int		dev_restart(struct net_device *dev);
1639 #ifdef CONFIG_NETPOLL_TRAP
1640 extern int		netpoll_trap(void);
1641 #endif
1642 extern int	       skb_gro_receive(struct sk_buff **head,
1643 				       struct sk_buff *skb);
1644 
1645 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1646 {
1647 	return NAPI_GRO_CB(skb)->data_offset;
1648 }
1649 
1650 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1651 {
1652 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1653 }
1654 
1655 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1656 {
1657 	NAPI_GRO_CB(skb)->data_offset += len;
1658 }
1659 
1660 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1661 					unsigned int offset)
1662 {
1663 	return NAPI_GRO_CB(skb)->frag0 + offset;
1664 }
1665 
1666 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1667 {
1668 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1669 }
1670 
1671 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1672 					unsigned int offset)
1673 {
1674 	if (!pskb_may_pull(skb, hlen))
1675 		return NULL;
1676 
1677 	NAPI_GRO_CB(skb)->frag0 = NULL;
1678 	NAPI_GRO_CB(skb)->frag0_len = 0;
1679 	return skb->data + offset;
1680 }
1681 
1682 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1683 {
1684 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1685 }
1686 
1687 static inline void *skb_gro_network_header(struct sk_buff *skb)
1688 {
1689 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1690 	       skb_network_offset(skb);
1691 }
1692 
1693 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1694 				  unsigned short type,
1695 				  const void *daddr, const void *saddr,
1696 				  unsigned int len)
1697 {
1698 	if (!dev->header_ops || !dev->header_ops->create)
1699 		return 0;
1700 
1701 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1702 }
1703 
1704 static inline int dev_parse_header(const struct sk_buff *skb,
1705 				   unsigned char *haddr)
1706 {
1707 	const struct net_device *dev = skb->dev;
1708 
1709 	if (!dev->header_ops || !dev->header_ops->parse)
1710 		return 0;
1711 	return dev->header_ops->parse(skb, haddr);
1712 }
1713 
1714 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1715 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1716 static inline int unregister_gifconf(unsigned int family)
1717 {
1718 	return register_gifconf(family, NULL);
1719 }
1720 
1721 /*
1722  * Incoming packets are placed on per-cpu queues
1723  */
1724 struct softnet_data {
1725 	struct Qdisc		*output_queue;
1726 	struct Qdisc		**output_queue_tailp;
1727 	struct list_head	poll_list;
1728 	struct sk_buff		*completion_queue;
1729 	struct sk_buff_head	process_queue;
1730 
1731 	/* stats */
1732 	unsigned int		processed;
1733 	unsigned int		time_squeeze;
1734 	unsigned int		cpu_collision;
1735 	unsigned int		received_rps;
1736 
1737 #ifdef CONFIG_RPS
1738 	struct softnet_data	*rps_ipi_list;
1739 
1740 	/* Elements below can be accessed between CPUs for RPS */
1741 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1742 	struct softnet_data	*rps_ipi_next;
1743 	unsigned int		cpu;
1744 	unsigned int		input_queue_head;
1745 	unsigned int		input_queue_tail;
1746 #endif
1747 	unsigned int		dropped;
1748 	struct sk_buff_head	input_pkt_queue;
1749 	struct napi_struct	backlog;
1750 };
1751 
1752 static inline void input_queue_head_incr(struct softnet_data *sd)
1753 {
1754 #ifdef CONFIG_RPS
1755 	sd->input_queue_head++;
1756 #endif
1757 }
1758 
1759 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1760 					      unsigned int *qtail)
1761 {
1762 #ifdef CONFIG_RPS
1763 	*qtail = ++sd->input_queue_tail;
1764 #endif
1765 }
1766 
1767 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1768 
1769 extern void __netif_schedule(struct Qdisc *q);
1770 
1771 static inline void netif_schedule_queue(struct netdev_queue *txq)
1772 {
1773 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1774 		__netif_schedule(txq->qdisc);
1775 }
1776 
1777 static inline void netif_tx_schedule_all(struct net_device *dev)
1778 {
1779 	unsigned int i;
1780 
1781 	for (i = 0; i < dev->num_tx_queues; i++)
1782 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1783 }
1784 
1785 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1786 {
1787 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1788 }
1789 
1790 /**
1791  *	netif_start_queue - allow transmit
1792  *	@dev: network device
1793  *
1794  *	Allow upper layers to call the device hard_start_xmit routine.
