1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos_params.h> 35 #include <linux/timer.h> 36 #include <linux/delay.h> 37 #include <linux/mm.h> 38 #include <asm/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/device.h> 43 #include <linux/percpu.h> 44 #include <linux/rculist.h> 45 #include <linux/dmaengine.h> 46 #include <linux/workqueue.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 55 struct vlan_group; 56 struct netpoll_info; 57 struct phy_device; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* source back-compat hooks */ 61 #define SET_ETHTOOL_OPS(netdev,ops) \ 62 ( (netdev)->ethtool_ops = (ops) ) 63 64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev 65 functions are available. */ 66 #define HAVE_FREE_NETDEV /* free_netdev() */ 67 #define HAVE_NETDEV_PRIV /* netdev_priv() */ 68 69 /* hardware address assignment types */ 70 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously, in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), all 92 * others are propagated to higher layers. 93 */ 94 95 /* qdisc ->enqueue() return codes. */ 96 #define NET_XMIT_SUCCESS 0x00 97 #define NET_XMIT_DROP 0x01 /* skb dropped */ 98 #define NET_XMIT_CN 0x02 /* congestion notification */ 99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 116 }; 117 typedef enum netdev_tx netdev_tx_t; 118 119 /* 120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 122 */ 123 static inline bool dev_xmit_complete(int rc) 124 { 125 /* 126 * Positive cases with an skb consumed by a driver: 127 * - successful transmission (rc == NETDEV_TX_OK) 128 * - error while transmitting (rc < 0) 129 * - error while queueing to a different device (rc & NET_XMIT_MASK) 130 */ 131 if (likely(rc < NET_XMIT_MASK)) 132 return true; 133 134 return false; 135 } 136 137 #endif 138 139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 140 141 #ifdef __KERNEL__ 142 /* 143 * Compute the worst case header length according to the protocols 144 * used. 145 */ 146 147 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 154 # define LL_MAX_HEADER 48 155 #else 156 # define LL_MAX_HEADER 32 157 #endif 158 159 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 160 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 161 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 162 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 163 #define MAX_HEADER LL_MAX_HEADER 164 #else 165 #define MAX_HEADER (LL_MAX_HEADER + 48) 166 #endif 167 168 /* 169 * Old network device statistics. Fields are native words 170 * (unsigned long) so they can be read and written atomically. 171 */ 172 173 struct net_device_stats { 174 unsigned long rx_packets; 175 unsigned long tx_packets; 176 unsigned long rx_bytes; 177 unsigned long tx_bytes; 178 unsigned long rx_errors; 179 unsigned long tx_errors; 180 unsigned long rx_dropped; 181 unsigned long tx_dropped; 182 unsigned long multicast; 183 unsigned long collisions; 184 unsigned long rx_length_errors; 185 unsigned long rx_over_errors; 186 unsigned long rx_crc_errors; 187 unsigned long rx_frame_errors; 188 unsigned long rx_fifo_errors; 189 unsigned long rx_missed_errors; 190 unsigned long tx_aborted_errors; 191 unsigned long tx_carrier_errors; 192 unsigned long tx_fifo_errors; 193 unsigned long tx_heartbeat_errors; 194 unsigned long tx_window_errors; 195 unsigned long rx_compressed; 196 unsigned long tx_compressed; 197 }; 198 199 #endif /* __KERNEL__ */ 200 201 202 /* Media selection options. */ 203 enum { 204 IF_PORT_UNKNOWN = 0, 205 IF_PORT_10BASE2, 206 IF_PORT_10BASET, 207 IF_PORT_AUI, 208 IF_PORT_100BASET, 209 IF_PORT_100BASETX, 210 IF_PORT_100BASEFX 211 }; 212 213 #ifdef __KERNEL__ 214 215 #include <linux/cache.h> 216 #include <linux/skbuff.h> 217 218 struct neighbour; 219 struct neigh_parms; 220 struct sk_buff; 221 222 struct netdev_hw_addr { 223 struct list_head list; 224 unsigned char addr[MAX_ADDR_LEN]; 225 unsigned char type; 226 #define NETDEV_HW_ADDR_T_LAN 1 227 #define NETDEV_HW_ADDR_T_SAN 2 228 #define NETDEV_HW_ADDR_T_SLAVE 3 229 #define NETDEV_HW_ADDR_T_UNICAST 4 230 #define NETDEV_HW_ADDR_T_MULTICAST 5 231 int refcount; 232 bool synced; 233 bool global_use; 234 struct rcu_head rcu_head; 235 }; 236 237 struct netdev_hw_addr_list { 238 struct list_head list; 239 int count; 240 }; 241 242 #define netdev_hw_addr_list_count(l) ((l)->count) 243 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 244 #define netdev_hw_addr_list_for_each(ha, l) \ 245 list_for_each_entry(ha, &(l)->list, list) 246 247 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 248 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 249 #define netdev_for_each_uc_addr(ha, dev) \ 250 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 251 252 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 253 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 254 #define netdev_for_each_mc_addr(ha, dev) \ 255 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 256 257 struct hh_cache { 258 struct hh_cache *hh_next; /* Next entry */ 259 atomic_t hh_refcnt; /* number of users */ 260 /* 261 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate 262 * cache line on SMP. 263 * They are mostly read, but hh_refcnt may be changed quite frequently, 264 * incurring cache line ping pongs. 265 */ 266 __be16 hh_type ____cacheline_aligned_in_smp; 267 /* protocol identifier, f.e ETH_P_IP 268 * NOTE: For VLANs, this will be the 269 * encapuslated type. --BLG 270 */ 271 u16 hh_len; /* length of header */ 272 int (*hh_output)(struct sk_buff *skb); 273 seqlock_t hh_lock; 274 275 /* cached hardware header; allow for machine alignment needs. */ 276 #define HH_DATA_MOD 16 277 #define HH_DATA_OFF(__len) \ 278 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 279 #define HH_DATA_ALIGN(__len) \ 280 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 281 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 282 }; 283 284 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 285 * Alternative is: 286 * dev->hard_header_len ? (dev->hard_header_len + 287 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 288 * 289 * We could use other alignment values, but we must maintain the 290 * relationship HH alignment <= LL alignment. 291 * 292 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 293 * may need. 294 */ 295 #define LL_RESERVED_SPACE(dev) \ 296 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 297 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 298 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 299 #define LL_ALLOCATED_SPACE(dev) \ 300 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 301 302 struct header_ops { 303 int (*create) (struct sk_buff *skb, struct net_device *dev, 304 unsigned short type, const void *daddr, 305 const void *saddr, unsigned len); 306 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 307 int (*rebuild)(struct sk_buff *skb); 308 #define HAVE_HEADER_CACHE 309 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); 310 void (*cache_update)(struct hh_cache *hh, 311 const struct net_device *dev, 312 const unsigned char *haddr); 313 }; 314 315 /* These flag bits are private to the generic network queueing 316 * layer, they may not be explicitly referenced by any other 317 * code. 318 */ 319 320 enum netdev_state_t { 321 __LINK_STATE_START, 322 __LINK_STATE_PRESENT, 323 __LINK_STATE_NOCARRIER, 324 __LINK_STATE_LINKWATCH_PENDING, 325 __LINK_STATE_DORMANT, 326 }; 327 328 329 /* 330 * This structure holds at boot time configured netdevice settings. They 331 * are then used in the device probing. 332 */ 333 struct netdev_boot_setup { 334 char name[IFNAMSIZ]; 335 struct ifmap map; 336 }; 337 #define NETDEV_BOOT_SETUP_MAX 8 338 339 extern int __init netdev_boot_setup(char *str); 340 341 /* 342 * Structure for NAPI scheduling similar to tasklet but with weighting 343 */ 344 struct napi_struct { 345 /* The poll_list must only be managed by the entity which 346 * changes the state of the NAPI_STATE_SCHED bit. This means 347 * whoever atomically sets that bit can add this napi_struct 348 * to the per-cpu poll_list, and whoever clears that bit 349 * can remove from the list right before clearing the bit. 350 */ 351 struct list_head poll_list; 352 353 unsigned long state; 354 int weight; 355 int (*poll)(struct napi_struct *, int); 356 #ifdef CONFIG_NETPOLL 357 spinlock_t poll_lock; 358 int poll_owner; 359 #endif 360 361 unsigned int gro_count; 362 363 struct net_device *dev; 364 struct list_head dev_list; 365 struct sk_buff *gro_list; 366 struct sk_buff *skb; 367 }; 368 369 enum { 370 NAPI_STATE_SCHED, /* Poll is scheduled */ 371 NAPI_STATE_DISABLE, /* Disable pending */ 372 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 373 }; 374 375 enum gro_result { 376 GRO_MERGED, 377 GRO_MERGED_FREE, 378 GRO_HELD, 379 GRO_NORMAL, 380 GRO_DROP, 381 }; 382 typedef enum gro_result gro_result_t; 383 384 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb); 385 386 extern void __napi_schedule(struct napi_struct *n); 387 388 static inline int napi_disable_pending(struct napi_struct *n) 389 { 390 return test_bit(NAPI_STATE_DISABLE, &n->state); 391 } 392 393 /** 394 * napi_schedule_prep - check if napi can be scheduled 395 * @n: napi context 396 * 397 * Test if NAPI routine is already running, and if not mark 398 * it as running. This is used as a condition variable 399 * insure only one NAPI poll instance runs. We also make 400 * sure there is no pending NAPI disable. 