1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 /* DPLL specific */ 83 struct dpll_pin; 84 85 typedef u32 xdp_features_t; 86 87 void synchronize_net(void); 88 void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92 /* Backlog congestion levels */ 93 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94 #define NET_RX_DROP 1 /* packet dropped */ 95 96 #define MAX_NEST_DEV 8 97 98 /* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115 /* qdisc ->enqueue() return codes. */ 116 #define NET_XMIT_SUCCESS 0x00 117 #define NET_XMIT_DROP 0x01 /* skb dropped */ 118 #define NET_XMIT_CN 0x02 /* congestion notification */ 119 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127 /* Driver transmit return codes */ 128 #define NETDEV_TX_MASK 0xf0 129 130 enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134 }; 135 typedef enum netdev_tx netdev_tx_t; 136 137 /* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141 static inline bool dev_xmit_complete(int rc) 142 { 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153 } 154 155 /* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160 #if defined(CONFIG_HYPERV_NET) 161 # define LL_MAX_HEADER 128 162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163 # if defined(CONFIG_MAC80211_MESH) 164 # define LL_MAX_HEADER 128 165 # else 166 # define LL_MAX_HEADER 96 167 # endif 168 #else 169 # define LL_MAX_HEADER 32 170 #endif 171 172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174 #define MAX_HEADER LL_MAX_HEADER 175 #else 176 #define MAX_HEADER (LL_MAX_HEADER + 48) 177 #endif 178 179 /* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184 #define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190 struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214 }; 215 #undef NET_DEV_STAT 216 217 /* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220 struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225 } __aligned(4 * sizeof(unsigned long)); 226 227 #include <linux/cache.h> 228 #include <linux/skbuff.h> 229 230 #ifdef CONFIG_RPS 231 #include <linux/static_key.h> 232 extern struct static_key_false rps_needed; 233 extern struct static_key_false rfs_needed; 234 #endif 235 236 struct neighbour; 237 struct neigh_parms; 238 struct sk_buff; 239 240 struct netdev_hw_addr { 241 struct list_head list; 242 struct rb_node node; 243 unsigned char addr[MAX_ADDR_LEN]; 244 unsigned char type; 245 #define NETDEV_HW_ADDR_T_LAN 1 246 #define NETDEV_HW_ADDR_T_SAN 2 247 #define NETDEV_HW_ADDR_T_UNICAST 3 248 #define NETDEV_HW_ADDR_T_MULTICAST 4 249 bool global_use; 250 int sync_cnt; 251 int refcount; 252 int synced; 253 struct rcu_head rcu_head; 254 }; 255 256 struct netdev_hw_addr_list { 257 struct list_head list; 258 int count; 259 260 /* Auxiliary tree for faster lookup on addition and deletion */ 261 struct rb_root tree; 262 }; 263 264 #define netdev_hw_addr_list_count(l) ((l)->count) 265 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 266 #define netdev_hw_addr_list_for_each(ha, l) \ 267 list_for_each_entry(ha, &(l)->list, list) 268 269 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 270 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 271 #define netdev_for_each_uc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 273 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 274 netdev_for_each_uc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 278 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 279 #define netdev_for_each_mc_addr(ha, dev) \ 280 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 281 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 282 netdev_for_each_mc_addr((_ha), (_dev)) \ 283 if ((_ha)->sync_cnt) 284 285 struct hh_cache { 286 unsigned int hh_len; 287 seqlock_t hh_lock; 288 289 /* cached hardware header; allow for machine alignment needs. */ 290 #define HH_DATA_MOD 16 291 #define HH_DATA_OFF(__len) \ 292 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 293 #define HH_DATA_ALIGN(__len) \ 294 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 295 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 296 }; 297 298 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 299 * Alternative is: 300 * dev->hard_header_len ? (dev->hard_header_len + 301 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 302 * 303 * We could use other alignment values, but we must maintain the 304 * relationship HH alignment <= LL alignment. 305 */ 306 #define LL_RESERVED_SPACE(dev) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 310 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 311 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 312 313 struct header_ops { 314 int (*create) (struct sk_buff *skb, struct net_device *dev, 315 unsigned short type, const void *daddr, 316 const void *saddr, unsigned int len); 317 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 bool (*validate)(const char *ll_header, unsigned int len); 323 __be16 (*parse_protocol)(const struct sk_buff *skb); 324 }; 325 326 /* These flag bits are private to the generic network queueing 327 * layer; they may not be explicitly referenced by any other 328 * code. 329 */ 330 331 enum netdev_state_t { 332 __LINK_STATE_START, 333 __LINK_STATE_PRESENT, 334 __LINK_STATE_NOCARRIER, 335 __LINK_STATE_LINKWATCH_PENDING, 336 __LINK_STATE_DORMANT, 337 __LINK_STATE_TESTING, 338 }; 339 340 struct gro_list { 341 struct list_head list; 342 int count; 343 }; 344 345 /* 346 * size of gro hash buckets, must less than bit number of 347 * napi_struct::gro_bitmask 348 */ 349 #define GRO_HASH_BUCKETS 8 350 351 /* 352 * Structure for NAPI scheduling similar to tasklet but with weighting 353 */ 354 struct napi_struct { 355 /* The poll_list must only be managed by the entity which 356 * changes the state of the NAPI_STATE_SCHED bit. This means 357 * whoever atomically sets that bit can add this napi_struct 358 * to the per-CPU poll_list, and whoever clears that bit 359 * can remove from the list right before clearing the bit. 360 */ 361 struct list_head poll_list; 362 363 unsigned long state; 364 int weight; 365 int defer_hard_irqs_count; 366 unsigned long gro_bitmask; 367 int (*poll)(struct napi_struct *, int); 368 #ifdef CONFIG_NETPOLL 369 /* CPU actively polling if netpoll is configured */ 370 int poll_owner; 371 #endif 372 /* CPU on which NAPI has been scheduled for processing */ 373 int list_owner; 374 struct net_device *dev; 375 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 376 struct sk_buff *skb; 377 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 378 int rx_count; /* length of rx_list */ 379 unsigned int napi_id; 380 struct hrtimer timer; 381 struct task_struct *thread; 382 /* control-path-only fields follow */ 383 struct list_head dev_list; 384 struct hlist_node napi_hash_node; 385 }; 386 387 enum { 388 NAPI_STATE_SCHED, /* Poll is scheduled */ 389 NAPI_STATE_MISSED, /* reschedule a napi */ 390 NAPI_STATE_DISABLE, /* Disable pending */ 391 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 392 NAPI_STATE_LISTED, /* NAPI added to system lists */ 393 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 394 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 395 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 396 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 397 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 398 }; 399 400 enum { 401 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 402 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 403 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 404 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 405 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 406 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 407 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 408 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 409 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 410 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 411 }; 412 413 enum gro_result { 414 GRO_MERGED, 415 GRO_MERGED_FREE, 416 GRO_HELD, 417 GRO_NORMAL, 418 GRO_CONSUMED, 419 }; 420 typedef enum gro_result gro_result_t; 421 422 /* 423 * enum rx_handler_result - Possible return values for rx_handlers. 424 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 425 * further. 426 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 427 * case skb->dev was changed by rx_handler. 428 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 429 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 430 * 431 * rx_handlers are functions called from inside __netif_receive_skb(), to do 432 * special processing of the skb, prior to delivery to protocol handlers. 433 * 434 * Currently, a net_device can only have a single rx_handler registered. Trying 435 * to register a second rx_handler will return -EBUSY. 436 * 437 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 438 * To unregister a rx_handler on a net_device, use 439 * netdev_rx_handler_unregister(). 440 * 441 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 442 * do with the skb. 443 * 444 * If the rx_handler consumed the skb in some way, it should return 445 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 446 * the skb to be delivered in some other way. 447 * 448 * If the rx_handler changed skb->dev, to divert the skb to another 449 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 450 * new device will be called if it exists. 451 * 452 * If the rx_handler decides the skb should be ignored, it should return 453 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 454 * are registered on exact device (ptype->dev == skb->dev). 455 * 456 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 457 * delivered, it should return RX_HANDLER_PASS. 458 * 459 * A device without a registered rx_handler will behave as if rx_handler 460 * returned RX_HANDLER_PASS. 461 */ 462 463 enum rx_handler_result { 464 RX_HANDLER_CONSUMED, 465 RX_HANDLER_ANOTHER, 466 RX_HANDLER_EXACT, 467 RX_HANDLER_PASS, 468 }; 469 typedef enum rx_handler_result rx_handler_result_t; 470 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 471 472 void __napi_schedule(struct napi_struct *n); 473 void __napi_schedule_irqoff(struct napi_struct *n); 474 475 static inline bool napi_disable_pending(struct napi_struct *n) 476 { 477 return test_bit(NAPI_STATE_DISABLE, &n->state); 478 } 479 480 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 481 { 482 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 483 } 484 485 bool napi_schedule_prep(struct napi_struct *n); 486 487 /** 488 * napi_schedule - schedule NAPI poll 489 * @n: NAPI context 490 * 491 * Schedule NAPI poll routine to be called if it is not already 492 * running. 493 * Return true if we schedule a NAPI or false if not. 494 * Refer to napi_schedule_prep() for additional reason on why 495 * a NAPI might not be scheduled. 496 */ 497 static inline bool napi_schedule(struct napi_struct *n) 498 { 499 if (napi_schedule_prep(n)) { 500 __napi_schedule(n); 501 return true; 502 } 503 504 return false; 505 } 506 507 /** 508 * napi_schedule_irqoff - schedule NAPI poll 509 * @n: NAPI context 510 * 511 * Variant of napi_schedule(), assuming hard irqs are masked. 512 */ 513 static inline void napi_schedule_irqoff(struct napi_struct *n) 514 { 515 if (napi_schedule_prep(n)) 516 __napi_schedule_irqoff(n); 517 } 518 519 /** 520 * napi_complete_done - NAPI processing complete 521 * @n: NAPI context 522 * @work_done: number of packets processed 523 * 524 * Mark NAPI processing as complete. Should only be called if poll budget 525 * has not been completely consumed. 526 * Prefer over napi_complete(). 527 * Return false if device should avoid rearming interrupts. 528 */ 529 bool napi_complete_done(struct napi_struct *n, int work_done); 530 531 static inline bool napi_complete(struct napi_struct *n) 532 { 533 return napi_complete_done(n, 0); 534 } 535 536 int dev_set_threaded(struct net_device *dev, bool threaded); 537 538 /** 539 * napi_disable - prevent NAPI from scheduling 540 * @n: NAPI context 541 * 542 * Stop NAPI from being scheduled on this context. 543 * Waits till any outstanding processing completes. 544 */ 545 void napi_disable(struct napi_struct *n); 546 547 void napi_enable(struct napi_struct *n); 548 549 /** 550 * napi_synchronize - wait until NAPI is not running 551 * @n: NAPI context 552 * 553 * Wait until NAPI is done being scheduled on this context. 554 * Waits till any outstanding processing completes but 555 * does not disable future activations. 556 */ 557 static inline void napi_synchronize(const struct napi_struct *n) 558 { 559 if (IS_ENABLED(CONFIG_SMP)) 560 while (test_bit(NAPI_STATE_SCHED, &n->state)) 561 msleep(1); 562 else 563 barrier(); 564 } 565 566 /** 567 * napi_if_scheduled_mark_missed - if napi is running, set the 568 * NAPIF_STATE_MISSED 569 * @n: NAPI context 570 * 571 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 572 * NAPI is scheduled. 573 **/ 574 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 575 { 576 unsigned long val, new; 577 578 val = READ_ONCE(n->state); 579 do { 580 if (val & NAPIF_STATE_DISABLE) 581 return true; 582 583 if (!(val & NAPIF_STATE_SCHED)) 584 return false; 585 586 new = val | NAPIF_STATE_MISSED; 587 } while (!try_cmpxchg(&n->state, &val, new)); 588 589 return true; 590 } 591 592 enum netdev_queue_state_t { 593 __QUEUE_STATE_DRV_XOFF, 594 __QUEUE_STATE_STACK_XOFF, 595 __QUEUE_STATE_FROZEN, 596 }; 597 598 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 599 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 600 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 601 602 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 603 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 604 QUEUE_STATE_FROZEN) 605 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 606 QUEUE_STATE_FROZEN) 607 608 /* 609 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 610 * netif_tx_* functions below are used to manipulate this flag. The 611 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 612 * queue independently. The netif_xmit_*stopped functions below are called 613 * to check if the queue has been stopped by the driver or stack (either 614 * of the XOFF bits are set in the state). Drivers should not need to call 615 * netif_xmit*stopped functions, they should only be using netif_tx_*. 616 */ 617 618 struct netdev_queue { 619 /* 620 * read-mostly part 621 */ 622 struct net_device *dev; 623 netdevice_tracker dev_tracker; 624 625 struct Qdisc __rcu *qdisc; 626 struct Qdisc __rcu *qdisc_sleeping; 627 #ifdef CONFIG_SYSFS 628 struct kobject kobj; 629 #endif 630 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 631 int numa_node; 632 #endif 633 unsigned long tx_maxrate; 634 /* 635 * Number of TX timeouts for this queue 636 * (/sys/class/net/DEV/Q/trans_timeout) 637 */ 638 atomic_long_t trans_timeout; 639 640 /* Subordinate device that the queue has been assigned to */ 641 struct net_device *sb_dev; 642 #ifdef CONFIG_XDP_SOCKETS 643 struct xsk_buff_pool *pool; 644 #endif 645 /* 646 * write-mostly part 647 */ 648 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 649 int xmit_lock_owner; 650 /* 651 * Time (in jiffies) of last Tx 652 */ 653 unsigned long trans_start; 654 655 unsigned long state; 656 657 #ifdef CONFIG_BQL 658 struct dql dql; 659 #endif 660 } ____cacheline_aligned_in_smp; 661 662 extern int sysctl_fb_tunnels_only_for_init_net; 663 extern int sysctl_devconf_inherit_init_net; 664 665 /* 666 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 667 * == 1 : For initns only 668 * == 2 : For none. 669 */ 670 static inline bool net_has_fallback_tunnels(const struct net *net) 671 { 672 #if IS_ENABLED(CONFIG_SYSCTL) 673 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 674 675 return !fb_tunnels_only_for_init_net || 676 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 677 #else 678 return true; 679 #endif 680 } 681 682 static inline int net_inherit_devconf(void) 683 { 684 #if IS_ENABLED(CONFIG_SYSCTL) 685 return READ_ONCE(sysctl_devconf_inherit_init_net); 686 #else 687 return 0; 688 #endif 689 } 690 691 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 692 { 693 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 694 return q->numa_node; 695 #else 696 return NUMA_NO_NODE; 697 #endif 698 } 699 700 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 701 { 702 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 703 q->numa_node = node; 704 #endif 705 } 706 707 #ifdef CONFIG_RPS 708 /* 709 * This structure holds an RPS map which can be of variable length. The 710 * map is an array of CPUs. 711 */ 712 struct rps_map { 713 unsigned int len; 714 struct rcu_head rcu; 715 u16 cpus[]; 716 }; 717 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 718 719 /* 720 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 721 * tail pointer for that CPU's input queue at the time of last enqueue, and 722 * a hardware filter index. 723 */ 724 struct rps_dev_flow { 725 u16 cpu; 726 u16 filter; 727 unsigned int last_qtail; 728 }; 729 #define RPS_NO_FILTER 0xffff 730 731 /* 732 * The rps_dev_flow_table structure contains a table of flow mappings. 733 */ 734 struct rps_dev_flow_table { 735 unsigned int mask; 736 struct rcu_head rcu; 737 struct rps_dev_flow flows[]; 738 }; 739 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 740 ((_num) * sizeof(struct rps_dev_flow))) 741 742 /* 743 * The rps_sock_flow_table contains mappings of flows to the last CPU 744 * on which they were processed by the application (set in recvmsg). 745 * Each entry is a 32bit value. Upper part is the high-order bits 746 * of flow hash, lower part is CPU number. 747 * rps_cpu_mask is used to partition the space, depending on number of 748 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 749 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 750 * meaning we use 32-6=26 bits for the hash. 751 */ 752 struct rps_sock_flow_table { 753 u32 mask; 754 755 u32 ents[] ____cacheline_aligned_in_smp; 756 }; 757 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 758 759 #define RPS_NO_CPU 0xffff 760 761 extern u32 rps_cpu_mask; 762 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 763 764 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 765 u32 hash) 766 { 767 if (table && hash) { 768 unsigned int index = hash & table->mask; 769 u32 val = hash & ~rps_cpu_mask; 770 771 /* We only give a hint, preemption can change CPU under us */ 772 val |= raw_smp_processor_id(); 773 774 /* The following WRITE_ONCE() is paired with the READ_ONCE() 775 * here, and another one in get_rps_cpu(). 776 */ 777 if (READ_ONCE(table->ents[index]) != val) 778 WRITE_ONCE(table->ents[index], val); 779 } 780 } 781 782 #ifdef CONFIG_RFS_ACCEL 783 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 784 u16 filter_id); 785 #endif 786 #endif /* CONFIG_RPS */ 787 788 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 789 enum xps_map_type { 790 XPS_CPUS = 0, 791 XPS_RXQS, 792 XPS_MAPS_MAX, 793 }; 794 795 #ifdef CONFIG_XPS 796 /* 797 * This structure holds an XPS map which can be of variable length. The 798 * map is an array of queues. 799 */ 800 struct xps_map { 801 unsigned int len; 802 unsigned int alloc_len; 803 struct rcu_head rcu; 804 u16 queues[]; 805 }; 806 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 807 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 808 - sizeof(struct xps_map)) / sizeof(u16)) 809 810 /* 811 * This structure holds all XPS maps for device. Maps are indexed by CPU. 812 * 813 * We keep track of the number of cpus/rxqs used when the struct is allocated, 814 * in nr_ids. This will help not accessing out-of-bound memory. 815 * 816 * We keep track of the number of traffic classes used when the struct is 817 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 818 * not crossing its upper bound, as the original dev->num_tc can be updated in 819 * the meantime. 820 */ 821 struct xps_dev_maps { 822 struct rcu_head rcu; 823 unsigned int nr_ids; 824 s16 num_tc; 825 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 826 }; 827 828 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 829 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 830 831 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 832 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 833 834 #endif /* CONFIG_XPS */ 835 836 #define TC_MAX_QUEUE 16 837 #define TC_BITMASK 15 838 /* HW offloaded queuing disciplines txq count and offset maps */ 839 struct netdev_tc_txq { 840 u16 count; 841 u16 offset; 842 }; 843 844 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 845 /* 846 * This structure is to hold information about the device 847 * configured to run FCoE protocol stack. 848 */ 849 struct netdev_fcoe_hbainfo { 850 char manufacturer[64]; 851 char serial_number[64]; 852 char hardware_version[64]; 853 char driver_version[64]; 854 char optionrom_version[64]; 855 char firmware_version[64]; 856 char model[256]; 857 char model_description[256]; 858 }; 859 #endif 860 861 #define MAX_PHYS_ITEM_ID_LEN 32 862 863 /* This structure holds a unique identifier to identify some 864 * physical item (port for example) used by a netdevice. 