1795  */
1796 static inline void netif_start_queue(struct net_device *dev)
1797 {
1798 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1799 }
1800 
1801 static inline void netif_tx_start_all_queues(struct net_device *dev)
1802 {
1803 	unsigned int i;
1804 
1805 	for (i = 0; i < dev->num_tx_queues; i++) {
1806 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1807 		netif_tx_start_queue(txq);
1808 	}
1809 }
1810 
1811 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1812 {
1813 #ifdef CONFIG_NETPOLL_TRAP
1814 	if (netpoll_trap()) {
1815 		netif_tx_start_queue(dev_queue);
1816 		return;
1817 	}
1818 #endif
1819 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1820 		__netif_schedule(dev_queue->qdisc);
1821 }
1822 
1823 /**
1824  *	netif_wake_queue - restart transmit
1825  *	@dev: network device
1826  *
1827  *	Allow upper layers to call the device hard_start_xmit routine.
1828  *	Used for flow control when transmit resources are available.
1829  */
1830 static inline void netif_wake_queue(struct net_device *dev)
1831 {
1832 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1833 }
1834 
1835 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1836 {
1837 	unsigned int i;
1838 
1839 	for (i = 0; i < dev->num_tx_queues; i++) {
1840 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1841 		netif_tx_wake_queue(txq);
1842 	}
1843 }
1844 
1845 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1846 {
1847 	if (WARN_ON(!dev_queue)) {
1848 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1849 		return;
1850 	}
1851 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1852 }
1853 
1854 /**
1855  *	netif_stop_queue - stop transmitted packets
1856  *	@dev: network device
1857  *
1858  *	Stop upper layers calling the device hard_start_xmit routine.
1859  *	Used for flow control when transmit resources are unavailable.
1860  */
1861 static inline void netif_stop_queue(struct net_device *dev)
1862 {
1863 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1864 }
1865 
1866 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1867 {
1868 	unsigned int i;
1869 
1870 	for (i = 0; i < dev->num_tx_queues; i++) {
1871 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1872 		netif_tx_stop_queue(txq);
1873 	}
1874 }
1875 
1876 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1877 {
1878 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1879 }
1880 
1881 /**
1882  *	netif_queue_stopped - test if transmit queue is flowblocked
1883  *	@dev: network device
1884  *
1885  *	Test if transmit queue on device is currently unable to send.
1886  */
1887 static inline bool netif_queue_stopped(const struct net_device *dev)
1888 {
1889 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1890 }
1891 
1892 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1893 {
1894 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1895 }
1896 
1897 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1898 {
1899 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1900 }
1901 
1902 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1903 					unsigned int bytes)
1904 {
1905 #ifdef CONFIG_BQL
1906 	dql_queued(&dev_queue->dql, bytes);
1907 
1908 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1909 		return;
1910 
1911 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1912 
1913 	/*
1914 	 * The XOFF flag must be set before checking the dql_avail below,
1915 	 * because in netdev_tx_completed_queue we update the dql_completed
1916 	 * before checking the XOFF flag.
1917 	 */
1918 	smp_mb();
1919 
1920 	/* check again in case another CPU has just made room avail */
1921 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1922 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1923 #endif
1924 }
1925 
1926 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1927 {
1928 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1929 }
1930 
1931 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1932 					     unsigned int pkts, unsigned int bytes)
1933 {
1934 #ifdef CONFIG_BQL
1935 	if (unlikely(!bytes))
1936 		return;
1937 
1938 	dql_completed(&dev_queue->dql, bytes);
1939 
1940 	/*
1941 	 * Without the memory barrier there is a small possiblity that
1942 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1943 	 * be stopped forever
1944 	 */
1945 	smp_mb();
1946 
1947 	if (dql_avail(&dev_queue->dql) < 0)
1948 		return;
1949 
1950 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1951 		netif_schedule_queue(dev_queue);
1952 #endif
1953 }
1954 
1955 static inline void netdev_completed_queue(struct net_device *dev,
1956 					  unsigned int pkts, unsigned int bytes)
1957 {
1958 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1959 }
1960 
1961 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1962 {
1963 #ifdef CONFIG_BQL
1964 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1965 	dql_reset(&q->dql);
1966 #endif
1967 }
1968 
1969 static inline void netdev_reset_queue(struct net_device *dev_queue)
1970 {
1971 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1972 }
1973 
1974 /**
1975  *	netif_running - test if up
1976  *	@dev: network device
1977  *
1978  *	Test if the device has been brought up.
