1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 /* DPLL specific */ 83 struct dpll_pin; 84 85 typedef u32 xdp_features_t; 86 87 void synchronize_net(void); 88 void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92 /* Backlog congestion levels */ 93 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94 #define NET_RX_DROP 1 /* packet dropped */ 95 96 #define MAX_NEST_DEV 8 97 98 /* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115 /* qdisc ->enqueue() return codes. */ 116 #define NET_XMIT_SUCCESS 0x00 117 #define NET_XMIT_DROP 0x01 /* skb dropped */ 118 #define NET_XMIT_CN 0x02 /* congestion notification */ 119 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127 /* Driver transmit return codes */ 128 #define NETDEV_TX_MASK 0xf0 129 130 enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134 }; 135 typedef enum netdev_tx netdev_tx_t; 136 137 /* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141 static inline bool dev_xmit_complete(int rc) 142 { 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153 } 154 155 /* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160 #if defined(CONFIG_HYPERV_NET) 161 # define LL_MAX_HEADER 128 162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163 # if defined(CONFIG_MAC80211_MESH) 164 # define LL_MAX_HEADER 128 165 # else 166 # define LL_MAX_HEADER 96 167 # endif 168 #else 169 # define LL_MAX_HEADER 32 170 #endif 171 172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174 #define MAX_HEADER LL_MAX_HEADER 175 #else 176 #define MAX_HEADER (LL_MAX_HEADER + 48) 177 #endif 178 179 /* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184 #define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190 struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214 }; 215 #undef NET_DEV_STAT 216 217 /* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220 struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225 } __aligned(4 * sizeof(unsigned long)); 226 227 #include <linux/cache.h> 228 #include <linux/skbuff.h> 229 230 #ifdef CONFIG_RPS 231 #include <linux/static_key.h> 232 extern struct static_key_false rps_needed; 233 extern struct static_key_false rfs_needed; 234 #endif 235 236 struct neighbour; 237 struct neigh_parms; 238 struct sk_buff; 239 240 struct netdev_hw_addr { 241 struct list_head list; 242 struct rb_node node; 243 unsigned char addr[MAX_ADDR_LEN]; 244 unsigned char type; 245 #define NETDEV_HW_ADDR_T_LAN 1 246 #define NETDEV_HW_ADDR_T_SAN 2 247 #define NETDEV_HW_ADDR_T_UNICAST 3 248 #define NETDEV_HW_ADDR_T_MULTICAST 4 249 bool global_use; 250 int sync_cnt; 251 int refcount; 252 int synced; 253 struct rcu_head rcu_head; 254 }; 255 256 struct netdev_hw_addr_list { 257 struct list_head list; 258 int count; 259 260 /* Auxiliary tree for faster lookup on addition and deletion */ 261 struct rb_root tree; 262 }; 263 264 #define netdev_hw_addr_list_count(l) ((l)->count) 265 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 266 #define netdev_hw_addr_list_for_each(ha, l) \ 267 list_for_each_entry(ha, &(l)->list, list) 268 269 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 270 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 271 #define netdev_for_each_uc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 273 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 274 netdev_for_each_uc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 278 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 279 #define netdev_for_each_mc_addr(ha, dev) \ 280 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 281 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 282 netdev_for_each_mc_addr((_ha), (_dev)) \ 283 if ((_ha)->sync_cnt) 284 285 struct hh_cache { 286 unsigned int hh_len; 287 seqlock_t hh_lock; 288 289 /* cached hardware header; allow for machine alignment needs. */ 290 #define HH_DATA_MOD 16 291 #define HH_DATA_OFF(__len) \ 292 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 293 #define HH_DATA_ALIGN(__len) \ 294 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 295 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 296 }; 297 298 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 299 * Alternative is: 300 * dev->hard_header_len ? (dev->hard_header_len + 301 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 302 * 303 * We could use other alignment values, but we must maintain the 304 * relationship HH alignment <= LL alignment. 305 */ 306 #define LL_RESERVED_SPACE(dev) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 310 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 311 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 312 313 struct header_ops { 314 int (*create) (struct sk_buff *skb, struct net_device *dev, 315 unsigned short type, const void *daddr, 316 const void *saddr, unsigned int len); 317 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 bool (*validate)(const char *ll_header, unsigned int len); 323 __be16 (*parse_protocol)(const struct sk_buff *skb); 324 }; 325 326 /* These flag bits are private to the generic network queueing 327 * layer; they may not be explicitly referenced by any other 328 * code. 329 */ 330 331 enum netdev_state_t { 332 __LINK_STATE_START, 333 __LINK_STATE_PRESENT, 334 __LINK_STATE_NOCARRIER, 335 __LINK_STATE_LINKWATCH_PENDING, 336 __LINK_STATE_DORMANT, 337 __LINK_STATE_TESTING, 338 }; 339 340 struct gro_list { 341 struct list_head list; 342 int count; 343 }; 344 345 /* 346 * size of gro hash buckets, must less than bit number of 347 * napi_struct::gro_bitmask 348 */ 349 #define GRO_HASH_BUCKETS 8 350 351 /* 352 * Structure for NAPI scheduling similar to tasklet but with weighting 353 */ 354 struct napi_struct { 355 /* The poll_list must only be managed by the entity which 356 * changes the state of the NAPI_STATE_SCHED bit. This means 357 * whoever atomically sets that bit can add this napi_struct 358 * to the per-CPU poll_list, and whoever clears that bit 359 * can remove from the list right before clearing the bit. 360 */ 361 struct list_head poll_list; 362 363 unsigned long state; 364 int weight; 365 int defer_hard_irqs_count; 366 unsigned long gro_bitmask; 367 int (*poll)(struct napi_struct *, int); 368 #ifdef CONFIG_NETPOLL 369 /* CPU actively polling if netpoll is configured */ 370 int poll_owner; 371 #endif 372 /* CPU on which NAPI has been scheduled for processing */ 373 int list_owner; 374 struct net_device *dev; 375 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 376 struct sk_buff *skb; 377 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 378 int rx_count; /* length of rx_list */ 379 unsigned int napi_id; 380 struct hrtimer timer; 381 struct task_struct *thread; 382 /* control-path-only fields follow */ 383 struct list_head dev_list; 384 struct hlist_node napi_hash_node; 385 }; 386 387 enum { 388 NAPI_STATE_SCHED, /* Poll is scheduled */ 389 NAPI_STATE_MISSED, /* reschedule a napi */ 390 NAPI_STATE_DISABLE, /* Disable pending */ 391 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 392 NAPI_STATE_LISTED, /* NAPI added to system lists */ 393 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 394 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 395 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 396 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 397 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 398 }; 399 400 enum { 401 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 402 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 403 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 404 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 405 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 406 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 407 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 408 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 409 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 410 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 411 }; 412 413 enum gro_result { 414 GRO_MERGED, 415 GRO_MERGED_FREE, 416 GRO_HELD, 417 GRO_NORMAL, 418 GRO_CONSUMED, 419 }; 420 typedef enum gro_result gro_result_t; 421 422 /* 423 * enum rx_handler_result - Possible return values for rx_handlers. 424 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 425 * further. 426 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 427 * case skb->dev was changed by rx_handler. 428 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 429 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 430 * 431 * rx_handlers are functions called from inside __netif_receive_skb(), to do 432 * special processing of the skb, prior to delivery to protocol handlers. 433 * 434 * Currently, a net_device can only have a single rx_handler registered. Trying 435 * to register a second rx_handler will return -EBUSY. 436 * 437 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 438 * To unregister a rx_handler on a net_device, use 439 * netdev_rx_handler_unregister(). 440 * 441 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 442 * do with the skb. 443 * 444 * If the rx_handler consumed the skb in some way, it should return 445 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 446 * the skb to be delivered in some other way. 447 * 448 * If the rx_handler changed skb->dev, to divert the skb to another 449 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 450 * new device will be called if it exists. 451 * 452 * If the rx_handler decides the skb should be ignored, it should return 453 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 454 * are registered on exact device (ptype->dev == skb->dev). 455 * 456 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 457 * delivered, it should return RX_HANDLER_PASS. 458 * 459 * A device without a registered rx_handler will behave as if rx_handler 460 * returned RX_HANDLER_PASS. 461 */ 462 463 enum rx_handler_result { 464 RX_HANDLER_CONSUMED, 465 RX_HANDLER_ANOTHER, 466 RX_HANDLER_EXACT, 467 RX_HANDLER_PASS, 468 }; 469 typedef enum rx_handler_result rx_handler_result_t; 470 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 471 472 void __napi_schedule(struct napi_struct *n); 473 void __napi_schedule_irqoff(struct napi_struct *n); 474 475 static inline bool napi_disable_pending(struct napi_struct *n) 476 { 477 return test_bit(NAPI_STATE_DISABLE, &n->state); 478 } 479 480 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 481 { 482 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 483 } 484 485 /** 486 * napi_is_scheduled - test if NAPI is scheduled 487 * @n: NAPI context 488 * 489 * This check is "best-effort". With no locking implemented, 490 * a NAPI can be scheduled or terminate right after this check 491 * and produce not precise results. 492 * 493 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 494 * should not be used normally and napi_schedule should be 495 * used instead. 496 * 497 * Use only if the driver really needs to check if a NAPI 498 * is scheduled for example in the context of delayed timer 499 * that can be skipped if a NAPI is already scheduled. 500 * 501 * Return True if NAPI is scheduled, False otherwise. 502 */ 503 static inline bool napi_is_scheduled(struct napi_struct *n) 504 { 505 return test_bit(NAPI_STATE_SCHED, &n->state); 506 } 507 508 bool napi_schedule_prep(struct napi_struct *n); 509 510 /** 511 * napi_schedule - schedule NAPI poll 512 * @n: NAPI context 513 * 514 * Schedule NAPI poll routine to be called if it is not already 515 * running. 516 * Return true if we schedule a NAPI or false if not. 517 * Refer to napi_schedule_prep() for additional reason on why 518 * a NAPI might not be scheduled. 519 */ 520 static inline bool napi_schedule(struct napi_struct *n) 521 { 522 if (napi_schedule_prep(n)) { 523 __napi_schedule(n); 524 return true; 525 } 526 527 return false; 528 } 529 530 /** 531 * napi_schedule_irqoff - schedule NAPI poll 532 * @n: NAPI context 533 * 534 * Variant of napi_schedule(), assuming hard irqs are masked. 535 */ 536 static inline void napi_schedule_irqoff(struct napi_struct *n) 537 { 538 if (napi_schedule_prep(n)) 539 __napi_schedule_irqoff(n); 540 } 541 542 /** 543 * napi_complete_done - NAPI processing complete 544 * @n: NAPI context 545 * @work_done: number of packets processed 546 * 547 * Mark NAPI processing as complete. Should only be called if poll budget 548 * has not been completely consumed. 549 * Prefer over napi_complete(). 550 * Return false if device should avoid rearming interrupts. 551 */ 552 bool napi_complete_done(struct napi_struct *n, int work_done); 553 554 static inline bool napi_complete(struct napi_struct *n) 555 { 556 return napi_complete_done(n, 0); 557 } 558 559 int dev_set_threaded(struct net_device *dev, bool threaded); 560 561 /** 562 * napi_disable - prevent NAPI from scheduling 563 * @n: NAPI context 564 * 565 * Stop NAPI from being scheduled on this context. 566 * Waits till any outstanding processing completes. 567 */ 568 void napi_disable(struct napi_struct *n); 569 570 void napi_enable(struct napi_struct *n); 571 572 /** 573 * napi_synchronize - wait until NAPI is not running 574 * @n: NAPI context 575 * 576 * Wait until NAPI is done being scheduled on this context. 577 * Waits till any outstanding processing completes but 578 * does not disable future activations. 579 */ 580 static inline void napi_synchronize(const struct napi_struct *n) 581 { 582 if (IS_ENABLED(CONFIG_SMP)) 583 while (test_bit(NAPI_STATE_SCHED, &n->state)) 584 msleep(1); 585 else 586 barrier(); 587 } 588 589 /** 590 * napi_if_scheduled_mark_missed - if napi is running, set the 591 * NAPIF_STATE_MISSED 592 * @n: NAPI context 593 * 594 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 595 * NAPI is scheduled. 596 **/ 597 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 598 { 599 unsigned long val, new; 600 601 val = READ_ONCE(n->state); 602 do { 603 if (val & NAPIF_STATE_DISABLE) 604 return true; 605 606 if (!(val & NAPIF_STATE_SCHED)) 607 return false; 608 609 new = val | NAPIF_STATE_MISSED; 610 } while (!try_cmpxchg(&n->state, &val, new)); 611 612 return true; 613 } 614 615 enum netdev_queue_state_t { 616 __QUEUE_STATE_DRV_XOFF, 617 __QUEUE_STATE_STACK_XOFF, 618 __QUEUE_STATE_FROZEN, 619 }; 620 621 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 622 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 623 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 624 625 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 626 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 627 QUEUE_STATE_FROZEN) 628 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 629 QUEUE_STATE_FROZEN) 630 631 /* 632 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 633 * netif_tx_* functions below are used to manipulate this flag. The 634 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 635 * queue independently. The netif_xmit_*stopped functions below are called 636 * to check if the queue has been stopped by the driver or stack (either 637 * of the XOFF bits are set in the state). Drivers should not need to call 638 * netif_xmit*stopped functions, they should only be using netif_tx_*. 639 */ 640 641 struct netdev_queue { 642 /* 643 * read-mostly part 644 */ 645 struct net_device *dev; 646 netdevice_tracker dev_tracker; 647 648 struct Qdisc __rcu *qdisc; 649 struct Qdisc __rcu *qdisc_sleeping; 650 #ifdef CONFIG_SYSFS 651 struct kobject kobj; 652 #endif 653 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 654 int numa_node; 655 #endif 656 unsigned long tx_maxrate; 657 /* 658 * Number of TX timeouts for this queue 659 * (/sys/class/net/DEV/Q/trans_timeout) 660 */ 661 atomic_long_t trans_timeout; 662 663 /* Subordinate device that the queue has been assigned to */ 664 struct net_device *sb_dev; 665 #ifdef CONFIG_XDP_SOCKETS 666 struct xsk_buff_pool *pool; 667 #endif 668 /* 669 * write-mostly part 670 */ 671 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 672 int xmit_lock_owner; 673 /* 674 * Time (in jiffies) of last Tx 675 */ 676 unsigned long trans_start; 677 678 unsigned long state; 679 680 #ifdef CONFIG_BQL 681 struct dql dql; 682 #endif 683 } ____cacheline_aligned_in_smp; 684 685 extern int sysctl_fb_tunnels_only_for_init_net; 686 extern int sysctl_devconf_inherit_init_net; 687 688 /* 689 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 690 * == 1 : For initns only 691 * == 2 : For none. 692 */ 693 static inline bool net_has_fallback_tunnels(const struct net *net) 694 { 695 #if IS_ENABLED(CONFIG_SYSCTL) 696 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 697 698 return !fb_tunnels_only_for_init_net || 699 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 700 #else 701 return true; 702 #endif 703 } 704 705 static inline int net_inherit_devconf(void) 706 { 707 #if IS_ENABLED(CONFIG_SYSCTL) 708 return READ_ONCE(sysctl_devconf_inherit_init_net); 709 #else 710 return 0; 711 #endif 712 } 713 714 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 715 { 716 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 717 return q->numa_node; 718 #else 719 return NUMA_NO_NODE; 720 #endif 721 } 722 723 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 724 { 725 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 726 q->numa_node = node; 727 #endif 728 } 729 730 #ifdef CONFIG_RPS 731 /* 732 * This structure holds an RPS map which can be of variable length. The 733 * map is an array of CPUs. 734 */ 735 struct rps_map { 736 unsigned int len; 737 struct rcu_head rcu; 738 u16 cpus[]; 739 }; 740 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 741 742 /* 743 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 744 * tail pointer for that CPU's input queue at the time of last enqueue, and 745 * a hardware filter index. 746 */ 747 struct rps_dev_flow { 748 u16 cpu; 749 u16 filter; 750 unsigned int last_qtail; 751 }; 752 #define RPS_NO_FILTER 0xffff 753 754 /* 755 * The rps_dev_flow_table structure contains a table of flow mappings. 756 */ 757 struct rps_dev_flow_table { 758 unsigned int mask; 759 struct rcu_head rcu; 760 struct rps_dev_flow flows[]; 761 }; 762 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 763 ((_num) * sizeof(struct rps_dev_flow))) 764 765 /* 766 * The rps_sock_flow_table contains mappings of flows to the last CPU 767 * on which they were processed by the application (set in recvmsg). 768 * Each entry is a 32bit value. Upper part is the high-order bits 769 * of flow hash, lower part is CPU number. 770 * rps_cpu_mask is used to partition the space, depending on number of 771 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 772 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 773 * meaning we use 32-6=26 bits for the hash. 774 */ 775 struct rps_sock_flow_table { 776 u32 mask; 777 778 u32 ents[] ____cacheline_aligned_in_smp; 779 }; 780 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 781 782 #define RPS_NO_CPU 0xffff 783 784 extern u32 rps_cpu_mask; 785 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 786 787 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 788 u32 hash) 789 { 790 if (table && hash) { 791 unsigned int index = hash & table->mask; 792 u32 val = hash & ~rps_cpu_mask; 793 794 /* We only give a hint, preemption can change CPU under us */ 795 val |= raw_smp_processor_id(); 796 797 /* The following WRITE_ONCE() is paired with the READ_ONCE() 798 * here, and another one in get_rps_cpu(). 799 */ 800 if (READ_ONCE(table->ents[index]) != val) 801 WRITE_ONCE(table->ents[index], val); 802 } 803 } 804 805 #ifdef CONFIG_RFS_ACCEL 806 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 807 u16 filter_id); 808 #endif 809 #endif /* CONFIG_RPS */ 810 811 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 812 enum xps_map_type { 813 XPS_CPUS = 0, 814 XPS_RXQS, 815 XPS_MAPS_MAX, 816 }; 817 818 #ifdef CONFIG_XPS 819 /* 820 * This structure holds an XPS map which can be of variable length. The 821 * map is an array of queues. 822 */ 823 struct xps_map { 824 unsigned int len; 825 unsigned int alloc_len; 826 struct rcu_head rcu; 827 u16 queues[]; 828 }; 829 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 830 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 831 - sizeof(struct xps_map)) / sizeof(u16)) 832 833 /* 834 * This structure holds all XPS maps for device. Maps are indexed by CPU. 835 * 836 * We keep track of the number of cpus/rxqs used when the struct is allocated, 837 * in nr_ids. This will help not accessing out-of-bound memory. 838 * 839 * We keep track of the number of traffic classes used when the struct is 840 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 841 * not crossing its upper bound, as the original dev->num_tc can be updated in 842 * the meantime. 843 */ 844 struct xps_dev_maps { 845 struct rcu_head rcu; 846 unsigned int nr_ids; 847 s16 num_tc; 848 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 849 }; 850 851 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 852 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 853 854 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 855 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 856 857 #endif /* CONFIG_XPS */ 858 859 #define TC_MAX_QUEUE 16 860 #define TC_BITMASK 15 861 /* HW offloaded queuing disciplines txq count and offset maps */ 862 struct netdev_tc_txq { 863 u16 count; 864 u16 offset; 865 }; 866 867 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 868 /* 869 * This structure is to hold information about the device 870 * configured to run FCoE protocol stack. 