401 */ 402 static inline int napi_schedule_prep(struct napi_struct *n) 403 { 404 return !napi_disable_pending(n) && 405 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 406 } 407 408 /** 409 * napi_schedule - schedule NAPI poll 410 * @n: napi context 411 * 412 * Schedule NAPI poll routine to be called if it is not already 413 * running. 414 */ 415 static inline void napi_schedule(struct napi_struct *n) 416 { 417 if (napi_schedule_prep(n)) 418 __napi_schedule(n); 419 } 420 421 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 422 static inline int napi_reschedule(struct napi_struct *napi) 423 { 424 if (napi_schedule_prep(napi)) { 425 __napi_schedule(napi); 426 return 1; 427 } 428 return 0; 429 } 430 431 /** 432 * napi_complete - NAPI processing complete 433 * @n: napi context 434 * 435 * Mark NAPI processing as complete. 436 */ 437 extern void __napi_complete(struct napi_struct *n); 438 extern void napi_complete(struct napi_struct *n); 439 440 /** 441 * napi_disable - prevent NAPI from scheduling 442 * @n: napi context 443 * 444 * Stop NAPI from being scheduled on this context. 445 * Waits till any outstanding processing completes. 446 */ 447 static inline void napi_disable(struct napi_struct *n) 448 { 449 set_bit(NAPI_STATE_DISABLE, &n->state); 450 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 451 msleep(1); 452 clear_bit(NAPI_STATE_DISABLE, &n->state); 453 } 454 455 /** 456 * napi_enable - enable NAPI scheduling 457 * @n: napi context 458 * 459 * Resume NAPI from being scheduled on this context. 460 * Must be paired with napi_disable. 461 */ 462 static inline void napi_enable(struct napi_struct *n) 463 { 464 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 465 smp_mb__before_clear_bit(); 466 clear_bit(NAPI_STATE_SCHED, &n->state); 467 } 468 469 #ifdef CONFIG_SMP 470 /** 471 * napi_synchronize - wait until NAPI is not running 472 * @n: napi context 473 * 474 * Wait until NAPI is done being scheduled on this context. 475 * Waits till any outstanding processing completes but 476 * does not disable future activations. 477 */ 478 static inline void napi_synchronize(const struct napi_struct *n) 479 { 480 while (test_bit(NAPI_STATE_SCHED, &n->state)) 481 msleep(1); 482 } 483 #else 484 # define napi_synchronize(n) barrier() 485 #endif 486 487 enum netdev_queue_state_t { 488 __QUEUE_STATE_XOFF, 489 __QUEUE_STATE_FROZEN, 490 }; 491 492 struct netdev_queue { 493 /* 494 * read mostly part 495 */ 496 struct net_device *dev; 497 struct Qdisc *qdisc; 498 unsigned long state; 499 struct Qdisc *qdisc_sleeping; 500 /* 501 * write mostly part 502 */ 503 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 504 int xmit_lock_owner; 505 /* 506 * please use this field instead of dev->trans_start 507 */ 508 unsigned long trans_start; 509 u64 tx_bytes; 510 u64 tx_packets; 511 u64 tx_dropped; 512 } ____cacheline_aligned_in_smp; 513 514 #ifdef CONFIG_RPS 515 /* 516 * This structure holds an RPS map which can be of variable length. The 517 * map is an array of CPUs. 518 */ 519 struct rps_map { 520 unsigned int len; 521 struct rcu_head rcu; 522 u16 cpus[0]; 523 }; 524 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) 525 526 /* 527 * The rps_dev_flow structure contains the mapping of a flow to a CPU and the 528 * tail pointer for that CPU's input queue at the time of last enqueue. 529 */ 530 struct rps_dev_flow { 531 u16 cpu; 532 u16 fill; 533 unsigned int last_qtail; 534 }; 535 536 /* 537 * The rps_dev_flow_table structure contains a table of flow mappings. 538 */ 539 struct rps_dev_flow_table { 540 unsigned int mask; 541 struct rcu_head rcu; 542 struct work_struct free_work; 543 struct rps_dev_flow flows[0]; 544 }; 545 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 546 (_num * sizeof(struct rps_dev_flow))) 547 548 /* 549 * The rps_sock_flow_table contains mappings of flows to the last CPU 550 * on which they were processed by the application (set in recvmsg). 551 */ 552 struct rps_sock_flow_table { 553 unsigned int mask; 554 u16 ents[0]; 555 }; 556 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 557 (_num * sizeof(u16))) 558 559 #define RPS_NO_CPU 0xffff 560 561 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 562 u32 hash) 563 { 564 if (table && hash) { 565 unsigned int cpu, index = hash & table->mask; 566 567 /* We only give a hint, preemption can change cpu under us */ 568 cpu = raw_smp_processor_id(); 569 570 if (table->ents[index] != cpu) 571 table->ents[index] = cpu; 572 } 573 } 574 575 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 576 u32 hash) 577 { 578 if (table && hash) 579 table->ents[hash & table->mask] = RPS_NO_CPU; 580 } 581 582 extern struct rps_sock_flow_table *rps_sock_flow_table; 583 584 /* This structure contains an instance of an RX queue. */ 585 struct netdev_rx_queue { 586 struct rps_map *rps_map; 587 struct rps_dev_flow_table *rps_flow_table; 588 struct kobject kobj; 589 struct netdev_rx_queue *first; 590 atomic_t count; 591 } ____cacheline_aligned_in_smp; 592 #endif /* CONFIG_RPS */ 593 594 /* 595 * This structure defines the management hooks for network devices. 596 * The following hooks can be defined; unless noted otherwise, they are 597 * optional and can be filled with a null pointer. 598 * 599 * int (*ndo_init)(struct net_device *dev); 600 * This function is called once when network device is registered. 601 * The network device can use this to any late stage initializaton 602 * or semantic validattion. It can fail with an error code which will 603 * be propogated back to register_netdev 604 * 605 * void (*ndo_uninit)(struct net_device *dev); 606 * This function is called when device is unregistered or when registration 607 * fails. It is not called if init fails. 608 * 609 * int (*ndo_open)(struct net_device *dev); 610 * This function is called when network device transistions to the up 611 * state. 612 * 613 * int (*ndo_stop)(struct net_device *dev); 614 * This function is called when network device transistions to the down 615 * state. 616 * 617 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 618 * struct net_device *dev); 619 * Called when a packet needs to be transmitted. 620 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 621 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 622 * Required can not be NULL. 623 * 624 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 625 * Called to decide which queue to when device supports multiple 626 * transmit queues. 627 * 628 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 629 * This function is called to allow device receiver to make 630 * changes to configuration when multicast or promiscious is enabled. 631 * 632 * void (*ndo_set_rx_mode)(struct net_device *dev); 633 * This function is called device changes address list filtering. 634 * 635 * void (*ndo_set_multicast_list)(struct net_device *dev); 636 * This function is called when the multicast address list changes. 637 * 638 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 639 * This function is called when the Media Access Control address 640 * needs to be changed. If this interface is not defined, the 641 * mac address can not be changed. 642 * 643 * int (*ndo_validate_addr)(struct net_device *dev); 644 * Test if Media Access Control address is valid for the device. 645 * 646 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 647 * Called when a user request an ioctl which can't be handled by 648 * the generic interface code. If not defined ioctl's return 649 * not supported error code. 650 * 651 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 652 * Used to set network devices bus interface parameters. This interface 653 * is retained for legacy reason, new devices should use the bus 654 * interface (PCI) for low level management. 655 * 656 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 657 * Called when a user wants to change the Maximum Transfer Unit 658 * of a device. If not defined, any request to change MTU will 659 * will return an error. 660 * 661 * void (*ndo_tx_timeout)(struct net_device *dev); 662 * Callback uses when the transmitter has not made any progress 663 * for dev->watchdog ticks. 664 * 665 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 666 * struct rtnl_link_stats64 *storage); 667 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 668 * Called when a user wants to get the network device usage 669 * statistics. Drivers must do one of the following: 670 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 671 * rtnl_link_stats64 structure passed by the caller. 672 * 2. Define @ndo_get_stats to update a net_device_stats structure 673 * (which should normally be dev->stats) and return a pointer to 674 * it. The structure may be changed asynchronously only if each 675 * field is written atomically. 676 * 3. Update dev->stats asynchronously and atomically, and define 677 * neither operation. 678 * 679 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); 680 * If device support VLAN receive accleration 681 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called 682 * when vlan groups for the device changes. Note: grp is NULL 683 * if no vlan's groups are being used. 684 * 685 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 686 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 687 * this function is called when a VLAN id is registered. 