1979  */
1980 static inline bool netif_running(const struct net_device *dev)
1981 {
1982 	return test_bit(__LINK_STATE_START, &dev->state);
1983 }
1984 
1985 /*
1986  * Routines to manage the subqueues on a device.  We only need start
1987  * stop, and a check if it's stopped.  All other device management is
1988  * done at the overall netdevice level.
1989  * Also test the device if we're multiqueue.
1990  */
1991 
1992 /**
1993  *	netif_start_subqueue - allow sending packets on subqueue
1994  *	@dev: network device
1995  *	@queue_index: sub queue index
1996  *
1997  * Start individual transmit queue of a device with multiple transmit queues.
1998  */
1999 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2000 {
2001 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2002 
2003 	netif_tx_start_queue(txq);
2004 }
2005 
2006 /**
2007  *	netif_stop_subqueue - stop sending packets on subqueue
2008  *	@dev: network device
2009  *	@queue_index: sub queue index
2010  *
2011  * Stop individual transmit queue of a device with multiple transmit queues.
2012  */
2013 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2014 {
2015 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2016 #ifdef CONFIG_NETPOLL_TRAP
2017 	if (netpoll_trap())
2018 		return;
2019 #endif
2020 	netif_tx_stop_queue(txq);
2021 }
2022 
2023 /**
2024  *	netif_subqueue_stopped - test status of subqueue
2025  *	@dev: network device
2026  *	@queue_index: sub queue index
2027  *
2028  * Check individual transmit queue of a device with multiple transmit queues.
2029  */
2030 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2031 					    u16 queue_index)
2032 {
2033 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2034 
2035 	return netif_tx_queue_stopped(txq);
2036 }
2037 
2038 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2039 					  struct sk_buff *skb)
2040 {
2041 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2042 }
2043 
2044 /**
2045  *	netif_wake_subqueue - allow sending packets on subqueue
2046  *	@dev: network device
2047  *	@queue_index: sub queue index
2048  *
2049  * Resume individual transmit queue of a device with multiple transmit queues.
2050  */
2051 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2052 {
2053 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2054 #ifdef CONFIG_NETPOLL_TRAP
2055 	if (netpoll_trap())
2056 		return;
2057 #endif
2058 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2059 		__netif_schedule(txq->qdisc);
2060 }
2061 
2062 /*
2063  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2064  * as a distribution range limit for the returned value.
2065  */
2066 static inline u16 skb_tx_hash(const struct net_device *dev,
2067 			      const struct sk_buff *skb)
2068 {
2069 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2070 }
2071 
2072 /**
2073  *	netif_is_multiqueue - test if device has multiple transmit queues
2074  *	@dev: network device
2075  *
2076  * Check if device has multiple transmit queues
2077  */
2078 static inline bool netif_is_multiqueue(const struct net_device *dev)
2079 {
2080 	return dev->num_tx_queues > 1;
2081 }
2082 
2083 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2084 					unsigned int txq);
2085 
2086 #ifdef CONFIG_RPS
2087 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2088 					unsigned int rxq);
2089 #else
2090 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2091 						unsigned int rxq)
2092 {
2093 	return 0;
2094 }
2095 #endif
2096 
2097 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2098 					     const struct net_device *from_dev)
2099 {
2100 	int err;
2101 
2102 	err = netif_set_real_num_tx_queues(to_dev,
2103 					   from_dev->real_num_tx_queues);
2104 	if (err)
2105 		return err;
2106 #ifdef CONFIG_RPS
2107 	return netif_set_real_num_rx_queues(to_dev,
2108 					    from_dev->real_num_rx_queues);
2109 #else
2110 	return 0;
2111 #endif
2112 }
2113 
2114 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2115 extern int netif_get_num_default_rss_queues(void);
2116 
2117 /* Use this variant when it is known for sure that it
2118  * is executing from hardware interrupt context or with hardware interrupts
2119  * disabled.
2120  */
2121 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2122 
2123 /* Use this variant in places where it could be invoked
2124  * from either hardware interrupt or other context, with hardware interrupts
2125  * either disabled or enabled.