871 */ 872 struct netdev_fcoe_hbainfo { 873 char manufacturer[64]; 874 char serial_number[64]; 875 char hardware_version[64]; 876 char driver_version[64]; 877 char optionrom_version[64]; 878 char firmware_version[64]; 879 char model[256]; 880 char model_description[256]; 881 }; 882 #endif 883 884 #define MAX_PHYS_ITEM_ID_LEN 32 885 886 /* This structure holds a unique identifier to identify some 887 * physical item (port for example) used by a netdevice. 888 */ 889 struct netdev_phys_item_id { 890 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 891 unsigned char id_len; 892 }; 893 894 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 895 struct netdev_phys_item_id *b) 896 { 897 return a->id_len == b->id_len && 898 memcmp(a->id, b->id, a->id_len) == 0; 899 } 900 901 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 902 struct sk_buff *skb, 903 struct net_device *sb_dev); 904 905 enum net_device_path_type { 906 DEV_PATH_ETHERNET = 0, 907 DEV_PATH_VLAN, 908 DEV_PATH_BRIDGE, 909 DEV_PATH_PPPOE, 910 DEV_PATH_DSA, 911 DEV_PATH_MTK_WDMA, 912 }; 913 914 struct net_device_path { 915 enum net_device_path_type type; 916 const struct net_device *dev; 917 union { 918 struct { 919 u16 id; 920 __be16 proto; 921 u8 h_dest[ETH_ALEN]; 922 } encap; 923 struct { 924 enum { 925 DEV_PATH_BR_VLAN_KEEP, 926 DEV_PATH_BR_VLAN_TAG, 927 DEV_PATH_BR_VLAN_UNTAG, 928 DEV_PATH_BR_VLAN_UNTAG_HW, 929 } vlan_mode; 930 u16 vlan_id; 931 __be16 vlan_proto; 932 } bridge; 933 struct { 934 int port; 935 u16 proto; 936 } dsa; 937 struct { 938 u8 wdma_idx; 939 u8 queue; 940 u16 wcid; 941 u8 bss; 942 u8 amsdu; 943 } mtk_wdma; 944 }; 945 }; 946 947 #define NET_DEVICE_PATH_STACK_MAX 5 948 #define NET_DEVICE_PATH_VLAN_MAX 2 949 950 struct net_device_path_stack { 951 int num_paths; 952 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 953 }; 954 955 struct net_device_path_ctx { 956 const struct net_device *dev; 957 u8 daddr[ETH_ALEN]; 958 959 int num_vlans; 960 struct { 961 u16 id; 962 __be16 proto; 963 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 964 }; 965 966 enum tc_setup_type { 967 TC_QUERY_CAPS, 968 TC_SETUP_QDISC_MQPRIO, 969 TC_SETUP_CLSU32, 970 TC_SETUP_CLSFLOWER, 971 TC_SETUP_CLSMATCHALL, 972 TC_SETUP_CLSBPF, 973 TC_SETUP_BLOCK, 974 TC_SETUP_QDISC_CBS, 975 TC_SETUP_QDISC_RED, 976 TC_SETUP_QDISC_PRIO, 977 TC_SETUP_QDISC_MQ, 978 TC_SETUP_QDISC_ETF, 979 TC_SETUP_ROOT_QDISC, 980 TC_SETUP_QDISC_GRED, 981 TC_SETUP_QDISC_TAPRIO, 982 TC_SETUP_FT, 983 TC_SETUP_QDISC_ETS, 984 TC_SETUP_QDISC_TBF, 985 TC_SETUP_QDISC_FIFO, 986 TC_SETUP_QDISC_HTB, 987 TC_SETUP_ACT, 988 }; 989 990 /* These structures hold the attributes of bpf state that are being passed 991 * to the netdevice through the bpf op. 992 */ 993 enum bpf_netdev_command { 994 /* Set or clear a bpf program used in the earliest stages of packet 995 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 996 * is responsible for calling bpf_prog_put on any old progs that are 997 * stored. In case of error, the callee need not release the new prog 998 * reference, but on success it takes ownership and must bpf_prog_put 999 * when it is no longer used. 1000 */ 1001 XDP_SETUP_PROG, 1002 XDP_SETUP_PROG_HW, 1003 /* BPF program for offload callbacks, invoked at program load time. */ 1004 BPF_OFFLOAD_MAP_ALLOC, 1005 BPF_OFFLOAD_MAP_FREE, 1006 XDP_SETUP_XSK_POOL, 1007 }; 1008 1009 struct bpf_prog_offload_ops; 1010 struct netlink_ext_ack; 1011 struct xdp_umem; 1012 struct xdp_dev_bulk_queue; 1013 struct bpf_xdp_link; 1014 1015 enum bpf_xdp_mode { 1016 XDP_MODE_SKB = 0, 1017 XDP_MODE_DRV = 1, 1018 XDP_MODE_HW = 2, 1019 __MAX_XDP_MODE 1020 }; 1021 1022 struct bpf_xdp_entity { 1023 struct bpf_prog *prog; 1024 struct bpf_xdp_link *link; 1025 }; 1026 1027 struct netdev_bpf { 1028 enum bpf_netdev_command command; 1029 union { 1030 /* XDP_SETUP_PROG */ 1031 struct { 1032 u32 flags; 1033 struct bpf_prog *prog; 1034 struct netlink_ext_ack *extack; 1035 }; 1036 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1037 struct { 1038 struct bpf_offloaded_map *offmap; 1039 }; 1040 /* XDP_SETUP_XSK_POOL */ 1041 struct { 1042 struct xsk_buff_pool *pool; 1043 u16 queue_id; 1044 } xsk; 1045 }; 1046 }; 1047 1048 /* Flags for ndo_xsk_wakeup. */ 1049 #define XDP_WAKEUP_RX (1 << 0) 1050 #define XDP_WAKEUP_TX (1 << 1) 1051 1052 #ifdef CONFIG_XFRM_OFFLOAD 1053 struct xfrmdev_ops { 1054 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1055 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1056 void (*xdo_dev_state_free) (struct xfrm_state *x); 1057 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1058 struct xfrm_state *x); 1059 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1060 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1061 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1062 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1063 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1064 }; 1065 #endif 1066 1067 struct dev_ifalias { 1068 struct rcu_head rcuhead; 1069 char ifalias[]; 1070 }; 1071 1072 struct devlink; 1073 struct tlsdev_ops; 1074 1075 struct netdev_net_notifier { 1076 struct list_head list; 1077 struct notifier_block *nb; 1078 }; 1079 1080 /* 1081 * This structure defines the management hooks for network devices. 1082 * The following hooks can be defined; unless noted otherwise, they are 1083 * optional and can be filled with a null pointer. 1084 * 1085 * int (*ndo_init)(struct net_device *dev); 1086 * This function is called once when a network device is registered. 1087 * The network device can use this for any late stage initialization 1088 * or semantic validation. It can fail with an error code which will 1089 * be propagated back to register_netdev. 1090 * 1091 * void (*ndo_uninit)(struct net_device *dev); 1092 * This function is called when device is unregistered or when registration 1093 * fails. It is not called if init fails. 1094 * 1095 * int (*ndo_open)(struct net_device *dev); 1096 * This function is called when a network device transitions to the up 1097 * state. 1098 * 1099 * int (*ndo_stop)(struct net_device *dev); 1100 * This function is called when a network device transitions to the down 1101 * state. 1102 * 1103 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1104 * struct net_device *dev); 1105 * Called when a packet needs to be transmitted. 1106 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1107 * the queue before that can happen; it's for obsolete devices and weird 1108 * corner cases, but the stack really does a non-trivial amount 1109 * of useless work if you return NETDEV_TX_BUSY. 1110 * Required; cannot be NULL. 1111 * 1112 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1113 * struct net_device *dev 1114 * netdev_features_t features); 1115 * Called by core transmit path to determine if device is capable of 1116 * performing offload operations on a given packet. This is to give 1117 * the device an opportunity to implement any restrictions that cannot 1118 * be otherwise expressed by feature flags. The check is called with 1119 * the set of features that the stack has calculated and it returns 1120 * those the driver believes to be appropriate. 1121 * 1122 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1123 * struct net_device *sb_dev); 1124 * Called to decide which queue to use when device supports multiple 1125 * transmit queues. 1126 * 1127 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1128 * This function is called to allow device receiver to make 1129 * changes to configuration when multicast or promiscuous is enabled. 1130 * 1131 * void (*ndo_set_rx_mode)(struct net_device *dev); 1132 * This function is called device changes address list filtering. 1133 * If driver handles unicast address filtering, it should set 1134 * IFF_UNICAST_FLT in its priv_flags. 1135 * 1136 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1137 * This function is called when the Media Access Control address 1138 * needs to be changed. If this interface is not defined, the 1139 * MAC address can not be changed. 1140 * 1141 * int (*ndo_validate_addr)(struct net_device *dev); 1142 * Test if Media Access Control address is valid for the device. 1143 * 1144 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1145 * Old-style ioctl entry point. This is used internally by the 1146 * appletalk and ieee802154 subsystems but is no longer called by 1147 * the device ioctl handler. 1148 * 1149 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1150 * Used by the bonding driver for its device specific ioctls: 1151 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1152 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1153 * 1154 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1155 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1156 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1157 * 1158 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1159 * Used to set network devices bus interface parameters. This interface 1160 * is retained for legacy reasons; new devices should use the bus 1161 * interface (PCI) for low level management. 1162 * 1163 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1164 * Called when a user wants to change the Maximum Transfer Unit 1165 * of a device. 1166 * 1167 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1168 * Callback used when the transmitter has not made any progress 1169 * for dev->watchdog ticks. 1170 * 1171 * void (*ndo_get_stats64)(struct net_device *dev, 1172 * struct rtnl_link_stats64 *storage); 1173 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1174 * Called when a user wants to get the network device usage 1175 * statistics. Drivers must do one of the following: 1176 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1177 * rtnl_link_stats64 structure passed by the caller. 1178 * 2. Define @ndo_get_stats to update a net_device_stats structure 1179 * (which should normally be dev->stats) and return a pointer to 1180 * it. The structure may be changed asynchronously only if each 1181 * field is written atomically. 1182 * 3. Update dev->stats asynchronously and atomically, and define 1183 * neither operation. 1184 * 1185 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1186 * Return true if this device supports offload stats of this attr_id. 1187 * 1188 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1189 * void *attr_data) 1190 * Get statistics for offload operations by attr_id. Write it into the 1191 * attr_data pointer. 1192 * 1193 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1194 * If device supports VLAN filtering this function is called when a 1195 * VLAN id is registered. 1196 * 1197 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1198 * If device supports VLAN filtering this function is called when a 1199 * VLAN id is unregistered. 1200 * 1201 * void (*ndo_poll_controller)(struct net_device *dev); 1202 * 1203 * SR-IOV management functions. 1204 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1205 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1206 * u8 qos, __be16 proto); 1207 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1208 * int max_tx_rate); 1209 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1210 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1211 * int (*ndo_get_vf_config)(struct net_device *dev, 1212 * int vf, struct ifla_vf_info *ivf); 1213 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1214 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1215 * struct nlattr *port[]); 1216 * 1217 * Enable or disable the VF ability to query its RSS Redirection Table and 1218 * Hash Key. This is needed since on some devices VF share this information 1219 * with PF and querying it may introduce a theoretical security risk. 1220 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1221 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1222 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1223 * void *type_data); 1224 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1225 * This is always called from the stack with the rtnl lock held and netif 1226 * tx queues stopped. This allows the netdevice to perform queue 1227 * management safely. 1228 * 1229 * Fiber Channel over Ethernet (FCoE) offload functions. 1230 * int (*ndo_fcoe_enable)(struct net_device *dev); 1231 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1232 * so the underlying device can perform whatever needed configuration or 1233 * initialization to support acceleration of FCoE traffic. 1234 * 1235 * int (*ndo_fcoe_disable)(struct net_device *dev); 1236 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1237 * so the underlying device can perform whatever needed clean-ups to 1238 * stop supporting acceleration of FCoE traffic. 1239 * 1240 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1241 * struct scatterlist *sgl, unsigned int sgc); 1242 * Called when the FCoE Initiator wants to initialize an I/O that 1243 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1244 * perform necessary setup and returns 1 to indicate the device is set up 1245 * successfully to perform DDP on this I/O, otherwise this returns 0. 1246 * 1247 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1248 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1249 * indicated by the FC exchange id 'xid', so the underlying device can 1250 * clean up and reuse resources for later DDP requests. 1251 * 1252 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1253 * struct scatterlist *sgl, unsigned int sgc); 1254 * Called when the FCoE Target wants to initialize an I/O that 1255 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1256 * perform necessary setup and returns 1 to indicate the device is set up 1257 * successfully to perform DDP on this I/O, otherwise this returns 0. 1258 * 1259 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1260 * struct netdev_fcoe_hbainfo *hbainfo); 1261 * Called when the FCoE Protocol stack wants information on the underlying 1262 * device. This information is utilized by the FCoE protocol stack to 1263 * register attributes with Fiber Channel management service as per the 1264 * FC-GS Fabric Device Management Information(FDMI) specification. 1265 * 1266 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1267 * Called when the underlying device wants to override default World Wide 1268 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1269 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1270 * protocol stack to use. 1271 * 1272 * RFS acceleration. 1273 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1274 * u16 rxq_index, u32 flow_id); 1275 * Set hardware filter for RFS. rxq_index is the target queue index; 1276 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1277 * Return the filter ID on success, or a negative error code. 1278 * 1279 * Slave management functions (for bridge, bonding, etc). 1280 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1281 * Called to make another netdev an underling. 1282 * 1283 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1284 * Called to release previously enslaved netdev. 1285 * 1286 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1287 * struct sk_buff *skb, 1288 * bool all_slaves); 1289 * Get the xmit slave of master device. If all_slaves is true, function 1290 * assume all the slaves can transmit. 1291 * 1292 * Feature/offload setting functions. 1293 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1294 * netdev_features_t features); 1295 * Adjusts the requested feature flags according to device-specific 1296 * constraints, and returns the resulting flags. Must not modify 1297 * the device state. 1298 * 1299 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1300 * Called to update device configuration to new features. Passed 1301 * feature set might be less than what was returned by ndo_fix_features()). 1302 * Must return >0 or -errno if it changed dev->features itself. 1303 * 1304 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1305 * struct net_device *dev, 1306 * const unsigned char *addr, u16 vid, u16 flags, 1307 * struct netlink_ext_ack *extack); 1308 * Adds an FDB entry to dev for addr. 1309 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1310 * struct net_device *dev, 1311 * const unsigned char *addr, u16 vid) 1312 * Deletes the FDB entry from dev coresponding to addr. 1313 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1314 * struct netlink_ext_ack *extack); 1315 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1316 * struct net_device *dev, struct net_device *filter_dev, 1317 * int *idx) 1318 * Used to add FDB entries to dump requests. Implementers should add 1319 * entries to skb and update idx with the number of entries. 1320 * 1321 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1322 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1323 * Adds an MDB entry to dev. 1324 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1325 * struct netlink_ext_ack *extack); 1326 * Deletes the MDB entry from dev. 1327 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1328 * struct netlink_callback *cb); 1329 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1330 * callback is used by core rtnetlink code. 1331 * 1332 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1333 * u16 flags, struct netlink_ext_ack *extack) 1334 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1335 * struct net_device *dev, u32 filter_mask, 1336 * int nlflags) 1337 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1338 * u16 flags); 1339 * 1340 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1341 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1342 * which do not represent real hardware may define this to allow their 1343 * userspace components to manage their virtual carrier state. Devices 1344 * that determine carrier state from physical hardware properties (eg 1345 * network cables) or protocol-dependent mechanisms (eg 1346 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1347 * 1348 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1349 * struct netdev_phys_item_id *ppid); 1350 * Called to get ID of physical port of this device. If driver does 1351 * not implement this, it is assumed that the hw is not able to have 1352 * multiple net devices on single physical port. 1353 * 1354 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1355 * struct netdev_phys_item_id *ppid) 1356 * Called to get the parent ID of the physical port of this device. 1357 * 1358 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1359 * struct net_device *dev) 1360 * Called by upper layer devices to accelerate switching or other 1361 * station functionality into hardware. 'pdev is the lowerdev 1362 * to use for the offload and 'dev' is the net device that will 1363 * back the offload. Returns a pointer to the private structure 1364 * the upper layer will maintain. 1365 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1366 * Called by upper layer device to delete the station created 1367 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1368 * the station and priv is the structure returned by the add 1369 * operation. 1370 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1371 * int queue_index, u32 maxrate); 1372 * Called when a user wants to set a max-rate limitation of specific 1373 * TX queue. 1374 * int (*ndo_get_iflink)(const struct net_device *dev); 1375 * Called to get the iflink value of this device. 1376 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1377 * This function is used to get egress tunnel information for given skb. 1378 * This is useful for retrieving outer tunnel header parameters while 1379 * sampling packet. 1380 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1381 * This function is used to specify the headroom that the skb must 1382 * consider when allocation skb during packet reception. Setting 1383 * appropriate rx headroom value allows avoiding skb head copy on 1384 * forward. Setting a negative value resets the rx headroom to the 1385 * default value. 1386 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1387 * This function is used to set or query state related to XDP on the 1388 * netdevice and manage BPF offload. See definition of 1389 * enum bpf_netdev_command for details. 1390 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1391 * u32 flags); 1392 * This function is used to submit @n XDP packets for transmit on a 1393 * netdevice. Returns number of frames successfully transmitted, frames 1394 * that got dropped are freed/returned via xdp_return_frame(). 1395 * Returns negative number, means general error invoking ndo, meaning 1396 * no frames were xmit'ed and core-caller will free all frames. 1397 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1398 * struct xdp_buff *xdp); 1399 * Get the xmit slave of master device based on the xdp_buff. 1400 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1401 * This function is used to wake up the softirq, ksoftirqd or kthread 1402 * responsible for sending and/or receiving packets on a specific 1403 * queue id bound to an AF_XDP socket. The flags field specifies if 1404 * only RX, only Tx, or both should be woken up using the flags 1405 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1406 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1407 * int cmd); 1408 * Add, change, delete or get information on an IPv4 tunnel. 