688 * 689 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 690 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 691 * this function is called when a VLAN id is unregistered. 692 * 693 * void (*ndo_poll_controller)(struct net_device *dev); 694 * 695 * SR-IOV management functions. 696 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 697 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 698 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 699 * int (*ndo_get_vf_config)(struct net_device *dev, 700 * int vf, struct ifla_vf_info *ivf); 701 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 702 * struct nlattr *port[]); 703 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 704 */ 705 #define HAVE_NET_DEVICE_OPS 706 struct net_device_ops { 707 int (*ndo_init)(struct net_device *dev); 708 void (*ndo_uninit)(struct net_device *dev); 709 int (*ndo_open)(struct net_device *dev); 710 int (*ndo_stop)(struct net_device *dev); 711 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 712 struct net_device *dev); 713 u16 (*ndo_select_queue)(struct net_device *dev, 714 struct sk_buff *skb); 715 void (*ndo_change_rx_flags)(struct net_device *dev, 716 int flags); 717 void (*ndo_set_rx_mode)(struct net_device *dev); 718 void (*ndo_set_multicast_list)(struct net_device *dev); 719 int (*ndo_set_mac_address)(struct net_device *dev, 720 void *addr); 721 int (*ndo_validate_addr)(struct net_device *dev); 722 int (*ndo_do_ioctl)(struct net_device *dev, 723 struct ifreq *ifr, int cmd); 724 int (*ndo_set_config)(struct net_device *dev, 725 struct ifmap *map); 726 int (*ndo_change_mtu)(struct net_device *dev, 727 int new_mtu); 728 int (*ndo_neigh_setup)(struct net_device *dev, 729 struct neigh_parms *); 730 void (*ndo_tx_timeout) (struct net_device *dev); 731 732 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 733 struct rtnl_link_stats64 *storage); 734 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 735 736 void (*ndo_vlan_rx_register)(struct net_device *dev, 737 struct vlan_group *grp); 738 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 739 unsigned short vid); 740 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 741 unsigned short vid); 742 #ifdef CONFIG_NET_POLL_CONTROLLER 743 void (*ndo_poll_controller)(struct net_device *dev); 744 int (*ndo_netpoll_setup)(struct net_device *dev, 745 struct netpoll_info *info); 746 void (*ndo_netpoll_cleanup)(struct net_device *dev); 747 #endif 748 int (*ndo_set_vf_mac)(struct net_device *dev, 749 int queue, u8 *mac); 750 int (*ndo_set_vf_vlan)(struct net_device *dev, 751 int queue, u16 vlan, u8 qos); 752 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 753 int vf, int rate); 754 int (*ndo_get_vf_config)(struct net_device *dev, 755 int vf, 756 struct ifla_vf_info *ivf); 757 int (*ndo_set_vf_port)(struct net_device *dev, 758 int vf, 759 struct nlattr *port[]); 760 int (*ndo_get_vf_port)(struct net_device *dev, 761 int vf, struct sk_buff *skb); 762 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 763 int (*ndo_fcoe_enable)(struct net_device *dev); 764 int (*ndo_fcoe_disable)(struct net_device *dev); 765 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 766 u16 xid, 767 struct scatterlist *sgl, 768 unsigned int sgc); 769 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 770 u16 xid); 771 #define NETDEV_FCOE_WWNN 0 772 #define NETDEV_FCOE_WWPN 1 773 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 774 u64 *wwn, int type); 775 #endif 776 }; 777 778 /* 779 * The DEVICE structure. 780 * Actually, this whole structure is a big mistake. It mixes I/O 781 * data with strictly "high-level" data, and it has to know about 782 * almost every data structure used in the INET module. 783 * 784 * FIXME: cleanup struct net_device such that network protocol info 785 * moves out. 786 */ 787 788 struct net_device { 789 790 /* 791 * This is the first field of the "visible" part of this structure 792 * (i.e. as seen by users in the "Space.c" file). It is the name 793 * of the interface. 794 */ 795 char name[IFNAMSIZ]; 796 797 struct pm_qos_request_list pm_qos_req; 798 799 /* device name hash chain */ 800 struct hlist_node name_hlist; 801 /* snmp alias */ 802 char *ifalias; 803 804 /* 805 * I/O specific fields 806 * FIXME: Merge these and struct ifmap into one 807 */ 808 unsigned long mem_end; /* shared mem end */ 809 unsigned long mem_start; /* shared mem start */ 810 unsigned long base_addr; /* device I/O address */ 811 unsigned int irq; /* device IRQ number */ 812 813 /* 814 * Some hardware also needs these fields, but they are not 815 * part of the usual set specified in Space.c. 816 */ 817 818 unsigned char if_port; /* Selectable AUI, TP,..*/ 819 unsigned char dma; /* DMA channel */ 820 821 unsigned long state; 822 823 struct list_head dev_list; 824 struct list_head napi_list; 825 struct list_head unreg_list; 826 827 /* Net device features */ 828 unsigned long features; 829 #define NETIF_F_SG 1 /* Scatter/gather IO. */ 830 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 831 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 832 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 833 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 834 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 835 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 836 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 837 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 838 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 839 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 840 #define NETIF_F_GSO 2048 /* Enable software GSO. */ 841 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 842 /* do not use LLTX in new drivers */ 843 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 844 #define NETIF_F_GRO 16384 /* Generic receive offload */ 845 #define NETIF_F_LRO 32768 /* large receive offload */ 846 847 /* the GSO_MASK reserves bits 16 through 23 */ 848 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 849 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 850 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 851 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ 852 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ 853 854 /* Segmentation offload features */ 855 #define NETIF_F_GSO_SHIFT 16 856 #define NETIF_F_GSO_MASK 0x00ff0000 857 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 858 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 859 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 860 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 861 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 862 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 863 864 /* List of features with software fallbacks. */ 865 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ 866 NETIF_F_TSO6 | NETIF_F_UFO) 867 868 869 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 870 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 871 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 872 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 873 874 /* 875 * If one device supports one of these features, then enable them 876 * for all in netdev_increment_features. 877 */ 878 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 879 NETIF_F_SG | NETIF_F_HIGHDMA | \ 880 NETIF_F_FRAGLIST) 881 882 /* Interface index. Unique device identifier */ 883 int ifindex; 884 int iflink; 885 886 struct net_device_stats stats; 887 888 #ifdef CONFIG_WIRELESS_EXT 889 /* List of functions to handle Wireless Extensions (instead of ioctl). 890 * See <net/iw_handler.h> for details. Jean II */ 891 const struct iw_handler_def * wireless_handlers; 892 /* Instance data managed by the core of Wireless Extensions. */ 893 struct iw_public_data * wireless_data; 894 #endif 895 /* Management operations */ 896 const struct net_device_ops *netdev_ops; 897 const struct ethtool_ops *ethtool_ops; 898 899 /* Hardware header description */ 900 const struct header_ops *header_ops; 901 902 unsigned int flags; /* interface flags (a la BSD) */ 903 unsigned short gflags; 904 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 905 unsigned short padded; /* How much padding added by alloc_netdev() */ 906 907 unsigned char operstate; /* RFC2863 operstate */ 908 unsigned char link_mode; /* mapping policy to operstate */ 909 910 unsigned int mtu; /* interface MTU value */ 911 unsigned short type; /* interface hardware type */ 912 unsigned short hard_header_len; /* hardware hdr length */ 913 914 /* extra head- and tailroom the hardware may need, but not in all cases 915 * can this be guaranteed, especially tailroom. Some cases also use 916 * LL_MAX_HEADER instead to allocate the skb. 917 */ 918 unsigned short needed_headroom; 919 unsigned short needed_tailroom; 920 921 struct net_device *master; /* Pointer to master device of a group, 922 * which this device is member of. 923 */ 924 925 /* Interface address info. */ 926 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 927 unsigned char addr_assign_type; /* hw address assignment type */ 928 unsigned char addr_len; /* hardware address length */ 929 unsigned short dev_id; /* for shared network cards */ 930 931 