2126  */
2127 extern void dev_kfree_skb_any(struct sk_buff *skb);
2128 
2129 extern int		netif_rx(struct sk_buff *skb);
2130 extern int		netif_rx_ni(struct sk_buff *skb);
2131 extern int		netif_receive_skb(struct sk_buff *skb);
2132 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2133 					struct sk_buff *skb);
2134 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2135 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2136 					 struct sk_buff *skb);
2137 extern void		napi_gro_flush(struct napi_struct *napi, bool flush_old);
2138 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2139 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2140 					  struct sk_buff *skb,
2141 					  gro_result_t ret);
2142 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2143 
2144 static inline void napi_free_frags(struct napi_struct *napi)
2145 {
2146 	kfree_skb(napi->skb);
2147 	napi->skb = NULL;
2148 }
2149 
2150 extern int netdev_rx_handler_register(struct net_device *dev,
2151 				      rx_handler_func_t *rx_handler,
2152 				      void *rx_handler_data);
2153 extern void netdev_rx_handler_unregister(struct net_device *dev);
2154 
2155 extern bool		dev_valid_name(const char *name);
2156 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2157 extern int		dev_ethtool(struct net *net, struct ifreq *);
2158 extern unsigned int	dev_get_flags(const struct net_device *);
2159 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2160 extern int		dev_change_flags(struct net_device *, unsigned int);
2161 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2162 extern int		dev_change_name(struct net_device *, const char *);
2163 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2164 extern int		dev_change_net_namespace(struct net_device *,
2165 						 struct net *, const char *);
2166 extern int		dev_set_mtu(struct net_device *, int);
2167 extern void		dev_set_group(struct net_device *, int);
2168 extern int		dev_set_mac_address(struct net_device *,
2169 					    struct sockaddr *);
2170 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2171 					    struct net_device *dev,
2172 					    struct netdev_queue *txq);
2173 extern int		dev_forward_skb(struct net_device *dev,
2174 					struct sk_buff *skb);
2175 
2176 extern int		netdev_budget;
2177 
2178 /* Called by rtnetlink.c:rtnl_unlock() */
2179 extern void netdev_run_todo(void);
2180 
2181 /**
2182  *	dev_put - release reference to device
2183  *	@dev: network device
2184  *
2185  * Release reference to device to allow it to be freed.
2186  */
2187 static inline void dev_put(struct net_device *dev)
2188 {
2189 	this_cpu_dec(*dev->pcpu_refcnt);
2190 }
2191 
2192 /**
2193  *	dev_hold - get reference to device
2194  *	@dev: network device
2195  *
2196  * Hold reference to device to keep it from being freed.
2197  */
2198 static inline void dev_hold(struct net_device *dev)
2199 {
2200 	this_cpu_inc(*dev->pcpu_refcnt);
2201 }
2202 
2203 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2204  * and _off may be called from IRQ context, but it is caller
2205  * who is responsible for serialization of these calls.
2206  *
2207  * The name carrier is inappropriate, these functions should really be
2208  * called netif_lowerlayer_*() because they represent the state of any
2209  * kind of lower layer not just hardware media.
2210  */
2211 
2212 extern void linkwatch_init_dev(struct net_device *dev);
2213 extern void linkwatch_fire_event(struct net_device *dev);
2214 extern void linkwatch_forget_dev(struct net_device *dev);
2215 
2216 /**
2217  *	netif_carrier_ok - test if carrier present
2218  *	@dev: network device
2219  *
2220  * Check if carrier is present on device
2221  */
2222 static inline bool netif_carrier_ok(const struct net_device *dev)
2223 {
2224 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2225 }
2226 
2227 extern unsigned long dev_trans_start(struct net_device *dev);
2228 
2229 extern void __netdev_watchdog_up(struct net_device *dev);
2230 
2231 extern void netif_carrier_on(struct net_device *dev);
2232 
2233 extern void netif_carrier_off(struct net_device *dev);
2234 
2235 /**
2236  *	netif_dormant_on - mark device as dormant.
2237  *	@dev: network device
2238  *
2239  * Mark device as dormant (as per RFC2863).
2240  *
2241  * The dormant state indicates that the relevant interface is not
2242  * actually in a condition to pass packets (i.e., it is not 'up') but is
2243  * in a "pending" state, waiting for some external event.  For "on-
2244  * demand" interfaces, this new state identifies the situation where the
2245  * interface is waiting for events to place it in the up state.
2246  *
2247  */
2248 static inline void netif_dormant_on(struct net_device *dev)
2249 {
2250 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2251 		linkwatch_fire_event(dev);
2252 }
2253 
2254 /**
2255  *	netif_dormant_off - set device as not dormant.
2256  *	@dev: network device
2257  *
2258  * Device is not in dormant state.