1409 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1410 * If a device is paired with a peer device, return the peer instance. 1411 * The caller must be under RCU read context. 1412 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1413 * Get the forwarding path to reach the real device from the HW destination address 1414 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1415 * const struct skb_shared_hwtstamps *hwtstamps, 1416 * bool cycles); 1417 * Get hardware timestamp based on normal/adjustable time or free running 1418 * cycle counter. This function is required if physical clock supports a 1419 * free running cycle counter. 1420 * 1421 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1422 * struct kernel_hwtstamp_config *kernel_config); 1423 * Get the currently configured hardware timestamping parameters for the 1424 * NIC device. 1425 * 1426 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1427 * struct kernel_hwtstamp_config *kernel_config, 1428 * struct netlink_ext_ack *extack); 1429 * Change the hardware timestamping parameters for NIC device. 1430 */ 1431 struct net_device_ops { 1432 int (*ndo_init)(struct net_device *dev); 1433 void (*ndo_uninit)(struct net_device *dev); 1434 int (*ndo_open)(struct net_device *dev); 1435 int (*ndo_stop)(struct net_device *dev); 1436 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1437 struct net_device *dev); 1438 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1439 struct net_device *dev, 1440 netdev_features_t features); 1441 u16 (*ndo_select_queue)(struct net_device *dev, 1442 struct sk_buff *skb, 1443 struct net_device *sb_dev); 1444 void (*ndo_change_rx_flags)(struct net_device *dev, 1445 int flags); 1446 void (*ndo_set_rx_mode)(struct net_device *dev); 1447 int (*ndo_set_mac_address)(struct net_device *dev, 1448 void *addr); 1449 int (*ndo_validate_addr)(struct net_device *dev); 1450 int (*ndo_do_ioctl)(struct net_device *dev, 1451 struct ifreq *ifr, int cmd); 1452 int (*ndo_eth_ioctl)(struct net_device *dev, 1453 struct ifreq *ifr, int cmd); 1454 int (*ndo_siocbond)(struct net_device *dev, 1455 struct ifreq *ifr, int cmd); 1456 int (*ndo_siocwandev)(struct net_device *dev, 1457 struct if_settings *ifs); 1458 int (*ndo_siocdevprivate)(struct net_device *dev, 1459 struct ifreq *ifr, 1460 void __user *data, int cmd); 1461 int (*ndo_set_config)(struct net_device *dev, 1462 struct ifmap *map); 1463 int (*ndo_change_mtu)(struct net_device *dev, 1464 int new_mtu); 1465 int (*ndo_neigh_setup)(struct net_device *dev, 1466 struct neigh_parms *); 1467 void (*ndo_tx_timeout) (struct net_device *dev, 1468 unsigned int txqueue); 1469 1470 void (*ndo_get_stats64)(struct net_device *dev, 1471 struct rtnl_link_stats64 *storage); 1472 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1473 int (*ndo_get_offload_stats)(int attr_id, 1474 const struct net_device *dev, 1475 void *attr_data); 1476 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1477 1478 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1479 __be16 proto, u16 vid); 1480 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1481 __be16 proto, u16 vid); 1482 #ifdef CONFIG_NET_POLL_CONTROLLER 1483 void (*ndo_poll_controller)(struct net_device *dev); 1484 int (*ndo_netpoll_setup)(struct net_device *dev, 1485 struct netpoll_info *info); 1486 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1487 #endif 1488 int (*ndo_set_vf_mac)(struct net_device *dev, 1489 int queue, u8 *mac); 1490 int (*ndo_set_vf_vlan)(struct net_device *dev, 1491 int queue, u16 vlan, 1492 u8 qos, __be16 proto); 1493 int (*ndo_set_vf_rate)(struct net_device *dev, 1494 int vf, int min_tx_rate, 1495 int max_tx_rate); 1496 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1497 int vf, bool setting); 1498 int (*ndo_set_vf_trust)(struct net_device *dev, 1499 int vf, bool setting); 1500 int (*ndo_get_vf_config)(struct net_device *dev, 1501 int vf, 1502 struct ifla_vf_info *ivf); 1503 int (*ndo_set_vf_link_state)(struct net_device *dev, 1504 int vf, int link_state); 1505 int (*ndo_get_vf_stats)(struct net_device *dev, 1506 int vf, 1507 struct ifla_vf_stats 1508 *vf_stats); 1509 int (*ndo_set_vf_port)(struct net_device *dev, 1510 int vf, 1511 struct nlattr *port[]); 1512 int (*ndo_get_vf_port)(struct net_device *dev, 1513 int vf, struct sk_buff *skb); 1514 int (*ndo_get_vf_guid)(struct net_device *dev, 1515 int vf, 1516 struct ifla_vf_guid *node_guid, 1517 struct ifla_vf_guid *port_guid); 1518 int (*ndo_set_vf_guid)(struct net_device *dev, 1519 int vf, u64 guid, 1520 int guid_type); 1521 int (*ndo_set_vf_rss_query_en)( 1522 struct net_device *dev, 1523 int vf, bool setting); 1524 int (*ndo_setup_tc)(struct net_device *dev, 1525 enum tc_setup_type type, 1526 void *type_data); 1527 #if IS_ENABLED(CONFIG_FCOE) 1528 int (*ndo_fcoe_enable)(struct net_device *dev); 1529 int (*ndo_fcoe_disable)(struct net_device *dev); 1530 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1531 u16 xid, 1532 struct scatterlist *sgl, 1533 unsigned int sgc); 1534 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1535 u16 xid); 1536 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1537 u16 xid, 1538 struct scatterlist *sgl, 1539 unsigned int sgc); 1540 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1541 struct netdev_fcoe_hbainfo *hbainfo); 1542 #endif 1543 1544 #if IS_ENABLED(CONFIG_LIBFCOE) 1545 #define NETDEV_FCOE_WWNN 0 1546 #define NETDEV_FCOE_WWPN 1 1547 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1548 u64 *wwn, int type); 1549 #endif 1550 1551 #ifdef CONFIG_RFS_ACCEL 1552 int (*ndo_rx_flow_steer)(struct net_device *dev, 1553 const struct sk_buff *skb, 1554 u16 rxq_index, 1555 u32 flow_id); 1556 #endif 1557 int (*ndo_add_slave)(struct net_device *dev, 1558 struct net_device *slave_dev, 1559 struct netlink_ext_ack *extack); 1560 int (*ndo_del_slave)(struct net_device *dev, 1561 struct net_device *slave_dev); 1562 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1563 struct sk_buff *skb, 1564 bool all_slaves); 1565 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1566 struct sock *sk); 1567 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1568 netdev_features_t features); 1569 int (*ndo_set_features)(struct net_device *dev, 1570 netdev_features_t features); 1571 int (*ndo_neigh_construct)(struct net_device *dev, 1572 struct neighbour *n); 1573 void (*ndo_neigh_destroy)(struct net_device *dev, 1574 struct neighbour *n); 1575 1576 int (*ndo_fdb_add)(struct ndmsg *ndm, 1577 struct nlattr *tb[], 1578 struct net_device *dev, 1579 const unsigned char *addr, 1580 u16 vid, 1581 u16 flags, 1582 struct netlink_ext_ack *extack); 1583 int (*ndo_fdb_del)(struct ndmsg *ndm, 1584 struct nlattr *tb[], 1585 struct net_device *dev, 1586 const unsigned char *addr, 1587 u16 vid, struct netlink_ext_ack *extack); 1588 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1589 struct net_device *dev, 1590 struct netlink_ext_ack *extack); 1591 int (*ndo_fdb_dump)(struct sk_buff *skb, 1592 struct netlink_callback *cb, 1593 struct net_device *dev, 1594 struct net_device *filter_dev, 1595 int *idx); 1596 int (*ndo_fdb_get)(struct sk_buff *skb, 1597 struct nlattr *tb[], 1598 struct net_device *dev, 1599 const unsigned char *addr, 1600 u16 vid, u32 portid, u32 seq, 1601 struct netlink_ext_ack *extack); 1602 int (*ndo_mdb_add)(struct net_device *dev, 1603 struct nlattr *tb[], 1604 u16 nlmsg_flags, 1605 struct netlink_ext_ack *extack); 1606 int (*ndo_mdb_del)(struct net_device *dev, 1607 struct nlattr *tb[], 1608 struct netlink_ext_ack *extack); 1609 int (*ndo_mdb_dump)(struct net_device *dev, 1610 struct sk_buff *skb, 1611 struct netlink_callback *cb); 1612 int (*ndo_mdb_get)(struct net_device *dev, 1613 struct nlattr *tb[], u32 portid, 1614 u32 seq, 1615 struct netlink_ext_ack *extack); 1616 int (*ndo_bridge_setlink)(struct net_device *dev, 1617 struct nlmsghdr *nlh, 1618 u16 flags, 1619 struct netlink_ext_ack *extack); 1620 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1621 u32 pid, u32 seq, 1622 struct net_device *dev, 1623 u32 filter_mask, 1624 int nlflags); 1625 int (*ndo_bridge_dellink)(struct net_device *dev, 1626 struct nlmsghdr *nlh, 1627 u16 flags); 1628 int (*ndo_change_carrier)(struct net_device *dev, 1629 bool new_carrier); 1630 int (*ndo_get_phys_port_id)(struct net_device *dev, 1631 struct netdev_phys_item_id *ppid); 1632 int (*ndo_get_port_parent_id)(struct net_device *dev, 1633 struct netdev_phys_item_id *ppid); 1634 int (*ndo_get_phys_port_name)(struct net_device *dev, 1635 char *name, size_t len); 1636 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1637 struct net_device *dev); 1638 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1639 void *priv); 1640 1641 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1642 int queue_index, 1643 u32 maxrate); 1644 int (*ndo_get_iflink)(const struct net_device *dev); 1645 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1646 struct sk_buff *skb); 1647 void (*ndo_set_rx_headroom)(struct net_device *dev, 1648 int needed_headroom); 1649 int (*ndo_bpf)(struct net_device *dev, 1650 struct netdev_bpf *bpf); 1651 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1652 struct xdp_frame **xdp, 1653 u32 flags); 1654 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1655 struct xdp_buff *xdp); 1656 int (*ndo_xsk_wakeup)(struct net_device *dev, 1657 u32 queue_id, u32 flags); 1658 int (*ndo_tunnel_ctl)(struct net_device *dev, 1659 struct ip_tunnel_parm *p, int cmd); 1660 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1661 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1662 struct net_device_path *path); 1663 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1664 const struct skb_shared_hwtstamps *hwtstamps, 1665 bool cycles); 1666 int (*ndo_hwtstamp_get)(struct net_device *dev, 1667 struct kernel_hwtstamp_config *kernel_config); 1668 int (*ndo_hwtstamp_set)(struct net_device *dev, 1669 struct kernel_hwtstamp_config *kernel_config, 1670 struct netlink_ext_ack *extack); 1671 }; 1672 1673 /** 1674 * enum netdev_priv_flags - &struct net_device priv_flags 1675 * 1676 * These are the &struct net_device, they are only set internally 1677 * by drivers and used in the kernel. These flags are invisible to 1678 * userspace; this means that the order of these flags can change 1679 * during any kernel release. 1680 * 1681 * You should have a pretty good reason to be extending these flags. 1682 * 1683 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1684 * @IFF_EBRIDGE: Ethernet bridging device 1685 * @IFF_BONDING: bonding master or slave 1686 * @IFF_ISATAP: ISATAP interface (RFC4214) 1687 * @IFF_WAN_HDLC: WAN HDLC device 1688 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1689 * release skb->dst 1690 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1691 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1692 * @IFF_MACVLAN_PORT: device used as macvlan port 1693 * @IFF_BRIDGE_PORT: device used as bridge port 1694 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1695 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1696 * @IFF_UNICAST_FLT: Supports unicast filtering 1697 * @IFF_TEAM_PORT: device used as team port 1698 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1699 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1700 * change when it's running 1701 * @IFF_MACVLAN: Macvlan device 1702 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1703 * underlying stacked devices 1704 * @IFF_L3MDEV_MASTER: device is an L3 master device 1705 * @IFF_NO_QUEUE: device can run without qdisc attached 1706 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1707 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1708 * @IFF_TEAM: device is a team device 1709 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1710 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1711 * entity (i.e. the master device for bridged veth) 1712 * @IFF_MACSEC: device is a MACsec device 1713 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1714 * @IFF_FAILOVER: device is a failover master device 1715 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1716 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1717 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1718 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1719 * skb_headlen(skb) == 0 (data starts from frag0) 1720 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1721 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1722 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1723 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1724 */ 1725 enum netdev_priv_flags { 1726 IFF_802_1Q_VLAN = 1<<0, 1727 IFF_EBRIDGE = 1<<1, 1728 IFF_BONDING = 1<<2, 1729 IFF_ISATAP = 1<<3, 1730 IFF_WAN_HDLC = 1<<4, 1731 IFF_XMIT_DST_RELEASE = 1<<5, 1732 IFF_DONT_BRIDGE = 1<<6, 1733 IFF_DISABLE_NETPOLL = 1<<7, 1734 IFF_MACVLAN_PORT = 1<<8, 1735 IFF_BRIDGE_PORT = 1<<9, 1736 IFF_OVS_DATAPATH = 1<<10, 1737 IFF_TX_SKB_SHARING = 1<<11, 1738 IFF_UNICAST_FLT = 1<<12, 1739 IFF_TEAM_PORT = 1<<13, 1740 IFF_SUPP_NOFCS = 1<<14, 1741 IFF_LIVE_ADDR_CHANGE = 1<<15, 1742 IFF_MACVLAN = 1<<16, 1743 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1744 IFF_L3MDEV_MASTER = 1<<18, 1745 IFF_NO_QUEUE = 1<<19, 1746 IFF_OPENVSWITCH = 1<<20, 1747 IFF_L3MDEV_SLAVE = 1<<21, 1748 IFF_TEAM = 1<<22, 1749 IFF_RXFH_CONFIGURED = 1<<23, 1750 IFF_PHONY_HEADROOM = 1<<24, 1751 IFF_MACSEC = 1<<25, 1752 IFF_NO_RX_HANDLER = 1<<26, 1753 IFF_FAILOVER = 1<<27, 1754 IFF_FAILOVER_SLAVE = 1<<28, 1755 IFF_L3MDEV_RX_HANDLER = 1<<29, 1756 IFF_NO_ADDRCONF = BIT_ULL(30), 1757 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1758 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1759 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1760 }; 1761 1762 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1763 #define IFF_EBRIDGE IFF_EBRIDGE 1764 #define IFF_BONDING IFF_BONDING 1765 #define IFF_ISATAP IFF_ISATAP 1766 #define IFF_WAN_HDLC IFF_WAN_HDLC 1767 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1768 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1769 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1770 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1771 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1772 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1773 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1774 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1775 #define IFF_TEAM_PORT IFF_TEAM_PORT 1776 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1777 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1778 #define IFF_MACVLAN IFF_MACVLAN 1779 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1780 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1781 #define IFF_NO_QUEUE IFF_NO_QUEUE 1782 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1783 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1784 #define IFF_TEAM IFF_TEAM 1785 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1786 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1787 #define IFF_MACSEC IFF_MACSEC 1788 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1789 #define IFF_FAILOVER IFF_FAILOVER 1790 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1791 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1792 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1793 1794 /* Specifies the type of the struct net_device::ml_priv pointer */ 1795 enum netdev_ml_priv_type { 1796 ML_PRIV_NONE, 1797 ML_PRIV_CAN, 1798 }; 1799 1800 enum netdev_stat_type { 1801 NETDEV_PCPU_STAT_NONE, 1802 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1803 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1804 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1805 }; 1806 1807 /** 1808 * struct net_device - The DEVICE structure. 1809 * 1810 * Actually, this whole structure is a big mistake. It mixes I/O 1811 * data with strictly "high-level" data, and it has to know about 1812 * almost every data structure used in the INET module. 1813 * 1814 * @name: This is the first field of the "visible" part of this structure 1815 * (i.e. as seen by users in the "Space.c" file). It is the name 1816 * of the interface. 1817 * 1818 * @name_node: Name hashlist node 1819 * @ifalias: SNMP alias 1820 * @mem_end: Shared memory end 1821 * @mem_start: Shared memory start 1822 * @base_addr: Device I/O address 1823 * @irq: Device IRQ number 1824 * 1825 * @state: Generic network queuing layer state, see netdev_state_t 1826 * @dev_list: The global list of network devices 1827 * @napi_list: List entry used for polling NAPI devices 1828 * @unreg_list: List entry when we are unregistering the 1829 * device; see the function unregister_netdev 1830 * @close_list: List entry used when we are closing the device 1831 * @ptype_all: Device-specific packet handlers for all protocols 1832 * @ptype_specific: Device-specific, protocol-specific packet handlers 1833 * 1834 * @adj_list: Directly linked devices, like slaves for bonding 1835 * @features: Currently active device features 1836 * @hw_features: User-changeable features 1837 * 1838 * @wanted_features: User-requested features 1839 * @vlan_features: Mask of features inheritable by VLAN devices 1840 * 1841 * @hw_enc_features: Mask of features inherited by encapsulating devices 1842 * This field indicates what encapsulation 1843 * offloads the hardware is capable of doing, 1844 * and drivers will need to set them appropriately. 1845 * 1846 * @mpls_features: Mask of features inheritable by MPLS 1847 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1848 * 1849 * @ifindex: interface index 1850 * @group: The group the device belongs to 1851 * 1852 * @stats: Statistics struct, which was left as a legacy, use 1853 * rtnl_link_stats64 instead 1854 * 1855 * @core_stats: core networking counters, 1856 * do not use this in drivers 1857 * @carrier_up_count: Number of times the carrier has been up 1858 * @carrier_down_count: Number of times the carrier has been down 1859 * 1860 * @wireless_handlers: List of functions to handle Wireless Extensions, 1861 * instead of ioctl, 1862 * see <net/iw_handler.h> for details. 1863 * @wireless_data: Instance data managed by the core of wireless extensions 1864 * 1865 * @netdev_ops: Includes several pointers to callbacks, 1866 * if one wants to override the ndo_*() functions 1867 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1868 * @ethtool_ops: Management operations 1869 * @l3mdev_ops: Layer 3 master device operations 1870 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1871 * discovery handling. Necessary for e.g. 6LoWPAN. 1872 * @xfrmdev_ops: Transformation offload operations 1873 * @tlsdev_ops: Transport Layer Security offload operations 1874 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1875 * of Layer 2 headers. 1876 * 1877 * @flags: Interface flags (a la BSD) 1878 * @xdp_features: XDP capability supported by the device 1879 * @priv_flags: Like 'flags' but invisible to userspace, 1880 * see if.h for the definitions 1881 * @gflags: Global flags ( kept as legacy ) 1882 * @padded: How much padding added by alloc_netdev() 1883 * @operstate: RFC2863 operstate 1884 * @link_mode: Mapping policy to operstate 1885 * @if_port: Selectable AUI, TP, ... 1886 * @dma: DMA channel 1887 * @mtu: Interface MTU value 1888 * @min_mtu: Interface Minimum MTU value 1889 * @max_mtu: Interface Maximum MTU value 1890 * @type: Interface hardware type 1891 * @hard_header_len: Maximum hardware header length. 1892 * @min_header_len: Minimum hardware header length 1893 * 1894 * @needed_headroom: Extra headroom the hardware may need, but not in all 1895 * cases can this be guaranteed 1896 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1897 * cases can this be guaranteed. Some cases also use 1898 * LL_MAX_HEADER instead to allocate the skb 1899 * 1900 * interface address info: 1901 * 1902 * @perm_addr: Permanent hw address 1903 * @addr_assign_type: Hw address assignment type 1904 * @addr_len: Hardware address length 1905 * @upper_level: Maximum depth level of upper devices. 1906 * @lower_level: Maximum depth level of lower devices. 1907 * @neigh_priv_len: Used in neigh_alloc() 1908 * @dev_id: Used to differentiate devices that share 1909 * the same link layer address 1910 * @dev_port: Used to differentiate devices that share 1911 * the same function 1912 * @addr_list_lock: XXX: need comments on this one 1913 * @name_assign_type: network interface name assignment type 1914 * @uc_promisc: Counter that indicates promiscuous mode 1915 * has been enabled due to the need to listen to 1916 * additional unicast addresses in a device that 1917 * does not implement ndo_set_rx_mode() 1918 * @uc: unicast mac addresses 1919 * @mc: multicast mac addresses 1920 * @dev_addrs: list of device hw addresses 1921 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1922 * @promiscuity: Number of times the NIC is told to work in 1923 * promiscuous mode; if it becomes 0 the NIC will 1924 * exit promiscuous mode 1925 * @allmulti: Counter, enables or disables allmulticast mode 1926 * 1927 * @vlan_info: VLAN info 1928 * @dsa_ptr: dsa specific data 1929 * @tipc_ptr: TIPC specific data 1930 * @atalk_ptr: AppleTalk link 1931 * @ip_ptr: IPv4 specific data 1932 * @ip6_ptr: IPv6 specific data 1933 * @ax25_ptr: AX.25 specific data 1934 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1935 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1936 * device struct 1937 * @mpls_ptr: mpls_dev struct pointer 1938 * @mctp_ptr: MCTP specific data 1939 * 1940 * @dev_addr: Hw address (before bcast, 1941 * because most packets are unicast) 1942 * 1943 * @_rx: Array of RX queues 1944 * @num_rx_queues: Number of RX queues 1945 * allocated at register_netdev() time 1946 * @real_num_rx_queues: Number of RX queues currently active in device 1947 * @xdp_prog: XDP sockets filter program pointer 1948 * @gro_flush_timeout: timeout for GRO layer in NAPI 1949 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1950 * allow to avoid NIC hard IRQ, on busy queues. 