spinlock_t addr_list_lock; 932 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 933 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 934 int uc_promisc; 935 unsigned int promiscuity; 936 unsigned int allmulti; 937 938 939 /* Protocol specific pointers */ 940 941 #ifdef CONFIG_NET_DSA 942 void *dsa_ptr; /* dsa specific data */ 943 #endif 944 void *atalk_ptr; /* AppleTalk link */ 945 void *ip_ptr; /* IPv4 specific data */ 946 void *dn_ptr; /* DECnet specific data */ 947 void *ip6_ptr; /* IPv6 specific data */ 948 void *ec_ptr; /* Econet specific data */ 949 void *ax25_ptr; /* AX.25 specific data */ 950 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 951 assign before registering */ 952 953 /* 954 * Cache line mostly used on receive path (including eth_type_trans()) 955 */ 956 unsigned long last_rx; /* Time of last Rx 957 * This should not be set in 958 * drivers, unless really needed, 959 * because network stack (bonding) 960 * use it if/when necessary, to 961 * avoid dirtying this cache line. 962 */ 963 964 /* Interface address info used in eth_type_trans() */ 965 unsigned char *dev_addr; /* hw address, (before bcast 966 because most packets are 967 unicast) */ 968 969 struct netdev_hw_addr_list dev_addrs; /* list of device 970 hw addresses */ 971 972 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 973 974 #ifdef CONFIG_RPS 975 struct kset *queues_kset; 976 977 struct netdev_rx_queue *_rx; 978 979 /* Number of RX queues allocated at alloc_netdev_mq() time */ 980 unsigned int num_rx_queues; 981 #endif 982 983 struct netdev_queue rx_queue; 984 rx_handler_func_t *rx_handler; 985 void *rx_handler_data; 986 987 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 988 989 /* Number of TX queues allocated at alloc_netdev_mq() time */ 990 unsigned int num_tx_queues; 991 992 /* Number of TX queues currently active in device */ 993 unsigned int real_num_tx_queues; 994 995 /* root qdisc from userspace point of view */ 996 struct Qdisc *qdisc; 997 998 unsigned long tx_queue_len; /* Max frames per queue allowed */ 999 spinlock_t tx_global_lock; 1000 /* 1001 * One part is mostly used on xmit path (device) 1002 */ 1003 /* These may be needed for future network-power-down code. */ 1004 1005 /* 1006 * trans_start here is expensive for high speed devices on SMP, 1007 * please use netdev_queue->trans_start instead. 1008 */ 1009 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1010 1011 int watchdog_timeo; /* used by dev_watchdog() */ 1012 struct timer_list watchdog_timer; 1013 1014 /* Number of references to this device */ 1015 atomic_t refcnt ____cacheline_aligned_in_smp; 1016 1017 /* delayed register/unregister */ 1018 struct list_head todo_list; 1019 /* device index hash chain */ 1020 struct hlist_node index_hlist; 1021 1022 struct list_head link_watch_list; 1023 1024 /* register/unregister state machine */ 1025 enum { NETREG_UNINITIALIZED=0, 1026 NETREG_REGISTERED, /* completed register_netdevice */ 1027 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1028 NETREG_UNREGISTERED, /* completed unregister todo */ 1029 NETREG_RELEASED, /* called free_netdev */ 1030 NETREG_DUMMY, /* dummy device for NAPI poll */ 1031 } reg_state:16; 1032 1033 enum { 1034 RTNL_LINK_INITIALIZED, 1035 RTNL_LINK_INITIALIZING, 1036 } rtnl_link_state:16; 1037 1038 /* Called from unregister, can be used to call free_netdev */ 1039 void (*destructor)(struct net_device *dev); 1040 1041 #ifdef CONFIG_NETPOLL 1042 struct netpoll_info *npinfo; 1043 #endif 1044 1045 #ifdef CONFIG_NET_NS 1046 /* Network namespace this network device is inside */ 1047 struct net *nd_net; 1048 #endif 1049 1050 /* mid-layer private */ 1051 void *ml_priv; 1052 1053 /* GARP */ 1054 struct garp_port *garp_port; 1055 1056 /* class/net/name entry */ 1057 struct device dev; 1058 /* space for optional device, statistics, and wireless sysfs groups */ 1059 const struct attribute_group *sysfs_groups[4]; 1060 1061 /* rtnetlink link ops */ 1062 const struct rtnl_link_ops *rtnl_link_ops; 1063 1064 /* VLAN feature mask */ 1065 unsigned long vlan_features; 1066 1067 /* for setting kernel sock attribute on TCP connection setup */ 1068 #define GSO_MAX_SIZE 65536 1069 unsigned int gso_max_size; 1070 1071 #ifdef CONFIG_DCB 1072 /* Data Center Bridging netlink ops */ 1073 const struct dcbnl_rtnl_ops *dcbnl_ops; 1074 #endif 1075 1076 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 1077 /* max exchange id for FCoE LRO by ddp */ 1078 unsigned int fcoe_ddp_xid; 1079 #endif 1080 /* n-tuple filter list attached to this device */ 1081 struct ethtool_rx_ntuple_list ethtool_ntuple_list; 1082 1083 /* phy device may attach itself for hardware timestamping */ 1084 struct phy_device *phydev; 1085 }; 1086 #define to_net_dev(d) container_of(d, struct net_device, dev) 1087 1088 #define NETDEV_ALIGN 32 1089 1090 static inline 1091 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1092 unsigned int index) 1093 { 1094 return &dev->_tx[index]; 1095 } 1096 1097 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1098 void (*f)(struct net_device *, 1099 struct netdev_queue *, 1100 void *), 1101 void *arg) 1102 { 1103 unsigned int i; 1104 1105 for (i = 0; i < dev->num_tx_queues; i++) 1106 f(dev, &dev->_tx[i], arg); 1107 } 1108 1109 /* 1110 * Net namespace inlines 1111 */ 1112 static inline 1113 struct net *dev_net(const struct net_device *dev) 1114 { 1115 return read_pnet(&dev->nd_net); 1116 } 1117 1118 static inline 1119 void dev_net_set(struct net_device *dev, struct net *net) 1120 { 1121 #ifdef CONFIG_NET_NS 1122 release_net(dev->nd_net); 1123 dev->nd_net = hold_net(net); 1124 #endif 1125 } 1126 1127 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1128 { 1129 #ifdef CONFIG_NET_DSA_TAG_DSA 1130 if (dev->dsa_ptr != NULL) 1131 return dsa_uses_dsa_tags(dev->dsa_ptr); 1132 #endif 1133 1134 return 0; 1135 } 1136 1137 #ifndef CONFIG_NET_NS 1138 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1139 { 1140 skb->dev = dev; 1141 } 1142 #else /* CONFIG_NET_NS */ 1143 void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1144 #endif 1145 1146 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1147 { 1148 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1149 if (dev->dsa_ptr != NULL) 1150 return dsa_uses_trailer_tags(dev->dsa_ptr); 1151 #endif 1152 1153 return 0; 1154 } 1155 1156 /** 1157 * netdev_priv - access network device private data 1158 * @dev: network device 1159 * 1160 * Get network device private data 1161 */ 1162 static inline void *netdev_priv(const struct net_device *dev) 1163 { 1164 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1165 } 1166 1167 /* Set the sysfs physical device reference for the network logical device 1168 * if set prior to registration will cause a symlink during initialization. 1169 */ 1170 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1171 1172 /* Set the sysfs device type for the network logical device to allow 1173 * fin grained indentification of different network device types. For 1174 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1175 */ 1176 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1177 1178 /** 1179 * netif_napi_add - initialize a napi context 1180 * @dev: network device 1181 * @napi: napi context 1182 * @poll: polling function 1183 * @weight: default weight 1184 * 1185 * netif_napi_add() must be used to initialize a napi context prior to calling 1186 * *any* of the other napi related functions. 1187 */ 1188 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1189 int (*poll)(struct napi_struct *, int), int weight); 1190 1191 /** 1192 * netif_napi_del - remove a napi context 1193 * @napi: napi context 1194 * 1195 * netif_napi_del() removes a napi context from the network device napi list 1196 */ 1197 void netif_napi_del(struct napi_struct *napi); 1198 1199 struct napi_gro_cb { 1200 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1201 void *frag0; 1202 1203 /* Length of frag0. */ 1204 unsigned int frag0_len; 1205 1206 /* This indicates where we are processing relative to skb->data. */ 1207 int data_offset; 1208 1209 /* This is non-zero if the packet may be of the same flow. */ 1210 int same_flow; 1211 1212 /* This is non-zero if the packet cannot be merged with the new skb. */ 1213 int flush; 1214 1215 /* Number of segments aggregated. */ 1216 int count; 1217 1218 /* Free the skb? */ 1219 int free; 1220 }; 1221 1222 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1223 1224 struct packet_type { 1225 __be16 type; /* This is really htons(ether_type). */ 1226 struct net_device *dev; /* NULL is wildcarded here */ 1227 int (*func) (struct sk_buff *, 1228 struct net_device *, 1229 struct packet_type *, 1230 struct net_device *); 1231 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1232 int features); 1233 int (*gso_send_check)(struct sk_buff *skb); 1234 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1235 struct sk_buff *skb); 1236 int (*gro_complete)(struct sk_buff *skb); 1237 void *af_packet_priv; 1238 struct list_head list; 1239 }; 1240 1241 #include <linux/interrupt.h> 1242 #include <linux/notifier.h> 1243 1244 extern rwlock_t dev_base_lock; /* Device list lock */ 1245 1246 1247 #define for_each_netdev(net, d) \ 1248 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1249 #define for_each_netdev_reverse(net, d) \ 1250 