865 */ 866 struct netdev_phys_item_id { 867 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 868 unsigned char id_len; 869 }; 870 871 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 872 struct netdev_phys_item_id *b) 873 { 874 return a->id_len == b->id_len && 875 memcmp(a->id, b->id, a->id_len) == 0; 876 } 877 878 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 879 struct sk_buff *skb, 880 struct net_device *sb_dev); 881 882 enum net_device_path_type { 883 DEV_PATH_ETHERNET = 0, 884 DEV_PATH_VLAN, 885 DEV_PATH_BRIDGE, 886 DEV_PATH_PPPOE, 887 DEV_PATH_DSA, 888 DEV_PATH_MTK_WDMA, 889 }; 890 891 struct net_device_path { 892 enum net_device_path_type type; 893 const struct net_device *dev; 894 union { 895 struct { 896 u16 id; 897 __be16 proto; 898 u8 h_dest[ETH_ALEN]; 899 } encap; 900 struct { 901 enum { 902 DEV_PATH_BR_VLAN_KEEP, 903 DEV_PATH_BR_VLAN_TAG, 904 DEV_PATH_BR_VLAN_UNTAG, 905 DEV_PATH_BR_VLAN_UNTAG_HW, 906 } vlan_mode; 907 u16 vlan_id; 908 __be16 vlan_proto; 909 } bridge; 910 struct { 911 int port; 912 u16 proto; 913 } dsa; 914 struct { 915 u8 wdma_idx; 916 u8 queue; 917 u16 wcid; 918 u8 bss; 919 u8 amsdu; 920 } mtk_wdma; 921 }; 922 }; 923 924 #define NET_DEVICE_PATH_STACK_MAX 5 925 #define NET_DEVICE_PATH_VLAN_MAX 2 926 927 struct net_device_path_stack { 928 int num_paths; 929 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 930 }; 931 932 struct net_device_path_ctx { 933 const struct net_device *dev; 934 u8 daddr[ETH_ALEN]; 935 936 int num_vlans; 937 struct { 938 u16 id; 939 __be16 proto; 940 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 941 }; 942 943 enum tc_setup_type { 944 TC_QUERY_CAPS, 945 TC_SETUP_QDISC_MQPRIO, 946 TC_SETUP_CLSU32, 947 TC_SETUP_CLSFLOWER, 948 TC_SETUP_CLSMATCHALL, 949 TC_SETUP_CLSBPF, 950 TC_SETUP_BLOCK, 951 TC_SETUP_QDISC_CBS, 952 TC_SETUP_QDISC_RED, 953 TC_SETUP_QDISC_PRIO, 954 TC_SETUP_QDISC_MQ, 955 TC_SETUP_QDISC_ETF, 956 TC_SETUP_ROOT_QDISC, 957 TC_SETUP_QDISC_GRED, 958 TC_SETUP_QDISC_TAPRIO, 959 TC_SETUP_FT, 960 TC_SETUP_QDISC_ETS, 961 TC_SETUP_QDISC_TBF, 962 TC_SETUP_QDISC_FIFO, 963 TC_SETUP_QDISC_HTB, 964 TC_SETUP_ACT, 965 }; 966 967 /* These structures hold the attributes of bpf state that are being passed 968 * to the netdevice through the bpf op. 969 */ 970 enum bpf_netdev_command { 971 /* Set or clear a bpf program used in the earliest stages of packet 972 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 973 * is responsible for calling bpf_prog_put on any old progs that are 974 * stored. In case of error, the callee need not release the new prog 975 * reference, but on success it takes ownership and must bpf_prog_put 976 * when it is no longer used. 977 */ 978 XDP_SETUP_PROG, 979 XDP_SETUP_PROG_HW, 980 /* BPF program for offload callbacks, invoked at program load time. */ 981 BPF_OFFLOAD_MAP_ALLOC, 982 BPF_OFFLOAD_MAP_FREE, 983 XDP_SETUP_XSK_POOL, 984 }; 985 986 struct bpf_prog_offload_ops; 987 struct netlink_ext_ack; 988 struct xdp_umem; 989 struct xdp_dev_bulk_queue; 990 struct bpf_xdp_link; 991 992 enum bpf_xdp_mode { 993 XDP_MODE_SKB = 0, 994 XDP_MODE_DRV = 1, 995 XDP_MODE_HW = 2, 996 __MAX_XDP_MODE 997 }; 998 999 struct bpf_xdp_entity { 1000 struct bpf_prog *prog; 1001 struct bpf_xdp_link *link; 1002 }; 1003 1004 struct netdev_bpf { 1005 enum bpf_netdev_command command; 1006 union { 1007 /* XDP_SETUP_PROG */ 1008 struct { 1009 u32 flags; 1010 struct bpf_prog *prog; 1011 struct netlink_ext_ack *extack; 1012 }; 1013 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1014 struct { 1015 struct bpf_offloaded_map *offmap; 1016 }; 1017 /* XDP_SETUP_XSK_POOL */ 1018 struct { 1019 struct xsk_buff_pool *pool; 1020 u16 queue_id; 1021 } xsk; 1022 }; 1023 }; 1024 1025 /* Flags for ndo_xsk_wakeup. */ 1026 #define XDP_WAKEUP_RX (1 << 0) 1027 #define XDP_WAKEUP_TX (1 << 1) 1028 1029 #ifdef CONFIG_XFRM_OFFLOAD 1030 struct xfrmdev_ops { 1031 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1032 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1033 void (*xdo_dev_state_free) (struct xfrm_state *x); 1034 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1035 struct xfrm_state *x); 1036 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1037 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1038 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1039 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1040 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1041 }; 1042 #endif 1043 1044 struct dev_ifalias { 1045 struct rcu_head rcuhead; 1046 char ifalias[]; 1047 }; 1048 1049 struct devlink; 1050 struct tlsdev_ops; 1051 1052 struct netdev_net_notifier { 1053 struct list_head list; 1054 struct notifier_block *nb; 1055 }; 1056 1057 /* 1058 * This structure defines the management hooks for network devices. 1059 * The following hooks can be defined; unless noted otherwise, they are 1060 * optional and can be filled with a null pointer. 1061 * 1062 * int (*ndo_init)(struct net_device *dev); 1063 * This function is called once when a network device is registered. 1064 * The network device can use this for any late stage initialization 1065 * or semantic validation. It can fail with an error code which will 1066 * be propagated back to register_netdev. 1067 * 1068 * void (*ndo_uninit)(struct net_device *dev); 1069 * This function is called when device is unregistered or when registration 1070 * fails. It is not called if init fails. 1071 * 1072 * int (*ndo_open)(struct net_device *dev); 1073 * This function is called when a network device transitions to the up 1074 * state. 1075 * 1076 * int (*ndo_stop)(struct net_device *dev); 1077 * This function is called when a network device transitions to the down 1078 * state. 1079 * 1080 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1081 * struct net_device *dev); 1082 * Called when a packet needs to be transmitted. 1083 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1084 * the queue before that can happen; it's for obsolete devices and weird 1085 * corner cases, but the stack really does a non-trivial amount 1086 * of useless work if you return NETDEV_TX_BUSY. 1087 * Required; cannot be NULL. 1088 * 1089 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1090 * struct net_device *dev 1091 * netdev_features_t features); 1092 * Called by core transmit path to determine if device is capable of 1093 * performing offload operations on a given packet. This is to give 1094 * the device an opportunity to implement any restrictions that cannot 1095 * be otherwise expressed by feature flags. The check is called with 1096 * the set of features that the stack has calculated and it returns 1097 * those the driver believes to be appropriate. 1098 * 1099 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1100 * struct net_device *sb_dev); 1101 * Called to decide which queue to use when device supports multiple 1102 * transmit queues. 1103 * 1104 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1105 * This function is called to allow device receiver to make 1106 * changes to configuration when multicast or promiscuous is enabled. 1107 * 1108 * void (*ndo_set_rx_mode)(struct net_device *dev); 1109 * This function is called device changes address list filtering. 1110 * If driver handles unicast address filtering, it should set 1111 * IFF_UNICAST_FLT in its priv_flags. 1112 * 1113 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1114 * This function is called when the Media Access Control address 1115 * needs to be changed. If this interface is not defined, the 1116 * MAC address can not be changed. 1117 * 1118 * int (*ndo_validate_addr)(struct net_device *dev); 1119 * Test if Media Access Control address is valid for the device. 1120 * 1121 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1122 * Old-style ioctl entry point. This is used internally by the 1123 * appletalk and ieee802154 subsystems but is no longer called by 1124 * the device ioctl handler. 1125 * 1126 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1127 * Used by the bonding driver for its device specific ioctls: 1128 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1129 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1130 * 1131 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1132 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1133 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1134 * 1135 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1136 * Used to set network devices bus interface parameters. This interface 1137 * is retained for legacy reasons; new devices should use the bus 1138 * interface (PCI) for low level management. 1139 * 1140 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1141 * Called when a user wants to change the Maximum Transfer Unit 1142 * of a device. 1143 * 1144 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1145 * Callback used when the transmitter has not made any progress 1146 * for dev->watchdog ticks. 1147 * 1148 * void (*ndo_get_stats64)(struct net_device *dev, 1149 * struct rtnl_link_stats64 *storage); 1150 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1151 * Called when a user wants to get the network device usage 1152 * statistics. Drivers must do one of the following: 1153 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1154 * rtnl_link_stats64 structure passed by the caller. 1155 * 2. Define @ndo_get_stats to update a net_device_stats structure 1156 * (which should normally be dev->stats) and return a pointer to 1157 * it. The structure may be changed asynchronously only if each 1158 * field is written atomically. 1159 * 3. Update dev->stats asynchronously and atomically, and define 1160 * neither operation. 1161 * 1162 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1163 * Return true if this device supports offload stats of this attr_id. 1164 * 1165 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1166 * void *attr_data) 1167 * Get statistics for offload operations by attr_id. Write it into the 1168 * attr_data pointer. 1169 * 1170 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1171 * If device supports VLAN filtering this function is called when a 1172 * VLAN id is registered. 1173 * 1174 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1175 * If device supports VLAN filtering this function is called when a 1176 * VLAN id is unregistered. 1177 * 1178 * void (*ndo_poll_controller)(struct net_device *dev); 1179 * 1180 * SR-IOV management functions. 1181 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1182 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1183 * u8 qos, __be16 proto); 1184 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1185 * int max_tx_rate); 1186 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1187 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1188 * int (*ndo_get_vf_config)(struct net_device *dev, 1189 * int vf, struct ifla_vf_info *ivf); 1190 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1191 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1192 * struct nlattr *port[]); 1193 * 1194 * Enable or disable the VF ability to query its RSS Redirection Table and 1195 * Hash Key. This is needed since on some devices VF share this information 1196 * with PF and querying it may introduce a theoretical security risk. 1197 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1198 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1199 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1200 * void *type_data); 1201 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1202 * This is always called from the stack with the rtnl lock held and netif 1203 * tx queues stopped. This allows the netdevice to perform queue 1204 * management safely. 1205 * 1206 * Fiber Channel over Ethernet (FCoE) offload functions. 1207 * int (*ndo_fcoe_enable)(struct net_device *dev); 1208 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1209 * so the underlying device can perform whatever needed configuration or 1210 * initialization to support acceleration of FCoE traffic. 1211 * 1212 * int (*ndo_fcoe_disable)(struct net_device *dev); 1213 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1214 * so the underlying device can perform whatever needed clean-ups to 1215 * stop supporting acceleration of FCoE traffic. 1216 * 1217 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1218 * struct scatterlist *sgl, unsigned int sgc); 1219 * Called when the FCoE Initiator wants to initialize an I/O that 1220 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1221 * perform necessary setup and returns 1 to indicate the device is set up 1222 * successfully to perform DDP on this I/O, otherwise this returns 0. 1223 * 1224 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1225 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1226 * indicated by the FC exchange id 'xid', so the underlying device can 1227 * clean up and reuse resources for later DDP requests. 1228 * 1229 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1230 * struct scatterlist *sgl, unsigned int sgc); 1231 * Called when the FCoE Target wants to initialize an I/O that 1232 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1233 * perform necessary setup and returns 1 to indicate the device is set up 1234 * successfully to perform DDP on this I/O, otherwise this returns 0. 1235 * 1236 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1237 * struct netdev_fcoe_hbainfo *hbainfo); 1238 * Called when the FCoE Protocol stack wants information on the underlying 1239 * device. This information is utilized by the FCoE protocol stack to 1240 * register attributes with Fiber Channel management service as per the 1241 * FC-GS Fabric Device Management Information(FDMI) specification. 1242 * 1243 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1244 * Called when the underlying device wants to override default World Wide 1245 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1246 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1247 * protocol stack to use. 1248 * 1249 * RFS acceleration. 1250 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1251 * u16 rxq_index, u32 flow_id); 1252 * Set hardware filter for RFS. rxq_index is the target queue index; 1253 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1254 * Return the filter ID on success, or a negative error code. 1255 * 1256 * Slave management functions (for bridge, bonding, etc). 1257 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1258 * Called to make another netdev an underling. 1259 * 1260 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1261 * Called to release previously enslaved netdev. 1262 * 1263 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1264 * struct sk_buff *skb, 1265 * bool all_slaves); 1266 * Get the xmit slave of master device. If all_slaves is true, function 1267 * assume all the slaves can transmit. 1268 * 1269 * Feature/offload setting functions. 1270 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1271 * netdev_features_t features); 1272 * Adjusts the requested feature flags according to device-specific 1273 * constraints, and returns the resulting flags. Must not modify 1274 * the device state. 1275 * 1276 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1277 * Called to update device configuration to new features. Passed 1278 * feature set might be less than what was returned by ndo_fix_features()). 1279 * Must return >0 or -errno if it changed dev->features itself. 1280 * 1281 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1282 * struct net_device *dev, 1283 * const unsigned char *addr, u16 vid, u16 flags, 1284 * struct netlink_ext_ack *extack); 1285 * Adds an FDB entry to dev for addr. 1286 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1287 * struct net_device *dev, 1288 * const unsigned char *addr, u16 vid) 1289 * Deletes the FDB entry from dev coresponding to addr. 1290 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1291 * struct netlink_ext_ack *extack); 1292 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1293 * struct net_device *dev, struct net_device *filter_dev, 1294 * int *idx) 1295 * Used to add FDB entries to dump requests. Implementers should add 1296 * entries to skb and update idx with the number of entries. 1297 * 1298 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1299 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1300 * Adds an MDB entry to dev. 1301 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1302 * struct netlink_ext_ack *extack); 1303 * Deletes the MDB entry from dev. 1304 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1305 * struct netlink_callback *cb); 1306 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1307 * callback is used by core rtnetlink code. 1308 * 1309 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1310 * u16 flags, struct netlink_ext_ack *extack) 1311 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1312 * struct net_device *dev, u32 filter_mask, 1313 * int nlflags) 1314 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1315 * u16 flags); 1316 * 1317 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1318 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1319 * which do not represent real hardware may define this to allow their 1320 * userspace components to manage their virtual carrier state. Devices 1321 * that determine carrier state from physical hardware properties (eg 1322 * network cables) or protocol-dependent mechanisms (eg 1323 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1324 * 1325 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1326 * struct netdev_phys_item_id *ppid); 1327 * Called to get ID of physical port of this device. If driver does 1328 * not implement this, it is assumed that the hw is not able to have 1329 * multiple net devices on single physical port. 1330 * 1331 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1332 * struct netdev_phys_item_id *ppid) 1333 * Called to get the parent ID of the physical port of this device. 1334 * 1335 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1336 * struct net_device *dev) 1337 * Called by upper layer devices to accelerate switching or other 1338 * station functionality into hardware. 'pdev is the lowerdev 1339 * to use for the offload and 'dev' is the net device that will 1340 * back the offload. Returns a pointer to the private structure 1341 * the upper layer will maintain. 1342 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1343 * Called by upper layer device to delete the station created 1344 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1345 * the station and priv is the structure returned by the add 1346 * operation. 1347 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1348 * int queue_index, u32 maxrate); 1349 * Called when a user wants to set a max-rate limitation of specific 1350 * TX queue. 1351 * int (*ndo_get_iflink)(const struct net_device *dev); 1352 * Called to get the iflink value of this device. 1353 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1354 * This function is used to get egress tunnel information for given skb. 1355 * This is useful for retrieving outer tunnel header parameters while 1356 * sampling packet. 1357 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1358 * This function is used to specify the headroom that the skb must 1359 * consider when allocation skb during packet reception. Setting 1360 * appropriate rx headroom value allows avoiding skb head copy on 1361 * forward. Setting a negative value resets the rx headroom to the 1362 * default value. 1363 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1364 * This function is used to set or query state related to XDP on the 1365 * netdevice and manage BPF offload. See definition of 1366 * enum bpf_netdev_command for details. 1367 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1368 * u32 flags); 1369 * This function is used to submit @n XDP packets for transmit on a 1370 * netdevice. Returns number of frames successfully transmitted, frames 1371 * that got dropped are freed/returned via xdp_return_frame(). 1372 * Returns negative number, means general error invoking ndo, meaning 1373 * no frames were xmit'ed and core-caller will free all frames. 1374 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1375 * struct xdp_buff *xdp); 1376 * Get the xmit slave of master device based on the xdp_buff. 1377 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1378 * This function is used to wake up the softirq, ksoftirqd or kthread 1379 * responsible for sending and/or receiving packets on a specific 1380 * queue id bound to an AF_XDP socket. The flags field specifies if 1381 * only RX, only Tx, or both should be woken up using the flags 1382 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1383 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1384 * int cmd); 1385 * Add, change, delete or get information on an IPv4 tunnel. 1386 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1387 * If a device is paired with a peer device, return the peer instance. 1388 * The caller must be under RCU read context. 