1951 * 1952 * @rx_handler: handler for received packets 1953 * @rx_handler_data: XXX: need comments on this one 1954 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1955 * @ingress_queue: XXX: need comments on this one 1956 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1957 * @broadcast: hw bcast address 1958 * 1959 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1960 * indexed by RX queue number. Assigned by driver. 1961 * This must only be set if the ndo_rx_flow_steer 1962 * operation is defined 1963 * @index_hlist: Device index hash chain 1964 * 1965 * @_tx: Array of TX queues 1966 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1967 * @real_num_tx_queues: Number of TX queues currently active in device 1968 * @qdisc: Root qdisc from userspace point of view 1969 * @tx_queue_len: Max frames per queue allowed 1970 * @tx_global_lock: XXX: need comments on this one 1971 * @xdp_bulkq: XDP device bulk queue 1972 * @xps_maps: all CPUs/RXQs maps for XPS device 1973 * 1974 * @xps_maps: XXX: need comments on this one 1975 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1976 * @nf_hooks_egress: netfilter hooks executed for egress packets 1977 * @qdisc_hash: qdisc hash table 1978 * @watchdog_timeo: Represents the timeout that is used by 1979 * the watchdog (see dev_watchdog()) 1980 * @watchdog_timer: List of timers 1981 * 1982 * @proto_down_reason: reason a netdev interface is held down 1983 * @pcpu_refcnt: Number of references to this device 1984 * @dev_refcnt: Number of references to this device 1985 * @refcnt_tracker: Tracker directory for tracked references to this device 1986 * @todo_list: Delayed register/unregister 1987 * @link_watch_list: XXX: need comments on this one 1988 * 1989 * @reg_state: Register/unregister state machine 1990 * @dismantle: Device is going to be freed 1991 * @rtnl_link_state: This enum represents the phases of creating 1992 * a new link 1993 * 1994 * @needs_free_netdev: Should unregister perform free_netdev? 1995 * @priv_destructor: Called from unregister 1996 * @npinfo: XXX: need comments on this one 1997 * @nd_net: Network namespace this network device is inside 1998 * 1999 * @ml_priv: Mid-layer private 2000 * @ml_priv_type: Mid-layer private type 2001 * 2002 * @pcpu_stat_type: Type of device statistics which the core should 2003 * allocate/free: none, lstats, tstats, dstats. none 2004 * means the driver is handling statistics allocation/ 2005 * freeing internally. 2006 * @lstats: Loopback statistics: packets, bytes 2007 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 2008 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 2009 * 2010 * @garp_port: GARP 2011 * @mrp_port: MRP 2012 * 2013 * @dm_private: Drop monitor private 2014 * 2015 * @dev: Class/net/name entry 2016 * @sysfs_groups: Space for optional device, statistics and wireless 2017 * sysfs groups 2018 * 2019 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2020 * @rtnl_link_ops: Rtnl_link_ops 2021 * 2022 * @gso_max_size: Maximum size of generic segmentation offload 2023 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2024 * @gso_max_segs: Maximum number of segments that can be passed to the 2025 * NIC for GSO 2026 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2027 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2028 * for IPv4. 2029 * 2030 * @dcbnl_ops: Data Center Bridging netlink ops 2031 * @num_tc: Number of traffic classes in the net device 2032 * @tc_to_txq: XXX: need comments on this one 2033 * @prio_tc_map: XXX: need comments on this one 2034 * 2035 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2036 * 2037 * @priomap: XXX: need comments on this one 2038 * @phydev: Physical device may attach itself 2039 * for hardware timestamping 2040 * @sfp_bus: attached &struct sfp_bus structure. 2041 * 2042 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2043 * 2044 * @proto_down: protocol port state information can be sent to the 2045 * switch driver and used to set the phys state of the 2046 * switch port. 2047 * 2048 * @wol_enabled: Wake-on-LAN is enabled 2049 * 2050 * @threaded: napi threaded mode is enabled 2051 * 2052 * @net_notifier_list: List of per-net netdev notifier block 2053 * that follow this device when it is moved 2054 * to another network namespace. 2055 * 2056 * @macsec_ops: MACsec offloading ops 2057 * 2058 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2059 * offload capabilities of the device 2060 * @udp_tunnel_nic: UDP tunnel offload state 2061 * @xdp_state: stores info on attached XDP BPF programs 2062 * 2063 * @nested_level: Used as a parameter of spin_lock_nested() of 2064 * dev->addr_list_lock. 2065 * @unlink_list: As netif_addr_lock() can be called recursively, 2066 * keep a list of interfaces to be deleted. 2067 * @gro_max_size: Maximum size of aggregated packet in generic 2068 * receive offload (GRO) 2069 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2070 * receive offload (GRO), for IPv4. 2071 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2072 * zero copy driver 2073 * 2074 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2075 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2076 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2077 * @dev_registered_tracker: tracker for reference held while 2078 * registered 2079 * @offload_xstats_l3: L3 HW stats for this netdevice. 2080 * 2081 * @devlink_port: Pointer to related devlink port structure. 2082 * Assigned by a driver before netdev registration using 2083 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2084 * during the time netdevice is registered. 2085 * 2086 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2087 * where the clock is recovered. 2088 * 2089 * FIXME: cleanup struct net_device such that network protocol info 2090 * moves out. 2091 */ 2092 2093 struct net_device { 2094 char name[IFNAMSIZ]; 2095 struct netdev_name_node *name_node; 2096 struct dev_ifalias __rcu *ifalias; 2097 /* 2098 * I/O specific fields 2099 * FIXME: Merge these and struct ifmap into one 2100 */ 2101 unsigned long mem_end; 2102 unsigned long mem_start; 2103 unsigned long base_addr; 2104 2105 /* 2106 * Some hardware also needs these fields (state,dev_list, 2107 * napi_list,unreg_list,close_list) but they are not 2108 * part of the usual set specified in Space.c. 2109 */ 2110 2111 unsigned long state; 2112 2113 struct list_head dev_list; 2114 struct list_head napi_list; 2115 struct list_head unreg_list; 2116 struct list_head close_list; 2117 struct list_head ptype_all; 2118 struct list_head ptype_specific; 2119 2120 struct { 2121 struct list_head upper; 2122 struct list_head lower; 2123 } adj_list; 2124 2125 /* Read-mostly cache-line for fast-path access */ 2126 unsigned int flags; 2127 xdp_features_t xdp_features; 2128 unsigned long long priv_flags; 2129 const struct net_device_ops *netdev_ops; 2130 const struct xdp_metadata_ops *xdp_metadata_ops; 2131 int ifindex; 2132 unsigned short gflags; 2133 unsigned short hard_header_len; 2134 2135 /* Note : dev->mtu is often read without holding a lock. 2136 * Writers usually hold RTNL. 2137 * It is recommended to use READ_ONCE() to annotate the reads, 2138 * and to use WRITE_ONCE() to annotate the writes. 2139 */ 2140 unsigned int mtu; 2141 unsigned short needed_headroom; 2142 unsigned short needed_tailroom; 2143 2144 netdev_features_t features; 2145 netdev_features_t hw_features; 2146 netdev_features_t wanted_features; 2147 netdev_features_t vlan_features; 2148 netdev_features_t hw_enc_features; 2149 netdev_features_t mpls_features; 2150 netdev_features_t gso_partial_features; 2151 2152 unsigned int min_mtu; 2153 unsigned int max_mtu; 2154 unsigned short type; 2155 unsigned char min_header_len; 2156 unsigned char name_assign_type; 2157 2158 int group; 2159 2160 struct net_device_stats stats; /* not used by modern drivers */ 2161 2162 struct net_device_core_stats __percpu *core_stats; 2163 2164 /* Stats to monitor link on/off, flapping */ 2165 atomic_t carrier_up_count; 2166 atomic_t carrier_down_count; 2167 2168 #ifdef CONFIG_WIRELESS_EXT 2169 const struct iw_handler_def *wireless_handlers; 2170 struct iw_public_data *wireless_data; 2171 #endif 2172 const struct ethtool_ops *ethtool_ops; 2173 #ifdef CONFIG_NET_L3_MASTER_DEV 2174 const struct l3mdev_ops *l3mdev_ops; 2175 #endif 2176 #if IS_ENABLED(CONFIG_IPV6) 2177 const struct ndisc_ops *ndisc_ops; 2178 #endif 2179 2180 #ifdef CONFIG_XFRM_OFFLOAD 2181 const struct xfrmdev_ops *xfrmdev_ops; 2182 #endif 2183 2184 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2185 const struct tlsdev_ops *tlsdev_ops; 2186 #endif 2187 2188 const struct header_ops *header_ops; 2189 2190 unsigned char operstate; 2191 unsigned char link_mode; 2192 2193 unsigned char if_port; 2194 unsigned char dma; 2195 2196 /* Interface address info. */ 2197 unsigned char perm_addr[MAX_ADDR_LEN]; 2198 unsigned char addr_assign_type; 2199 unsigned char addr_len; 2200 unsigned char upper_level; 2201 unsigned char lower_level; 2202 2203 unsigned short neigh_priv_len; 2204 unsigned short dev_id; 2205 unsigned short dev_port; 2206 unsigned short padded; 2207 2208 spinlock_t addr_list_lock; 2209 int irq; 2210 2211 struct netdev_hw_addr_list uc; 2212 struct netdev_hw_addr_list mc; 2213 struct netdev_hw_addr_list dev_addrs; 2214 2215 #ifdef CONFIG_SYSFS 2216 struct kset *queues_kset; 2217 #endif 2218 #ifdef CONFIG_LOCKDEP 2219 struct list_head unlink_list; 2220 #endif 2221 unsigned int promiscuity; 2222 unsigned int allmulti; 2223 bool uc_promisc; 2224 #ifdef CONFIG_LOCKDEP 2225 unsigned char nested_level; 2226 #endif 2227 2228 2229 /* Protocol-specific pointers */ 2230 2231 struct in_device __rcu *ip_ptr; 2232 struct inet6_dev __rcu *ip6_ptr; 2233 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2234 struct vlan_info __rcu *vlan_info; 2235 #endif 2236 #if IS_ENABLED(CONFIG_NET_DSA) 2237 struct dsa_port *dsa_ptr; 2238 #endif 2239 #if IS_ENABLED(CONFIG_TIPC) 2240 struct tipc_bearer __rcu *tipc_ptr; 2241 #endif 2242 #if IS_ENABLED(CONFIG_ATALK) 2243 void *atalk_ptr; 2244 #endif 2245 #if IS_ENABLED(CONFIG_AX25) 2246 void *ax25_ptr; 2247 #endif 2248 #if IS_ENABLED(CONFIG_CFG80211) 2249 struct wireless_dev *ieee80211_ptr; 2250 #endif 2251 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2252 struct wpan_dev *ieee802154_ptr; 2253 #endif 2254 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2255 struct mpls_dev __rcu *mpls_ptr; 2256 #endif 2257 #if IS_ENABLED(CONFIG_MCTP) 2258 struct mctp_dev __rcu *mctp_ptr; 2259 #endif 2260 2261 /* 2262 * Cache lines mostly used on receive path (including eth_type_trans()) 2263 */ 2264 /* Interface address info used in eth_type_trans() */ 2265 const unsigned char *dev_addr; 2266 2267 struct netdev_rx_queue *_rx; 2268 unsigned int num_rx_queues; 2269 unsigned int real_num_rx_queues; 2270 2271 struct bpf_prog __rcu *xdp_prog; 2272 unsigned long gro_flush_timeout; 2273 int napi_defer_hard_irqs; 2274 #define GRO_LEGACY_MAX_SIZE 65536u 2275 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2276 * and shinfo->gso_segs is a 16bit field. 2277 */ 2278 #define GRO_MAX_SIZE (8 * 65535u) 2279 unsigned int gro_max_size; 2280 unsigned int gro_ipv4_max_size; 2281 unsigned int xdp_zc_max_segs; 2282 rx_handler_func_t __rcu *rx_handler; 2283 void __rcu *rx_handler_data; 2284 #ifdef CONFIG_NET_XGRESS 2285 struct bpf_mprog_entry __rcu *tcx_ingress; 2286 #endif 2287 struct netdev_queue __rcu *ingress_queue; 2288 #ifdef CONFIG_NETFILTER_INGRESS 2289 struct nf_hook_entries __rcu *nf_hooks_ingress; 2290 #endif 2291 2292 unsigned char broadcast[MAX_ADDR_LEN]; 2293 #ifdef CONFIG_RFS_ACCEL 2294 struct cpu_rmap *rx_cpu_rmap; 2295 #endif 2296 struct hlist_node index_hlist; 2297 2298 /* 2299 * Cache lines mostly used on transmit path 2300 */ 2301 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2302 unsigned int num_tx_queues; 2303 unsigned int real_num_tx_queues; 2304 struct Qdisc __rcu *qdisc; 2305 unsigned int tx_queue_len; 2306 spinlock_t tx_global_lock; 2307 2308 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2309 2310 #ifdef CONFIG_XPS 2311 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2312 #endif 2313 #ifdef CONFIG_NET_XGRESS 2314 struct bpf_mprog_entry __rcu *tcx_egress; 2315 #endif 2316 #ifdef CONFIG_NETFILTER_EGRESS 2317 struct nf_hook_entries __rcu *nf_hooks_egress; 2318 #endif 2319 2320 #ifdef CONFIG_NET_SCHED 2321 DECLARE_HASHTABLE (qdisc_hash, 4); 2322 #endif 2323 /* These may be needed for future network-power-down code. */ 2324 struct timer_list watchdog_timer; 2325 int watchdog_timeo; 2326 2327 u32 proto_down_reason; 2328 2329 struct list_head todo_list; 2330 2331 #ifdef CONFIG_PCPU_DEV_REFCNT 2332 int __percpu *pcpu_refcnt; 2333 #else 2334 refcount_t dev_refcnt; 2335 #endif 2336 struct ref_tracker_dir refcnt_tracker; 2337 2338 struct list_head link_watch_list; 2339 2340 enum { NETREG_UNINITIALIZED=0, 2341 NETREG_REGISTERED, /* completed register_netdevice */ 2342 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2343 NETREG_UNREGISTERED, /* completed unregister todo */ 2344 NETREG_RELEASED, /* called free_netdev */ 2345 NETREG_DUMMY, /* dummy device for NAPI poll */ 2346 } reg_state:8; 2347 2348 bool dismantle; 2349 2350 enum { 2351 RTNL_LINK_INITIALIZED, 2352 RTNL_LINK_INITIALIZING, 2353 } rtnl_link_state:16; 2354 2355 bool needs_free_netdev; 2356 void (*priv_destructor)(struct net_device *dev); 2357 2358 #ifdef CONFIG_NETPOLL 2359 struct netpoll_info __rcu *npinfo; 2360 #endif 2361 2362 possible_net_t nd_net; 2363 2364 /* mid-layer private */ 2365 void *ml_priv; 2366 enum netdev_ml_priv_type ml_priv_type; 2367 2368 enum netdev_stat_type pcpu_stat_type:8; 2369 union { 2370 struct pcpu_lstats __percpu *lstats; 2371 struct pcpu_sw_netstats __percpu *tstats; 2372 struct pcpu_dstats __percpu *dstats; 2373 }; 2374 2375 #if IS_ENABLED(CONFIG_GARP) 2376 struct garp_port __rcu *garp_port; 2377 #endif 2378 #if IS_ENABLED(CONFIG_MRP) 2379 struct mrp_port __rcu *mrp_port; 2380 #endif 2381 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2382 struct dm_hw_stat_delta __rcu *dm_private; 2383 #endif 2384 struct device dev; 2385 const struct attribute_group *sysfs_groups[4]; 2386 const struct attribute_group *sysfs_rx_queue_group; 2387 2388 const struct rtnl_link_ops *rtnl_link_ops; 2389 2390 /* for setting kernel sock attribute on TCP connection setup */ 2391 #define GSO_MAX_SEGS 65535u 2392 #define GSO_LEGACY_MAX_SIZE 65536u 2393 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2394 * and shinfo->gso_segs is a 16bit field. 2395 */ 2396 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2397 2398 unsigned int gso_max_size; 2399 #define TSO_LEGACY_MAX_SIZE 65536 2400 #define TSO_MAX_SIZE UINT_MAX 2401 unsigned int tso_max_size; 2402 u16 gso_max_segs; 2403 #define TSO_MAX_SEGS U16_MAX 2404 u16 tso_max_segs; 2405 unsigned int gso_ipv4_max_size; 2406 2407 #ifdef CONFIG_DCB 2408 const struct dcbnl_rtnl_ops *dcbnl_ops; 2409 #endif 2410 s16 num_tc; 2411 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2412 u8 prio_tc_map[TC_BITMASK + 1]; 2413 2414 #if IS_ENABLED(CONFIG_FCOE) 2415 unsigned int fcoe_ddp_xid; 2416 #endif 2417 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2418 struct netprio_map __rcu *priomap; 2419 #endif 2420 struct phy_device *phydev; 2421 struct sfp_bus *sfp_bus; 2422 struct lock_class_key *qdisc_tx_busylock; 2423 bool proto_down; 2424 unsigned wol_enabled:1; 2425 unsigned threaded:1; 2426 2427 struct list_head net_notifier_list; 2428 2429 #if IS_ENABLED(CONFIG_MACSEC) 2430 /* MACsec management functions */ 2431 const struct macsec_ops *macsec_ops; 2432 #endif 2433 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2434 struct udp_tunnel_nic *udp_tunnel_nic; 2435 2436 /* protected by rtnl_lock */ 2437 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2438 2439 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2440 netdevice_tracker linkwatch_dev_tracker; 2441 netdevice_tracker watchdog_dev_tracker; 2442 netdevice_tracker dev_registered_tracker; 2443 struct rtnl_hw_stats64 *offload_xstats_l3; 2444 2445 struct devlink_port *devlink_port; 2446 2447 #if IS_ENABLED(CONFIG_DPLL) 2448 struct dpll_pin *dpll_pin; 2449 #endif 2450 #if IS_ENABLED(CONFIG_PAGE_POOL) 2451 /** @page_pools: page pools created for this netdevice */ 2452 struct hlist_head page_pools; 2453 #endif 2454 }; 2455 #define to_net_dev(d) container_of(d, struct net_device, dev) 2456 2457 /* 2458 * Driver should use this to assign devlink port instance to a netdevice 2459 * before it registers the netdevice. Therefore devlink_port is static 2460 * during the netdev lifetime after it is registered. 2461 */ 2462 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2463 ({ \ 2464 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2465 ((dev)->devlink_port = (port)); \ 2466 }) 2467 2468 static inline bool netif_elide_gro(const struct net_device *dev) 2469 { 2470 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2471 return true; 2472 return false; 2473 } 2474 2475 #define NETDEV_ALIGN 32 2476 2477 static inline 2478 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2479 { 2480 return dev->prio_tc_map[prio & TC_BITMASK]; 2481 } 2482 2483 static inline 2484 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2485 { 2486 if (tc >= dev->num_tc) 2487 return -EINVAL; 2488 2489 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2490 return 0; 2491 } 2492 2493 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2494 void netdev_reset_tc(struct net_device *dev); 2495 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2496 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2497 2498 static inline 2499 int netdev_get_num_tc(struct net_device *dev) 2500 { 2501 return dev->num_tc; 2502 } 2503 2504 static inline void net_prefetch(void *p) 2505 { 2506 prefetch(p); 2507 #if L1_CACHE_BYTES < 128 2508 prefetch((u8 *)p + L1_CACHE_BYTES); 2509 #endif 2510 } 2511 2512 static inline void net_prefetchw(void *p) 2513 { 2514 prefetchw(p); 2515 #if L1_CACHE_BYTES < 128 2516 prefetchw((u8 *)p + L1_CACHE_BYTES); 2517 #endif 2518 } 2519 2520 void netdev_unbind_sb_channel(struct net_device *dev, 2521 struct net_device *sb_dev); 2522 int netdev_bind_sb_channel_queue(struct net_device *dev, 2523 struct net_device *sb_dev, 2524 u8 tc, u16 count, u16 offset); 2525 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2526 static inline int netdev_get_sb_channel(struct net_device *dev) 2527 { 2528 return max_t(int, -dev->num_tc, 0); 2529 } 2530 2531 static inline 2532 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2533 unsigned int index) 2534 { 2535 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2536 return &dev->_tx[index]; 2537 } 2538 2539 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2540 const struct sk_buff *skb) 2541 { 2542 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2543 } 2544 2545 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2546 void (*f)(struct net_device *, 2547 struct netdev_queue *, 2548 void *), 2549 void *arg) 2550 { 2551 unsigned int i; 2552 2553 for (i = 0; i < dev->num_tx_queues; i++) 2554 f(dev, &dev->_tx[i], arg); 2555 } 2556 2557 #define netdev_lockdep_set_classes(dev) \ 2558 { \ 2559 static struct lock_class_key qdisc_tx_busylock_key; \ 2560 static struct lock_class_key qdisc_xmit_lock_key; \ 2561 static struct lock_class_key dev_addr_list_lock_key; \ 2562 unsigned int i; \ 2563 \ 2564 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2565 lockdep_set_class(&(dev)->addr_list_lock, \ 2566 &dev_addr_list_lock_key); \ 2567 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2568 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2569 &qdisc_xmit_lock_key); \ 2570 } 2571 2572 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2573 struct net_device *sb_dev); 2574 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2575 struct sk_buff *skb, 2576 struct net_device *sb_dev); 2577 2578 /* returns the headroom that the master device needs to take in account 2579 * when forwarding to this dev 2580 */ 2581 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2582 { 2583 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2584 } 2585 2586 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2587 { 2588 if (dev->netdev_ops->ndo_set_rx_headroom) 2589 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2590 } 2591 2592 /* set the device rx headroom to the dev's default */ 2593 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2594 { 2595 netdev_set_rx_headroom(dev, -1); 2596 } 2597 2598 static inline void *netdev_get_ml_priv(struct net_device *dev, 2599 enum netdev_ml_priv_type type) 2600 { 2601 if (dev->ml_priv_type != type) 2602 return NULL; 2603 2604 return dev->ml_priv; 2605 } 2606 2607 static inline void netdev_set_ml_priv(struct net_device *dev, 2608 void *ml_priv, 2609 enum netdev_ml_priv_type type) 2610 { 2611 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2612 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2613 dev->ml_priv_type, type); 2614 WARN(!dev->ml_priv_type && dev->ml_priv, 2615 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2616 2617 dev->ml_priv = ml_priv; 2618 dev->ml_priv_type = type; 2619 } 2620 2621 /* 2622 * Net namespace inlines 2623 */ 2624 static inline 2625 struct net *dev_net(const struct net_device *dev) 2626 { 2627 return read_pnet(&dev->nd_net); 2628 } 2629 2630 static inline 2631 void dev_net_set(struct net_device *dev, struct net *net) 2632 { 2633 write_pnet(&dev->nd_net, net); 2634 } 2635 2636 /** 2637 * netdev_priv - access network device private data 2638 * @dev: network device 2639 * 2640 * Get network device private data 2641 */ 2642 static inline void *netdev_priv(const struct net_device *dev) 2643 { 2644 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2645 } 2646 2647 /* Set the sysfs physical device reference for the network logical device 2648 * if set prior to registration will cause a symlink during initialization. 