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1251 #define for_each_netdev_rcu(net, d) \ 1252 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1253 #define for_each_netdev_safe(net, d, n) \ 1254 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1255 #define for_each_netdev_continue(net, d) \ 1256 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1257 #define for_each_netdev_continue_rcu(net, d) \ 1258 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1259 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1260 1261 static inline struct net_device *next_net_device(struct net_device *dev) 1262 { 1263 struct list_head *lh; 1264 struct net *net; 1265 1266 net = dev_net(dev); 1267 lh = dev->dev_list.next; 1268 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1269 } 1270 1271 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1272 { 1273 struct list_head *lh; 1274 struct net *net; 1275 1276 net = dev_net(dev); 1277 lh = rcu_dereference(dev->dev_list.next); 1278 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1279 } 1280 1281 static inline struct net_device *first_net_device(struct net *net) 1282 { 1283 return list_empty(&net->dev_base_head) ? NULL : 1284 net_device_entry(net->dev_base_head.next); 1285 } 1286 1287 extern int netdev_boot_setup_check(struct net_device *dev); 1288 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1289 extern struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *hwaddr); 1290 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1291 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1292 extern void dev_add_pack(struct packet_type *pt); 1293 extern void dev_remove_pack(struct packet_type *pt); 1294 extern void __dev_remove_pack(struct packet_type *pt); 1295 1296 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1297 unsigned short mask); 1298 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1299 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1300 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1301 extern int dev_alloc_name(struct net_device *dev, const char *name); 1302 extern int dev_open(struct net_device *dev); 1303 extern int dev_close(struct net_device *dev); 1304 extern void dev_disable_lro(struct net_device *dev); 1305 extern int dev_queue_xmit(struct sk_buff *skb); 1306 extern int register_netdevice(struct net_device *dev); 1307 extern void unregister_netdevice_queue(struct net_device *dev, 1308 struct list_head *head); 1309 extern void unregister_netdevice_many(struct list_head *head); 1310 static inline void unregister_netdevice(struct net_device *dev) 1311 { 1312 unregister_netdevice_queue(dev, NULL); 1313 } 1314 1315 extern void free_netdev(struct net_device *dev); 1316 extern void synchronize_net(void); 1317 extern int register_netdevice_notifier(struct notifier_block *nb); 1318 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1319 extern int init_dummy_netdev(struct net_device *dev); 1320 extern void netdev_resync_ops(struct net_device *dev); 1321 1322 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1323 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1324 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1325 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1326 extern int dev_restart(struct net_device *dev); 1327 #ifdef CONFIG_NETPOLL_TRAP 1328 extern int netpoll_trap(void); 1329 #endif 1330 extern int skb_gro_receive(struct sk_buff **head, 1331 struct sk_buff *skb); 1332 extern void skb_gro_reset_offset(struct sk_buff *skb); 1333 1334 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1335 { 1336 return NAPI_GRO_CB(skb)->data_offset; 1337 } 1338 1339 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1340 { 1341 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1342 } 1343 1344 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1345 { 1346 NAPI_GRO_CB(skb)->data_offset += len; 1347 } 1348 1349 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1350 unsigned int offset) 1351 { 1352 return NAPI_GRO_CB(skb)->frag0 + offset; 1353 } 1354 1355 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1356 { 1357 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1358 } 1359 1360 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1361 unsigned int offset) 1362 { 1363 NAPI_GRO_CB(skb)->frag0 = NULL; 1364 NAPI_GRO_CB(skb)->frag0_len = 0; 1365 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 1366 } 1367 1368 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1369 { 1370 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1371 } 1372 1373 static inline void *skb_gro_network_header(struct sk_buff *skb) 1374 { 1375 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1376 skb_network_offset(skb); 1377 } 1378 1379 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1380 unsigned short type, 1381 const void *daddr, const void *saddr, 1382 unsigned len) 1383 { 1384 if (!dev->header_ops || !dev->header_ops->create) 1385 return 0; 1386 1387 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1388 } 1389 1390 static inline int dev_parse_header(const struct sk_buff *skb, 1391 unsigned char *haddr) 1392 { 1393 const struct net_device *dev = skb->dev; 1394 1395 if (!dev->header_ops || !dev->header_ops->parse) 1396 return 0; 1397 return dev->header_ops->parse(skb, haddr); 1398 } 1399 1400 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1401 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1402 static inline int unregister_gifconf(unsigned int family) 1403 { 1404 return register_gifconf(family, NULL); 1405 } 1406 1407 /* 1408 * Incoming packets are placed on per-cpu queues 1409 */ 1410 struct softnet_data { 1411 struct Qdisc *output_queue; 1412 struct Qdisc **output_queue_tailp; 1413 struct list_head poll_list; 1414 struct sk_buff *completion_queue; 1415 struct sk_buff_head process_queue; 1416 1417 /* stats */ 1418 unsigned int processed; 1419 unsigned int time_squeeze; 1420 unsigned int cpu_collision; 1421 unsigned int received_rps; 1422 1423 #ifdef CONFIG_RPS 1424 struct softnet_data *rps_ipi_list; 1425 1426 /* Elements below can be accessed between CPUs for RPS */ 1427 struct call_single_data csd ____cacheline_aligned_in_smp; 1428 struct softnet_data *rps_ipi_next; 1429 unsigned int cpu; 1430 unsigned int input_queue_head; 1431 unsigned int input_queue_tail; 1432 #endif 1433 unsigned dropped; 1434 struct sk_buff_head input_pkt_queue; 1435 struct napi_struct backlog; 1436 }; 1437 1438 static inline void input_queue_head_incr(struct softnet_data *sd) 1439 { 1440 #ifdef CONFIG_RPS 1441 sd->input_queue_head++; 1442 #endif 1443 } 1444 1445 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1446 unsigned int *qtail) 1447 { 1448 #ifdef CONFIG_RPS 1449 *qtail = ++sd->input_queue_tail; 1450 #endif 1451 } 1452 1453 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1454 1455 #define HAVE_NETIF_QUEUE 1456 1457 extern void __netif_schedule(struct Qdisc *q); 1458 1459 static inline void netif_schedule_queue(struct netdev_queue *txq) 1460 { 1461 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1462 __netif_schedule(txq->qdisc); 1463 } 1464 1465 static inline void netif_tx_schedule_all(struct net_device *dev) 1466 { 1467 unsigned int i; 1468 1469 for (i = 0; i < dev->num_tx_queues; i++) 1470 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1471 } 1472 1473 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1474 { 1475 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1476 } 1477 1478 /** 1479 * netif_start_queue - allow transmit 1480 * @dev: network device 1481 * 1482 * Allow upper layers to call the device hard_start_xmit routine. 1483 */ 1484 static inline void netif_start_queue(struct net_device *dev) 1485 { 1486 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1487 } 1488 1489 static inline void netif_tx_start_all_queues(struct net_device *dev) 1490 { 1491 unsigned int i; 1492 1493 for (i = 0; i < dev->num_tx_queues; i++) { 1494 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1495 netif_tx_start_queue(txq); 1496 } 1497 } 1498 1499 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1500 { 1501 #ifdef CONFIG_NETPOLL_TRAP 1502 if (netpoll_trap()) { 1503 netif_tx_start_queue(dev_queue); 1504 return; 1505 } 1506 #endif 1507 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1508 __netif_schedule(dev_queue->qdisc); 1509 } 1510 1511 /** 1512 * netif_wake_queue - restart transmit 1513 * @dev: network device 1514 * 1515 * Allow upper layers to call the device hard_start_xmit routine. 1516 * Used for flow control when transmit resources are available. 1517 */ 1518 static inline void netif_wake_queue(struct net_device *dev) 1519 { 1520 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1521 } 1522 1523 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1524 { 1525 unsigned int i; 1526 1527 for (i = 0; i < dev->num_tx_queues; i++) { 1528 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1529 netif_tx_wake_queue(txq); 1530 } 1531 } 1532 1533 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1534 { 1535 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1536 } 1537 1538 /** 1539 * netif_stop_queue - stop transmitted packets 1540 * @dev: network device 1541 * 1542 * Stop upper layers calling the device hard_start_xmit routine. 1543 * Used for flow control when transmit resources are unavailable. 