xref: /linux-6.15/include/linux/netdevice.h (revision 605ef7ae)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_config;
67 struct netdev_name_node;
68 struct sd_flow_limit;
69 struct sfp_bus;
70 /* 802.11 specific */
71 struct wireless_dev;
72 /* 802.15.4 specific */
73 struct wpan_dev;
74 struct mpls_dev;
75 /* UDP Tunnel offloads */
76 struct udp_tunnel_info;
77 struct udp_tunnel_nic_info;
78 struct udp_tunnel_nic;
79 struct bpf_prog;
80 struct xdp_buff;
81 struct xdp_frame;
82 struct xdp_metadata_ops;
83 struct xdp_md;
84 struct ethtool_netdev_state;
85 struct phy_link_topology;
86 struct hwtstamp_provider;
87 
88 typedef u32 xdp_features_t;
89 
90 void synchronize_net(void);
91 void netdev_set_default_ethtool_ops(struct net_device *dev,
92 				    const struct ethtool_ops *ops);
93 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
94 
95 /* Backlog congestion levels */
96 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
97 #define NET_RX_DROP		1	/* packet dropped */
98 
99 #define MAX_NEST_DEV 8
100 
101 /*
102  * Transmit return codes: transmit return codes originate from three different
103  * namespaces:
104  *
105  * - qdisc return codes
106  * - driver transmit return codes
107  * - errno values
108  *
109  * Drivers are allowed to return any one of those in their hard_start_xmit()
110  * function. Real network devices commonly used with qdiscs should only return
111  * the driver transmit return codes though - when qdiscs are used, the actual
112  * transmission happens asynchronously, so the value is not propagated to
113  * higher layers. Virtual network devices transmit synchronously; in this case
114  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
115  * others are propagated to higher layers.
116  */
117 
118 /* qdisc ->enqueue() return codes. */
119 #define NET_XMIT_SUCCESS	0x00
120 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
121 #define NET_XMIT_CN		0x02	/* congestion notification	*/
122 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
123 
124 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
125  * indicates that the device will soon be dropping packets, or already drops
126  * some packets of the same priority; prompting us to send less aggressively. */
127 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
128 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
129 
130 /* Driver transmit return codes */
131 #define NETDEV_TX_MASK		0xf0
132 
133 enum netdev_tx {
134 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
135 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
136 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
137 };
138 typedef enum netdev_tx netdev_tx_t;
139 
140 /*
141  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
142  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
143  */
144 static inline bool dev_xmit_complete(int rc)
145 {
146 	/*
147 	 * Positive cases with an skb consumed by a driver:
148 	 * - successful transmission (rc == NETDEV_TX_OK)
149 	 * - error while transmitting (rc < 0)
150 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
151 	 */
152 	if (likely(rc < NET_XMIT_MASK))
153 		return true;
154 
155 	return false;
156 }
157 
158 /*
159  *	Compute the worst-case header length according to the protocols
160  *	used.
161  */
162 
163 #if defined(CONFIG_HYPERV_NET)
164 # define LL_MAX_HEADER 128
165 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
166 # if defined(CONFIG_MAC80211_MESH)
167 #  define LL_MAX_HEADER 128
168 # else
169 #  define LL_MAX_HEADER 96
170 # endif
171 #else
172 # define LL_MAX_HEADER 32
173 #endif
174 
175 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
176     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
177 #define MAX_HEADER LL_MAX_HEADER
178 #else
179 #define MAX_HEADER (LL_MAX_HEADER + 48)
180 #endif
181 
182 /*
183  *	Old network device statistics. Fields are native words
184  *	(unsigned long) so they can be read and written atomically.
185  */
186 
187 #define NET_DEV_STAT(FIELD)			\
188 	union {					\
189 		unsigned long FIELD;		\
190 		atomic_long_t __##FIELD;	\
191 	}
192 
193 struct net_device_stats {
194 	NET_DEV_STAT(rx_packets);
195 	NET_DEV_STAT(tx_packets);
196 	NET_DEV_STAT(rx_bytes);
197 	NET_DEV_STAT(tx_bytes);
198 	NET_DEV_STAT(rx_errors);
199 	NET_DEV_STAT(tx_errors);
200 	NET_DEV_STAT(rx_dropped);
201 	NET_DEV_STAT(tx_dropped);
202 	NET_DEV_STAT(multicast);
203 	NET_DEV_STAT(collisions);
204 	NET_DEV_STAT(rx_length_errors);
205 	NET_DEV_STAT(rx_over_errors);
206 	NET_DEV_STAT(rx_crc_errors);
207 	NET_DEV_STAT(rx_frame_errors);
208 	NET_DEV_STAT(rx_fifo_errors);
209 	NET_DEV_STAT(rx_missed_errors);
210 	NET_DEV_STAT(tx_aborted_errors);
211 	NET_DEV_STAT(tx_carrier_errors);
212 	NET_DEV_STAT(tx_fifo_errors);
213 	NET_DEV_STAT(tx_heartbeat_errors);
214 	NET_DEV_STAT(tx_window_errors);
215 	NET_DEV_STAT(rx_compressed);
216 	NET_DEV_STAT(tx_compressed);
217 };
218 #undef NET_DEV_STAT
219 
220 /* per-cpu stats, allocated on demand.
221  * Try to fit them in a single cache line, for dev_get_stats() sake.
222  */
223 struct net_device_core_stats {
224 	unsigned long	rx_dropped;
225 	unsigned long	tx_dropped;
226 	unsigned long	rx_nohandler;
227 	unsigned long	rx_otherhost_dropped;
228 } __aligned(4 * sizeof(unsigned long));
229 
230 #include <linux/cache.h>
231 #include <linux/skbuff.h>
232 
233 struct neighbour;
234 struct neigh_parms;
235 struct sk_buff;
236 
237 struct netdev_hw_addr {
238 	struct list_head	list;
239 	struct rb_node		node;
240 	unsigned char		addr[MAX_ADDR_LEN];
241 	unsigned char		type;
242 #define NETDEV_HW_ADDR_T_LAN		1
243 #define NETDEV_HW_ADDR_T_SAN		2
244 #define NETDEV_HW_ADDR_T_UNICAST	3
245 #define NETDEV_HW_ADDR_T_MULTICAST	4
246 	bool			global_use;
247 	int			sync_cnt;
248 	int			refcount;
249 	int			synced;
250 	struct rcu_head		rcu_head;
251 };
252 
253 struct netdev_hw_addr_list {
254 	struct list_head	list;
255 	int			count;
256 
257 	/* Auxiliary tree for faster lookup on addition and deletion */
258 	struct rb_root		tree;
259 };
260 
261 #define netdev_hw_addr_list_count(l) ((l)->count)
262 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
263 #define netdev_hw_addr_list_for_each(ha, l) \
264 	list_for_each_entry(ha, &(l)->list, list)
265 
266 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
267 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
268 #define netdev_for_each_uc_addr(ha, dev) \
269 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
270 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
271 	netdev_for_each_uc_addr((_ha), (_dev)) \
272 		if ((_ha)->sync_cnt)
273 
274 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
275 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
276 #define netdev_for_each_mc_addr(ha, dev) \
277 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
278 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
279 	netdev_for_each_mc_addr((_ha), (_dev)) \
280 		if ((_ha)->sync_cnt)
281 
282 struct hh_cache {
283 	unsigned int	hh_len;
284 	seqlock_t	hh_lock;
285 
286 	/* cached hardware header; allow for machine alignment needs.        */
287 #define HH_DATA_MOD	16
288 #define HH_DATA_OFF(__len) \
289 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
290 #define HH_DATA_ALIGN(__len) \
291 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
292 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
293 };
294 
295 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
296  * Alternative is:
297  *   dev->hard_header_len ? (dev->hard_header_len +
298  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
299  *
300  * We could use other alignment values, but we must maintain the
301  * relationship HH alignment <= LL alignment.
302  */
303 #define LL_RESERVED_SPACE(dev) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 
310 struct header_ops {
311 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
312 			   unsigned short type, const void *daddr,
313 			   const void *saddr, unsigned int len);
314 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
315 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
316 	void	(*cache_update)(struct hh_cache *hh,
317 				const struct net_device *dev,
318 				const unsigned char *haddr);
319 	bool	(*validate)(const char *ll_header, unsigned int len);
320 	__be16	(*parse_protocol)(const struct sk_buff *skb);
321 };
322 
323 /* These flag bits are private to the generic network queueing
324  * layer; they may not be explicitly referenced by any other
325  * code.
326  */
327 
328 enum netdev_state_t {
329 	__LINK_STATE_START,
330 	__LINK_STATE_PRESENT,
331 	__LINK_STATE_NOCARRIER,
332 	__LINK_STATE_LINKWATCH_PENDING,
333 	__LINK_STATE_DORMANT,
334 	__LINK_STATE_TESTING,
335 };
336 
337 struct gro_list {
338 	struct list_head	list;
339 	int			count;
340 };
341 
342 /*
343  * size of gro hash buckets, must be <= the number of bits in
344  * gro_node::bitmask
345  */
346 #define GRO_HASH_BUCKETS	8
347 
348 /**
349  * struct gro_node - structure to support Generic Receive Offload
350  * @bitmask: bitmask to indicate used buckets in @hash
351  * @hash: hashtable of pending aggregated skbs, separated by flows
352  * @rx_list: list of pending ``GRO_NORMAL`` skbs
353  * @rx_count: cached current length of @rx_list
354  * @cached_napi_id: napi_struct::napi_id cached for hotpath, 0 for standalone
355  */
356 struct gro_node {
357 	unsigned long		bitmask;
358 	struct gro_list		hash[GRO_HASH_BUCKETS];
359 	struct list_head	rx_list;
360 	u32			rx_count;
361 	u32			cached_napi_id;
362 };
363 
364 /*
365  * Structure for per-NAPI config
366  */
367 struct napi_config {
368 	u64 gro_flush_timeout;
369 	u64 irq_suspend_timeout;
370 	u32 defer_hard_irqs;
371 	cpumask_t affinity_mask;
372 	unsigned int napi_id;
373 };
374 
375 /*
376  * Structure for NAPI scheduling similar to tasklet but with weighting
377  */
378 struct napi_struct {
379 	/* The poll_list must only be managed by the entity which
380 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
381 	 * whoever atomically sets that bit can add this napi_struct
382 	 * to the per-CPU poll_list, and whoever clears that bit
383 	 * can remove from the list right before clearing the bit.
384 	 */
385 	struct list_head	poll_list;
386 
387 	unsigned long		state;
388 	int			weight;
389 	u32			defer_hard_irqs_count;
390 	int			(*poll)(struct napi_struct *, int);
391 #ifdef CONFIG_NETPOLL
392 	/* CPU actively polling if netpoll is configured */
393 	int			poll_owner;
394 #endif
395 	/* CPU on which NAPI has been scheduled for processing */
396 	int			list_owner;
397 	struct net_device	*dev;
398 	struct sk_buff		*skb;
399 	struct gro_node		gro;
400 	struct hrtimer		timer;
401 	/* all fields past this point are write-protected by netdev_lock */
402 	struct task_struct	*thread;
403 	unsigned long		gro_flush_timeout;
404 	unsigned long		irq_suspend_timeout;
405 	u32			defer_hard_irqs;
406 	/* control-path-only fields follow */
407 	u32			napi_id;
408 	struct list_head	dev_list;
409 	struct hlist_node	napi_hash_node;
410 	int			irq;
411 	struct irq_affinity_notify notify;
412 	int			napi_rmap_idx;
413 	int			index;
414 	struct napi_config	*config;
415 };
416 
417 enum {
418 	NAPI_STATE_SCHED,		/* Poll is scheduled */
419 	NAPI_STATE_MISSED,		/* reschedule a napi */
420 	NAPI_STATE_DISABLE,		/* Disable pending */
421 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
422 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
423 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
424 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
425 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
426 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
427 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
428 	NAPI_STATE_HAS_NOTIFIER,	/* Napi has an IRQ notifier */
429 };
430 
431 enum {
432 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
433 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
434 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
435 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
436 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
437 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
438 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
439 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
440 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
441 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
442 	NAPIF_STATE_HAS_NOTIFIER	= BIT(NAPI_STATE_HAS_NOTIFIER),
443 };
444 
445 enum gro_result {
446 	GRO_MERGED,
447 	GRO_MERGED_FREE,
448 	GRO_HELD,
449 	GRO_NORMAL,
450 	GRO_CONSUMED,
451 };
452 typedef enum gro_result gro_result_t;
453 
454 /*
455  * enum rx_handler_result - Possible return values for rx_handlers.
456  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
457  * further.
458  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
459  * case skb->dev was changed by rx_handler.
460  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
461  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
462  *
463  * rx_handlers are functions called from inside __netif_receive_skb(), to do
464  * special processing of the skb, prior to delivery to protocol handlers.
465  *
466  * Currently, a net_device can only have a single rx_handler registered. Trying
467  * to register a second rx_handler will return -EBUSY.
468  *
469  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
470  * To unregister a rx_handler on a net_device, use
471  * netdev_rx_handler_unregister().
472  *
473  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
474  * do with the skb.
475  *
476  * If the rx_handler consumed the skb in some way, it should return
477  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
478  * the skb to be delivered in some other way.
479  *
480  * If the rx_handler changed skb->dev, to divert the skb to another
481  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
482  * new device will be called if it exists.
483  *
484  * If the rx_handler decides the skb should be ignored, it should return
485  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
486  * are registered on exact device (ptype->dev == skb->dev).
487  *
488  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
489  * delivered, it should return RX_HANDLER_PASS.
490  *
491  * A device without a registered rx_handler will behave as if rx_handler
492  * returned RX_HANDLER_PASS.
493  */
494 
495 enum rx_handler_result {
496 	RX_HANDLER_CONSUMED,
497 	RX_HANDLER_ANOTHER,
498 	RX_HANDLER_EXACT,
499 	RX_HANDLER_PASS,
500 };
501 typedef enum rx_handler_result rx_handler_result_t;
502 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
503 
504 void __napi_schedule(struct napi_struct *n);
505 void __napi_schedule_irqoff(struct napi_struct *n);
506 
507 static inline bool napi_disable_pending(struct napi_struct *n)
508 {
509 	return test_bit(NAPI_STATE_DISABLE, &n->state);
510 }
511 
512 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
513 {
514 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
515 }
516 
517 /**
518  * napi_is_scheduled - test if NAPI is scheduled
519  * @n: NAPI context
520  *
521  * This check is "best-effort". With no locking implemented,
522  * a NAPI can be scheduled or terminate right after this check
523  * and produce not precise results.
524  *
525  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
526  * should not be used normally and napi_schedule should be
527  * used instead.
528  *
529  * Use only if the driver really needs to check if a NAPI
530  * is scheduled for example in the context of delayed timer
531  * that can be skipped if a NAPI is already scheduled.
532  *
533  * Return: True if NAPI is scheduled, False otherwise.
534  */
535 static inline bool napi_is_scheduled(struct napi_struct *n)
536 {
537 	return test_bit(NAPI_STATE_SCHED, &n->state);
538 }
539 
540 bool napi_schedule_prep(struct napi_struct *n);
541 
542 /**
543  *	napi_schedule - schedule NAPI poll
544  *	@n: NAPI context
545  *
546  * Schedule NAPI poll routine to be called if it is not already
547  * running.
548  * Return: true if we schedule a NAPI or false if not.
549  * Refer to napi_schedule_prep() for additional reason on why
550  * a NAPI might not be scheduled.
551  */
552 static inline bool napi_schedule(struct napi_struct *n)
553 {
554 	if (napi_schedule_prep(n)) {
555 		__napi_schedule(n);
556 		return true;
557 	}
558 
559 	return false;
560 }
561 
562 /**
563  *	napi_schedule_irqoff - schedule NAPI poll
564  *	@n: NAPI context
565  *
566  * Variant of napi_schedule(), assuming hard irqs are masked.
567  */
568 static inline void napi_schedule_irqoff(struct napi_struct *n)
569 {
570 	if (napi_schedule_prep(n))
571 		__napi_schedule_irqoff(n);
572 }
573 
574 /**
575  * napi_complete_done - NAPI processing complete
576  * @n: NAPI context
577  * @work_done: number of packets processed
578  *
579  * Mark NAPI processing as complete. Should only be called if poll budget
580  * has not been completely consumed.
581  * Prefer over napi_complete().
582  * Return: false if device should avoid rearming interrupts.
583  */
584 bool napi_complete_done(struct napi_struct *n, int work_done);
585 
586 static inline bool napi_complete(struct napi_struct *n)
587 {
588 	return napi_complete_done(n, 0);
589 }
590 
591 int dev_set_threaded(struct net_device *dev, bool threaded);
592 
593 void napi_disable(struct napi_struct *n);
594 void napi_disable_locked(struct napi_struct *n);
595 
596 void napi_enable(struct napi_struct *n);
597 void napi_enable_locked(struct napi_struct *n);
598 
599 /**
600  *	napi_synchronize - wait until NAPI is not running
601  *	@n: NAPI context
602  *
603  * Wait until NAPI is done being scheduled on this context.
604  * Waits till any outstanding processing completes but
605  * does not disable future activations.
606  */
607 static inline void napi_synchronize(const struct napi_struct *n)
608 {
609 	if (IS_ENABLED(CONFIG_SMP))
610 		while (test_bit(NAPI_STATE_SCHED, &n->state))
611 			msleep(1);
612 	else
613 		barrier();
614 }
615 
616 /**
617  *	napi_if_scheduled_mark_missed - if napi is running, set the
618  *	NAPIF_STATE_MISSED
619  *	@n: NAPI context
620  *
621  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
622  * NAPI is scheduled.
623  **/
624 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
625 {
626 	unsigned long val, new;
627 
628 	val = READ_ONCE(n->state);
629 	do {
630 		if (val & NAPIF_STATE_DISABLE)
631 			return true;
632 
633 		if (!(val & NAPIF_STATE_SCHED))
634 			return false;
635 
636 		new = val | NAPIF_STATE_MISSED;
637 	} while (!try_cmpxchg(&n->state, &val, new));
638 
639 	return true;
640 }
641 
642 enum netdev_queue_state_t {
643 	__QUEUE_STATE_DRV_XOFF,
644 	__QUEUE_STATE_STACK_XOFF,
645 	__QUEUE_STATE_FROZEN,
646 };
647 
648 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
649 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
650 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
651 
652 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
653 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
654 					QUEUE_STATE_FROZEN)
655 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
656 					QUEUE_STATE_FROZEN)
657 
658 /*
659  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
660  * netif_tx_* functions below are used to manipulate this flag.  The
661  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
662  * queue independently.  The netif_xmit_*stopped functions below are called
663  * to check if the queue has been stopped by the driver or stack (either
664  * of the XOFF bits are set in the state).  Drivers should not need to call
665  * netif_xmit*stopped functions, they should only be using netif_tx_*.
666  */
667 
668 struct netdev_queue {
669 /*
670  * read-mostly part
671  */
672 	struct net_device	*dev;
673 	netdevice_tracker	dev_tracker;
674 
675 	struct Qdisc __rcu	*qdisc;
676 	struct Qdisc __rcu	*qdisc_sleeping;
677 #ifdef CONFIG_SYSFS
678 	struct kobject		kobj;
679 	const struct attribute_group	**groups;
680 #endif
681 	unsigned long		tx_maxrate;
682 	/*
683 	 * Number of TX timeouts for this queue
684 	 * (/sys/class/net/DEV/Q/trans_timeout)
685 	 */
686 	atomic_long_t		trans_timeout;
687 
688 	/* Subordinate device that the queue has been assigned to */
689 	struct net_device	*sb_dev;
690 #ifdef CONFIG_XDP_SOCKETS
691 	struct xsk_buff_pool    *pool;
692 #endif
693 
694 /*
695  * write-mostly part
696  */
697 #ifdef CONFIG_BQL
698 	struct dql		dql;
699 #endif
700 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
701 	int			xmit_lock_owner;
702 	/*
703 	 * Time (in jiffies) of last Tx
704 	 */
705 	unsigned long		trans_start;
706 
707 	unsigned long		state;
708 
709 /*
710  * slow- / control-path part
711  */
712 	/* NAPI instance for the queue
713 	 * Readers and writers must hold RTNL
714 	 */
715 	struct napi_struct	*napi;
716 
717 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
718 	int			numa_node;
719 #endif
720 } ____cacheline_aligned_in_smp;
721 
722 extern int sysctl_fb_tunnels_only_for_init_net;
723 extern int sysctl_devconf_inherit_init_net;
724 
725 /*
726  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
727  *                                     == 1 : For initns only
728  *                                     == 2 : For none.
729  */
730 static inline bool net_has_fallback_tunnels(const struct net *net)
731 {
732 #if IS_ENABLED(CONFIG_SYSCTL)
733 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
734 
735 	return !fb_tunnels_only_for_init_net ||
736 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
737 #else
738 	return true;
739 #endif
740 }
741 
742 static inline int net_inherit_devconf(void)
743 {
744 #if IS_ENABLED(CONFIG_SYSCTL)
745 	return READ_ONCE(sysctl_devconf_inherit_init_net);
746 #else
747 	return 0;
748 #endif
749 }
750 
751 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
752 {
753 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
754 	return q->numa_node;
755 #else
756 	return NUMA_NO_NODE;
757 #endif
758 }
759 
760 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
761 {
762 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
763 	q->numa_node = node;
764 #endif
765 }
766 
767 #ifdef CONFIG_RFS_ACCEL
768 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
769 			 u16 filter_id);
770 #endif
771 
772 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
773 enum xps_map_type {
774 	XPS_CPUS = 0,
775 	XPS_RXQS,
776 	XPS_MAPS_MAX,
777 };
778 
779 #ifdef CONFIG_XPS
780 /*
781  * This structure holds an XPS map which can be of variable length.  The
782  * map is an array of queues.
783  */
784 struct xps_map {
785 	unsigned int len;
786 	unsigned int alloc_len;
787 	struct rcu_head rcu;
788 	u16 queues[];
789 };
790 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
791 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
792        - sizeof(struct xps_map)) / sizeof(u16))
793 
794 /*
795  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
796  *
797  * We keep track of the number of cpus/rxqs used when the struct is allocated,
798  * in nr_ids. This will help not accessing out-of-bound memory.