1389 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1390 * Get the forwarding path to reach the real device from the HW destination address 1391 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1392 * const struct skb_shared_hwtstamps *hwtstamps, 1393 * bool cycles); 1394 * Get hardware timestamp based on normal/adjustable time or free running 1395 * cycle counter. This function is required if physical clock supports a 1396 * free running cycle counter. 1397 * 1398 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1399 * struct kernel_hwtstamp_config *kernel_config); 1400 * Get the currently configured hardware timestamping parameters for the 1401 * NIC device. 1402 * 1403 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1404 * struct kernel_hwtstamp_config *kernel_config, 1405 * struct netlink_ext_ack *extack); 1406 * Change the hardware timestamping parameters for NIC device. 1407 */ 1408 struct net_device_ops { 1409 int (*ndo_init)(struct net_device *dev); 1410 void (*ndo_uninit)(struct net_device *dev); 1411 int (*ndo_open)(struct net_device *dev); 1412 int (*ndo_stop)(struct net_device *dev); 1413 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1414 struct net_device *dev); 1415 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1416 struct net_device *dev, 1417 netdev_features_t features); 1418 u16 (*ndo_select_queue)(struct net_device *dev, 1419 struct sk_buff *skb, 1420 struct net_device *sb_dev); 1421 void (*ndo_change_rx_flags)(struct net_device *dev, 1422 int flags); 1423 void (*ndo_set_rx_mode)(struct net_device *dev); 1424 int (*ndo_set_mac_address)(struct net_device *dev, 1425 void *addr); 1426 int (*ndo_validate_addr)(struct net_device *dev); 1427 int (*ndo_do_ioctl)(struct net_device *dev, 1428 struct ifreq *ifr, int cmd); 1429 int (*ndo_eth_ioctl)(struct net_device *dev, 1430 struct ifreq *ifr, int cmd); 1431 int (*ndo_siocbond)(struct net_device *dev, 1432 struct ifreq *ifr, int cmd); 1433 int (*ndo_siocwandev)(struct net_device *dev, 1434 struct if_settings *ifs); 1435 int (*ndo_siocdevprivate)(struct net_device *dev, 1436 struct ifreq *ifr, 1437 void __user *data, int cmd); 1438 int (*ndo_set_config)(struct net_device *dev, 1439 struct ifmap *map); 1440 int (*ndo_change_mtu)(struct net_device *dev, 1441 int new_mtu); 1442 int (*ndo_neigh_setup)(struct net_device *dev, 1443 struct neigh_parms *); 1444 void (*ndo_tx_timeout) (struct net_device *dev, 1445 unsigned int txqueue); 1446 1447 void (*ndo_get_stats64)(struct net_device *dev, 1448 struct rtnl_link_stats64 *storage); 1449 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1450 int (*ndo_get_offload_stats)(int attr_id, 1451 const struct net_device *dev, 1452 void *attr_data); 1453 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1454 1455 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1456 __be16 proto, u16 vid); 1457 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1458 __be16 proto, u16 vid); 1459 #ifdef CONFIG_NET_POLL_CONTROLLER 1460 void (*ndo_poll_controller)(struct net_device *dev); 1461 int (*ndo_netpoll_setup)(struct net_device *dev, 1462 struct netpoll_info *info); 1463 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1464 #endif 1465 int (*ndo_set_vf_mac)(struct net_device *dev, 1466 int queue, u8 *mac); 1467 int (*ndo_set_vf_vlan)(struct net_device *dev, 1468 int queue, u16 vlan, 1469 u8 qos, __be16 proto); 1470 int (*ndo_set_vf_rate)(struct net_device *dev, 1471 int vf, int min_tx_rate, 1472 int max_tx_rate); 1473 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1474 int vf, bool setting); 1475 int (*ndo_set_vf_trust)(struct net_device *dev, 1476 int vf, bool setting); 1477 int (*ndo_get_vf_config)(struct net_device *dev, 1478 int vf, 1479 struct ifla_vf_info *ivf); 1480 int (*ndo_set_vf_link_state)(struct net_device *dev, 1481 int vf, int link_state); 1482 int (*ndo_get_vf_stats)(struct net_device *dev, 1483 int vf, 1484 struct ifla_vf_stats 1485 *vf_stats); 1486 int (*ndo_set_vf_port)(struct net_device *dev, 1487 int vf, 1488 struct nlattr *port[]); 1489 int (*ndo_get_vf_port)(struct net_device *dev, 1490 int vf, struct sk_buff *skb); 1491 int (*ndo_get_vf_guid)(struct net_device *dev, 1492 int vf, 1493 struct ifla_vf_guid *node_guid, 1494 struct ifla_vf_guid *port_guid); 1495 int (*ndo_set_vf_guid)(struct net_device *dev, 1496 int vf, u64 guid, 1497 int guid_type); 1498 int (*ndo_set_vf_rss_query_en)( 1499 struct net_device *dev, 1500 int vf, bool setting); 1501 int (*ndo_setup_tc)(struct net_device *dev, 1502 enum tc_setup_type type, 1503 void *type_data); 1504 #if IS_ENABLED(CONFIG_FCOE) 1505 int (*ndo_fcoe_enable)(struct net_device *dev); 1506 int (*ndo_fcoe_disable)(struct net_device *dev); 1507 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1508 u16 xid, 1509 struct scatterlist *sgl, 1510 unsigned int sgc); 1511 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1512 u16 xid); 1513 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1514 u16 xid, 1515 struct scatterlist *sgl, 1516 unsigned int sgc); 1517 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1518 struct netdev_fcoe_hbainfo *hbainfo); 1519 #endif 1520 1521 #if IS_ENABLED(CONFIG_LIBFCOE) 1522 #define NETDEV_FCOE_WWNN 0 1523 #define NETDEV_FCOE_WWPN 1 1524 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1525 u64 *wwn, int type); 1526 #endif 1527 1528 #ifdef CONFIG_RFS_ACCEL 1529 int (*ndo_rx_flow_steer)(struct net_device *dev, 1530 const struct sk_buff *skb, 1531 u16 rxq_index, 1532 u32 flow_id); 1533 #endif 1534 int (*ndo_add_slave)(struct net_device *dev, 1535 struct net_device *slave_dev, 1536 struct netlink_ext_ack *extack); 1537 int (*ndo_del_slave)(struct net_device *dev, 1538 struct net_device *slave_dev); 1539 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1540 struct sk_buff *skb, 1541 bool all_slaves); 1542 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1543 struct sock *sk); 1544 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1545 netdev_features_t features); 1546 int (*ndo_set_features)(struct net_device *dev, 1547 netdev_features_t features); 1548 int (*ndo_neigh_construct)(struct net_device *dev, 1549 struct neighbour *n); 1550 void (*ndo_neigh_destroy)(struct net_device *dev, 1551 struct neighbour *n); 1552 1553 int (*ndo_fdb_add)(struct ndmsg *ndm, 1554 struct nlattr *tb[], 1555 struct net_device *dev, 1556 const unsigned char *addr, 1557 u16 vid, 1558 u16 flags, 1559 struct netlink_ext_ack *extack); 1560 int (*ndo_fdb_del)(struct ndmsg *ndm, 1561 struct nlattr *tb[], 1562 struct net_device *dev, 1563 const unsigned char *addr, 1564 u16 vid, struct netlink_ext_ack *extack); 1565 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1566 struct net_device *dev, 1567 struct netlink_ext_ack *extack); 1568 int (*ndo_fdb_dump)(struct sk_buff *skb, 1569 struct netlink_callback *cb, 1570 struct net_device *dev, 1571 struct net_device *filter_dev, 1572 int *idx); 1573 int (*ndo_fdb_get)(struct sk_buff *skb, 1574 struct nlattr *tb[], 1575 struct net_device *dev, 1576 const unsigned char *addr, 1577 u16 vid, u32 portid, u32 seq, 1578 struct netlink_ext_ack *extack); 1579 int (*ndo_mdb_add)(struct net_device *dev, 1580 struct nlattr *tb[], 1581 u16 nlmsg_flags, 1582 struct netlink_ext_ack *extack); 1583 int (*ndo_mdb_del)(struct net_device *dev, 1584 struct nlattr *tb[], 1585 struct netlink_ext_ack *extack); 1586 int (*ndo_mdb_dump)(struct net_device *dev, 1587 struct sk_buff *skb, 1588 struct netlink_callback *cb); 1589 int (*ndo_bridge_setlink)(struct net_device *dev, 1590 struct nlmsghdr *nlh, 1591 u16 flags, 1592 struct netlink_ext_ack *extack); 1593 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1594 u32 pid, u32 seq, 1595 struct net_device *dev, 1596 u32 filter_mask, 1597 int nlflags); 1598 int (*ndo_bridge_dellink)(struct net_device *dev, 1599 struct nlmsghdr *nlh, 1600 u16 flags); 1601 int (*ndo_change_carrier)(struct net_device *dev, 1602 bool new_carrier); 1603 int (*ndo_get_phys_port_id)(struct net_device *dev, 1604 struct netdev_phys_item_id *ppid); 1605 int (*ndo_get_port_parent_id)(struct net_device *dev, 1606 struct netdev_phys_item_id *ppid); 1607 int (*ndo_get_phys_port_name)(struct net_device *dev, 1608 char *name, size_t len); 1609 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1610 struct net_device *dev); 1611 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1612 void *priv); 1613 1614 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1615 int queue_index, 1616 u32 maxrate); 1617 int (*ndo_get_iflink)(const struct net_device *dev); 1618 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1619 struct sk_buff *skb); 1620 void (*ndo_set_rx_headroom)(struct net_device *dev, 1621 int needed_headroom); 1622 int (*ndo_bpf)(struct net_device *dev, 1623 struct netdev_bpf *bpf); 1624 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1625 struct xdp_frame **xdp, 1626 u32 flags); 1627 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1628 struct xdp_buff *xdp); 1629 int (*ndo_xsk_wakeup)(struct net_device *dev, 1630 u32 queue_id, u32 flags); 1631 int (*ndo_tunnel_ctl)(struct net_device *dev, 1632 struct ip_tunnel_parm *p, int cmd); 1633 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1634 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1635 struct net_device_path *path); 1636 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1637 const struct skb_shared_hwtstamps *hwtstamps, 1638 bool cycles); 1639 int (*ndo_hwtstamp_get)(struct net_device *dev, 1640 struct kernel_hwtstamp_config *kernel_config); 1641 int (*ndo_hwtstamp_set)(struct net_device *dev, 1642 struct kernel_hwtstamp_config *kernel_config, 1643 struct netlink_ext_ack *extack); 1644 }; 1645 1646 /** 1647 * enum netdev_priv_flags - &struct net_device priv_flags 1648 * 1649 * These are the &struct net_device, they are only set internally 1650 * by drivers and used in the kernel. These flags are invisible to 1651 * userspace; this means that the order of these flags can change 1652 * during any kernel release. 1653 * 1654 * You should have a pretty good reason to be extending these flags. 1655 * 1656 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1657 * @IFF_EBRIDGE: Ethernet bridging device 1658 * @IFF_BONDING: bonding master or slave 1659 * @IFF_ISATAP: ISATAP interface (RFC4214) 1660 * @IFF_WAN_HDLC: WAN HDLC device 1661 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1662 * release skb->dst 1663 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1664 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1665 * @IFF_MACVLAN_PORT: device used as macvlan port 1666 * @IFF_BRIDGE_PORT: device used as bridge port 1667 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1668 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1669 * @IFF_UNICAST_FLT: Supports unicast filtering 1670 * @IFF_TEAM_PORT: device used as team port 1671 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1672 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1673 * change when it's running 1674 * @IFF_MACVLAN: Macvlan device 1675 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1676 * underlying stacked devices 1677 * @IFF_L3MDEV_MASTER: device is an L3 master device 1678 * @IFF_NO_QUEUE: device can run without qdisc attached 1679 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1680 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1681 * @IFF_TEAM: device is a team device 1682 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1683 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1684 * entity (i.e. the master device for bridged veth) 1685 * @IFF_MACSEC: device is a MACsec device 1686 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1687 * @IFF_FAILOVER: device is a failover master device 1688 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1689 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1690 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1691 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1692 * skb_headlen(skb) == 0 (data starts from frag0) 1693 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1694 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1695 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1696 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1697 */ 1698 enum netdev_priv_flags { 1699 IFF_802_1Q_VLAN = 1<<0, 1700 IFF_EBRIDGE = 1<<1, 1701 IFF_BONDING = 1<<2, 1702 IFF_ISATAP = 1<<3, 1703 IFF_WAN_HDLC = 1<<4, 1704 IFF_XMIT_DST_RELEASE = 1<<5, 1705 IFF_DONT_BRIDGE = 1<<6, 1706 IFF_DISABLE_NETPOLL = 1<<7, 1707 IFF_MACVLAN_PORT = 1<<8, 1708 IFF_BRIDGE_PORT = 1<<9, 1709 IFF_OVS_DATAPATH = 1<<10, 1710 IFF_TX_SKB_SHARING = 1<<11, 1711 IFF_UNICAST_FLT = 1<<12, 1712 IFF_TEAM_PORT = 1<<13, 1713 IFF_SUPP_NOFCS = 1<<14, 1714 IFF_LIVE_ADDR_CHANGE = 1<<15, 1715 IFF_MACVLAN = 1<<16, 1716 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1717 IFF_L3MDEV_MASTER = 1<<18, 1718 IFF_NO_QUEUE = 1<<19, 1719 IFF_OPENVSWITCH = 1<<20, 1720 IFF_L3MDEV_SLAVE = 1<<21, 1721 IFF_TEAM = 1<<22, 1722 IFF_RXFH_CONFIGURED = 1<<23, 1723 IFF_PHONY_HEADROOM = 1<<24, 1724 IFF_MACSEC = 1<<25, 1725 IFF_NO_RX_HANDLER = 1<<26, 1726 IFF_FAILOVER = 1<<27, 1727 IFF_FAILOVER_SLAVE = 1<<28, 1728 IFF_L3MDEV_RX_HANDLER = 1<<29, 1729 IFF_NO_ADDRCONF = BIT_ULL(30), 1730 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1731 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1732 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1733 }; 1734 1735 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1736 #define IFF_EBRIDGE IFF_EBRIDGE 1737 #define IFF_BONDING IFF_BONDING 1738 #define IFF_ISATAP IFF_ISATAP 1739 #define IFF_WAN_HDLC IFF_WAN_HDLC 1740 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1741 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1742 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1743 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1744 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1745 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1746 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1747 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1748 #define IFF_TEAM_PORT IFF_TEAM_PORT 1749 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1750 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1751 #define IFF_MACVLAN IFF_MACVLAN 1752 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1753 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1754 #define IFF_NO_QUEUE IFF_NO_QUEUE 1755 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1756 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1757 #define IFF_TEAM IFF_TEAM 1758 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1759 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1760 #define IFF_MACSEC IFF_MACSEC 1761 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1762 #define IFF_FAILOVER IFF_FAILOVER 1763 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1764 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1765 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1766 1767 /* Specifies the type of the struct net_device::ml_priv pointer */ 1768 enum netdev_ml_priv_type { 1769 ML_PRIV_NONE, 1770 ML_PRIV_CAN, 1771 }; 1772 1773 /** 1774 * struct net_device - The DEVICE structure. 1775 * 1776 * Actually, this whole structure is a big mistake. It mixes I/O 1777 * data with strictly "high-level" data, and it has to know about 1778 * almost every data structure used in the INET module. 1779 * 1780 * @name: This is the first field of the "visible" part of this structure 1781 * (i.e. as seen by users in the "Space.c" file). It is the name 1782 * of the interface. 1783 * 1784 * @name_node: Name hashlist node 1785 * @ifalias: SNMP alias 1786 * @mem_end: Shared memory end 1787 * @mem_start: Shared memory start 1788 * @base_addr: Device I/O address 1789 * @irq: Device IRQ number 1790 * 1791 * @state: Generic network queuing layer state, see netdev_state_t 1792 * @dev_list: The global list of network devices 1793 * @napi_list: List entry used for polling NAPI devices 1794 * @unreg_list: List entry when we are unregistering the 1795 * device; see the function unregister_netdev 1796 * @close_list: List entry used when we are closing the device 1797 * @ptype_all: Device-specific packet handlers for all protocols 1798 * @ptype_specific: Device-specific, protocol-specific packet handlers 1799 * 1800 * @adj_list: Directly linked devices, like slaves for bonding 1801 * @features: Currently active device features 1802 * @hw_features: User-changeable features 1803 * 1804 * @wanted_features: User-requested features 1805 * @vlan_features: Mask of features inheritable by VLAN devices 1806 * 1807 * @hw_enc_features: Mask of features inherited by encapsulating devices 1808 * This field indicates what encapsulation 1809 * offloads the hardware is capable of doing, 1810 * and drivers will need to set them appropriately. 1811 * 1812 * @mpls_features: Mask of features inheritable by MPLS 1813 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1814 * 1815 * @ifindex: interface index 1816 * @group: The group the device belongs to 1817 * 1818 * @stats: Statistics struct, which was left as a legacy, use 1819 * rtnl_link_stats64 instead 1820 * 1821 * @core_stats: core networking counters, 1822 * do not use this in drivers 1823 * @carrier_up_count: Number of times the carrier has been up 1824 * @carrier_down_count: Number of times the carrier has been down 1825 * 1826 * @wireless_handlers: List of functions to handle Wireless Extensions, 1827 * instead of ioctl, 1828 * see <net/iw_handler.h> for details. 1829 * @wireless_data: Instance data managed by the core of wireless extensions 1830 * 1831 * @netdev_ops: Includes several pointers to callbacks, 1832 * if one wants to override the ndo_*() functions 1833 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1834 * @ethtool_ops: Management operations 1835 * @l3mdev_ops: Layer 3 master device operations 1836 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1837 * discovery handling. Necessary for e.g. 6LoWPAN. 1838 * @xfrmdev_ops: Transformation offload operations 1839 * @tlsdev_ops: Transport Layer Security offload operations 1840 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1841 * of Layer 2 headers. 1842 * 1843 * @flags: Interface flags (a la BSD) 1844 * @xdp_features: XDP capability supported by the device 1845 * @priv_flags: Like 'flags' but invisible to userspace, 1846 * see if.h for the definitions 1847 * @gflags: Global flags ( kept as legacy ) 1848 * @padded: How much padding added by alloc_netdev() 1849 * @operstate: RFC2863 operstate 1850 * @link_mode: Mapping policy to operstate 1851 * @if_port: Selectable AUI, TP, ... 1852 * @dma: DMA channel 1853 * @mtu: Interface MTU value 1854 * @min_mtu: Interface Minimum MTU value 1855 * @max_mtu: Interface Maximum MTU value 1856 * @type: Interface hardware type 1857 * @hard_header_len: Maximum hardware header length. 1858 * @min_header_len: Minimum hardware header length 1859 * 1860 * @needed_headroom: Extra headroom the hardware may need, but not in all 1861 * cases can this be guaranteed 1862 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1863 * cases can this be guaranteed. Some cases also use 1864 * LL_MAX_HEADER instead to allocate the skb 1865 * 1866 * interface address info: 1867 * 1868 * @perm_addr: Permanent hw address 1869 * @addr_assign_type: Hw address assignment type 1870 * @addr_len: Hardware address length 1871 * @upper_level: Maximum depth level of upper devices. 1872 * @lower_level: Maximum depth level of lower devices. 1873 * @neigh_priv_len: Used in neigh_alloc() 1874 * @dev_id: Used to differentiate devices that share 1875 * the same link layer address 1876 * @dev_port: Used to differentiate devices that share 1877 * the same function 1878 * @addr_list_lock: XXX: need comments on this one 1879 * @name_assign_type: network interface name assignment type 1880 * @uc_promisc: Counter that indicates promiscuous mode 1881 * has been enabled due to the need to listen to 1882 * additional unicast addresses in a device that 1883 * does not implement ndo_set_rx_mode() 1884 * @uc: unicast mac addresses 1885 * @mc: multicast mac addresses 1886 * @dev_addrs: list of device hw addresses 1887 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1888 * @promiscuity: Number of times the NIC is told to work in 1889 * promiscuous mode; if it becomes 0 the NIC will 1890 * exit promiscuous mode 1891 * @allmulti: Counter, enables or disables allmulticast mode 1892 * 1893 * @vlan_info: VLAN info 1894 * @dsa_ptr: dsa specific data 1895 * @tipc_ptr: TIPC specific data 1896 * @atalk_ptr: AppleTalk link 1897 * @ip_ptr: IPv4 specific data 1898 * @ip6_ptr: IPv6 specific data 1899 * @ax25_ptr: AX.25 specific data 1900 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1901 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1902 * device struct 1903 * @mpls_ptr: mpls_dev struct pointer 1904 * @mctp_ptr: MCTP specific data 1905 * 1906 * @dev_addr: Hw address (before bcast, 1907 * because most packets are unicast) 1908 * 1909 * @_rx: Array of RX queues 1910 * @num_rx_queues: Number of RX queues 1911 * allocated at register_netdev() time 1912 * @real_num_rx_queues: Number of RX queues currently active in device 1913 * @xdp_prog: XDP sockets filter program pointer 1914 * @gro_flush_timeout: timeout for GRO layer in NAPI 1915 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1916 * allow to avoid NIC hard IRQ, on busy queues. 