2649 */ 2650 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2651 2652 /* Set the sysfs device type for the network logical device to allow 2653 * fine-grained identification of different network device types. For 2654 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2655 */ 2656 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2657 2658 /* Default NAPI poll() weight 2659 * Device drivers are strongly advised to not use bigger value 2660 */ 2661 #define NAPI_POLL_WEIGHT 64 2662 2663 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2664 int (*poll)(struct napi_struct *, int), int weight); 2665 2666 /** 2667 * netif_napi_add() - initialize a NAPI context 2668 * @dev: network device 2669 * @napi: NAPI context 2670 * @poll: polling function 2671 * 2672 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2673 * *any* of the other NAPI-related functions. 2674 */ 2675 static inline void 2676 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2677 int (*poll)(struct napi_struct *, int)) 2678 { 2679 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2680 } 2681 2682 static inline void 2683 netif_napi_add_tx_weight(struct net_device *dev, 2684 struct napi_struct *napi, 2685 int (*poll)(struct napi_struct *, int), 2686 int weight) 2687 { 2688 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2689 netif_napi_add_weight(dev, napi, poll, weight); 2690 } 2691 2692 /** 2693 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2694 * @dev: network device 2695 * @napi: NAPI context 2696 * @poll: polling function 2697 * 2698 * This variant of netif_napi_add() should be used from drivers using NAPI 2699 * to exclusively poll a TX queue. 2700 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2701 */ 2702 static inline void netif_napi_add_tx(struct net_device *dev, 2703 struct napi_struct *napi, 2704 int (*poll)(struct napi_struct *, int)) 2705 { 2706 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2707 } 2708 2709 /** 2710 * __netif_napi_del - remove a NAPI context 2711 * @napi: NAPI context 2712 * 2713 * Warning: caller must observe RCU grace period before freeing memory 2714 * containing @napi. Drivers might want to call this helper to combine 2715 * all the needed RCU grace periods into a single one. 2716 */ 2717 void __netif_napi_del(struct napi_struct *napi); 2718 2719 /** 2720 * netif_napi_del - remove a NAPI context 2721 * @napi: NAPI context 2722 * 2723 * netif_napi_del() removes a NAPI context from the network device NAPI list 2724 */ 2725 static inline void netif_napi_del(struct napi_struct *napi) 2726 { 2727 __netif_napi_del(napi); 2728 synchronize_net(); 2729 } 2730 2731 struct packet_type { 2732 __be16 type; /* This is really htons(ether_type). */ 2733 bool ignore_outgoing; 2734 struct net_device *dev; /* NULL is wildcarded here */ 2735 netdevice_tracker dev_tracker; 2736 int (*func) (struct sk_buff *, 2737 struct net_device *, 2738 struct packet_type *, 2739 struct net_device *); 2740 void (*list_func) (struct list_head *, 2741 struct packet_type *, 2742 struct net_device *); 2743 bool (*id_match)(struct packet_type *ptype, 2744 struct sock *sk); 2745 struct net *af_packet_net; 2746 void *af_packet_priv; 2747 struct list_head list; 2748 }; 2749 2750 struct offload_callbacks { 2751 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2752 netdev_features_t features); 2753 struct sk_buff *(*gro_receive)(struct list_head *head, 2754 struct sk_buff *skb); 2755 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2756 }; 2757 2758 struct packet_offload { 2759 __be16 type; /* This is really htons(ether_type). */ 2760 u16 priority; 2761 struct offload_callbacks callbacks; 2762 struct list_head list; 2763 }; 2764 2765 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2766 struct pcpu_sw_netstats { 2767 u64_stats_t rx_packets; 2768 u64_stats_t rx_bytes; 2769 u64_stats_t tx_packets; 2770 u64_stats_t tx_bytes; 2771 struct u64_stats_sync syncp; 2772 } __aligned(4 * sizeof(u64)); 2773 2774 struct pcpu_dstats { 2775 u64 rx_packets; 2776 u64 rx_bytes; 2777 u64 rx_drops; 2778 u64 tx_packets; 2779 u64 tx_bytes; 2780 u64 tx_drops; 2781 struct u64_stats_sync syncp; 2782 } __aligned(8 * sizeof(u64)); 2783 2784 struct pcpu_lstats { 2785 u64_stats_t packets; 2786 u64_stats_t bytes; 2787 struct u64_stats_sync syncp; 2788 } __aligned(2 * sizeof(u64)); 2789 2790 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2791 2792 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2793 { 2794 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2795 2796 u64_stats_update_begin(&tstats->syncp); 2797 u64_stats_add(&tstats->rx_bytes, len); 2798 u64_stats_inc(&tstats->rx_packets); 2799 u64_stats_update_end(&tstats->syncp); 2800 } 2801 2802 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2803 unsigned int packets, 2804 unsigned int len) 2805 { 2806 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2807 2808 u64_stats_update_begin(&tstats->syncp); 2809 u64_stats_add(&tstats->tx_bytes, len); 2810 u64_stats_add(&tstats->tx_packets, packets); 2811 u64_stats_update_end(&tstats->syncp); 2812 } 2813 2814 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2815 { 2816 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2817 2818 u64_stats_update_begin(&lstats->syncp); 2819 u64_stats_add(&lstats->bytes, len); 2820 u64_stats_inc(&lstats->packets); 2821 u64_stats_update_end(&lstats->syncp); 2822 } 2823 2824 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2825 ({ \ 2826 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2827 if (pcpu_stats) { \ 2828 int __cpu; \ 2829 for_each_possible_cpu(__cpu) { \ 2830 typeof(type) *stat; \ 2831 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2832 u64_stats_init(&stat->syncp); \ 2833 } \ 2834 } \ 2835 pcpu_stats; \ 2836 }) 2837 2838 #define netdev_alloc_pcpu_stats(type) \ 2839 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2840 2841 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2842 ({ \ 2843 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2844 if (pcpu_stats) { \ 2845 int __cpu; \ 2846 for_each_possible_cpu(__cpu) { \ 2847 typeof(type) *stat; \ 2848 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2849 u64_stats_init(&stat->syncp); \ 2850 } \ 2851 } \ 2852 pcpu_stats; \ 2853 }) 2854 2855 enum netdev_lag_tx_type { 2856 NETDEV_LAG_TX_TYPE_UNKNOWN, 2857 NETDEV_LAG_TX_TYPE_RANDOM, 2858 NETDEV_LAG_TX_TYPE_BROADCAST, 2859 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2860 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2861 NETDEV_LAG_TX_TYPE_HASH, 2862 }; 2863 2864 enum netdev_lag_hash { 2865 NETDEV_LAG_HASH_NONE, 2866 NETDEV_LAG_HASH_L2, 2867 NETDEV_LAG_HASH_L34, 2868 NETDEV_LAG_HASH_L23, 2869 NETDEV_LAG_HASH_E23, 2870 NETDEV_LAG_HASH_E34, 2871 NETDEV_LAG_HASH_VLAN_SRCMAC, 2872 NETDEV_LAG_HASH_UNKNOWN, 2873 }; 2874 2875 struct netdev_lag_upper_info { 2876 enum netdev_lag_tx_type tx_type; 2877 enum netdev_lag_hash hash_type; 2878 }; 2879 2880 struct netdev_lag_lower_state_info { 2881 u8 link_up : 1, 2882 tx_enabled : 1; 2883 }; 2884 2885 #include <linux/notifier.h> 2886 2887 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2888 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2889 * adding new types. 2890 */ 2891 enum netdev_cmd { 2892 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2893 NETDEV_DOWN, 2894 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2895 detected a hardware crash and restarted 2896 - we can use this eg to kick tcp sessions 2897 once done */ 2898 NETDEV_CHANGE, /* Notify device state change */ 2899 NETDEV_REGISTER, 2900 NETDEV_UNREGISTER, 2901 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2902 NETDEV_CHANGEADDR, /* notify after the address change */ 2903 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2904 NETDEV_GOING_DOWN, 2905 NETDEV_CHANGENAME, 2906 NETDEV_FEAT_CHANGE, 2907 NETDEV_BONDING_FAILOVER, 2908 NETDEV_PRE_UP, 2909 NETDEV_PRE_TYPE_CHANGE, 2910 NETDEV_POST_TYPE_CHANGE, 2911 NETDEV_POST_INIT, 2912 NETDEV_PRE_UNINIT, 2913 NETDEV_RELEASE, 2914 NETDEV_NOTIFY_PEERS, 2915 NETDEV_JOIN, 2916 NETDEV_CHANGEUPPER, 2917 NETDEV_RESEND_IGMP, 2918 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2919 NETDEV_CHANGEINFODATA, 2920 NETDEV_BONDING_INFO, 2921 NETDEV_PRECHANGEUPPER, 2922 NETDEV_CHANGELOWERSTATE, 2923 NETDEV_UDP_TUNNEL_PUSH_INFO, 2924 NETDEV_UDP_TUNNEL_DROP_INFO, 2925 NETDEV_CHANGE_TX_QUEUE_LEN, 2926 NETDEV_CVLAN_FILTER_PUSH_INFO, 2927 NETDEV_CVLAN_FILTER_DROP_INFO, 2928 NETDEV_SVLAN_FILTER_PUSH_INFO, 2929 NETDEV_SVLAN_FILTER_DROP_INFO, 2930 NETDEV_OFFLOAD_XSTATS_ENABLE, 2931 NETDEV_OFFLOAD_XSTATS_DISABLE, 2932 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2933 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2934 NETDEV_XDP_FEAT_CHANGE, 2935 }; 2936 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2937 2938 int register_netdevice_notifier(struct notifier_block *nb); 2939 int unregister_netdevice_notifier(struct notifier_block *nb); 2940 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2941 int unregister_netdevice_notifier_net(struct net *net, 2942 struct notifier_block *nb); 2943 int register_netdevice_notifier_dev_net(struct net_device *dev, 2944 struct notifier_block *nb, 2945 struct netdev_net_notifier *nn); 2946 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2947 struct notifier_block *nb, 2948 struct netdev_net_notifier *nn); 2949 2950 struct netdev_notifier_info { 2951 struct net_device *dev; 2952 struct netlink_ext_ack *extack; 2953 }; 2954 2955 struct netdev_notifier_info_ext { 2956 struct netdev_notifier_info info; /* must be first */ 2957 union { 2958 u32 mtu; 2959 } ext; 2960 }; 2961 2962 struct netdev_notifier_change_info { 2963 struct netdev_notifier_info info; /* must be first */ 2964 unsigned int flags_changed; 2965 }; 2966 2967 struct netdev_notifier_changeupper_info { 2968 struct netdev_notifier_info info; /* must be first */ 2969 struct net_device *upper_dev; /* new upper dev */ 2970 bool master; /* is upper dev master */ 2971 bool linking; /* is the notification for link or unlink */ 2972 void *upper_info; /* upper dev info */ 2973 }; 2974 2975 struct netdev_notifier_changelowerstate_info { 2976 struct netdev_notifier_info info; /* must be first */ 2977 void *lower_state_info; /* is lower dev state */ 2978 }; 2979 2980 struct netdev_notifier_pre_changeaddr_info { 2981 struct netdev_notifier_info info; /* must be first */ 2982 const unsigned char *dev_addr; 2983 }; 2984 2985 enum netdev_offload_xstats_type { 2986 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2987 }; 2988 2989 struct netdev_notifier_offload_xstats_info { 2990 struct netdev_notifier_info info; /* must be first */ 2991 enum netdev_offload_xstats_type type; 2992 2993 union { 2994 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2995 struct netdev_notifier_offload_xstats_rd *report_delta; 2996 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2997 struct netdev_notifier_offload_xstats_ru *report_used; 2998 }; 2999 }; 3000 3001 int netdev_offload_xstats_enable(struct net_device *dev, 3002 enum netdev_offload_xstats_type type, 3003 struct netlink_ext_ack *extack); 3004 int netdev_offload_xstats_disable(struct net_device *dev, 3005 enum netdev_offload_xstats_type type); 3006 bool netdev_offload_xstats_enabled(const struct net_device *dev, 3007 enum netdev_offload_xstats_type type); 3008 int netdev_offload_xstats_get(struct net_device *dev, 3009 enum netdev_offload_xstats_type type, 3010 struct rtnl_hw_stats64 *stats, bool *used, 3011 struct netlink_ext_ack *extack); 3012 void 3013 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3014 const struct rtnl_hw_stats64 *stats); 3015 void 3016 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3017 void netdev_offload_xstats_push_delta(struct net_device *dev, 3018 enum netdev_offload_xstats_type type, 3019 const struct rtnl_hw_stats64 *stats); 3020 3021 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3022 struct net_device *dev) 3023 { 3024 info->dev = dev; 3025 info->extack = NULL; 3026 } 3027 3028 static inline struct net_device * 3029 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3030 { 3031 return info->dev; 3032 } 3033 3034 static inline struct netlink_ext_ack * 3035 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3036 { 3037 return info->extack; 3038 } 3039 3040 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3041 int call_netdevice_notifiers_info(unsigned long val, 3042 struct netdev_notifier_info *info); 3043 3044 extern rwlock_t dev_base_lock; /* Device list lock */ 3045 3046 #define for_each_netdev(net, d) \ 3047 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3048 #define for_each_netdev_reverse(net, d) \ 3049 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3050 #define for_each_netdev_rcu(net, d) \ 3051 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3052 #define for_each_netdev_safe(net, d, n) \ 3053 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3054 #define for_each_netdev_continue(net, d) \ 3055 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3056 #define for_each_netdev_continue_reverse(net, d) \ 3057 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3058 dev_list) 3059 #define for_each_netdev_continue_rcu(net, d) \ 3060 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3061 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3062 for_each_netdev_rcu(&init_net, slave) \ 3063 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3064 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3065 3066 #define for_each_netdev_dump(net, d, ifindex) \ 3067 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3068 3069 static inline struct net_device *next_net_device(struct net_device *dev) 3070 { 3071 struct list_head *lh; 3072 struct net *net; 3073 3074 net = dev_net(dev); 3075 lh = dev->dev_list.next; 3076 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3077 } 3078 3079 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3080 { 3081 struct list_head *lh; 3082 struct net *net; 3083 3084 net = dev_net(dev); 3085 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3086 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3087 } 3088 3089 static inline struct net_device *first_net_device(struct net *net) 3090 { 3091 return list_empty(&net->dev_base_head) ? NULL : 3092 net_device_entry(net->dev_base_head.next); 3093 } 3094 3095 static inline struct net_device *first_net_device_rcu(struct net *net) 3096 { 3097 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3098 3099 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3100 } 3101 3102 int netdev_boot_setup_check(struct net_device *dev); 3103 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3104 const char *hwaddr); 3105 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3106 void dev_add_pack(struct packet_type *pt); 3107 void dev_remove_pack(struct packet_type *pt); 3108 void __dev_remove_pack(struct packet_type *pt); 3109 void dev_add_offload(struct packet_offload *po); 3110 void dev_remove_offload(struct packet_offload *po); 3111 3112 int dev_get_iflink(const struct net_device *dev); 3113 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3114 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3115 struct net_device_path_stack *stack); 3116 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3117 unsigned short mask); 3118 struct net_device *dev_get_by_name(struct net *net, const char *name); 3119 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3120 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3121 bool netdev_name_in_use(struct net *net, const char *name); 3122 int dev_alloc_name(struct net_device *dev, const char *name); 3123 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3124 void dev_close(struct net_device *dev); 3125 void dev_close_many(struct list_head *head, bool unlink); 3126 void dev_disable_lro(struct net_device *dev); 3127 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3128 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3129 struct net_device *sb_dev); 3130 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3131 struct net_device *sb_dev); 3132 3133 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3134 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3135 3136 static inline int dev_queue_xmit(struct sk_buff *skb) 3137 { 3138 return __dev_queue_xmit(skb, NULL); 3139 } 3140 3141 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3142 struct net_device *sb_dev) 3143 { 3144 return __dev_queue_xmit(skb, sb_dev); 3145 } 3146 3147 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3148 { 3149 int ret; 3150 3151 ret = __dev_direct_xmit(skb, queue_id); 3152 if (!dev_xmit_complete(ret)) 3153 kfree_skb(skb); 3154 return ret; 3155 } 3156 3157 int register_netdevice(struct net_device *dev); 3158 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3159 void unregister_netdevice_many(struct list_head *head); 3160 static inline void unregister_netdevice(struct net_device *dev) 3161 { 3162 unregister_netdevice_queue(dev, NULL); 3163 } 3164 3165 int netdev_refcnt_read(const struct net_device *dev); 3166 void free_netdev(struct net_device *dev); 3167 void netdev_freemem(struct net_device *dev); 3168 int init_dummy_netdev(struct net_device *dev); 3169 3170 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3171 struct sk_buff *skb, 3172 bool all_slaves); 3173 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3174 struct sock *sk); 3175 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3176 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3177 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3178 netdevice_tracker *tracker, gfp_t gfp); 3179 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3180 netdevice_tracker *tracker, gfp_t gfp); 3181 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3182 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3183 3184 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3185 unsigned short type, 3186 const void *daddr, const void *saddr, 3187 unsigned int len) 3188 { 3189 if (!dev->header_ops || !dev->header_ops->create) 3190 return 0; 3191 3192 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3193 } 3194 3195 static inline int dev_parse_header(const struct sk_buff *skb, 3196 unsigned char *haddr) 3197 { 3198 const struct net_device *dev = skb->dev; 3199 3200 if (!dev->header_ops || !dev->header_ops->parse) 3201 return 0; 3202 return dev->header_ops->parse(skb, haddr); 3203 } 3204 3205 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3206 { 3207 const struct net_device *dev = skb->dev; 3208 3209 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3210 return 0; 3211 return dev->header_ops->parse_protocol(skb); 3212 } 3213 3214 /* ll_header must have at least hard_header_len allocated */ 3215 static inline bool dev_validate_header(const struct net_device *dev, 3216 char *ll_header, int len) 3217 { 3218 if (likely(len >= dev->hard_header_len)) 3219 return true; 3220 if (len < dev->min_header_len) 3221 return false; 3222 3223 if (capable(CAP_SYS_RAWIO)) { 3224 memset(ll_header + len, 0, dev->hard_header_len - len); 3225 return true; 3226 } 3227 3228 if (dev->header_ops && dev->header_ops->validate) 3229 return dev->header_ops->validate(ll_header, len); 3230 3231 return false; 3232 } 3233 3234 static inline bool dev_has_header(const struct net_device *dev) 3235 { 3236 return dev->header_ops && dev->header_ops->create; 3237 } 3238 3239 /* 3240 * Incoming packets are placed on per-CPU queues 3241 */ 3242 struct softnet_data { 3243 struct list_head poll_list; 3244 struct sk_buff_head process_queue; 3245 3246 /* stats */ 3247 unsigned int processed; 3248 unsigned int time_squeeze; 3249 #ifdef CONFIG_RPS 3250 struct softnet_data *rps_ipi_list; 3251 #endif 3252 3253 bool in_net_rx_action; 3254 bool in_napi_threaded_poll; 3255 3256 #ifdef CONFIG_NET_FLOW_LIMIT 3257 struct sd_flow_limit __rcu *flow_limit; 3258 #endif 3259 struct Qdisc *output_queue; 3260 struct Qdisc **output_queue_tailp; 3261 struct sk_buff *completion_queue; 3262 #ifdef CONFIG_XFRM_OFFLOAD 3263 struct sk_buff_head xfrm_backlog; 3264 #endif 3265 /* written and read only by owning cpu: */ 3266 struct { 3267 u16 recursion; 3268 u8 more; 3269 #ifdef CONFIG_NET_EGRESS 3270 u8 skip_txqueue; 3271 #endif 3272 } xmit; 3273 #ifdef CONFIG_RPS 3274 /* input_queue_head should be written by cpu owning this struct, 3275 * and only read by other cpus. Worth using a cache line. 3276 */ 3277 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3278 3279 /* Elements below can be accessed between CPUs for RPS/RFS */ 3280 call_single_data_t csd ____cacheline_aligned_in_smp; 3281 struct softnet_data *rps_ipi_next; 3282 unsigned int cpu; 3283 unsigned int input_queue_tail; 3284 #endif 3285 unsigned int received_rps; 3286 unsigned int dropped; 3287 struct sk_buff_head input_pkt_queue; 3288 struct napi_struct backlog; 3289 3290 /* Another possibly contended cache line */ 3291 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3292 int defer_count; 3293 int defer_ipi_scheduled; 3294 struct sk_buff *defer_list; 3295 call_single_data_t defer_csd; 3296 }; 3297 3298 static inline void input_queue_head_incr(struct softnet_data *sd) 3299 { 3300 #ifdef CONFIG_RPS 3301 sd->input_queue_head++; 3302 #endif 3303 } 3304 3305 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3306 unsigned int *qtail) 3307 { 3308 #ifdef CONFIG_RPS 3309 *qtail = ++sd->input_queue_tail; 3310 #endif 3311 } 3312 3313 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3314 3315 static inline int dev_recursion_level(void) 3316 { 3317 return this_cpu_read(softnet_data.xmit.recursion); 3318 } 3319 3320 #define XMIT_RECURSION_LIMIT 8 3321 static inline bool dev_xmit_recursion(void) 3322 { 3323 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3324 XMIT_RECURSION_LIMIT); 3325 } 3326 3327 static inline void dev_xmit_recursion_inc(void) 3328 { 3329 __this_cpu_inc(softnet_data.xmit.recursion); 3330 } 3331 3332 static inline void dev_xmit_recursion_dec(void) 3333 { 3334 __this_cpu_dec(softnet_data.xmit.recursion); 3335 } 3336 3337 void __netif_schedule(struct Qdisc *q); 3338 void netif_schedule_queue(struct netdev_queue *txq); 3339 3340 static inline void netif_tx_schedule_all(struct net_device *dev) 3341 { 3342 unsigned int i; 3343 3344 for (i = 0; i < dev->num_tx_queues; i++) 3345 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3346 } 3347 3348 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3349 { 3350 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3351 } 3352 3353 /** 3354 * netif_start_queue - allow transmit 3355 * @dev: network device 3356 * 3357 * Allow upper layers to call the device hard_start_xmit routine. 