799  *
800  * We keep track of the number of traffic classes used when the struct is
801  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
802  * not crossing its upper bound, as the original dev->num_tc can be updated in
803  * the meantime.
804  */
805 struct xps_dev_maps {
806 	struct rcu_head rcu;
807 	unsigned int nr_ids;
808 	s16 num_tc;
809 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
810 };
811 
812 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
813 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
814 
815 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
816 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
817 
818 #endif /* CONFIG_XPS */
819 
820 #define TC_MAX_QUEUE	16
821 #define TC_BITMASK	15
822 /* HW offloaded queuing disciplines txq count and offset maps */
823 struct netdev_tc_txq {
824 	u16 count;
825 	u16 offset;
826 };
827 
828 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
829 /*
830  * This structure is to hold information about the device
831  * configured to run FCoE protocol stack.
832  */
833 struct netdev_fcoe_hbainfo {
834 	char	manufacturer[64];
835 	char	serial_number[64];
836 	char	hardware_version[64];
837 	char	driver_version[64];
838 	char	optionrom_version[64];
839 	char	firmware_version[64];
840 	char	model[256];
841 	char	model_description[256];
842 };
843 #endif
844 
845 #define MAX_PHYS_ITEM_ID_LEN 32
846 
847 /* This structure holds a unique identifier to identify some
848  * physical item (port for example) used by a netdevice.
849  */
850 struct netdev_phys_item_id {
851 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
852 	unsigned char id_len;
853 };
854 
855 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
856 					    struct netdev_phys_item_id *b)
857 {
858 	return a->id_len == b->id_len &&
859 	       memcmp(a->id, b->id, a->id_len) == 0;
860 }
861 
862 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
863 				       struct sk_buff *skb,
864 				       struct net_device *sb_dev);
865 
866 enum net_device_path_type {
867 	DEV_PATH_ETHERNET = 0,
868 	DEV_PATH_VLAN,
869 	DEV_PATH_BRIDGE,
870 	DEV_PATH_PPPOE,
871 	DEV_PATH_DSA,
872 	DEV_PATH_MTK_WDMA,
873 };
874 
875 struct net_device_path {
876 	enum net_device_path_type	type;
877 	const struct net_device		*dev;
878 	union {
879 		struct {
880 			u16		id;
881 			__be16		proto;
882 			u8		h_dest[ETH_ALEN];
883 		} encap;
884 		struct {
885 			enum {
886 				DEV_PATH_BR_VLAN_KEEP,
887 				DEV_PATH_BR_VLAN_TAG,
888 				DEV_PATH_BR_VLAN_UNTAG,
889 				DEV_PATH_BR_VLAN_UNTAG_HW,
890 			}		vlan_mode;
891 			u16		vlan_id;
892 			__be16		vlan_proto;
893 		} bridge;
894 		struct {
895 			int port;
896 			u16 proto;
897 		} dsa;
898 		struct {
899 			u8 wdma_idx;
900 			u8 queue;
901 			u16 wcid;
902 			u8 bss;
903 			u8 amsdu;
904 		} mtk_wdma;
905 	};
906 };
907 
908 #define NET_DEVICE_PATH_STACK_MAX	5
909 #define NET_DEVICE_PATH_VLAN_MAX	2
910 
911 struct net_device_path_stack {
912 	int			num_paths;
913 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
914 };
915 
916 struct net_device_path_ctx {
917 	const struct net_device *dev;
918 	u8			daddr[ETH_ALEN];
919 
920 	int			num_vlans;
921 	struct {
922 		u16		id;
923 		__be16		proto;
924 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
925 };
926 
927 enum tc_setup_type {
928 	TC_QUERY_CAPS,
929 	TC_SETUP_QDISC_MQPRIO,
930 	TC_SETUP_CLSU32,
931 	TC_SETUP_CLSFLOWER,
932 	TC_SETUP_CLSMATCHALL,
933 	TC_SETUP_CLSBPF,
934 	TC_SETUP_BLOCK,
935 	TC_SETUP_QDISC_CBS,
936 	TC_SETUP_QDISC_RED,
937 	TC_SETUP_QDISC_PRIO,
938 	TC_SETUP_QDISC_MQ,
939 	TC_SETUP_QDISC_ETF,
940 	TC_SETUP_ROOT_QDISC,
941 	TC_SETUP_QDISC_GRED,
942 	TC_SETUP_QDISC_TAPRIO,
943 	TC_SETUP_FT,
944 	TC_SETUP_QDISC_ETS,
945 	TC_SETUP_QDISC_TBF,
946 	TC_SETUP_QDISC_FIFO,
947 	TC_SETUP_QDISC_HTB,
948 	TC_SETUP_ACT,
949 };
950 
951 /* These structures hold the attributes of bpf state that are being passed
952  * to the netdevice through the bpf op.
953  */
954 enum bpf_netdev_command {
955 	/* Set or clear a bpf program used in the earliest stages of packet
956 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
957 	 * is responsible for calling bpf_prog_put on any old progs that are
958 	 * stored. In case of error, the callee need not release the new prog
959 	 * reference, but on success it takes ownership and must bpf_prog_put
960 	 * when it is no longer used.
961 	 */
962 	XDP_SETUP_PROG,
963 	XDP_SETUP_PROG_HW,
964 	/* BPF program for offload callbacks, invoked at program load time. */
965 	BPF_OFFLOAD_MAP_ALLOC,
966 	BPF_OFFLOAD_MAP_FREE,
967 	XDP_SETUP_XSK_POOL,
968 };
969 
970 struct bpf_prog_offload_ops;
971 struct netlink_ext_ack;
972 struct xdp_umem;
973 struct xdp_dev_bulk_queue;
974 struct bpf_xdp_link;
975 
976 enum bpf_xdp_mode {
977 	XDP_MODE_SKB = 0,
978 	XDP_MODE_DRV = 1,
979 	XDP_MODE_HW = 2,
980 	__MAX_XDP_MODE
981 };
982 
983 struct bpf_xdp_entity {
984 	struct bpf_prog *prog;
985 	struct bpf_xdp_link *link;
986 };
987 
988 struct netdev_bpf {
989 	enum bpf_netdev_command command;
990 	union {
991 		/* XDP_SETUP_PROG */
992 		struct {
993 			u32 flags;
994 			struct bpf_prog *prog;
995 			struct netlink_ext_ack *extack;
996 		};
997 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
998 		struct {
999 			struct bpf_offloaded_map *offmap;
1000 		};
1001 		/* XDP_SETUP_XSK_POOL */
1002 		struct {
1003 			struct xsk_buff_pool *pool;
1004 			u16 queue_id;
1005 		} xsk;
1006 	};
1007 };
1008 
1009 /* Flags for ndo_xsk_wakeup. */
1010 #define XDP_WAKEUP_RX (1 << 0)
1011 #define XDP_WAKEUP_TX (1 << 1)
1012 
1013 #ifdef CONFIG_XFRM_OFFLOAD
1014 struct xfrmdev_ops {
1015 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1016 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1017 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1018 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1019 				       struct xfrm_state *x);
1020 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1021 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1022 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1023 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1024 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1025 };
1026 #endif
1027 
1028 struct dev_ifalias {
1029 	struct rcu_head rcuhead;
1030 	char ifalias[];
1031 };
1032 
1033 struct devlink;
1034 struct tlsdev_ops;
1035 
1036 struct netdev_net_notifier {
1037 	struct list_head list;
1038 	struct notifier_block *nb;
1039 };
1040 
1041 /*
1042  * This structure defines the management hooks for network devices.
1043  * The following hooks can be defined; unless noted otherwise, they are
1044  * optional and can be filled with a null pointer.
1045  *
1046  * int (*ndo_init)(struct net_device *dev);
1047  *     This function is called once when a network device is registered.
1048  *     The network device can use this for any late stage initialization
1049  *     or semantic validation. It can fail with an error code which will
1050  *     be propagated back to register_netdev.
1051  *
1052  * void (*ndo_uninit)(struct net_device *dev);
1053  *     This function is called when device is unregistered or when registration
1054  *     fails. It is not called if init fails.
1055  *
1056  * int (*ndo_open)(struct net_device *dev);
1057  *     This function is called when a network device transitions to the up
1058  *     state.
1059  *
1060  * int (*ndo_stop)(struct net_device *dev);
1061  *     This function is called when a network device transitions to the down
1062  *     state.
1063  *
1064  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1065  *                               struct net_device *dev);
1066  *	Called when a packet needs to be transmitted.
1067  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1068  *	the queue before that can happen; it's for obsolete devices and weird
1069  *	corner cases, but the stack really does a non-trivial amount
1070  *	of useless work if you return NETDEV_TX_BUSY.
1071  *	Required; cannot be NULL.
1072  *
1073  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1074  *					   struct net_device *dev
1075  *					   netdev_features_t features);
1076  *	Called by core transmit path to determine if device is capable of
1077  *	performing offload operations on a given packet. This is to give
1078  *	the device an opportunity to implement any restrictions that cannot
1079  *	be otherwise expressed by feature flags. The check is called with
1080  *	the set of features that the stack has calculated and it returns
1081  *	those the driver believes to be appropriate.
1082  *
1083  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1084  *                         struct net_device *sb_dev);
1085  *	Called to decide which queue to use when device supports multiple
1086  *	transmit queues.
1087  *
1088  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1089  *	This function is called to allow device receiver to make
1090  *	changes to configuration when multicast or promiscuous is enabled.
1091  *
1092  * void (*ndo_set_rx_mode)(struct net_device *dev);
1093  *	This function is called device changes address list filtering.
1094  *	If driver handles unicast address filtering, it should set
1095  *	IFF_UNICAST_FLT in its priv_flags.
1096  *
1097  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1098  *	This function  is called when the Media Access Control address
1099  *	needs to be changed. If this interface is not defined, the
1100  *	MAC address can not be changed.
1101  *
1102  * int (*ndo_validate_addr)(struct net_device *dev);
1103  *	Test if Media Access Control address is valid for the device.
1104  *
1105  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1106  *	Old-style ioctl entry point. This is used internally by the
1107  *	ieee802154 subsystem but is no longer called by the device
1108  *	ioctl handler.
1109  *
1110  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1111  *	Used by the bonding driver for its device specific ioctls:
1112  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1113  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1114  *
1115  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1116  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1117  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1118  *
1119  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1120  *	Used to set network devices bus interface parameters. This interface
1121  *	is retained for legacy reasons; new devices should use the bus
1122  *	interface (PCI) for low level management.
1123  *
1124  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1125  *	Called when a user wants to change the Maximum Transfer Unit
1126  *	of a device.
1127  *
1128  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1129  *	Callback used when the transmitter has not made any progress
1130  *	for dev->watchdog ticks.
1131  *
1132  * void (*ndo_get_stats64)(struct net_device *dev,
1133  *                         struct rtnl_link_stats64 *storage);
1134  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1135  *	Called when a user wants to get the network device usage
1136  *	statistics. Drivers must do one of the following:
1137  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1138  *	   rtnl_link_stats64 structure passed by the caller.
1139  *	2. Define @ndo_get_stats to update a net_device_stats structure
1140  *	   (which should normally be dev->stats) and return a pointer to
1141  *	   it. The structure may be changed asynchronously only if each
1142  *	   field is written atomically.
1143  *	3. Update dev->stats asynchronously and atomically, and define
1144  *	   neither operation.
1145  *
1146  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1147  *	Return true if this device supports offload stats of this attr_id.
1148  *
1149  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1150  *	void *attr_data)
1151  *	Get statistics for offload operations by attr_id. Write it into the
1152  *	attr_data pointer.
1153  *
1154  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1155  *	If device supports VLAN filtering this function is called when a
1156  *	VLAN id is registered.
1157  *
1158  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1159  *	If device supports VLAN filtering this function is called when a
1160  *	VLAN id is unregistered.
1161  *
1162  * void (*ndo_poll_controller)(struct net_device *dev);
1163  *
1164  *	SR-IOV management functions.
1165  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1166  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1167  *			  u8 qos, __be16 proto);
1168  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1169  *			  int max_tx_rate);
1170  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1171  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1172  * int (*ndo_get_vf_config)(struct net_device *dev,
1173  *			    int vf, struct ifla_vf_info *ivf);
1174  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1175  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1176  *			  struct nlattr *port[]);
1177  *
1178  *      Enable or disable the VF ability to query its RSS Redirection Table and
1179  *      Hash Key. This is needed since on some devices VF share this information
1180  *      with PF and querying it may introduce a theoretical security risk.
1181  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1182  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1183  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1184  *		       void *type_data);
1185  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1186  *	This is always called from the stack with the rtnl lock held and netif
1187  *	tx queues stopped. This allows the netdevice to perform queue
1188  *	management safely.
1189  *
1190  *	Fiber Channel over Ethernet (FCoE) offload functions.
1191  * int (*ndo_fcoe_enable)(struct net_device *dev);
1192  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1193  *	so the underlying device can perform whatever needed configuration or
1194  *	initialization to support acceleration of FCoE traffic.
1195  *
1196  * int (*ndo_fcoe_disable)(struct net_device *dev);
1197  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1198  *	so the underlying device can perform whatever needed clean-ups to
1199  *	stop supporting acceleration of FCoE traffic.
1200  *
1201  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1202  *			     struct scatterlist *sgl, unsigned int sgc);
1203  *	Called when the FCoE Initiator wants to initialize an I/O that
1204  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1205  *	perform necessary setup and returns 1 to indicate the device is set up
1206  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1207  *
1208  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1209  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1210  *	indicated by the FC exchange id 'xid', so the underlying device can
1211  *	clean up and reuse resources for later DDP requests.
1212  *
1213  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1214  *			      struct scatterlist *sgl, unsigned int sgc);
1215  *	Called when the FCoE Target wants to initialize an I/O that
1216  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1217  *	perform necessary setup and returns 1 to indicate the device is set up
1218  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1219  *
1220  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1221  *			       struct netdev_fcoe_hbainfo *hbainfo);
1222  *	Called when the FCoE Protocol stack wants information on the underlying
1223  *	device. This information is utilized by the FCoE protocol stack to
1224  *	register attributes with Fiber Channel management service as per the
1225  *	FC-GS Fabric Device Management Information(FDMI) specification.
1226  *
1227  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1228  *	Called when the underlying device wants to override default World Wide
1229  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1230  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1231  *	protocol stack to use.
1232  *
1233  *	RFS acceleration.
1234  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1235  *			    u16 rxq_index, u32 flow_id);
1236  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1237  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1238  *	Return the filter ID on success, or a negative error code.
1239  *
1240  *	Slave management functions (for bridge, bonding, etc).
1241  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1242  *	Called to make another netdev an underling.
1243  *
1244  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1245  *	Called to release previously enslaved netdev.
1246  *
1247  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1248  *					    struct sk_buff *skb,
1249  *					    bool all_slaves);
1250  *	Get the xmit slave of master device. If all_slaves is true, function
1251  *	assume all the slaves can transmit.
1252  *
1253  *      Feature/offload setting functions.
1254  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1255  *		netdev_features_t features);
1256  *	Adjusts the requested feature flags according to device-specific
1257  *	constraints, and returns the resulting flags. Must not modify
1258  *	the device state.
1259  *
1260  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1261  *	Called to update device configuration to new features. Passed
1262  *	feature set might be less than what was returned by ndo_fix_features()).
1263  *	Must return >0 or -errno if it changed dev->features itself.
1264  *
1265  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1266  *		      struct net_device *dev,
1267  *		      const unsigned char *addr, u16 vid, u16 flags,
1268  *		      bool *notified, struct netlink_ext_ack *extack);
1269  *	Adds an FDB entry to dev for addr.
1270  *	Callee shall set *notified to true if it sent any appropriate
1271  *	notification(s). Otherwise core will send a generic one.
1272  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1273  *		      struct net_device *dev,
1274  *		      const unsigned char *addr, u16 vid
1275  *		      bool *notified, struct netlink_ext_ack *extack);
1276  *	Deletes the FDB entry from dev corresponding to addr.
1277  *	Callee shall set *notified to true if it sent any appropriate
1278  *	notification(s). Otherwise core will send a generic one.
1279  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1280  *			   struct netlink_ext_ack *extack);
1281  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1282  *		       struct net_device *dev, struct net_device *filter_dev,
1283  *		       int *idx)
1284  *	Used to add FDB entries to dump requests. Implementers should add
1285  *	entries to skb and update idx with the number of entries.
1286  *
1287  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1288  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1289  *	Adds an MDB entry to dev.
1290  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1291  *		      struct netlink_ext_ack *extack);
1292  *	Deletes the MDB entry from dev.
1293  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1294  *			   struct netlink_ext_ack *extack);
1295  *	Bulk deletes MDB entries from dev.
1296  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1297  *		       struct netlink_callback *cb);
1298  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1299  *	callback is used by core rtnetlink code.
1300  *
1301  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1302  *			     u16 flags, struct netlink_ext_ack *extack)
1303  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1304  *			     struct net_device *dev, u32 filter_mask,
1305  *			     int nlflags)
1306  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1307  *			     u16 flags);
1308  *
1309  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1310  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1311  *	which do not represent real hardware may define this to allow their
1312  *	userspace components to manage their virtual carrier state. Devices
1313  *	that determine carrier state from physical hardware properties (eg
1314  *	network cables) or protocol-dependent mechanisms (eg
1315  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1316  *
1317  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1318  *			       struct netdev_phys_item_id *ppid);
1319  *	Called to get ID of physical port of this device. If driver does
1320  *	not implement this, it is assumed that the hw is not able to have
1321  *	multiple net devices on single physical port.
1322  *
1323  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1324  *				 struct netdev_phys_item_id *ppid)
1325  *	Called to get the parent ID of the physical port of this device.
1326  *
1327  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1328  *				 struct net_device *dev)
1329  *	Called by upper layer devices to accelerate switching or other
1330  *	station functionality into hardware. 'pdev is the lowerdev
1331  *	to use for the offload and 'dev' is the net device that will
1332  *	back the offload. Returns a pointer to the private structure
1333  *	the upper layer will maintain.
1334  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1335  *	Called by upper layer device to delete the station created
1336  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1337  *	the station and priv is the structure returned by the add
1338  *	operation.
1339  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1340  *			     int queue_index, u32 maxrate);
1341  *	Called when a user wants to set a max-rate limitation of specific
1342  *	TX queue.
1343  * int (*ndo_get_iflink)(const struct net_device *dev);
1344  *	Called to get the iflink value of this device.
1345  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1346  *	This function is used to get egress tunnel information for given skb.
1347  *	This is useful for retrieving outer tunnel header parameters while
1348  *	sampling packet.
1349  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1350  *	This function is used to specify the headroom that the skb must
1351  *	consider when allocation skb during packet reception. Setting
1352  *	appropriate rx headroom value allows avoiding skb head copy on
1353  *	forward. Setting a negative value resets the rx headroom to the
1354  *	default value.
1355  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1356  *	This function is used to set or query state related to XDP on the
1357  *	netdevice and manage BPF offload. See definition of
1358  *	enum bpf_netdev_command for details.
1359  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1360  *			u32 flags);
1361  *	This function is used to submit @n XDP packets for transmit on a
1362  *	netdevice. Returns number of frames successfully transmitted, frames
1363  *	that got dropped are freed/returned via xdp_return_frame().
1364  *	Returns negative number, means general error invoking ndo, meaning
1365  *	no frames were xmit'ed and core-caller will free all frames.
1366  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1367  *					        struct xdp_buff *xdp);
1368  *      Get the xmit slave of master device based on the xdp_buff.
1369  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1370  *      This function is used to wake up the softirq, ksoftirqd or kthread
1371  *	responsible for sending and/or receiving packets on a specific
1372  *	queue id bound to an AF_XDP socket. The flags field specifies if
1373  *	only RX, only Tx, or both should be woken up using the flags
1374  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1375  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1376  *			 int cmd);
1377  *	Add, change, delete or get information on an IPv4 tunnel.
1378  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1379  *	If a device is paired with a peer device, return the peer instance.
1380  *	The caller must be under RCU read context.
1381  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1382  *     Get the forwarding path to reach the real device from the HW destination address
1383  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1384  *			     const struct skb_shared_hwtstamps *hwtstamps,
1385  *			     bool cycles);
1386  *	Get hardware timestamp based on normal/adjustable time or free running
1387  *	cycle counter. This function is required if physical clock supports a
1388  *	free running cycle counter.
1389  *
1390  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1391  *			   struct kernel_hwtstamp_config *kernel_config);
1392  *	Get the currently configured hardware timestamping parameters for the
1393  *	NIC device.
1394  *
1395  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1396  *			   struct kernel_hwtstamp_config *kernel_config,
1397  *			   struct netlink_ext_ack *extack);
1398  *	Change the hardware timestamping parameters for NIC device.