1917 * 1918 * @rx_handler: handler for received packets 1919 * @rx_handler_data: XXX: need comments on this one 1920 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1921 * @ingress_queue: XXX: need comments on this one 1922 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1923 * @broadcast: hw bcast address 1924 * 1925 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1926 * indexed by RX queue number. Assigned by driver. 1927 * This must only be set if the ndo_rx_flow_steer 1928 * operation is defined 1929 * @index_hlist: Device index hash chain 1930 * 1931 * @_tx: Array of TX queues 1932 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1933 * @real_num_tx_queues: Number of TX queues currently active in device 1934 * @qdisc: Root qdisc from userspace point of view 1935 * @tx_queue_len: Max frames per queue allowed 1936 * @tx_global_lock: XXX: need comments on this one 1937 * @xdp_bulkq: XDP device bulk queue 1938 * @xps_maps: all CPUs/RXQs maps for XPS device 1939 * 1940 * @xps_maps: XXX: need comments on this one 1941 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1942 * @nf_hooks_egress: netfilter hooks executed for egress packets 1943 * @qdisc_hash: qdisc hash table 1944 * @watchdog_timeo: Represents the timeout that is used by 1945 * the watchdog (see dev_watchdog()) 1946 * @watchdog_timer: List of timers 1947 * 1948 * @proto_down_reason: reason a netdev interface is held down 1949 * @pcpu_refcnt: Number of references to this device 1950 * @dev_refcnt: Number of references to this device 1951 * @refcnt_tracker: Tracker directory for tracked references to this device 1952 * @todo_list: Delayed register/unregister 1953 * @link_watch_list: XXX: need comments on this one 1954 * 1955 * @reg_state: Register/unregister state machine 1956 * @dismantle: Device is going to be freed 1957 * @rtnl_link_state: This enum represents the phases of creating 1958 * a new link 1959 * 1960 * @needs_free_netdev: Should unregister perform free_netdev? 1961 * @priv_destructor: Called from unregister 1962 * @npinfo: XXX: need comments on this one 1963 * @nd_net: Network namespace this network device is inside 1964 * 1965 * @ml_priv: Mid-layer private 1966 * @ml_priv_type: Mid-layer private type 1967 * @lstats: Loopback statistics 1968 * @tstats: Tunnel statistics 1969 * @dstats: Dummy statistics 1970 * @vstats: Virtual ethernet statistics 1971 * 1972 * @garp_port: GARP 1973 * @mrp_port: MRP 1974 * 1975 * @dm_private: Drop monitor private 1976 * 1977 * @dev: Class/net/name entry 1978 * @sysfs_groups: Space for optional device, statistics and wireless 1979 * sysfs groups 1980 * 1981 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1982 * @rtnl_link_ops: Rtnl_link_ops 1983 * 1984 * @gso_max_size: Maximum size of generic segmentation offload 1985 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1986 * @gso_max_segs: Maximum number of segments that can be passed to the 1987 * NIC for GSO 1988 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1989 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1990 * for IPv4. 1991 * 1992 * @dcbnl_ops: Data Center Bridging netlink ops 1993 * @num_tc: Number of traffic classes in the net device 1994 * @tc_to_txq: XXX: need comments on this one 1995 * @prio_tc_map: XXX: need comments on this one 1996 * 1997 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1998 * 1999 * @priomap: XXX: need comments on this one 2000 * @phydev: Physical device may attach itself 2001 * for hardware timestamping 2002 * @sfp_bus: attached &struct sfp_bus structure. 2003 * 2004 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2005 * 2006 * @proto_down: protocol port state information can be sent to the 2007 * switch driver and used to set the phys state of the 2008 * switch port. 2009 * 2010 * @wol_enabled: Wake-on-LAN is enabled 2011 * 2012 * @threaded: napi threaded mode is enabled 2013 * 2014 * @net_notifier_list: List of per-net netdev notifier block 2015 * that follow this device when it is moved 2016 * to another network namespace. 2017 * 2018 * @macsec_ops: MACsec offloading ops 2019 * 2020 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2021 * offload capabilities of the device 2022 * @udp_tunnel_nic: UDP tunnel offload state 2023 * @xdp_state: stores info on attached XDP BPF programs 2024 * 2025 * @nested_level: Used as a parameter of spin_lock_nested() of 2026 * dev->addr_list_lock. 2027 * @unlink_list: As netif_addr_lock() can be called recursively, 2028 * keep a list of interfaces to be deleted. 2029 * @gro_max_size: Maximum size of aggregated packet in generic 2030 * receive offload (GRO) 2031 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2032 * receive offload (GRO), for IPv4. 2033 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2034 * zero copy driver 2035 * 2036 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2037 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2038 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2039 * @dev_registered_tracker: tracker for reference held while 2040 * registered 2041 * @offload_xstats_l3: L3 HW stats for this netdevice. 2042 * 2043 * @devlink_port: Pointer to related devlink port structure. 2044 * Assigned by a driver before netdev registration using 2045 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2046 * during the time netdevice is registered. 2047 * 2048 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2049 * where the clock is recovered. 2050 * 2051 * FIXME: cleanup struct net_device such that network protocol info 2052 * moves out. 2053 */ 2054 2055 struct net_device { 2056 char name[IFNAMSIZ]; 2057 struct netdev_name_node *name_node; 2058 struct dev_ifalias __rcu *ifalias; 2059 /* 2060 * I/O specific fields 2061 * FIXME: Merge these and struct ifmap into one 2062 */ 2063 unsigned long mem_end; 2064 unsigned long mem_start; 2065 unsigned long base_addr; 2066 2067 /* 2068 * Some hardware also needs these fields (state,dev_list, 2069 * napi_list,unreg_list,close_list) but they are not 2070 * part of the usual set specified in Space.c. 2071 */ 2072 2073 unsigned long state; 2074 2075 struct list_head dev_list; 2076 struct list_head napi_list; 2077 struct list_head unreg_list; 2078 struct list_head close_list; 2079 struct list_head ptype_all; 2080 struct list_head ptype_specific; 2081 2082 struct { 2083 struct list_head upper; 2084 struct list_head lower; 2085 } adj_list; 2086 2087 /* Read-mostly cache-line for fast-path access */ 2088 unsigned int flags; 2089 xdp_features_t xdp_features; 2090 unsigned long long priv_flags; 2091 const struct net_device_ops *netdev_ops; 2092 const struct xdp_metadata_ops *xdp_metadata_ops; 2093 int ifindex; 2094 unsigned short gflags; 2095 unsigned short hard_header_len; 2096 2097 /* Note : dev->mtu is often read without holding a lock. 2098 * Writers usually hold RTNL. 2099 * It is recommended to use READ_ONCE() to annotate the reads, 2100 * and to use WRITE_ONCE() to annotate the writes. 2101 */ 2102 unsigned int mtu; 2103 unsigned short needed_headroom; 2104 unsigned short needed_tailroom; 2105 2106 netdev_features_t features; 2107 netdev_features_t hw_features; 2108 netdev_features_t wanted_features; 2109 netdev_features_t vlan_features; 2110 netdev_features_t hw_enc_features; 2111 netdev_features_t mpls_features; 2112 netdev_features_t gso_partial_features; 2113 2114 unsigned int min_mtu; 2115 unsigned int max_mtu; 2116 unsigned short type; 2117 unsigned char min_header_len; 2118 unsigned char name_assign_type; 2119 2120 int group; 2121 2122 struct net_device_stats stats; /* not used by modern drivers */ 2123 2124 struct net_device_core_stats __percpu *core_stats; 2125 2126 /* Stats to monitor link on/off, flapping */ 2127 atomic_t carrier_up_count; 2128 atomic_t carrier_down_count; 2129 2130 #ifdef CONFIG_WIRELESS_EXT 2131 const struct iw_handler_def *wireless_handlers; 2132 struct iw_public_data *wireless_data; 2133 #endif 2134 const struct ethtool_ops *ethtool_ops; 2135 #ifdef CONFIG_NET_L3_MASTER_DEV 2136 const struct l3mdev_ops *l3mdev_ops; 2137 #endif 2138 #if IS_ENABLED(CONFIG_IPV6) 2139 const struct ndisc_ops *ndisc_ops; 2140 #endif 2141 2142 #ifdef CONFIG_XFRM_OFFLOAD 2143 const struct xfrmdev_ops *xfrmdev_ops; 2144 #endif 2145 2146 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2147 const struct tlsdev_ops *tlsdev_ops; 2148 #endif 2149 2150 const struct header_ops *header_ops; 2151 2152 unsigned char operstate; 2153 unsigned char link_mode; 2154 2155 unsigned char if_port; 2156 unsigned char dma; 2157 2158 /* Interface address info. */ 2159 unsigned char perm_addr[MAX_ADDR_LEN]; 2160 unsigned char addr_assign_type; 2161 unsigned char addr_len; 2162 unsigned char upper_level; 2163 unsigned char lower_level; 2164 2165 unsigned short neigh_priv_len; 2166 unsigned short dev_id; 2167 unsigned short dev_port; 2168 unsigned short padded; 2169 2170 spinlock_t addr_list_lock; 2171 int irq; 2172 2173 struct netdev_hw_addr_list uc; 2174 struct netdev_hw_addr_list mc; 2175 struct netdev_hw_addr_list dev_addrs; 2176 2177 #ifdef CONFIG_SYSFS 2178 struct kset *queues_kset; 2179 #endif 2180 #ifdef CONFIG_LOCKDEP 2181 struct list_head unlink_list; 2182 #endif 2183 unsigned int promiscuity; 2184 unsigned int allmulti; 2185 bool uc_promisc; 2186 #ifdef CONFIG_LOCKDEP 2187 unsigned char nested_level; 2188 #endif 2189 2190 2191 /* Protocol-specific pointers */ 2192 2193 struct in_device __rcu *ip_ptr; 2194 struct inet6_dev __rcu *ip6_ptr; 2195 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2196 struct vlan_info __rcu *vlan_info; 2197 #endif 2198 #if IS_ENABLED(CONFIG_NET_DSA) 2199 struct dsa_port *dsa_ptr; 2200 #endif 2201 #if IS_ENABLED(CONFIG_TIPC) 2202 struct tipc_bearer __rcu *tipc_ptr; 2203 #endif 2204 #if IS_ENABLED(CONFIG_ATALK) 2205 void *atalk_ptr; 2206 #endif 2207 #if IS_ENABLED(CONFIG_AX25) 2208 void *ax25_ptr; 2209 #endif 2210 #if IS_ENABLED(CONFIG_CFG80211) 2211 struct wireless_dev *ieee80211_ptr; 2212 #endif 2213 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2214 struct wpan_dev *ieee802154_ptr; 2215 #endif 2216 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2217 struct mpls_dev __rcu *mpls_ptr; 2218 #endif 2219 #if IS_ENABLED(CONFIG_MCTP) 2220 struct mctp_dev __rcu *mctp_ptr; 2221 #endif 2222 2223 /* 2224 * Cache lines mostly used on receive path (including eth_type_trans()) 2225 */ 2226 /* Interface address info used in eth_type_trans() */ 2227 const unsigned char *dev_addr; 2228 2229 struct netdev_rx_queue *_rx; 2230 unsigned int num_rx_queues; 2231 unsigned int real_num_rx_queues; 2232 2233 struct bpf_prog __rcu *xdp_prog; 2234 unsigned long gro_flush_timeout; 2235 int napi_defer_hard_irqs; 2236 #define GRO_LEGACY_MAX_SIZE 65536u 2237 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2238 * and shinfo->gso_segs is a 16bit field. 2239 */ 2240 #define GRO_MAX_SIZE (8 * 65535u) 2241 unsigned int gro_max_size; 2242 unsigned int gro_ipv4_max_size; 2243 unsigned int xdp_zc_max_segs; 2244 rx_handler_func_t __rcu *rx_handler; 2245 void __rcu *rx_handler_data; 2246 #ifdef CONFIG_NET_XGRESS 2247 struct bpf_mprog_entry __rcu *tcx_ingress; 2248 #endif 2249 struct netdev_queue __rcu *ingress_queue; 2250 #ifdef CONFIG_NETFILTER_INGRESS 2251 struct nf_hook_entries __rcu *nf_hooks_ingress; 2252 #endif 2253 2254 unsigned char broadcast[MAX_ADDR_LEN]; 2255 #ifdef CONFIG_RFS_ACCEL 2256 struct cpu_rmap *rx_cpu_rmap; 2257 #endif 2258 struct hlist_node index_hlist; 2259 2260 /* 2261 * Cache lines mostly used on transmit path 2262 */ 2263 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2264 unsigned int num_tx_queues; 2265 unsigned int real_num_tx_queues; 2266 struct Qdisc __rcu *qdisc; 2267 unsigned int tx_queue_len; 2268 spinlock_t tx_global_lock; 2269 2270 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2271 2272 #ifdef CONFIG_XPS 2273 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2274 #endif 2275 #ifdef CONFIG_NET_XGRESS 2276 struct bpf_mprog_entry __rcu *tcx_egress; 2277 #endif 2278 #ifdef CONFIG_NETFILTER_EGRESS 2279 struct nf_hook_entries __rcu *nf_hooks_egress; 2280 #endif 2281 2282 #ifdef CONFIG_NET_SCHED 2283 DECLARE_HASHTABLE (qdisc_hash, 4); 2284 #endif 2285 /* These may be needed for future network-power-down code. */ 2286 struct timer_list watchdog_timer; 2287 int watchdog_timeo; 2288 2289 u32 proto_down_reason; 2290 2291 struct list_head todo_list; 2292 2293 #ifdef CONFIG_PCPU_DEV_REFCNT 2294 int __percpu *pcpu_refcnt; 2295 #else 2296 refcount_t dev_refcnt; 2297 #endif 2298 struct ref_tracker_dir refcnt_tracker; 2299 2300 struct list_head link_watch_list; 2301 2302 enum { NETREG_UNINITIALIZED=0, 2303 NETREG_REGISTERED, /* completed register_netdevice */ 2304 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2305 NETREG_UNREGISTERED, /* completed unregister todo */ 2306 NETREG_RELEASED, /* called free_netdev */ 2307 NETREG_DUMMY, /* dummy device for NAPI poll */ 2308 } reg_state:8; 2309 2310 bool dismantle; 2311 2312 enum { 2313 RTNL_LINK_INITIALIZED, 2314 RTNL_LINK_INITIALIZING, 2315 } rtnl_link_state:16; 2316 2317 bool needs_free_netdev; 2318 void (*priv_destructor)(struct net_device *dev); 2319 2320 #ifdef CONFIG_NETPOLL 2321 struct netpoll_info __rcu *npinfo; 2322 #endif 2323 2324 possible_net_t nd_net; 2325 2326 /* mid-layer private */ 2327 void *ml_priv; 2328 enum netdev_ml_priv_type ml_priv_type; 2329 2330 union { 2331 struct pcpu_lstats __percpu *lstats; 2332 struct pcpu_sw_netstats __percpu *tstats; 2333 struct pcpu_dstats __percpu *dstats; 2334 }; 2335 2336 #if IS_ENABLED(CONFIG_GARP) 2337 struct garp_port __rcu *garp_port; 2338 #endif 2339 #if IS_ENABLED(CONFIG_MRP) 2340 struct mrp_port __rcu *mrp_port; 2341 #endif 2342 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2343 struct dm_hw_stat_delta __rcu *dm_private; 2344 #endif 2345 struct device dev; 2346 const struct attribute_group *sysfs_groups[4]; 2347 const struct attribute_group *sysfs_rx_queue_group; 2348 2349 const struct rtnl_link_ops *rtnl_link_ops; 2350 2351 /* for setting kernel sock attribute on TCP connection setup */ 2352 #define GSO_MAX_SEGS 65535u 2353 #define GSO_LEGACY_MAX_SIZE 65536u 2354 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2355 * and shinfo->gso_segs is a 16bit field. 2356 */ 2357 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2358 2359 unsigned int gso_max_size; 2360 #define TSO_LEGACY_MAX_SIZE 65536 2361 #define TSO_MAX_SIZE UINT_MAX 2362 unsigned int tso_max_size; 2363 u16 gso_max_segs; 2364 #define TSO_MAX_SEGS U16_MAX 2365 u16 tso_max_segs; 2366 unsigned int gso_ipv4_max_size; 2367 2368 #ifdef CONFIG_DCB 2369 const struct dcbnl_rtnl_ops *dcbnl_ops; 2370 #endif 2371 s16 num_tc; 2372 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2373 u8 prio_tc_map[TC_BITMASK + 1]; 2374 2375 #if IS_ENABLED(CONFIG_FCOE) 2376 unsigned int fcoe_ddp_xid; 2377 #endif 2378 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2379 struct netprio_map __rcu *priomap; 2380 #endif 2381 struct phy_device *phydev; 2382 struct sfp_bus *sfp_bus; 2383 struct lock_class_key *qdisc_tx_busylock; 2384 bool proto_down; 2385 unsigned wol_enabled:1; 2386 unsigned threaded:1; 2387 2388 struct list_head net_notifier_list; 2389 2390 #if IS_ENABLED(CONFIG_MACSEC) 2391 /* MACsec management functions */ 2392 const struct macsec_ops *macsec_ops; 2393 #endif 2394 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2395 struct udp_tunnel_nic *udp_tunnel_nic; 2396 2397 /* protected by rtnl_lock */ 2398 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2399 2400 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2401 netdevice_tracker linkwatch_dev_tracker; 2402 netdevice_tracker watchdog_dev_tracker; 2403 netdevice_tracker dev_registered_tracker; 2404 struct rtnl_hw_stats64 *offload_xstats_l3; 2405 2406 struct devlink_port *devlink_port; 2407 2408 #if IS_ENABLED(CONFIG_DPLL) 2409 struct dpll_pin *dpll_pin; 2410 #endif 2411 }; 2412 #define to_net_dev(d) container_of(d, struct net_device, dev) 2413 2414 /* 2415 * Driver should use this to assign devlink port instance to a netdevice 2416 * before it registers the netdevice. Therefore devlink_port is static 2417 * during the netdev lifetime after it is registered. 2418 */ 2419 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2420 ({ \ 2421 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2422 ((dev)->devlink_port = (port)); \ 2423 }) 2424 2425 static inline bool netif_elide_gro(const struct net_device *dev) 2426 { 2427 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2428 return true; 2429 return false; 2430 } 2431 2432 #define NETDEV_ALIGN 32 2433 2434 static inline 2435 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2436 { 2437 return dev->prio_tc_map[prio & TC_BITMASK]; 2438 } 2439 2440 static inline 2441 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2442 { 2443 if (tc >= dev->num_tc) 2444 return -EINVAL; 2445 2446 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2447 return 0; 2448 } 2449 2450 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2451 void netdev_reset_tc(struct net_device *dev); 2452 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2453 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2454 2455 static inline 2456 int netdev_get_num_tc(struct net_device *dev) 2457 { 2458 return dev->num_tc; 2459 } 2460 2461 static inline void net_prefetch(void *p) 2462 { 2463 prefetch(p); 2464 #if L1_CACHE_BYTES < 128 2465 prefetch((u8 *)p + L1_CACHE_BYTES); 2466 #endif 2467 } 2468 2469 static inline void net_prefetchw(void *p) 2470 { 2471 prefetchw(p); 2472 #if L1_CACHE_BYTES < 128 2473 prefetchw((u8 *)p + L1_CACHE_BYTES); 2474 #endif 2475 } 2476 2477 void netdev_unbind_sb_channel(struct net_device *dev, 2478 struct net_device *sb_dev); 2479 int netdev_bind_sb_channel_queue(struct net_device *dev, 2480 struct net_device *sb_dev, 2481 u8 tc, u16 count, u16 offset); 2482 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2483 static inline int netdev_get_sb_channel(struct net_device *dev) 2484 { 2485 return max_t(int, -dev->num_tc, 0); 2486 } 2487 2488 static inline 2489 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2490 unsigned int index) 2491 { 2492 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2493 return &dev->_tx[index]; 2494 } 2495 2496 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2497 const struct sk_buff *skb) 2498 { 2499 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2500 } 2501 2502 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2503 void (*f)(struct net_device *, 2504 struct netdev_queue *, 2505 void *), 2506 void *arg) 2507 { 2508 unsigned int i; 2509 2510 for (i = 0; i < dev->num_tx_queues; i++) 2511 f(dev, &dev->_tx[i], arg); 2512 } 2513 2514 #define netdev_lockdep_set_classes(dev) \ 2515 { \ 2516 static struct lock_class_key qdisc_tx_busylock_key; \ 2517 static struct lock_class_key qdisc_xmit_lock_key; \ 2518 static struct lock_class_key dev_addr_list_lock_key; \ 2519 unsigned int i; \ 2520 \ 2521 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2522 lockdep_set_class(&(dev)->addr_list_lock, \ 2523 &dev_addr_list_lock_key); \ 2524 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2525 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2526 &qdisc_xmit_lock_key); \ 2527 } 2528 2529 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2530 struct net_device *sb_dev); 2531 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2532 struct sk_buff *skb, 2533 struct net_device *sb_dev); 2534 2535 /* returns the headroom that the master device needs to take in account 2536 * when forwarding to this dev 2537 */ 2538 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2539 { 2540 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2541 } 2542 2543 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2544 { 2545 if (dev->netdev_ops->ndo_set_rx_headroom) 2546 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2547 } 2548 2549 /* set the device rx headroom to the dev's default */ 2550 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2551 { 2552 netdev_set_rx_headroom(dev, -1); 2553 } 2554 2555 static inline void *netdev_get_ml_priv(struct net_device *dev, 2556 enum netdev_ml_priv_type type) 2557 { 2558 if (dev->ml_priv_type != type) 2559 return NULL; 2560 2561 return dev->ml_priv; 2562 } 2563 2564 static inline void netdev_set_ml_priv(struct net_device *dev, 2565 void *ml_priv, 2566 enum netdev_ml_priv_type type) 2567 { 2568 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2569 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2570 dev->ml_priv_type, type); 2571 WARN(!dev->ml_priv_type && dev->ml_priv, 2572 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2573 2574 dev->ml_priv = ml_priv; 2575 dev->ml_priv_type = type; 2576 } 2577 2578 /* 2579 * Net namespace inlines 2580 */ 2581 static inline 2582 struct net *dev_net(const struct net_device *dev) 2583 { 2584 return read_pnet(&dev->nd_net); 2585 } 2586 2587 static inline 2588 void dev_net_set(struct net_device *dev, struct net *net) 2589 { 2590 write_pnet(&dev->nd_net, net); 2591 } 2592 2593 /** 2594 * netdev_priv - access network device private data 2595 * @dev: network device 2596 * 2597 * Get network device private data 2598 */ 2599 static inline void *netdev_priv(const struct net_device *dev) 2600 { 2601 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2602 } 2603 2604 /* Set the sysfs physical device reference for the network logical device 2605 * if set prior to registration will cause a symlink during initialization. 