2259  */
2260 static inline void netif_dormant_off(struct net_device *dev)
2261 {
2262 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2263 		linkwatch_fire_event(dev);
2264 }
2265 
2266 /**
2267  *	netif_dormant - test if carrier present
2268  *	@dev: network device
2269  *
2270  * Check if carrier is present on device
2271  */
2272 static inline bool netif_dormant(const struct net_device *dev)
2273 {
2274 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2275 }
2276 
2277 
2278 /**
2279  *	netif_oper_up - test if device is operational
2280  *	@dev: network device
2281  *
2282  * Check if carrier is operational
2283  */
2284 static inline bool netif_oper_up(const struct net_device *dev)
2285 {
2286 	return (dev->operstate == IF_OPER_UP ||
2287 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2288 }
2289 
2290 /**
2291  *	netif_device_present - is device available or removed
2292  *	@dev: network device
2293  *
2294  * Check if device has not been removed from system.
2295  */
2296 static inline bool netif_device_present(struct net_device *dev)
2297 {
2298 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2299 }
2300 
2301 extern void netif_device_detach(struct net_device *dev);
2302 
2303 extern void netif_device_attach(struct net_device *dev);
2304 
2305 /*
2306  * Network interface message level settings
2307  */
2308 
2309 enum {
2310 	NETIF_MSG_DRV		= 0x0001,
2311 	NETIF_MSG_PROBE		= 0x0002,
2312 	NETIF_MSG_LINK		= 0x0004,
2313 	NETIF_MSG_TIMER		= 0x0008,
2314 	NETIF_MSG_IFDOWN	= 0x0010,
2315 	NETIF_MSG_IFUP		= 0x0020,
2316 	NETIF_MSG_RX_ERR	= 0x0040,
2317 	NETIF_MSG_TX_ERR	= 0x0080,
2318 	NETIF_MSG_TX_QUEUED	= 0x0100,
2319 	NETIF_MSG_INTR		= 0x0200,
2320 	NETIF_MSG_TX_DONE	= 0x0400,
2321 	NETIF_MSG_RX_STATUS	= 0x0800,
2322 	NETIF_MSG_PKTDATA	= 0x1000,
2323 	NETIF_MSG_HW		= 0x2000,
2324 	NETIF_MSG_WOL		= 0x4000,
2325 };
2326 
2327 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2328 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2329 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2330 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2331 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2332 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2333 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2334 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2335 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2336 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2337 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2338 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2339 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2340 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2341 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2342 
2343 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2344 {
2345 	/* use default */
2346 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2347 		return default_msg_enable_bits;
2348 	if (debug_value == 0)	/* no output */
2349 		return 0;
2350 	/* set low N bits */
2351 	return (1 << debug_value) - 1;
2352 }
2353 
2354 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2355 {
2356 	spin_lock(&txq->_xmit_lock);
2357 	txq->xmit_lock_owner = cpu;
2358 }
2359 
2360 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2361 {
2362 	spin_lock_bh(&txq->_xmit_lock);
2363 	txq->xmit_lock_owner = smp_processor_id();
2364 }
2365 
2366 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2367 {
2368 	bool ok = spin_trylock(&txq->_xmit_lock);
2369 	if (likely(ok))
2370 		txq->xmit_lock_owner = smp_processor_id();
2371 	return ok;
2372 }
2373 
2374 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2375 {
2376 	txq->xmit_lock_owner = -1;
2377 	spin_unlock(&txq->_xmit_lock);
2378 }
2379 
2380 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2381 {
2382 	txq->xmit_lock_owner = -1;
2383 	spin_unlock_bh(&txq->_xmit_lock);
2384 }
2385 
2386 static inline void txq_trans_update(struct netdev_queue *txq)
2387 {
2388 	if (txq->xmit_lock_owner != -1)
2389 		txq->trans_start = jiffies;
2390 }
2391 
2392 /**
2393  *	netif_tx_lock - grab network device transmit lock
2394  *	@dev: network device
2395  *
2396  * Get network device transmit lock
2397  */
2398 static inline void netif_tx_lock(struct net_device *dev)
2399 {
2400 	unsigned int i;
2401 	int cpu;
2402 
2403 	spin_lock(&dev->tx_global_lock);
2404 	cpu = smp_processor_id();
2405 	for (i = 0; i < dev->num_tx_queues; i++) {
2406 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2407 
2408 		/* We are the only thread of execution doing a
2409 		 * freeze, but we have to grab the _xmit_lock in
2410 		 * order to synchronize with threads which are in
2411 		 * the ->hard_start_xmit() handler and already
2412 		 * checked the frozen bit.