3358 */ 3359 static inline void netif_start_queue(struct net_device *dev) 3360 { 3361 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3362 } 3363 3364 static inline void netif_tx_start_all_queues(struct net_device *dev) 3365 { 3366 unsigned int i; 3367 3368 for (i = 0; i < dev->num_tx_queues; i++) { 3369 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3370 netif_tx_start_queue(txq); 3371 } 3372 } 3373 3374 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3375 3376 /** 3377 * netif_wake_queue - restart transmit 3378 * @dev: network device 3379 * 3380 * Allow upper layers to call the device hard_start_xmit routine. 3381 * Used for flow control when transmit resources are available. 3382 */ 3383 static inline void netif_wake_queue(struct net_device *dev) 3384 { 3385 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3386 } 3387 3388 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3389 { 3390 unsigned int i; 3391 3392 for (i = 0; i < dev->num_tx_queues; i++) { 3393 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3394 netif_tx_wake_queue(txq); 3395 } 3396 } 3397 3398 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3399 { 3400 /* Must be an atomic op see netif_txq_try_stop() */ 3401 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3402 } 3403 3404 /** 3405 * netif_stop_queue - stop transmitted packets 3406 * @dev: network device 3407 * 3408 * Stop upper layers calling the device hard_start_xmit routine. 3409 * Used for flow control when transmit resources are unavailable. 3410 */ 3411 static inline void netif_stop_queue(struct net_device *dev) 3412 { 3413 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3414 } 3415 3416 void netif_tx_stop_all_queues(struct net_device *dev); 3417 3418 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3419 { 3420 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3421 } 3422 3423 /** 3424 * netif_queue_stopped - test if transmit queue is flowblocked 3425 * @dev: network device 3426 * 3427 * Test if transmit queue on device is currently unable to send. 3428 */ 3429 static inline bool netif_queue_stopped(const struct net_device *dev) 3430 { 3431 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3432 } 3433 3434 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3435 { 3436 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3437 } 3438 3439 static inline bool 3440 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3441 { 3442 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3443 } 3444 3445 static inline bool 3446 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3447 { 3448 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3449 } 3450 3451 /** 3452 * netdev_queue_set_dql_min_limit - set dql minimum limit 3453 * @dev_queue: pointer to transmit queue 3454 * @min_limit: dql minimum limit 3455 * 3456 * Forces xmit_more() to return true until the minimum threshold 3457 * defined by @min_limit is reached (or until the tx queue is 3458 * empty). Warning: to be use with care, misuse will impact the 3459 * latency. 3460 */ 3461 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3462 unsigned int min_limit) 3463 { 3464 #ifdef CONFIG_BQL 3465 dev_queue->dql.min_limit = min_limit; 3466 #endif 3467 } 3468 3469 /** 3470 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3471 * @dev_queue: pointer to transmit queue 3472 * 3473 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3474 * to give appropriate hint to the CPU. 3475 */ 3476 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3477 { 3478 #ifdef CONFIG_BQL 3479 prefetchw(&dev_queue->dql.num_queued); 3480 #endif 3481 } 3482 3483 /** 3484 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3485 * @dev_queue: pointer to transmit queue 3486 * 3487 * BQL enabled drivers might use this helper in their TX completion path, 3488 * to give appropriate hint to the CPU. 3489 */ 3490 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3491 { 3492 #ifdef CONFIG_BQL 3493 prefetchw(&dev_queue->dql.limit); 3494 #endif 3495 } 3496 3497 /** 3498 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3499 * @dev_queue: network device queue 3500 * @bytes: number of bytes queued to the device queue 3501 * 3502 * Report the number of bytes queued for sending/completion to the network 3503 * device hardware queue. @bytes should be a good approximation and should 3504 * exactly match netdev_completed_queue() @bytes. 3505 * This is typically called once per packet, from ndo_start_xmit(). 3506 */ 3507 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3508 unsigned int bytes) 3509 { 3510 #ifdef CONFIG_BQL 3511 dql_queued(&dev_queue->dql, bytes); 3512 3513 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3514 return; 3515 3516 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3517 3518 /* 3519 * The XOFF flag must be set before checking the dql_avail below, 3520 * because in netdev_tx_completed_queue we update the dql_completed 3521 * before checking the XOFF flag. 3522 */ 3523 smp_mb(); 3524 3525 /* check again in case another CPU has just made room avail */ 3526 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3527 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3528 #endif 3529 } 3530 3531 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3532 * that they should not test BQL status themselves. 3533 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3534 * skb of a batch. 3535 * Returns true if the doorbell must be used to kick the NIC. 3536 */ 3537 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3538 unsigned int bytes, 3539 bool xmit_more) 3540 { 3541 if (xmit_more) { 3542 #ifdef CONFIG_BQL 3543 dql_queued(&dev_queue->dql, bytes); 3544 #endif 3545 return netif_tx_queue_stopped(dev_queue); 3546 } 3547 netdev_tx_sent_queue(dev_queue, bytes); 3548 return true; 3549 } 3550 3551 /** 3552 * netdev_sent_queue - report the number of bytes queued to hardware 3553 * @dev: network device 3554 * @bytes: number of bytes queued to the hardware device queue 3555 * 3556 * Report the number of bytes queued for sending/completion to the network 3557 * device hardware queue#0. @bytes should be a good approximation and should 3558 * exactly match netdev_completed_queue() @bytes. 3559 * This is typically called once per packet, from ndo_start_xmit(). 3560 */ 3561 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3562 { 3563 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3564 } 3565 3566 static inline bool __netdev_sent_queue(struct net_device *dev, 3567 unsigned int bytes, 3568 bool xmit_more) 3569 { 3570 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3571 xmit_more); 3572 } 3573 3574 /** 3575 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3576 * @dev_queue: network device queue 3577 * @pkts: number of packets (currently ignored) 3578 * @bytes: number of bytes dequeued from the device queue 3579 * 3580 * Must be called at most once per TX completion round (and not per 3581 * individual packet), so that BQL can adjust its limits appropriately. 3582 */ 3583 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3584 unsigned int pkts, unsigned int bytes) 3585 { 3586 #ifdef CONFIG_BQL 3587 if (unlikely(!bytes)) 3588 return; 3589 3590 dql_completed(&dev_queue->dql, bytes); 3591 3592 /* 3593 * Without the memory barrier there is a small possiblity that 3594 * netdev_tx_sent_queue will miss the update and cause the queue to 3595 * be stopped forever 3596 */ 3597 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3598 3599 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3600 return; 3601 3602 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3603 netif_schedule_queue(dev_queue); 3604 #endif 3605 } 3606 3607 /** 3608 * netdev_completed_queue - report bytes and packets completed by device 3609 * @dev: network device 3610 * @pkts: actual number of packets sent over the medium 3611 * @bytes: actual number of bytes sent over the medium 3612 * 3613 * Report the number of bytes and packets transmitted by the network device 3614 * hardware queue over the physical medium, @bytes must exactly match the 3615 * @bytes amount passed to netdev_sent_queue() 3616 */ 3617 static inline void netdev_completed_queue(struct net_device *dev, 3618 unsigned int pkts, unsigned int bytes) 3619 { 3620 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3621 } 3622 3623 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3624 { 3625 #ifdef CONFIG_BQL 3626 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3627 dql_reset(&q->dql); 3628 #endif 3629 } 3630 3631 /** 3632 * netdev_reset_queue - reset the packets and bytes count of a network device 3633 * @dev_queue: network device 3634 * 3635 * Reset the bytes and packet count of a network device and clear the 3636 * software flow control OFF bit for this network device 3637 */ 3638 static inline void netdev_reset_queue(struct net_device *dev_queue) 3639 { 3640 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3641 } 3642 3643 /** 3644 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3645 * @dev: network device 3646 * @queue_index: given tx queue index 3647 * 3648 * Returns 0 if given tx queue index >= number of device tx queues, 3649 * otherwise returns the originally passed tx queue index. 3650 */ 3651 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3652 { 3653 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3654 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3655 dev->name, queue_index, 3656 dev->real_num_tx_queues); 3657 return 0; 3658 } 3659 3660 return queue_index; 3661 } 3662 3663 /** 3664 * netif_running - test if up 3665 * @dev: network device 3666 * 3667 * Test if the device has been brought up. 3668 */ 3669 static inline bool netif_running(const struct net_device *dev) 3670 { 3671 return test_bit(__LINK_STATE_START, &dev->state); 3672 } 3673 3674 /* 3675 * Routines to manage the subqueues on a device. We only need start, 3676 * stop, and a check if it's stopped. All other device management is 3677 * done at the overall netdevice level. 3678 * Also test the device if we're multiqueue. 3679 */ 3680 3681 /** 3682 * netif_start_subqueue - allow sending packets on subqueue 3683 * @dev: network device 3684 * @queue_index: sub queue index 3685 * 3686 * Start individual transmit queue of a device with multiple transmit queues. 3687 */ 3688 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3689 { 3690 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3691 3692 netif_tx_start_queue(txq); 3693 } 3694 3695 /** 3696 * netif_stop_subqueue - stop sending packets on subqueue 3697 * @dev: network device 3698 * @queue_index: sub queue index 3699 * 3700 * Stop individual transmit queue of a device with multiple transmit queues. 3701 */ 3702 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3703 { 3704 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3705 netif_tx_stop_queue(txq); 3706 } 3707 3708 /** 3709 * __netif_subqueue_stopped - test status of subqueue 3710 * @dev: network device 3711 * @queue_index: sub queue index 3712 * 3713 * Check individual transmit queue of a device with multiple transmit queues. 3714 */ 3715 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3716 u16 queue_index) 3717 { 3718 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3719 3720 return netif_tx_queue_stopped(txq); 3721 } 3722 3723 /** 3724 * netif_subqueue_stopped - test status of subqueue 3725 * @dev: network device 3726 * @skb: sub queue buffer pointer 3727 * 3728 * Check individual transmit queue of a device with multiple transmit queues. 3729 */ 3730 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3731 struct sk_buff *skb) 3732 { 3733 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3734 } 3735 3736 /** 3737 * netif_wake_subqueue - allow sending packets on subqueue 3738 * @dev: network device 3739 * @queue_index: sub queue index 3740 * 3741 * Resume individual transmit queue of a device with multiple transmit queues. 3742 */ 3743 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3744 { 3745 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3746 3747 netif_tx_wake_queue(txq); 3748 } 3749 3750 #ifdef CONFIG_XPS 3751 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3752 u16 index); 3753 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3754 u16 index, enum xps_map_type type); 3755 3756 /** 3757 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3758 * @j: CPU/Rx queue index 3759 * @mask: bitmask of all cpus/rx queues 3760 * @nr_bits: number of bits in the bitmask 3761 * 3762 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3763 */ 3764 static inline bool netif_attr_test_mask(unsigned long j, 3765 const unsigned long *mask, 3766 unsigned int nr_bits) 3767 { 3768 cpu_max_bits_warn(j, nr_bits); 3769 return test_bit(j, mask); 3770 } 3771 3772 /** 3773 * netif_attr_test_online - Test for online CPU/Rx queue 3774 * @j: CPU/Rx queue index 3775 * @online_mask: bitmask for CPUs/Rx queues that are online 3776 * @nr_bits: number of bits in the bitmask 3777 * 3778 * Returns true if a CPU/Rx queue is online. 3779 */ 3780 static inline bool netif_attr_test_online(unsigned long j, 3781 const unsigned long *online_mask, 3782 unsigned int nr_bits) 3783 { 3784 cpu_max_bits_warn(j, nr_bits); 3785 3786 if (online_mask) 3787 return test_bit(j, online_mask); 3788 3789 return (j < nr_bits); 3790 } 3791 3792 /** 3793 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3794 * @n: CPU/Rx queue index 3795 * @srcp: the cpumask/Rx queue mask pointer 3796 * @nr_bits: number of bits in the bitmask 3797 * 3798 * Returns >= nr_bits if no further CPUs/Rx queues set. 3799 */ 3800 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3801 unsigned int nr_bits) 3802 { 3803 /* -1 is a legal arg here. */ 3804 if (n != -1) 3805 cpu_max_bits_warn(n, nr_bits); 3806 3807 if (srcp) 3808 return find_next_bit(srcp, nr_bits, n + 1); 3809 3810 return n + 1; 3811 } 3812 3813 /** 3814 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3815 * @n: CPU/Rx queue index 3816 * @src1p: the first CPUs/Rx queues mask pointer 3817 * @src2p: the second CPUs/Rx queues mask pointer 3818 * @nr_bits: number of bits in the bitmask 3819 * 3820 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3821 */ 3822 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3823 const unsigned long *src2p, 3824 unsigned int nr_bits) 3825 { 3826 /* -1 is a legal arg here. */ 3827 if (n != -1) 3828 cpu_max_bits_warn(n, nr_bits); 3829 3830 if (src1p && src2p) 3831 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3832 else if (src1p) 3833 return find_next_bit(src1p, nr_bits, n + 1); 3834 else if (src2p) 3835 return find_next_bit(src2p, nr_bits, n + 1); 3836 3837 return n + 1; 3838 } 3839 #else 3840 static inline int netif_set_xps_queue(struct net_device *dev, 3841 const struct cpumask *mask, 3842 u16 index) 3843 { 3844 return 0; 3845 } 3846 3847 static inline int __netif_set_xps_queue(struct net_device *dev, 3848 const unsigned long *mask, 3849 u16 index, enum xps_map_type type) 3850 { 3851 return 0; 3852 } 3853 #endif 3854 3855 /** 3856 * netif_is_multiqueue - test if device has multiple transmit queues 3857 * @dev: network device 3858 * 3859 * Check if device has multiple transmit queues 3860 */ 3861 static inline bool netif_is_multiqueue(const struct net_device *dev) 3862 { 3863 return dev->num_tx_queues > 1; 3864 } 3865 3866 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3867 3868 #ifdef CONFIG_SYSFS 3869 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3870 #else 3871 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3872 unsigned int rxqs) 3873 { 3874 dev->real_num_rx_queues = rxqs; 3875 return 0; 3876 } 3877 #endif 3878 int netif_set_real_num_queues(struct net_device *dev, 3879 unsigned int txq, unsigned int rxq); 3880 3881 int netif_get_num_default_rss_queues(void); 3882 3883 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3884 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3885 3886 /* 3887 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3888 * interrupt context or with hardware interrupts being disabled. 3889 * (in_hardirq() || irqs_disabled()) 3890 * 3891 * We provide four helpers that can be used in following contexts : 3892 * 3893 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3894 * replacing kfree_skb(skb) 3895 * 3896 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3897 * Typically used in place of consume_skb(skb) in TX completion path 3898 * 3899 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3900 * replacing kfree_skb(skb) 3901 * 3902 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3903 * and consumed a packet. Used in place of consume_skb(skb) 3904 */ 3905 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3906 { 3907 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3908 } 3909 3910 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3911 { 3912 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3913 } 3914 3915 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3916 { 3917 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3918 } 3919 3920 static inline void dev_consume_skb_any(struct sk_buff *skb) 3921 { 3922 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3923 } 3924 3925 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3926 struct bpf_prog *xdp_prog); 3927 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3928 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3929 int netif_rx(struct sk_buff *skb); 3930 int __netif_rx(struct sk_buff *skb); 3931 3932 int netif_receive_skb(struct sk_buff *skb); 3933 int netif_receive_skb_core(struct sk_buff *skb); 3934 void netif_receive_skb_list_internal(struct list_head *head); 3935 void netif_receive_skb_list(struct list_head *head); 3936 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3937 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3938 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3939 void napi_get_frags_check(struct napi_struct *napi); 3940 gro_result_t napi_gro_frags(struct napi_struct *napi); 3941 struct packet_offload *gro_find_receive_by_type(__be16 type); 3942 struct packet_offload *gro_find_complete_by_type(__be16 type); 3943 3944 static inline void napi_free_frags(struct napi_struct *napi) 3945 { 3946 kfree_skb(napi->skb); 3947 napi->skb = NULL; 3948 } 3949 3950 bool netdev_is_rx_handler_busy(struct net_device *dev); 3951 int netdev_rx_handler_register(struct net_device *dev, 3952 rx_handler_func_t *rx_handler, 3953 void *rx_handler_data); 3954 void netdev_rx_handler_unregister(struct net_device *dev); 3955 3956 bool dev_valid_name(const char *name); 3957 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3958 { 3959 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3960 } 3961 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3962 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3963 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3964 void __user *data, bool *need_copyout); 3965 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3966 int generic_hwtstamp_get_lower(struct net_device *dev, 3967 struct kernel_hwtstamp_config *kernel_cfg); 3968 int generic_hwtstamp_set_lower(struct net_device *dev, 3969 struct kernel_hwtstamp_config *kernel_cfg, 3970 struct netlink_ext_ack *extack); 3971 int dev_set_hwtstamp_phylib(struct net_device *dev, 3972 struct kernel_hwtstamp_config *cfg, 3973 struct netlink_ext_ack *extack); 3974 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3975 unsigned int dev_get_flags(const struct net_device *); 3976 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3977 struct netlink_ext_ack *extack); 3978 int dev_change_flags(struct net_device *dev, unsigned int flags, 3979 struct netlink_ext_ack *extack); 3980 int dev_set_alias(struct net_device *, const char *, size_t); 3981 int dev_get_alias(const struct net_device *, char *, size_t); 3982 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3983 const char *pat, int new_ifindex); 3984 static inline 3985 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3986 const char *pat) 3987 { 3988 return __dev_change_net_namespace(dev, net, pat, 0); 3989 } 3990 int __dev_set_mtu(struct net_device *, int); 3991 int dev_set_mtu(struct net_device *, int); 3992 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3993 struct netlink_ext_ack *extack); 3994 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3995 struct netlink_ext_ack *extack); 3996 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3997 struct netlink_ext_ack *extack); 3998 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3999 int dev_get_port_parent_id(struct net_device *dev, 4000 struct netdev_phys_item_id *ppid, bool recurse); 4001 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4002 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin); 4003 void netdev_dpll_pin_clear(struct net_device *dev); 4004 4005 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev) 4006 { 4007 #if IS_ENABLED(CONFIG_DPLL) 4008 return dev->dpll_pin; 4009 #else 4010 return NULL; 4011 #endif 4012 } 4013 4014 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4015 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4016 struct netdev_queue *txq, int *ret); 4017 4018 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4019 u8 dev_xdp_prog_count(struct net_device *dev); 4020 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4021 4022 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4023 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4024 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4025 bool is_skb_forwardable(const struct net_device *dev, 4026 const struct sk_buff *skb); 4027 4028 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4029 const struct sk_buff *skb, 4030 const bool check_mtu) 4031 { 4032 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4033 unsigned int len; 4034 4035 if (!