2606 */ 2607 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2608 2609 /* Set the sysfs device type for the network logical device to allow 2610 * fine-grained identification of different network device types. For 2611 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2612 */ 2613 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2614 2615 /* Default NAPI poll() weight 2616 * Device drivers are strongly advised to not use bigger value 2617 */ 2618 #define NAPI_POLL_WEIGHT 64 2619 2620 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2621 int (*poll)(struct napi_struct *, int), int weight); 2622 2623 /** 2624 * netif_napi_add() - initialize a NAPI context 2625 * @dev: network device 2626 * @napi: NAPI context 2627 * @poll: polling function 2628 * 2629 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2630 * *any* of the other NAPI-related functions. 2631 */ 2632 static inline void 2633 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2634 int (*poll)(struct napi_struct *, int)) 2635 { 2636 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2637 } 2638 2639 static inline void 2640 netif_napi_add_tx_weight(struct net_device *dev, 2641 struct napi_struct *napi, 2642 int (*poll)(struct napi_struct *, int), 2643 int weight) 2644 { 2645 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2646 netif_napi_add_weight(dev, napi, poll, weight); 2647 } 2648 2649 /** 2650 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2651 * @dev: network device 2652 * @napi: NAPI context 2653 * @poll: polling function 2654 * 2655 * This variant of netif_napi_add() should be used from drivers using NAPI 2656 * to exclusively poll a TX queue. 2657 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2658 */ 2659 static inline void netif_napi_add_tx(struct net_device *dev, 2660 struct napi_struct *napi, 2661 int (*poll)(struct napi_struct *, int)) 2662 { 2663 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2664 } 2665 2666 /** 2667 * __netif_napi_del - remove a NAPI context 2668 * @napi: NAPI context 2669 * 2670 * Warning: caller must observe RCU grace period before freeing memory 2671 * containing @napi. Drivers might want to call this helper to combine 2672 * all the needed RCU grace periods into a single one. 2673 */ 2674 void __netif_napi_del(struct napi_struct *napi); 2675 2676 /** 2677 * netif_napi_del - remove a NAPI context 2678 * @napi: NAPI context 2679 * 2680 * netif_napi_del() removes a NAPI context from the network device NAPI list 2681 */ 2682 static inline void netif_napi_del(struct napi_struct *napi) 2683 { 2684 __netif_napi_del(napi); 2685 synchronize_net(); 2686 } 2687 2688 struct packet_type { 2689 __be16 type; /* This is really htons(ether_type). */ 2690 bool ignore_outgoing; 2691 struct net_device *dev; /* NULL is wildcarded here */ 2692 netdevice_tracker dev_tracker; 2693 int (*func) (struct sk_buff *, 2694 struct net_device *, 2695 struct packet_type *, 2696 struct net_device *); 2697 void (*list_func) (struct list_head *, 2698 struct packet_type *, 2699 struct net_device *); 2700 bool (*id_match)(struct packet_type *ptype, 2701 struct sock *sk); 2702 struct net *af_packet_net; 2703 void *af_packet_priv; 2704 struct list_head list; 2705 }; 2706 2707 struct offload_callbacks { 2708 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2709 netdev_features_t features); 2710 struct sk_buff *(*gro_receive)(struct list_head *head, 2711 struct sk_buff *skb); 2712 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2713 }; 2714 2715 struct packet_offload { 2716 __be16 type; /* This is really htons(ether_type). */ 2717 u16 priority; 2718 struct offload_callbacks callbacks; 2719 struct list_head list; 2720 }; 2721 2722 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2723 struct pcpu_sw_netstats { 2724 u64_stats_t rx_packets; 2725 u64_stats_t rx_bytes; 2726 u64_stats_t tx_packets; 2727 u64_stats_t tx_bytes; 2728 struct u64_stats_sync syncp; 2729 } __aligned(4 * sizeof(u64)); 2730 2731 struct pcpu_lstats { 2732 u64_stats_t packets; 2733 u64_stats_t bytes; 2734 struct u64_stats_sync syncp; 2735 } __aligned(2 * sizeof(u64)); 2736 2737 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2738 2739 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2740 { 2741 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2742 2743 u64_stats_update_begin(&tstats->syncp); 2744 u64_stats_add(&tstats->rx_bytes, len); 2745 u64_stats_inc(&tstats->rx_packets); 2746 u64_stats_update_end(&tstats->syncp); 2747 } 2748 2749 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2750 unsigned int packets, 2751 unsigned int len) 2752 { 2753 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2754 2755 u64_stats_update_begin(&tstats->syncp); 2756 u64_stats_add(&tstats->tx_bytes, len); 2757 u64_stats_add(&tstats->tx_packets, packets); 2758 u64_stats_update_end(&tstats->syncp); 2759 } 2760 2761 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2762 { 2763 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2764 2765 u64_stats_update_begin(&lstats->syncp); 2766 u64_stats_add(&lstats->bytes, len); 2767 u64_stats_inc(&lstats->packets); 2768 u64_stats_update_end(&lstats->syncp); 2769 } 2770 2771 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2772 ({ \ 2773 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2774 if (pcpu_stats) { \ 2775 int __cpu; \ 2776 for_each_possible_cpu(__cpu) { \ 2777 typeof(type) *stat; \ 2778 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2779 u64_stats_init(&stat->syncp); \ 2780 } \ 2781 } \ 2782 pcpu_stats; \ 2783 }) 2784 2785 #define netdev_alloc_pcpu_stats(type) \ 2786 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2787 2788 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2789 ({ \ 2790 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2791 if (pcpu_stats) { \ 2792 int __cpu; \ 2793 for_each_possible_cpu(__cpu) { \ 2794 typeof(type) *stat; \ 2795 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2796 u64_stats_init(&stat->syncp); \ 2797 } \ 2798 } \ 2799 pcpu_stats; \ 2800 }) 2801 2802 enum netdev_lag_tx_type { 2803 NETDEV_LAG_TX_TYPE_UNKNOWN, 2804 NETDEV_LAG_TX_TYPE_RANDOM, 2805 NETDEV_LAG_TX_TYPE_BROADCAST, 2806 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2807 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2808 NETDEV_LAG_TX_TYPE_HASH, 2809 }; 2810 2811 enum netdev_lag_hash { 2812 NETDEV_LAG_HASH_NONE, 2813 NETDEV_LAG_HASH_L2, 2814 NETDEV_LAG_HASH_L34, 2815 NETDEV_LAG_HASH_L23, 2816 NETDEV_LAG_HASH_E23, 2817 NETDEV_LAG_HASH_E34, 2818 NETDEV_LAG_HASH_VLAN_SRCMAC, 2819 NETDEV_LAG_HASH_UNKNOWN, 2820 }; 2821 2822 struct netdev_lag_upper_info { 2823 enum netdev_lag_tx_type tx_type; 2824 enum netdev_lag_hash hash_type; 2825 }; 2826 2827 struct netdev_lag_lower_state_info { 2828 u8 link_up : 1, 2829 tx_enabled : 1; 2830 }; 2831 2832 #include <linux/notifier.h> 2833 2834 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2835 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2836 * adding new types. 2837 */ 2838 enum netdev_cmd { 2839 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2840 NETDEV_DOWN, 2841 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2842 detected a hardware crash and restarted 2843 - we can use this eg to kick tcp sessions 2844 once done */ 2845 NETDEV_CHANGE, /* Notify device state change */ 2846 NETDEV_REGISTER, 2847 NETDEV_UNREGISTER, 2848 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2849 NETDEV_CHANGEADDR, /* notify after the address change */ 2850 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2851 NETDEV_GOING_DOWN, 2852 NETDEV_CHANGENAME, 2853 NETDEV_FEAT_CHANGE, 2854 NETDEV_BONDING_FAILOVER, 2855 NETDEV_PRE_UP, 2856 NETDEV_PRE_TYPE_CHANGE, 2857 NETDEV_POST_TYPE_CHANGE, 2858 NETDEV_POST_INIT, 2859 NETDEV_PRE_UNINIT, 2860 NETDEV_RELEASE, 2861 NETDEV_NOTIFY_PEERS, 2862 NETDEV_JOIN, 2863 NETDEV_CHANGEUPPER, 2864 NETDEV_RESEND_IGMP, 2865 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2866 NETDEV_CHANGEINFODATA, 2867 NETDEV_BONDING_INFO, 2868 NETDEV_PRECHANGEUPPER, 2869 NETDEV_CHANGELOWERSTATE, 2870 NETDEV_UDP_TUNNEL_PUSH_INFO, 2871 NETDEV_UDP_TUNNEL_DROP_INFO, 2872 NETDEV_CHANGE_TX_QUEUE_LEN, 2873 NETDEV_CVLAN_FILTER_PUSH_INFO, 2874 NETDEV_CVLAN_FILTER_DROP_INFO, 2875 NETDEV_SVLAN_FILTER_PUSH_INFO, 2876 NETDEV_SVLAN_FILTER_DROP_INFO, 2877 NETDEV_OFFLOAD_XSTATS_ENABLE, 2878 NETDEV_OFFLOAD_XSTATS_DISABLE, 2879 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2880 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2881 NETDEV_XDP_FEAT_CHANGE, 2882 }; 2883 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2884 2885 int register_netdevice_notifier(struct notifier_block *nb); 2886 int unregister_netdevice_notifier(struct notifier_block *nb); 2887 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2888 int unregister_netdevice_notifier_net(struct net *net, 2889 struct notifier_block *nb); 2890 int register_netdevice_notifier_dev_net(struct net_device *dev, 2891 struct notifier_block *nb, 2892 struct netdev_net_notifier *nn); 2893 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2894 struct notifier_block *nb, 2895 struct netdev_net_notifier *nn); 2896 2897 struct netdev_notifier_info { 2898 struct net_device *dev; 2899 struct netlink_ext_ack *extack; 2900 }; 2901 2902 struct netdev_notifier_info_ext { 2903 struct netdev_notifier_info info; /* must be first */ 2904 union { 2905 u32 mtu; 2906 } ext; 2907 }; 2908 2909 struct netdev_notifier_change_info { 2910 struct netdev_notifier_info info; /* must be first */ 2911 unsigned int flags_changed; 2912 }; 2913 2914 struct netdev_notifier_changeupper_info { 2915 struct netdev_notifier_info info; /* must be first */ 2916 struct net_device *upper_dev; /* new upper dev */ 2917 bool master; /* is upper dev master */ 2918 bool linking; /* is the notification for link or unlink */ 2919 void *upper_info; /* upper dev info */ 2920 }; 2921 2922 struct netdev_notifier_changelowerstate_info { 2923 struct netdev_notifier_info info; /* must be first */ 2924 void *lower_state_info; /* is lower dev state */ 2925 }; 2926 2927 struct netdev_notifier_pre_changeaddr_info { 2928 struct netdev_notifier_info info; /* must be first */ 2929 const unsigned char *dev_addr; 2930 }; 2931 2932 enum netdev_offload_xstats_type { 2933 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2934 }; 2935 2936 struct netdev_notifier_offload_xstats_info { 2937 struct netdev_notifier_info info; /* must be first */ 2938 enum netdev_offload_xstats_type type; 2939 2940 union { 2941 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2942 struct netdev_notifier_offload_xstats_rd *report_delta; 2943 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2944 struct netdev_notifier_offload_xstats_ru *report_used; 2945 }; 2946 }; 2947 2948 int netdev_offload_xstats_enable(struct net_device *dev, 2949 enum netdev_offload_xstats_type type, 2950 struct netlink_ext_ack *extack); 2951 int netdev_offload_xstats_disable(struct net_device *dev, 2952 enum netdev_offload_xstats_type type); 2953 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2954 enum netdev_offload_xstats_type type); 2955 int netdev_offload_xstats_get(struct net_device *dev, 2956 enum netdev_offload_xstats_type type, 2957 struct rtnl_hw_stats64 *stats, bool *used, 2958 struct netlink_ext_ack *extack); 2959 void 2960 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2961 const struct rtnl_hw_stats64 *stats); 2962 void 2963 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2964 void netdev_offload_xstats_push_delta(struct net_device *dev, 2965 enum netdev_offload_xstats_type type, 2966 const struct rtnl_hw_stats64 *stats); 2967 2968 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2969 struct net_device *dev) 2970 { 2971 info->dev = dev; 2972 info->extack = NULL; 2973 } 2974 2975 static inline struct net_device * 2976 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2977 { 2978 return info->dev; 2979 } 2980 2981 static inline struct netlink_ext_ack * 2982 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2983 { 2984 return info->extack; 2985 } 2986 2987 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2988 int call_netdevice_notifiers_info(unsigned long val, 2989 struct netdev_notifier_info *info); 2990 2991 extern rwlock_t dev_base_lock; /* Device list lock */ 2992 2993 #define for_each_netdev(net, d) \ 2994 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2995 #define for_each_netdev_reverse(net, d) \ 2996 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2997 #define for_each_netdev_rcu(net, d) \ 2998 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2999 #define for_each_netdev_safe(net, d, n) \ 3000 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3001 #define for_each_netdev_continue(net, d) \ 3002 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3003 #define for_each_netdev_continue_reverse(net, d) \ 3004 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3005 dev_list) 3006 #define for_each_netdev_continue_rcu(net, d) \ 3007 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3008 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3009 for_each_netdev_rcu(&init_net, slave) \ 3010 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3011 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3012 3013 #define for_each_netdev_dump(net, d, ifindex) \ 3014 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3015 3016 static inline struct net_device *next_net_device(struct net_device *dev) 3017 { 3018 struct list_head *lh; 3019 struct net *net; 3020 3021 net = dev_net(dev); 3022 lh = dev->dev_list.next; 3023 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3024 } 3025 3026 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3027 { 3028 struct list_head *lh; 3029 struct net *net; 3030 3031 net = dev_net(dev); 3032 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3033 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3034 } 3035 3036 static inline struct net_device *first_net_device(struct net *net) 3037 { 3038 return list_empty(&net->dev_base_head) ? NULL : 3039 net_device_entry(net->dev_base_head.next); 3040 } 3041 3042 static inline struct net_device *first_net_device_rcu(struct net *net) 3043 { 3044 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3045 3046 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3047 } 3048 3049 int netdev_boot_setup_check(struct net_device *dev); 3050 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3051 const char *hwaddr); 3052 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3053 void dev_add_pack(struct packet_type *pt); 3054 void dev_remove_pack(struct packet_type *pt); 3055 void __dev_remove_pack(struct packet_type *pt); 3056 void dev_add_offload(struct packet_offload *po); 3057 void dev_remove_offload(struct packet_offload *po); 3058 3059 int dev_get_iflink(const struct net_device *dev); 3060 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3061 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3062 struct net_device_path_stack *stack); 3063 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3064 unsigned short mask); 3065 struct net_device *dev_get_by_name(struct net *net, const char *name); 3066 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3067 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3068 bool netdev_name_in_use(struct net *net, const char *name); 3069 int dev_alloc_name(struct net_device *dev, const char *name); 3070 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3071 void dev_close(struct net_device *dev); 3072 void dev_close_many(struct list_head *head, bool unlink); 3073 void dev_disable_lro(struct net_device *dev); 3074 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3076 struct net_device *sb_dev); 3077 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3078 struct net_device *sb_dev); 3079 3080 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3081 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3082 3083 static inline int dev_queue_xmit(struct sk_buff *skb) 3084 { 3085 return __dev_queue_xmit(skb, NULL); 3086 } 3087 3088 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3089 struct net_device *sb_dev) 3090 { 3091 return __dev_queue_xmit(skb, sb_dev); 3092 } 3093 3094 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3095 { 3096 int ret; 3097 3098 ret = __dev_direct_xmit(skb, queue_id); 3099 if (!dev_xmit_complete(ret)) 3100 kfree_skb(skb); 3101 return ret; 3102 } 3103 3104 int register_netdevice(struct net_device *dev); 3105 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3106 void unregister_netdevice_many(struct list_head *head); 3107 static inline void unregister_netdevice(struct net_device *dev) 3108 { 3109 unregister_netdevice_queue(dev, NULL); 3110 } 3111 3112 int netdev_refcnt_read(const struct net_device *dev); 3113 void free_netdev(struct net_device *dev); 3114 void netdev_freemem(struct net_device *dev); 3115 int init_dummy_netdev(struct net_device *dev); 3116 3117 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3118 struct sk_buff *skb, 3119 bool all_slaves); 3120 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3121 struct sock *sk); 3122 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3123 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3124 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3125 netdevice_tracker *tracker, gfp_t gfp); 3126 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3127 netdevice_tracker *tracker, gfp_t gfp); 3128 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3129 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3130 3131 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3132 unsigned short type, 3133 const void *daddr, const void *saddr, 3134 unsigned int len) 3135 { 3136 if (!dev->header_ops || !dev->header_ops->create) 3137 return 0; 3138 3139 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3140 } 3141 3142 static inline int dev_parse_header(const struct sk_buff *skb, 3143 unsigned char *haddr) 3144 { 3145 const struct net_device *dev = skb->dev; 3146 3147 if (!dev->header_ops || !dev->header_ops->parse) 3148 return 0; 3149 return dev->header_ops->parse(skb, haddr); 3150 } 3151 3152 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3153 { 3154 const struct net_device *dev = skb->dev; 3155 3156 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3157 return 0; 3158 return dev->header_ops->parse_protocol(skb); 3159 } 3160 3161 /* ll_header must have at least hard_header_len allocated */ 3162 static inline bool dev_validate_header(const struct net_device *dev, 3163 char *ll_header, int len) 3164 { 3165 if (likely(len >= dev->hard_header_len)) 3166 return true; 3167 if (len < dev->min_header_len) 3168 return false; 3169 3170 if (capable(CAP_SYS_RAWIO)) { 3171 memset(ll_header + len, 0, dev->hard_header_len - len); 3172 return true; 3173 } 3174 3175 if (dev->header_ops && dev->header_ops->validate) 3176 return dev->header_ops->validate(ll_header, len); 3177 3178 return false; 3179 } 3180 3181 static inline bool dev_has_header(const struct net_device *dev) 3182 { 3183 return dev->header_ops && dev->header_ops->create; 3184 } 3185 3186 /* 3187 * Incoming packets are placed on per-CPU queues 3188 */ 3189 struct softnet_data { 3190 struct list_head poll_list; 3191 struct sk_buff_head process_queue; 3192 3193 /* stats */ 3194 unsigned int processed; 3195 unsigned int time_squeeze; 3196 #ifdef CONFIG_RPS 3197 struct softnet_data *rps_ipi_list; 3198 #endif 3199 3200 bool in_net_rx_action; 3201 bool in_napi_threaded_poll; 3202 3203 #ifdef CONFIG_NET_FLOW_LIMIT 3204 struct sd_flow_limit __rcu *flow_limit; 3205 #endif 3206 struct Qdisc *output_queue; 3207 struct Qdisc **output_queue_tailp; 3208 struct sk_buff *completion_queue; 3209 #ifdef CONFIG_XFRM_OFFLOAD 3210 struct sk_buff_head xfrm_backlog; 3211 #endif 3212 /* written and read only by owning cpu: */ 3213 struct { 3214 u16 recursion; 3215 u8 more; 3216 #ifdef CONFIG_NET_EGRESS 3217 u8 skip_txqueue; 3218 #endif 3219 } xmit; 3220 #ifdef CONFIG_RPS 3221 /* input_queue_head should be written by cpu owning this struct, 3222 * and only read by other cpus. Worth using a cache line. 3223 */ 3224 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3225 3226 /* Elements below can be accessed between CPUs for RPS/RFS */ 3227 call_single_data_t csd ____cacheline_aligned_in_smp; 3228 struct softnet_data *rps_ipi_next; 3229 unsigned int cpu; 3230 unsigned int input_queue_tail; 3231 #endif 3232 unsigned int received_rps; 3233 unsigned int dropped; 3234 struct sk_buff_head input_pkt_queue; 3235 struct napi_struct backlog; 3236 3237 /* Another possibly contended cache line */ 3238 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3239 int defer_count; 3240 int defer_ipi_scheduled; 3241 struct sk_buff *defer_list; 3242 call_single_data_t defer_csd; 3243 }; 3244 3245 static inline void input_queue_head_incr(struct softnet_data *sd) 3246 { 3247 #ifdef CONFIG_RPS 3248 sd->input_queue_head++; 3249 #endif 3250 } 3251 3252 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3253 unsigned int *qtail) 3254 { 3255 #ifdef CONFIG_RPS 3256 *qtail = ++sd->input_queue_tail; 3257 #endif 3258 } 3259 3260 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3261 3262 static inline int dev_recursion_level(void) 3263 { 3264 return this_cpu_read(softnet_data.xmit.recursion); 3265 } 3266 3267 #define XMIT_RECURSION_LIMIT 8 3268 static inline bool dev_xmit_recursion(void) 3269 { 3270 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3271 XMIT_RECURSION_LIMIT); 3272 } 3273 3274 static inline void dev_xmit_recursion_inc(void) 3275 { 3276 __this_cpu_inc(softnet_data.xmit.recursion); 3277 } 3278 3279 static inline void dev_xmit_recursion_dec(void) 3280 { 3281 __this_cpu_dec(softnet_data.xmit.recursion); 3282 } 3283 3284 void __netif_schedule(struct Qdisc *q); 3285 void netif_schedule_queue(struct netdev_queue *txq); 3286 3287 static inline void netif_tx_schedule_all(struct net_device *dev) 3288 { 3289 unsigned int i; 3290 3291 for (i = 0; i < dev->num_tx_queues; i++) 3292 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3293 } 3294 3295 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3296 { 3297 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3298 } 3299 3300 /** 3301 * netif_start_queue - allow transmit 3302 * @dev: network device 3303 * 3304 * Allow upper layers to call the device hard_start_xmit routine. 