2413 		 */
2414 		__netif_tx_lock(txq, cpu);
2415 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2416 		__netif_tx_unlock(txq);
2417 	}
2418 }
2419 
2420 static inline void netif_tx_lock_bh(struct net_device *dev)
2421 {
2422 	local_bh_disable();
2423 	netif_tx_lock(dev);
2424 }
2425 
2426 static inline void netif_tx_unlock(struct net_device *dev)
2427 {
2428 	unsigned int i;
2429 
2430 	for (i = 0; i < dev->num_tx_queues; i++) {
2431 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2432 
2433 		/* No need to grab the _xmit_lock here.  If the
2434 		 * queue is not stopped for another reason, we
2435 		 * force a schedule.
2436 		 */
2437 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2438 		netif_schedule_queue(txq);
2439 	}
2440 	spin_unlock(&dev->tx_global_lock);
2441 }
2442 
2443 static inline void netif_tx_unlock_bh(struct net_device *dev)
2444 {
2445 	netif_tx_unlock(dev);
2446 	local_bh_enable();
2447 }
2448 
2449 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2450 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2451 		__netif_tx_lock(txq, cpu);		\
2452 	}						\
2453 }
2454 
2455 #define HARD_TX_UNLOCK(dev, txq) {			\
2456 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2457 		__netif_tx_unlock(txq);			\
2458 	}						\
2459 }
2460 
2461 static inline void netif_tx_disable(struct net_device *dev)
2462 {
2463 	unsigned int i;
2464 	int cpu;
2465 
2466 	local_bh_disable();
2467 	cpu = smp_processor_id();
2468 	for (i = 0; i < dev->num_tx_queues; i++) {
2469 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2470 
2471 		__netif_tx_lock(txq, cpu);
2472 		netif_tx_stop_queue(txq);
2473 		__netif_tx_unlock(txq);
2474 	}
2475 	local_bh_enable();
2476 }
2477 
2478 static inline void netif_addr_lock(struct net_device *dev)
2479 {
2480 	spin_lock(&dev->addr_list_lock);
2481 }
2482 
2483 static inline void netif_addr_lock_nested(struct net_device *dev)
2484 {
2485 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2486 }
2487 
2488 static inline void netif_addr_lock_bh(struct net_device *dev)
2489 {
2490 	spin_lock_bh(&dev->addr_list_lock);
2491 }
2492 
2493 static inline void netif_addr_unlock(struct net_device *dev)
2494 {
2495 	spin_unlock(&dev->addr_list_lock);
2496 }
2497 
2498 static inline void netif_addr_unlock_bh(struct net_device *dev)
2499 {
2500 	spin_unlock_bh(&dev->addr_list_lock);
2501 }
2502 
2503 /*
2504  * dev_addrs walker. Should be used only for read access. Call with
2505  * rcu_read_lock held.
2506  */
2507 #define for_each_dev_addr(dev, ha) \
2508 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2509 
2510 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2511 
2512 extern void		ether_setup(struct net_device *dev);
2513 
2514 /* Support for loadable net-drivers */
2515 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2516 				       void (*setup)(struct net_device *),
2517 				       unsigned int txqs, unsigned int rxqs);
2518 #define alloc_netdev(sizeof_priv, name, setup) \
2519 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2520 
2521 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2522 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2523 
2524 extern int		register_netdev(struct net_device *dev);
2525 extern void		unregister_netdev(struct net_device *dev);
2526 
2527 /* General hardware address lists handling functions */
2528 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2529 				  struct netdev_hw_addr_list *from_list,
2530 				  int addr_len, unsigned char addr_type);
2531 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2532 				   struct netdev_hw_addr_list *from_list,
2533 				   int addr_len, unsigned char addr_type);
2534 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2535 			  struct netdev_hw_addr_list *from_list,
2536 			  int addr_len);
2537 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2538 			     struct netdev_hw_addr_list *from_list,
2539 			     int addr_len);
2540 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2541 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2542 
2543 /* Functions used for device addresses handling */
2544 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2545 			unsigned char addr_type);
2546 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2547 			unsigned char addr_type);
2548 extern int dev_addr_add_multiple(struct net_device *to_dev,
2549 				 struct net_device *from_dev,
2550 				 unsigned char addr_type);
2551 extern int dev_addr_del_multiple(struct net_device *to_dev,
2552 				 struct net_device *from_dev,
2553 				 unsigned char addr_type);
2554 extern void dev_addr_flush(struct net_device *dev);
2555 extern int dev_addr_init(struct net_device *dev);
2556 
2557 /* Functions used for unicast addresses handling */