1399  */
1400 struct net_device_ops {
1401 	int			(*ndo_init)(struct net_device *dev);
1402 	void			(*ndo_uninit)(struct net_device *dev);
1403 	int			(*ndo_open)(struct net_device *dev);
1404 	int			(*ndo_stop)(struct net_device *dev);
1405 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1406 						  struct net_device *dev);
1407 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1408 						      struct net_device *dev,
1409 						      netdev_features_t features);
1410 	u16			(*ndo_select_queue)(struct net_device *dev,
1411 						    struct sk_buff *skb,
1412 						    struct net_device *sb_dev);
1413 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1414 						       int flags);
1415 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1416 	int			(*ndo_set_mac_address)(struct net_device *dev,
1417 						       void *addr);
1418 	int			(*ndo_validate_addr)(struct net_device *dev);
1419 	int			(*ndo_do_ioctl)(struct net_device *dev,
1420 					        struct ifreq *ifr, int cmd);
1421 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1422 						 struct ifreq *ifr, int cmd);
1423 	int			(*ndo_siocbond)(struct net_device *dev,
1424 						struct ifreq *ifr, int cmd);
1425 	int			(*ndo_siocwandev)(struct net_device *dev,
1426 						  struct if_settings *ifs);
1427 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1428 						      struct ifreq *ifr,
1429 						      void __user *data, int cmd);
1430 	int			(*ndo_set_config)(struct net_device *dev,
1431 					          struct ifmap *map);
1432 	int			(*ndo_change_mtu)(struct net_device *dev,
1433 						  int new_mtu);
1434 	int			(*ndo_neigh_setup)(struct net_device *dev,
1435 						   struct neigh_parms *);
1436 	void			(*ndo_tx_timeout) (struct net_device *dev,
1437 						   unsigned int txqueue);
1438 
1439 	void			(*ndo_get_stats64)(struct net_device *dev,
1440 						   struct rtnl_link_stats64 *storage);
1441 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1442 	int			(*ndo_get_offload_stats)(int attr_id,
1443 							 const struct net_device *dev,
1444 							 void *attr_data);
1445 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1446 
1447 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1448 						       __be16 proto, u16 vid);
1449 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1450 						        __be16 proto, u16 vid);
1451 #ifdef CONFIG_NET_POLL_CONTROLLER
1452 	void                    (*ndo_poll_controller)(struct net_device *dev);
1453 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1454 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1455 #endif
1456 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1457 						  int queue, u8 *mac);
1458 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1459 						   int queue, u16 vlan,
1460 						   u8 qos, __be16 proto);
1461 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1462 						   int vf, int min_tx_rate,
1463 						   int max_tx_rate);
1464 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1465 						       int vf, bool setting);
1466 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1467 						    int vf, bool setting);
1468 	int			(*ndo_get_vf_config)(struct net_device *dev,
1469 						     int vf,
1470 						     struct ifla_vf_info *ivf);
1471 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1472 							 int vf, int link_state);
1473 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1474 						    int vf,
1475 						    struct ifla_vf_stats
1476 						    *vf_stats);
1477 	int			(*ndo_set_vf_port)(struct net_device *dev,
1478 						   int vf,
1479 						   struct nlattr *port[]);
1480 	int			(*ndo_get_vf_port)(struct net_device *dev,
1481 						   int vf, struct sk_buff *skb);
1482 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1483 						   int vf,
1484 						   struct ifla_vf_guid *node_guid,
1485 						   struct ifla_vf_guid *port_guid);
1486 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1487 						   int vf, u64 guid,
1488 						   int guid_type);
1489 	int			(*ndo_set_vf_rss_query_en)(
1490 						   struct net_device *dev,
1491 						   int vf, bool setting);
1492 	int			(*ndo_setup_tc)(struct net_device *dev,
1493 						enum tc_setup_type type,
1494 						void *type_data);
1495 #if IS_ENABLED(CONFIG_FCOE)
1496 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1497 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1498 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1499 						      u16 xid,
1500 						      struct scatterlist *sgl,
1501 						      unsigned int sgc);
1502 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1503 						     u16 xid);
1504 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1505 						       u16 xid,
1506 						       struct scatterlist *sgl,
1507 						       unsigned int sgc);
1508 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1509 							struct netdev_fcoe_hbainfo *hbainfo);
1510 #endif
1511 
1512 #if IS_ENABLED(CONFIG_LIBFCOE)
1513 #define NETDEV_FCOE_WWNN 0
1514 #define NETDEV_FCOE_WWPN 1
1515 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1516 						    u64 *wwn, int type);
1517 #endif
1518 
1519 #ifdef CONFIG_RFS_ACCEL
1520 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1521 						     const struct sk_buff *skb,
1522 						     u16 rxq_index,
1523 						     u32 flow_id);
1524 #endif
1525 	int			(*ndo_add_slave)(struct net_device *dev,
1526 						 struct net_device *slave_dev,
1527 						 struct netlink_ext_ack *extack);
1528 	int			(*ndo_del_slave)(struct net_device *dev,
1529 						 struct net_device *slave_dev);
1530 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1531 						      struct sk_buff *skb,
1532 						      bool all_slaves);
1533 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1534 							struct sock *sk);
1535 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1536 						    netdev_features_t features);
1537 	int			(*ndo_set_features)(struct net_device *dev,
1538 						    netdev_features_t features);
1539 	int			(*ndo_neigh_construct)(struct net_device *dev,
1540 						       struct neighbour *n);
1541 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1542 						     struct neighbour *n);
1543 
1544 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1545 					       struct nlattr *tb[],
1546 					       struct net_device *dev,
1547 					       const unsigned char *addr,
1548 					       u16 vid,
1549 					       u16 flags,
1550 					       bool *notified,
1551 					       struct netlink_ext_ack *extack);
1552 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1553 					       struct nlattr *tb[],
1554 					       struct net_device *dev,
1555 					       const unsigned char *addr,
1556 					       u16 vid,
1557 					       bool *notified,
1558 					       struct netlink_ext_ack *extack);
1559 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1560 						    struct net_device *dev,
1561 						    struct netlink_ext_ack *extack);
1562 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1563 						struct netlink_callback *cb,
1564 						struct net_device *dev,
1565 						struct net_device *filter_dev,
1566 						int *idx);
1567 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1568 					       struct nlattr *tb[],
1569 					       struct net_device *dev,
1570 					       const unsigned char *addr,
1571 					       u16 vid, u32 portid, u32 seq,
1572 					       struct netlink_ext_ack *extack);
1573 	int			(*ndo_mdb_add)(struct net_device *dev,
1574 					       struct nlattr *tb[],
1575 					       u16 nlmsg_flags,
1576 					       struct netlink_ext_ack *extack);
1577 	int			(*ndo_mdb_del)(struct net_device *dev,
1578 					       struct nlattr *tb[],
1579 					       struct netlink_ext_ack *extack);
1580 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1581 						    struct nlattr *tb[],
1582 						    struct netlink_ext_ack *extack);
1583 	int			(*ndo_mdb_dump)(struct net_device *dev,
1584 						struct sk_buff *skb,
1585 						struct netlink_callback *cb);
1586 	int			(*ndo_mdb_get)(struct net_device *dev,
1587 					       struct nlattr *tb[], u32 portid,
1588 					       u32 seq,
1589 					       struct netlink_ext_ack *extack);
1590 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1591 						      struct nlmsghdr *nlh,
1592 						      u16 flags,
1593 						      struct netlink_ext_ack *extack);
1594 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1595 						      u32 pid, u32 seq,
1596 						      struct net_device *dev,
1597 						      u32 filter_mask,
1598 						      int nlflags);
1599 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1600 						      struct nlmsghdr *nlh,
1601 						      u16 flags);
1602 	int			(*ndo_change_carrier)(struct net_device *dev,
1603 						      bool new_carrier);
1604 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1605 							struct netdev_phys_item_id *ppid);
1606 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1607 							  struct netdev_phys_item_id *ppid);
1608 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1609 							  char *name, size_t len);
1610 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1611 							struct net_device *dev);
1612 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1613 							void *priv);
1614 
1615 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1616 						      int queue_index,
1617 						      u32 maxrate);
1618 	int			(*ndo_get_iflink)(const struct net_device *dev);
1619 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1620 						       struct sk_buff *skb);
1621 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1622 						       int needed_headroom);
1623 	int			(*ndo_bpf)(struct net_device *dev,
1624 					   struct netdev_bpf *bpf);
1625 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1626 						struct xdp_frame **xdp,
1627 						u32 flags);
1628 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1629 							  struct xdp_buff *xdp);
1630 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1631 						  u32 queue_id, u32 flags);
1632 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1633 						  struct ip_tunnel_parm_kern *p,
1634 						  int cmd);
1635 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1636 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1637                                                          struct net_device_path *path);
1638 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1639 						  const struct skb_shared_hwtstamps *hwtstamps,
1640 						  bool cycles);
1641 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1642 						    struct kernel_hwtstamp_config *kernel_config);
1643 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1644 						    struct kernel_hwtstamp_config *kernel_config,
1645 						    struct netlink_ext_ack *extack);
1646 
1647 #if IS_ENABLED(CONFIG_NET_SHAPER)
1648 	/**
1649 	 * @net_shaper_ops: Device shaping offload operations
1650 	 * see include/net/net_shapers.h
1651 	 */
1652 	const struct net_shaper_ops *net_shaper_ops;
1653 #endif
1654 };
1655 
1656 /**
1657  * enum netdev_priv_flags - &struct net_device priv_flags
1658  *
1659  * These are the &struct net_device, they are only set internally
1660  * by drivers and used in the kernel. These flags are invisible to
1661  * userspace; this means that the order of these flags can change
1662  * during any kernel release.
1663  *
1664  * You should add bitfield booleans after either net_device::priv_flags
1665  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1666  *
1667  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1668  * @IFF_EBRIDGE: Ethernet bridging device
1669  * @IFF_BONDING: bonding master or slave
1670  * @IFF_ISATAP: ISATAP interface (RFC4214)
1671  * @IFF_WAN_HDLC: WAN HDLC device
1672  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1673  *	release skb->dst
1674  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1675  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1676  * @IFF_MACVLAN_PORT: device used as macvlan port
1677  * @IFF_BRIDGE_PORT: device used as bridge port
1678  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1679  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1680  * @IFF_UNICAST_FLT: Supports unicast filtering
1681  * @IFF_TEAM_PORT: device used as team port
1682  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1683  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1684  *	change when it's running
1685  * @IFF_MACVLAN: Macvlan device
1686  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1687  *	underlying stacked devices
1688  * @IFF_L3MDEV_MASTER: device is an L3 master device
1689  * @IFF_NO_QUEUE: device can run without qdisc attached
1690  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1691  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1692  * @IFF_TEAM: device is a team device
1693  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1694  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1695  *	entity (i.e. the master device for bridged veth)
1696  * @IFF_MACSEC: device is a MACsec device
1697  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1698  * @IFF_FAILOVER: device is a failover master device
1699  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1700  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1701  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1702  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1703  *	skb_headlen(skb) == 0 (data starts from frag0)
1704  */
1705 enum netdev_priv_flags {
1706 	IFF_802_1Q_VLAN			= 1<<0,
1707 	IFF_EBRIDGE			= 1<<1,
1708 	IFF_BONDING			= 1<<2,
1709 	IFF_ISATAP			= 1<<3,
1710 	IFF_WAN_HDLC			= 1<<4,
1711 	IFF_XMIT_DST_RELEASE		= 1<<5,
1712 	IFF_DONT_BRIDGE			= 1<<6,
1713 	IFF_DISABLE_NETPOLL		= 1<<7,
1714 	IFF_MACVLAN_PORT		= 1<<8,
1715 	IFF_BRIDGE_PORT			= 1<<9,
1716 	IFF_OVS_DATAPATH		= 1<<10,
1717 	IFF_TX_SKB_SHARING		= 1<<11,
1718 	IFF_UNICAST_FLT			= 1<<12,
1719 	IFF_TEAM_PORT			= 1<<13,
1720 	IFF_SUPP_NOFCS			= 1<<14,
1721 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1722 	IFF_MACVLAN			= 1<<16,
1723 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1724 	IFF_L3MDEV_MASTER		= 1<<18,
1725 	IFF_NO_QUEUE			= 1<<19,
1726 	IFF_OPENVSWITCH			= 1<<20,
1727 	IFF_L3MDEV_SLAVE		= 1<<21,
1728 	IFF_TEAM			= 1<<22,
1729 	IFF_RXFH_CONFIGURED		= 1<<23,
1730 	IFF_PHONY_HEADROOM		= 1<<24,
1731 	IFF_MACSEC			= 1<<25,
1732 	IFF_NO_RX_HANDLER		= 1<<26,
1733 	IFF_FAILOVER			= 1<<27,
1734 	IFF_FAILOVER_SLAVE		= 1<<28,
1735 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1736 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1737 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1738 };
1739 
1740 /* Specifies the type of the struct net_device::ml_priv pointer */
1741 enum netdev_ml_priv_type {
1742 	ML_PRIV_NONE,
1743 	ML_PRIV_CAN,
1744 };
1745 
1746 enum netdev_stat_type {
1747 	NETDEV_PCPU_STAT_NONE,
1748 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1749 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1750 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1751 };
1752 
1753 enum netdev_reg_state {
1754 	NETREG_UNINITIALIZED = 0,
1755 	NETREG_REGISTERED,	/* completed register_netdevice */
1756 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1757 	NETREG_UNREGISTERED,	/* completed unregister todo */
1758 	NETREG_RELEASED,	/* called free_netdev */
1759 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1760 };
1761 
1762 /**
1763  *	struct net_device - The DEVICE structure.
1764  *
1765  *	Actually, this whole structure is a big mistake.  It mixes I/O
1766  *	data with strictly "high-level" data, and it has to know about
1767  *	almost every data structure used in the INET module.
1768  *
1769  *	@priv_flags:	flags invisible to userspace defined as bits, see
1770  *			enum netdev_priv_flags for the definitions
1771  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1772  *			drivers. Mainly used by logical interfaces, such as
1773  *			bonding and tunnels
1774  *
1775  *	@name:	This is the first field of the "visible" part of this structure
1776  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1777  *		of the interface.
1778  *
1779  *	@name_node:	Name hashlist node
1780  *	@ifalias:	SNMP alias
1781  *	@mem_end:	Shared memory end
1782  *	@mem_start:	Shared memory start
1783  *	@base_addr:	Device I/O address
1784  *	@irq:		Device IRQ number
1785  *
1786  *	@state:		Generic network queuing layer state, see netdev_state_t
1787  *	@dev_list:	The global list of network devices
1788  *	@napi_list:	List entry used for polling NAPI devices
1789  *	@unreg_list:	List entry  when we are unregistering the
1790  *			device; see the function unregister_netdev
1791  *	@close_list:	List entry used when we are closing the device
1792  *	@ptype_all:     Device-specific packet handlers for all protocols
1793  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1794  *
1795  *	@adj_list:	Directly linked devices, like slaves for bonding
1796  *	@features:	Currently active device features
1797  *	@hw_features:	User-changeable features
1798  *
1799  *	@wanted_features:	User-requested features
1800  *	@vlan_features:		Mask of features inheritable by VLAN devices
1801  *
1802  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1803  *				This field indicates what encapsulation
1804  *				offloads the hardware is capable of doing,
1805  *				and drivers will need to set them appropriately.
1806  *
1807  *	@mpls_features:	Mask of features inheritable by MPLS
1808  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1809  *
1810  *	@ifindex:	interface index
1811  *	@group:		The group the device belongs to
1812  *
1813  *	@stats:		Statistics struct, which was left as a legacy, use
1814  *			rtnl_link_stats64 instead
1815  *
1816  *	@core_stats:	core networking counters,
1817  *			do not use this in drivers
1818  *	@carrier_up_count:	Number of times the carrier has been up
1819  *	@carrier_down_count:	Number of times the carrier has been down
1820  *
1821  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1822  *				instead of ioctl,
1823  *				see <net/iw_handler.h> for details.
1824  *
1825  *	@netdev_ops:	Includes several pointers to callbacks,
1826  *			if one wants to override the ndo_*() functions
1827  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1828  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1829  *	@ethtool_ops:	Management operations
1830  *	@l3mdev_ops:	Layer 3 master device operations
1831  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1832  *			discovery handling. Necessary for e.g. 6LoWPAN.
1833  *	@xfrmdev_ops:	Transformation offload operations
1834  *	@tlsdev_ops:	Transport Layer Security offload operations
1835  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1836  *			of Layer 2 headers.
1837  *
1838  *	@flags:		Interface flags (a la BSD)
1839  *	@xdp_features:	XDP capability supported by the device
1840  *	@gflags:	Global flags ( kept as legacy )
1841  *	@priv_len:	Size of the ->priv flexible array
1842  *	@priv:		Flexible array containing private data
1843  *	@operstate:	RFC2863 operstate
1844  *	@link_mode:	Mapping policy to operstate
1845  *	@if_port:	Selectable AUI, TP, ...
1846  *	@dma:		DMA channel
1847  *	@mtu:		Interface MTU value
1848  *	@min_mtu:	Interface Minimum MTU value
1849  *	@max_mtu:	Interface Maximum MTU value
1850  *	@type:		Interface hardware type
1851  *	@hard_header_len: Maximum hardware header length.
1852  *	@min_header_len:  Minimum hardware header length
1853  *
1854  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1855  *			  cases can this be guaranteed
1856  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1857  *			  cases can this be guaranteed. Some cases also use
1858  *			  LL_MAX_HEADER instead to allocate the skb
1859  *
1860  *	interface address info:
1861  *
1862  * 	@perm_addr:		Permanent hw address
1863  * 	@addr_assign_type:	Hw address assignment type
1864  * 	@addr_len:		Hardware address length
1865  *	@upper_level:		Maximum depth level of upper devices.
1866  *	@lower_level:		Maximum depth level of lower devices.
1867  *	@neigh_priv_len:	Used in neigh_alloc()
1868  * 	@dev_id:		Used to differentiate devices that share
1869  * 				the same link layer address
1870  * 	@dev_port:		Used to differentiate devices that share
1871  * 				the same function
1872  *	@addr_list_lock:	XXX: need comments on this one
1873  *	@name_assign_type:	network interface name assignment type
1874  *	@uc_promisc:		Counter that indicates promiscuous mode
1875  *				has been enabled due to the need to listen to
1876  *				additional unicast addresses in a device that
1877  *				does not implement ndo_set_rx_mode()
1878  *	@uc:			unicast mac addresses
1879  *	@mc:			multicast mac addresses
1880  *	@dev_addrs:		list of device hw addresses
1881  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1882  *	@promiscuity:		Number of times the NIC is told to work in
1883  *				promiscuous mode; if it becomes 0 the NIC will
1884  *				exit promiscuous mode
1885  *	@allmulti:		Counter, enables or disables allmulticast mode
1886  *
1887  *	@vlan_info:	VLAN info
1888  *	@dsa_ptr:	dsa specific data
1889  *	@tipc_ptr:	TIPC specific data
1890  *	@atalk_ptr:	AppleTalk link
1891  *	@ip_ptr:	IPv4 specific data
1892  *	@ip6_ptr:	IPv6 specific data
1893  *	@ax25_ptr:	AX.25 specific data
1894  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1895  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1896  *			 device struct
1897  *	@mpls_ptr:	mpls_dev struct pointer
1898  *	@mctp_ptr:	MCTP specific data
1899  *
1900  *	@dev_addr:	Hw address (before bcast,
1901  *			because most packets are unicast)
1902  *
1903  *	@_rx:			Array of RX queues
1904  *	@num_rx_queues:		Number of RX queues
1905  *				allocated at register_netdev() time
1906  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1907  *	@xdp_prog:		XDP sockets filter program pointer
1908  *
1909  *	@rx_handler:		handler for received packets
1910  *	@rx_handler_data: 	XXX: need comments on this one
1911  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1912  *	@ingress_queue:		XXX: need comments on this one
1913  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1914  *	@broadcast:		hw bcast address
1915  *
1916  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1917  *			indexed by RX queue number. Assigned by driver.
1918  *			This must only be set if the ndo_rx_flow_steer
1919  *			operation is defined
1920  *	@index_hlist:		Device index hash chain
1921  *
1922  *	@_tx:			Array of TX queues
1923  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1924  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1925  *	@qdisc:			Root qdisc from userspace point of view
1926  *	@tx_queue_len:		Max frames per queue allowed
1927  *	@tx_global_lock: 	XXX: need comments on this one
1928  *	@xdp_bulkq:		XDP device bulk queue
1929  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1930  *
1931  *	@xps_maps:	XXX: need comments on this one
1932  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1933  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1934  *	@qdisc_hash:		qdisc hash table
1935  *	@watchdog_timeo:	Represents the timeout that is used by
1936  *				the watchdog (see dev_watchdog())
1937  *	@watchdog_timer:	List of timers
1938  *
1939  *	@proto_down_reason:	reason a netdev interface is held down
1940  *	@pcpu_refcnt:		Number of references to this device
1941  *	@dev_refcnt:		Number of references to this device
1942  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1943  *	@todo_list:		Delayed register/unregister
1944  *	@link_watch_list:	XXX: need comments on this one
1945  *
1946  *	@reg_state:		Register/unregister state machine
1947  *	@dismantle:		Device is going to be freed
1948  *	@rtnl_link_state:	This enum represents the phases of creating
1949  *				a new link
1950  *
1951  *	@needs_free_netdev:	Should unregister perform free_netdev?
1952  *	@priv_destructor:	Called from unregister
1953  *	@npinfo:		XXX: need comments on this one
1954  * 	@nd_net:		Network namespace this network device is inside
1955  *
1956  * 	@ml_priv:	Mid-layer private
1957  *	@ml_priv_type:  Mid-layer private type
1958  *
1959  *	@pcpu_stat_type:	Type of device statistics which the core should
1960  *				allocate/free: none, lstats, tstats, dstats. none
1961  *				means the driver is handling statistics allocation/
1962  *				freeing internally.
1963  *	@lstats:		Loopback statistics: packets, bytes
1964  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1965  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1966  *
1967  *	@garp_port:	GARP
1968  *	@mrp_port:	MRP
1969  *
1970  *	@dm_private:	Drop monitor private
1971  *
1972  *	@dev:		Class/net/name entry
1973  *	@sysfs_groups:	Space for optional device, statistics and wireless
1974  *			sysfs groups
1975  *
1976  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1977  *	@rtnl_link_ops:	Rtnl_link_ops
1978  *	@stat_ops:	Optional ops for queue-aware statistics
1979  *	@queue_mgmt_ops:	Optional ops for queue management
1980  *
1981  *	@gso_max_size:	Maximum size of generic segmentation offload
1982  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1983  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1984  *			NIC for GSO
1985  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1986  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1987  * 				for IPv4.
1988  *
1989  *	@dcbnl_ops:	Data Center Bridging netlink ops
1990  *	@num_tc:	Number of traffic classes in the net device
1991  *	@tc_to_txq:	XXX: need comments on this one
1992  *	@prio_tc_map:	XXX: need comments on this one
1993  *
1994  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1995  *
1996  *	@priomap:	XXX: need comments on this one
1997  *	@link_topo:	Physical link topology tracking attached PHYs
1998  *	@phydev:	Physical device may attach itself
1999  *			for hardware timestamping
2000  *	@sfp_bus:	attached &struct sfp_bus structure.
2001  *
2002  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2003  *
2004  *	@proto_down:	protocol port state information can be sent to the
2005  *			switch driver and used to set the phys state of the
2006  *			switch port.
2007  *
2008  *	@threaded:	napi threaded mode is enabled
2009  *
2010  *	@irq_affinity_auto: driver wants the core to store and re-assign the IRQ
2011  *			    affinity. Set by netif_enable_irq_affinity(), then
2012  *			    the driver must create a persistent napi by
2013  *			    netif_napi_add_config() and finally bind the napi to
2014  *			    IRQ (via netif_napi_set_irq()).