3305 */ 3306 static inline void netif_start_queue(struct net_device *dev) 3307 { 3308 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3309 } 3310 3311 static inline void netif_tx_start_all_queues(struct net_device *dev) 3312 { 3313 unsigned int i; 3314 3315 for (i = 0; i < dev->num_tx_queues; i++) { 3316 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3317 netif_tx_start_queue(txq); 3318 } 3319 } 3320 3321 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3322 3323 /** 3324 * netif_wake_queue - restart transmit 3325 * @dev: network device 3326 * 3327 * Allow upper layers to call the device hard_start_xmit routine. 3328 * Used for flow control when transmit resources are available. 3329 */ 3330 static inline void netif_wake_queue(struct net_device *dev) 3331 { 3332 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3333 } 3334 3335 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3336 { 3337 unsigned int i; 3338 3339 for (i = 0; i < dev->num_tx_queues; i++) { 3340 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3341 netif_tx_wake_queue(txq); 3342 } 3343 } 3344 3345 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3346 { 3347 /* Must be an atomic op see netif_txq_try_stop() */ 3348 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3349 } 3350 3351 /** 3352 * netif_stop_queue - stop transmitted packets 3353 * @dev: network device 3354 * 3355 * Stop upper layers calling the device hard_start_xmit routine. 3356 * Used for flow control when transmit resources are unavailable. 3357 */ 3358 static inline void netif_stop_queue(struct net_device *dev) 3359 { 3360 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3361 } 3362 3363 void netif_tx_stop_all_queues(struct net_device *dev); 3364 3365 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3366 { 3367 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3368 } 3369 3370 /** 3371 * netif_queue_stopped - test if transmit queue is flowblocked 3372 * @dev: network device 3373 * 3374 * Test if transmit queue on device is currently unable to send. 3375 */ 3376 static inline bool netif_queue_stopped(const struct net_device *dev) 3377 { 3378 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3379 } 3380 3381 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3382 { 3383 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3384 } 3385 3386 static inline bool 3387 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3388 { 3389 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3390 } 3391 3392 static inline bool 3393 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3394 { 3395 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3396 } 3397 3398 /** 3399 * netdev_queue_set_dql_min_limit - set dql minimum limit 3400 * @dev_queue: pointer to transmit queue 3401 * @min_limit: dql minimum limit 3402 * 3403 * Forces xmit_more() to return true until the minimum threshold 3404 * defined by @min_limit is reached (or until the tx queue is 3405 * empty). Warning: to be use with care, misuse will impact the 3406 * latency. 3407 */ 3408 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3409 unsigned int min_limit) 3410 { 3411 #ifdef CONFIG_BQL 3412 dev_queue->dql.min_limit = min_limit; 3413 #endif 3414 } 3415 3416 /** 3417 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3418 * @dev_queue: pointer to transmit queue 3419 * 3420 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3421 * to give appropriate hint to the CPU. 3422 */ 3423 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3424 { 3425 #ifdef CONFIG_BQL 3426 prefetchw(&dev_queue->dql.num_queued); 3427 #endif 3428 } 3429 3430 /** 3431 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3432 * @dev_queue: pointer to transmit queue 3433 * 3434 * BQL enabled drivers might use this helper in their TX completion path, 3435 * to give appropriate hint to the CPU. 3436 */ 3437 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3438 { 3439 #ifdef CONFIG_BQL 3440 prefetchw(&dev_queue->dql.limit); 3441 #endif 3442 } 3443 3444 /** 3445 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3446 * @dev_queue: network device queue 3447 * @bytes: number of bytes queued to the device queue 3448 * 3449 * Report the number of bytes queued for sending/completion to the network 3450 * device hardware queue. @bytes should be a good approximation and should 3451 * exactly match netdev_completed_queue() @bytes. 3452 * This is typically called once per packet, from ndo_start_xmit(). 3453 */ 3454 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3455 unsigned int bytes) 3456 { 3457 #ifdef CONFIG_BQL 3458 dql_queued(&dev_queue->dql, bytes); 3459 3460 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3461 return; 3462 3463 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3464 3465 /* 3466 * The XOFF flag must be set before checking the dql_avail below, 3467 * because in netdev_tx_completed_queue we update the dql_completed 3468 * before checking the XOFF flag. 3469 */ 3470 smp_mb(); 3471 3472 /* check again in case another CPU has just made room avail */ 3473 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3474 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3475 #endif 3476 } 3477 3478 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3479 * that they should not test BQL status themselves. 3480 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3481 * skb of a batch. 3482 * Returns true if the doorbell must be used to kick the NIC. 3483 */ 3484 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3485 unsigned int bytes, 3486 bool xmit_more) 3487 { 3488 if (xmit_more) { 3489 #ifdef CONFIG_BQL 3490 dql_queued(&dev_queue->dql, bytes); 3491 #endif 3492 return netif_tx_queue_stopped(dev_queue); 3493 } 3494 netdev_tx_sent_queue(dev_queue, bytes); 3495 return true; 3496 } 3497 3498 /** 3499 * netdev_sent_queue - report the number of bytes queued to hardware 3500 * @dev: network device 3501 * @bytes: number of bytes queued to the hardware device queue 3502 * 3503 * Report the number of bytes queued for sending/completion to the network 3504 * device hardware queue#0. @bytes should be a good approximation and should 3505 * exactly match netdev_completed_queue() @bytes. 3506 * This is typically called once per packet, from ndo_start_xmit(). 3507 */ 3508 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3509 { 3510 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3511 } 3512 3513 static inline bool __netdev_sent_queue(struct net_device *dev, 3514 unsigned int bytes, 3515 bool xmit_more) 3516 { 3517 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3518 xmit_more); 3519 } 3520 3521 /** 3522 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3523 * @dev_queue: network device queue 3524 * @pkts: number of packets (currently ignored) 3525 * @bytes: number of bytes dequeued from the device queue 3526 * 3527 * Must be called at most once per TX completion round (and not per 3528 * individual packet), so that BQL can adjust its limits appropriately. 3529 */ 3530 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3531 unsigned int pkts, unsigned int bytes) 3532 { 3533 #ifdef CONFIG_BQL 3534 if (unlikely(!bytes)) 3535 return; 3536 3537 dql_completed(&dev_queue->dql, bytes); 3538 3539 /* 3540 * Without the memory barrier there is a small possiblity that 3541 * netdev_tx_sent_queue will miss the update and cause the queue to 3542 * be stopped forever 3543 */ 3544 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3545 3546 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3547 return; 3548 3549 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3550 netif_schedule_queue(dev_queue); 3551 #endif 3552 } 3553 3554 /** 3555 * netdev_completed_queue - report bytes and packets completed by device 3556 * @dev: network device 3557 * @pkts: actual number of packets sent over the medium 3558 * @bytes: actual number of bytes sent over the medium 3559 * 3560 * Report the number of bytes and packets transmitted by the network device 3561 * hardware queue over the physical medium, @bytes must exactly match the 3562 * @bytes amount passed to netdev_sent_queue() 3563 */ 3564 static inline void netdev_completed_queue(struct net_device *dev, 3565 unsigned int pkts, unsigned int bytes) 3566 { 3567 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3568 } 3569 3570 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3571 { 3572 #ifdef CONFIG_BQL 3573 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3574 dql_reset(&q->dql); 3575 #endif 3576 } 3577 3578 /** 3579 * netdev_reset_queue - reset the packets and bytes count of a network device 3580 * @dev_queue: network device 3581 * 3582 * Reset the bytes and packet count of a network device and clear the 3583 * software flow control OFF bit for this network device 3584 */ 3585 static inline void netdev_reset_queue(struct net_device *dev_queue) 3586 { 3587 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3588 } 3589 3590 /** 3591 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3592 * @dev: network device 3593 * @queue_index: given tx queue index 3594 * 3595 * Returns 0 if given tx queue index >= number of device tx queues, 3596 * otherwise returns the originally passed tx queue index. 3597 */ 3598 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3599 { 3600 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3601 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3602 dev->name, queue_index, 3603 dev->real_num_tx_queues); 3604 return 0; 3605 } 3606 3607 return queue_index; 3608 } 3609 3610 /** 3611 * netif_running - test if up 3612 * @dev: network device 3613 * 3614 * Test if the device has been brought up. 3615 */ 3616 static inline bool netif_running(const struct net_device *dev) 3617 { 3618 return test_bit(__LINK_STATE_START, &dev->state); 3619 } 3620 3621 /* 3622 * Routines to manage the subqueues on a device. We only need start, 3623 * stop, and a check if it's stopped. All other device management is 3624 * done at the overall netdevice level. 3625 * Also test the device if we're multiqueue. 3626 */ 3627 3628 /** 3629 * netif_start_subqueue - allow sending packets on subqueue 3630 * @dev: network device 3631 * @queue_index: sub queue index 3632 * 3633 * Start individual transmit queue of a device with multiple transmit queues. 3634 */ 3635 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3636 { 3637 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3638 3639 netif_tx_start_queue(txq); 3640 } 3641 3642 /** 3643 * netif_stop_subqueue - stop sending packets on subqueue 3644 * @dev: network device 3645 * @queue_index: sub queue index 3646 * 3647 * Stop individual transmit queue of a device with multiple transmit queues. 3648 */ 3649 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3650 { 3651 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3652 netif_tx_stop_queue(txq); 3653 } 3654 3655 /** 3656 * __netif_subqueue_stopped - test status of subqueue 3657 * @dev: network device 3658 * @queue_index: sub queue index 3659 * 3660 * Check individual transmit queue of a device with multiple transmit queues. 3661 */ 3662 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3663 u16 queue_index) 3664 { 3665 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3666 3667 return netif_tx_queue_stopped(txq); 3668 } 3669 3670 /** 3671 * netif_subqueue_stopped - test status of subqueue 3672 * @dev: network device 3673 * @skb: sub queue buffer pointer 3674 * 3675 * Check individual transmit queue of a device with multiple transmit queues. 3676 */ 3677 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3678 struct sk_buff *skb) 3679 { 3680 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3681 } 3682 3683 /** 3684 * netif_wake_subqueue - allow sending packets on subqueue 3685 * @dev: network device 3686 * @queue_index: sub queue index 3687 * 3688 * Resume individual transmit queue of a device with multiple transmit queues. 3689 */ 3690 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3691 { 3692 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3693 3694 netif_tx_wake_queue(txq); 3695 } 3696 3697 #ifdef CONFIG_XPS 3698 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3699 u16 index); 3700 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3701 u16 index, enum xps_map_type type); 3702 3703 /** 3704 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3705 * @j: CPU/Rx queue index 3706 * @mask: bitmask of all cpus/rx queues 3707 * @nr_bits: number of bits in the bitmask 3708 * 3709 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3710 */ 3711 static inline bool netif_attr_test_mask(unsigned long j, 3712 const unsigned long *mask, 3713 unsigned int nr_bits) 3714 { 3715 cpu_max_bits_warn(j, nr_bits); 3716 return test_bit(j, mask); 3717 } 3718 3719 /** 3720 * netif_attr_test_online - Test for online CPU/Rx queue 3721 * @j: CPU/Rx queue index 3722 * @online_mask: bitmask for CPUs/Rx queues that are online 3723 * @nr_bits: number of bits in the bitmask 3724 * 3725 * Returns true if a CPU/Rx queue is online. 3726 */ 3727 static inline bool netif_attr_test_online(unsigned long j, 3728 const unsigned long *online_mask, 3729 unsigned int nr_bits) 3730 { 3731 cpu_max_bits_warn(j, nr_bits); 3732 3733 if (online_mask) 3734 return test_bit(j, online_mask); 3735 3736 return (j < nr_bits); 3737 } 3738 3739 /** 3740 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3741 * @n: CPU/Rx queue index 3742 * @srcp: the cpumask/Rx queue mask pointer 3743 * @nr_bits: number of bits in the bitmask 3744 * 3745 * Returns >= nr_bits if no further CPUs/Rx queues set. 3746 */ 3747 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3748 unsigned int nr_bits) 3749 { 3750 /* -1 is a legal arg here. */ 3751 if (n != -1) 3752 cpu_max_bits_warn(n, nr_bits); 3753 3754 if (srcp) 3755 return find_next_bit(srcp, nr_bits, n + 1); 3756 3757 return n + 1; 3758 } 3759 3760 /** 3761 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3762 * @n: CPU/Rx queue index 3763 * @src1p: the first CPUs/Rx queues mask pointer 3764 * @src2p: the second CPUs/Rx queues mask pointer 3765 * @nr_bits: number of bits in the bitmask 3766 * 3767 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3768 */ 3769 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3770 const unsigned long *src2p, 3771 unsigned int nr_bits) 3772 { 3773 /* -1 is a legal arg here. */ 3774 if (n != -1) 3775 cpu_max_bits_warn(n, nr_bits); 3776 3777 if (src1p && src2p) 3778 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3779 else if (src1p) 3780 return find_next_bit(src1p, nr_bits, n + 1); 3781 else if (src2p) 3782 return find_next_bit(src2p, nr_bits, n + 1); 3783 3784 return n + 1; 3785 } 3786 #else 3787 static inline int netif_set_xps_queue(struct net_device *dev, 3788 const struct cpumask *mask, 3789 u16 index) 3790 { 3791 return 0; 3792 } 3793 3794 static inline int __netif_set_xps_queue(struct net_device *dev, 3795 const unsigned long *mask, 3796 u16 index, enum xps_map_type type) 3797 { 3798 return 0; 3799 } 3800 #endif 3801 3802 /** 3803 * netif_is_multiqueue - test if device has multiple transmit queues 3804 * @dev: network device 3805 * 3806 * Check if device has multiple transmit queues 3807 */ 3808 static inline bool netif_is_multiqueue(const struct net_device *dev) 3809 { 3810 return dev->num_tx_queues > 1; 3811 } 3812 3813 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3814 3815 #ifdef CONFIG_SYSFS 3816 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3817 #else 3818 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3819 unsigned int rxqs) 3820 { 3821 dev->real_num_rx_queues = rxqs; 3822 return 0; 3823 } 3824 #endif 3825 int netif_set_real_num_queues(struct net_device *dev, 3826 unsigned int txq, unsigned int rxq); 3827 3828 int netif_get_num_default_rss_queues(void); 3829 3830 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3831 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3832 3833 /* 3834 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3835 * interrupt context or with hardware interrupts being disabled. 3836 * (in_hardirq() || irqs_disabled()) 3837 * 3838 * We provide four helpers that can be used in following contexts : 3839 * 3840 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3841 * replacing kfree_skb(skb) 3842 * 3843 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3844 * Typically used in place of consume_skb(skb) in TX completion path 3845 * 3846 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3847 * replacing kfree_skb(skb) 3848 * 3849 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3850 * and consumed a packet. Used in place of consume_skb(skb) 3851 */ 3852 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3853 { 3854 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3855 } 3856 3857 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3858 { 3859 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3860 } 3861 3862 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3863 { 3864 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3865 } 3866 3867 static inline void dev_consume_skb_any(struct sk_buff *skb) 3868 { 3869 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3870 } 3871 3872 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3873 struct bpf_prog *xdp_prog); 3874 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3875 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3876 int netif_rx(struct sk_buff *skb); 3877 int __netif_rx(struct sk_buff *skb); 3878 3879 int netif_receive_skb(struct sk_buff *skb); 3880 int netif_receive_skb_core(struct sk_buff *skb); 3881 void netif_receive_skb_list_internal(struct list_head *head); 3882 void netif_receive_skb_list(struct list_head *head); 3883 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3884 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3885 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3886 void napi_get_frags_check(struct napi_struct *napi); 3887 gro_result_t napi_gro_frags(struct napi_struct *napi); 3888 struct packet_offload *gro_find_receive_by_type(__be16 type); 3889 struct packet_offload *gro_find_complete_by_type(__be16 type); 3890 3891 static inline void napi_free_frags(struct napi_struct *napi) 3892 { 3893 kfree_skb(napi->skb); 3894 napi->skb = NULL; 3895 } 3896 3897 bool netdev_is_rx_handler_busy(struct net_device *dev); 3898 int netdev_rx_handler_register(struct net_device *dev, 3899 rx_handler_func_t *rx_handler, 3900 void *rx_handler_data); 3901 void netdev_rx_handler_unregister(struct net_device *dev); 3902 3903 bool dev_valid_name(const char *name); 3904 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3905 { 3906 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3907 } 3908 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3909 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3910 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3911 void __user *data, bool *need_copyout); 3912 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3913 int generic_hwtstamp_get_lower(struct net_device *dev, 3914 struct kernel_hwtstamp_config *kernel_cfg); 3915 int generic_hwtstamp_set_lower(struct net_device *dev, 3916 struct kernel_hwtstamp_config *kernel_cfg, 3917 struct netlink_ext_ack *extack); 3918 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3919 unsigned int dev_get_flags(const struct net_device *); 3920 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3921 struct netlink_ext_ack *extack); 3922 int dev_change_flags(struct net_device *dev, unsigned int flags, 3923 struct netlink_ext_ack *extack); 3924 int dev_set_alias(struct net_device *, const char *, size_t); 3925 int dev_get_alias(const struct net_device *, char *, size_t); 3926 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3927 const char *pat, int new_ifindex); 3928 static inline 3929 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3930 const char *pat) 3931 { 3932 return __dev_change_net_namespace(dev, net, pat, 0); 3933 } 3934 int __dev_set_mtu(struct net_device *, int); 3935 int dev_set_mtu(struct net_device *, int); 3936 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3937 struct netlink_ext_ack *extack); 3938 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3939 struct netlink_ext_ack *extack); 3940 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3941 struct netlink_ext_ack *extack); 3942 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3943 int dev_get_port_parent_id(struct net_device *dev, 3944 struct netdev_phys_item_id *ppid, bool recurse); 3945 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3946 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin); 3947 void netdev_dpll_pin_clear(struct net_device *dev); 3948 3949 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev) 3950 { 3951 #if IS_ENABLED(CONFIG_DPLL) 3952 return dev->dpll_pin; 3953 #else 3954 return NULL; 3955 #endif 3956 } 3957 3958 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3959 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3960 struct netdev_queue *txq, int *ret); 3961 3962 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3963 u8 dev_xdp_prog_count(struct net_device *dev); 3964 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3965 3966 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3967 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3968 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3969 bool is_skb_forwardable(const struct net_device *dev, 3970 const struct sk_buff *skb); 3971 3972 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3973 const struct sk_buff *skb, 3974 const bool check_mtu) 3975 { 3976 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3977 unsigned int len; 3978 3979 if (!