2558 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2559 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2560 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2561 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2562 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2563 extern void dev_uc_flush(struct net_device *dev);
2564 extern void dev_uc_init(struct net_device *dev);
2565 
2566 /* Functions used for multicast addresses handling */
2567 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2568 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2569 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2570 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2571 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2572 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2573 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2574 extern void dev_mc_flush(struct net_device *dev);
2575 extern void dev_mc_init(struct net_device *dev);
2576 
2577 /* Functions used for secondary unicast and multicast support */
2578 extern void		dev_set_rx_mode(struct net_device *dev);
2579 extern void		__dev_set_rx_mode(struct net_device *dev);
2580 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2581 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2582 extern void		netdev_state_change(struct net_device *dev);
2583 extern void		netdev_notify_peers(struct net_device *dev);
2584 extern void		netdev_features_change(struct net_device *dev);
2585 /* Load a device via the kmod */
2586 extern void		dev_load(struct net *net, const char *name);
2587 extern void		dev_mcast_init(void);
2588 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2589 					       struct rtnl_link_stats64 *storage);
2590 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2591 				    const struct net_device_stats *netdev_stats);
2592 
2593 extern int		netdev_max_backlog;
2594 extern int		netdev_tstamp_prequeue;
2595 extern int		weight_p;
2596 extern int		bpf_jit_enable;
2597 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2598 extern int netdev_set_bond_master(struct net_device *dev,
2599 				  struct net_device *master);
2600 extern int skb_checksum_help(struct sk_buff *skb);
2601 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2602 	netdev_features_t features);
2603 #ifdef CONFIG_BUG
2604 extern void netdev_rx_csum_fault(struct net_device *dev);
2605 #else
2606 static inline void netdev_rx_csum_fault(struct net_device *dev)
2607 {
2608 }
2609 #endif
2610 /* rx skb timestamps */
2611 extern void		net_enable_timestamp(void);
2612 extern void		net_disable_timestamp(void);
2613 
2614 #ifdef CONFIG_PROC_FS
2615 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2616 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2617 extern void dev_seq_stop(struct seq_file *seq, void *v);
2618 #endif
2619 
2620 extern int netdev_class_create_file(struct class_attribute *class_attr);
2621 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2622 
2623 extern struct kobj_ns_type_operations net_ns_type_operations;
2624 
2625 extern const char *netdev_drivername(const struct net_device *dev);
2626 
2627 extern void linkwatch_run_queue(void);
2628 
2629 static inline netdev_features_t netdev_get_wanted_features(
2630 	struct net_device *dev)
2631 {
2632 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2633 }
2634 netdev_features_t netdev_increment_features(netdev_features_t all,
2635 	netdev_features_t one, netdev_features_t mask);
2636 int __netdev_update_features(struct net_device *dev);
2637 void netdev_update_features(struct net_device *dev);
2638 void netdev_change_features(struct net_device *dev);
2639 
2640 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2641 					struct net_device *dev);
2642 
2643 netdev_features_t netif_skb_features(struct sk_buff *skb);
2644 
2645 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2646 {
2647 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2648 
2649 	/* check flags correspondence */
2650 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2651 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2652 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2653 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2654 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2655 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2656 
2657 	return (features & feature) == feature;
2658 }
2659 
2660 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2661 {
2662 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2663 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2664 }
2665 
2666 static inline bool netif_needs_gso(struct sk_buff *skb,
2667 				   netdev_features_t features)
2668 {
2669 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2670 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2671 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2672 }
2673 
2674 static inline void netif_set_gso_max_size(struct net_device *dev,
2675 					  unsigned int size)
2676 {
2677 	dev->gso_max_size = size;