2015  *
2016  *	@rx_cpu_rmap_auto: driver wants the core to manage the ARFS rmap.
2017  *	                   Set by calling netif_enable_cpu_rmap().
2018  *
2019  *	@see_all_hwtstamp_requests: device wants to see calls to
2020  *			ndo_hwtstamp_set() for all timestamp requests
2021  *			regardless of source, even if those aren't
2022  *			HWTSTAMP_SOURCE_NETDEV
2023  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
2024  *	@netns_immutable: interface can't change network namespaces
2025  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
2026  *
2027  *	@net_notifier_list:	List of per-net netdev notifier block
2028  *				that follow this device when it is moved
2029  *				to another network namespace.
2030  *
2031  *	@macsec_ops:    MACsec offloading ops
2032  *
2033  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2034  *				offload capabilities of the device
2035  *	@udp_tunnel_nic:	UDP tunnel offload state
2036  *	@ethtool:	ethtool related state
2037  *	@xdp_state:		stores info on attached XDP BPF programs
2038  *
2039  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2040  *			dev->addr_list_lock.
2041  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2042  *			keep a list of interfaces to be deleted.
2043  *	@gro_max_size:	Maximum size of aggregated packet in generic
2044  *			receive offload (GRO)
2045  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2046  * 				receive offload (GRO), for IPv4.
2047  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2048  *				zero copy driver
2049  *
2050  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2051  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2052  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2053  *	@dev_registered_tracker:	tracker for reference held while
2054  *					registered
2055  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2056  *
2057  *	@devlink_port:	Pointer to related devlink port structure.
2058  *			Assigned by a driver before netdev registration using
2059  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2060  *			during the time netdevice is registered.
2061  *
2062  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2063  *		   where the clock is recovered.
2064  *
2065  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2066  *	@napi_config: An array of napi_config structures containing per-NAPI
2067  *		      settings.
2068  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2069  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2070  *				allow to avoid NIC hard IRQ, on busy queues.
2071  *
2072  *	@neighbours:	List heads pointing to this device's neighbours'
2073  *			dev_list, one per address-family.
2074  *	@hwprov: Tracks which PTP performs hardware packet time stamping.
2075  *
2076  *	FIXME: cleanup struct net_device such that network protocol info
2077  *	moves out.
2078  */
2079 
2080 struct net_device {
2081 	/* Cacheline organization can be found documented in
2082 	 * Documentation/networking/net_cachelines/net_device.rst.
2083 	 * Please update the document when adding new fields.
2084 	 */
2085 
2086 	/* TX read-mostly hotpath */
2087 	__cacheline_group_begin(net_device_read_tx);
2088 	struct_group(priv_flags_fast,
2089 		unsigned long		priv_flags:32;
2090 		unsigned long		lltx:1;
2091 	);
2092 	const struct net_device_ops *netdev_ops;
2093 	const struct header_ops *header_ops;
2094 	struct netdev_queue	*_tx;
2095 	netdev_features_t	gso_partial_features;
2096 	unsigned int		real_num_tx_queues;
2097 	unsigned int		gso_max_size;
2098 	unsigned int		gso_ipv4_max_size;
2099 	u16			gso_max_segs;
2100 	s16			num_tc;
2101 	/* Note : dev->mtu is often read without holding a lock.
2102 	 * Writers usually hold RTNL.
2103 	 * It is recommended to use READ_ONCE() to annotate the reads,
2104 	 * and to use WRITE_ONCE() to annotate the writes.
2105 	 */
2106 	unsigned int		mtu;
2107 	unsigned short		needed_headroom;
2108 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2109 #ifdef CONFIG_XPS
2110 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2111 #endif
2112 #ifdef CONFIG_NETFILTER_EGRESS
2113 	struct nf_hook_entries __rcu *nf_hooks_egress;
2114 #endif
2115 #ifdef CONFIG_NET_XGRESS
2116 	struct bpf_mprog_entry __rcu *tcx_egress;
2117 #endif
2118 	__cacheline_group_end(net_device_read_tx);
2119 
2120 	/* TXRX read-mostly hotpath */
2121 	__cacheline_group_begin(net_device_read_txrx);
2122 	union {
2123 		struct pcpu_lstats __percpu		*lstats;
2124 		struct pcpu_sw_netstats __percpu	*tstats;
2125 		struct pcpu_dstats __percpu		*dstats;
2126 	};
2127 	unsigned long		state;
2128 	unsigned int		flags;
2129 	unsigned short		hard_header_len;
2130 	netdev_features_t	features;
2131 	struct inet6_dev __rcu	*ip6_ptr;
2132 	__cacheline_group_end(net_device_read_txrx);
2133 
2134 	/* RX read-mostly hotpath */
2135 	__cacheline_group_begin(net_device_read_rx);
2136 	struct bpf_prog __rcu	*xdp_prog;
2137 	struct list_head	ptype_specific;
2138 	int			ifindex;
2139 	unsigned int		real_num_rx_queues;
2140 	struct netdev_rx_queue	*_rx;
2141 	unsigned int		gro_max_size;
2142 	unsigned int		gro_ipv4_max_size;
2143 	rx_handler_func_t __rcu	*rx_handler;
2144 	void __rcu		*rx_handler_data;
2145 	possible_net_t			nd_net;
2146 #ifdef CONFIG_NETPOLL
2147 	struct netpoll_info __rcu	*npinfo;
2148 #endif
2149 #ifdef CONFIG_NET_XGRESS
2150 	struct bpf_mprog_entry __rcu *tcx_ingress;
2151 #endif
2152 	__cacheline_group_end(net_device_read_rx);
2153 
2154 	char			name[IFNAMSIZ];
2155 	struct netdev_name_node	*name_node;
2156 	struct dev_ifalias	__rcu *ifalias;
2157 	/*
2158 	 *	I/O specific fields
2159 	 *	FIXME: Merge these and struct ifmap into one
2160 	 */
2161 	unsigned long		mem_end;
2162 	unsigned long		mem_start;
2163 	unsigned long		base_addr;
2164 
2165 	/*
2166 	 *	Some hardware also needs these fields (state,dev_list,
2167 	 *	napi_list,unreg_list,close_list) but they are not
2168 	 *	part of the usual set specified in Space.c.
2169 	 */
2170 
2171 
2172 	struct list_head	dev_list;
2173 	struct list_head	napi_list;
2174 	struct list_head	unreg_list;
2175 	struct list_head	close_list;
2176 	struct list_head	ptype_all;
2177 
2178 	struct {
2179 		struct list_head upper;
2180 		struct list_head lower;
2181 	} adj_list;
2182 
2183 	/* Read-mostly cache-line for fast-path access */
2184 	xdp_features_t		xdp_features;
2185 	const struct xdp_metadata_ops *xdp_metadata_ops;
2186 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2187 	unsigned short		gflags;
2188 
2189 	unsigned short		needed_tailroom;
2190 
2191 	netdev_features_t	hw_features;
2192 	netdev_features_t	wanted_features;
2193 	netdev_features_t	vlan_features;
2194 	netdev_features_t	hw_enc_features;
2195 	netdev_features_t	mpls_features;
2196 
2197 	unsigned int		min_mtu;
2198 	unsigned int		max_mtu;
2199 	unsigned short		type;
2200 	unsigned char		min_header_len;
2201 	unsigned char		name_assign_type;
2202 
2203 	int			group;
2204 
2205 	struct net_device_stats	stats; /* not used by modern drivers */
2206 
2207 	struct net_device_core_stats __percpu *core_stats;
2208 
2209 	/* Stats to monitor link on/off, flapping */
2210 	atomic_t		carrier_up_count;
2211 	atomic_t		carrier_down_count;
2212 
2213 #ifdef CONFIG_WIRELESS_EXT
2214 	const struct iw_handler_def *wireless_handlers;
2215 #endif
2216 	const struct ethtool_ops *ethtool_ops;
2217 #ifdef CONFIG_NET_L3_MASTER_DEV
2218 	const struct l3mdev_ops	*l3mdev_ops;
2219 #endif
2220 #if IS_ENABLED(CONFIG_IPV6)
2221 	const struct ndisc_ops *ndisc_ops;
2222 #endif
2223 
2224 #ifdef CONFIG_XFRM_OFFLOAD
2225 	const struct xfrmdev_ops *xfrmdev_ops;
2226 #endif
2227 
2228 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2229 	const struct tlsdev_ops *tlsdev_ops;
2230 #endif
2231 
2232 	unsigned int		operstate;
2233 	unsigned char		link_mode;
2234 
2235 	unsigned char		if_port;
2236 	unsigned char		dma;
2237 
2238 	/* Interface address info. */
2239 	unsigned char		perm_addr[MAX_ADDR_LEN];
2240 	unsigned char		addr_assign_type;
2241 	unsigned char		addr_len;
2242 	unsigned char		upper_level;
2243 	unsigned char		lower_level;
2244 
2245 	unsigned short		neigh_priv_len;
2246 	unsigned short          dev_id;
2247 	unsigned short          dev_port;
2248 	int			irq;
2249 	u32			priv_len;
2250 
2251 	spinlock_t		addr_list_lock;
2252 
2253 	struct netdev_hw_addr_list	uc;
2254 	struct netdev_hw_addr_list	mc;
2255 	struct netdev_hw_addr_list	dev_addrs;
2256 
2257 #ifdef CONFIG_SYSFS
2258 	struct kset		*queues_kset;
2259 #endif
2260 #ifdef CONFIG_LOCKDEP
2261 	struct list_head	unlink_list;
2262 #endif
2263 	unsigned int		promiscuity;
2264 	unsigned int		allmulti;
2265 	bool			uc_promisc;
2266 #ifdef CONFIG_LOCKDEP
2267 	unsigned char		nested_level;
2268 #endif
2269 
2270 
2271 	/* Protocol-specific pointers */
2272 	struct in_device __rcu	*ip_ptr;
2273 	/** @fib_nh_head: nexthops associated with this netdev */
2274 	struct hlist_head	fib_nh_head;
2275 
2276 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2277 	struct vlan_info __rcu	*vlan_info;
2278 #endif
2279 #if IS_ENABLED(CONFIG_NET_DSA)
2280 	struct dsa_port		*dsa_ptr;
2281 #endif
2282 #if IS_ENABLED(CONFIG_TIPC)
2283 	struct tipc_bearer __rcu *tipc_ptr;
2284 #endif
2285 #if IS_ENABLED(CONFIG_ATALK)
2286 	void 			*atalk_ptr;
2287 #endif
2288 #if IS_ENABLED(CONFIG_AX25)
2289 	struct ax25_dev	__rcu	*ax25_ptr;
2290 #endif
2291 #if IS_ENABLED(CONFIG_CFG80211)
2292 	struct wireless_dev	*ieee80211_ptr;
2293 #endif
2294 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2295 	struct wpan_dev		*ieee802154_ptr;
2296 #endif
2297 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2298 	struct mpls_dev __rcu	*mpls_ptr;
2299 #endif
2300 #if IS_ENABLED(CONFIG_MCTP)
2301 	struct mctp_dev __rcu	*mctp_ptr;
2302 #endif
2303 
2304 /*
2305  * Cache lines mostly used on receive path (including eth_type_trans())
2306  */
2307 	/* Interface address info used in eth_type_trans() */
2308 	const unsigned char	*dev_addr;
2309 
2310 	unsigned int		num_rx_queues;
2311 #define GRO_LEGACY_MAX_SIZE	65536u
2312 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2313  * and shinfo->gso_segs is a 16bit field.
2314  */
2315 #define GRO_MAX_SIZE		(8 * 65535u)
2316 	unsigned int		xdp_zc_max_segs;
2317 	struct netdev_queue __rcu *ingress_queue;
2318 #ifdef CONFIG_NETFILTER_INGRESS
2319 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2320 #endif
2321 
2322 	unsigned char		broadcast[MAX_ADDR_LEN];
2323 #ifdef CONFIG_RFS_ACCEL
2324 	struct cpu_rmap		*rx_cpu_rmap;
2325 #endif
2326 	struct hlist_node	index_hlist;
2327 
2328 /*
2329  * Cache lines mostly used on transmit path
2330  */
2331 	unsigned int		num_tx_queues;
2332 	struct Qdisc __rcu	*qdisc;
2333 	unsigned int		tx_queue_len;
2334 	spinlock_t		tx_global_lock;
2335 
2336 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2337 
2338 #ifdef CONFIG_NET_SCHED
2339 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2340 #endif
2341 	/* These may be needed for future network-power-down code. */
2342 	struct timer_list	watchdog_timer;
2343 	int			watchdog_timeo;
2344 
2345 	u32                     proto_down_reason;
2346 
2347 	struct list_head	todo_list;
2348 
2349 #ifdef CONFIG_PCPU_DEV_REFCNT
2350 	int __percpu		*pcpu_refcnt;
2351 #else
2352 	refcount_t		dev_refcnt;
2353 #endif
2354 	struct ref_tracker_dir	refcnt_tracker;
2355 
2356 	struct list_head	link_watch_list;
2357 
2358 	u8 reg_state;
2359 
2360 	bool dismantle;
2361 
2362 	enum {
2363 		RTNL_LINK_INITIALIZED,
2364 		RTNL_LINK_INITIALIZING,
2365 	} rtnl_link_state:16;
2366 
2367 	bool needs_free_netdev;
2368 	void (*priv_destructor)(struct net_device *dev);
2369 
2370 	/* mid-layer private */
2371 	void				*ml_priv;
2372 	enum netdev_ml_priv_type	ml_priv_type;
2373 
2374 	enum netdev_stat_type		pcpu_stat_type:8;
2375 
2376 #if IS_ENABLED(CONFIG_GARP)
2377 	struct garp_port __rcu	*garp_port;
2378 #endif
2379 #if IS_ENABLED(CONFIG_MRP)
2380 	struct mrp_port __rcu	*mrp_port;
2381 #endif
2382 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2383 	struct dm_hw_stat_delta __rcu *dm_private;
2384 #endif
2385 	struct device		dev;
2386 	const struct attribute_group *sysfs_groups[4];
2387 	const struct attribute_group *sysfs_rx_queue_group;
2388 
2389 	const struct rtnl_link_ops *rtnl_link_ops;
2390 
2391 	const struct netdev_stat_ops *stat_ops;
2392 
2393 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2394 
2395 	/* for setting kernel sock attribute on TCP connection setup */
2396 #define GSO_MAX_SEGS		65535u
2397 #define GSO_LEGACY_MAX_SIZE	65536u
2398 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2399  * and shinfo->gso_segs is a 16bit field.
2400  */
2401 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2402 
2403 #define TSO_LEGACY_MAX_SIZE	65536
2404 #define TSO_MAX_SIZE		UINT_MAX
2405 	unsigned int		tso_max_size;
2406 #define TSO_MAX_SEGS		U16_MAX
2407 	u16			tso_max_segs;
2408 
2409 #ifdef CONFIG_DCB
2410 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2411 #endif
2412 	u8			prio_tc_map[TC_BITMASK + 1];
2413 
2414 #if IS_ENABLED(CONFIG_FCOE)
2415 	unsigned int		fcoe_ddp_xid;
2416 #endif
2417 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2418 	struct netprio_map __rcu *priomap;
2419 #endif
2420 	struct phy_link_topology	*link_topo;
2421 	struct phy_device	*phydev;
2422 	struct sfp_bus		*sfp_bus;
2423 	struct lock_class_key	*qdisc_tx_busylock;
2424 	bool			proto_down;
2425 	bool			threaded;
2426 	bool			irq_affinity_auto;
2427 	bool			rx_cpu_rmap_auto;
2428 
2429 	/* priv_flags_slow, ungrouped to save space */
2430 	unsigned long		see_all_hwtstamp_requests:1;
2431 	unsigned long		change_proto_down:1;
2432 	unsigned long		netns_immutable:1;
2433 	unsigned long		fcoe_mtu:1;
2434 
2435 	struct list_head	net_notifier_list;
2436 
2437 #if IS_ENABLED(CONFIG_MACSEC)
2438 	/* MACsec management functions */
2439 	const struct macsec_ops *macsec_ops;
2440 #endif
2441 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2442 	struct udp_tunnel_nic	*udp_tunnel_nic;
2443 
2444 	/** @cfg: net_device queue-related configuration */
2445 	struct netdev_config	*cfg;
2446 	/**
2447 	 * @cfg_pending: same as @cfg but when device is being actively
2448 	 *	reconfigured includes any changes to the configuration
2449 	 *	requested by the user, but which may or may not be rejected.
2450 	 */
2451 	struct netdev_config	*cfg_pending;
2452 	struct ethtool_netdev_state *ethtool;
2453 
2454 	/* protected by rtnl_lock */
2455 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2456 
2457 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2458 	netdevice_tracker	linkwatch_dev_tracker;
2459 	netdevice_tracker	watchdog_dev_tracker;
2460 	netdevice_tracker	dev_registered_tracker;
2461 	struct rtnl_hw_stats64	*offload_xstats_l3;
2462 
2463 	struct devlink_port	*devlink_port;
2464 
2465 #if IS_ENABLED(CONFIG_DPLL)
2466 	struct dpll_pin	__rcu	*dpll_pin;
2467 #endif
2468 #if IS_ENABLED(CONFIG_PAGE_POOL)
2469 	/** @page_pools: page pools created for this netdevice */
2470 	struct hlist_head	page_pools;
2471 #endif
2472 
2473 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2474 	struct dim_irq_moder	*irq_moder;
2475 
2476 	u64			max_pacing_offload_horizon;
2477 	struct napi_config	*napi_config;
2478 	unsigned long		gro_flush_timeout;
2479 	u32			napi_defer_hard_irqs;
2480 
2481 	/**
2482 	 * @up: copy of @state's IFF_UP, but safe to read with just @lock.
2483 	 *	May report false negatives while the device is being opened
2484 	 *	or closed (@lock does not protect .ndo_open, or .ndo_close).
2485 	 */
2486 	bool			up;
2487 
2488 	/**
2489 	 * @request_ops_lock: request the core to run all @netdev_ops and
2490 	 * @ethtool_ops under the @lock.
2491 	 */
2492 	bool			request_ops_lock;
2493 
2494 	/**
2495 	 * @lock: netdev-scope lock, protects a small selection of fields.
2496 	 * Should always be taken using netdev_lock() / netdev_unlock() helpers.
2497 	 * Drivers are free to use it for other protection.
2498 	 *
2499 	 * Protects:
2500 	 *	@gro_flush_timeout, @napi_defer_hard_irqs, @napi_list,
2501 	 *	@net_shaper_hierarchy, @reg_state, @threaded, @dev_addr
2502 	 *
2503 	 * Partially protects (writers must hold both @lock and rtnl_lock):
2504 	 *	@up
2505 	 *
2506 	 * Also protects some fields in struct napi_struct.
2507 	 *
2508 	 * Ordering: take after rtnl_lock.
2509 	 */
2510 	struct mutex		lock;
2511 
2512 #if IS_ENABLED(CONFIG_NET_SHAPER)
2513 	/**
2514 	 * @net_shaper_hierarchy: data tracking the current shaper status
2515 	 *  see include/net/net_shapers.h
2516 	 */
2517 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2518 #endif
2519 
2520 	struct hlist_head neighbours[NEIGH_NR_TABLES];
2521 
2522 	struct hwtstamp_provider __rcu	*hwprov;
2523 
2524 	u8			priv[] ____cacheline_aligned
2525 				       __counted_by(priv_len);
2526 } ____cacheline_aligned;
2527 #define to_net_dev(d) container_of(d, struct net_device, dev)
2528 
2529 /*
2530  * Driver should use this to assign devlink port instance to a netdevice
2531  * before it registers the netdevice. Therefore devlink_port is static
2532  * during the netdev lifetime after it is registered.
2533  */
2534 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2535 ({								\
2536 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2537 	((dev)->devlink_port = (port));				\
2538 })
2539 
2540 static inline bool netif_elide_gro(const struct net_device *dev)
2541 {
2542 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2543 		return true;
2544 	return false;
2545 }
2546 
2547 #define	NETDEV_ALIGN		32
2548 
2549 static inline
2550 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2551 {
2552 	return dev->prio_tc_map[prio & TC_BITMASK];
2553 }
2554 
2555 static inline
2556 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2557 {
2558 	if (tc >= dev->num_tc)
2559 		return -EINVAL;
2560 
2561 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2562 	return 0;
2563 }
2564 
2565 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2566 void netdev_reset_tc(struct net_device *dev);
2567 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2568 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2569 
2570 static inline
2571 int netdev_get_num_tc(struct net_device *dev)
2572 {
2573 	return dev->num_tc;
2574 }
2575 
2576 static inline void net_prefetch(void *p)
2577 {
2578 	prefetch(p);
2579 #if L1_CACHE_BYTES < 128
2580 	prefetch((u8 *)p + L1_CACHE_BYTES);
2581 #endif
2582 }
2583 
2584 static inline void net_prefetchw(void *p)
2585 {
2586 	prefetchw(p);
2587 #if L1_CACHE_BYTES < 128
2588 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2589 #endif
2590 }
2591 
2592 void netdev_unbind_sb_channel(struct net_device *dev,
2593 			      struct net_device *sb_dev);
2594 int netdev_bind_sb_channel_queue(struct net_device *dev,
2595 				 struct net_device *sb_dev,
2596 				 u8 tc, u16 count, u16 offset);
2597 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2598 static inline int netdev_get_sb_channel(struct net_device *dev)
2599 {
2600 	return max_t(int, -dev->num_tc, 0);
2601 }
2602 
2603 static inline
2604 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2605 					 unsigned int index)
2606 {
2607 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2608 	return &dev->_tx[index];
2609 }
2610 
2611 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2612 						    const struct sk_buff *skb)
2613 {
2614 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2615 }
2616 
2617 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2618 					    void (*f)(struct net_device *,
2619 						      struct netdev_queue *,
2620 						      void *),
2621 					    void *arg)
2622 {
2623 	unsigned int i;
2624 
2625 	for (i = 0; i < dev->num_tx_queues; i++)
2626 		f(dev, &dev->_tx[i], arg);
2627 }
2628 
2629 static inline int netdev_lock_cmp_fn(const struct lockdep_map *a,
2630 				     const struct lockdep_map *b)
2631 {
2632 	/* Only lower devices currently grab the instance lock, so no
2633 	 * real ordering issues can occur. In the near future, only
2634 	 * hardware devices will grab instance lock which also does not
2635 	 * involve any ordering. Suppress lockdep ordering warnings
2636 	 * until (if) we start grabbing instance lock on pure SW
2637 	 * devices (bond/team/veth/etc).