(dev->flags & IFF_UP)) 4036 return false; 4037 4038 if (!check_mtu) 4039 return true; 4040 4041 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4042 if (skb->len <= len) 4043 return true; 4044 4045 /* if TSO is enabled, we don't care about the length as the packet 4046 * could be forwarded without being segmented before 4047 */ 4048 if (skb_is_gso(skb)) 4049 return true; 4050 4051 return false; 4052 } 4053 4054 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4055 4056 #define DEV_CORE_STATS_INC(FIELD) \ 4057 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4058 { \ 4059 netdev_core_stats_inc(dev, \ 4060 offsetof(struct net_device_core_stats, FIELD)); \ 4061 } 4062 DEV_CORE_STATS_INC(rx_dropped) 4063 DEV_CORE_STATS_INC(tx_dropped) 4064 DEV_CORE_STATS_INC(rx_nohandler) 4065 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4066 #undef DEV_CORE_STATS_INC 4067 4068 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4069 struct sk_buff *skb, 4070 const bool check_mtu) 4071 { 4072 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4073 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4074 dev_core_stats_rx_dropped_inc(dev); 4075 kfree_skb(skb); 4076 return NET_RX_DROP; 4077 } 4078 4079 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4080 skb->priority = 0; 4081 return 0; 4082 } 4083 4084 bool dev_nit_active(struct net_device *dev); 4085 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4086 4087 static inline void __dev_put(struct net_device *dev) 4088 { 4089 if (dev) { 4090 #ifdef CONFIG_PCPU_DEV_REFCNT 4091 this_cpu_dec(*dev->pcpu_refcnt); 4092 #else 4093 refcount_dec(&dev->dev_refcnt); 4094 #endif 4095 } 4096 } 4097 4098 static inline void __dev_hold(struct net_device *dev) 4099 { 4100 if (dev) { 4101 #ifdef CONFIG_PCPU_DEV_REFCNT 4102 this_cpu_inc(*dev->pcpu_refcnt); 4103 #else 4104 refcount_inc(&dev->dev_refcnt); 4105 #endif 4106 } 4107 } 4108 4109 static inline void __netdev_tracker_alloc(struct net_device *dev, 4110 netdevice_tracker *tracker, 4111 gfp_t gfp) 4112 { 4113 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4114 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4115 #endif 4116 } 4117 4118 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4119 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4120 */ 4121 static inline void netdev_tracker_alloc(struct net_device *dev, 4122 netdevice_tracker *tracker, gfp_t gfp) 4123 { 4124 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4125 refcount_dec(&dev->refcnt_tracker.no_tracker); 4126 __netdev_tracker_alloc(dev, tracker, gfp); 4127 #endif 4128 } 4129 4130 static inline void netdev_tracker_free(struct net_device *dev, 4131 netdevice_tracker *tracker) 4132 { 4133 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4134 ref_tracker_free(&dev->refcnt_tracker, tracker); 4135 #endif 4136 } 4137 4138 static inline void netdev_hold(struct net_device *dev, 4139 netdevice_tracker *tracker, gfp_t gfp) 4140 { 4141 if (dev) { 4142 __dev_hold(dev); 4143 __netdev_tracker_alloc(dev, tracker, gfp); 4144 } 4145 } 4146 4147 static inline void netdev_put(struct net_device *dev, 4148 netdevice_tracker *tracker) 4149 { 4150 if (dev) { 4151 netdev_tracker_free(dev, tracker); 4152 __dev_put(dev); 4153 } 4154 } 4155 4156 /** 4157 * dev_hold - get reference to device 4158 * @dev: network device 4159 * 4160 * Hold reference to device to keep it from being freed. 4161 * Try using netdev_hold() instead. 4162 */ 4163 static inline void dev_hold(struct net_device *dev) 4164 { 4165 netdev_hold(dev, NULL, GFP_ATOMIC); 4166 } 4167 4168 /** 4169 * dev_put - release reference to device 4170 * @dev: network device 4171 * 4172 * Release reference to device to allow it to be freed. 4173 * Try using netdev_put() instead. 4174 */ 4175 static inline void dev_put(struct net_device *dev) 4176 { 4177 netdev_put(dev, NULL); 4178 } 4179 4180 static inline void netdev_ref_replace(struct net_device *odev, 4181 struct net_device *ndev, 4182 netdevice_tracker *tracker, 4183 gfp_t gfp) 4184 { 4185 if (odev) 4186 netdev_tracker_free(odev, tracker); 4187 4188 __dev_hold(ndev); 4189 __dev_put(odev); 4190 4191 if (ndev) 4192 __netdev_tracker_alloc(ndev, tracker, gfp); 4193 } 4194 4195 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4196 * and _off may be called from IRQ context, but it is caller 4197 * who is responsible for serialization of these calls. 4198 * 4199 * The name carrier is inappropriate, these functions should really be 4200 * called netif_lowerlayer_*() because they represent the state of any 4201 * kind of lower layer not just hardware media. 4202 */ 4203 void linkwatch_fire_event(struct net_device *dev); 4204 4205 /** 4206 * netif_carrier_ok - test if carrier present 4207 * @dev: network device 4208 * 4209 * Check if carrier is present on device 4210 */ 4211 static inline bool netif_carrier_ok(const struct net_device *dev) 4212 { 4213 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4214 } 4215 4216 unsigned long dev_trans_start(struct net_device *dev); 4217 4218 void __netdev_watchdog_up(struct net_device *dev); 4219 4220 void netif_carrier_on(struct net_device *dev); 4221 void netif_carrier_off(struct net_device *dev); 4222 void netif_carrier_event(struct net_device *dev); 4223 4224 /** 4225 * netif_dormant_on - mark device as dormant. 4226 * @dev: network device 4227 * 4228 * Mark device as dormant (as per RFC2863). 4229 * 4230 * The dormant state indicates that the relevant interface is not 4231 * actually in a condition to pass packets (i.e., it is not 'up') but is 4232 * in a "pending" state, waiting for some external event. For "on- 4233 * demand" interfaces, this new state identifies the situation where the 4234 * interface is waiting for events to place it in the up state. 4235 */ 4236 static inline void netif_dormant_on(struct net_device *dev) 4237 { 4238 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4239 linkwatch_fire_event(dev); 4240 } 4241 4242 /** 4243 * netif_dormant_off - set device as not dormant. 4244 * @dev: network device 4245 * 4246 * Device is not in dormant state. 4247 */ 4248 static inline void netif_dormant_off(struct net_device *dev) 4249 { 4250 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4251 linkwatch_fire_event(dev); 4252 } 4253 4254 /** 4255 * netif_dormant - test if device is dormant 4256 * @dev: network device 4257 * 4258 * Check if device is dormant. 4259 */ 4260 static inline bool netif_dormant(const struct net_device *dev) 4261 { 4262 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4263 } 4264 4265 4266 /** 4267 * netif_testing_on - mark device as under test. 4268 * @dev: network device 4269 * 4270 * Mark device as under test (as per RFC2863). 4271 * 4272 * The testing state indicates that some test(s) must be performed on 4273 * the interface. After completion, of the test, the interface state 4274 * will change to up, dormant, or down, as appropriate. 4275 */ 4276 static inline void netif_testing_on(struct net_device *dev) 4277 { 4278 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4279 linkwatch_fire_event(dev); 4280 } 4281 4282 /** 4283 * netif_testing_off - set device as not under test. 4284 * @dev: network device 4285 * 4286 * Device is not in testing state. 4287 */ 4288 static inline void netif_testing_off(struct net_device *dev) 4289 { 4290 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4291 linkwatch_fire_event(dev); 4292 } 4293 4294 /** 4295 * netif_testing - test if device is under test 4296 * @dev: network device 4297 * 4298 * Check if device is under test 4299 */ 4300 static inline bool netif_testing(const struct net_device *dev) 4301 { 4302 return test_bit(__LINK_STATE_TESTING, &dev->state); 4303 } 4304 4305 4306 /** 4307 * netif_oper_up - test if device is operational 4308 * @dev: network device 4309 * 4310 * Check if carrier is operational 4311 */ 4312 static inline bool netif_oper_up(const struct net_device *dev) 4313 { 4314 return (dev->operstate == IF_OPER_UP || 4315 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4316 } 4317 4318 /** 4319 * netif_device_present - is device available or removed 4320 * @dev: network device 4321 * 4322 * Check if device has not been removed from system. 4323 */ 4324 static inline bool netif_device_present(const struct net_device *dev) 4325 { 4326 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4327 } 4328 4329 void netif_device_detach(struct net_device *dev); 4330 4331 void netif_device_attach(struct net_device *dev); 4332 4333 /* 4334 * Network interface message level settings 4335 */ 4336 4337 enum { 4338 NETIF_MSG_DRV_BIT, 4339 NETIF_MSG_PROBE_BIT, 4340 NETIF_MSG_LINK_BIT, 4341 NETIF_MSG_TIMER_BIT, 4342 NETIF_MSG_IFDOWN_BIT, 4343 NETIF_MSG_IFUP_BIT, 4344 NETIF_MSG_RX_ERR_BIT, 4345 NETIF_MSG_TX_ERR_BIT, 4346 NETIF_MSG_TX_QUEUED_BIT, 4347 NETIF_MSG_INTR_BIT, 4348 NETIF_MSG_TX_DONE_BIT, 4349 NETIF_MSG_RX_STATUS_BIT, 4350 NETIF_MSG_PKTDATA_BIT, 4351 NETIF_MSG_HW_BIT, 4352 NETIF_MSG_WOL_BIT, 4353 4354 /* When you add a new bit above, update netif_msg_class_names array 4355 * in net/ethtool/common.c 4356 */ 4357 NETIF_MSG_CLASS_COUNT, 4358 }; 4359 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4360 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4361 4362 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4363 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4364 4365 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4366 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4367 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4368 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4369 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4370 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4371 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4372 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4373 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4374 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4375 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4376 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4377 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4378 #define NETIF_MSG_HW __NETIF_MSG(HW) 4379 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4380 4381 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4382 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4383 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4384 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4385 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4386 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4387 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4388 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4389 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4390 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4391 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4392 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4393 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4394 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4395 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4396 4397 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4398 { 4399 /* use default */ 4400 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4401 return default_msg_enable_bits; 4402 if (debug_value == 0) /* no output */ 4403 return 0; 4404 /* set low N bits */ 4405 return (1U << debug_value) - 1; 4406 } 4407 4408 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4409 { 4410 spin_lock(&txq->_xmit_lock); 4411 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4412 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4413 } 4414 4415 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4416 { 4417 __acquire(&txq->_xmit_lock); 4418 return true; 4419 } 4420 4421 static inline void __netif_tx_release(struct netdev_queue *txq) 4422 { 4423 __release(&txq->_xmit_lock); 4424 } 4425 4426 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4427 { 4428 spin_lock_bh(&txq->_xmit_lock); 4429 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4430 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4431 } 4432 4433 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4434 { 4435 bool ok = spin_trylock(&txq->_xmit_lock); 4436 4437 if (likely(ok)) { 4438 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4439 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4440 } 4441 return ok; 4442 } 4443 4444 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4445 { 4446 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4447 WRITE_ONCE(txq->xmit_lock_owner, -1); 4448 spin_unlock(&txq->_xmit_lock); 4449 } 4450 4451 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4452 { 4453 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4454 WRITE_ONCE(txq->xmit_lock_owner, -1); 4455 spin_unlock_bh(&txq->_xmit_lock); 4456 } 4457 4458 /* 4459 * txq->trans_start can be read locklessly from dev_watchdog() 4460 */ 4461 static inline void txq_trans_update(struct netdev_queue *txq) 4462 { 4463 if (txq->xmit_lock_owner != -1) 4464 WRITE_ONCE(txq->trans_start, jiffies); 4465 } 4466 4467 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4468 { 4469 unsigned long now = jiffies; 4470 4471 if (READ_ONCE(txq->trans_start) != now) 4472 WRITE_ONCE(txq->trans_start, now); 4473 } 4474 4475 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4476 static inline void netif_trans_update(struct net_device *dev) 4477 { 4478 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4479 4480 txq_trans_cond_update(txq); 4481 } 4482 4483 /** 4484 * netif_tx_lock - grab network device transmit lock 4485 * @dev: network device 4486 * 4487 * Get network device transmit lock 4488 */ 4489 void netif_tx_lock(struct net_device *dev); 4490 4491 static inline void netif_tx_lock_bh(struct net_device *dev) 4492 { 4493 local_bh_disable(); 4494 netif_tx_lock(dev); 4495 } 4496 4497 void netif_tx_unlock(struct net_device *dev); 4498 4499 static inline void netif_tx_unlock_bh(struct net_device *dev) 4500 { 4501 netif_tx_unlock(dev); 4502 local_bh_enable(); 4503 } 4504 4505 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4506 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4507 __netif_tx_lock(txq, cpu); \ 4508 } else { \ 4509 __netif_tx_acquire(txq); \ 4510 } \ 4511 } 4512 4513 #define HARD_TX_TRYLOCK(dev, txq) \ 4514 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4515 __netif_tx_trylock(txq) : \ 4516 __netif_tx_acquire(txq)) 4517 4518 #define HARD_TX_UNLOCK(dev, txq) { \ 4519 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4520 __netif_tx_unlock(txq); \ 4521 } else { \ 4522 __netif_tx_release(txq); \ 4523 } \ 4524 } 4525 4526 static inline void netif_tx_disable(struct net_device *dev) 4527 { 4528 unsigned int i; 4529 int cpu; 4530 4531 local_bh_disable(); 4532 cpu = smp_processor_id(); 4533 spin_lock(&dev->tx_global_lock); 4534 for (i = 0; i < dev->num_tx_queues; i++) { 4535 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4536 4537 __netif_tx_lock(txq, cpu); 4538 netif_tx_stop_queue(txq); 4539 __netif_tx_unlock(txq); 4540 } 4541 spin_unlock(&dev->tx_global_lock); 4542 local_bh_enable(); 4543 } 4544 4545 static inline void netif_addr_lock(struct net_device *dev) 4546 { 4547 unsigned char nest_level = 0; 4548 4549 #ifdef CONFIG_LOCKDEP 4550 nest_level = dev->nested_level; 4551 #endif 4552 spin_lock_nested(&dev->addr_list_lock, nest_level); 4553 } 4554 4555 static inline void netif_addr_lock_bh(struct net_device *dev) 4556 { 4557 unsigned char nest_level = 0; 4558 4559 #ifdef CONFIG_LOCKDEP 4560 nest_level = dev->nested_level; 4561 #endif 4562 local_bh_disable(); 4563 spin_lock_nested(&dev->addr_list_lock, nest_level); 4564 } 4565 4566 static inline void netif_addr_unlock(struct net_device *dev) 4567 { 4568 spin_unlock(&dev->addr_list_lock); 4569 } 4570 4571 static inline void netif_addr_unlock_bh(struct net_device *dev) 4572 { 4573 spin_unlock_bh(&dev->addr_list_lock); 4574 } 4575 4576 /* 4577 * dev_addrs walker. Should be used only for read access. Call with 4578 * rcu_read_lock held. 4579 */ 4580 #define for_each_dev_addr(dev, ha) \ 4581 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4582 4583 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4584 4585 void ether_setup(struct net_device *dev); 4586 4587 /* Support for loadable net-drivers */ 4588 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4589 unsigned char name_assign_type, 4590 void (*setup)(struct net_device *), 4591 unsigned int txqs, unsigned int rxqs); 4592 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4593 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4594 4595 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4596 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4597 count) 4598 4599 int register_netdev(struct net_device *dev); 4600 void unregister_netdev(struct net_device *dev); 4601 4602 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4603 4604 /* General hardware address lists handling functions */ 4605 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4606 struct netdev_hw_addr_list *from_list, int addr_len); 4607 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4608 struct netdev_hw_addr_list *from_list, int addr_len); 4609 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4610 struct net_device *dev, 4611 int (*sync)(struct net_device *, const unsigned char *), 4612 int (*unsync)(struct net_device *, 4613 const unsigned char *)); 4614 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4615 struct net_device *dev, 4616 int (*sync)(struct net_device *, 4617 const unsigned char *, int), 4618 int (*unsync)(struct net_device *, 4619 const unsigned char *, int)); 4620 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4621 struct net_device *dev, 4622 int (*unsync)(struct net_device *, 4623 const unsigned char *, int)); 4624 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4625 struct net_device *dev, 4626 int (*unsync)(struct net_device *, 4627 const unsigned char *)); 4628 void __hw_addr_init(struct netdev_hw_addr_list *list); 4629 4630 /* Functions used for device addresses handling */ 4631 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4632 const void *addr, size_t len); 4633 4634 static inline void 4635 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4636 { 4637 dev_addr_mod(dev, 0, addr, len); 4638 } 4639 4640 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4641 { 4642 __dev_addr_set(dev, addr, dev->addr_len); 4643 } 4644 4645 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4646 unsigned char addr_type); 4647 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4648 unsigned char addr_type); 4649 4650 /* Functions used for unicast addresses handling */ 4651 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4652 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4653 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4654 int dev_uc_sync(struct net_device *to, struct net_device *from); 4655 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4656 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4657 void dev_uc_flush(struct net_device *dev); 4658 void dev_uc_init(struct net_device *dev); 4659 4660 /** 4661 * __dev_uc_sync - Synchonize device's unicast list 4662 * @dev: device to sync 4663 * @sync: function to call if address should be added 4664 * @unsync: function to call if address should be removed 4665 * 4666 * Add newly added addresses to the interface, and release 4667 * addresses that have been deleted. 