(dev->flags & IFF_UP)) 3980 return false; 3981 3982 if (!check_mtu) 3983 return true; 3984 3985 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3986 if (skb->len <= len) 3987 return true; 3988 3989 /* if TSO is enabled, we don't care about the length as the packet 3990 * could be forwarded without being segmented before 3991 */ 3992 if (skb_is_gso(skb)) 3993 return true; 3994 3995 return false; 3996 } 3997 3998 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 3999 4000 #define DEV_CORE_STATS_INC(FIELD) \ 4001 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4002 { \ 4003 netdev_core_stats_inc(dev, \ 4004 offsetof(struct net_device_core_stats, FIELD)); \ 4005 } 4006 DEV_CORE_STATS_INC(rx_dropped) 4007 DEV_CORE_STATS_INC(tx_dropped) 4008 DEV_CORE_STATS_INC(rx_nohandler) 4009 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4010 #undef DEV_CORE_STATS_INC 4011 4012 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4013 struct sk_buff *skb, 4014 const bool check_mtu) 4015 { 4016 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4017 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4018 dev_core_stats_rx_dropped_inc(dev); 4019 kfree_skb(skb); 4020 return NET_RX_DROP; 4021 } 4022 4023 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4024 skb->priority = 0; 4025 return 0; 4026 } 4027 4028 bool dev_nit_active(struct net_device *dev); 4029 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4030 4031 static inline void __dev_put(struct net_device *dev) 4032 { 4033 if (dev) { 4034 #ifdef CONFIG_PCPU_DEV_REFCNT 4035 this_cpu_dec(*dev->pcpu_refcnt); 4036 #else 4037 refcount_dec(&dev->dev_refcnt); 4038 #endif 4039 } 4040 } 4041 4042 static inline void __dev_hold(struct net_device *dev) 4043 { 4044 if (dev) { 4045 #ifdef CONFIG_PCPU_DEV_REFCNT 4046 this_cpu_inc(*dev->pcpu_refcnt); 4047 #else 4048 refcount_inc(&dev->dev_refcnt); 4049 #endif 4050 } 4051 } 4052 4053 static inline void __netdev_tracker_alloc(struct net_device *dev, 4054 netdevice_tracker *tracker, 4055 gfp_t gfp) 4056 { 4057 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4058 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4059 #endif 4060 } 4061 4062 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4063 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4064 */ 4065 static inline void netdev_tracker_alloc(struct net_device *dev, 4066 netdevice_tracker *tracker, gfp_t gfp) 4067 { 4068 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4069 refcount_dec(&dev->refcnt_tracker.no_tracker); 4070 __netdev_tracker_alloc(dev, tracker, gfp); 4071 #endif 4072 } 4073 4074 static inline void netdev_tracker_free(struct net_device *dev, 4075 netdevice_tracker *tracker) 4076 { 4077 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4078 ref_tracker_free(&dev->refcnt_tracker, tracker); 4079 #endif 4080 } 4081 4082 static inline void netdev_hold(struct net_device *dev, 4083 netdevice_tracker *tracker, gfp_t gfp) 4084 { 4085 if (dev) { 4086 __dev_hold(dev); 4087 __netdev_tracker_alloc(dev, tracker, gfp); 4088 } 4089 } 4090 4091 static inline void netdev_put(struct net_device *dev, 4092 netdevice_tracker *tracker) 4093 { 4094 if (dev) { 4095 netdev_tracker_free(dev, tracker); 4096 __dev_put(dev); 4097 } 4098 } 4099 4100 /** 4101 * dev_hold - get reference to device 4102 * @dev: network device 4103 * 4104 * Hold reference to device to keep it from being freed. 4105 * Try using netdev_hold() instead. 4106 */ 4107 static inline void dev_hold(struct net_device *dev) 4108 { 4109 netdev_hold(dev, NULL, GFP_ATOMIC); 4110 } 4111 4112 /** 4113 * dev_put - release reference to device 4114 * @dev: network device 4115 * 4116 * Release reference to device to allow it to be freed. 4117 * Try using netdev_put() instead. 4118 */ 4119 static inline void dev_put(struct net_device *dev) 4120 { 4121 netdev_put(dev, NULL); 4122 } 4123 4124 static inline void netdev_ref_replace(struct net_device *odev, 4125 struct net_device *ndev, 4126 netdevice_tracker *tracker, 4127 gfp_t gfp) 4128 { 4129 if (odev) 4130 netdev_tracker_free(odev, tracker); 4131 4132 __dev_hold(ndev); 4133 __dev_put(odev); 4134 4135 if (ndev) 4136 __netdev_tracker_alloc(ndev, tracker, gfp); 4137 } 4138 4139 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4140 * and _off may be called from IRQ context, but it is caller 4141 * who is responsible for serialization of these calls. 4142 * 4143 * The name carrier is inappropriate, these functions should really be 4144 * called netif_lowerlayer_*() because they represent the state of any 4145 * kind of lower layer not just hardware media. 4146 */ 4147 void linkwatch_fire_event(struct net_device *dev); 4148 4149 /** 4150 * netif_carrier_ok - test if carrier present 4151 * @dev: network device 4152 * 4153 * Check if carrier is present on device 4154 */ 4155 static inline bool netif_carrier_ok(const struct net_device *dev) 4156 { 4157 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4158 } 4159 4160 unsigned long dev_trans_start(struct net_device *dev); 4161 4162 void __netdev_watchdog_up(struct net_device *dev); 4163 4164 void netif_carrier_on(struct net_device *dev); 4165 void netif_carrier_off(struct net_device *dev); 4166 void netif_carrier_event(struct net_device *dev); 4167 4168 /** 4169 * netif_dormant_on - mark device as dormant. 4170 * @dev: network device 4171 * 4172 * Mark device as dormant (as per RFC2863). 4173 * 4174 * The dormant state indicates that the relevant interface is not 4175 * actually in a condition to pass packets (i.e., it is not 'up') but is 4176 * in a "pending" state, waiting for some external event. For "on- 4177 * demand" interfaces, this new state identifies the situation where the 4178 * interface is waiting for events to place it in the up state. 4179 */ 4180 static inline void netif_dormant_on(struct net_device *dev) 4181 { 4182 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4183 linkwatch_fire_event(dev); 4184 } 4185 4186 /** 4187 * netif_dormant_off - set device as not dormant. 4188 * @dev: network device 4189 * 4190 * Device is not in dormant state. 4191 */ 4192 static inline void netif_dormant_off(struct net_device *dev) 4193 { 4194 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4195 linkwatch_fire_event(dev); 4196 } 4197 4198 /** 4199 * netif_dormant - test if device is dormant 4200 * @dev: network device 4201 * 4202 * Check if device is dormant. 4203 */ 4204 static inline bool netif_dormant(const struct net_device *dev) 4205 { 4206 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4207 } 4208 4209 4210 /** 4211 * netif_testing_on - mark device as under test. 4212 * @dev: network device 4213 * 4214 * Mark device as under test (as per RFC2863). 4215 * 4216 * The testing state indicates that some test(s) must be performed on 4217 * the interface. After completion, of the test, the interface state 4218 * will change to up, dormant, or down, as appropriate. 4219 */ 4220 static inline void netif_testing_on(struct net_device *dev) 4221 { 4222 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4223 linkwatch_fire_event(dev); 4224 } 4225 4226 /** 4227 * netif_testing_off - set device as not under test. 4228 * @dev: network device 4229 * 4230 * Device is not in testing state. 4231 */ 4232 static inline void netif_testing_off(struct net_device *dev) 4233 { 4234 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4235 linkwatch_fire_event(dev); 4236 } 4237 4238 /** 4239 * netif_testing - test if device is under test 4240 * @dev: network device 4241 * 4242 * Check if device is under test 4243 */ 4244 static inline bool netif_testing(const struct net_device *dev) 4245 { 4246 return test_bit(__LINK_STATE_TESTING, &dev->state); 4247 } 4248 4249 4250 /** 4251 * netif_oper_up - test if device is operational 4252 * @dev: network device 4253 * 4254 * Check if carrier is operational 4255 */ 4256 static inline bool netif_oper_up(const struct net_device *dev) 4257 { 4258 return (dev->operstate == IF_OPER_UP || 4259 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4260 } 4261 4262 /** 4263 * netif_device_present - is device available or removed 4264 * @dev: network device 4265 * 4266 * Check if device has not been removed from system. 4267 */ 4268 static inline bool netif_device_present(const struct net_device *dev) 4269 { 4270 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4271 } 4272 4273 void netif_device_detach(struct net_device *dev); 4274 4275 void netif_device_attach(struct net_device *dev); 4276 4277 /* 4278 * Network interface message level settings 4279 */ 4280 4281 enum { 4282 NETIF_MSG_DRV_BIT, 4283 NETIF_MSG_PROBE_BIT, 4284 NETIF_MSG_LINK_BIT, 4285 NETIF_MSG_TIMER_BIT, 4286 NETIF_MSG_IFDOWN_BIT, 4287 NETIF_MSG_IFUP_BIT, 4288 NETIF_MSG_RX_ERR_BIT, 4289 NETIF_MSG_TX_ERR_BIT, 4290 NETIF_MSG_TX_QUEUED_BIT, 4291 NETIF_MSG_INTR_BIT, 4292 NETIF_MSG_TX_DONE_BIT, 4293 NETIF_MSG_RX_STATUS_BIT, 4294 NETIF_MSG_PKTDATA_BIT, 4295 NETIF_MSG_HW_BIT, 4296 NETIF_MSG_WOL_BIT, 4297 4298 /* When you add a new bit above, update netif_msg_class_names array 4299 * in net/ethtool/common.c 4300 */ 4301 NETIF_MSG_CLASS_COUNT, 4302 }; 4303 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4304 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4305 4306 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4307 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4308 4309 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4310 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4311 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4312 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4313 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4314 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4315 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4316 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4317 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4318 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4319 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4320 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4321 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4322 #define NETIF_MSG_HW __NETIF_MSG(HW) 4323 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4324 4325 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4326 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4327 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4328 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4329 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4330 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4331 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4332 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4333 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4334 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4335 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4336 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4337 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4338 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4339 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4340 4341 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4342 { 4343 /* use default */ 4344 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4345 return default_msg_enable_bits; 4346 if (debug_value == 0) /* no output */ 4347 return 0; 4348 /* set low N bits */ 4349 return (1U << debug_value) - 1; 4350 } 4351 4352 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4353 { 4354 spin_lock(&txq->_xmit_lock); 4355 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4356 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4357 } 4358 4359 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4360 { 4361 __acquire(&txq->_xmit_lock); 4362 return true; 4363 } 4364 4365 static inline void __netif_tx_release(struct netdev_queue *txq) 4366 { 4367 __release(&txq->_xmit_lock); 4368 } 4369 4370 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4371 { 4372 spin_lock_bh(&txq->_xmit_lock); 4373 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4374 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4375 } 4376 4377 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4378 { 4379 bool ok = spin_trylock(&txq->_xmit_lock); 4380 4381 if (likely(ok)) { 4382 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4383 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4384 } 4385 return ok; 4386 } 4387 4388 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4389 { 4390 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4391 WRITE_ONCE(txq->xmit_lock_owner, -1); 4392 spin_unlock(&txq->_xmit_lock); 4393 } 4394 4395 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4396 { 4397 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4398 WRITE_ONCE(txq->xmit_lock_owner, -1); 4399 spin_unlock_bh(&txq->_xmit_lock); 4400 } 4401 4402 /* 4403 * txq->trans_start can be read locklessly from dev_watchdog() 4404 */ 4405 static inline void txq_trans_update(struct netdev_queue *txq) 4406 { 4407 if (txq->xmit_lock_owner != -1) 4408 WRITE_ONCE(txq->trans_start, jiffies); 4409 } 4410 4411 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4412 { 4413 unsigned long now = jiffies; 4414 4415 if (READ_ONCE(txq->trans_start) != now) 4416 WRITE_ONCE(txq->trans_start, now); 4417 } 4418 4419 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4420 static inline void netif_trans_update(struct net_device *dev) 4421 { 4422 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4423 4424 txq_trans_cond_update(txq); 4425 } 4426 4427 /** 4428 * netif_tx_lock - grab network device transmit lock 4429 * @dev: network device 4430 * 4431 * Get network device transmit lock 4432 */ 4433 void netif_tx_lock(struct net_device *dev); 4434 4435 static inline void netif_tx_lock_bh(struct net_device *dev) 4436 { 4437 local_bh_disable(); 4438 netif_tx_lock(dev); 4439 } 4440 4441 void netif_tx_unlock(struct net_device *dev); 4442 4443 static inline void netif_tx_unlock_bh(struct net_device *dev) 4444 { 4445 netif_tx_unlock(dev); 4446 local_bh_enable(); 4447 } 4448 4449 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4450 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4451 __netif_tx_lock(txq, cpu); \ 4452 } else { \ 4453 __netif_tx_acquire(txq); \ 4454 } \ 4455 } 4456 4457 #define HARD_TX_TRYLOCK(dev, txq) \ 4458 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4459 __netif_tx_trylock(txq) : \ 4460 __netif_tx_acquire(txq)) 4461 4462 #define HARD_TX_UNLOCK(dev, txq) { \ 4463 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4464 __netif_tx_unlock(txq); \ 4465 } else { \ 4466 __netif_tx_release(txq); \ 4467 } \ 4468 } 4469 4470 static inline void netif_tx_disable(struct net_device *dev) 4471 { 4472 unsigned int i; 4473 int cpu; 4474 4475 local_bh_disable(); 4476 cpu = smp_processor_id(); 4477 spin_lock(&dev->tx_global_lock); 4478 for (i = 0; i < dev->num_tx_queues; i++) { 4479 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4480 4481 __netif_tx_lock(txq, cpu); 4482 netif_tx_stop_queue(txq); 4483 __netif_tx_unlock(txq); 4484 } 4485 spin_unlock(&dev->tx_global_lock); 4486 local_bh_enable(); 4487 } 4488 4489 static inline void netif_addr_lock(struct net_device *dev) 4490 { 4491 unsigned char nest_level = 0; 4492 4493 #ifdef CONFIG_LOCKDEP 4494 nest_level = dev->nested_level; 4495 #endif 4496 spin_lock_nested(&dev->addr_list_lock, nest_level); 4497 } 4498 4499 static inline void netif_addr_lock_bh(struct net_device *dev) 4500 { 4501 unsigned char nest_level = 0; 4502 4503 #ifdef CONFIG_LOCKDEP 4504 nest_level = dev->nested_level; 4505 #endif 4506 local_bh_disable(); 4507 spin_lock_nested(&dev->addr_list_lock, nest_level); 4508 } 4509 4510 static inline void netif_addr_unlock(struct net_device *dev) 4511 { 4512 spin_unlock(&dev->addr_list_lock); 4513 } 4514 4515 static inline void netif_addr_unlock_bh(struct net_device *dev) 4516 { 4517 spin_unlock_bh(&dev->addr_list_lock); 4518 } 4519 4520 /* 4521 * dev_addrs walker. Should be used only for read access. Call with 4522 * rcu_read_lock held. 4523 */ 4524 #define for_each_dev_addr(dev, ha) \ 4525 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4526 4527 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4528 4529 void ether_setup(struct net_device *dev); 4530 4531 /* Support for loadable net-drivers */ 4532 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4533 unsigned char name_assign_type, 4534 void (*setup)(struct net_device *), 4535 unsigned int txqs, unsigned int rxqs); 4536 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4537 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4538 4539 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4540 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4541 count) 4542 4543 int register_netdev(struct net_device *dev); 4544 void unregister_netdev(struct net_device *dev); 4545 4546 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4547 4548 /* General hardware address lists handling functions */ 4549 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4550 struct netdev_hw_addr_list *from_list, int addr_len); 4551 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4552 struct netdev_hw_addr_list *from_list, int addr_len); 4553 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4554 struct net_device *dev, 4555 int (*sync)(struct net_device *, const unsigned char *), 4556 int (*unsync)(struct net_device *, 4557 const unsigned char *)); 4558 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4559 struct net_device *dev, 4560 int (*sync)(struct net_device *, 4561 const unsigned char *, int), 4562 int (*unsync)(struct net_device *, 4563 const unsigned char *, int)); 4564 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4565 struct net_device *dev, 4566 int (*unsync)(struct net_device *, 4567 const unsigned char *, int)); 4568 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4569 struct net_device *dev, 4570 int (*unsync)(struct net_device *, 4571 const unsigned char *)); 4572 void __hw_addr_init(struct netdev_hw_addr_list *list); 4573 4574 /* Functions used for device addresses handling */ 4575 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4576 const void *addr, size_t len); 4577 4578 static inline void 4579 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4580 { 4581 dev_addr_mod(dev, 0, addr, len); 4582 } 4583 4584 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4585 { 4586 __dev_addr_set(dev, addr, dev->addr_len); 4587 } 4588 4589 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4590 unsigned char addr_type); 4591 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4592 unsigned char addr_type); 4593 4594 /* Functions used for unicast addresses handling */ 4595 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4596 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4597 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4598 int dev_uc_sync(struct net_device *to, struct net_device *from); 4599 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4600 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4601 void dev_uc_flush(struct net_device *dev); 4602 void dev_uc_init(struct net_device *dev); 4603 4604 /** 4605 * __dev_uc_sync - Synchonize device's unicast list 4606 * @dev: device to sync 4607 * @sync: function to call if address should be added 4608 * @unsync: function to call if address should be removed 4609 * 4610 * Add newly added addresses to the interface, and release 4611 * addresses that have been deleted. 