2638 	 */
2639 	if (a == b)
2640 		return 0;
2641 	return -1;
2642 }
2643 
2644 #define netdev_lockdep_set_classes(dev)				\
2645 {								\
2646 	static struct lock_class_key qdisc_tx_busylock_key;	\
2647 	static struct lock_class_key qdisc_xmit_lock_key;	\
2648 	static struct lock_class_key dev_addr_list_lock_key;	\
2649 	static struct lock_class_key dev_instance_lock_key;	\
2650 	unsigned int i;						\
2651 								\
2652 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2653 	lockdep_set_class(&(dev)->addr_list_lock,		\
2654 			  &dev_addr_list_lock_key);		\
2655 	lockdep_set_class(&(dev)->lock,				\
2656 			  &dev_instance_lock_key);		\
2657 	lock_set_cmp_fn(&dev->lock, netdev_lock_cmp_fn, NULL);	\
2658 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2659 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2660 				  &qdisc_xmit_lock_key);	\
2661 }
2662 
2663 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2664 		     struct net_device *sb_dev);
2665 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2666 					 struct sk_buff *skb,
2667 					 struct net_device *sb_dev);
2668 
2669 /* returns the headroom that the master device needs to take in account
2670  * when forwarding to this dev
2671  */
2672 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2673 {
2674 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2675 }
2676 
2677 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2678 {
2679 	if (dev->netdev_ops->ndo_set_rx_headroom)
2680 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2681 }
2682 
2683 /* set the device rx headroom to the dev's default */
2684 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2685 {
2686 	netdev_set_rx_headroom(dev, -1);
2687 }
2688 
2689 static inline void *netdev_get_ml_priv(struct net_device *dev,
2690 				       enum netdev_ml_priv_type type)
2691 {
2692 	if (dev->ml_priv_type != type)
2693 		return NULL;
2694 
2695 	return dev->ml_priv;
2696 }
2697 
2698 static inline void netdev_set_ml_priv(struct net_device *dev,
2699 				      void *ml_priv,
2700 				      enum netdev_ml_priv_type type)
2701 {
2702 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2703 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2704 	     dev->ml_priv_type, type);
2705 	WARN(!dev->ml_priv_type && dev->ml_priv,
2706 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2707 
2708 	dev->ml_priv = ml_priv;
2709 	dev->ml_priv_type = type;
2710 }
2711 
2712 /*
2713  * Net namespace inlines
2714  */
2715 static inline
2716 struct net *dev_net(const struct net_device *dev)
2717 {
2718 	return read_pnet(&dev->nd_net);
2719 }
2720 
2721 static inline
2722 struct net *dev_net_rcu(const struct net_device *dev)
2723 {
2724 	return read_pnet_rcu(&dev->nd_net);
2725 }
2726 
2727 static inline
2728 void dev_net_set(struct net_device *dev, struct net *net)
2729 {
2730 	write_pnet(&dev->nd_net, net);
2731 }
2732 
2733 /**
2734  *	netdev_priv - access network device private data
2735  *	@dev: network device
2736  *
2737  * Get network device private data
2738  */
2739 static inline void *netdev_priv(const struct net_device *dev)
2740 {
2741 	return (void *)dev->priv;
2742 }
2743 
2744 /* Set the sysfs physical device reference for the network logical device
2745  * if set prior to registration will cause a symlink during initialization.
2746  */
2747 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2748 
2749 /* Set the sysfs device type for the network logical device to allow
2750  * fine-grained identification of different network device types. For
2751  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2752  */
2753 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2754 
2755 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2756 			  enum netdev_queue_type type,
2757 			  struct napi_struct *napi);
2758 
2759 static inline void netdev_lock(struct net_device *dev)
2760 {
2761 	mutex_lock(&dev->lock);
2762 }
2763 
2764 static inline void netdev_unlock(struct net_device *dev)
2765 {
2766 	mutex_unlock(&dev->lock);
2767 }
2768 
2769 static inline void netdev_assert_locked(struct net_device *dev)
2770 {
2771 	lockdep_assert_held(&dev->lock);
2772 }
2773 
2774 static inline void netdev_assert_locked_or_invisible(struct net_device *dev)
2775 {
2776 	if (dev->reg_state == NETREG_REGISTERED ||
2777 	    dev->reg_state == NETREG_UNREGISTERING)
2778 		netdev_assert_locked(dev);
2779 }
2780 
2781 static inline bool netdev_need_ops_lock(struct net_device *dev)
2782 {
2783 	bool ret = dev->request_ops_lock || !!dev->queue_mgmt_ops;
2784 
2785 #if IS_ENABLED(CONFIG_NET_SHAPER)
2786 	ret |= !!dev->netdev_ops->net_shaper_ops;
2787 #endif
2788 
2789 	return ret;
2790 }
2791 
2792 static inline void netdev_lock_ops(struct net_device *dev)
2793 {
2794 	if (netdev_need_ops_lock(dev))
2795 		netdev_lock(dev);
2796 }
2797 
2798 static inline void netdev_unlock_ops(struct net_device *dev)
2799 {
2800 	if (netdev_need_ops_lock(dev))
2801 		netdev_unlock(dev);
2802 }
2803 
2804 static inline void netdev_ops_assert_locked(struct net_device *dev)
2805 {
2806 	if (netdev_need_ops_lock(dev))
2807 		lockdep_assert_held(&dev->lock);
2808 }
2809 
2810 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq);
2811 
2812 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2813 {
2814 	netdev_lock(napi->dev);
2815 	netif_napi_set_irq_locked(napi, irq);
2816 	netdev_unlock(napi->dev);
2817 }
2818 
2819 /* Default NAPI poll() weight
2820  * Device drivers are strongly advised to not use bigger value
2821  */
2822 #define NAPI_POLL_WEIGHT 64
2823 
2824 void netif_napi_add_weight_locked(struct net_device *dev,
2825 				  struct napi_struct *napi,
2826 				  int (*poll)(struct napi_struct *, int),
2827 				  int weight);
2828 
2829 static inline void
2830 netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2831 		      int (*poll)(struct napi_struct *, int), int weight)
2832 {
2833 	netdev_lock(dev);
2834 	netif_napi_add_weight_locked(dev, napi, poll, weight);
2835 	netdev_unlock(dev);
2836 }
2837 
2838 /**
2839  * netif_napi_add() - initialize a NAPI context
2840  * @dev:  network device
2841  * @napi: NAPI context
2842  * @poll: polling function
2843  *
2844  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2845  * *any* of the other NAPI-related functions.
2846  */
2847 static inline void
2848 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2849 	       int (*poll)(struct napi_struct *, int))
2850 {
2851 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2852 }
2853 
2854 static inline void
2855 netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi,
2856 		      int (*poll)(struct napi_struct *, int))
2857 {
2858 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2859 }
2860 
2861 static inline void
2862 netif_napi_add_tx_weight(struct net_device *dev,
2863 			 struct napi_struct *napi,
2864 			 int (*poll)(struct napi_struct *, int),
2865 			 int weight)
2866 {
2867 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2868 	netif_napi_add_weight(dev, napi, poll, weight);
2869 }
2870 
2871 static inline void
2872 netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi,
2873 			     int (*poll)(struct napi_struct *, int), int index)
2874 {
2875 	napi->index = index;
2876 	napi->config = &dev->napi_config[index];
2877 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2878 }
2879 
2880 /**
2881  * netif_napi_add_config - initialize a NAPI context with persistent config
2882  * @dev: network device
2883  * @napi: NAPI context
2884  * @poll: polling function
2885  * @index: the NAPI index
2886  */
2887 static inline void
2888 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2889 		      int (*poll)(struct napi_struct *, int), int index)
2890 {
2891 	netdev_lock(dev);
2892 	netif_napi_add_config_locked(dev, napi, poll, index);
2893 	netdev_unlock(dev);
2894 }
2895 
2896 /**
2897  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2898  * @dev:  network device
2899  * @napi: NAPI context
2900  * @poll: polling function
2901  *
2902  * This variant of netif_napi_add() should be used from drivers using NAPI
2903  * to exclusively poll a TX queue.
2904  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2905  */
2906 static inline void netif_napi_add_tx(struct net_device *dev,
2907 				     struct napi_struct *napi,
2908 				     int (*poll)(struct napi_struct *, int))
2909 {
2910 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2911 }
2912 
2913 void __netif_napi_del_locked(struct napi_struct *napi);
2914 
2915 /**
2916  *  __netif_napi_del - remove a NAPI context
2917  *  @napi: NAPI context
2918  *
2919  * Warning: caller must observe RCU grace period before freeing memory
2920  * containing @napi. Drivers might want to call this helper to combine
2921  * all the needed RCU grace periods into a single one.
2922  */
2923 static inline void __netif_napi_del(struct napi_struct *napi)
2924 {
2925 	netdev_lock(napi->dev);
2926 	__netif_napi_del_locked(napi);
2927 	netdev_unlock(napi->dev);
2928 }
2929 
2930 static inline void netif_napi_del_locked(struct napi_struct *napi)
2931 {
2932 	__netif_napi_del_locked(napi);
2933 	synchronize_net();
2934 }
2935 
2936 /**
2937  *  netif_napi_del - remove a NAPI context
2938  *  @napi: NAPI context
2939  *
2940  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2941  */
2942 static inline void netif_napi_del(struct napi_struct *napi)
2943 {
2944 	__netif_napi_del(napi);
2945 	synchronize_net();
2946 }
2947 
2948 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs);
2949 void netif_set_affinity_auto(struct net_device *dev);
2950 
2951 struct packet_type {
2952 	__be16			type;	/* This is really htons(ether_type). */
2953 	bool			ignore_outgoing;
2954 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2955 	netdevice_tracker	dev_tracker;
2956 	int			(*func) (struct sk_buff *,
2957 					 struct net_device *,
2958 					 struct packet_type *,
2959 					 struct net_device *);
2960 	void			(*list_func) (struct list_head *,
2961 					      struct packet_type *,
2962 					      struct net_device *);
2963 	bool			(*id_match)(struct packet_type *ptype,
2964 					    struct sock *sk);
2965 	struct net		*af_packet_net;
2966 	void			*af_packet_priv;
2967 	struct list_head	list;
2968 };
2969 
2970 struct offload_callbacks {
2971 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2972 						netdev_features_t features);
2973 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2974 						struct sk_buff *skb);
2975 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2976 };
2977 
2978 struct packet_offload {
2979 	__be16			 type;	/* This is really htons(ether_type). */
2980 	u16			 priority;
2981 	struct offload_callbacks callbacks;
2982 	struct list_head	 list;
2983 };
2984 
2985 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2986 struct pcpu_sw_netstats {
2987 	u64_stats_t		rx_packets;
2988 	u64_stats_t		rx_bytes;
2989 	u64_stats_t		tx_packets;
2990 	u64_stats_t		tx_bytes;
2991 	struct u64_stats_sync   syncp;
2992 } __aligned(4 * sizeof(u64));
2993 
2994 struct pcpu_dstats {
2995 	u64_stats_t		rx_packets;
2996 	u64_stats_t		rx_bytes;
2997 	u64_stats_t		tx_packets;
2998 	u64_stats_t		tx_bytes;
2999 	u64_stats_t		rx_drops;
3000 	u64_stats_t		tx_drops;
3001 	struct u64_stats_sync	syncp;
3002 } __aligned(8 * sizeof(u64));
3003 
3004 struct pcpu_lstats {
3005 	u64_stats_t packets;
3006 	u64_stats_t bytes;
3007 	struct u64_stats_sync syncp;
3008 } __aligned(2 * sizeof(u64));
3009 
3010 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
3011 
3012 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
3013 {
3014 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
3015 
3016 	u64_stats_update_begin(&tstats->syncp);
3017 	u64_stats_add(&tstats->rx_bytes, len);
3018 	u64_stats_inc(&tstats->rx_packets);
3019 	u64_stats_update_end(&tstats->syncp);
3020 }
3021 
3022 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
3023 					  unsigned int packets,
3024 					  unsigned int len)
3025 {
3026 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
3027 
3028 	u64_stats_update_begin(&tstats->syncp);
3029 	u64_stats_add(&tstats->tx_bytes, len);
3030 	u64_stats_add(&tstats->tx_packets, packets);
3031 	u64_stats_update_end(&tstats->syncp);
3032 }
3033 
3034 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
3035 {
3036 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
3037 
3038 	u64_stats_update_begin(&lstats->syncp);
3039 	u64_stats_add(&lstats->bytes, len);
3040 	u64_stats_inc(&lstats->packets);
3041 	u64_stats_update_end(&lstats->syncp);
3042 }
3043 
3044 static inline void dev_dstats_rx_add(struct net_device *dev,
3045 				     unsigned int len)
3046 {
3047 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3048 
3049 	u64_stats_update_begin(&dstats->syncp);
3050 	u64_stats_inc(&dstats->rx_packets);
3051 	u64_stats_add(&dstats->rx_bytes, len);
3052 	u64_stats_update_end(&dstats->syncp);
3053 }
3054 
3055 static inline void dev_dstats_rx_dropped(struct net_device *dev)
3056 {
3057 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3058 
3059 	u64_stats_update_begin(&dstats->syncp);
3060 	u64_stats_inc(&dstats->rx_drops);
3061 	u64_stats_update_end(&dstats->syncp);
3062 }
3063 
3064 static inline void dev_dstats_tx_add(struct net_device *dev,
3065 				     unsigned int len)
3066 {
3067 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3068 
3069 	u64_stats_update_begin(&dstats->syncp);
3070 	u64_stats_inc(&dstats->tx_packets);
3071 	u64_stats_add(&dstats->tx_bytes, len);
3072 	u64_stats_update_end(&dstats->syncp);
3073 }
3074 
3075 static inline void dev_dstats_tx_dropped(struct net_device *dev)
3076 {
3077 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3078 
3079 	u64_stats_update_begin(&dstats->syncp);
3080 	u64_stats_inc(&dstats->tx_drops);
3081 	u64_stats_update_end(&dstats->syncp);
3082 }
3083 
3084 #define __netdev_alloc_pcpu_stats(type, gfp)				\
3085 ({									\
3086 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
3087 	if (pcpu_stats)	{						\
3088 		int __cpu;						\
3089 		for_each_possible_cpu(__cpu) {				\
3090 			typeof(type) *stat;				\
3091 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3092 			u64_stats_init(&stat->syncp);			\
3093 		}							\
3094 	}								\
3095 	pcpu_stats;							\
3096 })
3097 
3098 #define netdev_alloc_pcpu_stats(type)					\
3099 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
3100 
3101 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
3102 ({									\
3103 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
3104 	if (pcpu_stats) {						\
3105 		int __cpu;						\
3106 		for_each_possible_cpu(__cpu) {				\
3107 			typeof(type) *stat;				\
3108 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3109 			u64_stats_init(&stat->syncp);			\
3110 		}							\
3111 	}								\
3112 	pcpu_stats;							\
3113 })
3114 
3115 enum netdev_lag_tx_type {
3116 	NETDEV_LAG_TX_TYPE_UNKNOWN,
3117 	NETDEV_LAG_TX_TYPE_RANDOM,
3118 	NETDEV_LAG_TX_TYPE_BROADCAST,
3119 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
3120 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
3121 	NETDEV_LAG_TX_TYPE_HASH,
3122 };
3123 
3124 enum netdev_lag_hash {
3125 	NETDEV_LAG_HASH_NONE,
3126 	NETDEV_LAG_HASH_L2,
3127 	NETDEV_LAG_HASH_L34,
3128 	NETDEV_LAG_HASH_L23,
3129 	NETDEV_LAG_HASH_E23,
3130 	NETDEV_LAG_HASH_E34,
3131 	NETDEV_LAG_HASH_VLAN_SRCMAC,
3132 	NETDEV_LAG_HASH_UNKNOWN,
3133 };
3134 
3135 struct netdev_lag_upper_info {
3136 	enum netdev_lag_tx_type tx_type;
3137 	enum netdev_lag_hash hash_type;
3138 };
3139 
3140 struct netdev_lag_lower_state_info {
3141 	u8 link_up : 1,
3142 	   tx_enabled : 1;
3143 };
3144 
3145 #include <linux/notifier.h>
3146 
3147 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
3148  * and the rtnetlink notification exclusion list in rtnetlink_event() when
3149  * adding new types.