2678 }
2679 
2680 static inline bool netif_is_bond_slave(struct net_device *dev)
2681 {
2682 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2683 }
2684 
2685 static inline bool netif_supports_nofcs(struct net_device *dev)
2686 {
2687 	return dev->priv_flags & IFF_SUPP_NOFCS;
2688 }
2689 
2690 extern struct pernet_operations __net_initdata loopback_net_ops;
2691 
2692 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2693 
2694 /* netdev_printk helpers, similar to dev_printk */
2695 
2696 static inline const char *netdev_name(const struct net_device *dev)
2697 {
2698 	if (dev->reg_state != NETREG_REGISTERED)
2699 		return "(unregistered net_device)";
2700 	return dev->name;
2701 }
2702 
2703 extern __printf(3, 4)
2704 int netdev_printk(const char *level, const struct net_device *dev,
2705 		  const char *format, ...);
2706 extern __printf(2, 3)
2707 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2708 extern __printf(2, 3)
2709 int netdev_alert(const struct net_device *dev, const char *format, ...);
2710 extern __printf(2, 3)
2711 int netdev_crit(const struct net_device *dev, const char *format, ...);
2712 extern __printf(2, 3)
2713 int netdev_err(const struct net_device *dev, const char *format, ...);
2714 extern __printf(2, 3)
2715 int netdev_warn(const struct net_device *dev, const char *format, ...);
2716 extern __printf(2, 3)
2717 int netdev_notice(const struct net_device *dev, const char *format, ...);
2718 extern __printf(2, 3)
2719 int netdev_info(const struct net_device *dev, const char *format, ...);
2720 
2721 #define MODULE_ALIAS_NETDEV(device) \
2722 	MODULE_ALIAS("netdev-" device)
2723 
2724 #if defined(CONFIG_DYNAMIC_DEBUG)
2725 #define netdev_dbg(__dev, format, args...)			\
2726 do {								\
2727 	dynamic_netdev_dbg(__dev, format, ##args);		\
2728 } while (0)
2729 #elif defined(DEBUG)
2730 #define netdev_dbg(__dev, format, args...)			\
2731 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2732 #else
2733 #define netdev_dbg(__dev, format, args...)			\
2734 ({								\
2735 	if (0)							\
2736 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2737 	0;							\
2738 })
2739 #endif
2740 
2741 #if defined(VERBOSE_DEBUG)
2742 #define netdev_vdbg	netdev_dbg
2743 #else
2744 
2745 #define netdev_vdbg(dev, format, args...)			\
2746 ({								\
2747 	if (0)							\
2748 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2749 	0;							\
2750 })
2751 #endif
2752 
2753 /*
2754  * netdev_WARN() acts like dev_printk(), but with the key difference
2755  * of using a WARN/WARN_ON to get the message out, including the
2756  * file/line information and a backtrace.
2757  */
2758 #define netdev_WARN(dev, format, args...)			\
2759 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2760 
2761 /* netif printk helpers, similar to netdev_printk */
2762 
2763 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2764 do {					  			\
2765 	if (netif_msg_##type(priv))				\
2766 		netdev_printk(level, (dev), fmt, ##args);	\
2767 } while (0)
2768 
2769 #define netif_level(level, priv, type, dev, fmt, args...)	\
2770 do {								\
2771 	if (netif_msg_##type(priv))				\
2772 		netdev_##level(dev, fmt, ##args);		\
2773 } while (0)
2774 
2775 #define netif_emerg(priv, type, dev, fmt, args...)		\
2776 	netif_level(emerg, priv, type, dev, fmt, ##args)
2777 #define netif_alert(priv, type, dev, fmt, args...)		\
2778 	netif_level(alert, priv, type, dev, fmt, ##args)
2779 #define netif_crit(priv, type, dev, fmt, args...)		\
2780 	netif_level(crit, priv, type, dev, fmt, ##args)
2781 #define netif_err(priv, type, dev, fmt, args...)		\
2782 	netif_level(err, priv, type, dev, fmt, ##args)
2783 #define netif_warn(priv, type, dev, fmt, args...)		\
2784 	netif_level(warn, priv, type, dev, fmt, ##args)
2785 #define netif_notice(priv, type, dev, fmt, args...)		\
2786 	netif_level(notice, priv, type, dev, fmt, ##args)
2787 #define netif_info(priv, type, dev, fmt, args...)		\
2788 	netif_level(info, priv, type, dev, fmt, ##args)
2789 
2790 #if defined(CONFIG_DYNAMIC_DEBUG)
2791 #define netif_dbg(priv, type, netdev, format, args...)		\
2792 do {								\
2793 	if (netif_msg_##type(priv))				\
2794 		dynamic_netdev_dbg(netdev, format, ##args);	\
2795 } while (0)
2796 #elif defined(DEBUG)
2797 #define netif_dbg(priv, type, dev, format, args...)		\
2798 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2799 #else
2800 #define netif_dbg(priv, type, dev, format, args...)			\
2801 ({									\
2802 	if (0)								\
2803 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2804 	0;								\
2805 })
2806 #endif
2807 
2808 #if defined(VERBOSE_DEBUG)
2809 #define netif_vdbg	netif_dbg
2810 #else
2811 #define netif_vdbg(priv, type, dev, format, args...)		\
2812 ({								\
2813 	if (0)							\
2814 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2815 	0;							\
2816 })
2817 #endif
2818 
2819 #endif	/* _LINUX_NETDEVICE_H */
2820