4612 */ 4613 static inline int __dev_uc_sync(struct net_device *dev, 4614 int (*sync)(struct net_device *, 4615 const unsigned char *), 4616 int (*unsync)(struct net_device *, 4617 const unsigned char *)) 4618 { 4619 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4620 } 4621 4622 /** 4623 * __dev_uc_unsync - Remove synchronized addresses from device 4624 * @dev: device to sync 4625 * @unsync: function to call if address should be removed 4626 * 4627 * Remove all addresses that were added to the device by dev_uc_sync(). 4628 */ 4629 static inline void __dev_uc_unsync(struct net_device *dev, 4630 int (*unsync)(struct net_device *, 4631 const unsigned char *)) 4632 { 4633 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4634 } 4635 4636 /* Functions used for multicast addresses handling */ 4637 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4638 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4639 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4640 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4641 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4642 int dev_mc_sync(struct net_device *to, struct net_device *from); 4643 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4644 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4645 void dev_mc_flush(struct net_device *dev); 4646 void dev_mc_init(struct net_device *dev); 4647 4648 /** 4649 * __dev_mc_sync - Synchonize device's multicast list 4650 * @dev: device to sync 4651 * @sync: function to call if address should be added 4652 * @unsync: function to call if address should be removed 4653 * 4654 * Add newly added addresses to the interface, and release 4655 * addresses that have been deleted. 4656 */ 4657 static inline int __dev_mc_sync(struct net_device *dev, 4658 int (*sync)(struct net_device *, 4659 const unsigned char *), 4660 int (*unsync)(struct net_device *, 4661 const unsigned char *)) 4662 { 4663 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4664 } 4665 4666 /** 4667 * __dev_mc_unsync - Remove synchronized addresses from device 4668 * @dev: device to sync 4669 * @unsync: function to call if address should be removed 4670 * 4671 * Remove all addresses that were added to the device by dev_mc_sync(). 4672 */ 4673 static inline void __dev_mc_unsync(struct net_device *dev, 4674 int (*unsync)(struct net_device *, 4675 const unsigned char *)) 4676 { 4677 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4678 } 4679 4680 /* Functions used for secondary unicast and multicast support */ 4681 void dev_set_rx_mode(struct net_device *dev); 4682 int dev_set_promiscuity(struct net_device *dev, int inc); 4683 int dev_set_allmulti(struct net_device *dev, int inc); 4684 void netdev_state_change(struct net_device *dev); 4685 void __netdev_notify_peers(struct net_device *dev); 4686 void netdev_notify_peers(struct net_device *dev); 4687 void netdev_features_change(struct net_device *dev); 4688 /* Load a device via the kmod */ 4689 void dev_load(struct net *net, const char *name); 4690 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4691 struct rtnl_link_stats64 *storage); 4692 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4693 const struct net_device_stats *netdev_stats); 4694 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4695 const struct pcpu_sw_netstats __percpu *netstats); 4696 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4697 4698 extern int netdev_max_backlog; 4699 extern int dev_rx_weight; 4700 extern int dev_tx_weight; 4701 extern int gro_normal_batch; 4702 4703 enum { 4704 NESTED_SYNC_IMM_BIT, 4705 NESTED_SYNC_TODO_BIT, 4706 }; 4707 4708 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4709 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4710 4711 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4712 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4713 4714 struct netdev_nested_priv { 4715 unsigned char flags; 4716 void *data; 4717 }; 4718 4719 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4720 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4721 struct list_head **iter); 4722 4723 /* iterate through upper list, must be called under RCU read lock */ 4724 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4725 for (iter = &(dev)->adj_list.upper, \ 4726 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4727 updev; \ 4728 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4729 4730 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4731 int (*fn)(struct net_device *upper_dev, 4732 struct netdev_nested_priv *priv), 4733 struct netdev_nested_priv *priv); 4734 4735 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4736 struct net_device *upper_dev); 4737 4738 bool netdev_has_any_upper_dev(struct net_device *dev); 4739 4740 void *netdev_lower_get_next_private(struct net_device *dev, 4741 struct list_head **iter); 4742 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4743 struct list_head **iter); 4744 4745 #define netdev_for_each_lower_private(dev, priv, iter) \ 4746 for (iter = (dev)->adj_list.lower.next, \ 4747 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4748 priv; \ 4749 priv = netdev_lower_get_next_private(dev, &(iter))) 4750 4751 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4752 for (iter = &(dev)->adj_list.lower, \ 4753 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4754 priv; \ 4755 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4756 4757 void *netdev_lower_get_next(struct net_device *dev, 4758 struct list_head **iter); 4759 4760 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4761 for (iter = (dev)->adj_list.lower.next, \ 4762 ldev = netdev_lower_get_next(dev, &(iter)); \ 4763 ldev; \ 4764 ldev = netdev_lower_get_next(dev, &(iter))) 4765 4766 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4767 struct list_head **iter); 4768 int netdev_walk_all_lower_dev(struct net_device *dev, 4769 int (*fn)(struct net_device *lower_dev, 4770 struct netdev_nested_priv *priv), 4771 struct netdev_nested_priv *priv); 4772 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4773 int (*fn)(struct net_device *lower_dev, 4774 struct netdev_nested_priv *priv), 4775 struct netdev_nested_priv *priv); 4776 4777 void *netdev_adjacent_get_private(struct list_head *adj_list); 4778 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4779 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4780 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4781 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4782 struct netlink_ext_ack *extack); 4783 int netdev_master_upper_dev_link(struct net_device *dev, 4784 struct net_device *upper_dev, 4785 void *upper_priv, void *upper_info, 4786 struct netlink_ext_ack *extack); 4787 void netdev_upper_dev_unlink(struct net_device *dev, 4788 struct net_device *upper_dev); 4789 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4790 struct net_device *new_dev, 4791 struct net_device *dev, 4792 struct netlink_ext_ack *extack); 4793 void netdev_adjacent_change_commit(struct net_device *old_dev, 4794 struct net_device *new_dev, 4795 struct net_device *dev); 4796 void netdev_adjacent_change_abort(struct net_device *old_dev, 4797 struct net_device *new_dev, 4798 struct net_device *dev); 4799 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4800 void *netdev_lower_dev_get_private(struct net_device *dev, 4801 struct net_device *lower_dev); 4802 void netdev_lower_state_changed(struct net_device *lower_dev, 4803 void *lower_state_info); 4804 4805 /* RSS keys are 40 or 52 bytes long */ 4806 #define NETDEV_RSS_KEY_LEN 52 4807 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4808 void netdev_rss_key_fill(void *buffer, size_t len); 4809 4810 int skb_checksum_help(struct sk_buff *skb); 4811 int skb_crc32c_csum_help(struct sk_buff *skb); 4812 int skb_csum_hwoffload_help(struct sk_buff *skb, 4813 const netdev_features_t features); 4814 4815 struct netdev_bonding_info { 4816 ifslave slave; 4817 ifbond master; 4818 }; 4819 4820 struct netdev_notifier_bonding_info { 4821 struct netdev_notifier_info info; /* must be first */ 4822 struct netdev_bonding_info bonding_info; 4823 }; 4824 4825 void netdev_bonding_info_change(struct net_device *dev, 4826 struct netdev_bonding_info *bonding_info); 4827 4828 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4829 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4830 #else 4831 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4832 const void *data) 4833 { 4834 } 4835 #endif 4836 4837 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4838 4839 static inline bool can_checksum_protocol(netdev_features_t features, 4840 __be16 protocol) 4841 { 4842 if (protocol == htons(ETH_P_FCOE)) 4843 return !!(features & NETIF_F_FCOE_CRC); 4844 4845 /* Assume this is an IP checksum (not SCTP CRC) */ 4846 4847 if (features & NETIF_F_HW_CSUM) { 4848 /* Can checksum everything */ 4849 return true; 4850 } 4851 4852 switch (protocol) { 4853 case htons(ETH_P_IP): 4854 return !!(features & NETIF_F_IP_CSUM); 4855 case htons(ETH_P_IPV6): 4856 return !!(features & NETIF_F_IPV6_CSUM); 4857 default: 4858 return false; 4859 } 4860 } 4861 4862 #ifdef CONFIG_BUG 4863 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4864 #else 4865 static inline void netdev_rx_csum_fault(struct net_device *dev, 4866 struct sk_buff *skb) 4867 { 4868 } 4869 #endif 4870 /* rx skb timestamps */ 4871 void net_enable_timestamp(void); 4872 void net_disable_timestamp(void); 4873 4874 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4875 const struct skb_shared_hwtstamps *hwtstamps, 4876 bool cycles) 4877 { 4878 const struct net_device_ops *ops = dev->netdev_ops; 4879 4880 if (ops->ndo_get_tstamp) 4881 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4882 4883 return hwtstamps->hwtstamp; 4884 } 4885 4886 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4887 struct sk_buff *skb, struct net_device *dev, 4888 bool more) 4889 { 4890 __this_cpu_write(softnet_data.xmit.more, more); 4891 return ops->ndo_start_xmit(skb, dev); 4892 } 4893 4894 static inline bool netdev_xmit_more(void) 4895 { 4896 return __this_cpu_read(softnet_data.xmit.more); 4897 } 4898 4899 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4900 struct netdev_queue *txq, bool more) 4901 { 4902 const struct net_device_ops *ops = dev->netdev_ops; 4903 netdev_tx_t rc; 4904 4905 rc = __netdev_start_xmit(ops, skb, dev, more); 4906 if (rc == NETDEV_TX_OK) 4907 txq_trans_update(txq); 4908 4909 return rc; 4910 } 4911 4912 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4913 const void *ns); 4914 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4915 const void *ns); 4916 4917 extern const struct kobj_ns_type_operations net_ns_type_operations; 4918 4919 const char *netdev_drivername(const struct net_device *dev); 4920 4921 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4922 netdev_features_t f2) 4923 { 4924 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4925 if (f1 & NETIF_F_HW_CSUM) 4926 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4927 else 4928 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4929 } 4930 4931 return f1 & f2; 4932 } 4933 4934 static inline netdev_features_t netdev_get_wanted_features( 4935 struct net_device *dev) 4936 { 4937 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4938 } 4939 netdev_features_t netdev_increment_features(netdev_features_t all, 4940 netdev_features_t one, netdev_features_t mask); 4941 4942 /* Allow TSO being used on stacked device : 4943 * Performing the GSO segmentation before last device 4944 * is a performance improvement. 4945 */ 4946 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4947 netdev_features_t mask) 4948 { 4949 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4950 } 4951 4952 int __netdev_update_features(struct net_device *dev); 4953 void netdev_update_features(struct net_device *dev); 4954 void netdev_change_features(struct net_device *dev); 4955 4956 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4957 struct net_device *dev); 4958 4959 netdev_features_t passthru_features_check(struct sk_buff *skb, 4960 struct net_device *dev, 4961 netdev_features_t features); 4962 netdev_features_t netif_skb_features(struct sk_buff *skb); 4963 void skb_warn_bad_offload(const struct sk_buff *skb); 4964 4965 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4966 { 4967 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4968 4969 /* check flags correspondence */ 4970 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4971 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4972 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4973 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4974 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4975 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4976 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4977 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4978 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4979 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4980 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4981 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4982 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4983 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4984 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4985 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4986 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4987 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4988 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4989 4990 return (features & feature) == feature; 4991 } 4992 4993 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4994 { 4995 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4996 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4997 } 4998 4999 static inline bool netif_needs_gso(struct sk_buff *skb, 5000 netdev_features_t features) 5001 { 5002 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5003 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5004 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5005 } 5006 5007 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5008 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5009 void netif_inherit_tso_max(struct net_device *to, 5010 const struct net_device *from); 5011 5012 static inline bool netif_is_macsec(const struct net_device *dev) 5013 { 5014 return dev->priv_flags & IFF_MACSEC; 5015 } 5016 5017 static inline bool netif_is_macvlan(const struct net_device *dev) 5018 { 5019 return dev->priv_flags & IFF_MACVLAN; 5020 } 5021 5022 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5023 { 5024 return dev->priv_flags & IFF_MACVLAN_PORT; 5025 } 5026 5027 static inline bool netif_is_bond_master(const struct net_device *dev) 5028 { 5029 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5030 } 5031 5032 static inline bool netif_is_bond_slave(const struct net_device *dev) 5033 { 5034 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5035 } 5036 5037 static inline bool netif_supports_nofcs(struct net_device *dev) 5038 { 5039 return dev->priv_flags & IFF_SUPP_NOFCS; 5040 } 5041 5042 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5043 { 5044 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5045 } 5046 5047 static inline bool netif_is_l3_master(const struct net_device *dev) 5048 { 5049 return dev->priv_flags & IFF_L3MDEV_MASTER; 5050 } 5051 5052 static inline bool netif_is_l3_slave(const struct net_device *dev) 5053 { 5054 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5055 } 5056 5057 static inline int dev_sdif(const struct net_device *dev) 5058 { 5059 #ifdef CONFIG_NET_L3_MASTER_DEV 5060 if (netif_is_l3_slave(dev)) 5061 return dev->ifindex; 5062 #endif 5063 return 0; 5064 } 5065 5066 static inline bool netif_is_bridge_master(const struct net_device *dev) 5067 { 5068 return dev->priv_flags & IFF_EBRIDGE; 5069 } 5070 5071 static inline bool netif_is_bridge_port(const struct net_device *dev) 5072 { 5073 return dev->priv_flags & IFF_BRIDGE_PORT; 5074 } 5075 5076 static inline bool netif_is_ovs_master(const struct net_device *dev) 5077 { 5078 return dev->priv_flags & IFF_OPENVSWITCH; 5079 } 5080 5081 static inline bool netif_is_ovs_port(const struct net_device *dev) 5082 { 5083 return dev->priv_flags & IFF_OVS_DATAPATH; 5084 } 5085 5086 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5087 { 5088 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5089 } 5090 5091 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5092 { 5093 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5094 } 5095 5096 static inline bool netif_is_team_master(const struct net_device *dev) 5097 { 5098 return dev->priv_flags & IFF_TEAM; 5099 } 5100 5101 static inline bool netif_is_team_port(const struct net_device *dev) 5102 { 5103 return dev->priv_flags & IFF_TEAM_PORT; 5104 } 5105 5106 static inline bool netif_is_lag_master(const struct net_device *dev) 5107 { 5108 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5109 } 5110 5111 static inline bool netif_is_lag_port(const struct net_device *dev) 5112 { 5113 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5114 } 5115 5116 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5117 { 5118 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5119 } 5120 5121 static inline bool netif_is_failover(const struct net_device *dev) 5122 { 5123 return dev->priv_flags & IFF_FAILOVER; 5124 } 5125 5126 static inline bool netif_is_failover_slave(const struct net_device *dev) 5127 { 5128 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5129 } 5130 5131 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5132 static inline void netif_keep_dst(struct net_device *dev) 5133 { 5134 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5135 } 5136 5137 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5138 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5139 { 5140 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5141 return netif_is_macsec(dev); 5142 } 5143 5144 extern struct pernet_operations __net_initdata loopback_net_ops; 5145 5146 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5147 5148 /* netdev_printk helpers, similar to dev_printk */ 5149 5150 static inline const char *netdev_name(const struct net_device *dev) 5151 { 5152 if (!dev->name[0] || strchr(dev->name, '%')) 5153 return "(unnamed net_device)"; 5154 return dev->name; 5155 } 5156 5157 static inline const char *netdev_reg_state(const struct net_device *dev) 5158 { 5159 switch (dev->reg_state) { 5160 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5161 case NETREG_REGISTERED: return ""; 5162 case NETREG_UNREGISTERING: return " (unregistering)"; 5163 case NETREG_UNREGISTERED: return " (unregistered)"; 5164 case NETREG_RELEASED: return " (released)"; 5165 case NETREG_DUMMY: return " (dummy)"; 5166 } 5167 5168 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5169 return " (unknown)"; 5170 } 5171 5172 #define MODULE_ALIAS_NETDEV(device) \ 5173 MODULE_ALIAS("netdev-" device) 5174 5175 /* 5176 * netdev_WARN() acts like dev_printk(), but with the key difference 5177 * of using a WARN/WARN_ON to get the message out, including the 5178 * file/line information and a backtrace. 5179 */ 5180 #define netdev_WARN(dev, format, args...) \ 5181 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5182 netdev_reg_state(dev), ##args) 5183 5184 #define netdev_WARN_ONCE(dev, format, args...) \ 5185 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5186 netdev_reg_state(dev), ##args) 5187 5188 /* 5189 * The list of packet types we will receive (as opposed to discard) 5190 * and the routines to invoke. 5191 * 5192 * Why 16. Because with 16 the only overlap we get on a hash of the 5193 * low nibble of the protocol value is RARP/SNAP/X.25. 5194 * 5195 * 0800 IP 5196 * 0001 802.3 5197 * 0002 AX.25 5198 * 0004 802.2 5199 * 8035 RARP 5200 * 0005 SNAP 5201 * 0805 X.25 5202 * 0806 ARP 5203 * 8137 IPX 5204 * 0009 Localtalk 5205 * 86DD IPv6 5206 */ 5207 #define PTYPE_HASH_SIZE (16) 5208 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5209 5210 extern struct list_head ptype_all __read_mostly; 5211 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5212 5213 extern struct net_device *blackhole_netdev; 5214 5215 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5216 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5217 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5218 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5219 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5220 5221 #endif /* _LINUX_NETDEVICE_H */ 5222