3150  */
3151 enum netdev_cmd {
3152 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
3153 	NETDEV_DOWN,
3154 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
3155 				   detected a hardware crash and restarted
3156 				   - we can use this eg to kick tcp sessions
3157 				   once done */
3158 	NETDEV_CHANGE,		/* Notify device state change */
3159 	NETDEV_REGISTER,
3160 	NETDEV_UNREGISTER,
3161 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
3162 	NETDEV_CHANGEADDR,	/* notify after the address change */
3163 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
3164 	NETDEV_GOING_DOWN,
3165 	NETDEV_CHANGENAME,
3166 	NETDEV_FEAT_CHANGE,
3167 	NETDEV_BONDING_FAILOVER,
3168 	NETDEV_PRE_UP,
3169 	NETDEV_PRE_TYPE_CHANGE,
3170 	NETDEV_POST_TYPE_CHANGE,
3171 	NETDEV_POST_INIT,
3172 	NETDEV_PRE_UNINIT,
3173 	NETDEV_RELEASE,
3174 	NETDEV_NOTIFY_PEERS,
3175 	NETDEV_JOIN,
3176 	NETDEV_CHANGEUPPER,
3177 	NETDEV_RESEND_IGMP,
3178 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
3179 	NETDEV_CHANGEINFODATA,
3180 	NETDEV_BONDING_INFO,
3181 	NETDEV_PRECHANGEUPPER,
3182 	NETDEV_CHANGELOWERSTATE,
3183 	NETDEV_UDP_TUNNEL_PUSH_INFO,
3184 	NETDEV_UDP_TUNNEL_DROP_INFO,
3185 	NETDEV_CHANGE_TX_QUEUE_LEN,
3186 	NETDEV_CVLAN_FILTER_PUSH_INFO,
3187 	NETDEV_CVLAN_FILTER_DROP_INFO,
3188 	NETDEV_SVLAN_FILTER_PUSH_INFO,
3189 	NETDEV_SVLAN_FILTER_DROP_INFO,
3190 	NETDEV_OFFLOAD_XSTATS_ENABLE,
3191 	NETDEV_OFFLOAD_XSTATS_DISABLE,
3192 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
3193 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
3194 	NETDEV_XDP_FEAT_CHANGE,
3195 };
3196 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
3197 
3198 int register_netdevice_notifier(struct notifier_block *nb);
3199 int unregister_netdevice_notifier(struct notifier_block *nb);
3200 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
3201 int unregister_netdevice_notifier_net(struct net *net,
3202 				      struct notifier_block *nb);
3203 int register_netdevice_notifier_dev_net(struct net_device *dev,
3204 					struct notifier_block *nb,
3205 					struct netdev_net_notifier *nn);
3206 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
3207 					  struct notifier_block *nb,
3208 					  struct netdev_net_notifier *nn);
3209 
3210 struct netdev_notifier_info {
3211 	struct net_device	*dev;
3212 	struct netlink_ext_ack	*extack;
3213 };
3214 
3215 struct netdev_notifier_info_ext {
3216 	struct netdev_notifier_info info; /* must be first */
3217 	union {
3218 		u32 mtu;
3219 	} ext;
3220 };
3221 
3222 struct netdev_notifier_change_info {
3223 	struct netdev_notifier_info info; /* must be first */
3224 	unsigned int flags_changed;
3225 };
3226 
3227 struct netdev_notifier_changeupper_info {
3228 	struct netdev_notifier_info info; /* must be first */
3229 	struct net_device *upper_dev; /* new upper dev */
3230 	bool master; /* is upper dev master */
3231 	bool linking; /* is the notification for link or unlink */
3232 	void *upper_info; /* upper dev info */
3233 };
3234 
3235 struct netdev_notifier_changelowerstate_info {
3236 	struct netdev_notifier_info info; /* must be first */
3237 	void *lower_state_info; /* is lower dev state */
3238 };
3239 
3240 struct netdev_notifier_pre_changeaddr_info {
3241 	struct netdev_notifier_info info; /* must be first */
3242 	const unsigned char *dev_addr;
3243 };
3244 
3245 enum netdev_offload_xstats_type {
3246 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3247 };
3248 
3249 struct netdev_notifier_offload_xstats_info {
3250 	struct netdev_notifier_info info; /* must be first */
3251 	enum netdev_offload_xstats_type type;
3252 
3253 	union {
3254 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3255 		struct netdev_notifier_offload_xstats_rd *report_delta;
3256 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3257 		struct netdev_notifier_offload_xstats_ru *report_used;
3258 	};
3259 };
3260 
3261 int netdev_offload_xstats_enable(struct net_device *dev,
3262 				 enum netdev_offload_xstats_type type,
3263 				 struct netlink_ext_ack *extack);
3264 int netdev_offload_xstats_disable(struct net_device *dev,
3265 				  enum netdev_offload_xstats_type type);
3266 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3267 				   enum netdev_offload_xstats_type type);
3268 int netdev_offload_xstats_get(struct net_device *dev,
3269 			      enum netdev_offload_xstats_type type,
3270 			      struct rtnl_hw_stats64 *stats, bool *used,
3271 			      struct netlink_ext_ack *extack);
3272 void
3273 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3274 				   const struct rtnl_hw_stats64 *stats);
3275 void
3276 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3277 void netdev_offload_xstats_push_delta(struct net_device *dev,
3278 				      enum netdev_offload_xstats_type type,
3279 				      const struct rtnl_hw_stats64 *stats);
3280 
3281 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3282 					     struct net_device *dev)
3283 {
3284 	info->dev = dev;
3285 	info->extack = NULL;
3286 }
3287 
3288 static inline struct net_device *
3289 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3290 {
3291 	return info->dev;
3292 }
3293 
3294 static inline struct netlink_ext_ack *
3295 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3296 {
3297 	return info->extack;
3298 }
3299 
3300 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3301 int call_netdevice_notifiers_info(unsigned long val,
3302 				  struct netdev_notifier_info *info);
3303 
3304 #define for_each_netdev(net, d)		\
3305 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3306 #define for_each_netdev_reverse(net, d)	\
3307 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3308 #define for_each_netdev_rcu(net, d)		\
3309 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3310 #define for_each_netdev_safe(net, d, n)	\
3311 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3312 #define for_each_netdev_continue(net, d)		\
3313 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3314 #define for_each_netdev_continue_reverse(net, d)		\
3315 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3316 						     dev_list)
3317 #define for_each_netdev_continue_rcu(net, d)		\
3318 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3319 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3320 		for_each_netdev_rcu(&init_net, slave)	\
3321 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3322 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3323 
3324 #define for_each_netdev_dump(net, d, ifindex)				\
3325 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3326 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3327 
3328 static inline struct net_device *next_net_device(struct net_device *dev)
3329 {
3330 	struct list_head *lh;
3331 	struct net *net;
3332 
3333 	net = dev_net(dev);
3334 	lh = dev->dev_list.next;
3335 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3336 }
3337 
3338 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3339 {
3340 	struct list_head *lh;
3341 	struct net *net;
3342 
3343 	net = dev_net(dev);
3344 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3345 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3346 }
3347 
3348 static inline struct net_device *first_net_device(struct net *net)
3349 {
3350 	return list_empty(&net->dev_base_head) ? NULL :
3351 		net_device_entry(net->dev_base_head.next);
3352 }
3353 
3354 static inline struct net_device *first_net_device_rcu(struct net *net)
3355 {
3356 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3357 
3358 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3359 }
3360 
3361 int netdev_boot_setup_check(struct net_device *dev);
3362 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
3363 				   const char *hwaddr);
3364 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3365 				       const char *hwaddr);
3366 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3367 void dev_add_pack(struct packet_type *pt);
3368 void dev_remove_pack(struct packet_type *pt);
3369 void __dev_remove_pack(struct packet_type *pt);
3370 void dev_add_offload(struct packet_offload *po);
3371 void dev_remove_offload(struct packet_offload *po);
3372 
3373 int dev_get_iflink(const struct net_device *dev);
3374 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3375 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3376 			  struct net_device_path_stack *stack);
3377 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3378 				      unsigned short mask);
3379 struct net_device *dev_get_by_name(struct net *net, const char *name);
3380 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3381 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3382 bool netdev_name_in_use(struct net *net, const char *name);
3383 int dev_alloc_name(struct net_device *dev, const char *name);
3384 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack);
3385 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3386 void netif_close(struct net_device *dev);
3387 void dev_close(struct net_device *dev);
3388 void dev_close_many(struct list_head *head, bool unlink);
3389 int dev_setup_tc(struct net_device *dev, enum tc_setup_type type,
3390 		 void *type_data);
3391 void netif_disable_lro(struct net_device *dev);
3392 void dev_disable_lro(struct net_device *dev);
3393 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3394 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3395 		     struct net_device *sb_dev);
3396 
3397 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3398 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3399 
3400 static inline int dev_queue_xmit(struct sk_buff *skb)
3401 {
3402 	return __dev_queue_xmit(skb, NULL);
3403 }
3404 
3405 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3406 				       struct net_device *sb_dev)
3407 {
3408 	return __dev_queue_xmit(skb, sb_dev);
3409 }
3410 
3411 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3412 {
3413 	int ret;
3414 
3415 	ret = __dev_direct_xmit(skb, queue_id);
3416 	if (!dev_xmit_complete(ret))
3417 		kfree_skb(skb);
3418 	return ret;
3419 }
3420 
3421 int register_netdevice(struct net_device *dev);
3422 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3423 void unregister_netdevice_many(struct list_head *head);
3424 static inline void unregister_netdevice(struct net_device *dev)
3425 {
3426 	unregister_netdevice_queue(dev, NULL);
3427 }
3428 
3429 int netdev_refcnt_read(const struct net_device *dev);
3430 void free_netdev(struct net_device *dev);
3431 
3432 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3433 					 struct sk_buff *skb,
3434 					 bool all_slaves);
3435 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3436 					    struct sock *sk);
3437 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3438 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3439 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3440 				       netdevice_tracker *tracker, gfp_t gfp);
3441 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3442 				      netdevice_tracker *tracker, gfp_t gfp);
3443 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3444 void netdev_copy_name(struct net_device *dev, char *name);
3445 
3446 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3447 				  unsigned short type,
3448 				  const void *daddr, const void *saddr,
3449 				  unsigned int len)
3450 {
3451 	if (!dev->header_ops || !dev->header_ops->create)
3452 		return 0;
3453 
3454 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3455 }
3456 
3457 static inline int dev_parse_header(const struct sk_buff *skb,
3458 				   unsigned char *haddr)
3459 {
3460 	const struct net_device *dev = skb->dev;
3461 
3462 	if (!dev->header_ops || !dev->header_ops->parse)
3463 		return 0;
3464 	return dev->header_ops->parse(skb, haddr);
3465 }
3466 
3467 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3468 {
3469 	const struct net_device *dev = skb->dev;
3470 
3471 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3472 		return 0;
3473 	return dev->header_ops->parse_protocol(skb);
3474 }
3475 
3476 /* ll_header must have at least hard_header_len allocated */
3477 static inline bool dev_validate_header(const struct net_device *dev,
3478 				       char *ll_header, int len)
3479 {
3480 	if (likely(len >= dev->hard_header_len))
3481 		return true;
3482 	if (len < dev->min_header_len)
3483 		return false;
3484 
3485 	if (capable(CAP_SYS_RAWIO)) {
3486 		memset(ll_header + len, 0, dev->hard_header_len - len);
3487 		return true;
3488 	}
3489 
3490 	if (dev->header_ops && dev->header_ops->validate)
3491 		return dev->header_ops->validate(ll_header, len);
3492 
3493 	return false;
3494 }
3495 
3496 static inline bool dev_has_header(const struct net_device *dev)
3497 {
3498 	return dev->header_ops && dev->header_ops->create;
3499 }
3500 
3501 /*
3502  * Incoming packets are placed on per-CPU queues
3503  */
3504 struct softnet_data {
3505 	struct list_head	poll_list;
3506 	struct sk_buff_head	process_queue;
3507 	local_lock_t		process_queue_bh_lock;
3508 
3509 	/* stats */
3510 	unsigned int		processed;
3511 	unsigned int		time_squeeze;
3512 #ifdef CONFIG_RPS
3513 	struct softnet_data	*rps_ipi_list;
3514 #endif
3515 
3516 	unsigned int		received_rps;
3517 	bool			in_net_rx_action;
3518 	bool			in_napi_threaded_poll;
3519 
3520 #ifdef CONFIG_NET_FLOW_LIMIT
3521 	struct sd_flow_limit __rcu *flow_limit;
3522 #endif
3523 	struct Qdisc		*output_queue;
3524 	struct Qdisc		**output_queue_tailp;
3525 	struct sk_buff		*completion_queue;
3526 #ifdef CONFIG_XFRM_OFFLOAD
3527 	struct sk_buff_head	xfrm_backlog;
3528 #endif
3529 	/* written and read only by owning cpu: */
3530 	struct netdev_xmit xmit;
3531 #ifdef CONFIG_RPS
3532 	/* input_queue_head should be written by cpu owning this struct,
3533 	 * and only read by other cpus. Worth using a cache line.
3534 	 */
3535 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3536 
3537 	/* Elements below can be accessed between CPUs for RPS/RFS */
3538 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3539 	struct softnet_data	*rps_ipi_next;
3540 	unsigned int		cpu;
3541 	unsigned int		input_queue_tail;
3542 #endif
3543 	struct sk_buff_head	input_pkt_queue;
3544 	struct napi_struct	backlog;
3545 
3546 	atomic_t		dropped ____cacheline_aligned_in_smp;
3547 
3548 	/* Another possibly contended cache line */
3549 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3550 	int			defer_count;
3551 	int			defer_ipi_scheduled;
3552 	struct sk_buff		*defer_list;
3553 	call_single_data_t	defer_csd;
3554 };
3555 
3556 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3557 DECLARE_PER_CPU(struct page_pool *, system_page_pool);
3558 
3559 #ifndef CONFIG_PREEMPT_RT
3560 static inline int dev_recursion_level(void)
3561 {
3562 	return this_cpu_read(softnet_data.xmit.recursion);
3563 }
3564 #else
3565 static inline int dev_recursion_level(void)
3566 {
3567 	return current->net_xmit.recursion;
3568 }
3569 
3570 #endif
3571 
3572 void __netif_schedule(struct Qdisc *q);
3573 void netif_schedule_queue(struct netdev_queue *txq);
3574 
3575 static inline void netif_tx_schedule_all(struct net_device *dev)
3576 {
3577 	unsigned int i;
3578 
3579 	for (i = 0; i < dev->num_tx_queues; i++)
3580 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3581 }
3582 
3583 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3584 {
3585 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3586 }
3587 
3588 /**
3589  *	netif_start_queue - allow transmit
3590  *	@dev: network device
3591  *
3592  *	Allow upper layers to call the device hard_start_xmit routine.
3593  */
3594 static inline void netif_start_queue(struct net_device *dev)
3595 {
3596 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3597 }
3598 
3599 static inline void netif_tx_start_all_queues(struct net_device *dev)
3600 {
3601 	unsigned int i;
3602 
3603 	for (i = 0; i < dev->num_tx_queues; i++) {
3604 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3605 		netif_tx_start_queue(txq);
3606 	}
3607 }
3608 
3609 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3610 
3611 /**
3612  *	netif_wake_queue - restart transmit
3613  *	@dev: network device
3614  *
3615  *	Allow upper layers to call the device hard_start_xmit routine.
3616  *	Used for flow control when transmit resources are available.
3617  */
3618 static inline void netif_wake_queue(struct net_device *dev)
3619 {
3620 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3621 }
3622 
3623 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3624 {
3625 	unsigned int i;
3626 
3627 	for (i = 0; i < dev->num_tx_queues; i++) {
3628 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3629 		netif_tx_wake_queue(txq);
3630 	}
3631 }
3632 
3633 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3634 {
3635 	/* Paired with READ_ONCE() from dev_watchdog() */
3636 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3637 
3638 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3639 	smp_mb__before_atomic();
3640 
3641 	/* Must be an atomic op see netif_txq_try_stop() */
3642 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3643 }
3644 
3645 /**
3646  *	netif_stop_queue - stop transmitted packets
3647  *	@dev: network device
3648  *
3649  *	Stop upper layers calling the device hard_start_xmit routine.
3650  *	Used for flow control when transmit resources are unavailable.
3651  */
3652 static inline void netif_stop_queue(struct net_device *dev)
3653 {
3654 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3655 }
3656 
3657 void netif_tx_stop_all_queues(struct net_device *dev);
3658 
3659 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3660 {
3661 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3662 }
3663 
3664 /**
3665  *	netif_queue_stopped - test if transmit queue is flowblocked
3666  *	@dev: network device
3667  *
3668  *	Test if transmit queue on device is currently unable to send.
3669  */
3670 static inline bool netif_queue_stopped(const struct net_device *dev)
3671 {
3672 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3673 }
3674 
3675 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3676 {
3677 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3678 }
3679 
3680 static inline bool
3681 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3682 {
3683 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3684 }
3685 
3686 static inline bool
3687 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3688 {
3689 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3690 }
3691 
3692 /**
3693  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3694  *	@dev_queue: pointer to transmit queue
3695  *	@min_limit: dql minimum limit
3696  *
3697  * Forces xmit_more() to return true until the minimum threshold
3698  * defined by @min_limit is reached (or until the tx queue is
3699  * empty). Warning: to be use with care, misuse will impact the
3700  * latency.
3701  */
3702 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3703 						  unsigned int min_limit)
3704 {
3705 #ifdef CONFIG_BQL
3706 	dev_queue->dql.min_limit = min_limit;
3707 #endif
3708 }
3709 
3710 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3711 {
3712 #ifdef CONFIG_BQL
3713 	/* Non-BQL migrated drivers will return 0, too. */
3714 	return dql_avail(&txq->dql);
3715 #else
3716 	return 0;
3717 #endif
3718 }
3719 
3720 /**
3721  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3722  *	@dev_queue: pointer to transmit queue
3723  *
3724  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3725  * to give appropriate hint to the CPU.
3726  */
3727 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3728 {
3729 #ifdef CONFIG_BQL
3730 	prefetchw(&dev_queue->dql.num_queued);
3731 #endif
3732 }
3733 
3734 /**
3735  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3736  *	@dev_queue: pointer to transmit queue
3737  *
3738  * BQL enabled drivers might use this helper in their TX completion path,
3739  * to give appropriate hint to the CPU.
3740  */
3741 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3742 {
3743 #ifdef CONFIG_BQL
3744 	prefetchw(&dev_queue->dql.limit);
3745 #endif
3746 }
3747 
3748 /**
3749  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3750  *	@dev_queue: network device queue
3751  *	@bytes: number of bytes queued to the device queue
3752  *
3753  *	Report the number of bytes queued for sending/completion to the network
3754  *	device hardware queue. @bytes should be a good approximation and should
3755  *	exactly match netdev_completed_queue() @bytes.
3756  *	This is typically called once per packet, from ndo_start_xmit().
3757  */
3758 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3759 					unsigned int bytes)
3760 {
3761 #ifdef CONFIG_BQL
3762 	dql_queued(&dev_queue->dql, bytes);
3763 
3764 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3765 		return;
3766 
3767 	/* Paired with READ_ONCE() from dev_watchdog() */
3768 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3769 
3770 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3771 	smp_mb__before_atomic();
3772 
3773 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3774 
3775 	/*
3776 	 * The XOFF flag must be set before checking the dql_avail below,
3777 	 * because in netdev_tx_completed_queue we update the dql_completed
3778 	 * before checking the XOFF flag.
3779 	 */
3780 	smp_mb__after_atomic();
3781 
3782 	/* check again in case another CPU has just made room avail */
3783 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3784 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3785 #endif
3786 }
3787 
3788 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3789  * that they should not test BQL status themselves.
3790  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3791  * skb of a batch.
3792  * Returns true if the doorbell must be used to kick the NIC.
3793  */
3794 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3795 					  unsigned int bytes,
3796 					  bool xmit_more)
3797 {
3798 	if (xmit_more) {
3799 #ifdef CONFIG_BQL
3800 		dql_queued(&dev_queue->dql, bytes);
3801 #endif
3802 		return netif_tx_queue_stopped(dev_queue);
3803 	}
3804 	netdev_tx_sent_queue(dev_queue, bytes);
3805 	return true;
3806 }
3807 
3808 /**
3809  *	netdev_sent_queue - report the number of bytes queued to hardware
3810  *	@dev: network device
3811  *	@bytes: number of bytes queued to the hardware device queue
3812  *
3813  *	Report the number of bytes queued for sending/completion to the network
3814  *	device hardware queue#0. @bytes should be a good approximation and should
3815  *	exactly match netdev_completed_queue() @bytes.
3816  *	This is typically called once per packet, from ndo_start_xmit().
3817  */
3818 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3819 {
3820 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3821 }
3822 
3823 static inline bool __netdev_sent_queue(struct net_device *dev,
3824 				       unsigned int bytes,
3825 				       bool xmit_more)
3826 {
3827 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3828 				      xmit_more);
3829 }
3830 
3831 /**
3832  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3833  *	@dev_queue: network device queue
3834  *	@pkts: number of packets (currently ignored)
3835  *	@bytes: number of bytes dequeued from the device queue
3836  *
3837  *	Must be called at most once per TX completion round (and not per
3838  *	individual packet), so that BQL can adjust its limits appropriately.
3839  */
3840 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3841 					     unsigned int pkts, unsigned int bytes)
3842 {
3843 #ifdef CONFIG_BQL
3844 	if (unlikely(!bytes))
3845 		return;
3846 
3847 	dql_completed(&dev_queue->dql, bytes);
3848 
3849 	/*
3850 	 * Without the memory barrier there is a small possibility that
3851 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3852 	 * be stopped forever
3853 	 */
3854 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3855 
3856 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3857 		return;
3858 
3859 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3860 		netif_schedule_queue(dev_queue);
3861 #endif
3862 }
3863 
3864 /**
3865  * 	netdev_completed_queue - report bytes and packets completed by device
3866  * 	@dev: network device
3867  * 	@pkts: actual number of packets sent over the medium
3868  * 	@bytes: actual number of bytes sent over the medium
3869  *
3870  * 	Report the number of bytes and packets transmitted by the network device
3871  * 	hardware queue over the physical medium, @bytes must exactly match the
3872  * 	@bytes amount passed to netdev_sent_queue()
3873  */
3874 static inline void netdev_completed_queue(struct net_device *dev,
3875 					  unsigned int pkts, unsigned int bytes)
3876 {
3877 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3878 }
3879 
3880 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3881 {
3882 #ifdef CONFIG_BQL
3883 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3884 	dql_reset(&q->dql);
3885 #endif
3886 }
3887 
3888 /**
3889  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3890  * @dev: network device
3891  * @qid: stack index of the queue to reset
3892  */
3893 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3894 					    u32 qid)
3895 {
3896 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3897 }
3898 
3899 /**
3900  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3901  * 	@dev_queue: network device
3902  *
3903  * 	Reset the bytes and packet count of a network device and clear the
3904  * 	software flow control OFF bit for this network device
3905  */
3906 static inline void netdev_reset_queue(struct net_device *dev_queue)
3907 {
3908 	netdev_tx_reset_subqueue(dev_queue, 0);
3909 }
3910 
3911 /**
3912  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3913  * 	@dev: network device
3914  * 	@queue_index: given tx queue index
3915  *
3916  * 	Returns 0 if given tx queue index >= number of device tx queues,
3917  * 	otherwise returns the originally passed tx queue index.
3918  */
3919 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3920 {
3921 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3922 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3923 				     dev->name, queue_index,
3924 				     dev->real_num_tx_queues);
3925 		return 0;
3926 	}
3927 
3928 	return queue_index;
3929 }
3930 
3931 /**
3932  *	netif_running - test if up
3933  *	@dev: network device
3934  *
3935  *	Test if the device has been brought up.
3936  */
3937 static inline bool netif_running(const struct net_device *dev)
3938 {
3939 	return test_bit(__LINK_STATE_START, &dev->state);
3940 }
3941 
3942 /*
3943  * Routines to manage the subqueues on a device.  We only need start,
3944  * stop, and a check if it's stopped.  All other device management is
3945  * done at the overall netdevice level.
3946  * Also test the device if we're multiqueue.
3947  */
3948 
3949 /**
3950  *	netif_start_subqueue - allow sending packets on subqueue
3951  *	@dev: network device
3952  *	@queue_index: sub queue index
3953  *
3954  * Start individual transmit queue of a device with multiple transmit queues.
3955  */
3956 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3957 {
3958 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3959 
3960 	netif_tx_start_queue(txq);
3961 }
3962 
3963 /**
3964  *	netif_stop_subqueue - stop sending packets on subqueue
3965  *	@dev: network device
3966  *	@queue_index: sub queue index
3967  *
3968  * Stop individual transmit queue of a device with multiple transmit queues.
3969  */
3970 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3971 {
3972 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3973 	netif_tx_stop_queue(txq);
3974 }
3975 
3976 /**
3977  *	__netif_subqueue_stopped - test status of subqueue
3978  *	@dev: network device
3979  *	@queue_index: sub queue index
3980  *
3981  * Check individual transmit queue of a device with multiple transmit queues.
3982  */
3983 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3984 					    u16 queue_index)
3985 {
3986 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3987 
3988 	return netif_tx_queue_stopped(txq);
3989 }
3990 
3991 /**
3992  *	netif_subqueue_stopped - test status of subqueue
3993  *	@dev: network device
3994  *	@skb: sub queue buffer pointer
3995  *
3996  * Check individual transmit queue of a device with multiple transmit queues.
3997  */
3998 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3999 					  struct sk_buff *skb)
4000 {
4001 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
4002 }
4003 
4004 /**
4005  *	netif_wake_subqueue - allow sending packets on subqueue
4006  *	@dev: network device
4007  *	@queue_index: sub queue index
4008  *
4009  * Resume individual transmit queue of a device with multiple transmit queues.
4010  */
4011 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
4012 {
4013 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
4014 
4015 	netif_tx_wake_queue(txq);
4016 }
4017 
4018 #ifdef CONFIG_XPS
4019 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
4020 			u16 index);
4021 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
4022 			  u16 index, enum xps_map_type type);
4023 
4024 /**
4025  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
4026  *	@j: CPU/Rx queue index
4027  *	@mask: bitmask of all cpus/rx queues
4028  *	@nr_bits: number of bits in the bitmask
4029  *
4030  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
4031  */
4032 static inline bool netif_attr_test_mask(unsigned long j,
4033 					const unsigned long *mask,
4034 					unsigned int nr_bits)
4035 {
4036 	cpu_max_bits_warn(j, nr_bits);
4037 	return test_bit(j, mask);
4038 }
4039 
4040 /**
4041  *	netif_attr_test_online - Test for online CPU/Rx queue
4042  *	@j: CPU/Rx queue index
4043  *	@online_mask: bitmask for CPUs/Rx queues that are online
4044  *	@nr_bits: number of bits in the bitmask
4045  *
4046  * Returns: true if a CPU/Rx queue is online.
4047  */
4048 static inline bool netif_attr_test_online(unsigned long j,
4049 					  const unsigned long *online_mask,
4050 					  unsigned int nr_bits)
4051 {
4052 	cpu_max_bits_warn(j, nr_bits);
4053 
4054 	if (online_mask)
4055 		return test_bit(j, online_mask);
4056 
4057 	return (j < nr_bits);
4058 }
4059 
4060 /**
4061  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
4062  *	@n: CPU/Rx queue index
4063  *	@srcp: the cpumask/Rx queue mask pointer
4064  *	@nr_bits: number of bits in the bitmask
4065  *
4066  * Returns: next (after n) CPU/Rx queue index in the mask;
4067  * >= nr_bits if no further CPUs/Rx queues set.
4068  */
4069 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
4070 					       unsigned int nr_bits)
4071 {
4072 	/* -1 is a legal arg here. */
4073 	if (n != -1)
4074 		cpu_max_bits_warn(n, nr_bits);
4075 
4076 	if (srcp)
4077 		return find_next_bit(srcp, nr_bits, n + 1);
4078 
4079 	return n + 1;
4080 }
4081 
4082 /**
4083  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
4084  *	@n: CPU/Rx queue index
4085  *	@src1p: the first CPUs/Rx queues mask pointer
4086  *	@src2p: the second CPUs/Rx queues mask pointer
4087  *	@nr_bits: number of bits in the bitmask
4088  *
4089  * Returns: next (after n) CPU/Rx queue index set in both masks;
4090  * >= nr_bits if no further CPUs/Rx queues set in both.