1544 */ 1545 static inline void netif_stop_queue(struct net_device *dev) 1546 { 1547 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1548 } 1549 1550 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1551 { 1552 unsigned int i; 1553 1554 for (i = 0; i < dev->num_tx_queues; i++) { 1555 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1556 netif_tx_stop_queue(txq); 1557 } 1558 } 1559 1560 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1561 { 1562 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1563 } 1564 1565 /** 1566 * netif_queue_stopped - test if transmit queue is flowblocked 1567 * @dev: network device 1568 * 1569 * Test if transmit queue on device is currently unable to send. 1570 */ 1571 static inline int netif_queue_stopped(const struct net_device *dev) 1572 { 1573 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1574 } 1575 1576 static inline int netif_tx_queue_frozen(const struct netdev_queue *dev_queue) 1577 { 1578 return test_bit(__QUEUE_STATE_FROZEN, &dev_queue->state); 1579 } 1580 1581 /** 1582 * netif_running - test if up 1583 * @dev: network device 1584 * 1585 * Test if the device has been brought up. 1586 */ 1587 static inline int netif_running(const struct net_device *dev) 1588 { 1589 return test_bit(__LINK_STATE_START, &dev->state); 1590 } 1591 1592 /* 1593 * Routines to manage the subqueues on a device. We only need start 1594 * stop, and a check if it's stopped. All other device management is 1595 * done at the overall netdevice level. 1596 * Also test the device if we're multiqueue. 1597 */ 1598 1599 /** 1600 * netif_start_subqueue - allow sending packets on subqueue 1601 * @dev: network device 1602 * @queue_index: sub queue index 1603 * 1604 * Start individual transmit queue of a device with multiple transmit queues. 1605 */ 1606 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1607 { 1608 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1609 1610 netif_tx_start_queue(txq); 1611 } 1612 1613 /** 1614 * netif_stop_subqueue - stop sending packets on subqueue 1615 * @dev: network device 1616 * @queue_index: sub queue index 1617 * 1618 * Stop individual transmit queue of a device with multiple transmit queues. 1619 */ 1620 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1621 { 1622 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1623 #ifdef CONFIG_NETPOLL_TRAP 1624 if (netpoll_trap()) 1625 return; 1626 #endif 1627 netif_tx_stop_queue(txq); 1628 } 1629 1630 /** 1631 * netif_subqueue_stopped - test status of subqueue 1632 * @dev: network device 1633 * @queue_index: sub queue index 1634 * 1635 * Check individual transmit queue of a device with multiple transmit queues. 1636 */ 1637 static inline int __netif_subqueue_stopped(const struct net_device *dev, 1638 u16 queue_index) 1639 { 1640 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1641 1642 return netif_tx_queue_stopped(txq); 1643 } 1644 1645 static inline int netif_subqueue_stopped(const struct net_device *dev, 1646 struct sk_buff *skb) 1647 { 1648 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1649 } 1650 1651 /** 1652 * netif_wake_subqueue - allow sending packets on subqueue 1653 * @dev: network device 1654 * @queue_index: sub queue index 1655 * 1656 * Resume individual transmit queue of a device with multiple transmit queues. 1657 */ 1658 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1659 { 1660 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1661 #ifdef CONFIG_NETPOLL_TRAP 1662 if (netpoll_trap()) 1663 return; 1664 #endif 1665 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 1666 __netif_schedule(txq->qdisc); 1667 } 1668 1669 /** 1670 * netif_is_multiqueue - test if device has multiple transmit queues 1671 * @dev: network device 1672 * 1673 * Check if device has multiple transmit queues 1674 */ 1675 static inline int netif_is_multiqueue(const struct net_device *dev) 1676 { 1677 return (dev->num_tx_queues > 1); 1678 } 1679 1680 extern void netif_set_real_num_tx_queues(struct net_device *dev, 1681 unsigned int txq); 1682 1683 /* Use this variant when it is known for sure that it 1684 * is executing from hardware interrupt context or with hardware interrupts 1685 * disabled. 1686 */ 1687 extern void dev_kfree_skb_irq(struct sk_buff *skb); 1688 1689 /* Use this variant in places where it could be invoked 1690 * from either hardware interrupt or other context, with hardware interrupts 1691 * either disabled or enabled. 1692 */ 1693 extern void dev_kfree_skb_any(struct sk_buff *skb); 1694 1695 #define HAVE_NETIF_RX 1 1696 extern int netif_rx(struct sk_buff *skb); 1697 extern int netif_rx_ni(struct sk_buff *skb); 1698 #define HAVE_NETIF_RECEIVE_SKB 1 1699 extern int netif_receive_skb(struct sk_buff *skb); 1700 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 1701 struct sk_buff *skb); 1702 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 1703 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 1704 struct sk_buff *skb); 1705 extern void napi_gro_flush(struct napi_struct *napi); 1706 extern void napi_reuse_skb(struct napi_struct *napi, 1707 struct sk_buff *skb); 1708 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 1709 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 1710 struct sk_buff *skb, 1711 gro_result_t ret); 1712 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 1713 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 1714 1715 static inline void napi_free_frags(struct napi_struct *napi) 1716 { 1717 kfree_skb(napi->skb); 1718 napi->skb = NULL; 1719 } 1720 1721 extern int netdev_rx_handler_register(struct net_device *dev, 1722 rx_handler_func_t *rx_handler, 1723 void *rx_handler_data); 1724 extern void netdev_rx_handler_unregister(struct net_device *dev); 1725 1726 extern void netif_nit_deliver(struct sk_buff *skb); 1727 extern int dev_valid_name(const char *name); 1728 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 1729 extern int dev_ethtool(struct net *net, struct ifreq *); 1730 extern unsigned dev_get_flags(const struct net_device *); 1731 extern int __dev_change_flags(struct net_device *, unsigned int flags); 1732 extern int dev_change_flags(struct net_device *, unsigned); 1733 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 1734 extern int dev_change_name(struct net_device *, const char *); 1735 extern int dev_set_alias(struct net_device *, const char *, size_t); 1736 extern int dev_change_net_namespace(struct net_device *, 1737 struct net *, const char *); 1738 extern int dev_set_mtu(struct net_device *, int); 1739 extern int dev_set_mac_address(struct net_device *, 1740 struct sockaddr *); 1741 extern int dev_hard_start_xmit(struct sk_buff *skb, 1742 struct net_device *dev, 1743 struct netdev_queue *txq); 1744 extern int dev_forward_skb(struct net_device *dev, 1745 struct sk_buff *skb); 1746 1747 extern int netdev_budget; 1748 1749 /* Called by rtnetlink.c:rtnl_unlock() */ 1750 extern void netdev_run_todo(void); 1751 1752 /** 1753 * dev_put - release reference to device 1754 * @dev: network device 1755 * 1756 * Release reference to device to allow it to be freed. 1757 */ 1758 static inline void dev_put(struct net_device *dev) 1759 { 1760 atomic_dec(&dev->refcnt); 1761 } 1762 1763 /** 1764 * dev_hold - get reference to device 1765 * @dev: network device 1766 * 1767 * Hold reference to device to keep it from being freed. 1768 */ 1769 static inline void dev_hold(struct net_device *dev) 1770 { 1771 atomic_inc(&dev->refcnt); 1772 } 1773 1774 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 1775 * and _off may be called from IRQ context, but it is caller 1776 * who is responsible for serialization of these calls. 1777 * 1778 * The name carrier is inappropriate, these functions should really be 1779 * called netif_lowerlayer_*() because they represent the state of any 1780 * kind of lower layer not just hardware media. 1781 */ 1782 1783 extern void linkwatch_fire_event(struct net_device *dev); 1784 extern void linkwatch_forget_dev(struct net_device *dev); 1785 1786 /** 1787 * netif_carrier_ok - test if carrier present 1788 * @dev: network device 1789 * 1790 * Check if carrier is present on device 1791 */ 1792 static inline int netif_carrier_ok(const struct net_device *dev) 1793 { 1794 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 1795 } 1796 1797 extern unsigned long dev_trans_start(struct net_device *dev); 1798 1799 extern void __netdev_watchdog_up(struct net_device *dev); 1800 1801 extern void netif_carrier_on(struct net_device *dev); 1802 1803 extern void netif_carrier_off(struct net_device *dev); 1804 1805 extern void netif_notify_peers(struct net_device *dev); 1806 1807 /** 1808 * netif_dormant_on - mark device as dormant. 1809 * @dev: network device 1810 * 1811 * Mark device as dormant (as per RFC2863). 1812 * 1813 * The dormant state indicates that the relevant interface is not 1814 * actually in a condition to pass packets (i.e., it is not 'up') but is 1815 * in a "pending" state, waiting for some external event. For "on- 1816 * demand" interfaces, this new state identifies the situation where the 1817 * interface is waiting for events to place it in the up state. 1818 * 1819 */ 1820 static inline void netif_dormant_on(struct net_device *dev) 1821 { 1822 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 1823 linkwatch_fire_event(dev); 1824 } 1825 1826 /** 1827 * netif_dormant_off - set device as not dormant. 