4668 */ 4669 static inline int __dev_uc_sync(struct net_device *dev, 4670 int (*sync)(struct net_device *, 4671 const unsigned char *), 4672 int (*unsync)(struct net_device *, 4673 const unsigned char *)) 4674 { 4675 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4676 } 4677 4678 /** 4679 * __dev_uc_unsync - Remove synchronized addresses from device 4680 * @dev: device to sync 4681 * @unsync: function to call if address should be removed 4682 * 4683 * Remove all addresses that were added to the device by dev_uc_sync(). 4684 */ 4685 static inline void __dev_uc_unsync(struct net_device *dev, 4686 int (*unsync)(struct net_device *, 4687 const unsigned char *)) 4688 { 4689 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4690 } 4691 4692 /* Functions used for multicast addresses handling */ 4693 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4694 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4695 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4696 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4697 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4698 int dev_mc_sync(struct net_device *to, struct net_device *from); 4699 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4700 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4701 void dev_mc_flush(struct net_device *dev); 4702 void dev_mc_init(struct net_device *dev); 4703 4704 /** 4705 * __dev_mc_sync - Synchonize device's multicast list 4706 * @dev: device to sync 4707 * @sync: function to call if address should be added 4708 * @unsync: function to call if address should be removed 4709 * 4710 * Add newly added addresses to the interface, and release 4711 * addresses that have been deleted. 4712 */ 4713 static inline int __dev_mc_sync(struct net_device *dev, 4714 int (*sync)(struct net_device *, 4715 const unsigned char *), 4716 int (*unsync)(struct net_device *, 4717 const unsigned char *)) 4718 { 4719 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4720 } 4721 4722 /** 4723 * __dev_mc_unsync - Remove synchronized addresses from device 4724 * @dev: device to sync 4725 * @unsync: function to call if address should be removed 4726 * 4727 * Remove all addresses that were added to the device by dev_mc_sync(). 4728 */ 4729 static inline void __dev_mc_unsync(struct net_device *dev, 4730 int (*unsync)(struct net_device *, 4731 const unsigned char *)) 4732 { 4733 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4734 } 4735 4736 /* Functions used for secondary unicast and multicast support */ 4737 void dev_set_rx_mode(struct net_device *dev); 4738 int dev_set_promiscuity(struct net_device *dev, int inc); 4739 int dev_set_allmulti(struct net_device *dev, int inc); 4740 void netdev_state_change(struct net_device *dev); 4741 void __netdev_notify_peers(struct net_device *dev); 4742 void netdev_notify_peers(struct net_device *dev); 4743 void netdev_features_change(struct net_device *dev); 4744 /* Load a device via the kmod */ 4745 void dev_load(struct net *net, const char *name); 4746 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4747 struct rtnl_link_stats64 *storage); 4748 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4749 const struct net_device_stats *netdev_stats); 4750 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4751 const struct pcpu_sw_netstats __percpu *netstats); 4752 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4753 4754 extern int netdev_max_backlog; 4755 extern int dev_rx_weight; 4756 extern int dev_tx_weight; 4757 extern int gro_normal_batch; 4758 4759 enum { 4760 NESTED_SYNC_IMM_BIT, 4761 NESTED_SYNC_TODO_BIT, 4762 }; 4763 4764 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4765 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4766 4767 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4768 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4769 4770 struct netdev_nested_priv { 4771 unsigned char flags; 4772 void *data; 4773 }; 4774 4775 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4776 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4777 struct list_head **iter); 4778 4779 /* iterate through upper list, must be called under RCU read lock */ 4780 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4781 for (iter = &(dev)->adj_list.upper, \ 4782 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4783 updev; \ 4784 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4785 4786 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4787 int (*fn)(struct net_device *upper_dev, 4788 struct netdev_nested_priv *priv), 4789 struct netdev_nested_priv *priv); 4790 4791 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4792 struct net_device *upper_dev); 4793 4794 bool netdev_has_any_upper_dev(struct net_device *dev); 4795 4796 void *netdev_lower_get_next_private(struct net_device *dev, 4797 struct list_head **iter); 4798 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4799 struct list_head **iter); 4800 4801 #define netdev_for_each_lower_private(dev, priv, iter) \ 4802 for (iter = (dev)->adj_list.lower.next, \ 4803 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4804 priv; \ 4805 priv = netdev_lower_get_next_private(dev, &(iter))) 4806 4807 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4808 for (iter = &(dev)->adj_list.lower, \ 4809 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4810 priv; \ 4811 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4812 4813 void *netdev_lower_get_next(struct net_device *dev, 4814 struct list_head **iter); 4815 4816 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4817 for (iter = (dev)->adj_list.lower.next, \ 4818 ldev = netdev_lower_get_next(dev, &(iter)); \ 4819 ldev; \ 4820 ldev = netdev_lower_get_next(dev, &(iter))) 4821 4822 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4823 struct list_head **iter); 4824 int netdev_walk_all_lower_dev(struct net_device *dev, 4825 int (*fn)(struct net_device *lower_dev, 4826 struct netdev_nested_priv *priv), 4827 struct netdev_nested_priv *priv); 4828 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4829 int (*fn)(struct net_device *lower_dev, 4830 struct netdev_nested_priv *priv), 4831 struct netdev_nested_priv *priv); 4832 4833 void *netdev_adjacent_get_private(struct list_head *adj_list); 4834 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4835 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4836 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4837 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4838 struct netlink_ext_ack *extack); 4839 int netdev_master_upper_dev_link(struct net_device *dev, 4840 struct net_device *upper_dev, 4841 void *upper_priv, void *upper_info, 4842 struct netlink_ext_ack *extack); 4843 void netdev_upper_dev_unlink(struct net_device *dev, 4844 struct net_device *upper_dev); 4845 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4846 struct net_device *new_dev, 4847 struct net_device *dev, 4848 struct netlink_ext_ack *extack); 4849 void netdev_adjacent_change_commit(struct net_device *old_dev, 4850 struct net_device *new_dev, 4851 struct net_device *dev); 4852 void netdev_adjacent_change_abort(struct net_device *old_dev, 4853 struct net_device *new_dev, 4854 struct net_device *dev); 4855 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4856 void *netdev_lower_dev_get_private(struct net_device *dev, 4857 struct net_device *lower_dev); 4858 void netdev_lower_state_changed(struct net_device *lower_dev, 4859 void *lower_state_info); 4860 4861 /* RSS keys are 40 or 52 bytes long */ 4862 #define NETDEV_RSS_KEY_LEN 52 4863 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4864 void netdev_rss_key_fill(void *buffer, size_t len); 4865 4866 int skb_checksum_help(struct sk_buff *skb); 4867 int skb_crc32c_csum_help(struct sk_buff *skb); 4868 int skb_csum_hwoffload_help(struct sk_buff *skb, 4869 const netdev_features_t features); 4870 4871 struct netdev_bonding_info { 4872 ifslave slave; 4873 ifbond master; 4874 }; 4875 4876 struct netdev_notifier_bonding_info { 4877 struct netdev_notifier_info info; /* must be first */ 4878 struct netdev_bonding_info bonding_info; 4879 }; 4880 4881 void netdev_bonding_info_change(struct net_device *dev, 4882 struct netdev_bonding_info *bonding_info); 4883 4884 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4885 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4886 #else 4887 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4888 const void *data) 4889 { 4890 } 4891 #endif 4892 4893 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4894 4895 static inline bool can_checksum_protocol(netdev_features_t features, 4896 __be16 protocol) 4897 { 4898 if (protocol == htons(ETH_P_FCOE)) 4899 return !!(features & NETIF_F_FCOE_CRC); 4900 4901 /* Assume this is an IP checksum (not SCTP CRC) */ 4902 4903 if (features & NETIF_F_HW_CSUM) { 4904 /* Can checksum everything */ 4905 return true; 4906 } 4907 4908 switch (protocol) { 4909 case htons(ETH_P_IP): 4910 return !!(features & NETIF_F_IP_CSUM); 4911 case htons(ETH_P_IPV6): 4912 return !!(features & NETIF_F_IPV6_CSUM); 4913 default: 4914 return false; 4915 } 4916 } 4917 4918 #ifdef CONFIG_BUG 4919 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4920 #else 4921 static inline void netdev_rx_csum_fault(struct net_device *dev, 4922 struct sk_buff *skb) 4923 { 4924 } 4925 #endif 4926 /* rx skb timestamps */ 4927 void net_enable_timestamp(void); 4928 void net_disable_timestamp(void); 4929 4930 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4931 const struct skb_shared_hwtstamps *hwtstamps, 4932 bool cycles) 4933 { 4934 const struct net_device_ops *ops = dev->netdev_ops; 4935 4936 if (ops->ndo_get_tstamp) 4937 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4938 4939 return hwtstamps->hwtstamp; 4940 } 4941 4942 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4943 struct sk_buff *skb, struct net_device *dev, 4944 bool more) 4945 { 4946 __this_cpu_write(softnet_data.xmit.more, more); 4947 return ops->ndo_start_xmit(skb, dev); 4948 } 4949 4950 static inline bool netdev_xmit_more(void) 4951 { 4952 return __this_cpu_read(softnet_data.xmit.more); 4953 } 4954 4955 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4956 struct netdev_queue *txq, bool more) 4957 { 4958 const struct net_device_ops *ops = dev->netdev_ops; 4959 netdev_tx_t rc; 4960 4961 rc = __netdev_start_xmit(ops, skb, dev, more); 4962 if (rc == NETDEV_TX_OK) 4963 txq_trans_update(txq); 4964 4965 return rc; 4966 } 4967 4968 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4969 const void *ns); 4970 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4971 const void *ns); 4972 4973 extern const struct kobj_ns_type_operations net_ns_type_operations; 4974 4975 const char *netdev_drivername(const struct net_device *dev); 4976 4977 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4978 netdev_features_t f2) 4979 { 4980 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4981 if (f1 & NETIF_F_HW_CSUM) 4982 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4983 else 4984 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4985 } 4986 4987 return f1 & f2; 4988 } 4989 4990 static inline netdev_features_t netdev_get_wanted_features( 4991 struct net_device *dev) 4992 { 4993 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4994 } 4995 netdev_features_t netdev_increment_features(netdev_features_t all, 4996 netdev_features_t one, netdev_features_t mask); 4997 4998 /* Allow TSO being used on stacked device : 4999 * Performing the GSO segmentation before last device 5000 * is a performance improvement. 5001 */ 5002 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5003 netdev_features_t mask) 5004 { 5005 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5006 } 5007 5008 int __netdev_update_features(struct net_device *dev); 5009 void netdev_update_features(struct net_device *dev); 5010 void netdev_change_features(struct net_device *dev); 5011 5012 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5013 struct net_device *dev); 5014 5015 netdev_features_t passthru_features_check(struct sk_buff *skb, 5016 struct net_device *dev, 5017 netdev_features_t features); 5018 netdev_features_t netif_skb_features(struct sk_buff *skb); 5019 void skb_warn_bad_offload(const struct sk_buff *skb); 5020 5021 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5022 { 5023 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5024 5025 /* check flags correspondence */ 5026 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5027 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5028 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5029 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5030 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5031 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5032 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5033 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5034 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5035 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5036 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5037 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5038 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5039 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5040 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5041 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5042 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5043 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5044 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5045 5046 return (features & feature) == feature; 5047 } 5048 5049 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5050 { 5051 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5052 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5053 } 5054 5055 static inline bool netif_needs_gso(struct sk_buff *skb, 5056 netdev_features_t features) 5057 { 5058 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5059 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5060 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5061 } 5062 5063 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5064 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5065 void netif_inherit_tso_max(struct net_device *to, 5066 const struct net_device *from); 5067 5068 static inline bool netif_is_macsec(const struct net_device *dev) 5069 { 5070 return dev->priv_flags & IFF_MACSEC; 5071 } 5072 5073 static inline bool netif_is_macvlan(const struct net_device *dev) 5074 { 5075 return dev->priv_flags & IFF_MACVLAN; 5076 } 5077 5078 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5079 { 5080 return dev->priv_flags & IFF_MACVLAN_PORT; 5081 } 5082 5083 static inline bool netif_is_bond_master(const struct net_device *dev) 5084 { 5085 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5086 } 5087 5088 static inline bool netif_is_bond_slave(const struct net_device *dev) 5089 { 5090 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5091 } 5092 5093 static inline bool netif_supports_nofcs(struct net_device *dev) 5094 { 5095 return dev->priv_flags & IFF_SUPP_NOFCS; 5096 } 5097 5098 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5099 { 5100 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5101 } 5102 5103 static inline bool netif_is_l3_master(const struct net_device *dev) 5104 { 5105 return dev->priv_flags & IFF_L3MDEV_MASTER; 5106 } 5107 5108 static inline bool netif_is_l3_slave(const struct net_device *dev) 5109 { 5110 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5111 } 5112 5113 static inline int dev_sdif(const struct net_device *dev) 5114 { 5115 #ifdef CONFIG_NET_L3_MASTER_DEV 5116 if (netif_is_l3_slave(dev)) 5117 return dev->ifindex; 5118 #endif 5119 return 0; 5120 } 5121 5122 static inline bool netif_is_bridge_master(const struct net_device *dev) 5123 { 5124 return dev->priv_flags & IFF_EBRIDGE; 5125 } 5126 5127 static inline bool netif_is_bridge_port(const struct net_device *dev) 5128 { 5129 return dev->priv_flags & IFF_BRIDGE_PORT; 5130 } 5131 5132 static inline bool netif_is_ovs_master(const struct net_device *dev) 5133 { 5134 return dev->priv_flags & IFF_OPENVSWITCH; 5135 } 5136 5137 static inline bool netif_is_ovs_port(const struct net_device *dev) 5138 { 5139 return dev->priv_flags & IFF_OVS_DATAPATH; 5140 } 5141 5142 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5143 { 5144 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5145 } 5146 5147 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5148 { 5149 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5150 } 5151 5152 static inline bool netif_is_team_master(const struct net_device *dev) 5153 { 5154 return dev->priv_flags & IFF_TEAM; 5155 } 5156 5157 static inline bool netif_is_team_port(const struct net_device *dev) 5158 { 5159 return dev->priv_flags & IFF_TEAM_PORT; 5160 } 5161 5162 static inline bool netif_is_lag_master(const struct net_device *dev) 5163 { 5164 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5165 } 5166 5167 static inline bool netif_is_lag_port(const struct net_device *dev) 5168 { 5169 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5170 } 5171 5172 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5173 { 5174 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5175 } 5176 5177 static inline bool netif_is_failover(const struct net_device *dev) 5178 { 5179 return dev->priv_flags & IFF_FAILOVER; 5180 } 5181 5182 static inline bool netif_is_failover_slave(const struct net_device *dev) 5183 { 5184 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5185 } 5186 5187 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5188 static inline void netif_keep_dst(struct net_device *dev) 5189 { 5190 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5191 } 5192 5193 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5194 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5195 { 5196 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5197 return netif_is_macsec(dev); 5198 } 5199 5200 extern struct pernet_operations __net_initdata loopback_net_ops; 5201 5202 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5203 5204 /* netdev_printk helpers, similar to dev_printk */ 5205 5206 static inline const char *netdev_name(const struct net_device *dev) 5207 { 5208 if (!dev->name[0] || strchr(dev->name, '%')) 5209 return "(unnamed net_device)"; 5210 return dev->name; 5211 } 5212 5213 static inline const char *netdev_reg_state(const struct net_device *dev) 5214 { 5215 switch (dev->reg_state) { 5216 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5217 case NETREG_REGISTERED: return ""; 5218 case NETREG_UNREGISTERING: return " (unregistering)"; 5219 case NETREG_UNREGISTERED: return " (unregistered)"; 5220 case NETREG_RELEASED: return " (released)"; 5221 case NETREG_DUMMY: return " (dummy)"; 5222 } 5223 5224 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5225 return " (unknown)"; 5226 } 5227 5228 #define MODULE_ALIAS_NETDEV(device) \ 5229 MODULE_ALIAS("netdev-" device) 5230 5231 /* 5232 * netdev_WARN() acts like dev_printk(), but with the key difference 5233 * of using a WARN/WARN_ON to get the message out, including the 5234 * file/line information and a backtrace. 5235 */ 5236 #define netdev_WARN(dev, format, args...) \ 5237 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5238 netdev_reg_state(dev), ##args) 5239 5240 #define netdev_WARN_ONCE(dev, format, args...) \ 5241 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5242 netdev_reg_state(dev), ##args) 5243 5244 /* 5245 * The list of packet types we will receive (as opposed to discard) 5246 * and the routines to invoke. 5247 * 5248 * Why 16. Because with 16 the only overlap we get on a hash of the 5249 * low nibble of the protocol value is RARP/SNAP/X.25. 5250 * 5251 * 0800 IP 5252 * 0001 802.3 5253 * 0002 AX.25 5254 * 0004 802.2 5255 * 8035 RARP 5256 * 0005 SNAP 5257 * 0805 X.25 5258 * 0806 ARP 5259 * 8137 IPX 5260 * 0009 Localtalk 5261 * 86DD IPv6 5262 */ 5263 #define PTYPE_HASH_SIZE (16) 5264 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5265 5266 extern struct list_head ptype_all __read_mostly; 5267 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5268 5269 extern struct net_device *blackhole_netdev; 5270 5271 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5272 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5273 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5274 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5275 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5276 5277 #endif /* _LINUX_NETDEVICE_H */ 5278