4091  */
4092 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
4093 					  const unsigned long *src2p,
4094 					  unsigned int nr_bits)
4095 {
4096 	/* -1 is a legal arg here. */
4097 	if (n != -1)
4098 		cpu_max_bits_warn(n, nr_bits);
4099 
4100 	if (src1p && src2p)
4101 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
4102 	else if (src1p)
4103 		return find_next_bit(src1p, nr_bits, n + 1);
4104 	else if (src2p)
4105 		return find_next_bit(src2p, nr_bits, n + 1);
4106 
4107 	return n + 1;
4108 }
4109 #else
4110 static inline int netif_set_xps_queue(struct net_device *dev,
4111 				      const struct cpumask *mask,
4112 				      u16 index)
4113 {
4114 	return 0;
4115 }
4116 
4117 static inline int __netif_set_xps_queue(struct net_device *dev,
4118 					const unsigned long *mask,
4119 					u16 index, enum xps_map_type type)
4120 {
4121 	return 0;
4122 }
4123 #endif
4124 
4125 /**
4126  *	netif_is_multiqueue - test if device has multiple transmit queues
4127  *	@dev: network device
4128  *
4129  * Check if device has multiple transmit queues
4130  */
4131 static inline bool netif_is_multiqueue(const struct net_device *dev)
4132 {
4133 	return dev->num_tx_queues > 1;
4134 }
4135 
4136 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
4137 
4138 #ifdef CONFIG_SYSFS
4139 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
4140 #else
4141 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
4142 						unsigned int rxqs)
4143 {
4144 	dev->real_num_rx_queues = rxqs;
4145 	return 0;
4146 }
4147 #endif
4148 int netif_set_real_num_queues(struct net_device *dev,
4149 			      unsigned int txq, unsigned int rxq);
4150 
4151 int netif_get_num_default_rss_queues(void);
4152 
4153 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4154 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4155 
4156 /*
4157  * It is not allowed to call kfree_skb() or consume_skb() from hardware
4158  * interrupt context or with hardware interrupts being disabled.
4159  * (in_hardirq() || irqs_disabled())
4160  *
4161  * We provide four helpers that can be used in following contexts :
4162  *
4163  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
4164  *  replacing kfree_skb(skb)
4165  *
4166  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
4167  *  Typically used in place of consume_skb(skb) in TX completion path
4168  *
4169  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
4170  *  replacing kfree_skb(skb)
4171  *
4172  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
4173  *  and consumed a packet. Used in place of consume_skb(skb)
4174  */
4175 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
4176 {
4177 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4178 }
4179 
4180 static inline void dev_consume_skb_irq(struct sk_buff *skb)
4181 {
4182 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
4183 }
4184 
4185 static inline void dev_kfree_skb_any(struct sk_buff *skb)
4186 {
4187 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4188 }
4189 
4190 static inline void dev_consume_skb_any(struct sk_buff *skb)
4191 {
4192 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
4193 }
4194 
4195 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4196 			     const struct bpf_prog *xdp_prog);
4197 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog);
4198 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb);
4199 int netif_rx(struct sk_buff *skb);
4200 int __netif_rx(struct sk_buff *skb);
4201 
4202 int netif_receive_skb(struct sk_buff *skb);
4203 int netif_receive_skb_core(struct sk_buff *skb);
4204 void netif_receive_skb_list_internal(struct list_head *head);
4205 void netif_receive_skb_list(struct list_head *head);
4206 gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb);
4207 
4208 static inline gro_result_t napi_gro_receive(struct napi_struct *napi,
4209 					    struct sk_buff *skb)
4210 {
4211 	return gro_receive_skb(&napi->gro, skb);
4212 }
4213 
4214 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4215 gro_result_t napi_gro_frags(struct napi_struct *napi);
4216 
4217 static inline void napi_free_frags(struct napi_struct *napi)
4218 {
4219 	kfree_skb(napi->skb);
4220 	napi->skb = NULL;
4221 }
4222 
4223 bool netdev_is_rx_handler_busy(struct net_device *dev);
4224 int netdev_rx_handler_register(struct net_device *dev,
4225 			       rx_handler_func_t *rx_handler,
4226 			       void *rx_handler_data);
4227 void netdev_rx_handler_unregister(struct net_device *dev);
4228 
4229 bool dev_valid_name(const char *name);
4230 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4231 {
4232 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4233 }
4234 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4235 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4236 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4237 		void __user *data, bool *need_copyout);
4238 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4239 int dev_eth_ioctl(struct net_device *dev,
4240 		  struct ifreq *ifr, unsigned int cmd);
4241 int generic_hwtstamp_get_lower(struct net_device *dev,
4242 			       struct kernel_hwtstamp_config *kernel_cfg);
4243 int generic_hwtstamp_set_lower(struct net_device *dev,
4244 			       struct kernel_hwtstamp_config *kernel_cfg,
4245 			       struct netlink_ext_ack *extack);
4246 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4247 unsigned int dev_get_flags(const struct net_device *);
4248 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4249 		       struct netlink_ext_ack *extack);
4250 int netif_change_flags(struct net_device *dev, unsigned int flags,
4251 		       struct netlink_ext_ack *extack);
4252 int dev_change_flags(struct net_device *dev, unsigned int flags,
4253 		     struct netlink_ext_ack *extack);
4254 int netif_set_alias(struct net_device *dev, const char *alias, size_t len);
4255 int dev_set_alias(struct net_device *, const char *, size_t);
4256 int dev_get_alias(const struct net_device *, char *, size_t);
4257 int netif_change_net_namespace(struct net_device *dev, struct net *net,
4258 			       const char *pat, int new_ifindex,
4259 			       struct netlink_ext_ack *extack);
4260 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4261 			     const char *pat);
4262 int __dev_set_mtu(struct net_device *, int);
4263 int netif_set_mtu(struct net_device *dev, int new_mtu);
4264 int dev_set_mtu(struct net_device *, int);
4265 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4266 			      struct netlink_ext_ack *extack);
4267 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4268 			  struct netlink_ext_ack *extack);
4269 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4270 			struct netlink_ext_ack *extack);
4271 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4272 int dev_get_port_parent_id(struct net_device *dev,
4273 			   struct netdev_phys_item_id *ppid, bool recurse);
4274 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4275 
4276 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4277 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4278 				    struct netdev_queue *txq, int *ret);
4279 
4280 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4281 u8 dev_xdp_prog_count(struct net_device *dev);
4282 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4283 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4284 u8 dev_xdp_sb_prog_count(struct net_device *dev);
4285 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4286 
4287 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4288 
4289 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4290 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4291 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4292 bool is_skb_forwardable(const struct net_device *dev,
4293 			const struct sk_buff *skb);
4294 
4295 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4296 						 const struct sk_buff *skb,
4297 						 const bool check_mtu)
4298 {
4299 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4300 	unsigned int len;
4301 
4302 	if (!(dev->flags & IFF_UP))
4303 		return false;
4304 
4305 	if (!check_mtu)
4306 		return true;
4307 
4308 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4309 	if (skb->len <= len)
4310 		return true;
4311 
4312 	/* if TSO is enabled, we don't care about the length as the packet
4313 	 * could be forwarded without being segmented before
4314 	 */
4315 	if (skb_is_gso(skb))
4316 		return true;
4317 
4318 	return false;
4319 }
4320 
4321 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4322 
4323 #define DEV_CORE_STATS_INC(FIELD)						\
4324 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4325 {										\
4326 	netdev_core_stats_inc(dev,						\
4327 			offsetof(struct net_device_core_stats, FIELD));		\
4328 }
4329 DEV_CORE_STATS_INC(rx_dropped)
4330 DEV_CORE_STATS_INC(tx_dropped)
4331 DEV_CORE_STATS_INC(rx_nohandler)
4332 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4333 #undef DEV_CORE_STATS_INC
4334 
4335 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4336 					       struct sk_buff *skb,
4337 					       const bool check_mtu)
4338 {
4339 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4340 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4341 		dev_core_stats_rx_dropped_inc(dev);
4342 		kfree_skb(skb);
4343 		return NET_RX_DROP;
4344 	}
4345 
4346 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4347 	skb->priority = 0;
4348 	return 0;
4349 }
4350 
4351 bool dev_nit_active(struct net_device *dev);
4352 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4353 
4354 static inline void __dev_put(struct net_device *dev)
4355 {
4356 	if (dev) {
4357 #ifdef CONFIG_PCPU_DEV_REFCNT
4358 		this_cpu_dec(*dev->pcpu_refcnt);
4359 #else
4360 		refcount_dec(&dev->dev_refcnt);
4361 #endif
4362 	}
4363 }
4364 
4365 static inline void __dev_hold(struct net_device *dev)
4366 {
4367 	if (dev) {
4368 #ifdef CONFIG_PCPU_DEV_REFCNT
4369 		this_cpu_inc(*dev->pcpu_refcnt);
4370 #else
4371 		refcount_inc(&dev->dev_refcnt);
4372 #endif
4373 	}
4374 }
4375 
4376 static inline void __netdev_tracker_alloc(struct net_device *dev,
4377 					  netdevice_tracker *tracker,
4378 					  gfp_t gfp)
4379 {
4380 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4381 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4382 #endif
4383 }
4384 
4385 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4386  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4387  */
4388 static inline void netdev_tracker_alloc(struct net_device *dev,
4389 					netdevice_tracker *tracker, gfp_t gfp)
4390 {
4391 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4392 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4393 	__netdev_tracker_alloc(dev, tracker, gfp);
4394 #endif
4395 }
4396 
4397 static inline void netdev_tracker_free(struct net_device *dev,
4398 				       netdevice_tracker *tracker)
4399 {
4400 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4401 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4402 #endif
4403 }
4404 
4405 static inline void netdev_hold(struct net_device *dev,
4406 			       netdevice_tracker *tracker, gfp_t gfp)
4407 {
4408 	if (dev) {
4409 		__dev_hold(dev);
4410 		__netdev_tracker_alloc(dev, tracker, gfp);
4411 	}
4412 }
4413 
4414 static inline void netdev_put(struct net_device *dev,
4415 			      netdevice_tracker *tracker)
4416 {
4417 	if (dev) {
4418 		netdev_tracker_free(dev, tracker);
4419 		__dev_put(dev);
4420 	}
4421 }
4422 
4423 /**
4424  *	dev_hold - get reference to device
4425  *	@dev: network device
4426  *
4427  * Hold reference to device to keep it from being freed.
4428  * Try using netdev_hold() instead.
4429  */
4430 static inline void dev_hold(struct net_device *dev)
4431 {
4432 	netdev_hold(dev, NULL, GFP_ATOMIC);
4433 }
4434 
4435 /**
4436  *	dev_put - release reference to device
4437  *	@dev: network device
4438  *
4439  * Release reference to device to allow it to be freed.
4440  * Try using netdev_put() instead.
4441  */
4442 static inline void dev_put(struct net_device *dev)
4443 {
4444 	netdev_put(dev, NULL);
4445 }
4446 
4447 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4448 
4449 static inline void netdev_ref_replace(struct net_device *odev,
4450 				      struct net_device *ndev,
4451 				      netdevice_tracker *tracker,
4452 				      gfp_t gfp)
4453 {
4454 	if (odev)
4455 		netdev_tracker_free(odev, tracker);
4456 
4457 	__dev_hold(ndev);
4458 	__dev_put(odev);
4459 
4460 	if (ndev)
4461 		__netdev_tracker_alloc(ndev, tracker, gfp);
4462 }
4463 
4464 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4465  * and _off may be called from IRQ context, but it is caller
4466  * who is responsible for serialization of these calls.
4467  *
4468  * The name carrier is inappropriate, these functions should really be
4469  * called netif_lowerlayer_*() because they represent the state of any
4470  * kind of lower layer not just hardware media.
4471  */
4472 void linkwatch_fire_event(struct net_device *dev);
4473 
4474 /**
4475  * linkwatch_sync_dev - sync linkwatch for the given device
4476  * @dev: network device to sync linkwatch for
4477  *
4478  * Sync linkwatch for the given device, removing it from the
4479  * pending work list (if queued).
4480  */
4481 void linkwatch_sync_dev(struct net_device *dev);
4482 
4483 /**
4484  *	netif_carrier_ok - test if carrier present
4485  *	@dev: network device
4486  *
4487  * Check if carrier is present on device
4488  */
4489 static inline bool netif_carrier_ok(const struct net_device *dev)
4490 {
4491 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4492 }
4493 
4494 unsigned long dev_trans_start(struct net_device *dev);
4495 
4496 void netdev_watchdog_up(struct net_device *dev);
4497 
4498 void netif_carrier_on(struct net_device *dev);
4499 void netif_carrier_off(struct net_device *dev);
4500 void netif_carrier_event(struct net_device *dev);
4501 
4502 /**
4503  *	netif_dormant_on - mark device as dormant.
4504  *	@dev: network device
4505  *
4506  * Mark device as dormant (as per RFC2863).
4507  *
4508  * The dormant state indicates that the relevant interface is not
4509  * actually in a condition to pass packets (i.e., it is not 'up') but is
4510  * in a "pending" state, waiting for some external event.  For "on-
4511  * demand" interfaces, this new state identifies the situation where the
4512  * interface is waiting for events to place it in the up state.
4513  */
4514 static inline void netif_dormant_on(struct net_device *dev)
4515 {
4516 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4517 		linkwatch_fire_event(dev);
4518 }
4519 
4520 /**
4521  *	netif_dormant_off - set device as not dormant.
4522  *	@dev: network device
4523  *
4524  * Device is not in dormant state.
4525  */
4526 static inline void netif_dormant_off(struct net_device *dev)
4527 {
4528 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4529 		linkwatch_fire_event(dev);
4530 }
4531 
4532 /**
4533  *	netif_dormant - test if device is dormant
4534  *	@dev: network device
4535  *
4536  * Check if device is dormant.
4537  */
4538 static inline bool netif_dormant(const struct net_device *dev)
4539 {
4540 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4541 }
4542 
4543 
4544 /**
4545  *	netif_testing_on - mark device as under test.
4546  *	@dev: network device
4547  *
4548  * Mark device as under test (as per RFC2863).
4549  *
4550  * The testing state indicates that some test(s) must be performed on
4551  * the interface. After completion, of the test, the interface state
4552  * will change to up, dormant, or down, as appropriate.
4553  */
4554 static inline void netif_testing_on(struct net_device *dev)
4555 {
4556 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4557 		linkwatch_fire_event(dev);
4558 }
4559 
4560 /**
4561  *	netif_testing_off - set device as not under test.
4562  *	@dev: network device
4563  *
4564  * Device is not in testing state.
4565  */
4566 static inline void netif_testing_off(struct net_device *dev)
4567 {
4568 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4569 		linkwatch_fire_event(dev);
4570 }
4571 
4572 /**
4573  *	netif_testing - test if device is under test
4574  *	@dev: network device
4575  *
4576  * Check if device is under test
4577  */
4578 static inline bool netif_testing(const struct net_device *dev)
4579 {
4580 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4581 }
4582 
4583 
4584 /**
4585  *	netif_oper_up - test if device is operational
4586  *	@dev: network device
4587  *
4588  * Check if carrier is operational
4589  */
4590 static inline bool netif_oper_up(const struct net_device *dev)
4591 {
4592 	unsigned int operstate = READ_ONCE(dev->operstate);
4593 
4594 	return	operstate == IF_OPER_UP ||
4595 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4596 }
4597 
4598 /**
4599  *	netif_device_present - is device available or removed
4600  *	@dev: network device
4601  *
4602  * Check if device has not been removed from system.
4603  */
4604 static inline bool netif_device_present(const struct net_device *dev)
4605 {
4606 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4607 }
4608 
4609 void netif_device_detach(struct net_device *dev);
4610 
4611 void netif_device_attach(struct net_device *dev);
4612 
4613 /*
4614  * Network interface message level settings
4615  */
4616 
4617 enum {
4618 	NETIF_MSG_DRV_BIT,
4619 	NETIF_MSG_PROBE_BIT,
4620 	NETIF_MSG_LINK_BIT,
4621 	NETIF_MSG_TIMER_BIT,
4622 	NETIF_MSG_IFDOWN_BIT,
4623 	NETIF_MSG_IFUP_BIT,
4624 	NETIF_MSG_RX_ERR_BIT,
4625 	NETIF_MSG_TX_ERR_BIT,
4626 	NETIF_MSG_TX_QUEUED_BIT,
4627 	NETIF_MSG_INTR_BIT,
4628 	NETIF_MSG_TX_DONE_BIT,
4629 	NETIF_MSG_RX_STATUS_BIT,
4630 	NETIF_MSG_PKTDATA_BIT,
4631 	NETIF_MSG_HW_BIT,
4632 	NETIF_MSG_WOL_BIT,
4633 
4634 	/* When you add a new bit above, update netif_msg_class_names array
4635 	 * in net/ethtool/common.c
4636 	 */
4637 	NETIF_MSG_CLASS_COUNT,
4638 };
4639 /* Both ethtool_ops interface and internal driver implementation use u32 */
4640 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4641 
4642 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4643 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4644 
4645 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4646 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4647 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4648 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4649 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4650 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4651 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4652 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4653 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4654 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4655 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4656 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4657 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4658 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4659 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4660 
4661 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4662 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4663 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4664 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4665 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4666 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4667 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4668 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4669 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4670 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4671 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4672 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4673 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4674 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4675 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4676 
4677 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4678 {
4679 	/* use default */
4680 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4681 		return default_msg_enable_bits;
4682 	if (debug_value == 0)	/* no output */
4683 		return 0;
4684 	/* set low N bits */
4685 	return (1U << debug_value) - 1;
4686 }
4687 
4688 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4689 {
4690 	spin_lock(&txq->_xmit_lock);
4691 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4692 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4693 }
4694 
4695 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4696 {
4697 	__acquire(&txq->_xmit_lock);
4698 	return true;
4699 }
4700 
4701 static inline void __netif_tx_release(struct netdev_queue *txq)
4702 {
4703 	__release(&txq->_xmit_lock);
4704 }
4705 
4706 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4707 {
4708 	spin_lock_bh(&txq->_xmit_lock);
4709 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4710 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4711 }
4712 
4713 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4714 {
4715 	bool ok = spin_trylock(&txq->_xmit_lock);
4716 
4717 	if (likely(ok)) {
4718 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4719 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4720 	}
4721 	return ok;
4722 }
4723 
4724 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4725 {
4726 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4727 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4728 	spin_unlock(&txq->_xmit_lock);
4729 }
4730 
4731 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4732 {
4733 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4734 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4735 	spin_unlock_bh(&txq->_xmit_lock);
4736 }
4737 
4738 /*
4739  * txq->trans_start can be read locklessly from dev_watchdog()
4740  */
4741 static inline void txq_trans_update(struct netdev_queue *txq)
4742 {
4743 	if (txq->xmit_lock_owner != -1)
4744 		WRITE_ONCE(txq->trans_start, jiffies);
4745 }
4746 
4747 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4748 {
4749 	unsigned long now = jiffies;
4750 
4751 	if (READ_ONCE(txq->trans_start) != now)
4752 		WRITE_ONCE(txq->trans_start, now);
4753 }
4754 
4755 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4756 static inline void netif_trans_update(struct net_device *dev)
4757 {
4758 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4759 
4760 	txq_trans_cond_update(txq);
4761 }
4762 
4763 /**
4764  *	netif_tx_lock - grab network device transmit lock
4765  *	@dev: network device
4766  *
4767  * Get network device transmit lock
4768  */
4769 void netif_tx_lock(struct net_device *dev);
4770 
4771 static inline void netif_tx_lock_bh(struct net_device *dev)
4772 {
4773 	local_bh_disable();
4774 	netif_tx_lock(dev);
4775 }
4776 
4777 void netif_tx_unlock(struct net_device *dev);
4778 
4779 static inline void netif_tx_unlock_bh(struct net_device *dev)
4780 {
4781 	netif_tx_unlock(dev);
4782 	local_bh_enable();
4783 }
4784 
4785 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4786 	if (!(dev)->lltx) {				\
4787 		__netif_tx_lock(txq, cpu);		\
4788 	} else {					\
4789 		__netif_tx_acquire(txq);		\
4790 	}						\
4791 }
4792 
4793 #define HARD_TX_TRYLOCK(dev, txq)			\
4794 	(!(dev)->lltx ?					\
4795 		__netif_tx_trylock(txq) :		\
4796 		__netif_tx_acquire(txq))
4797 
4798 #define HARD_TX_UNLOCK(dev, txq) {			\
4799 	if (!(dev)->lltx) {				\
4800 		__netif_tx_unlock(txq);			\
4801 	} else {					\
4802 		__netif_tx_release(txq);		\
4803 	}						\
4804 }
4805 
4806 static inline void netif_tx_disable(struct net_device *dev)
4807 {
4808 	unsigned int i;
4809 	int cpu;
4810 
4811 	local_bh_disable();
4812 	cpu = smp_processor_id();
4813 	spin_lock(&dev->tx_global_lock);
4814 	for (i = 0; i < dev->num_tx_queues; i++) {
4815 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4816 
4817 		__netif_tx_lock(txq, cpu);
4818 		netif_tx_stop_queue(txq);
4819 		__netif_tx_unlock(txq);
4820 	}
4821 	spin_unlock(&dev->tx_global_lock);
4822 	local_bh_enable();
4823 }
4824 
4825 static inline void netif_addr_lock(struct net_device *dev)
4826 {
4827 	unsigned char nest_level = 0;
4828 
4829 #ifdef CONFIG_LOCKDEP
4830 	nest_level = dev->nested_level;
4831 #endif
4832 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4833 }
4834 
4835 static inline void netif_addr_lock_bh(struct net_device *dev)
4836 {
4837 	unsigned char nest_level = 0;
4838 
4839 #ifdef CONFIG_LOCKDEP
4840 	nest_level = dev->nested_level;
4841 #endif
4842 	local_bh_disable();
4843 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4844 }
4845 
4846 static inline void netif_addr_unlock(struct net_device *dev)
4847 {
4848 	spin_unlock(&dev->addr_list_lock);
4849 }
4850 
4851 static inline void netif_addr_unlock_bh(struct net_device *dev)
4852 {
4853 	spin_unlock_bh(&dev->addr_list_lock);
4854 }
4855 
4856 /*
4857  * dev_addrs walker. Should be used only for read access. Call with
4858  * rcu_read_lock held.