1828 * @dev: network device 1829 * 1830 * Device is not in dormant state. 1831 */ 1832 static inline void netif_dormant_off(struct net_device *dev) 1833 { 1834 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 1835 linkwatch_fire_event(dev); 1836 } 1837 1838 /** 1839 * netif_dormant - test if carrier present 1840 * @dev: network device 1841 * 1842 * Check if carrier is present on device 1843 */ 1844 static inline int netif_dormant(const struct net_device *dev) 1845 { 1846 return test_bit(__LINK_STATE_DORMANT, &dev->state); 1847 } 1848 1849 1850 /** 1851 * netif_oper_up - test if device is operational 1852 * @dev: network device 1853 * 1854 * Check if carrier is operational 1855 */ 1856 static inline int netif_oper_up(const struct net_device *dev) 1857 { 1858 return (dev->operstate == IF_OPER_UP || 1859 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 1860 } 1861 1862 /** 1863 * netif_device_present - is device available or removed 1864 * @dev: network device 1865 * 1866 * Check if device has not been removed from system. 1867 */ 1868 static inline int netif_device_present(struct net_device *dev) 1869 { 1870 return test_bit(__LINK_STATE_PRESENT, &dev->state); 1871 } 1872 1873 extern void netif_device_detach(struct net_device *dev); 1874 1875 extern void netif_device_attach(struct net_device *dev); 1876 1877 /* 1878 * Network interface message level settings 1879 */ 1880 #define HAVE_NETIF_MSG 1 1881 1882 enum { 1883 NETIF_MSG_DRV = 0x0001, 1884 NETIF_MSG_PROBE = 0x0002, 1885 NETIF_MSG_LINK = 0x0004, 1886 NETIF_MSG_TIMER = 0x0008, 1887 NETIF_MSG_IFDOWN = 0x0010, 1888 NETIF_MSG_IFUP = 0x0020, 1889 NETIF_MSG_RX_ERR = 0x0040, 1890 NETIF_MSG_TX_ERR = 0x0080, 1891 NETIF_MSG_TX_QUEUED = 0x0100, 1892 NETIF_MSG_INTR = 0x0200, 1893 NETIF_MSG_TX_DONE = 0x0400, 1894 NETIF_MSG_RX_STATUS = 0x0800, 1895 NETIF_MSG_PKTDATA = 0x1000, 1896 NETIF_MSG_HW = 0x2000, 1897 NETIF_MSG_WOL = 0x4000, 1898 }; 1899 1900 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 1901 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 1902 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 1903 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 1904 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 1905 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 1906 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 1907 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 1908 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 1909 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 1910 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 1911 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 1912 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 1913 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 1914 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 1915 1916 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 1917 { 1918 /* use default */ 1919 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 1920 return default_msg_enable_bits; 1921 if (debug_value == 0) /* no output */ 1922 return 0; 1923 /* set low N bits */ 1924 return (1 << debug_value) - 1; 1925 } 1926 1927 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 1928 { 1929 spin_lock(&txq->_xmit_lock); 1930 txq->xmit_lock_owner = cpu; 1931 } 1932 1933 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 1934 { 1935 spin_lock_bh(&txq->_xmit_lock); 1936 txq->xmit_lock_owner = smp_processor_id(); 1937 } 1938 1939 static inline int __netif_tx_trylock(struct netdev_queue *txq) 1940 { 1941 int ok = spin_trylock(&txq->_xmit_lock); 1942 if (likely(ok)) 1943 txq->xmit_lock_owner = smp_processor_id(); 1944 return ok; 1945 } 1946 1947 static inline void __netif_tx_unlock(struct netdev_queue *txq) 1948 { 1949 txq->xmit_lock_owner = -1; 1950 spin_unlock(&txq->_xmit_lock); 1951 } 1952 1953 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 1954 { 1955 txq->xmit_lock_owner = -1; 1956 spin_unlock_bh(&txq->_xmit_lock); 1957 } 1958 1959 static inline void txq_trans_update(struct netdev_queue *txq) 1960 { 1961 if (txq->xmit_lock_owner != -1) 1962 txq->trans_start = jiffies; 1963 } 1964 1965 /** 1966 * netif_tx_lock - grab network device transmit lock 1967 * @dev: network device 1968 * 1969 * Get network device transmit lock 1970 */ 1971 static inline void netif_tx_lock(struct net_device *dev) 1972 { 1973 unsigned int i; 1974 int cpu; 1975 1976 spin_lock(&dev->tx_global_lock); 1977 cpu = smp_processor_id(); 1978 for (i = 0; i < dev->num_tx_queues; i++) { 1979 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1980 1981 /* We are the only thread of execution doing a 1982 * freeze, but we have to grab the _xmit_lock in 1983 * order to synchronize with threads which are in 1984 * the ->hard_start_xmit() handler and already 1985 * checked the frozen bit. 1986 */ 1987 __netif_tx_lock(txq, cpu); 1988 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 1989 __netif_tx_unlock(txq); 1990 } 1991 } 1992 1993 static inline void netif_tx_lock_bh(struct net_device *dev) 1994 { 1995 local_bh_disable(); 1996 netif_tx_lock(dev); 1997 } 1998 1999 static inline void netif_tx_unlock(struct net_device *dev) 2000 { 2001 unsigned int i; 2002 2003 for (i = 0; i < dev->num_tx_queues; i++) { 2004 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2005 2006 /* No need to grab the _xmit_lock here. If the 2007 * queue is not stopped for another reason, we 2008 * force a schedule. 2009 */ 2010 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2011 netif_schedule_queue(txq); 2012 } 2013 spin_unlock(&dev->tx_global_lock); 2014 } 2015 2016 static inline void netif_tx_unlock_bh(struct net_device *dev) 2017 { 2018 netif_tx_unlock(dev); 2019 local_bh_enable(); 2020 } 2021 2022 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2023 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2024 __netif_tx_lock(txq, cpu); \ 2025 } \ 2026 } 2027 2028 #define HARD_TX_UNLOCK(dev, txq) { \ 2029 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2030 __netif_tx_unlock(txq); \ 2031 } \ 2032 } 2033 2034 static inline void netif_tx_disable(struct net_device *dev) 2035 { 2036 unsigned int i; 2037 int cpu; 2038 2039 local_bh_disable(); 2040 cpu = smp_processor_id(); 2041 for (i = 0; i < dev->num_tx_queues; i++) { 2042 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2043 2044 __netif_tx_lock(txq, cpu); 2045 netif_tx_stop_queue(txq); 2046 __netif_tx_unlock(txq); 2047 } 2048 local_bh_enable(); 2049 } 2050 2051 static inline void netif_addr_lock(struct net_device *dev) 2052 { 2053 spin_lock(&dev->addr_list_lock); 2054 } 2055 2056 static inline void netif_addr_lock_bh(struct net_device *dev) 2057 { 2058 spin_lock_bh(&dev->addr_list_lock); 2059 } 2060 2061 static inline void netif_addr_unlock(struct net_device *dev) 2062 { 2063 spin_unlock(&dev->addr_list_lock); 2064 } 2065 2066 static inline void netif_addr_unlock_bh(struct net_device *dev) 2067 { 2068 spin_unlock_bh(&dev->addr_list_lock); 2069 } 2070 2071 /* 2072 * dev_addrs walker. Should be used only for read access. Call with 2073 * rcu_read_lock held. 2074 */ 2075 #define for_each_dev_addr(dev, ha) \ 2076 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2077 2078 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2079 2080 extern void ether_setup(struct net_device *dev); 2081 2082 /* Support for loadable net-drivers */ 2083 extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 2084 void (*setup)(struct net_device *), 2085 unsigned int queue_count); 2086 #define alloc_netdev(sizeof_priv, name, setup) \ 2087 alloc_netdev_mq(sizeof_priv, name, setup, 1) 2088 extern int register_netdev(struct net_device *dev); 2089 extern void unregister_netdev(struct net_device *dev); 2090 2091 /* General hardware address lists handling functions */ 2092 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2093 struct netdev_hw_addr_list *from_list, 2094 int addr_len, unsigned char addr_type); 2095 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2096 struct netdev_hw_addr_list *from_list, 2097 int addr_len, unsigned char addr_type); 2098 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2099 struct netdev_hw_addr_list *from_list, 2100 int addr_len); 2101 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2102 struct netdev_hw_addr_list *from_list, 2103 int addr_len); 2104 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2105 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2106 2107 /* Functions used for device addresses handling */ 2108 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2109 unsigned char addr_type); 2110 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2111 unsigned char addr_type); 2112 extern int dev_addr_add_multiple(struct net_device *to_dev, 2113 struct net_device *from_dev, 2114 unsigned char addr_type); 2115 extern int dev_addr_del_multiple(struct net_device *to_dev, 2116 struct net_device *from_dev, 2117 unsigned char addr_type); 2118 extern void dev_addr_flush(struct net_device *dev); 2119 extern int dev_addr_init(struct net_device *dev); 2120 2121 /* Functions used for unicast addresses handling */ 2122 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2123 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2124 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2125 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2126 extern void dev_uc_flush(struct net_device *dev); 2127 extern void dev_uc_init(struct net_device *dev); 2128 2129 /* Functions used for multicast addresses handling */ 2130 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2131 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2132 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2133 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2134 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2135 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2136 extern void dev_mc_flush(struct net_device *dev); 2137 extern void dev_mc_init(struct net_device *dev); 2138 2139 /* Functions used for secondary unicast and multicast support */ 2140 extern void dev_set_rx_mode(struct net_device *dev); 2141 extern void __dev_set_rx_mode(struct net_device *dev); 2142 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2143 extern int dev_set_allmulti(struct net_device *dev, int inc); 2144 extern void netdev_state_change(struct net_device *dev); 2145 extern int netdev_bonding_change(struct net_device *dev, 2146 unsigned long event); 2147 extern void netdev_features_change(struct net_device *dev); 2148 /* Load a device via the kmod */ 2149 extern void dev_load(struct net *net, const char *name); 2150 extern void dev_mcast_init(void); 2151 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2152 struct rtnl_link_stats64 *storage); 2153 extern void dev_txq_stats_fold(const struct net_device *dev, 2154 struct rtnl_link_stats64 *stats); 2155 2156 extern int netdev_max_backlog; 2157 extern int netdev_tstamp_prequeue; 2158 extern int weight_p; 2159 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2160 extern int skb_checksum_help(struct sk_buff *skb); 2161 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features); 2162 #ifdef CONFIG_BUG 2163 extern void netdev_rx_csum_fault(struct net_device *dev); 2164 #else 2165 static inline void netdev_rx_csum_fault(struct net_device *dev) 2166 { 2167 } 2168 #endif 2169 /* rx skb timestamps */ 2170 extern void net_enable_timestamp(void); 2171 extern void net_disable_timestamp(void); 2172 2173 #ifdef CONFIG_PROC_FS 2174 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2175 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2176 extern void dev_seq_stop(struct seq_file *seq, void *v); 2177 #endif 2178 2179 extern int netdev_class_create_file(struct class_attribute *class_attr); 2180 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2181 2182 extern struct kobj_ns_type_operations net_ns_type_operations; 2183 2184 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len); 2185 2186 extern void linkwatch_run_queue(void); 2187 2188 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 2189 unsigned long mask); 2190 unsigned long netdev_fix_features(unsigned long features, const char *name); 2191 2192 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2193 struct net_device *dev); 2194 2195 static inline int net_gso_ok(int features, int gso_type) 2196 { 2197 int feature = gso_type << NETIF_F_GSO_SHIFT; 2198 return (features & feature) == feature; 2199 } 2200 2201 static inline int skb_gso_ok(struct sk_buff *skb, int features) 2202 { 2203 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2204 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2205 } 2206 2207 static inline int netif_needs_gso(struct net_device *dev, struct sk_buff *skb) 2208 { 2209 return skb_is_gso(skb) && 2210 (!skb_gso_ok(skb, dev->features) || 2211 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2212 } 2213 2214 static inline void netif_set_gso_max_size(struct net_device *dev, 2215 unsigned int size) 2216 { 2217 dev->gso_max_size = size; 2218 } 2219 2220 extern int __skb_bond_should_drop(struct sk_buff *skb, 2221 struct net_device *master); 2222 2223 static inline int skb_bond_should_drop(struct sk_buff *skb, 2224 struct net_device *master) 2225 { 2226 if (master) 2227 return __skb_bond_should_drop(skb, master); 2228 return 0; 2229 } 2230 2231 extern struct pernet_operations __net_initdata loopback_net_ops; 2232 2233 static inline int dev_ethtool_get_settings(struct net_device *dev, 2234 struct ethtool_cmd *cmd) 2235 { 2236 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 2237 return -EOPNOTSUPP; 2238 return dev->ethtool_ops->get_settings(dev, cmd); 2239 } 2240 2241 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2242 { 2243 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2244 return 0; 2245 return dev->ethtool_ops->get_rx_csum(dev); 2246 } 2247 2248 static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2249 { 2250 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2251 return 0; 2252 return dev->ethtool_ops->get_flags(dev); 2253 } 2254 2255 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2256 2257 /* netdev_printk helpers, similar to dev_printk */ 2258 2259 static inline const char *netdev_name(const struct net_device *dev) 2260 { 2261 if (dev->reg_state != NETREG_REGISTERED) 2262 return "(unregistered net_device)"; 2263 return dev->name; 2264 } 2265 2266 extern int netdev_printk(const char *level, const struct net_device *dev, 2267 const char *format, ...) 2268 __attribute__ ((format (printf, 3, 4))); 2269 extern int netdev_emerg(const struct net_device *dev, const char *format, ...) 2270 __attribute__ ((format (printf, 2, 3))); 2271 extern int netdev_alert(const struct net_device *dev, const char *format, ...) 2272 __attribute__ ((format (printf, 2, 3))); 2273 extern int netdev_crit(const struct net_device *dev, const char *format, ...) 2274 __attribute__ ((format (printf, 2, 3))); 2275 extern int netdev_err(const struct net_device *dev, const char *format, ...) 2276 __attribute__ ((format (printf, 2, 3))); 2277 extern int netdev_warn(const struct net_device *dev, const char *format, ...) 2278 __attribute__ ((format (printf, 2, 3))); 2279 extern int netdev_notice(const struct net_device *dev, const char *format, ...) 2280 __attribute__ ((format (printf, 2, 3))); 2281 extern int netdev_info(const struct net_device *dev, const char *format, ...) 2282 __attribute__ ((format (printf, 2, 3))); 2283 2284 #if defined(DEBUG) 2285 #define netdev_dbg(__dev, format, args...) \ 2286 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2287 #elif defined(CONFIG_DYNAMIC_DEBUG) 2288 #define netdev_dbg(__dev, format, args...) \ 2289 do { \ 2290 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ 2291 netdev_name(__dev), ##args); \ 2292 } while (0) 2293 #else 2294 #define netdev_dbg(__dev, format, args...) \ 2295 ({ \ 2296 if (0) \ 2297 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2298 0; \ 2299 }) 2300 #endif 2301 2302 #if defined(VERBOSE_DEBUG) 2303 #define netdev_vdbg netdev_dbg 2304 #else 2305 2306 #define netdev_vdbg(dev, format, args...) \ 2307 ({ \ 2308 if (0) \ 2309 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2310 0; \ 2311 }) 2312 #endif 2313 2314 /* 2315 * netdev_WARN() acts like dev_printk(), but with the key difference 2316 * of using a WARN/WARN_ON to get the message out, including the 2317 * file/line information and a backtrace. 2318 */ 2319 #define netdev_WARN(dev, format, args...) \ 2320 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2321 2322 /* netif printk helpers, similar to netdev_printk */ 2323 2324 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2325 do { \ 2326 if (netif_msg_##type(priv)) \ 2327 netdev_printk(level, (dev), fmt, ##args); \ 2328 } while (0) 2329 2330 #define netif_level(level, priv, type, dev, fmt, args...) \ 2331 do { \ 2332 if (netif_msg_##type(priv)) \ 2333 netdev_##level(dev, fmt, ##args); \ 2334 } while (0) 2335 2336 #define netif_emerg(priv, type, dev, fmt, args...) \ 2337 netif_level(emerg, priv, type, dev, fmt, ##args) 2338 #define netif_alert(priv, type, dev, fmt, args...) \ 2339 netif_level(alert, priv, type, dev, fmt, ##args) 2340 #define netif_crit(priv, type, dev, fmt, args...) \ 2341 netif_level(crit, priv, type, dev, fmt, ##args) 2342 #define netif_err(priv, type, dev, fmt, args...) \ 2343 netif_level(err, priv, type, dev, fmt, ##args) 2344 #define netif_warn(priv, type, dev, fmt, args...) \ 2345 netif_level(warn, priv, type, dev, fmt, ##args) 2346 #define netif_notice(priv, type, dev, fmt, args...) \ 2347 netif_level(notice, priv, type, dev, fmt, ##args) 2348 #define netif_info(priv, type, dev, fmt, args...) \ 2349 netif_level(info, priv, type, dev, fmt, ##args) 2350 2351 #if defined(DEBUG) 2352 #define netif_dbg(priv, type, dev, format, args...) \ 2353 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2354 #elif defined(CONFIG_DYNAMIC_DEBUG) 2355 #define netif_dbg(priv, type, netdev, format, args...) \ 2356 do { \ 2357 if (netif_msg_##type(priv)) \ 2358 dynamic_dev_dbg((netdev)->dev.parent, \ 2359 "%s: " format, \ 2360 netdev_name(netdev), ##args); \ 2361 } while (0) 2362 #else 2363 #define netif_dbg(priv, type, dev, format, args...) \ 2364 ({ \ 2365 if (0) \ 2366 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2367 0; \ 2368 }) 2369 #endif 2370 2371 #if defined(VERBOSE_DEBUG) 2372 #define netif_vdbg netif_dbg 2373 #else 2374 #define netif_vdbg(priv, type, dev, format, args...) \ 2375 ({ \ 2376 if (0) \ 2377 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2378 0; \ 2379 }) 2380 #endif 2381 2382 #endif /* __KERNEL__ */ 2383 2384 #endif /* _LINUX_NETDEVICE_H */ 2385