4859  */
4860 #define for_each_dev_addr(dev, ha) \
4861 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4862 
4863 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4864 
4865 void ether_setup(struct net_device *dev);
4866 
4867 /* Allocate dummy net_device */
4868 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4869 
4870 /* Support for loadable net-drivers */
4871 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4872 				    unsigned char name_assign_type,
4873 				    void (*setup)(struct net_device *),
4874 				    unsigned int txqs, unsigned int rxqs);
4875 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4876 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4877 
4878 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4879 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4880 			 count)
4881 
4882 int register_netdev(struct net_device *dev);
4883 void unregister_netdev(struct net_device *dev);
4884 
4885 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4886 
4887 /* General hardware address lists handling functions */
4888 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4889 		   struct netdev_hw_addr_list *from_list, int addr_len);
4890 int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list,
4891 			    struct netdev_hw_addr_list *from_list,
4892 			    int addr_len);
4893 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4894 		      struct netdev_hw_addr_list *from_list, int addr_len);
4895 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4896 		       struct net_device *dev,
4897 		       int (*sync)(struct net_device *, const unsigned char *),
4898 		       int (*unsync)(struct net_device *,
4899 				     const unsigned char *));
4900 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4901 			   struct net_device *dev,
4902 			   int (*sync)(struct net_device *,
4903 				       const unsigned char *, int),
4904 			   int (*unsync)(struct net_device *,
4905 					 const unsigned char *, int));
4906 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4907 			      struct net_device *dev,
4908 			      int (*unsync)(struct net_device *,
4909 					    const unsigned char *, int));
4910 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4911 			  struct net_device *dev,
4912 			  int (*unsync)(struct net_device *,
4913 					const unsigned char *));
4914 void __hw_addr_init(struct netdev_hw_addr_list *list);
4915 
4916 /* Functions used for device addresses handling */
4917 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4918 		  const void *addr, size_t len);
4919 
4920 static inline void
4921 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4922 {
4923 	dev_addr_mod(dev, 0, addr, len);
4924 }
4925 
4926 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4927 {
4928 	__dev_addr_set(dev, addr, dev->addr_len);
4929 }
4930 
4931 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4932 		 unsigned char addr_type);
4933 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4934 		 unsigned char addr_type);
4935 
4936 /* Functions used for unicast addresses handling */
4937 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4938 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4939 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4940 int dev_uc_sync(struct net_device *to, struct net_device *from);
4941 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4942 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4943 void dev_uc_flush(struct net_device *dev);
4944 void dev_uc_init(struct net_device *dev);
4945 
4946 /**
4947  *  __dev_uc_sync - Synchronize device's unicast list
4948  *  @dev:  device to sync
4949  *  @sync: function to call if address should be added
4950  *  @unsync: function to call if address should be removed
4951  *
4952  *  Add newly added addresses to the interface, and release
4953  *  addresses that have been deleted.
4954  */
4955 static inline int __dev_uc_sync(struct net_device *dev,
4956 				int (*sync)(struct net_device *,
4957 					    const unsigned char *),
4958 				int (*unsync)(struct net_device *,
4959 					      const unsigned char *))
4960 {
4961 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4962 }
4963 
4964 /**
4965  *  __dev_uc_unsync - Remove synchronized addresses from device
4966  *  @dev:  device to sync
4967  *  @unsync: function to call if address should be removed
4968  *
4969  *  Remove all addresses that were added to the device by dev_uc_sync().
4970  */
4971 static inline void __dev_uc_unsync(struct net_device *dev,
4972 				   int (*unsync)(struct net_device *,
4973 						 const unsigned char *))
4974 {
4975 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4976 }
4977 
4978 /* Functions used for multicast addresses handling */
4979 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4980 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4981 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4982 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4983 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4984 int dev_mc_sync(struct net_device *to, struct net_device *from);
4985 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4986 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4987 void dev_mc_flush(struct net_device *dev);
4988 void dev_mc_init(struct net_device *dev);
4989 
4990 /**
4991  *  __dev_mc_sync - Synchronize device's multicast list
4992  *  @dev:  device to sync
4993  *  @sync: function to call if address should be added
4994  *  @unsync: function to call if address should be removed
4995  *
4996  *  Add newly added addresses to the interface, and release
4997  *  addresses that have been deleted.
4998  */
4999 static inline int __dev_mc_sync(struct net_device *dev,
5000 				int (*sync)(struct net_device *,
5001 					    const unsigned char *),
5002 				int (*unsync)(struct net_device *,
5003 					      const unsigned char *))
5004 {
5005 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
5006 }
5007 
5008 /**
5009  *  __dev_mc_unsync - Remove synchronized addresses from device
5010  *  @dev:  device to sync
5011  *  @unsync: function to call if address should be removed
5012  *
5013  *  Remove all addresses that were added to the device by dev_mc_sync().
5014  */
5015 static inline void __dev_mc_unsync(struct net_device *dev,
5016 				   int (*unsync)(struct net_device *,
5017 						 const unsigned char *))
5018 {
5019 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
5020 }
5021 
5022 /* Functions used for secondary unicast and multicast support */
5023 void dev_set_rx_mode(struct net_device *dev);
5024 int dev_set_promiscuity(struct net_device *dev, int inc);
5025 int netif_set_allmulti(struct net_device *dev, int inc, bool notify);
5026 int dev_set_allmulti(struct net_device *dev, int inc);
5027 void netdev_state_change(struct net_device *dev);
5028 void __netdev_notify_peers(struct net_device *dev);
5029 void netdev_notify_peers(struct net_device *dev);
5030 void netdev_features_change(struct net_device *dev);
5031 /* Load a device via the kmod */
5032 void dev_load(struct net *net, const char *name);
5033 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5034 					struct rtnl_link_stats64 *storage);
5035 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5036 			     const struct net_device_stats *netdev_stats);
5037 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
5038 			   const struct pcpu_sw_netstats __percpu *netstats);
5039 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
5040 
5041 enum {
5042 	NESTED_SYNC_IMM_BIT,
5043 	NESTED_SYNC_TODO_BIT,
5044 };
5045 
5046 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
5047 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
5048 
5049 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
5050 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
5051 
5052 struct netdev_nested_priv {
5053 	unsigned char flags;
5054 	void *data;
5055 };
5056 
5057 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
5058 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5059 						     struct list_head **iter);
5060 
5061 /* iterate through upper list, must be called under RCU read lock */
5062 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
5063 	for (iter = &(dev)->adj_list.upper, \
5064 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
5065 	     updev; \
5066 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
5067 
5068 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5069 				  int (*fn)(struct net_device *upper_dev,
5070 					    struct netdev_nested_priv *priv),
5071 				  struct netdev_nested_priv *priv);
5072 
5073 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5074 				  struct net_device *upper_dev);
5075 
5076 bool netdev_has_any_upper_dev(struct net_device *dev);
5077 
5078 void *netdev_lower_get_next_private(struct net_device *dev,
5079 				    struct list_head **iter);
5080 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5081 					struct list_head **iter);
5082 
5083 #define netdev_for_each_lower_private(dev, priv, iter) \
5084 	for (iter = (dev)->adj_list.lower.next, \
5085 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
5086 	     priv; \
5087 	     priv = netdev_lower_get_next_private(dev, &(iter)))
5088 
5089 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
5090 	for (iter = &(dev)->adj_list.lower, \
5091 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
5092 	     priv; \
5093 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
5094 
5095 void *netdev_lower_get_next(struct net_device *dev,
5096 				struct list_head **iter);
5097 
5098 #define netdev_for_each_lower_dev(dev, ldev, iter) \
5099 	for (iter = (dev)->adj_list.lower.next, \
5100 	     ldev = netdev_lower_get_next(dev, &(iter)); \
5101 	     ldev; \
5102 	     ldev = netdev_lower_get_next(dev, &(iter)))
5103 
5104 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5105 					     struct list_head **iter);
5106 int netdev_walk_all_lower_dev(struct net_device *dev,
5107 			      int (*fn)(struct net_device *lower_dev,
5108 					struct netdev_nested_priv *priv),
5109 			      struct netdev_nested_priv *priv);
5110 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5111 				  int (*fn)(struct net_device *lower_dev,
5112 					    struct netdev_nested_priv *priv),
5113 				  struct netdev_nested_priv *priv);
5114 
5115 void *netdev_adjacent_get_private(struct list_head *adj_list);
5116 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
5117 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
5118 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
5119 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
5120 			  struct netlink_ext_ack *extack);
5121 int netdev_master_upper_dev_link(struct net_device *dev,
5122 				 struct net_device *upper_dev,
5123 				 void *upper_priv, void *upper_info,
5124 				 struct netlink_ext_ack *extack);
5125 void netdev_upper_dev_unlink(struct net_device *dev,
5126 			     struct net_device *upper_dev);
5127 int netdev_adjacent_change_prepare(struct net_device *old_dev,
5128 				   struct net_device *new_dev,
5129 				   struct net_device *dev,
5130 				   struct netlink_ext_ack *extack);
5131 void netdev_adjacent_change_commit(struct net_device *old_dev,
5132 				   struct net_device *new_dev,
5133 				   struct net_device *dev);
5134 void netdev_adjacent_change_abort(struct net_device *old_dev,
5135 				  struct net_device *new_dev,
5136 				  struct net_device *dev);
5137 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
5138 void *netdev_lower_dev_get_private(struct net_device *dev,
5139 				   struct net_device *lower_dev);
5140 void netdev_lower_state_changed(struct net_device *lower_dev,
5141 				void *lower_state_info);
5142 
5143 /* RSS keys are 40 or 52 bytes long */
5144 #define NETDEV_RSS_KEY_LEN 52
5145 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
5146 void netdev_rss_key_fill(void *buffer, size_t len);
5147 
5148 int skb_checksum_help(struct sk_buff *skb);
5149 int skb_crc32c_csum_help(struct sk_buff *skb);
5150 int skb_csum_hwoffload_help(struct sk_buff *skb,
5151 			    const netdev_features_t features);
5152 
5153 struct netdev_bonding_info {
5154 	ifslave	slave;
5155 	ifbond	master;
5156 };
5157 
5158 struct netdev_notifier_bonding_info {
5159 	struct netdev_notifier_info info; /* must be first */
5160 	struct netdev_bonding_info  bonding_info;
5161 };
5162 
5163 void netdev_bonding_info_change(struct net_device *dev,
5164 				struct netdev_bonding_info *bonding_info);
5165 
5166 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
5167 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
5168 #else
5169 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
5170 				  const void *data)
5171 {
5172 }
5173 #endif
5174 
5175 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
5176 
5177 static inline bool can_checksum_protocol(netdev_features_t features,
5178 					 __be16 protocol)
5179 {
5180 	if (protocol == htons(ETH_P_FCOE))
5181 		return !!(features & NETIF_F_FCOE_CRC);
5182 
5183 	/* Assume this is an IP checksum (not SCTP CRC) */
5184 
5185 	if (features & NETIF_F_HW_CSUM) {
5186 		/* Can checksum everything */
5187 		return true;
5188 	}
5189 
5190 	switch (protocol) {
5191 	case htons(ETH_P_IP):
5192 		return !!(features & NETIF_F_IP_CSUM);
5193 	case htons(ETH_P_IPV6):
5194 		return !!(features & NETIF_F_IPV6_CSUM);
5195 	default:
5196 		return false;
5197 	}
5198 }
5199 
5200 #ifdef CONFIG_BUG
5201 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
5202 #else
5203 static inline void netdev_rx_csum_fault(struct net_device *dev,
5204 					struct sk_buff *skb)
5205 {
5206 }
5207 #endif
5208 /* rx skb timestamps */
5209 void net_enable_timestamp(void);
5210 void net_disable_timestamp(void);
5211 
5212 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
5213 					const struct skb_shared_hwtstamps *hwtstamps,
5214 					bool cycles)
5215 {
5216 	const struct net_device_ops *ops = dev->netdev_ops;
5217 
5218 	if (ops->ndo_get_tstamp)
5219 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
5220 
5221 	return hwtstamps->hwtstamp;
5222 }
5223 
5224 #ifndef CONFIG_PREEMPT_RT
5225 static inline void netdev_xmit_set_more(bool more)
5226 {
5227 	__this_cpu_write(softnet_data.xmit.more, more);
5228 }
5229 
5230 static inline bool netdev_xmit_more(void)
5231 {
5232 	return __this_cpu_read(softnet_data.xmit.more);
5233 }
5234 #else
5235 static inline void netdev_xmit_set_more(bool more)
5236 {
5237 	current->net_xmit.more = more;
5238 }
5239 
5240 static inline bool netdev_xmit_more(void)
5241 {
5242 	return current->net_xmit.more;
5243 }
5244 #endif
5245 
5246 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5247 					      struct sk_buff *skb, struct net_device *dev,
5248 					      bool more)
5249 {
5250 	netdev_xmit_set_more(more);
5251 	return ops->ndo_start_xmit(skb, dev);
5252 }
5253 
5254 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5255 					    struct netdev_queue *txq, bool more)
5256 {
5257 	const struct net_device_ops *ops = dev->netdev_ops;
5258 	netdev_tx_t rc;
5259 
5260 	rc = __netdev_start_xmit(ops, skb, dev, more);
5261 	if (rc == NETDEV_TX_OK)
5262 		txq_trans_update(txq);
5263 
5264 	return rc;
5265 }
5266 
5267 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5268 				const void *ns);
5269 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5270 				 const void *ns);
5271 
5272 extern const struct kobj_ns_type_operations net_ns_type_operations;
5273 
5274 const char *netdev_drivername(const struct net_device *dev);
5275 
5276 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5277 							  netdev_features_t f2)
5278 {
5279 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5280 		if (f1 & NETIF_F_HW_CSUM)
5281 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5282 		else
5283 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5284 	}
5285 
5286 	return f1 & f2;
5287 }
5288 
5289 static inline netdev_features_t netdev_get_wanted_features(
5290 	struct net_device *dev)
5291 {
5292 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5293 }
5294 netdev_features_t netdev_increment_features(netdev_features_t all,
5295 	netdev_features_t one, netdev_features_t mask);
5296 
5297 /* Allow TSO being used on stacked device :
5298  * Performing the GSO segmentation before last device
5299  * is a performance improvement.
5300  */
5301 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5302 							netdev_features_t mask)
5303 {
5304 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5305 }
5306 
5307 int __netdev_update_features(struct net_device *dev);
5308 void netdev_update_features(struct net_device *dev);
5309 void netdev_change_features(struct net_device *dev);
5310 
5311 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5312 					struct net_device *dev);
5313 
5314 netdev_features_t passthru_features_check(struct sk_buff *skb,
5315 					  struct net_device *dev,
5316 					  netdev_features_t features);
5317 netdev_features_t netif_skb_features(struct sk_buff *skb);
5318 void skb_warn_bad_offload(const struct sk_buff *skb);
5319 
5320 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5321 {
5322 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5323 
5324 	/* check flags correspondence */
5325 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5326 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5327 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5328 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5329 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5330 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5331 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5332 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5333 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5334 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5335 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5336 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5337 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5338 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5339 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5340 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5341 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5342 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5343 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5344 
5345 	return (features & feature) == feature;
5346 }
5347 
5348 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5349 {
5350 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5351 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5352 }
5353 
5354 static inline bool netif_needs_gso(struct sk_buff *skb,
5355 				   netdev_features_t features)
5356 {
5357 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5358 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5359 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5360 }
5361 
5362 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5363 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5364 void netif_inherit_tso_max(struct net_device *to,
5365 			   const struct net_device *from);
5366 
5367 static inline unsigned int
5368 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5369 {
5370 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5371 	return skb->protocol == htons(ETH_P_IPV6) ?
5372 	       READ_ONCE(dev->gro_max_size) :
5373 	       READ_ONCE(dev->gro_ipv4_max_size);
5374 }
5375 
5376 static inline unsigned int
5377 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5378 {
5379 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5380 	return skb->protocol == htons(ETH_P_IPV6) ?
5381 	       READ_ONCE(dev->gso_max_size) :
5382 	       READ_ONCE(dev->gso_ipv4_max_size);
5383 }
5384 
5385 static inline bool netif_is_macsec(const struct net_device *dev)
5386 {
5387 	return dev->priv_flags & IFF_MACSEC;
5388 }
5389 
5390 static inline bool netif_is_macvlan(const struct net_device *dev)
5391 {
5392 	return dev->priv_flags & IFF_MACVLAN;
5393 }
5394 
5395 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5396 {
5397 	return dev->priv_flags & IFF_MACVLAN_PORT;
5398 }
5399 
5400 static inline bool netif_is_bond_master(const struct net_device *dev)
5401 {
5402 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5403 }
5404 
5405 static inline bool netif_is_bond_slave(const struct net_device *dev)
5406 {
5407 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5408 }
5409 
5410 static inline bool netif_supports_nofcs(struct net_device *dev)
5411 {
5412 	return dev->priv_flags & IFF_SUPP_NOFCS;
5413 }
5414 
5415 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5416 {
5417 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5418 }
5419 
5420 static inline bool netif_is_l3_master(const struct net_device *dev)
5421 {
5422 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5423 }
5424 
5425 static inline bool netif_is_l3_slave(const struct net_device *dev)
5426 {
5427 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5428 }
5429 
5430 static inline int dev_sdif(const struct net_device *dev)
5431 {
5432 #ifdef CONFIG_NET_L3_MASTER_DEV
5433 	if (netif_is_l3_slave(dev))
5434 		return dev->ifindex;
5435 #endif
5436 	return 0;
5437 }
5438 
5439 static inline bool netif_is_bridge_master(const struct net_device *dev)
5440 {
5441 	return dev->priv_flags & IFF_EBRIDGE;
5442 }
5443 
5444 static inline bool netif_is_bridge_port(const struct net_device *dev)
5445 {
5446 	return dev->priv_flags & IFF_BRIDGE_PORT;
5447 }
5448 
5449 static inline bool netif_is_ovs_master(const struct net_device *dev)
5450 {
5451 	return dev->priv_flags & IFF_OPENVSWITCH;
5452 }
5453 
5454 static inline bool netif_is_ovs_port(const struct net_device *dev)
5455 {
5456 	return dev->priv_flags & IFF_OVS_DATAPATH;
5457 }
5458 
5459 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5460 {
5461 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5462 }
5463 
5464 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5465 {
5466 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5467 }
5468 
5469 static inline bool netif_is_team_master(const struct net_device *dev)
5470 {
5471 	return dev->priv_flags & IFF_TEAM;
5472 }
5473 
5474 static inline bool netif_is_team_port(const struct net_device *dev)
5475 {
5476 	return dev->priv_flags & IFF_TEAM_PORT;
5477 }
5478 
5479 static inline bool netif_is_lag_master(const struct net_device *dev)
5480 {
5481 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5482 }
5483 
5484 static inline bool netif_is_lag_port(const struct net_device *dev)
5485 {
5486 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5487 }
5488 
5489 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5490 {
5491 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5492 }
5493 
5494 static inline bool netif_is_failover(const struct net_device *dev)
5495 {
5496 	return dev->priv_flags & IFF_FAILOVER;
5497 }
5498 
5499 static inline bool netif_is_failover_slave(const struct net_device *dev)
5500 {
5501 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5502 }
5503 
5504 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5505 static inline void netif_keep_dst(struct net_device *dev)
5506 {
5507 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5508 }
5509 
5510 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5511 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5512 {
5513 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5514 	return netif_is_macsec(dev);
5515 }
5516 
5517 extern struct pernet_operations __net_initdata loopback_net_ops;
5518 
5519 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5520 
5521 /* netdev_printk helpers, similar to dev_printk */
5522 
5523 static inline const char *netdev_name(const struct net_device *dev)
5524 {
5525 	if (!dev->name[0] || strchr(dev->name, '%'))
5526 		return "(unnamed net_device)";
5527 	return dev->name;
5528 }
5529 
5530 static inline const char *netdev_reg_state(const struct net_device *dev)
5531 {
5532 	u8 reg_state = READ_ONCE(dev->reg_state);
5533 
5534 	switch (reg_state) {
5535 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5536 	case NETREG_REGISTERED: return "";
5537 	case NETREG_UNREGISTERING: return " (unregistering)";
5538 	case NETREG_UNREGISTERED: return " (unregistered)";
5539 	case NETREG_RELEASED: return " (released)";
5540 	case NETREG_DUMMY: return " (dummy)";
5541 	}
5542 
5543 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5544 	return " (unknown)";
5545 }
5546 
5547 #define MODULE_ALIAS_NETDEV(device) \
5548 	MODULE_ALIAS("netdev-" device)
5549 
5550 /*
5551  * netdev_WARN() acts like dev_printk(), but with the key difference
5552  * of using a WARN/WARN_ON to get the message out, including the
5553  * file/line information and a backtrace.
5554  */
5555 #define netdev_WARN(dev, format, args...)			\
5556 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5557 	     netdev_reg_state(dev), ##args)
5558 
5559 #define netdev_WARN_ONCE(dev, format, args...)				\
5560 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5561 		  netdev_reg_state(dev), ##args)
5562 
5563 /*
5564  *	The list of packet types we will receive (as opposed to discard)
5565  *	and the routines to invoke.
5566  *
5567  *	Why 16. Because with 16 the only overlap we get on a hash of the
5568  *	low nibble of the protocol value is RARP/SNAP/X.25.
5569  *
5570  *		0800	IP
5571  *		0001	802.3
5572  *		0002	AX.25
5573  *		0004	802.2
5574  *		8035	RARP
5575  *		0005	SNAP
5576  *		0805	X.25
5577  *		0806	ARP
5578  *		8137	IPX
5579  *		0009	Localtalk
5580  *		86DD	IPv6
5581  */
5582 #define PTYPE_HASH_SIZE	(16)
5583 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5584 
5585 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5586 
5587 extern struct net_device *blackhole_netdev;
5588 
5589 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5590 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5591 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5592 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5593 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5594 
5595 #endif	/* _LINUX_NETDEVICE_H */
5596